WorldWideScience

Sample records for azobenzene nanoparticle-embedded polyacrylic

  1. Photo-Reversible Supramolecular Hydrogels Assembled by α-Cyclodextrin and Azobenzene Substituted Poly(acrylic acid)s

    NARCIS (Netherlands)

    Wang, Mingwei; Zhang, Xiaojun; Li, Li; Wang, Junyou; Wang, Jie; Ma, Jun; Yuan, Zhenyu; Lincoln, Stephen F.; Guo, Xuhong

    2016-01-01

    Photo-reversible supramolecular hydrogels based on the mixture of α-cyclodextrin (α-CD) and azobenzene (Azo) substituted poly(acrylic acid) s were prepared. Effects of substitution degree of Azo, polymer concentration and tethered chain length on the reversible sol-gel transition of these

  2. Prevention of aggregation and renaturation of carbonic anhydrase via weak association with octadecyl- or azobenzene-modified poly(acrylate) derivatives.

    Science.gov (United States)

    Martin, Nicolas; Ruchmann, Juliette; Tribet, Christophe

    2015-01-01

    The prevention of aggregation during renaturation of urea-denatured carbonic anhydrase B (CAB) via hydrophobic and Coulomb association with anionic polymers was studied in mixed solutions of CAB and amphiphilic poly(acrylate) copolymers. The polymers were derivatives of a parent poly(acrylic acid) randomly grafted with hydrophobic side groups (either 3 mol % octadecyl group, or 1-5 mol % alkylamidoazobenzene photoresponsive groups). CAB:polymer complexes were characterized by light scattering and fluorescence correlation spectroscopy in aqueous buffers (pH 7.75 or 5.9). Circular dichroism and enzyme activity assays enabled us to study the kinetics of renaturation. All copolymers, including the hydrophilic PAA parent chain, provided a remarkable protective effect against CAB aggregation during renaturation, and most of them (but not the octadecyl-modified one) markedly enhanced the regain of activity as compared to CAB alone. The significant role of Coulomb binding in renaturation and comparatively the lack of efficacy of hydrophobic association was highlighted by measurements of activity regain before and after in situ dissociation of hydrophobic complexes (achieved by phototriggering the polarity of azobenzene-modified polymers under exposure to UV light). In the presence of polymers (CAB:polymer of 1:1 w/w ratio) at concentration ∼0.6 g L(-1), the radii of the largest complexes were similar to the radii of the copolymers alone, suggesting that the binding of CAB involves one or a few polymer chain(s). These complexes dissociated by dilution (0.01 g L(-1)). It is concluded that prevention of irreversible aggregation and activity recovery were achieved when marginally stable complexes are formed. Reaching a balanced stability of the complex plays the main role in CAB renaturation, irrespective of the nature of the binding (by Coulomb association, with or without contribution of hydrophobic association).

  3. Nanoparticle embedded enzymes for improved lateral flow sensors

    DEFF Research Database (Denmark)

    Özalp, Veli Cengiz; Zeydanlı, Uğur S.; Lunding, Anita

    2013-01-01

    In this study, combining the nanoparticle embedded sensors with lateral flow assays, a novel strategy for ensuring the quality of signalling in lateral flow assays (LFAs) was developed. A LFA for reactive oxygen species (ROS) is reported that is based on horse radish peroxidase (HRP) which is co...... of hydrogen peroxides was quantified with this novel LFA-ROS sensor to obtain a linear range between 1 and 25 μM. Nanoparticle embedding of enzymes is proposed here as a general strategy for developing enzyme-based lateral flow assays, eliminating adverse effects associated with biological samples....

  4. Azobenzene-functionalized cascade molecules

    DEFF Research Database (Denmark)

    Archut, A.; Vogtle, F.; De Cola, L.

    1998-01-01

    Cascade molecules bearing up to 32 azobenzene groups in the periphery have been prepared from poly(propylene imine) dendrimers and N-hydroxysuccinimide esters. The dendritic azobenzene species show similar isomerization properties as the corresponding azobenzene monomers. The all-E azobenzene...

  5. Nanoparticle embedded enzymes for improved lateral flow sensors

    DEFF Research Database (Denmark)

    Özalp, Veli Cengiz; Zeydanlı, Uğur S.; Lunding, Anita

    2013-01-01

    In this study, combining the nanoparticle embedded sensors with lateral flow assays, a novel strategy for ensuring the quality of signalling in lateral flow assays (LFAs) was developed. A LFA for reactive oxygen species (ROS) is reported that is based on horse radish peroxidase (HRP) which is co......-entrapped with Texas Red dextran inside porous polyacrylamide nanoparticles. In this system, enzymes are protected in the porous matrix of polyacrylamide which freely allows the diffusion of the analyte. The sensor is rapid and sensitive for quantification of hydrogen peroxide concentrations. A test solution...

  6. The azobenzene derivatives

    Science.gov (United States)

    Ionita, Ionica; Radulescu, Cristiana; Poinescu, Aurora Anca; Anghelina, Florina Violeta; Bunghez, Raluca; Ion, Rodica-Mariana

    2015-02-01

    Azobenzene derivatives constitute a group of dyes which have photochromic properties and have been investigated as promising systems for diverse applications in the unconventional optic area, their properties can be moulded with help of light.

  7. Core-shell Au/Ag nanoparticles embedded in silicate sol-gel ...

    Indian Academy of Sciences (India)

    Core-shell Au/Ag nanoparticles embedded in silicate sol-gel network for sensor application towards hydrogen peroxide ... The present study highlights the influence of molar composition of Ag nanoparticles in the Au/Ag bimetallic composition towards the electrocatalytic reduction and sensing of hydrogen peroxide in ...

  8. Core–shell Au/Ag nanoparticles embedded in silicate sol–gel ...

    Indian Academy of Sciences (India)

    Administrator

    Dedicated to the memory of the late Professor S K Rangarajan. *For correspondence. Core–shell Au/Ag nanoparticles embedded in silicate sol–gel network for sensor .... An immediate colour change was observed for the mixed solution, indicating the dis- persion of metal nanoparticles in the MTMOS sol– gel matrix.

  9. Understanding the Thermal Stability of Silver Nanoparticles Embedded in a-Si

    DEFF Research Database (Denmark)

    Gould, Anna L.; Kadkhodazadeh, Shima; Wagner, Jakob Birkedal

    2015-01-01

    The inclusion of silver plasmonic nanoparticles in silicon is highly relevant for photovoltaics as it may enhance optical absorption. We report an investigation of the stability of such pristine silver nanoparticles embedded in a-Si upon heat treatment. We have investigated the morphological...

  10. Core-shell Au/Ag nanoparticles embedded in silicate sol-gel ...

    Indian Academy of Sciences (India)

    The electrocatalytic activity of core-shell Au100-Ag ( = 15, 27, 46, and 60) bimetallic nanoparticles embedded in methyl functionalized silicate MTMOS network towards the reduction of hydrogen peroxide was investigated by using cyclic voltammetry and chronoamperometric techniques. Core-shell Au/Ag bimetallic ...

  11. 21 CFR 173.73 - Sodium polyacrylate.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Polymer Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium polyacrylate (CAS...

  12. Strain Distribution of Au and Ag Nanoparticles Embedded in Al2O3 Thin Film

    Directory of Open Access Journals (Sweden)

    Honghua Huang

    2014-01-01

    Full Text Available Au and Ag nanoparticles embedded in amorphous Al2O3 matrix are fabricated by the pulsed laser deposition (PLD method and rapid thermal annealing (RTA technique, which are confirmed by the experimental high-resolution transmission electron microscope (HRTEM results, respectively. The strain distribution of Au and Ag nanoparticles embedded in the Al2O3 matrix is investigated by the finite-element (FE calculations. The simulation results clearly indicate that both the Au and Ag nanoparticles incur compressive strain by the Al2O3 matrix. However, the compressive strain existing on the Au nanoparticle is much weaker than that on the Ag nanoparticle. This phenomenon can be attributed to the reason that Young’s modulus of Au is larger than that of Ag. This different strain distribution of Au and Ag nanoparticles in the same host matrix may have a significant influence on the technological potential applications of the Au-Ag alloy nanoparticles.

  13. Annealing effect on the ultrafast dynamics of Ag nanoparticles embedded in soda-lime silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Dong Zhiwei [Surface Physics Laboratory (National Key Laboratory) and Department of Physics, Fudan University, Shanghai 200433 (China); National Key Laboratory of Tunable Lasers, Institute of Optical-Electronics, Harbin Institute of Technology, Harbin 150001 (China); Yang Xiucun; Li Zhihui [School of Materials Science and Engineering, Tongji University, Shanghai 200433 (China); You Guanjun; Yan Yongli [Surface Physics Laboratory (National Key Laboratory) and Department of Physics, Fudan University, Shanghai 200433 (China); Qian Shixiong, E-mail: sxqian@fudan.ac.c [Surface Physics Laboratory (National Key Laboratory) and Department of Physics, Fudan University, Shanghai 200433 (China)

    2009-08-01

    Ag nanoparticles embedded in soda-lime silicate glasses were fabricated by the ion-exchange technique. Effects of thermal treatment on the optical nonlinearity and ultrafast dynamics of Ag nanoparticles were investigated by applying time-resolved optical Kerr effect and pump-probe techniques. The results indicate that thermal treatment is an efficient method to improve the nonlinear optical performance of this kind of material.

  14. Photoisomerization in different classes of azobenzene.

    Science.gov (United States)

    Bandara, H M Dhammika; Burdette, Shawn C

    2012-03-07

    Azobenzene undergoes trans→cis isomerization when irradiated with light tuned to an appropriate wavelength. The reverse cis→trans isomerization can be driven by light or occurs thermally in the dark. Azobenzene's photochromatic properties make it an ideal component of numerous molecular devices and functional materials. Despite the abundance of application-driven research, azobenzene photochemistry and the isomerization mechanism remain topics of investigation. Additional substituents on the azobenzene ring system change the spectroscopic properties and isomerization mechanism. This critical review details the studies completed to date on the 3 main classes of azobenzene derivatives. Understanding the differences in photochemistry, which originate from substitution, is imperative in exploiting azobenzene in the desired applications. This journal is © The Royal Society of Chemistry 2012

  15. Enhanced antioxidant activity of gold nanoparticle embedded 3,6-dihydroxyflavone: a combinational study

    Science.gov (United States)

    Medhe, Sharad; Bansal, Prachi; Srivastava, Man Mohan

    2012-12-01

    The antioxidative effect of selected dietary compounds (3,6-dihydroxyflavone, lutein and selenium methyl selenocysteine) was determined in single and combination using DPPH (2,2-diphenyl-l-picrylhydrazyl), OH (hydroxyl), H2O2 (hydrogen peroxide) and NO (nitric oxide) radical scavenging assays. Radical scavenging effect of the dietary phytochemicals individually are found to be in the order: ascorbic acid (standard) > lutein > 3,6-dihydroxyflavone > selenium methyl selenocysteine, at concentration 100 μg/ml, confirmed by all the four bioassays (p nanotech enforcement of dietary phytochemicals shows the utility in the architecture of nanoparticle embedded phytoproducts having a wide range of applications in medical science.

  16. Ultrafast dynamics of copper nanoparticles embedded in soda-lime silicate glass fabricated by ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Dong Zhiwei [Surface Physics Laboratory (National Key Laboratory) and Physics Department, Fudan University, Shanghai 200433 (China); National Key Laboratory of Tunable Lasers, Institute of Optical-Electronics, Harbin Institute of Technology, Harbin, 150001 (China); Yang Xiuchun; Li Zhihui; Xu Jingxian [School of Materials Science and Engineering, Tongji University, Shanghai 200433 (China); Liu Kangjiu; Zhang Chunfeng [Surface Physics Laboratory (National Key Laboratory) and Physics Department, Fudan University, Shanghai 200433 (China); You Guanjun [NUS Nanoscience and Nanotechnology Initiative, National University of Singapore, 117542 (Singapore); Yan Yongli [Surface Physics Laboratory (National Key Laboratory) and Physics Department, Fudan University, Shanghai 200433 (China); Qian Shixiong, E-mail: sxqian@fudan.ac.c [Surface Physics Laboratory (National Key Laboratory) and Physics Department, Fudan University, Shanghai 200433 (China)

    2009-09-01

    Copper nanoparticles embedded in soda-lime glass were fabricated by ion exchange followed by thermal treatment in hydrogen. The ultrafast dynamics of the embedded Cu nanoparticles formed under different fabrication conditions were investigated by applying femtosecond pump-probe technique. Non-Fermi electrons were suggested to be dominant in the transient behavior of the nanocomposites far from surface plasmon resonance of Cu. The long ion-exchange processing time was found to benefit and improve the ultrafast response of the fabricated nanocomposites.

  17. Size effects of the magnetic anisotropy of fcc cobalt nanoparticles embedded in copper

    Science.gov (United States)

    Hillenkamp, Matthias; Oyarzún, Simón; Troc, Nicolas; Ramade, Julien; Tamion, Alexandre; Tournus, Florent; Dupuis, Véronique; Rodrigues, Varlei

    2017-12-01

    Cobalt nanoparticles embedded in copper matrices show strong size effects in the magnetic anisotropy with a non-monotonous dependence on the particle diameter. In this article we discuss quantitative values of the magnetic anisotropy in the frame of two models: in small clusters the surface anisotropy contribution dominates whereas larger particles ( >3 nm diameter) have an elliptic shape leading to increased shape anisotropy. The crystalline structure of the particles is shown to be face-centered cubic, justifying that the magneto-crystalline anisotropy can be neglected.

  18. Unusual photoanisotropic alignment in amorphous azobenzene polymers

    DEFF Research Database (Denmark)

    Ramanujam, P.S.

    2015-01-01

    It is well known that irradiation of azobenzene polymer films between 490 and 530nm results in alignment of molecules perpendicular to the polarization of the incident beam. I have recently found that irradiation of amorphous azobenzene polymers with linearly polarized light at wavelengths between...

  19. Azobenzene photoisomerization quantum yields in methanol redetermined.

    Science.gov (United States)

    Ladányi, Vít; Dvořák, Pavel; Al Anshori, Jamaludin; Vetráková, Ľubica; Wirz, Jakob; Heger, Dominik

    2017-12-06

    The quantum yields of azobenzene photoisomerization in methanol solution were redetermined using newly obtained molar absorption coefficients of its cis- and trans-isomers. The results differ substantially from those published previously, especially in the range of the nπ* absorption band. Besides actinometry, these findings are relevant for applications of azobenzene derivatives in optical switching.

  20. The passive optical properties of a silicon nanoparticle-embedded benzocyclobutene polymer waveguide

    International Nuclear Information System (INIS)

    Chiu, J.-J.; Perng, Tsong P

    2008-01-01

    The passive optical properties of a silicon nanoparticle-embedded benzocyclobutene (BCB) waveguide were investigated. The silicon nanoparticles, of a size varying from 6 to 25 nm, were prepared by vapor condensation. The transmission modes and losses were examined by the prism coupler and cut-back methods. A He-Ne laser beam with a wavelength of 6328 A was used to measure the effective index and thickness of the waveguide. Laser light could be efficiently coupled into the BCB waveguide when the embedded Si nanoparticles were smaller than 6 nm. The film thickness and effective index of the Si-embedded BCB waveguide were measured to be 1.825 μm and 1.565, respectively. The optical transmission losses of the pure BCB and Si-embedded ridge waveguides measured by the cut-back method were 0.85 and 1.63 dB cm -1 , respectively. Although the optical loss was increased by the embedded Si, the disturbance of the output contour was quite small. This result demonstrates that the nanoparticle-embedded polymer waveguide may be used for optoelectronic integrated circuits

  1. Noble metal nanoparticles embedding into polymeric materials: From fundamentals to applications.

    Science.gov (United States)

    Prakash, Jai; Pivin, J C; Swart, H C

    2015-12-01

    This review covers some key concepts related to embedding of the noble metal nanoparticles in polymer surfaces. The metal nanoparticles embedded into the polymer matrix can provide high-performance novel materials that find applications in modern nanotechnology. In particular, the origin of various processes that drive the embedding phenomenon, growth of the nanostructure at the surface, factors affecting the embedding including role of surface, interface energies and thermodynamic driving forces with emphasis on the fundamental and technological applications, under different conditions (annealing and ion beams) have been discussed. In addition to the conventional thermal process for embedding which includes the measure of fundamental polymer surface properties with relevant probing techniques, this review discusses the recent advances carried out in the understanding of embedding phenomenon starting from thin metal films to growth of the nanoparticles and embedded nanostructures using novel ion beam techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Superhydrophobic wind turbine blade surfaces obtained by a simple deposition of silica nanoparticles embedded in epoxy

    Science.gov (United States)

    Karmouch, Rachid; Ross, Guy G.

    2010-11-01

    Samples of wind turbine blade surface have been covered with a superhydrophobic coating made of silica nanoparticles embedded in commercial epoxy paint. The superhydrophobic surfaces have a water contact angle around 152°, a hysteresis less than 2° and a water drop sliding angle around 0.5°. These surfaces are water repellent so that water drops cannot remain motionless on the surface. Examination of coated and uncoated surfaces with scanning electron microscopy and atomic force microscopy, together with measurements of water contact angles, indicates that the air trapped in the cavity enhances the water repellency similarly to the lotus leaf effect. Moreover, this new coating is stable under UVC irradiation and water pouring. The production of this nanoscale coating film being simple and low cost, it can be considered as a suitable candidate for water protection of different outdoor structures.

  3. Simulation of localized surface plasmon in metallic nanoparticles embedded in amorphous silicon

    Science.gov (United States)

    Fantoni, A.; Fernandes, M.; Vygranenko, Y.; Louro, P.; Vieira, M.; Texeira, D.; Ribeiro, A.; Alegria, E.

    2017-08-01

    We propose the development and realization of a plasmonic structure based on the LSP interaction of metal nanoparticles with an embedding matrix of amorphous silicon. This structure need to be usable as the basis for a sensor device applied in biomedical applications, after proper functionalization with selective antibodies. The final sensor structure needs to be low cost, compact and disposable. The study reported in this paper aims to analyze different materials for nanoparticles and embedding medium composition. Metals of interest for nanoparticles composition are Aluminum, Gold and Alumina. As a preliminary approach to this device, we study in this work the optical properties of metal nanoparticles embedded in an amorphous silicon matrix, as a function of size, aspect-ratio and metal type. Following an analysis based on the exact solution of the Mie theory, experimental measurements realized with arrays of metal nanoparticles are compared with the simulations.

  4. Phonon-interference resonance effects by nanoparticles embedded in a matrix

    Science.gov (United States)

    Feng, Lei; Shiga, Takuma; Han, Haoxue; Ju, Shenghong; Kosevich, Yuriy A.; Shiomi, Junichiro

    2017-12-01

    We report an unambiguous phonon resonance effect originating from germanium nanoparticles embedded in silicon matrix. Our approach features the combination of the phonon wave-packet method with atomistic dynamics and the finite element method rooted in continuum theory. We find that multimodal phonon resonance, caused by destructive interference of coherent lattice waves propagating through and around the nanoparticle, gives rise to sharp and significant transmittance dips, blocking the lower-end frequency range of phonon transport that is hardly diminished by other nanostructures. The resonance is sensitive to the phonon coherent length, where the finiteness of the wave-packet width weakens the transmittance dip even when coherent length is longer than the particle diameter. Further strengthening of transmittance dips is possible by arraying multiple nanoparticles, which gives rise to the collective vibrational mode. Finally, it is demonstrated that these resonance effects can significantly reduce thermal conductance in the lower-end frequency range.

  5. Coulomb blockade effects in silicon nanoparticles embedded in thin silicon-rich oxide films.

    Science.gov (United States)

    Morales-Sánchez, A; Barreto, J; Domínguez, C; Aceves, M; Yu, Z; Luna-López, J A

    2008-04-23

    Silicon nanoparticles (Si-nps) embedded in silicon oxide matrix were created using silicon-rich oxide (SRO) films deposited by low pressure chemical vapour deposition (LPCVD) followed by a thermal annealing at 1100 °C. The electrical properties were studied using metal-oxide-semiconductor (MOS) structures with the SRO films as the active layers. Capacitance versus voltage (C-V) exhibited downward and upward peaks in the accumulation region related to charge trapping and de-trapping effects of Si-nps, respectively. Current versus voltage (I-V) measurements showed fluctuations in the form of spike-like peaks and a clear staircase at room temperature. These effects have been related to the Coulomb blockade (CB) effect in the silicon nanoparticles embedded in SRO films. The observed quantum effects are due to 1 nm nanoparticles.

  6. Superhydrophobic wind turbine blade surfaces obtained by a simple deposition of silica nanoparticles embedded in epoxy

    Energy Technology Data Exchange (ETDEWEB)

    Karmouch, Rachid, E-mail: karmouch@emt.inrs.ca [INRS-Centre Energie Materiaux Telecommunications, 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada); Ross, Guy G. [INRS-Centre Energie Materiaux Telecommunications, 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2010-11-15

    Samples of wind turbine blade surface have been covered with a superhydrophobic coating made of silica nanoparticles embedded in commercial epoxy paint. The superhydrophobic surfaces have a water contact angle around 152{sup o}, a hysteresis less than 2{sup o} and a water drop sliding angle around 0.5{sup o}. These surfaces are water repellent so that water drops cannot remain motionless on the surface. Examination of coated and uncoated surfaces with scanning electron microscopy and atomic force microscopy, together with measurements of water contact angles, indicates that the air trapped in the cavity enhances the water repellency similarly to the lotus leaf effect. Moreover, this new coating is stable under UVC irradiation and water pouring. The production of this nanoscale coating film being simple and low cost, it can be considered as a suitable candidate for water protection of different outdoor structures.

  7. Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon for highly effective adsorption of rhodamine B

    International Nuclear Information System (INIS)

    Tang, Lin; Cai, Ye; Yang, Guide; Liu, Yuanyuan; Zeng, Guangming; Zhou, Yaoyu; Li, Sisi; Wang, Jiajia; Zhang, Sheng; Fang, Yan; He, Yibin

    2014-01-01

    Highlights: • Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon (Co/OMC) was applied as a novel adsorption material to remove rhodamine B. • Co/OMC was synthesized by directly introducing cobalt into OMC through a simple infusing method. • High removal capacity of rhodamine B: maximum adsorption capacity reaches 468 mg/g at 200 mg/L initial rhodamine B concentration. • Very quick adsorption property: 96% of rhodamine B can be removed within 25 min. - Abstract: Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon (Co/OMC), prepared through a simple method involving infusing and calcination, was used as a highly effective adsorbent for rhodamine B (Rh B) removal. Several techniques, including SEM, HRTEM, nitrogen adsorption–desorption isotherms, XRD, Raman spectra, EDX, zeta potential and VSM measurement, were applied to characterize the adsorbent. Batch tests were conducted to investigate the adsorption performance. The adsorption capacity of the resultant adsorbent was relatively high compared with raw ordered mesoporous carbon (OMC) and reached an equilibrium value of 468 mg/g at 200 mg/L initial Rh B concentration. Removal efficiency even reached 96% within 25 min at 100 mg/L initial Rh B concentration. Besides, the adsorption amount increased with the increase of solution pH, adsorbent dose and initial Rh B concentration. Kinetics study showed that the adsorption agreed well with pseudo-second-order model (R 2 = 0.999) and had a significant correlation with intra-particle diffusion model in the both two adsorption periods. Furthermore, thermodynamics research indicated that the adsorption process was endothermic and spontaneous in nature. The adsorption isotherms fitted well with Langmuir model, demonstrating the formation of mono-molecular layer on the surface of Co/OMC during adsorption process. The results confirmed that Co/OMC has the potential superiority in removal of Rh B from aqueous solution

  8. Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon for highly effective adsorption of rhodamine B

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lin, E-mail: tanglin@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Cai, Ye; Yang, Guide; Liu, Yuanyuan [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Zeng, Guangming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Zhou, Yaoyu; Li, Sisi; Wang, Jiajia; Zhang, Sheng; Fang, Yan; He, Yibin [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2014-09-30

    Highlights: • Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon (Co/OMC) was applied as a novel adsorption material to remove rhodamine B. • Co/OMC was synthesized by directly introducing cobalt into OMC through a simple infusing method. • High removal capacity of rhodamine B: maximum adsorption capacity reaches 468 mg/g at 200 mg/L initial rhodamine B concentration. • Very quick adsorption property: 96% of rhodamine B can be removed within 25 min. - Abstract: Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon (Co/OMC), prepared through a simple method involving infusing and calcination, was used as a highly effective adsorbent for rhodamine B (Rh B) removal. Several techniques, including SEM, HRTEM, nitrogen adsorption–desorption isotherms, XRD, Raman spectra, EDX, zeta potential and VSM measurement, were applied to characterize the adsorbent. Batch tests were conducted to investigate the adsorption performance. The adsorption capacity of the resultant adsorbent was relatively high compared with raw ordered mesoporous carbon (OMC) and reached an equilibrium value of 468 mg/g at 200 mg/L initial Rh B concentration. Removal efficiency even reached 96% within 25 min at 100 mg/L initial Rh B concentration. Besides, the adsorption amount increased with the increase of solution pH, adsorbent dose and initial Rh B concentration. Kinetics study showed that the adsorption agreed well with pseudo-second-order model (R{sup 2} = 0.999) and had a significant correlation with intra-particle diffusion model in the both two adsorption periods. Furthermore, thermodynamics research indicated that the adsorption process was endothermic and spontaneous in nature. The adsorption isotherms fitted well with Langmuir model, demonstrating the formation of mono-molecular layer on the surface of Co/OMC during adsorption process. The results confirmed that Co/OMC has the potential superiority in removal of Rh B from aqueous solution.

  9. The absorption spectrum of cis-azobenzene.

    Science.gov (United States)

    Vetráková, Ľubica; Ladányi, Vít; Al Anshori, Jamaludin; Dvořák, Pavel; Wirz, Jakob; Heger, Dominik

    2017-12-06

    Azobenzene is a prototypical photochromic molecule existing in two isomeric forms, which has numerous photochemical applications that rely on a precise knowledge of the molar absorption coefficients (ε). Careful analysis revealed that the previously reported absorption spectra of the "pure" isomers were in fact mutually contaminated by small amounts of the other isomer. Therefore, the absorption spectra of both trans- and cis-azobenzene in methanol were re-determined at temperatures of 5-45 °C. The thermodynamically more stable trans-azobenzene was prepared by warming the solution in the dark. To obtain the spectrum of cis-azobenzene three methods were used, which gave consistent results within the limits of error. The method based on the subtraction of derivative spectra coupled with a global analysis of the spectra recorded during thermal cis-trans isomerization is shown to give slightly more reliable results than the method using isomeric ratios determined by 1 H-NMR. The described methods are readily generalizable to other azobenzene derivatives and to other photochromic systems. The practical implication of the re-determined ε values is demonstrated by a very high precision of spectrophotometric species analysis in azobenzene isomeric mixtures. The new ε values imply that the previously reported quantum yields must be revised.

  10. Unfolding of cytochrome C upon interaction with azobenzene-modified copolymers.

    Science.gov (United States)

    Sun, Jing; Ruchmann, Juliette; Pallier, A; Jullien, L; Desmadril, M; Tribet, Christophe

    2012-11-12

    Hydrophilic or amphiphilic macromolecules are common organic matrices used to encapsulate and protect fragile drugs such as proteins. Polymer cargoes are in addition designed for remote control of protein delivery, upon imparting the macromolecules with stimuli-responsive properties, such as light-triggered polarity switches. The effect of interaction between polymers and proteins on the stability of the proteins is, however, rarely investigated. Here we studied the unfolding/folding equilibrium of cytochrome c (cyt c) under its oxidized or reduced forms, in the presence of various amphiphilic copolymers (by circular dichroism and intrinsic fluorescence measurements). As models of stimuli-responsive amphiphilic chains, we considered poly(acrylic acid) derivatives, modified to contain hydrophobic, light-responsive azobenzene moieties. These copolymers are, thus, capable to develop both ionic (under their sodium forms at pH > 8) and hydrophobic associations with the basic protein cyt c (isoelectric point of 10.0). In aqueous buffer upon increasing urea concentrations, cyt c underwent unfolding, at [urea] of 9-10 M, which was analyzed under the framework of the equilibrium between two states (native-unfolded). In the presence of polymers, the native folding of cyt c was preserved at low concentrations of urea (typically azobenzene moieties in the copolymers and the disappearance of destabilization at ionic strength higher than 150 mM. In addition, stability was similar to that of an isolated cyt c, in the presence of a neutral chain bearing acryloyl(oligoethyleneoxide) units instead of the ionized sodium acrylate moieties. DSC measurements showed that in the presence of polymers, cyt c is thermally unfolded in aqueous buffer at temperatures lowered by >20 °C as compared to thermal unfolding in the absence of polymers. Upon exposure to UV light, properties of the polymers chains were perturbed in situ, upon cis/trans isomerization of the azobenzene groups. In polymers

  11. Design of photocontrolled biomolecules based on azobenzene derivatives

    Science.gov (United States)

    Zatsepin, T. S.; Abrosimova, L. A.; Monakhova, M. V.; Thi Hien, Le; Pingoud, A.; Kubareva, E. A.; Oretskaya, T. S.

    2013-10-01

    This review focuses on methods of designing photocontrolled proteins and nucleic acids. Data on preparation and modification of proteins and nucleic acids with azobenzene derivatives are summarized. Examples of using photoswitchable proteins, their substrates, inhibitors and ligands containing azobenzene, as well as azobenzene derivatives of nucleic acids, for design of nanomachines are considered. The bibliography includes 122 references.

  12. Light scattering measurement of sodium polyacrylate products

    Science.gov (United States)

    Lama, Nisha; Norwood, David; Boone, Steven; Massie-Boyer, Valerie

    2015-03-01

    In the presentation, we will describe the use of a multi-detector HPLC incorporating the DAWN EOS multi-angle laser light scattering (MALLS) detector to measure the properties such as molecular weight, RMS radius, contour and persistence length and polydispersity of sodium polyacrylate products. The samples of sodium polyacrylate are used in various industries as thickening agents, coating dispersants, artificial snow, laundry detergent and disposable diapers. Data and results obtained from the experiment will be presented.

  13. Shaping of Au nanoparticles embedded in various layered structures by swift heavy ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dawi, E.A., E-mail: elmuez.dawi@gmail.com [Ajman University of Science and Technology, Basic Science and Education, Physics Department, P.O. Box 346 (United Arab Emirates); Debye Institute for Nanomaterials, Nanophotonics Section, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands); ArnoldBik, W.M. [Eindhoven University of Technology, Irradiation Technology, 5600 GM Eindhoven (Netherlands); Ackermann, R.; Habraken, F.H.P.M. [Debye Institute for Nanomaterials, Nanophotonics Section, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands)

    2016-10-01

    We present a novel method to extend the ion-beam induced shaping of metallic nanoparticles in various layered structures. Monodisperse Au nanoparticles having mean diameter of 30 nm and their ion-shaping process is investigated for a limited number of experimental conditions. Au nanoparticles were embedded within a single plane in various layered structures of silicon nitride films (Si{sub 3}N{sub 4}), combinations of oxide-nitride films (SiO{sub 2}-Si{sub 3}N{sub 4}) and amorphous silicon films (a-Si) and have been sequentially irradiated at 300 K at normal incidence with 50 and 25 MeV Ag ions, respectively. Under irradiation with heavy Ag ions and with sequential increase of the irradiation fluence, the evolution of the Au peak derived from the Rutherford Backscattering Spectrometry show broadening in Au peak, which indicates that the Au becomes distributed over a larger depth region, indicative of the elongation of the nanoparticles. The latter is observed almost for every layer structure investigated except for Au nanoparticles embedded in pure a-Si matrix. The largest elongation rate at all fluences is found for the Au nanoparticles encapsulated in pure Si{sub 3}N{sub 4} films. For all irradiation energy applied, we again demonstrate the existence of both threshold and saturation fluences for the elongation effects mentioned.

  14. Transport properties of β-Ga2O3 nanoparticles embedded in Nb thin films

    Directory of Open Access Journals (Sweden)

    L.S. Vaidhyanathan

    2015-01-01

    Full Text Available The origin of ferromagnetism in nanoparticles of nonmagnetic oxides is an interesting area of research. In the present work, transport properties of niobium thin films, with β-Ga2O3 nanoparticles embedded within them, are presented. Nanoparticles of β-Ga2O3 embedded in a Nb matrix were prepared at room temperature by radio frequency co-sputtering technique on Si (100 and glass substrates held at room temperature. The thin films deposited on Si substrates were subjected to Ar annealing at a temperature range of 600-650 C for 1 hour. Films were characterized by X-ray diffraction (XRD, Micro-Raman and elemental identification was performed with an Energy Dispersive X-ray Spectroscopy (EDS. Transport measurements were performed down to liquid helium temperatures by four-probe contact technique, showed characteristics analogous to those observed in the context of a Kondo system. A comparison of the experimental data with the theoretical formalism of Kondo and Hamann is presented. It is suggested that this behavior arises from the existence of magnetic moments associated with the oxygen vacancy defects in the nanoparticles of the nonmagnetic oxide Ga2O3.

  15. Silver nanoparticles embedded titania nanotube with tunable blue light band gap

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei-Lin; Yang, Chung-Sung, E-mail: csyang@mail.ncyu.edu.tw

    2016-06-01

    Silver nanoparticles embedded titania nanotube (SET) have been successfully prepared by titania nanotubes and silver nanoparticles via a template-free reaction. Powder X-ray diffraction (P-XRD) spectra and Fourier transform infrared (FT-IR) spectra show that the charge of silver atoms maintains neutral in the formation of silver nanoparticles. The Ag atom of Ag nanoparticles and the oxygen atom of TiO{sub 2} possess a chemical bonding with an ionic character rather than a covalent character. The quantitative microanalysis data collected from X-ray photo-emission (XPS) spectra indicate that the ratio of Ag/Ti in SET is 15.2 ± 2.7%. The cut-off band gap of SET is adjustable from 420 nm (Ag/Ti = 12.5%) to 430 nm (Ag/Ti = 17.8%). - Highlights: • The self-assembly silver nanoparticles are embedded on titania nanotube. • The charge of silver atoms is neutral in the formation of silver nanoparticles. • The quantitative microanalysis data confirm that ratio of Ag/Ti is 15.2 ± 2.7%. • The band gap of SET locates in the desirable blue light region.

  16. Intrinsic size effects and topological phase transformations in ferroelectric nanoparticles embedded in dielectric media

    Science.gov (United States)

    Mangeri, John; Espinal, Yomery; Jokisaari, Andrea; Alpay, S. Pamir; Nakhmanson, Serge; Heinonen, Olle

    Self-assembled composite materials comprised of ferroelectric (FE) nanoinclusions dispersed in a dielectric matrix are being actively investigated for a variety of tunable functional properties attractive for a wide range of novel electronic and energy harvesting devices. However, the dependence of these functionalities on shapes, sizes, orientation and mutual arrangement of FE particles is currently poorly understood. In this study, we utilize a time-dependent thermodynamic Landau-Ginzburg-Devonshire approach combined with coupled-physics finite-element-method based simulations to elucidate the behavior of polarization in isolated spherical PbTiO3 or BaTiO3 nanoparticles embedded in the dielectric medium. The equilibrium polarization topology is strongly affected by particle diameter, as well as the choice of inclusion and matrix materials, with monodomain, vortex-like and multidomain patterns emerging for various combinations of size and materials parameters. In turn, this leads to radically different responses under hysteretic field switching, resulting in highly tunable size-dependent FE properties that should be easily observed experimentally.

  17. Nanoparticles Embedded in Amphiphilic Membranes for Carbon Dioxide Separation and Dehumidification.

    Science.gov (United States)

    Yong, Wai Fen; Ho, Yan Xun; Chung, Tai-Shung

    2017-10-23

    Polymers containing ethylene oxide (EO) groups have gained significant interest as the EO groups have favorable interactions with polar molecules such as H 2 O, quadrupolar molecules such as CO 2 , and metal ions. However, the main challenges of poly(ethylene oxide) (PEO) membranes are their weak mechanical properties and high crystallinity nature. The amphiphilic copolymer made from PEO terephthalate and poly(butylene terephthalate) (PEOT/PBT) comprises both hydrophilic and hydrophobic segments. The hydrophilic PEOT segment is thermosensitive, which facilities gas transports whereas the hydrophobic PBT segment is rigid, which provides mechanical robustness. This work demonstrates a new strategy to design amphiphilic mixed matrix membranes (MMMs) by incorporating zeolitic imidazolate framework, ZIF-71, into the PEOT/PBT copolymer. The resultant membrane shows an enhanced CO 2 permeability with an ideal CO 2 /N 2 selectivity surpassing the original PEOT/PBT and Robeson's Upper bound line. The nanoparticles-embedded amphiphilic membranes exhibit characteristics of high transparency and mechanical robustness. Mechanically strong composite hollow fiber membranes consisting of PEOT/PBT/ZIF-71 as the selective layer were also prepared. The resultant hollow fibers possess an excellent CO 2 permeance of 131 GPU (gas permeation units), CO 2 /N 2 selectivity of 52.6, H 2 O permeance of 9300 GPU and H 2 O/N 2 selectivity of 3700, showing great potential for industrial CO 2 capture and dehumidification. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Magnetic properties of Ni nanoparticles embedded in silica matrix (KIT-6) synthesized via novel chemical route

    Science.gov (United States)

    Dalavi, Shankar B.; Raja, M. Manivel; Panda, Rabi. N.

    2015-06-01

    Thermally stable Ni nanoparticles have been embedded in mesoporous silica matrix (KIT-6) via novel chemical reduction method by using superhydride as reducing agent. X-ray diffraction (XRD) study confirms that pure and embedded Ni nanoparticles crystallize in face centered cubic (fcc) structure. Crystallite sizes of pure Ni, 4 wt% and 8 wt% Ni in silica were estimated to be 6.0 nm, 10.4 nm and 10.5 nm, respectively. Morphology and dispersion of Ni in silica matrix were studied by scanning electron microscopy (SEM). Magnetic study shows enhancement of magnetic moments of Ni nanoparticles embedded in silica matrix compared with that of pure Ni. The result has been interpreted on the basis of size reduction and magnetic exchange effects. Saturation magnetization values for pure Ni, 4 wt% and 8 wt% Ni in silica were found to be 15.77 emu/g, 5.08 emu/g and 2.00 emu/g whereas coercivity values were 33.72 Oe, 92.47 Oe and 64.70 Oe, respectively. We anticipate that the observed magnetic properties may find application as soft magnetic materials.

  19. Magnetic properties of Ni nanoparticles embedded in silica matrix (KIT-6) synthesized via novel chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Dalavi, Shankar B.; Panda, Rabi N., E-mail: rnp@goa.bits-pilani.ac.in [Department of Chemistry, BITS-Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa-403726 (India); Raja, M. Manivel [Defence Metallurgical Research Laboratory, Hyderabad-500058 (India)

    2015-06-24

    Thermally stable Ni nanoparticles have been embedded in mesoporous silica matrix (KIT-6) via novel chemical reduction method by using superhydride as reducing agent. X-ray diffraction (XRD) study confirms that pure and embedded Ni nanoparticles crystallize in face centered cubic (fcc) structure. Crystallite sizes of pure Ni, 4 wt% and 8 wt% Ni in silica were estimated to be 6.0 nm, 10.4 nm and 10.5 nm, respectively. Morphology and dispersion of Ni in silica matrix were studied by scanning electron microscopy (SEM). Magnetic study shows enhancement of magnetic moments of Ni nanoparticles embedded in silica matrix compared with that of pure Ni. The result has been interpreted on the basis of size reduction and magnetic exchange effects. Saturation magnetization values for pure Ni, 4 wt% and 8 wt% Ni in silica were found to be 15.77 emu/g, 5.08 emu/g and 2.00 emu/g whereas coercivity values were 33.72 Oe, 92.47 Oe and 64.70 Oe, respectively. We anticipate that the observed magnetic properties may find application as soft magnetic materials.

  20. Modification of bitumen using polyacrylic wig waste

    Science.gov (United States)

    Razali, M. N.; Aziz, M. A. A.; Jamin, N. F. M.; Salehan, N. A. M.

    2018-02-01

    This paper presents a study about the potential of polyacrylic wig waste (PAWW) as an additive in road micro surfacing (RMS). The idea is to mix the PAWW with bitumen to produce a polymer modified bitumen (PMB). The available highest quality grade of bitumen from the industry with the grade 80-100 mm penetration grade is the unmodified bitumen with PAWW or known as modacrylic fiber that has different percentages of Polyacrylic (PA) wig in each sample. In this study, 3 different ratios were tested which are 99:1, 96:4, and 93:7 %wt of unmodified bitumen to PAWW. The prepared samples were then tested by using the penetration test and softening point test. The results indicated that polymer modification improved the conventional properties such as penetration test and softening point test. The polyacrylic wig waste (PAWW) has potential to be used as additive in road micro surfacing (RMS).

  1. Silver nanoparticles embedded polymer sorbent for preconcentration of uranium from bio-aggressive aqueous media

    International Nuclear Information System (INIS)

    Das, Sadananda; Pandey, Ashok K.; Athawale, Anjali A.; Subramanian, M.; Seshagiri, T.K.; Khanna, Pawan K.; Manchanda, Vijay K.

    2011-01-01

    Adsorptive sorbent for bio-aggressive natural aqueous media like seawater was developed by one pot simultaneous synthesis of silver nanoparticles (Ag nps) and poly(ethylene glycol methacrylate phosphate) (PEGMP) by UV-initiator induced photo-polymerization. The photo-polymerization was carried out by irradiating N,N'-dimethylformamide (DMF) solution containing appropriate amounts of the functional monomer (ethylene glycol methacrylate phosphate), UV initiator (α,α'-dimethoxy-α-phenyl acetophenone), and Ag + ions with 365 nm UV light in a multilamps photoreactor. To increase mechanical strength, nano-composite sorbent (Ag-PEGMP) was also reinforced with thermally bonded non-woven poly(propylene) fibrous sheet. Transmission electron microscopy (TEM) of the nano-composite sorbent showed uniform distribution of spherical Ag nanoparticles with particles size ranging from 3 to 6 nm. The maximum amount of Ag 0 that could be anchored in the form of nanoparticles were 5 ± 1 and 10 ± 1 wt.% in self-supported PEGMP and poly(propylene) reinforced PEGMP matrices, respectively. Ag-PEGMP sorbent was found to be stable under ambient conditions for a period of six months. Ag-PEGMP composite sorbent did not exhibit growth at all after incubation with pre-grown Escherichia coli cells, and showed non-adherence of this bacteria to the composite. This indicated that composite sorbent has the bio-resistivity due to bacterial repulsion and bactericidal properties of Ag nanoparticles embedded in the PEGMP. Sorption of U(VI) in PEGMP and Ag-PEGMP nano-composite sorbents from well-stirred seawater was studied to explore the possibility of using it for uranium preconcentration from bio-aggressive aqueous streams. The nano-composite sorbent was used to preconcentrate U(VI) from a process aqueous waste stream.

  2. Hydrothermal Synthesis and Processing of Barium Titanate Nanoparticles Embedded in Polymer Films.

    Science.gov (United States)

    Toomey, Michael D; Gao, Kai; Mendis, Gamini P; Slamovich, Elliott B; Howarter, John A

    2015-12-30

    Barium titanate nanoparticles embedded in flexible polymer films were synthesized using hydrothermal processing methods. The resulting films were characterized with respect to material composition, size distribution of nanoparticles, and spatial location of particles within the polymer film. Synthesis conditions were varied based on the mechanical properties of the polymer films, ratio of polymer to barium titanate precursors, and length of aging time between initial formulations of the solution to final processing of nanoparticles. Block copolymers of poly(styrene-co-maleic anhydride) (SMAh) were used to spatially separate titanium precursors based on specific chemical interactions with the maleic anhydride moiety. However, the glassy nature of this copolymer restricted mobility of the titanium precursors during hydrothermal processing. The addition of rubbery butadiene moieties, through mixing of the SMAh with poly(styrene-butadiene-styrene) (SBS) copolymer, increased the nanoparticle dispersion as a result of greater diffusivity of the titanium precursor via higher mobility of the polymer matrix. Additionally, an aminosilane was used as a means to retard cross-linking in polymer-metalorganic solutions, as the titanium precursor molecules were shown to react and form networks prior to hydrothermal processing. By adding small amounts of competing aminosilane, excessive cross-linking was prevented without significantly impacting the quality and composition of the final barium titanate nanoparticles. X-ray diffraction and X-ray photoelectron spectroscopy were used to verify nanoparticle compositions. Particle sizes within the polymer films were measured to be 108 ± 5 nm, 100 ± 6 nm, and 60 ± 5 nm under different synthetic conditions using electron microscopy. Flexibility of the films was assessed through measurement of the glass transition temperature using dynamic mechanical analysis. Dielectric permittivity was measured using an impedance analyzer.

  3. Azobenzene Photoswitches for Staudinger-Bertozzi Ligation

    NARCIS (Netherlands)

    Szymanski, Wiktor; Wu, Bian; Poloni, Claudia; Janssen, Dick B.; Feringa, Ben L.

    2013-01-01

    A novel family of azobenzenes containing residues needed for aqueous Staudinger–Bertozzi ligation to azides was designed. The resulting photochromes show stable and reversible switching behavior in water, with a photostationary state (PSS) of up to 95:5 cis/trans. Applications in model systems

  4. Photoisomerization of azobenzene moiety in crosslinking polymer materials

    Science.gov (United States)

    Wang, Hui; Chen, Wei-Qiang; Jin, Feng; Dong, Xian-Zi; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2012-10-01

    In this study, a series of acryloyloxy-substituted azobenzene derivatives, 3-(tert-butyl)-4,4'-bisacryoloxy-azobenzene (tBu-Azo-AO), 3-(tert-butyl)-4,4'-bis[3-(acryoloxy)propoxy]-azobenzene (tBu-Azo-AO3) and 3-(tert-butyl)-4,4'-bis[6-(acryoloxy)hexyloxy]-azobenzene (tBu-Azo-AO6) were synthesized and employed as monomers to prepare polymer films by copolymerizing dipentaerythritol hexaacrylate (DPE-6A) and methyl methacrylate (MMA), respectively. When exposed to a nanosecond laser beam at the wavelength of 355 nm, ultraviolet-visible (UV-Vis) absorption spectra of the resultant polymer films with different irradiation time were monitored. On the basis of the absorbance of the π-π* electronic transition, the kinetics of trans-to-cis photoisomerization of three kinds of azobenzene moieties were demonstrated and found to be influenced by both the pump energy and azobenzene concentration.

  5. Photoresponsive peptide azobenzene conjugates that specifically interact with platinum surfaces

    Science.gov (United States)

    Dinçer, S.; Tamerler, C.; Sarıkaya, M.; Pişkin, E.

    2008-05-01

    The aim of this study is to prepare photoresponsive peptide-azobenzene compounds which interacts with platinum surfaces specifically, in order to create smart surfaces for further novel applications in design of smart biosensors and array platforms. Here, a water-soluble azobenzene molecule, 4-hydroxyazo benzene,4-sulfonic acid was synthesized by diazo coupling reaction. A platinum-specific peptide, originally selected by a phage display technique was chemically synthesized/purchased, and conjugated with the azobenzene compound activated with carbonyldiimidazole. Both azobenzene and its conjugate were characterized (including photoresponsive properties) by FTIR, NMR, and UV-spectrophotometer. The yield of conjugation reaction estimated by ninhydrin assay was about 65%. Peptide incorporation did not restrict the light-sensitivity of azobenzene. Adsorption of both the peptide and its azobenzene conjugate was followed by Quartz Crystal Microbalance (QCM) system. The kinetic evaluations exhibited that both molecules interact platinum surfaces, quite rapidly and strongly.

  6. Actuation response of polyacrylate dielectric elastomers

    DEFF Research Database (Denmark)

    Kofod, G.; Kornbluh, R.; Pelrine, R.

    2001-01-01

    Polyacrylate dielectric elastomers have yielded extremely large strain and elastic energy density suggesting that they are useful for many actuator applications. A thorough understanding of the physics underlying the mechanism of the observed response to an electric field can help develop improve...

  7. Exchange coupling mechanism for magnetization reversal and thermal stability of Co nanoparticles embedded in a CoO matrix

    International Nuclear Information System (INIS)

    Givord, Dominique; Skumryev, Vassil; Nogues, Josep

    2005-01-01

    A model providing a semi-quantitative account of the magnetic behavior of Co nanoparticles embedded in a CoO matrix is presented. The results confirm that exchange coupling at the interface between ferromagnetic (FM) and antiferromagnetic (AFM) nanostructures could provide an extra source of magnetic anisotropy, leading to thermal stability of the FM nanoparticles. It is shown that perpendicular coupling between the AFM and FM moments may result in large coercivities. The energy barrier, which works against reversal is due to the AFM susceptibility anisotropy. The experimentally observed exchange bias is tentatively ascribed to pre-existing intrinsic canting of the AFM moments at the interface

  8. Graphene oxide catalyzed cis-trans isomerization of azobenzene

    Directory of Open Access Journals (Sweden)

    Dongha Shin

    2014-09-01

    Full Text Available We report the fast cis-trans isomerization of an amine-substituted azobenzene catalyzed by graphene oxide (GO, where the amine functionality facilitates the charge transfer from azobenzene to graphene oxide in contrast to non-substituted azobenzene. This catalytic effect was not observed in stilbene analogues, which strongly supports the existence of different isomerization pathways between azobenzene and stilbene. The graphene oxide catalyzed isomerization is expected to be useful as a new photoisomerization based sensing platform complementary to GO-based fluorescence quenching methods.

  9. DNA compaction by azobenzene-containing surfactant

    International Nuclear Information System (INIS)

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Santer, Svetlana; Morozova, Elena; Lysyakova, Ludmila; Kasyanenko, Nina

    2011-01-01

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  10. [Isolation and study of azobenzene converting soil bacteria].

    Science.gov (United States)

    Vakkerov-Kouzova, N D

    2005-01-01

    Heterotrophic bacteria were isolated from soil and glass slides and classified as Bacillus cereus SNK12, Paenibacillus polymyxa SNK2, Azotobacter chroococcum ANKII, and Ochrobacterium intermedium ANKI. Their cultures could degrade azobenzene under the conditions of co-metabolism. A rapid test for the ability of bacteria to convert azobenzenes is proposed.

  11. Rewritable azobenzene polyester for polarization holographic data storage

    DEFF Research Database (Denmark)

    Kerekes, A; Sajti, Sz.; Loerincz, Emoeke

    2000-01-01

    Optical storage properties of thin azobenzene side-chain polyester films were examined by polarization holographic measurements. The new amorphous polyester film is the candidate material for the purpose of rewritable holographic memory system. Temporal formation of anisotropic and topographic...... and erasing was tested. The ability of azobenzene polyester for rewriting was found satisfactory after many writing-erasing cycles....

  12. Molecular Engineering of Azobenzene-Functionalized Polyimides to Enhance Both Photomechanical Work and Motion (POSTPRINT)

    Science.gov (United States)

    2014-09-01

    concentrations of azobenzene in both linear and cross-linked PIs, 30 mol % azobenzene diamine (4) and 20 mol % of azobenzene triamine (7) were added...AFRL-RX-WP-JA-2014-0204 MOLECULAR ENGINEERING OF AZOBENZENE - FUNCTIONALIZED POLYIMIDES TO ENHANCE BOTH PHOTOMECHANICAL WORK AND MOTION...August 2014 4. TITLE AND SUBTITLE MOLECULAR ENGINEERING OF AZOBENZENE - FUNCTIONALIZED POLYIMIDES TO ENHANCE BOTH PHOTOMECHANICAL WORK AND MOTION

  13. Nanocomposite thin films of gold nanoparticles embedded in yttria-stabilized zirconia for plasmonic-based harsh environment gas detection

    Science.gov (United States)

    Rogers, Phillip H.

    Increased health concerns due to the emission of gases linked to the production of tropospheric ozone by petroleum based fuel burning engines has resulted in the codification of more stringent emissions regulations domestically. Emissions regulations on commercial jetliners are one of the areas to be met with stricter standards. Currently there is not a sensing technology that can detect the emissions gases in the exhaust stream of a jet turbine engine with lower detection limits that meet these standards. The localized surface plasmon resonance (LSPR) of noble metal nanoparticles embedded in dielectric matrices is an optical response that can be extremely sensitive to many environmental parameters. Nanocomposites of Au nanoparticles embedded in yttria-stabilized zirconia (Au-YSZ) are an ideal case study for these plasmonic materials. Using a metal oxide matrix with oxygen ion vacancies, such as YSZ, allows one to finely tune the local environmental charge of the embedded metal nanoparticles upon varying the oxygen and hydrogen content of the gas exposure mixture. After gas exposure data is collected in the form of optical absorption spectra, the LSPR spectra due to the Au nanoparticles embedded in the YSZ matrix undergo automated Lorentzian and Drude model fitting for calculating fundamental charge exchange and plasmonic dampening effects versus gas exposure concentration. These titration experiments have been performed for Au-YSZ nanocomposites exposed to O2, H2, NO 2, and CO in N2 backgrounds at 500°C and equilibrium data has been acquired for both the average charge per Au nanoparticle and the scattering frequency of the plasmons over a variety of exposure conditions. One paramount result made possible by this plasmonic based gas detection by Au-YSZ nanocomposite thin films was a repeatable 5 ppm lower detection limit towards NO2 in air at 500°C. In comparing the charge exchange observed using both the fitted exposure data and an electrochemical model

  14. Effect of deposition time on structure of silver nanoparticles embedded in diamond-like carbon matrix made by RF-PECVD method

    Directory of Open Access Journals (Sweden)

    S Abdolghaderi

    2015-01-01

    Full Text Available Silver nanoparticles embedded in DLC matrix, were prepared by co-deposition of RF-Sputtering and RF-PECVD method from acetylene gas and sliver target. The RF power and initial pressure of chamber were fixed. Variations of morphology, optical and electrical properties of these films over time were investigated

  15. Interaction of Azobenzene and Benzalaniline with Strong Amido Bases.

    Science.gov (United States)

    Kornev, Alexander N; Sushev, Vyacheslav V; Zolotareva, Natalia V; Baranov, Evgenii V; Fukin, Georgy K; Abakumov, Gleb A

    2015-12-18

    The interaction of azobenzene with lithium dicyclohexylamide (Cy2NLi) in THF or Et2O afforded the ion-radical salt of azobenzene (1) structurally characterized for the first time and dicyclohexylaminyl radical, which begins a novel chain of transformations leading eventually to the imino-enamido lithium complex (3). Benzalaniline, being a relative of azobenzene, reacted with Cy2NLi without electron transfer by a proton-abstraction mechanism to form the dilithium salt of N(1),N(2),1,2-tetraphenylethene-1,2-diamine quantitatively.

  16. Holographic Gratings in Azobenzene Side-Chain Polymethacrylates

    DEFF Research Database (Denmark)

    Andruzzi, Luisa; Altomare, Angelina; Ciardelli, Francesco

    1999-01-01

    Optical storage properties of thin unoriented liquid crystalline and amorphous side-chain azobenzene polymethacrylate films are examined by polarization holographic measurements. The investigated materials are free radical copolymers derived from two photochromic monomers, 6-(4-oxy-4...

  17. Polymer scaffolds bearing azobenzene - Potential for optical information storage

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Ramanujam, P.S.

    2001-01-01

    The fundamental optical storage mechanism of the laser light addressable azobenzene moiety is briefly introduced. A modular and flexible synthesis design furnishes polyester matrices covalently integrating cyanoazobenzene in regularly spaced side chains. Thin films of these materials are particul...

  18. Polarisation-sensitive optical elements in azobenzene polyesters and peptides

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Dam-Hansen, Carsten; Berg, Rolf Henrik

    2006-01-01

    In this article, we describe fabrication of polarisation holographic optical elements in azobenzene polyesters. Both liquid crystalline and amorphous side-chain polyesters have been utilised. Diffractive optical elements such as lenses and gratings that are sensitive to the polarisation...... of the incident light have been fabricated with polarisation holography. Computer-generated optical elements and patterns have also been written with a single polarised laser beam. Recording of polarisation defects enabling easy visualisation is also shown to be feasible in azobenzene polyesters....

  19. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer

    International Nuclear Information System (INIS)

    Son, Dong-Ick; Park, Dong-Hee; Choi, Won Kook; Cho, Sung-Hwan; Kim, Won-Tae; Kim, Tae Whan

    2009-01-01

    The bistable effects of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) (PMMA) polymer single layer by using flexible polyethylene terephthalate (PET) substrates were investigated. Transmission electron microscopy (TEM) images revealed that ZnO nanoparticles were formed inside the PMMA polymer layer. Current-voltage (I-V) measurement on the Al/ZnO nanoparticles embedded in an insulating PMMA polymer layer/ITO/PET structures at 300 K showed a nonvolatile electrical bistability behavior with a flat-band voltage shift due to the existence of the ZnO nanoparticles, indicative of trapping, storing, and emission of charges in the electronic states of the ZnO nanoparticles. The carrier transport mechanism of the bistable behavior for the fabricated organic bistable device (OBD) structures is described on the basis of the I-V results by analyzing the effect of space charge.

  20. Synthesis of Gold Nanoparticle-Embedded Silver Cubic Mesh Nanostructures Using AgCl Nanocubes for Plasmonic Photocatalysis.

    Science.gov (United States)

    Joo, Jang Ho; Kim, Byung-Ho; Lee, Jae-Seung

    2017-11-01

    A novel room-temperature aqueous synthesis for gold nanoparticle-embedded silver cubic mesh nanostructures using AgCl templates via a template-assisted coreduction method is developed. The cubic AgCl templates are coreduced in the presence of AuCl 4 - and Ag + , resulting in the reduction of AuCl 4 - into gold nanoparticles on the outer region of AgCl templates, followed by the reduction of AgCl and Ag + into silver cubic mesh nanostructures. Removal of the template clearly demonstrates the delicately designed silver mesh nanostructures embedded with gold nanoparticles. The synthetic mechanism, structural properties, and surface functionalization are spectroscopically investigated. The plasmonic photocatalysis of the cubic mesh nanostructures for the degradation of organic pollutants and removal of highly toxic metal ions is investigated; the photocatalytic activity of the cubic mesh nanostructures is superior to those of conventional TiO 2 catalysts and they are catalytically functional even in natural water, owing to their high surface area and excellent chemical stability. The synthetic development presented in this study can be exploited for the highly elaborate, yet, facile design of nanomaterials with outstanding properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. MOF-Derived Hollow Co9 S8 Nanoparticles Embedded in Graphitic Carbon Nanocages with Superior Li-Ion Storage.

    Science.gov (United States)

    Liu, Jun; Wu, Chao; Xiao, Dongdong; Kopold, Peter; Gu, Lin; van Aken, Peter A; Maier, Joachim; Yu, Yan

    2016-05-01

    Novel electrode materials consisting of hollow cobalt sulfide nanoparticles embedded in graphitic carbon nanocages (HCSP⊂GCC) are facilely synthesized by a top-down route applying room-temperature synthesized Co-based zeolitic imidazolate framework (ZIF-67) as the template. Owing to the good mechanical flexibility and pronounced structure stability of carbon nanocages-encapsulated Co9 S8 , the as-obtained HCSP⊂GCC exhibit superior Li-ion storage. Working in the voltage of 1.0-3.0 V, they display a very high energy density (707 Wh kg(-1) ), superior rate capability (reversible capabilities of 536, 489, 438, 393, 345, and 278 mA h g(-1) at 0.2, 0.5, 1, 2, 5, and 10C, respectively), and stable cycling performance (≈26% capacity loss after long 150 cycles at 1C with a capacity retention of 365 mA h g(-1) ). When the work voltage is extended into 0.01-3.0 V, a higher stable capacity of 1600 mA h g(-1) at a current density of 100 mA g(-1) is still achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Azobenzene derivatives carrying a nitroxide radical.

    Science.gov (United States)

    Nakatsuji, Shin'ichi; Fujino, Masahiro; Hasegawa, Satoko; Akutsu, Hiroki; Yamada, Jun-ichi; Gurman, Vladimir S; Kh Vorobiev, Andrey

    2007-03-16

    Several trans-azobenzene derivatives carrying a nitroxide (aminoxyl) radical (2a, 6a-12a) were prepared, and their photoisomerization reactions to the corresponding cis-isomers were investigated. Although no fruitful results could be obtained for the photoisomerizations of the derivatives with para-subsituents (9a-12a), the unsubstututed derivatives at the para-position (2a, 6a, 7a, 8a) were found to show photoisomerizations by irradiation to give the corresponding cis-isomers (2b, 6b, 7b, 8b), being isolated as relatively stable solid materials, and the change of the intermolecular magnetic interactions was apparently observed by the structural change for each photochromic couple.

  3. Photopiezoelectric Composites of Azobenzene-Functionalized Polyimides and Polyvinylidene Fluoride (Postprint)

    Science.gov (United States)

    2014-10-01

    is a diamine containing two azobenzenes per molecule and synthesized according to our previous publica- tion. [ 25 ] The generic chemical structure...AFRL-RX-WP-JA-2015-0026 PHOTOPIEZOELECTRIC COMPOSITES OF AZOBENZENE -FUNCTIONALIZED POLYIMIDES AND POLYVINYLIDENE FLUORIDE (POSTPRINT...3. DATES COVERED (From – To) 24 December 2009 – 15 September 2014 4. TITLE AND SUBTITLE PHOTOPIEZOELECTRIC COMPOSITES OF AZOBENZENE - FUNCTIONALIZED

  4. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Science.gov (United States)

    2010-04-01

    ... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1211 Cross-linked polyacrylate... shall be determined using size exclusion chromatography or an equivalent method. When conducting the...

  5. Simulation of Photo-isomerization of Functionalized Azobenzene Derivatives

    Science.gov (United States)

    Tavazohi, Pedram; Herberger, Zachary; Lewis, James

    Photo-isomerization is the process of changing the isomer (cis , trans) of a molecule using light. In azobenzene this process can be utilized in a Metal Organic Framework (MOF) for adsorption of CO2. MOFs are created by two major components, metal ions, and organic molecules which are called linkers. The metal ions and linkers can be coordinated in a way that they form a porous material. In the cis isomer of azobenzene, the MOF's pore is available to be filled by CO2, but in the trans isomer the pore is filled with a benzene ring. The change from cis to trans will evacuate the pore if CO2 is present. The important considerations in using azobenzene photo-isomerization as a photo-switch in MOFs are, the quantum yield of the process, and the wavelength of the light which triggers photo-isomerization. By substitution of the functional groups of azobenzene and using the fewest switches surface-hopping algorithm in FIREBALL to simulate the photo-isomerization process we can tune the properties of the molecule as we desire and predict the best substitution sites for azobenzene functional groups. We studied the effects of functionalizing the molecule with OH, CH3, NH2, NO2 and COOH on isomerization quantum yield.

  6. Review of the recent progress in photoresponsive molecularly imprinted polymers containing azobenzene chromophores.

    Science.gov (United States)

    Wei, Yu-bo; Tang, Qian; Gong, Cheng-bin; Lam, Michael Hon-Wah

    2015-11-05

    Photoresponsive molecularly imprinted polymers (PMIPs) containing azobenzene have received wide research attention in recent years and made notable achievements. This article reviews the recent developments on PMIPs containing azobenzene. Topics include the following: (i) brief introduction of azobenzene, molecularly imprinted polymers, and PMIPs containing azobenzene; (ii) progress in functional monomers, cross-linkers, and polymerization conditions; (iii) preparation methods, properties, applications, as well as advantages and disadvantages of conventional PMIPs; (iv) substrate, preparation method, and applications of photoresponsive surface molecularly imprinted polymers; and (v) some perspectives for further development of PMIPs containing azobenzene. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Investigation of bi-enzymatic reactor based on hybrid monolith with nanoparticles embedded and its proteolytic characteristics.

    Science.gov (United States)

    Shangguan, Lulu; Zhang, Lingyi; Xiong, Zhichao; Ren, Jun; Zhang, Runsheng; Gao, Fangyuan; Zhang, Weibing

    2015-04-03

    The bottom-up strategy of proteomic profiling study based on mass spectrometer (MS) has drawn high attention. However, conventional solution-based digestion could not satisfy the demands of highly efficient and complete high throughput proteolysis of complex samples. We proposed a novel bi-enzymatic reactor by immobilizing two different enzymes (trypsin/chymotrypsin) onto a mixed support of hybrid organic-inorganic monolith with SBA-15 nanoparticles embedded. Typsin and chymotrypsin were crossly immobilized onto the mixed support by covalent bonding onto the monolith with glutaraldehyde as bridge reagent and chelation via copper ion onto the nanoparticles, respectively. Compared with single enzymatic reactors, the bi-enzymatic reactor improved the overall functional analysis of membrane proteins of rat liver by doubling the number of identified peptides (from 1184/1010 with trypsin/chymotrypsin enzymatic reactors to 2891 with bi-enzymatic reactor), which led to more proteins identified with deep coverage (from 452/336 to 620); the efficiency of the bi-enzymatic reactor is also better than that of solution-based tandem digestion, greatly shorting the digestion time from 24h to 50s. Moreover, more transmembrane proteins were identified by bi-enzymatic reactor (106) compared with solution-based tandem digestion (95) with the same two enzymes and enzymatic reactors with single enzyme immobilized (75 with trypsin and 66 with chymotrypsin). The proteolytic characteristics of the bi-enzymatic reactors were evaluated by applying them to digestion of rat liver proteins. The reactors showed good digestion capability for proteins with different hydrophobicity and molecular weight. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A photoresponsive Au25 nanocluster protected by azobenzene derivative thiolates

    Science.gov (United States)

    Negishi, Yuichi; Kamimura, Ukyo; Ide, Mao; Hirayama, Michiyo

    2012-06-01

    An Au25 cluster protected by azobenzene derivative thiolates (S-Az) ([Au25(S-Az)18]-) was synthesized with the aim of producing a photoresponsive Au25 cluster. The matrix-assisted laser desorption/ionization mass spectrum of the product revealed that [Au25(S-Az)18]- was synthesized in high purity. Optical absorption spectra of [Au25(S-Az)18]- obtained before and after photoirradiation suggest that the azobenzenes in the ligands of Au25(S-Az)18 isomerize with an efficiency of nearly 100%, both from the trans to cis conformation and from the cis to trans conformation. Furthermore, the redox potential and optical absorption of Au25(S-Az)18 were found to change reversibly due to photoisomerization of azobenzenes.An Au25 cluster protected by azobenzene derivative thiolates (S-Az) ([Au25(S-Az)18]-) was synthesized with the aim of producing a photoresponsive Au25 cluster. The matrix-assisted laser desorption/ionization mass spectrum of the product revealed that [Au25(S-Az)18]- was synthesized in high purity. Optical absorption spectra of [Au25(S-Az)18]- obtained before and after photoirradiation suggest that the azobenzenes in the ligands of Au25(S-Az)18 isomerize with an efficiency of nearly 100%, both from the trans to cis conformation and from the cis to trans conformation. Furthermore, the redox potential and optical absorption of Au25(S-Az)18 were found to change reversibly due to photoisomerization of azobenzenes. Electronic supplementary information (ESI) available: Details of the experimental procedure and characterization of the products. See DOI: 10.1039/c2nr30830d

  9. Optical patterning in azobenzene polymer films.

    Science.gov (United States)

    Stiller, B; Geue, T; Morawetz, K; Saphiannikova, M

    2005-09-01

    Thin azobenzene polymer films show a very unusual property, namely optically induced material transport. The underlying physics for this phenomenon has not yet been thoroughly explained. Nevertheless, this effect enables one to inscribe different patterns onto film surfaces, including one- and two-dimensional periodic structures. Typical sizes of such structures are of the order of micrometers, i.e. related to the interference pattern made by the laser used for optical excitation. In this study we have measured the mechanical properties of one- and two-dimensional gratings, with a high lateral resolution, using force-distance curves and pulse force mode of the atomic force microscope. We also report on the generation of considerably finer structures, with a typical size of 100 nm, which were inscribed onto the polymer surface by the tip of a scanning near-field optical microscope used as an optical pen. Such inscription not only opens new application possibilities but also gives deeper insight into the fundamentals physics underlying optically induced material transport.

  10. Optically induced surface relief phenomena in azobenzene polymers

    DEFF Research Database (Denmark)

    Holme, NCR; Nikolova, Ludmila; Hvilsted, Søren

    1999-01-01

    Azobenzene polymers and oligomers show intriguing surface relief features when irradiated with polarized laser light. We show through atomic force microscopic investigation of side-chain azobenzene polymers after irradiation through an amplitude mask that large peaks or trenches result depending...... on the architecture of the polymer. Extensive mass transport over long distances has been observed, paving the way for easy replication of nanostructures. We also show that it is possible to store microscopic images as topographic features in the polymers just through polarized light irradiation. (C) 1999 American...

  11. The Volume Holographic Optical Storage Potential in Azobenzene Containing Polymers

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Sanchez, Carlos; Alcalá, Rafael

    2009-01-01

    Volume holographic data storage is one of the most promising techniques to improve both the storage capacity of devices and the transfer data rate. Among the materials proposed as storage data media, azobenzene containing polymers have received much attention. Some of their properties seem...... to be suitable for holographic storage applications. However, they still present several problems, mainly those related with light sensitivity, response time and stability of the stored information. In this article we review the work performed on volume holographic storage using azobenzene containing polymers...

  12. Porphyrin-Azobenzene-Bodipy Triads: Syntheses, Structures, and Photophysical Properties.

    Science.gov (United States)

    Yin, Bangshao; Kim, Taeyeon; Zhou, Mingbo; Huang, Weiming; Kim, Dongho; Song, Jianxin

    2017-05-19

    Cyclic and acyclic azobenzene bridged porphyrin-dipyrrin derivatives were successfully prepared via Suzuki-Miyaura coupling reaction of α,α'-diborylated dipyrromethane with bromoazophenyl porphyrin or reaction of borylated porphyrin with dibromoazophenyl dipyrrin, and the corresponding porphyrin-Bodipy derivatives were obtained by subsequent boron complexation. The cyclic porphyrin-dipyrrin compound 3Ni was confirmed by X-ray diffraction. The low fluorescence quantum yields of azobenzene bridged porphyrin-Bodipy can be ascribed to the presence of the intramolecular charge transfer state.

  13. Approximate photochemical dynamics of azobenzene with reactive force fields

    Science.gov (United States)

    Li, Yan; Hartke, Bernd

    2013-12-01

    We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).

  14. Fluorescence Enhancement from Self-Assembled Aggregates II: Factors Influencing Florescence Color from Azobenzene Aggregates

    Science.gov (United States)

    Han, Mina

    2013-09-01

    We have chosen two types of azobenzene derivatives to elucidate the correlation between molecular structure and fluorescence color of light-driven azobenzene-based aggregates. The fluorescence color from azobenzene molecules (1 and 2), adopting a planar structure, was obviously red-shifted from that of the corresponding twisted ortho-alkylated azobenzene 3. The steric hindrance resulting from bulky alkyl groups at the ortho position of the azo linkage was considered to lessen the intermolecular π - π stacking between aromatic rings, leading to the relatively smaller spectral shift in fluorescence from the absorption band of the initial azobenzene solution. The substitution of electron-withdrawing groups into the azobenzene core gave rise to a blue-shift in fluorescence wavelength. That is, the extended π-conjugated system consisting of a planar azobenzene core as well as the electronic properties of the substituents are key factors influencing the fluorescence color from the light-driven azobenzene aggregates. Moreover, we could prepare fluorescent polymer films by mixing fluorescent azobenzene aggregates with polymers. The fluorescence colors from the polymer films were comparable to those from the azobenzene aggregates.

  15. Photo-orientation in azobenzene containing polybutadiene based polymer

    Czech Academy of Sciences Publication Activity Database

    Rais, David; Nešpůrek, Stanislav; Zakrevskyy, Y.; Stumpe, J.; Sedláková, Zdeňka; Studenovský, Martin

    2005-01-01

    Roč. 7, č. 3 (2005), s. 1371-1375 ISSN 1454-4164 R&D Projects: GA AV ČR IAA4112401 Institutional research plan: CEZ:AV0Z40500505 Keywords : azobenzene * polybutadien * photo-orientation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.138, year: 2005

  16. A Fast, Visible-Light-Sensitive Azobenzene for Bioorthogonal Ligation

    NARCIS (Netherlands)

    Poloni, Claudia; Szymanski, Wiktor; Hou, Lili; Browne, Wesley R.; Feringa, Bernard

    2014-01-01

    Azobenzenes have been used as photoresponsive units for the control of numerous biological processes. Primary prerequisites for such applications are site-selective incorporation of photoswitchable units into biomolecules and the possibility of using non-destructive and deep-tissue-penetrating

  17. Direct and Versatile Synthesis of Red-Shifted Azobenzenes

    NARCIS (Netherlands)

    Hansen, Mickel J.; Lerch, Michael M.; Szymanski, Wiktor; Feringa, Ben L.

    2016-01-01

    A straightforward synthesis of azobenzenes with bathochromically-shifted absorption bands is presented. It employs an ortho-lithiation of aromatic substrates, followed by a coupling reaction with aryldiazonium salts. The products are obtained with good to excellent yields after simple purification.

  18. Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes

    Directory of Open Access Journals (Sweden)

    Yuya Egawa

    2014-02-01

    Full Text Available In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent diols to form cyclic boronate esters. In order to develop colorimetric sugar sensors, boronic acid-conjugated azobenzenes have been synthesized. There are several types of boronic acid azobenzenes, and their characteristics tend to rely on the substitute position of the boronic acid moiety. For example, o-substitution of boronic acid to the azo group gives the advantage of a significant color change upon sugar addition. Nitrogen-15 Nuclear Magnetic Resonance (NMR studies clearly show a signaling mechanism based on the formation and cleavage of the B–N dative bond between boronic acid and azo moieties in the dye. Some boronic acid-substituted azobenzenes were attached to a polymer or utilized for supramolecular chemistry to produce glucose-selective binding, in which two boronic acid moieties cooperatively bind one glucose molecule. In addition, boronic acid-substituted azobenzenes have been applied not only for glucose monitoring, but also for the sensing of glycated hemoglobin and dopamine.

  19. Physical processes in azobenzene polymers on irradiation with polarized light

    DEFF Research Database (Denmark)

    Holme, N.C.R.; Nikolova, L.; Norris, T.B.

    1999-01-01

    . A transition route based on experimental results for the theoretically calculated energy level scheme is proposed. Physical observations of surface relief in thin films of azobenzene polymers when irradiated with polarized light are reported. These include two beam polarization holographic observations...

  20. Novel Nanocomposite Optical Plastics: Dispersion of Titanium in Polyacrylates

    Directory of Open Access Journals (Sweden)

    Gunjan Suri

    2010-01-01

    Full Text Available Polyacrylates have become the preferred materials for optical applications replacing the conventionally used glass due to their superior optical clarity. The major disadvantage with polyacrylates is their low (1.40–1.50 refractive index besides their poor impact resistance. The improvements in refractive index as well as mechanical properties can be achieved by way of incorporation of metals or metal compounds in the matrix. A novel methodology for the incorporation of high refractive index metals into low refractive index polymeric materials to improve the refractive index and impact resistance of the latter has been developed. With the in-situ formation of nanoparticles of TiO2, the refractive index of polyacrylates improved from 1.45 to 1.53 and the Abbe number increased from 40 to 57. One of the interesting dimension of this study pertains to the possibility of tailor-making of the two key optical properties of materials by way of varying the amount of TiO2 being formed in-situ. Thermal stability and impact resistance of nano dispersed (4.3% by wt. of Ti polyacrylates are found to be better than the neat polyacrylates. Moreover, TiO2-containing polyacrylate is of light weight. TEM, SEM, and IR analysis confirms the in-situ formation of nanoparticles of TiO2. Gamma irradiation has been used as an eco-friendly technique for polymerization. The developed compositions can be cast polymerized into clear and bubble free material for optical applications.

  1. Ultra-high sensitive substrates for surface enhanced Raman scattering, made of 3 nm gold nanoparticles embedded on SiO2 nanospheres

    Science.gov (United States)

    Phatangare, A. B.; Dhole, S. D.; Dahiwale, S. S.; Bhoraskar, V. N.

    2018-05-01

    The surface properties of substrates made of 3 nm gold nanoparticles embedded on SiO2 nanospheres enabled fingerprint detection of thiabendazole (TBZ), crystal violet (CV) and 4-Aminothiophenol (4-ATP) at an ultralow concentration of ∼10-18 M by surface enhanced Raman spectroscopy (SERS). Gold nanoparticles of an average size of ∼3 nm were synthesized and simultaneously embedded on SiO2 nanospheres by the electron irradiation method. The substrates made from the 3 nm gold nanoparticles embedded on SiO2 nanospheres were successfully used for recording fingerprint SERS spectra of TBZ, CV and 4-ATP over a wide range of concentrations from 10-6 M to 10-18 M using 785 nm laser. The unique features of these substrates are roughness near the surface due to the inherent structural defects of 3 nm gold nanoparticles, nanogaps of ≤ 1 nm between the embedded nanoparticles and their high number. These produced an abundance of nanocavities which act as active centers of hot-spots and provided a high electric field at the reporter molecules and thus an enhancement factor required to record the SERS spectra at ultra low concentration of 10-18 M. The SERS spectra recorded by the substrates of 4 nm and 6 nm gold nanoparticles are discussed.

  2. Preparation and optical characteristics of layered perovskite-type lead-bromide-incorporated azobenzene chromophores

    Science.gov (United States)

    Sasai, Ryo; Shinomura, Hisashi

    2013-02-01

    Lead bromide-based layered perovskite powders with azobenzene derivatives were prepared by a homogeneous precipitation method. From the diffuse reflectance (DR) and photoluminescence (PL) spectra of the hybrid powder materials, the present hybrids exhibited sharp absorption and PL peaks originating from excitons produced in the PbBr42- layer. When the present hybrid powder was irradiated with UV light at 350 nm, the absorption band from the trans-azobenzene chromophore, observed around 350 nm, decreased, while the absorption band from the cis-azobenzene chromophore, observed around 450 nm, increased. These results indicate that azobenzene chromophores in the present hybrid materials exhibit reversible photoisomerization. Moreover, it was found that the PL intensity from the exciton also varied due to photoisomerization of the azobenzene chromophores in the present hybrid. Thus, for the first time we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation.

  3. Switching Process Consisting of Three Isomeric States of an Azobenzene Unit.

    Science.gov (United States)

    Adam, Abdulselam; Haberhauer, Gebhard

    2017-07-19

    Azobenzene and its derivatives are among the most commonly used switching units in organic chemistry. The switching process consists of two states, in which the trans isomer has a stretched and the cis isomer a compact form. Here, we have designed a system in which all isomeric states of an azobenzene moiety (trans → cis-(M) → cis-(P)) are passed step by step. The first step involves a change in the distance between the benzene units, which is common for azobenzene derivatives. In the second step an inversion of the helicity (M→P) of the cis azobenzene unit takes place. The third step leads back to the stretched trans isomer. This switching cycle is achieved by coupling the azobenzene unit with two chiral clamps and with a further azobenzene switching unit.

  4. Photosensitive Layer-by-Layer Assemblies Containing Azobenzene Groups: Synthesis and Biomedical Applications

    OpenAIRE

    Uichi Akiba; Daichi Minaki; Jun-ichi Anzai

    2017-01-01

    This review provides an overview of the syntheses of photosensitive layer-by-layer (LbL) films and microcapsules modified with azobenzene derivatives and their biomedical applications. Photosensitive LbL films and microcapsules can be prepared by alternate deposition of azobenzene-bearing polymers and counter polymers on the surface of flat substrates and microparticles, respectively. Azobenzene residues in the films and microcapsules exhibit trans-to-cis photoisomerization under UV light, wh...

  5. Investigation of interpolymer complexes based on methylcellulose and polyacrylic acid

    Directory of Open Access Journals (Sweden)

    Zh. Nurpeysova

    2012-12-01

    Full Text Available In the given work the patterns of formation interpolymer complexes in the methylcellulose and polyacrylic acid system were studied by turbidimetry. It is shown that the increase in molecular weight and concentration of polymers promotes efficient formation of interpolymer complexes.

  6. Mechanism of Macroscopic Motion of Oleate Helical Assemblies : Cooperative Deprotonation of Carboxyl Groups Triggered by Photoisomerization of Azobenzene Derivatives

    OpenAIRE

    Kageyama, Yoshiyuki; Ikegami, Tomonori; Kurokome, Yuta; Takeda, Sadamu

    2016-01-01

    Macroscopic and spatially ordered motions of self-assemblies composed of oleic acid and a small amount of an azobenzene derivative, induced by azobenzene photoisomerization, was previously reported. However, the mechanism of the generation of submillimeter-scale motions by the nanosized structural transition of azobenzene was not clarified. Herein, an underlying mechanism of the motions is proposed in which deprotonation of carboxyl groups in co-operation with azobenzene photoisomerization ca...

  7. Mechanically induced cis to trans reisomerization of azobenzene

    Science.gov (United States)

    Turansky, Robert; Konopka, Martin; Stich, Ivan; Marx, Dominik

    2007-03-01

    Using density functional techniques we study mechanochemistry of the azobenzene molecule. Azobenzene is an optically switchable molecule. Laser light is normally used to achieve molecular switching between the cis and trans isomers. We use mechanochemistry to achieve the switching. Thiolate-gold bond can used to exert mechanical energy on the molecule bonded between two gold electrodes in static AFM apparatus. Our model consists of two realistic gold electrodes bridged by dithioazobenzene. We find that pulling the transisomer leads just to formation of gold nanowires and mechanical breakage of the electrodes. However, mechanochemistry with modest applied forces leads to cis trans reisomerization via rotation mechanism. Contrary, use of simple constraints instead of realistic gold electrodes, leads to cis trans reisomerization, albeit with significantly larger applied forces and via inversion mechanism. Important experimental and theoretical ramifications of these simulations will be discussed.

  8. Threshold collision induced dissociation experiment for azobenzene and its derivatives

    Science.gov (United States)

    Rezaee, Mohammadreza; Compton, Robert

    In this study we investigated protonated azobenzene cation and properties of trans 2,2',6,6'-tetrafluoroazobenzene anion using the collision induced dissociation method and the results are compared with the results from ab initio electronic structure calculations. We measured the bond dissociation energies experimentally and found which theoretical quantum chemistry methods yield best results. Several high accuracy multi-level calculations such as CBS-QB3, G3 and G4 had been carried out to obtain reliable thermochemical information for azobenzene and several of its derivatives and their anion or cation. We also performed other experiments such as Raman spectroscopy to study these light sensitive molecules with promising applications such as photo-switching.

  9. Azobenzene Modified Polymer Electrolyte Membrane for Ion Gating

    Science.gov (United States)

    Piedrahita, Camilo; Mballa, Mireille; He, Ruixuan; Kyu, Thein

    By virtue of ion concentration gradient across cell membranes, neuron cells are highly polarized driving electrical potential difference (e.g., Gibbs law). To regulate and control ion movement, living cells have specific channels with gates that are permeable to cations, enabling or excluding them via charge polarity and size. This mechanism for generating and transmitting signals from one neuron to another controls body movement via brain function. By virtue of trans-cis isomerization, azobenzene derivative (AZO) has been heavily sought for ion-gating in biological cells as a means of signal generation and transmission through nervous systems. In this work, PEM consisted of PEGDA/SCN/LiTFSI was modified with AZO derivatives for gating of lithium ions. At low concentrations of azobenzene of 3 wt Supported by NSF-DMR 1502543.

  10. Light scattering of thin azobenzene side-chain polyester layers

    DEFF Research Database (Denmark)

    Kerekes, Á.; Lörincz, E.; Ramanujam, P.S.

    2002-01-01

    Light scattering properties of liquid crystalline and amorphous azobenzene side-chain polyester layers used for optical data storage were examined by means of transmissive scatterometry. Comparative experiments show that the amorphous polyester has significantly lower light scattering characteris...... for the domain size in thin liquid crystalline polyester layers being responsible for the dominant light scattering. The characteristic domain Sizes obtained from the Fourier transformation of polarization microscopic Pictures confirm these values.......Light scattering properties of liquid crystalline and amorphous azobenzene side-chain polyester layers used for optical data storage were examined by means of transmissive scatterometry. Comparative experiments show that the amorphous polyester has significantly lower light scattering...... characteristics than the liquid crystalline polyester. The amorphous samples have negligible polarization part orthogonal to the incident beam. the liquid crystalline samples have relative high orthogonal polarization part in light scattering, The light scattering results can be used to give a lower limit...

  11. Multiresponsive self-assembled liquid crystals with azobenzene groups.

    Science.gov (United States)

    Xu, Miao; Chen, Liqin; Zhou, Yifeng; Yi, Tao; Li, Fuyou; Huang, Chunhui

    2008-10-15

    An optical and electric field-responsive self-assembled complex containing nitril azobenzene groups and 1,3,5-triazine-2,4-diamine was obtained and characterized. Both the azobenzene precursor and the complex form a liquid-crystalline phase in a certain temperature range. The transition temperature from crystalline phase to liquid-crystalline mesophase was obviously decreased in the complex by the self-assembling. The self-assembled liquid crystals revealed good response to both stimuli of light irradiation and electric field, and the induced molecular orientation could be held even after the removal of the stimuli. The structural and mechanical investigation proved that the formation of hydrogen bonds and assembly-induced molecular dipolar change contributed to the multiresponding action. This kind of self-assembled complex thus has potential applications in imaging and data storage.

  12. Herstellung polarisationsholografischer optischer Elemente durch Laserbelichtung in Azobenzen-Polymeren

    OpenAIRE

    Fratz, Markus

    2010-01-01

    Polarisationshologramme sind optische Elemente, deren Wirkung auf der Beeinflussung des Polarisationszustandes elektromagnetischer Wellen beruht. Eine Möglichkeit der Herstellung von Polarisationshologrammen besteht darin, mit Hilfe kurzwelligen, linear polarisierten Lichts (Wellenlänge kleiner 550 nm) Anisotropie in Azobenzen-Polymeren zu erzeugen. Die erzeugte Anisotropie ist nach der Belichtung makroskopisch als Doppelbrechung beobachtbar. Durch hochaufgelöste räumliche Variation dieser Do...

  13. In situ Raman spectroelectrochemistry of azobenzene monolayers on glassy carbon.

    Science.gov (United States)

    Itoh, Takashi; McCreery, Richard L

    2007-05-01

    In situ Raman spectra of chemisorbed azobenzene (AB) monolayers on glassy carbon (GC) electrodes were observed under potentiostatic conditions in acetonitrile (ACN) with tetrabutyl-ammonium tetrafluoroborate (TBA-BF4). The Raman intensities of these spectra were high below -1000 mV, and this is attributed to the change in absorbance of AB on GC. In this paper, we describe chemisorbed AB molecules on GC electrode surfaces under potentiostatic conditions.

  14. [New derivatives of azobenzene for the directed modification of proteins].

    Science.gov (United States)

    Khien, Le Tkhi; Shirling, B; Riazanova, A Iu; Zatsepin, T S; Volkov, E M; Kubareva, E A; Velichko, T I; Pingoud, A; Oretskaia, T S

    2009-01-01

    Derivatives of azobenzene which contained a maleimide group in one of the benzene rings (for binding to a protein cysteine residue) and maleimide, hydroxyl, or carboxyl substitutes in another benzene ring were synthesized. The reactivity of these compounds towards a cysteine residue of a protein and their optical properties in a free state and after their attachment to the mutant forms of the SsoII restriction endonuclease were studied.

  15. Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures as efficient bicatalysts for oxygen reduction and evolution reactions

    Science.gov (United States)

    Qi, Chunling; Zhang, Li; Xu, Guancheng; Sun, Zhipeng; Zhao, Aihua; Jia, Dianzeng

    2018-01-01

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play crucial roles in efficient energy conversion and storage solutions. Here, Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures (denoted as Co@Co3O4/NCs) are prepared via a simple two-step and in situ approach by carbonization and subsequent oxidation of Co-MOF containing high contents of carbon and nitrogen. When evaluated as electrocatalyst towards both ORR and OER in a KOH electrolyte solution, the as-fabricated Co@Co3O4/NC-2 exhibits similar ORR catalytic activity to the commercial Pt/C catalyst, but superior stability and good methanol tolerance. Furthermore, the as-fabricated catalysts also show promising catalytic activity for OER. The effective catalytic activities originate from the synergistic effects between well wrapped Co@Co3O4 nanoparticles and nitrogen doped carbon structures.

  16. Azobenzene-based inhibitors of human carbonic anhydrase II

    Directory of Open Access Journals (Sweden)

    Leander Simon Runtsch

    2015-07-01

    Full Text Available Aryl sulfonamides are a widely used drug class for the inhibition of carbonic anhydrases. In the context of our program of photochromic pharmacophores we were interested in the exploration of azobenzene-containing sulfonamides to block the catalytic activity of human carbonic anhydrase II (hCAII. Herein, we report the synthesis and in vitro evaluation of a small library of nine photochromic sulfonamides towards hCAII. All molecules are azobenzene-4-sulfonamides, which are substituted by different functional groups in the 4´-position and were characterized by X-ray crystallography. We aimed to investigate the influence of electron-donating or electron-withdrawing substituents on the inhibitory constant Ki. With the aid of an hCAII crystal structure bound to one of the synthesized azobenzenes, we found that the electronic structure does not strongly affect inhibition. Taken together, all compounds are strong blockers of hCAII with Ki = 25–65 nM that are potentially photochromic and thus combine studies from chemical synthesis, crystallography and enzyme kinetics.

  17. Light intensity dependent optical rotation in azobenzene polymers

    Science.gov (United States)

    Ivanov, M.; Ilieva, D.; Petrova, T.; Dragostinova, V.; Todorov, T.; Nikolova, L.

    2006-05-01

    We investigate the self-induced rotation of the azimuth of light polarization ellipse in azobenzene polymers. It is initiated by the photoreorientation and ordering of the azobenzenes on illumination with elliptically polarized light resulting in the appearance of an optical axis whose direction is gradually rotated along the depth of the film. A macroscopic chiral structure is created with a pitch depending on light ellipticity and the photobirefringence ▵n in the successive layers of the film. In this work we make use of the fact that at elevated temperatures ▵n is very sensitive to light intensity. In our acrylic amorphous azobenzene polymer at temperatures 50-65°C the saturated values of ▵n are much higher for low intensity of the exciting light than for higher intensity. In this temperature range the polarization azimuth of monochromatic blue light with different intensity is rotated to a different angle after passing through the polymer film. This effect can be used for passive elements rotating the polarization azimuth depending on light intensity and for the formation of light beams with a space-variant polarization state.

  18. Isomerization and fluorescence characteristics of sterically hindered azobenzene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mina, E-mail: mrhan@echem.titech.ac.j [Flucto-Order Functions Asian Collaboration Team, RIKEN Advanced Science Institute, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [Department of Electronic Chemistry, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Ishikawa, Daisuke [Department of Electronic Chemistry, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Muto, Emi [Faculty of Education and Integrated Arts and Sciences, Waseda University, 1-6-1 Nishi-Waseda, Shinjuku, Tokyo 169-8050 (Japan); Hara, Masahiko [Flucto-Order Functions Asian Collaboration Team, RIKEN Advanced Science Institute, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [Department of Electronic Chemistry, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

    2009-10-15

    We report synthesis and isomerization behaviors of sterically hindered azobenzene derivatives (1 and 2) with decyloxy and hydroxy groups, respectively, and their fluorescence enhancement under UV light irradiation characterized by means of absorption and fluorescence spectroscopy measurements. Upon irradiation of as-prepared solution (1) with UV light (approx200 mJ/cm{sup 2}) a cis-rich photostationary state was reached. Obviously different from 2 showing very fast thermal cis-to-trans isomerization within 2 min, slow cis-to-trans thermal back isomerization of 1 with a long alkyl chain at ambient temperature was observed on the time scale of weeks. In contrast to no striking changes in absorption and fluorescence spectra of compound 2, the azobenzene 1 showed green fluorescence upon prolonged irradiation with UV light (about 3-8 J/cm{sup 2} exposure doses), although both the initial trans-rich and cis-rich states of azobenzene molecules were not fluorescent in solution. The stability of fluorescence efficiency caused by drying and redissolving processes was examined.

  19. Photosensitive microgels containing azobenzene surfactants of different charges.

    Science.gov (United States)

    Schimka, Selina; Lomadze, Nino; Rabe, Maren; Kopyshev, Alexey; Lehmann, Maren; von Klitzing, Regine; Rumyantsev, Artem M; Kramarenko, Elena Yu; Santer, Svetlana

    2016-12-21

    We report on light sensitive microgel particles that can change their volume reversibly in response to illumination with light of different wavelengths. To make the anionic microgels photosensitive we add surfactants with a positively charged polyamine head group and an azobenzene containing tail. Upon illumination, azobenzene undergoes a reversible photo-isomerization reaction from a trans- to a cis-state accompanied by a change in the hydrophobicity of the surfactant. Depending on the isomerization state, the surfactant molecules are either accommodated within the microgel (trans-state) resulting in its shrinkage or desorbed back into water (cis-isomer) letting the microgel swell. We have studied three surfactants differing in the number of amino groups, so that the number of charges of the surfactant head varies between 1 and 3. We have found experimentally and theoretically that the surfactant concentration needed for microgel compaction increases with decreasing number of charges of the head group. Utilization of polyamine azobenzene containing surfactants for the light triggered remote control of the microgel size opens up a possibility for applications of light responsive microgels as drug carriers in biology and medicine.

  20. Kinetic analysis of the thermal isomerisation pathways in an asymmetric double azobenzene switch

    NARCIS (Netherlands)

    Robertus, Jort; Reker, Siebren F.; Pijper, Thomas C.; Deuzeman, Albert; Browne, Wesley R.; Feringa, Ben L.

    2012-01-01

    Here we report a photochemical and kinetic study of the thermal relaxation reaction of a double azobenzene system, in which two azobenzene photochromic units are connected via a phenyl ring. Upon UV irradiation, three thermally unstable isomers are formed. Kinetic studies using arrayed H-1-NMR

  1. Preparation and optical characteristics of layered perovskite-type lead-bromide-incorporated azobenzene chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Sasai, Ryo, E-mail: rsasai@riko.shimane-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, F3-3(250), Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Shinomura, Hisashi [Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, F3-3(250), Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2013-02-15

    Lead bromide-based layered perovskite powders with azobenzene derivatives were prepared by a homogeneous precipitation method. From the diffuse reflectance (DR) and photoluminescence (PL) spectra of the hybrid powder materials, the present hybrids exhibited sharp absorption and PL peaks originating from excitons produced in the PbBr{sub 4}{sup 2-} layer. When the present hybrid powder was irradiated with UV light at 350 nm, the absorption band from the trans-azobenzene chromophore, observed around 350 nm, decreased, while the absorption band from the cis-azobenzene chromophore, observed around 450 nm, increased. These results indicate that azobenzene chromophores in the present hybrid materials exhibit reversible photoisomerization. Moreover, it was found that the PL intensity from the exciton also varied due to photoisomerization of the azobenzene chromophores in the present hybrid. Thus, for the first time we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation. - Graphical abstract: For the first time, we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation. Highlights: Black-Right-Pointing-Pointer PbBr-based layered perovskite with azobenezene derivatives could be synthesized by a homogeneous precipitation method. Black-Right-Pointing-Pointer Azobenzene derivatives incorporated the present hybrid that exhibited reversible photoisomerization under UV and/or visible light irradiation. Black-Right-Pointing-Pointer PL property of the present hybrid could also be varied by photoisomerization.

  2. Preparation and optical characteristics of layered perovskite-type lead-bromide-incorporated azobenzene chromophores

    International Nuclear Information System (INIS)

    Sasai, Ryo; Shinomura, Hisashi

    2013-01-01

    Lead bromide-based layered perovskite powders with azobenzene derivatives were prepared by a homogeneous precipitation method. From the diffuse reflectance (DR) and photoluminescence (PL) spectra of the hybrid powder materials, the present hybrids exhibited sharp absorption and PL peaks originating from excitons produced in the PbBr 4 2− layer. When the present hybrid powder was irradiated with UV light at 350 nm, the absorption band from the trans-azobenzene chromophore, observed around 350 nm, decreased, while the absorption band from the cis-azobenzene chromophore, observed around 450 nm, increased. These results indicate that azobenzene chromophores in the present hybrid materials exhibit reversible photoisomerization. Moreover, it was found that the PL intensity from the exciton also varied due to photoisomerization of the azobenzene chromophores in the present hybrid. Thus, for the first time we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation. - Graphical abstract: For the first time, we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation. Highlights: ► PbBr-based layered perovskite with azobenezene derivatives could be synthesized by a homogeneous precipitation method. ► Azobenzene derivatives incorporated the present hybrid that exhibited reversible photoisomerization under UV and/or visible light irradiation. ► PL property of the present hybrid could also be varied by photoisomerization.

  3. Slower processes of the ultrafast photo-isomerization of an azobenzene observed by IR spectroscopy

    NARCIS (Netherlands)

    Koller, F.O.; Sobotta, C.; Schrader, T.E.; Cordes, T.; Schreier, W.J.; Sieg, A.; Gilch, P.

    2007-01-01

    The photo-induced trans–cis isomerization of the azobenzene derivative 4-nitro-4'-(dimethylamino)azobenzene in polar solution was studied by femtosecond UV/Vis and IR spectroscopy. The UV/Vis experiment reveals two excited state processes; the slower one (1 ps) is the internal conversion to the

  4. Coverage-driven dissociation of azobenzene on Cu(111): a route towards defined surface functionalization.

    Science.gov (United States)

    Willenbockel, Martin; Maurer, Reinhard J; Bronner, Christopher; Schulze, Michael; Stadtmüller, Benjamin; Soubatch, Serguei; Tegeder, Petra; Reuter, Karsten; Stefan Tautz, F

    2015-10-25

    We investigate the surface-catalyzed dissociation of the archetypal molecular switch azobenzene on the Cu(111) surface. Based on X-ray photoelectron spectroscopy, normal incidence X-ray standing waves and density functional theory calculations a detailed picture of the coverage-induced formation of phenyl nitrene from azobenzene is presented. Furthermore, a comparison to the azobenzene/Ag(111) interface provides insight into the driving force behind the dissociation on Cu(111). The quantitative decay of azobenzene paves the way for the creation of a defect free, covalently bonded monolayer. Our work suggests a route of surface functionalization via suitable azobenzene derivatives and the on surface synthesis concept, allowing for the creation of complex immobilized molecular systems.

  5. Synthesis of Bifunctional Azobenzene Glycoconjugates for Cysteine-Based Photosensitive Cross-Linking with Bioactive Peptides.

    Science.gov (United States)

    Müller, Anne; Kobarg, Hauke; Chandrasekaran, Vijayanand; Gronow, Joana; Sönnichsen, Frank D; Lindhorst, Thisbe K

    2015-09-21

    Azobenzene linker molecules can be utilized to control peptide/protein function when they are ligated to appropriately spaced amino acid side chains of the peptide. This is because the photochemical E/Z isomerization of the azobenzene N=N double bond allows to switch peptide conformation between folded and unfolded. In this context, we have introduced carbohydrate-functionalized azobenzene derivatives in order to advance the biocompatible properties of azobenzene peptide linkers. Chloroacetamide-functionalized and O-allylated carbohydrate derivatives were synthesized and conjugated with azobenzene to achieve new bifunctional cross-linkers, in order to allow ligation to cysteine side chains by nucleophilic substitution or thiol-ene reaction, respectively. The photochromic properties of the new linker glycoconjugates were determined and first ligation reactions performed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates

    OpenAIRE

    Glennon-Alty, Laurence; Williams, Rachel; Dixon, Simon; Murray, Patricia

    2013-01-01

    Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-?), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-?. Within a few days of culture on the biomimetic polyacry...

  7. Modification of nucleic acids by azobenzene derivatives and their applications in biotechnology and nanotechnology.

    Science.gov (United States)

    Li, Jing; Wang, Xingyu; Liang, Xingguo

    2014-12-01

    Azobenzene has been widely used as a photoregulator due to its reversible photoisomerization, large structural change between E and Z isomers, high photoisomerization yield, and high chemical stability. On the other hand, some azobenzene derivatives can be used as universal quenchers for many fluorophores. Nucleic acid is a good candidate to be modified because it is not only the template of gene expression but also widely used for building well-organized nanostructures and nanodevices. Because the size and polarity distribution of the azobenzene molecule is similar to a nucleobase pair, the introduction of azobenzene into nucleic acids has been shown to be an ingenious molecular design for constructing light-switching biosystems or light-driven nanomachines. Here we review recent advances in azobenzene-modified nucleic acids and their applications for artificial regulation of gene expression and enzymatic reactions, construction of photoresponsive nanostructures and nanodevices, molecular beacons, as well as obtaining structural information using the introduced azobenzene as an internal probe. In particular, nucleic acids bearing multiple azobenzenes can be used as a novel artificial nanomaterial with merits of high sequence specificity, regular duplex structure, and high photoregulation efficiency. The combination of functional groups with biomolecules may further advance the development of chemical biotechnology and biomolecular engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Rewritable azobenzene polyester for polarization holographic data storage

    DEFF Research Database (Denmark)

    Kerekes, A; Sajti, Sz.; Loerincz, Emoeke

    2000-01-01

    Optical storage properties of thin azobenzene side-chain polyester films were examined by polarization holographic measurements. The new amorphous polyester film is the candidate material for the purpose of rewritable holographic memory system. Temporal formation of anisotropic and topographic...... gratings was studied in case of films with and without a hard protective layer. We showed that the dominant contribution to the diffraction efficiency comes from the anisotropy in case of expositions below 1 sec even for high incident intensity. The usage of the same wavelength for writing, reading...

  9. High electrochemical performance of RuO2–Fe2O3 nanoparticles embedded ordered mesoporous carbon as a supercapacitor electrode material

    International Nuclear Information System (INIS)

    Xiang, Dong; Yin, Longwei; Wang, Chenxiang; Zhang, Luyuan

    2016-01-01

    The electrode materials RuO 2 or RuO 2 –Fe 2 O 3 nanoparticle embedded OMC (ordered mesoporous carbon) are prepared by the method of impregnation and heating in situ. The mesoporous structure optimized the electron and proton conducting pathways, leading to the enhanced capacitive performances of the composite materials. The average nanoparticle size of RuO 2 and RuO 2 –Fe 2 O 3 is 2.54 and 1.96 nm, respectively. The fine RuO 2 –Fe 2 O 3 nanoparticles are dispersed evenly in the pore channel wall of the two-dimensional mesoporous carbon without blocking the mesoporous channel, and they have a higher specific surface area, a larger pore volume, a proper pore size and a small charge transfer impedance value. The special electrochemical capacitance of RuO 2 –Fe 2 O 3 /OMC tested in acid electrolyte (H 2 SO 4 ) is measured to be as high as 1668 F g −1 , which is higher than that of RuO 2 /OMC. Meanwhile, the supercapacitor properties of the RuO 2 –Fe 2 O 3 /OMC composites show a good cycling performance of 93% capacitance retention (3000 cycles), a better reversibility, a higher energy density (134 Wh kg −1 ) and power density (4000 W kg −1 ). The composite electrode of RuO 2 –Fe 2 O 3 /OMC, which combines a double layer capacitance with pseudo-capacitance, is proved to be suitable for ideal high performance electrode material of a hybrid supercapacitor application. - Highlights: • The nanocomposites of RuO 2 –Fe 2 O 3 /OMC are prepared by impregnation and heating in situ. • The fine RuO 2 –Fe 2 O 3 nanoparticles distribute in the pore channel wall of OMC. • We discuss a reversible redox reaction mechanism of RuO 2 –Fe 2 O 3 /OMC in acid solutions. • RuO 2 –Fe 2 O 3 nanoparticles embedded OMC shows a higher supercapacitive performance.

  10. Structure dependence of photochromism and thermochromism of azobenzene-functionalized polythiophenes

    Directory of Open Access Journals (Sweden)

    2007-07-01

    Full Text Available Two novel azobenzene-functionalized polythiophenes, poly[4-((4-(phenylazophenoxybutyl-3-thienylacetate] (P4 and the copolymer of 3-hexylthiophene and 4-((4-(phenylazophenoxybutyl-3-thienylacetate (COP64 have been synthesized. The structure dependence of photoluminescence features and thermochromic behaviors of both azobenzene-functionalized polymers was investigated. The results show that polymer structure has a strong influence on the conformation and optical properties of the resulting polythiophene derivatives. The photochemical control of photoluminescence property was achieved with homopolymer P4 using photoactive azobenzene side chains.

  11. Functionalization, self-assembly, and photoswitching quenching for azobenzene derivatives adsorbed on Au(111).

    Science.gov (United States)

    Cho, Jongweon; Berbil-Bautista, L; Levy, Niv; Poulsen, Daniel; Fréchet, Jean M J; Crommie, Michael F

    2010-12-21

    We have used scanning tunneling microscopy to investigate the structure and photoswitching behavior of azobenzene molecules functionalized with bulky spacer groups and adsorbed onto Au(111). We find that positioning tert-butyl "legs" in a canted arrangement on the azobenzene phenyl rings quenches photoisomerizability of the molecule on Au(111). Addition of cyano groups at the para positions changes the molecular self-assembly significantly, but does not alter the quenched photoisomerizability. This behavior likely arises from a combination of molecule-surface interactions, molecule-molecule interactions, and alteration of azobenzene electronic structure resulting from the position-specific addition of tert-butyl groups.

  12. Nickel adsorption by sodium polyacrylate-grafted activated carbon

    International Nuclear Information System (INIS)

    Ewecharoen, A.; Thiravetyan, P.; Wendel, E.; Bertagnolli, H.

    2009-01-01

    A novel sodium polyacrylate grafted activated carbon was produced by using gamma radiation to increase the number of functional groups on the surface. After irradiation the capacity for nickel adsorption was studied and found to have increased from 44.1 to 55.7 mg g -1 . X-ray absorption spectroscopy showed that the adsorbed nickel on activated carbon and irradiation-grafted activated carbon was coordinated with 6 oxygen atoms at 2.04-2.06 A. It is proposed that this grafting technique could be applied to other adsorbents to increase the efficiency of metal adsorption.

  13. Photoinduced heat generation mechanism in Ag nanoparticles embedded in SiO2 and β-In2S3 matrix

    Science.gov (United States)

    Warrier, Anita R.; Vijayan, C.

    2017-05-01

    In this work we probe the photothermal conversion properties of individual metal (Ag) nanoparticle, semiconductor (β-In2S3) microflowers, dielectric (SiO2) nanostructures and Ag nanoparticles embedded in β-In2S3 and SiO2 matrix. The heat generated from the Ag nanoparticles is much higher when embedded inside polymer encapsulated SiO2 and β-In2S3 matrix than the individual nanoparticle assembly. The heat generation mechanism is shown to be an ultrafast process (picoseconds) when the Ag nanoparticles are embedded in a β-In2S3 complex, while for individual Ag nanoparticles and Ag: SiO2 matrix the process is shown to be time delayed. The change is attributed to the resonant heat transfer mechanism. The measurements were carried out by illuminating the samples with pump beam of 445 nm. The refractive index gradient produced in the surrounding air due to thermal waves emanating from the sample is measured using a probe beam of wavelength 546 nm and a position sensitive quadrant cell detector.

  14. Optical absorption and TEM studies of silver nanoparticle embedded BaO-CaF{sub 2}-P{sub 2}O{sub 5} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, Manoj Kumar, E-mail: manukokkal01@gmail.com; Shashikala, H. D. [Material Processing Laboratory, Department of Physics, National Institute of Technology Karnataka Surathkal, Mangalore-575025 (India)

    2016-05-23

    Silver nanoparticle embedded 30BaO-20CaF{sub 2}-50P{sub 2}O{sub 5}-4Ag{sub 2}O-4SnO glasses were prepared by melt-quenching and subsequent heat treatment process. Silver-doped glasses were heat treated at temperatures 500 °C, 525°C and 550 °C for a fixed duration of 10 hours to incorporate metal nanoparticles into the glass matrix. Appearance and shift in peak positions of the surface plasmon resonance (SPR) bands in the optical absorption spectra of heat treated glass samples indicated that both formation and growth of nanoparticle depended on heat treatment temperature. Glass sample heat treated at 525 °C showed a SPR peak around 3 eV, which indicated that spherical nanoparticles smaller than 20 nm were formed inside the glass matrix. Whereas sample heat treated at 550 °C showed a size dependent red shift in SPR peak due to the presence of silver nanoparticles of size larger than 20 nm. Size of the nanoparticles calculated using full-width at half-maximum (FWHM) of absorption band showed a good agreement with the particle size obtained from transmission electron microscopy (TEM) analysis.

  15. Nonvolatile flexible organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in a conducting poly N-vinylcarbazole polymer layer

    International Nuclear Information System (INIS)

    Son, Dong-Ick; Kim, Ji-Hwan; Park, Dong-Hee; Choi, Won Kook; Li, Fushan; Ham, Jung Hun; Kim, Tae Whan

    2008-01-01

    The bistable effects of CdSe/ZnS nanoparticles embedded in a conducting poly N-vinylcarbazole (PVK) polymer layer by using flexible poly-vinylidene difluoride (PVDF) and polyethylene terephthalate (PET) substrates were investigated. Transmission electron microscopy (TEM) images revealed that CdSe/ZnS nanoparticles were formed inside the PVK polymer layer. Current-voltage (I-V) measurement on the Al/[CdSe/ZnS nanoparticles+ PVK]/ITO/PVDF and Al/[CdSe/ZnS nanoparticles+ PVK ]/ITO/PET structures at 300 K showed a nonvolatile electrical bistability behavior with a flat-band voltage shift due to the existence of the CdSe/ZnS nanoparticles, indicative of trapping, storing and emission of charges in the electronic states of the CdSe nanoparticles. A bistable behavior for the fabricated organic bistable device (OBD) structures is described on the basis of the I-V results. These results indicate that OBDs fabricated by embedding inorganic CdSe/ZnS nanoparticles in a conducting polymer matrix on flexible substrates are prospects for potential applications in flexible nonvolatile flash memory devices

  16. Cobalt Nanoparticle-Embedded Porous Carbon Nanofibers with Inherent N- and F-Doping as Binder-Free Bifunctional Catalysts for Oxygen Reduction and Evolution Reactions.

    Science.gov (United States)

    Singhal, Richa; Kalra, Vibha

    2017-01-18

    Efficient, low-cost, non-precious metal-based, and stable bifunctional electrocatalysts are key to various energy storage and conversion devices such as regenerative fuel cells and metal-air batteries. In this work, we report cobalt nanoparticle-embedded porous carbon nanofibers with inherent N- and F-doping as binder-free bifunctional electrocatalysts with excellent activity for both the oxygen reduction and oxygen evolution reaction (ORR/OER) in an alkaline medium. Single-step electrospinning of a solution of the polymer mixture (carbon precursor) and the cobalt precursor followed by controlled pyrolysis with an intermediate reduction step in H 2 (to reduce cobalt oxides to cobalt) was utilized to synthesize an integrated freestanding catalyst. The fabricated catalyst with effective structural and electronic interaction between the cobalt metal nanoparticles and the N- and F-doped carbon defect sites showed enhanced catalytic properties compared to the benchmark catalysts for ORR and OER (Pt, Ir, and Ru). The ORR potential at the current density of -3 mA cm -2 was 0.81 V RHE and the OER potential at a current density of 10 mA cm -2 was 1.595 V RHE , resulting in a ΔE of only 0.785 V. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A host-guest approach to fabricate metallic cobalt nanoparticles embedded in silk-derived N-doped carbon fibers for efficient hydrogen evolution

    Directory of Open Access Journals (Sweden)

    Fenglei Lyu

    2017-04-01

    Full Text Available Hydrogen evolution reaction (HER plays a key role in generating clean and renewable energy. As the most effective HER electrocatalysts, Pt group catalysts suffer from severe problems such as high price and scarcity. It is highly desirable to design and synthesize sustainable HER electrocatalysts to replace the Pt group catalysts. Due to their low cost, high abundance and high activities, cobalt-incorporated N-doped nanocarbon hybrids are promising candidate electrocatalysts for HER. In this report, we demonstrated a robust and eco-friendly host-guest approach to fabricate metallic cobalt nanoparticles embedded in N-doped carbon fibers derived from natural silk fibers. Benefiting from the one-dimensional nanostructure, the well-dispersed metallic cobalt nanoparticles and the N-doped thin graphitized carbon layer coating, the best Co-based electrocatalyst manifests low overpotential (61 mV@10 mA/cm2 HER activity that is comparable with commercial 20% Pt/C, and good stability in acid. Our findings provide a novel and unique route to explore high-performance noble-metal-free HER electrocatalysts. Keywords: Silk, Carbon fibers, Cobalt nanoparticles, Hydrogen evolution, Nitrogen doping

  18. Transformation mechanism of n-butyl terminated Si nanoparticles embedded into Si1-xCx nanocomposites mixed with Si nanoparticles and C atoms

    International Nuclear Information System (INIS)

    Shin, J.W.; Oh, D.H.; Kim, T.W.; Cho, W.J.

    2009-01-01

    Bright-field transmission electron microscopy (TEM) images, high-resolution TEM (HRTEM) images, and fast-Fourier transformed electron-diffraction patterns showed that n-butyl terminated Si nanoparticles were aggregated. The formation of Si 1-x C x nanocomposites was mixed with Si nanoparticles and C atoms embedded in a SiO 2 layer due to the diffusion of C atoms from n-butyl termination shells into aggregated Si nanoparticles. Atomic force microscopy (AFM) images showed that the Si 1-x C x nanocomposites mixed with Si nanoparticles and C atoms existed in almost all regions of the SiO 2 layer. The formation mechanism of Si nanoparticles and the transformation mechanism of n-butyl terminated Si nanoparticles embedded into Si 1-x C x nanocomposites mixed with Si nanoparticles and C atoms are described on the basis of the TEM, HRTEM, and AFM results. These results can help to improve the understanding of the formation mechanism of Si nanoparticles.

  19. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities.

    Science.gov (United States)

    Zhang, Zhijie; Wu, Yunping; Wang, Zhihua; Zou, Xueyan; Zhao, Yanbao; Sun, Lei

    2016-12-01

    Silver nanoparticle-embedded polyvinyl alcohol (PVA) nanofibers were prepared through electrospinning technique, using as antimicrobial agents and surface-enhanced Raman scattering (SERS) substrates. Ag nanoparticles (NPs) were synthesized in liquid phase, followed by evenly dispersing in PVA solution. After electrospinning of the mixed solution at room temperature, the PVA embedded with Ag NPs (Ag/PVA) composite nanofibers were obtained. The morphologies and structures of the as-synthesized Ag nanoparticles and Ag/PVA fibers were characterized by the techniques of transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Ag NPs have an average diameter of 13.8nm, were found to be uniformly dispersed in PVA nanofibers. The Ag/PVA nanofibers provided robust antibacterial activities against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) microorganisms. It's also found that Ag/PVA nanofibers make a significant contribution to the high sensitivity of SERS to 4-mercaptophenol (4-MPh) molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Relaxation effect of stilbene azobenzene derivatives on their holographic properties

    Energy Technology Data Exchange (ETDEWEB)

    Saharov, D; Ozols, A; Kokars, V; Kampars, V; Mezinskis, G; Maleckis, A; Pludons, A; Jansone, M [Riga Technical University, Faculty of Material Science and Applied Chemistry, Azenes 14/24, LV-1048, Riga (Latvia)

    2007-12-15

    The material relaxation effect on holographic properties of stilbene azobenzene derivatives in the form of glassy films has been experimentally studied. Holographic grating recording with the period of 2 {mu}m was made by a He-Ne laser at 633 nm in the self-diffraction mode. The readout was made simultaneously in order to follow the fast self-diffraction efficiency changes. The existence of the optimal material storage time (6-51 day) is established enabling the most efficient recording. Material relaxation amplitude and the holographic recording efficiency increased when the chromophore concentration was increased, especially above the threshold of about 70 mass %. It is also found that 633 nm recording due to the modulation of refraction and absorption indices is accompanied by the formation of surface relief grating. The conclusion is made that holographic recording in stilbene azobenzene derivatives at 633 nm is due to the chromophore reorientation by linearly polarized light possibly including trans-cis-trans transformations.

  1. Synthesis and Properties of 2'-Deoxyuridine Analogues Bearing Various Azobenzene Derivatives at the C5 Position

    Directory of Open Access Journals (Sweden)

    Shohei Mori

    2015-03-01

    Full Text Available Nucleic acids that change their properties upon photo-irradiation could be powerful materials for molecular sensing with high spatiotemporal resolution. Recently, we reported a photo-isomeric nucleoside bearing azobenzene at the C5 position of 2'-deoxyuridine (dUAz, whose hybridization ability could be reversibly controlled by the appropriate wavelength of light. In this paper, we synthesized and evaluated dUAz analogues that have various para-substitutions on the azobenzene moiety. Spectroscopic measurements and HPLC analyses revealed that the para-substitutions of the azobenzene moiety strongly affect the photo-isomerization ability and thermal stability of the cis-form. The results suggest that proper substitution of the azobenzene moiety can improve the properties of dUAz as a light-responsive nucleic acid probe.

  2. Synthesis and photoisomerization of fullerene- and oligo(phenylene ethynylene)-azobenzene derivatives.

    Science.gov (United States)

    Shirai, Yasuhiro; Sasaki, Takashi; Guerrero, Jason M; Yu, Byung-Chan; Hodge, Phillip; Tour, James M

    2008-01-01

    The presence of fullerenes and oligo(phenylene ethynylene)s (OPEs) in azobenzene derivatives have a large effect on the photoisomerization behavior of the molecules. Fullerenes reduce the photoisomerization yield for cis isomers, and the OPEs, when directly attached to the azobenzenes, have a similar yet smaller effect when compared with the fullerenes. While these effects have not been previously considered for fullerene--and OPE-azobenzene derivatives, they were clearly detected in our work using NMR and UV-vis spectroscopy methods. The intramolecular electronic energy transfer between the fullerene and azobenzene moiety was examined in two cases in which separation of the two functional groups was small, as in 1, or large, as in 2. Almost no photoisomerization was observed for 1, while significant photoisomerization was observed for 2, apparently due to the effective isolation and blocking of electronic communication between the two functional groups.

  3. Precise Actuation of Bilayer Photomechanical Films Coated with Molecular Azobenzene Chromophores.

    Science.gov (United States)

    Liu, Ziyi; Tang, Rong; Xu, Dandan; Liu, Jian; Yu, Haifeng

    2015-06-01

    Bilayer photomechanical films are fabricated by depositing one layer of molecular azobenzene chromophores onto flexible low-density polyethylene substrates. The photoinduced bending and unbending behavior of five azobenzene derivatives including azobenzene, 4-hydroxy-azobenzene, 4-((4-hydroxyphenyl)diazenyl)bezoitrile, 4-((4-methoxyph-enyl)diazenyl)phenol, and 4-(phenyldiazenyl)phenol is systematically studied by considering the incident light intensity and the thickness of the coated chromophore layers. Precise control of photoinduced curling of the bilayer film is successfully achieved upon irradiation with two beams of UV light, and the curled films can be recovered by thermal relaxation in the dark. The easily fabricated bilayer films show fast photomechanical response, strong photoinduced stress, and stability similar to crosslinked polymeric films. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates.

    Science.gov (United States)

    Glennon-Alty, Laurence; Williams, Rachel; Dixon, Simon; Murray, Patricia

    2013-04-01

    Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-β), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-β. Within a few days of culture on the biomimetic polyacrylates, both mouse and human MSCs, and a mesenchymal-like mouse-kidney-derived stem cell line, began to form multi-layered aggregates and started to express the chondrocyte-specific markers, Sox9, collagen II and aggrecan. Moreover, collagen II tended to be expressed in the centre of the aggregates, similarly to developing limb buds in vivo. Surface analysis of the substrates indicated that those with the highest surface amine content were most effective at promoting MSC chondrogenesis. These results highlight the importance of surface group functionality and the distribution of those groups in the design of substrates to induce MSC chondrogenesis. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Characterization of polyacrylic acid modified zinc phosphate crystal conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wragg, J.L.; Chamberlain, J.E.; Chann, L.; White, H.W. (Univ. of Missouri, Columbia, MO (United States). Dept. of Physics and Astronomy); Sugama, T. (Brookhaven National Lab., Upton, NY (United States). Energy Efficiency and Conservation Div.); Manalis, S. (Digital Instruments, Inc., Santa Barbara, CA (United States))

    1993-11-05

    Raman spectroscopy and atomic force microscopy have been used to investigate the composition and surface structure of polyacrylic acid modified zinc phosphate crystal conversion coatings on steel. Zinc phosphate coatings are used extensively to provide corrosion protection and to improve adherence of top coatings to steel. Within the last few years it has been demonstrated that addition of high molecular weight polyacrylic acid (PAA) to the phosphating bath can significantly improve both resistance to corrosion and topcoat adherence. It has been reported that the addition of PAA reduces the size of crystallites, which leads to greater film ductility, and therefore to fewer sites for corrosive attack, and that organic molecular segments from the PAA are incorporated into the surface structure and provide additional adhesive bonding with polymeric topcoats. In this work Raman spectra show the compositions of both unmodified and PAA modified films to be zinc phosphate dihydrate, Zn[sub 3](PO[sub 4])[sub 2] [times] 2H[sub 2]O. Atomic force microscopy (AFM) was used to measure the morphologies of single crystallite surfaces. Morphologies of the unmodified and modified films obtained by AFM are in general quite similar, but subtle differences are apparent.

  6. Polyacrylic acids–bovine serum albumin complexation: Structure and dynamics

    International Nuclear Information System (INIS)

    Othman, Mohamed; Aschi, Adel; Gharbi, Abdelhafidh

    2016-01-01

    The study of the mixture of BSA with polyacrylic acids at different masses versus pH allowed highlighting the existence of two regimes of weak and strong complexation. These complexes were studied in diluted regime concentration, by turbidimetry, dynamic light scattering (DLS), zeta-potential measurements and nuclear magnetic resonance (NMR). We have followed the pH effect on the structure and properties of the complex. This allowed refining the interpretation of the phase diagram and understanding the observed phenomena. The NMR measurements allowed probing the dynamics of the constituents versus the pH. The computational method was used to precisely determine the electrostatic potential of BSA and how the polyelectrolyte binds to it at different pH. - Highlights: • Influence of physico-chemical parameters on the electrostatic interactions in the complex system (polyelectrolyte/protein). • Stabilization and encapsulation of biological macromolecules solution by mean of polyelectrolyte. • Properties and structure of mixture obtained by screening the charges of globular protein and at different masses of polyacrylic acids. • Dynamic of the constituents formed by complexes particles. • Evaluation of the electrostatic properties of bovine serum albumin versus pH through solution of the Poisson-Boltzmann equation.

  7. Synthesis and Properties of 2'-Deoxyuridine Analogues Bearing Various Azobenzene Derivatives at the C5 Position

    OpenAIRE

    Mori, Shohei; Morihiro, Kunihiko; Kasahara, Yuuya; Tsunoda, Shin-ichi; Obika, Satoshi

    2015-01-01

    Nucleic acids that change their properties upon photo-irradiation could be powerful materials for molecular sensing with high spatiotemporal resolution. Recently, we reported a photo-isomeric nucleoside bearing azobenzene at the C5 position of 2'-deoxyuridine (dUAz), whose hybridization ability could be reversibly controlled by the appropriate wavelength of light. In this paper, we synthesized and evaluated dUAz analogues that have various para-substitutions on the azobenzene moiety. Spectro...

  8. Regulation of supramolecular chirality in co-assembled polydiacetylene LB films with removable azobenzene derivatives.

    Science.gov (United States)

    Jiang, Hao; Chen, Xin; Pan, Xiujuan; Zou, Gang; Zhang, Qijin

    2012-05-14

    Herein, we report a novel model that combines supramolecular chemistry and the LB technique for the chirality regulation of the PDA films. The helical packing of PCDA molecules and the chiroptical properties of the resulting PDA LB films can be easily modulated by different azobenzene derivatives. Moreover, the effect of the photo-isomerization of azobenzene chromophores on the helical formation of PCDA assemblies is investigated in detail. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Surface-Relief Gratings in Halogen-Bonded Polymer–Azobenzene Complexes: A Concentration-Dependence Study

    OpenAIRE

    Stumpel, Jelle E.; Marco, Saccone; Valentina, Dichiarante; Ossi, Lehtonen; Matti, Virkki; Pierangelo, Metrangolo; Arri, Priimagi

    2017-01-01

    In recent years, supramolecular complexes comprising a poly(4-vinylpyridine) backbone and azobenzene-based halogen bond donors have emerged as a promising class of materials for the inscription of light-induced surface-relief gratings (SRGs). The studies up to date have focused on building supramolecular hierarchies, i.e., optimizing the polymer-azobenzene noncovalent interaction for efficient surface patterning. They have been conducted using systems with relatively low azobenzene content, a...

  10. Photosensitive Layer-by-Layer Assemblies Containing Azobenzene Groups: Synthesis and Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Uichi Akiba

    2017-10-01

    Full Text Available This review provides an overview of the syntheses of photosensitive layer-by-layer (LbL films and microcapsules modified with azobenzene derivatives and their biomedical applications. Photosensitive LbL films and microcapsules can be prepared by alternate deposition of azobenzene-bearing polymers and counter polymers on the surface of flat substrates and microparticles, respectively. Azobenzene residues in the films and microcapsules exhibit trans-to-cis photoisomerization under UV light, which causes changes in the physical or chemical properties of the LbL assemblies. Therefore, azobenzene-functionalized LbL films and microcapsules have been used for the construction of photosensitive biomedical devices. For instance, cell adhesion on the surface of a solid can be controlled by UV light irradiation by coating the surface with azobenzene-containing LbL films. In another example, the ion permeability of porous materials coated with LbL films can be regulated by UV light irradiation. Furthermore, azobenzene-containing LbL films and microcapsules have been used as carriers for drug delivery systems sensitive to light. UV light irradiation triggers permeability changes in the LbL films and/or decomposition of the microcapsules, which results in the release of encapsulated drugs and proteins.

  11. Binary Supramolecular Gel of Achiral Azobenzene with a Chaperone Gelator: Chirality Transfer, Tuned Morphology, and Chiroptical Property.

    Science.gov (United States)

    Ji, Lukang; Ouyang, Guanghui; Liu, Minghua

    2017-10-31

    Binary supramolecular gels based on achiral azobenzene derivatives and a chiral chaperone gelator, long-alkyl-chain-substituted L-Histidine (abbreviated as LHC18) that could assist many nongelling acids in forming gels, were investigated in order to fabricate the chiroptical gel materials in a simple way. It was found that although the carboxylic acid-terminated achiral azobenzene derivatives could not form gels in any solvents, when mixed with LHC18 they formed the co-gels and self-assembled into various morphologies ranging from nanotubes and loose nanotubes to nanosheets, depending on the substituent groups on the azobenzene moiety. The ether linkage and the number of carboxylic acid groups attached to the azobenzene moiety played important roles. Upon gel formation, the localized molecular chirality in LHC18 could be transferred to the azobenzene moiety. Combined with the trans-cis isomerization of the azobenzene, optically and chiroptically reversible gels were generated. It was found that the gel based on azobenzene with two carboxylic acid groups and ether linkages showed clear optical reversibility but less chiroptical reversibility, whereas the gel based on azobenzene with one carboxylic acid and an ether linkage showed both optical and chiroptical reversibility. Thus, new insights into the relationship among the molecular structures of the azobenzene, self-assembled nanostructures in the gel and the optical and chiroptical reversibility were disclosed.

  12. Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes

    KAUST Repository

    Lee, Kuang-Tsin

    2009-11-01

    MnO2·nH2O supercapacitors with potassium polyacrylate (PAAK) and potassium polyacrylate-co-polyacrylamide (PAAK-co-PAAM) gel polymer electrolytes (GPEs) having the weight compositions of polymer:KCl:H2O = 9%:6.7%:84.3% have been characterized for their electrochemical performance. Compared with the liquid electrolyte (LE) counterpart, the GPE cells exhibit remarkable (∼50-130%) enhancement in specific capacitance of the oxide electrode, and the extent of the enhancement increases with increasing amount of the carboxylate groups in the polymers as well as with increasing oxide/electrolyte interfacial area. In situ X-ray absorption near-edge structure (XANES) analysis indicates that the oxide electrodes of the GPE cells possess higher Mn-ion valences and are subjected to greater extent of valence variation than that of the LE cell upon charging/discharging over the same potential range. Copolymerization of PAAK with PAAM greatly improves the cycling stability of the MnO2·nH2O electrode, and the improvement is attributable to the alkaline nature of the amino groups. Both GPEs exhibit ionic conductivities greater than 1.0 × 10-1 S cm-1 and are promising for high-rate applications. © 2009 Elsevier Ltd. All rights reserved.

  13. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?

    Science.gov (United States)

    Hays, Kevin A.; Ruther, Rose E.; Kukay, Alexander J.; Cao, Pengfei; Saito, Tomonori; Wood, David L.; Li, Jianlin

    2018-04-01

    Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this study, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency than those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.

  14. Photochromic switching of the DNA helicity induced by azobenzene derivatives

    Science.gov (United States)

    Deiana, Marco; Pokladek, Ziemowit; Olesiak-Banska, Joanna; Młynarz, Piotr; Samoc, Marek; Matczyszyn, Katarzyna

    2016-06-01

    The photochromic properties of azobenzene, involving conformational changes occurring upon interaction with light, provide an excellent tool to establish new ways of selective regulation applied to biosystems. We report here on the binding of two water-soluble 4-(phenylazo)benzoic acid derivatives (Azo-2N and Azo-3N) with double stranded DNA and demonstrate that the photoisomerization of Azo-3N leads to changes in DNA structure. In particular, we show that stabilization and destabilization of the B-DNA secondary structure can be photochemically induced in situ by light. This photo-triggered process is fully reversible and could be an alternative pathway to control a broad range of biological processes. Moreover, we found that the bicationic Azo-3N exhibited a higher DNA-binding constant than the monocationic Azo-2N pointing out that the number of positive charges along the photosensitive polyamines chain plays a pivotal role in stabilizing the photochrome-DNA complex.

  15. Small azobenzene derivatives active against bacteria and fungi.

    Science.gov (United States)

    Piotto, Stefano; Concilio, Simona; Sessa, Lucia; Porta, Amalia; Calabrese, Elena Concetta; Zanfardino, Anna; Varcamonti, Mario; Iannelli, Pio

    2013-10-01

    ATP synthase and protein kinase (PKs) are prime targets for drug discovery in a variety of diseases. It is well known that numerous stilbenes are capable to interact and inhibit ATP synthase and PKs. This work focuses on a series of azobenzene based molecules having high structural similarity with antimicrobial stilbenes. An investigation was carried out analyzing the potential toxicity of a large set of molecules by means of computational analysis. A small selection of potential low toxic molecules have been therefore synthesized, characterized and finally microbiologically tested. The synthesized compounds show potent bactericidal activity against Gram+ and a fungus, and are capable of inhibiting biofilm formation. Finally, the compounds demonstrated a thermal stability that makes them potential candidates for incorporation in polymer matrix for application as biomedical devices and food packaging. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Tracking of azobenzene isomerization by X-ray emission spectroscopy.

    Science.gov (United States)

    Ebadi, H

    2014-09-11

    Cis-trans isomerizations are among the fundamental processes in photochemistry. In azobenzene or its derivatives this dynamics is, due to its reversibility, one of the reactions widely used in photostimulation of molecular motors or in molecular electronics. Though intensively investigated in the optical regime, no detailed study exists in the X-ray regime so far. Because the X-ray emission spectroscopy echoes the electronic structure sensitive to the geometry, this theoretical report based on the density functional theory and its time-dependent version presents different nitrogen K-edge X-ray emission spectra for cis and trans isomers with close interrelation to their electron configuration. Considering the spectrum along the isomerization path, these structural signatures can be utilized to probe the isomerization dynamics in the excited molecule. The scheme can further be generalized to the element specific photoreactions.

  17. Photochromic switching of the DNA helicity induced by azobenzene derivatives.

    Science.gov (United States)

    Deiana, Marco; Pokladek, Ziemowit; Olesiak-Banska, Joanna; Młynarz, Piotr; Samoc, Marek; Matczyszyn, Katarzyna

    2016-06-24

    The photochromic properties of azobenzene, involving conformational changes occurring upon interaction with light, provide an excellent tool to establish new ways of selective regulation applied to biosystems. We report here on the binding of two water-soluble 4-(phenylazo)benzoic acid derivatives (Azo-2N and Azo-3N) with double stranded DNA and demonstrate that the photoisomerization of Azo-3N leads to changes in DNA structure. In particular, we show that stabilization and destabilization of the B-DNA secondary structure can be photochemically induced in situ by light. This photo-triggered process is fully reversible and could be an alternative pathway to control a broad range of biological processes. Moreover, we found that the bicationic Azo-3N exhibited a higher DNA-binding constant than the monocationic Azo-2N pointing out that the number of positive charges along the photosensitive polyamines chain plays a pivotal role in stabilizing the photochrome-DNA complex.

  18. Azobenzene-based supramolecular polymers for processing MWCNTs.

    Science.gov (United States)

    Maggini, Laura; Marangoni, Tomas; Georges, Benoit; Malicka, Joanna M; Yoosaf, K; Minoia, Andrea; Lazzaroni, Roberto; Armaroli, Nicola; Bonifazi, Davide

    2013-01-21

    Photothermally responsive supramolecular polymers containing azobenzene units have been synthesised and employed as dispersants for multi-walled carbon nanotubes (MWCNTs) in organic solvents. Upon triggering the trans-cis isomerisation of the supramolecular polymer intermolecular interactions between MWCNTs and the polymer are established, reversibly affecting the suspensions of the MWCNTs, either favouring it (by heating, i.e. cis→trans isomerisation) or inducing the CNTs' precipitation (upon irradiation, trans→cis isomerisation). Taking advantage of the chromophoric properties of the molecular subunits, the solubilisation/precipitation processes have been monitored by UV-Vis absorption spectroscopy. The structural properties of the resulting MWCNT-polymer hybrid materials have been thoroughly investigated via thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and atomic force microscopy (AFM) and modelled with molecular dynamics simulations.

  19. Laser-induced luminescence study of europium(III) polyacrylate and polymaleate complexes

    International Nuclear Information System (INIS)

    Takahashi, Y.; Kimura, T.; Kato, Y.; Minai, Y.; Tominaga, T.

    1996-01-01

    Luminescence lifetime of Eu(III) in polyacrylate and polyacrylate complexes has been measured to evaluate the number of water molecules bound to the ion. The number of residual water molecules hydrated to Eu(III) in the polyacrylate and polymaleate complexes ranged from 3.5 to 4.5 when the supporting electrolyte concentration was 0.01. The residual hydration number decreased with the addition of supporting electrolyte. These results indicate that Eu(III) is surrounded by polymolecular ligands in these complexes. (author). 17 refs., 2 figs., 1 tab

  20. Photoisomerization of azobenzene derivatives confined in gold nanoparticle aggregates.

    Science.gov (United States)

    Yoon, Jun Hee; Yoon, Sangwoon

    2011-07-28

    Photoisomerization is an important reaction that confers photoresponsive functionality on nanoparticles. Although photoisomerization of molecules forming self-assembled monolayers on two-dimensional surfaces or three-dimensional clusters has been studied, a detailed picture of interactions of molecules undergoing isomerization with nanoparticles is not available. In this paper, we report on the photoisomerization of azobenzene derivatives spatially confined in gold nanoparticle (AuNP) aggregates. AuNP aggregates allow us to simultaneously probe the structural changes of molecules via surface-enhanced Raman spectroscopy (SERS) and the accompanying changes in interparticle interactions via surface plasmon couplings. AuNP aggregates are formed by the adsorption of synthesized azobenzene-derivatized sulfides (Az) onto the surfaces of AuNPs. The photoisomerization of the adsorbed Az from trans to cis by excitation at 365 nm causes the AuNPs to move close to each other in the aggregates, leading to a redshift of the surface plasmon coupling band in the UV-vis spectra and a concomitant rise in SERS intensity. SERS spectra reveal that the vibrational modes containing the N=N stretching character redshift upon irradiation, suggesting that the N=N bond is significantly weakened when Az is in the cis form in the AuNP aggregates. The weakening of the N=N bond is attributed to the interaction of the N=N bond, which is more exposed to the outside in the cis conformation, with the nearby AuNPs that have come closer by the isomerization of adsorbed Az. We find that backisomerization from cis to trans occurs much faster in the AuNP aggregates (k = 1.9 × 10(-2) min(-1)) than in solution (k = 1.3 × 10(-3) min(-1)) because of the reduced N=N bond order of cis-Az in the aggregates. This journal is © the Owner Societies 2011

  1. Polyacrylic acids-bovine serum albumin complexation: Structure and dynamics.

    Science.gov (United States)

    Othman, Mohamed; Aschi, Adel; Gharbi, Abdelhafidh

    2016-01-01

    The study of the mixture of BSA with polyacrylic acids at different masses versus pH allowed highlighting the existence of two regimes of weak and strong complexation. These complexes were studied in diluted regime concentration, by turbidimetry, dynamic light scattering (DLS), zeta-potential measurements and nuclear magnetic resonance (NMR). We have followed the pH effect on the structure and properties of the complex. This allowed refining the interpretation of the phase diagram and understanding the observed phenomena. The NMR measurements allowed probing the dynamics of the constituents versus the pH. The computational method was used to precisely determine the electrostatic potential of BSA and how the polyelectrolyte binds to it at different pH. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Silver incorporated polypyrrole/polyacrylic acid electrode for electrochemical supercapacitor

    Science.gov (United States)

    Patil, Dipali S.; Pawar, Sachin A.; Kamble, Archana S.; Patil, Pramod S.

    2013-06-01

    In the present work, we study Ag doping effect on the specific capacitance of Polypyrrole/Polyacrylic Acid (PPy/PAA). Ag incorporated films were prepared by simple chemical route. Fourier transform-infrared and Fourier transform-Raman techniques were used for the phase identification. Surface morphology of the films was examined by Field Emission scanning electron microscopy and revealed granular structure for PPY, attached granules for PPy/PAA and granules with bright spots of Ag particles for the PPy/PAA/Ag films. The supercapacitive behavior of the electrodes was tested in three electrode system with 0.1 M H2SO4 electrolyte by using cyclic voltammetry. The highest specific capacitance value 226 Fg-1 was observed for the PPy/PAA/Ag film.

  3. Synthesis of copper polyacrylate nanocomposites by gamma irradiation

    International Nuclear Information System (INIS)

    Casalme, Loida Olores

    2005-04-01

    This research involves the synthesis of copper nanoparticles with controlled size by the application of gamma radiation with varying polyacrylic acid (PAA) and CuSO 4 concentration. An alternative and convenient method was done which employs Co 60 irradiation of solutions of copper salt and PAA with irradiation dose of 1.6, 3.6, 6.4, and 9.2 MRad. The effect of polymer and copper sulfate's initial concentrations as well as the effect of the presence of alcohol as radical scavenger and the presence of ethylenediaminetetraacetic acid as stabilizer were evaluated. Characterization of nanocomposite properties such as plasmon resonance band, fluorescence, and particle morphology and size were determined. Layer-by-layer assembly of Cu-PAA nanocomposites and polydiallyl dimethyl ammonium chloride (PDDA) was also constructed. Stability of the synthesized copper-PAA nanocomposites in terms of the disappearance of plasmon band with time was evaluated. (Author)

  4. Toward efficient photomodulation of conjugated polymer emission: optimizing differential energy transfer in azobenzene-substituted PPV derivatives.

    Science.gov (United States)

    Grimes, Amy F; Call, Scott E; Vicente, Diego A; English, Douglas S; Harbron, Elizabeth J

    2006-10-05

    We present fluorescence studies of quenching behavior in photoaddressable azobenzene-substituted derivatives of the fluorescent conjugated polymer poly(p-phenylenevinylene) (PPV). The azobenzene side chains partially quench the PPV fluorescence, and we have shown previously that the quenching efficiency is greater when the azobenzene side chains are cis than when they are trans. This effect provides a photoaddressable means of modulating the fluorescence intensity of PPV derivatives. To optimize the efficiency of photoinduced intensity modulation, it is important to understand the molecular nature of quenching by both trans- and cis-azobenzene side chains. Here we investigate the photophysical origins of quenching by the two isomers using steady-state and time-resolved fluorescence spectroscopy. We present results from the azobenzene-modified PPV derivative poly(2-methoxy-5-((10-(4-(phenylazo)phenoxy)decyl)oxy)-1,4-phenylenevinylene) (MPA-10-PPV) and two new related polymers, a copolymer lacking half of the azobenzene side chains and an analogue of MPA-10-PPV with a tert-butyl-substituted azobenzene. These studies reveal that steric interactions influence the extent of PPV emission quenching by trans-azobenzene but do not affect the efficient quenching by cis-azobenzene. The difference in dynamic quenching efficiencies between trans- and cis-azobenzene isomers is consistent with fluorescence resonance energy transfer. These results show that it is possible to control the efficiency of photoswitchable fluorescence modulation through specific structural variations designed to encourage or block quenching by trans-azobenzene. This is a promising approach to providing useful general guidelines for designing photomodulated PPV derivatives.

  5. Assessing bio-available silver released from silver nanoparticles embedded in silica layers using the green algae Chlamydomonas reinhardtii as bio-sensors

    Energy Technology Data Exchange (ETDEWEB)

    Pugliara, Alessandro [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France); LAPLACE (LAboratoire PLAsma et Conversion d' Energie), Université de Toulouse, CNRS, UPS, INPT, 118 route de Narbonne, F-31062 Toulouse (France); Makasheva, Kremena; Despax, Bernard [LAPLACE (LAboratoire PLAsma et Conversion d' Energie), Université de Toulouse, CNRS, UPS, INPT, 118 route de Narbonne, F-31062 Toulouse (France); Bayle, Maxime; Carles, Robert; Benzo, Patrizio; BenAssayag, Gérard; Pécassou, Béatrice [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France); Sancho, Maria Carmen; Navarro, Enrique [IPE (Instituto Pirenaico de Ecología)-CSIC, Avda. Montañana 1005, Zaragoza 50059 (Spain); Echegoyen, Yolanda [I3A, Department of Analytical Chemistry, University of Zaragoza, C/ María de Luna 3, 50018, Zaragoza (Spain); Bonafos, Caroline, E-mail: bonafos@cemes.fr [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France)

    2016-09-15

    Silver nanoparticles (AgNPs) because of their strong antibacterial activity are widely used in health-care sector and industrial applications. Their huge surface-volume ratio enhances the silver release compared to the bulk material, leading to an increased toxicity for microorganisms sensitive to this element. This work presents an assessment of the toxic effect on algal photosynthesis due to small (size < 20 nm) AgNPs embedded in silica layers. Two physical approaches were originally used to elaborate the nanocomposite structures: (i) low energy ion beam synthesis and (ii) combined silver sputtering and plasma polymerization. These techniques allow elaboration of a single layer of AgNPs embedded in silica films at defined nanometer distances (from 0 to 7 nm) beneath the free surface. The structural and optical properties of the nanostructures were studied by transmission electron microscopy and optical reflectance. The silver release from the nanostructures after 20 h of immersion in buffered water was measured by inductively coupled plasma mass spectrometry and ranges between 0.02 and 0.49 μM. The short-term toxicity of Ag to photosynthesis of Chlamydomonas reinhardtii was assessed by fluorometry. The obtained results show that embedding AgNPs reduces the interactions with the buffered water free media, protecting the AgNPs from fast oxidation. The release of bio-available silver (impacting on the algal photosynthesis) is controlled by the depth at which AgNPs are located for a given host matrix. This provides a procedure to tailor the toxicity of nanocomposites containing AgNPs. - Highlights: • Controlled synthesis of 2D arrays of silver nanoparticles embedded in silica. • Assessing bio-available silver release using the green algae as bio-sensors. • The Ag release can be controlled by the distance nanoparticles/dielectric surface. • All the Ag released in solution is in the form of Ag{sup +} ions. • Toxicity comparable to similar concentrations of

  6. Compound grating structures in photonic crystals for resonant excitation of azobenzene

    DEFF Research Database (Denmark)

    Jahns, Sabrina; Kallweit, Christine; Adam, Jost

    Photo-switchable molecules such as azobenzene are of high interest for “smart” surfaces. Such “smart” surfaces respond to external light excitation by changing their macroscopic properties. The absorbance of light on a single normal path through a layer of azobenzene immobilized on a surface...... is small and thus a high excitation light intensity is required. We investigate the enhancement of the local energy density using periodically nanostructured surfaces in a high refractive index material. Such photonic crystals support quasi-guided modes visible as resonances in the reflection as well...... as in the transmission light spectrum. These guided modes have field contributions decaying exponentially in the near field of the photonic crystal. Azobenzene immobilized on the photonic crystal surface will experience a significantly increased light intensity compared to non-resonant surfaces. We performed finite...

  7. Azobenzene side-chain liquid crystalline polyesters with outstanding optical storage properties

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Pedersen, M; Holme, NCR

    1998-01-01

    . Atomic force and scanning near-held optical microscopic investigations of gratings prepared with orthogonally polarized overlapping beams have demonstrated that the anisotropy is preserved in the film despite extensive mass transport and surface corrugation after the irradiation process. However......A flexible azobenzene side-chain liquid crystalline (SCLC) polyester architecture employed for reversible optical storage is described. The modular design allows four structural parameters to be individually modified. These parameters: i- the methylene side-chain spacer length, ii- the substituent...... on azobenzene, iii- the methylene main-chain segment length, and iv-the polyester molecular mass, all influence the optical storage properties. A general synthetic route to novel mesogenic azobenzene diols comprising parameters i and ii is outlined. Polyesters with molecular masses (parameter iv) up to 100...

  8. Synthesis and Site-Specific Incorporation of Red-Shifted Azobenzene Amino Acids into Proteins.

    Science.gov (United States)

    John, Alford A; Ramil, Carlo P; Tian, Yulin; Cheng, Gang; Lin, Qing

    2015-12-18

    A series of red-shifted azobenzene amino acids were synthesized in moderate-to-excellent yields via a two-step procedure in which tyrosine derivatives were first oxidized to the corresponding quinonoidal spirolactones followed by ceric ammonium nitrate-catalyzed azo formation with the substituted phenylhydrazines. The resulting azobenzene-alanine derivatives exhibited efficient trans/cis photoswitching upon irradiation with a blue (448 nm) or green (530 nm) LED light. Moreover, nine superfolder green fluorescent protein (sfGFP) mutants carrying the azobenzene-alanine analogues were expressed in E. coli in good yields via amber codon suppression with an orthogonal tRNA/PylRS pair, and one of the mutants showed durable photoswitching with the LED light.

  9. Azobenzene-containing triazatriangulenium adlayers on Au(111): structural and spectroscopic characterization.

    Science.gov (United States)

    Jung, Ulrich; Kuhn, Sonja; Cornelissen, Ursula; Tuczek, Felix; Strunskus, Thomas; Zaporojtchenko, Vladimir; Kubitschke, Jens; Herges, Rainer; Magnussen, Olaf

    2011-05-17

    Adlayers of different azobenzene-functionalized derivatives of the triazatriangulenium (TATA) platform on Au(111) surfaces were studied by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), gap-mode surface-enhanced Raman spectroscopy (gap-mode SERS), and cyclic voltammetry (CV). The chemical composition of the adlayers is in good agreement with the molecular structure, i.e., different chemical groups attached to the azobenzene functionality were identified. Furthermore, the presence of the azobenzene moieties in the adlayers was verified by the vibration spectra and electrochemical data. These results indicate that the molecules remain intact upon adsorption with the freestanding functional groups oriented perpendicularly to the TATA platform and thus also to the substrate surface.

  10. Synthesis and Light Induced Characteristics of Siloxane Substituted Azobenzene: An Application for Optical Storage Device

    Directory of Open Access Journals (Sweden)

    A. R. Yuvaraj

    2016-01-01

    Full Text Available The light induced behaviour of siloxane substituted azobenzene compounds in the presence of alkylene spacers is reported for the first time. Firstly, these photosensitive compounds were synthesized and elucidated the molecular structure by spectral analysis such as NMR, FTIR, and UV/Vis. Photoisomerization effect was evaluated in solution and also in nematic phase. The photosaturation occurred exactly at 29 seconds, whereas thermal back relaxation was observed ranging from 19.8 to 23.8 hours. Long duration of the thermal back relaxation is due to the presence of sterically hindered siloxane group substituted to the azobenzene molecules. Decrease in the duration of cis-trans isomerization was found when the number of alkylene spacers was increased. These siloxane based azobenzene derivatives are useful for the fabrication of optical storage device and molecular switches.

  11. Effects of high pressure on azobenzene and hydrazobenzene probed by Raman spectroscopy.

    Science.gov (United States)

    Dong, Zhaohui; Seemann, Natashia M; Lu, Ning; Song, Yang

    2011-12-22

    In this study, two hydrazine derivatives, azobenzene and hydrazobenzene, were compressed in a diamond anvil cell at room temperature up to 28 GPa followed by decompression. In situ Raman spectroscopy was employed to monitor the pressure-induced structural evolutions. Azobenzene was found to undergo a phase transition at ~10 GPa. Further compression to 18 GPa resulted in an irreversible breakdown of the molecular structure. Although hydrazobenzene exhibited a structural transition at a similar pressure of 10 GPa, it was found to sustain a compression pressure as high as 28 GPa without chemical reactions. The transition sequence of hydrazobenzene upon compression and decompression was thus entirely reversible in the pressure region studied, in strong contrast to that of azobenzene. The high-pressure structures of these two molecules were examined based on the spectroscopic data, and their drastically different high-pressure behaviors were analyzed and interpreted with the aid of ab initio molecular orbital calculations.

  12. Antimicrobial activity of poly(acrylic acid) block copolymers

    International Nuclear Information System (INIS)

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P.; Lackner, Maximilian

    2014-01-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed

  13. Antimicrobial activity of poly(acrylic acid) block copolymers.

    Science.gov (United States)

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P; Lackner, Maximilian

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid-base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Radiation-induced synthesis of poly(acrylic acid) nanogels

    Science.gov (United States)

    Matusiak, Malgorzata; Kadlubowski, Slawomir; Ulanski, Piotr

    2018-01-01

    Nanogel is a two-component system of a diameter in the range of tens of nanometers, consisting of an intramolecularly crosslinked polymer chain and solvent, typically water, filling the space between segments of the macromolecule. Microgels are bigger than nanogels and their size range is between 100 nm to 100 μm. One of the methods used for synthesizing nanogels is linking the segments of a single macromolecule with the use of ionizing radiation, by intramolecular recombination of radiation-generated polymer radicals. The main advantage of this technique is absence of monomers, catalysts, surfactants or crosslinking agents. This method is an interesting alternative way of synthesizing polymeric carriers for biomedical applications. The aim of the study was radiation synthesis and characterization of poly(acrylic acid) - PAA - nanogels and microgels. The physico-chemical properties were described by determination of weight-average molecular weight and dimensions (radius of gyration, hydrodynamic radius) of the nanogels and microgels. Influence of polymer concentration and dose on these parameters was analyzed. Adjusting the PAA concentration and absorbed dose, one can control the molecular weight and dimensions of nanogels. The solutions of PAA were irradiated with two sources of ionizing radiation: γ-source and electron accelerator. The former method yields mainly microgels due to prevailing intermolecular crosslinking, while the latter promotes intramolecular recombination of PAA-derived radicals and in consequence formation of nanogels. In the future radiation-synthesized PAA nanogels, after functionalization, will be tested as carriers for delivering radionuclides to the tumor cells.

  15. Antimicrobial activity of poly(acrylic acid) block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  16. Photoresponsive Amphiphilic Macrocycles Containing Main-Chain Azobenzene Polymers.

    Science.gov (United States)

    Sun, Yadong; Wang, Zhao; Li, Yiwen; Zhang, Zhengbiao; Zhang, Wei; Pan, Xiangqiang; Zhou, Nianchen; Zhu, Xiulin

    2015-07-01

    Herein, the first example of photosensitive cyclic amphiphilic homopolymers consisting of multiple biphenyl azobenzene chromophores in the cyclic main chain tethered with hydrophilic tetraethylene glycol monomethyl ether units is presented. The synthetic approach involves sequentially performed thermal catalyzed "click" step-growth polymerization in bulk, and Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) intramolecular cyclization from α-alkyne/ω-azide linear precursors. It is observed that such amphiphilic macrocycles exhibit increased glass transition temperatures (Tg ), slightly faster trans-cis-trans photoisomerization, and enhanced fluorescence emission intensity compared with the corresponding linear polymers. In addition, the cyclic amphiphilic homopolymers self-assemble into spherical nanoparticles with smaller sizes which possess slower photoresponsive behaviors in a tetrahydrofuran/water mixture compared with those of the linear ones. All these interesting observations suggest that the cyclic topology has a great influence on the physical properties and self-assembly behavior of these photoresponsive amphiphilic macrocycles in general. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Surface relief gratings in azobenzene supramolecular systems based on polyimides

    Science.gov (United States)

    Schab-Balcerzak, Ewa; Sobolewska, Anna; Stumpe, Joachim; Hamryszak, Lukasz; Bujak, Piotr

    2012-12-01

    The paper describes formation of new supramolecular azopolymers based on hydrogen bonds as perspective materials for laser induced surface relief gratings (SRGs) and for polarization gratings. Supramolecular films were built on the basis of hydrogen bonds between the functional groups of polymer and azobenzene derivatives, that is 4-[4-(3-hydroxypropyloxy)phenylazo]-pyridine and 4-[4-(6-hydroxyhexyloxy)phenylazo]pyridine. Polymers with imide rings, i.e., poly(esterimide)s and poly(etherimide)s, with phenolic hydroxyl or carboxylic groups were applied as matrixes for polymer-dye supramolecular systems. They revealed glass transition temperatures (Tg) in the range of 170-260 °C, whereas supramolecular systems exhibited lower Tg (88-187 °C). The polymers were easily soluble in aprotic polar solvents and exhibited remarkable good film forming properties. Moreover, new chromophore 4-[4-(3-hydroxypropyloxy)phenylazo]pyridine was synthesized and characterized. The light induced SRGs formation and simultaneous formation of the polarization gratings were explored in prepared polymer-chromophore assembles films using a holographic grating recording technique. First time to the best of our knowledge SRGs were formed in hydrogen-bonded supramolecular systems based on polyimides. The highest SRG amplitude and thus the highest diffraction efficiency were obtained in poly(esterimide)s with the hydroxyl functional group. Additionally, the thermal stability of the photoinduced surface gratings and polarization gratings were tested revealing in the case of the SRGs partial stability and almost complete erasure of the polarization gratings.

  18. [Ochrobactrum intermedium ANKI, a nitrogen-fixing bacterium able to decolorize azobenzene].

    Science.gov (United States)

    Vakkerov-Kouzova, N D

    2007-01-01

    Morphological and biochemical properties of the nitrogen-fixing strain Ochrobactrum intermedium ANKI, intensely growing on media with azo compounds, and its resistance to various common xenobiotics were investigated. The kinetics of azobenzene conversion by O. intermedium ANKI was studied. Under cometabolism conditions, up to 40 mg of azobenzene per liter of medium were decolorized within one week. It was shown that the strain possessed molybdenum-dependent nitrogenase activity, and its nitrogenase system was sensitive to oxygen and fixed nitrogen in the medium.

  19. Azobenzene Pd(II) complexes with N^N- and N^O-type ligands

    Science.gov (United States)

    Nikolaeva, M. V.; Puzyk, An. M.; Puzyk, M. V.

    2017-05-01

    Methods of synthesis of cyclometalated azobenzene palladium(II) complexes of [Pd(N^N)Azb]ClO4 and [Pd(N^O)Azb]ClO4 types (where Azb- is the deprotonated form of azobenzene; N^N is 2NH3, ethylenediamine, or 2,2'-bipyridine; and (N^O)- is the deprotonated form of amino acid (glycine, α-alanine, β-alanine, tyrosine, or tryptophan)) are developed. The electronic absorption and the electrochemical properties of these complexes are studied.

  20. Anion-tunable control of thermal Z→E isomerisation in basic azobenzene receptors.

    Science.gov (United States)

    Dąbrowa, Kajetan; Niedbała, Patryk; Jurczak, Janusz

    2014-12-25

    Herein, we report that thermal Z→E isomerisation of simple azobenzene urea derivatives is selectively and predictably controlled by anion binding. The rate of this process depends strictly on the anion concentration and its binding affinity to the Z-isomer of the azobenzene host, i.e. increased rate constants are observed for higher anion concentration as well as for more strongly bound guests. The origin of this phenomenon is attributed to the electron density transfer from the anion to the host π-system, resulting in increased repulsion between the lone electron pairs in the N=N bond.

  1. Reversible photoswitching of azobenzene-based monolayers physisorbed on a mica surface.

    Science.gov (United States)

    El Garah, Mohamed; Palmino, Frank; Cherioux, Frederic

    2010-01-19

    The formation of compact and large-scale self-assembled monolayers (SAMs) adsorbed on a mica surface has been achieved by insertion of alkyl chains on azobenzene derivatives, leading to strong intermolecular van der Waals interactions and hydrogen bonding. The reversible photoswitching of monolayers was investigated by monitoring the variation of the thickness of the SAMs during the cis-trans isomerization of the azobenzene cores with an atomic force microscope (AFM). The absence of covalent bonds between molecules and substrate induces a molecular diffusion which leads to the complete isomerization of the molecules constituting the SAMs.

  2. Polymers films with indandione derivatives as alternatives to azobenzene polymers for optical patterning

    Energy Technology Data Exchange (ETDEWEB)

    Stiller, B. [University of Potsdam, Institute of Physics, Am Neuen Palais 10, 14469 Potsdam (Germany)], E-mail: busti@rz.uni-potsdam.de; Saphiannikova, M. [Leibniz Institute of Polymer Research, Hohe Strasse 6, D-01069 Dresden (Germany); Morawetz, K. [University of Potsdam, Institute of Physics, Am Neuen Palais 10, 14469 Potsdam (Germany); Ilnytskyi, J. [Institute for Condensed Matter Physics, 1 Svientsitskii Str., 79011, Lviv (Ukraine); Neher, D. [University of Potsdam, Institute of Physics, Am Neuen Palais 10, 14469 Potsdam (Germany); Muzikante, I. [Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, Riga, LV 1063 (Latvia); Pastors, P.; Kampars, V. [Riga Technical University, Azenes Str. 14/24, Riga LV-1048 (Latvia)

    2008-10-31

    Surface relief gratings (SRGs) on organic thin films are studied extensively for both scientific interest and in relevance to the applications. Among the chromophores being used the azobenzenes showed the best performance, but the use of alternative photo-sensitive groups provides better general understanding of the phenomena. A thermodynamic theory and molecular dynamics simulations of photoinduced effects are discussed. In this study we use indandione derivatives, known as promising materials for photonics applications, as an alternative to the azobenzenes. We consider their photoreactions when incorporated into a polymer film. One of interesting features is the spectral dependence of the diffraction of indandione containing gratings, which is observed and discussed.

  3. Experimental and theoretical investigations of spectroscopic properties of azobenzene derivatives in solution.

    Science.gov (United States)

    Zaleśny, Robert; Matczyszyn, Katarzyna; Kaczmarek, Anna; Bartkowiak, Wojciech; Cysewski, Piotr

    2007-07-01

    The UV-Vis spectra of series of polymethylmethacrylate (PMMA) copolymers with attached trans-azobenzene derivatives were measured in 1,1,2-trichloroethane. In order to gain some insight into the recorded spectra, the quantum chemical calculations were performed for the substituted azobenzenes using both configuration interaction with single excitations method (CIS) as well as density functional theory (DFT) with B3LYP and PBE0 functionals. The calculations were performed in solvent. In particular, we found that the PBE0 excitation energies are in very good agreement with the experimental data.

  4. The growth and electronic structure of azobenzene-based functional molecules on layered crystals

    International Nuclear Information System (INIS)

    Iwicki, J; Ludwig, E; Buck, J; Kalläne, M; Kipp, L; Rossnagel, K; Köhler, F; Herges, R

    2012-01-01

    In situ ultraviolet photoelectron spectroscopy is used to study the growth of ultrathin films of azobenzene-based functional molecules (azobenzene, Disperse Orange 3 and a triazatriangulenium platform with an attached functional azo-group) on the layered metal TiTe 2 and on the layered semiconductor HfS 2 at liquid nitrogen temperatures. Effects of intermolecular interactions, of the substrate electronic structure, and of the thermal energy of the sublimated molecules on the growth process and on the adsorbate electronic structure are identified and discussed. A weak adsorbate-substrate interaction is particularly observed for the layered semiconducting substrate, holding the promise of efficient molecular photoswitching.

  5. Photoinduced anisotropy in a family of amorphous azobenzene polyesters for optical storage

    DEFF Research Database (Denmark)

    Nedelchev, Lian; Matharu, Avtar S.; Hvilsted, Søren

    2003-01-01

    We investigate parameters associated with optical data storage in a variety of amorphous side-chain azobenzene-containing polyesters denoted as E1aX. The polyesters possess a common cyano-substituted azobenzene chromophore as a side chain, but differ in their main-chain polyester composition....... Seventeen different polymers from the E1aX family divided into four classes, depending on the type of the main-chain substituent (one-, two-, and three-ring aromatic or alicyclic) have been thoroughly investigated. Various parameters characterizing the photoinduced birefringence in these materials...

  6. Surface-Relief Gratings in Halogen-Bonded Polymer–Azobenzene Complexes: A Concentration-Dependence Study

    Directory of Open Access Journals (Sweden)

    Jelle E. Stumpel

    2017-10-01

    Full Text Available In recent years, supramolecular complexes comprising a poly(4-vinylpyridine backbone and azobenzene-based halogen bond donors have emerged as a promising class of materials for the inscription of light-induced surface-relief gratings (SRGs. The studies up to date have focused on building supramolecular hierarchies, i.e., optimizing the polymer–azobenzene noncovalent interaction for efficient surface patterning. They have been conducted using systems with relatively low azobenzene content, and little is known about the concentration dependence of SRG formation in halogen-bonded polymer–azobenzene complexes. Herein, we bridge this gap, and study the concentration dependence of SRG formation using two halogen-bond-donating azobenzene derivatives, one functionalized with a tetrafluoroiodophenyl and the other with an iodoethynylphenyl group. Both have been previously identified as efficient molecules in driving the SRG formation. We cover a broad concentration range, starting from 10 mol % azobenzene content and going all the way up to equimolar degree of complexation. The complexes are studied as spin-coated thin films, and analyzed by optical microscopy, atomic force microscopy, and optical diffraction arising during the SRG formation. We obtained diffraction efficiencies as high as 35%, and modulation depths close to 400 nm, which are significantly higher than the values previously reported for halogen-bonded polymer–azobenzene complexes.

  7. Surface-Relief Gratings in Halogen-Bonded Polymer-Azobenzene Complexes: A Concentration-Dependence Study.

    Science.gov (United States)

    Stumpel, Jelle E; Saccone, Marco; Dichiarante, Valentina; Lehtonen, Ossi; Virkki, Matti; Metrangolo, Pierangelo; Priimagi, Arri

    2017-10-28

    In recent years, supramolecular complexes comprising a poly(4-vinylpyridine) backbone and azobenzene-based halogen bond donors have emerged as a promising class of materials for the inscription of light-induced surface-relief gratings (SRGs). The studies up to date have focused on building supramolecular hierarchies, i.e., optimizing the polymer-azobenzene noncovalent interaction for efficient surface patterning. They have been conducted using systems with relatively low azobenzene content, and little is known about the concentration dependence of SRG formation in halogen-bonded polymer-azobenzene complexes. Herein, we bridge this gap, and study the concentration dependence of SRG formation using two halogen-bond-donating azobenzene derivatives, one functionalized with a tetrafluoroiodophenyl and the other with an iodoethynylphenyl group. Both have been previously identified as efficient molecules in driving the SRG formation. We cover a broad concentration range, starting from 10 mol % azobenzene content and going all the way up to equimolar degree of complexation. The complexes are studied as spin-coated thin films, and analyzed by optical microscopy, atomic force microscopy, and optical diffraction arising during the SRG formation. We obtained diffraction efficiencies as high as 35%, and modulation depths close to 400 nm, which are significantly higher than the values previously reported for halogen-bonded polymer-azobenzene complexes.

  8. Synthesis and photoisomerization study of new aza-crown macrocyclic tweezer tethered through an azobenzene linker: The first report on supramolecular interaction of azobenzene moiety with C60

    Science.gov (United States)

    Ghanbari, Bahram; Mahdavian, Mahsa; García-Deibe, A. M.

    2017-09-01

    In the present communication, three bimacrocyclic tweezers linked through azobenzene moiety, Ln (n = 1-3) were synthesized in a multistep route and characterized by x-ray crystallography, IR, 1H and 13C NMR, UV-vis spectroscopy as well as CHN microanalysis. UV-visible spectroscopy established that the irradiation of L1 and L3 with UV light promoted the trans to cis isomerization. Irradiating the reaction mixtures with Hg lamp, significant supramolecular interactions between L1 and L3 with C60 were also found in terms of the association constants calculated by UV-visible spectroscopy, denoting on more pronounced interaction with C60 that in the absence of UV light. The molecular structures of L1-L3 calculated by using DFT method suggested a novel unprecedented interaction between the HOMO's of azobenzene moiety on the tweezer instead of the aromatic groups with C60.

  9. 10,000 optical write, read, and erase cycles in an azobenzene sidechain liquid-crystalline polyester

    DEFF Research Database (Denmark)

    Holme, NCR; Ramanujam, P.S.; Hvilsted, Søren

    1996-01-01

    We show far what is believed to he the first time that it is possible tu generate 10,000 rapid write, read, and erase cycles optically in an azobenzene sidechain liquid-crystalline polyester. We do this by exposing the film alternately to visible light from an argon laser at 488 nm and ultraviolet...... light from a krypton laser at 351 nm. The efficiency of the system shows several exponential decays, presumably associated ci with the azobenzene chromophores' aligning out of the plane of the film and the lifetime of the cis state of the azobenzene. A local temperature increase may also play a role...

  10. Photophysical properties of polyacrylic acid with Ru (II) polypyridyl complexes

    International Nuclear Information System (INIS)

    Cesideo, Erivaldo de H.; Silva, Francisco O.N. da; Lopes, Luiz G.F.; Diogenes, Izaura C.N.; Moreira, Icaro de S; Gehlen, Marcelo H.; Carvalho, Idalina M.M. de

    2007-01-01

    The nature of the conformational transition of the polymers with Ru (II) polypyridyl complexes covalently attached to poly(acrylic acid) (PAA) and poly(metacrylic acid) (PMAA) has been in studied in aqueous solutions at different pH values. The [PAA-Ru 4 ] 8+ and [PMAA-Ru 4 ] 8+ polymers has been investigated by means of the luminescence properties of the Ru(bpy) 3 2+ moiety by steady-state and time-resolved luminescence spectroscopy. The pH markedly affects the luminescence spectra and quantum yields of both ruthenium-polyacid complexes in aqueous solution. Another feature investigated in this work was a comparative study of their luminescence quenching by acridinic dyes in solution. The analysis of the k q values obtained indicates that the bimolecular quenching by acridinium and 9-aminoacridinium is more effective in the [PAA-Ru 4 ] 8+ complex (6.4x10 9 and 1.4x10 9 M -1 s -1 , respectively) compared to the [PMAA-Ru 4 ] 8+ (2.6x10 9 and 1.0x10 9 M -1 s -1 ). Also, a similar behavior was evidenced for the Ru solely adsorbed onto pure PAA (9.0x10 9 and 3.4x10 9 M -1 s -1 ) and PMAA (1.8x10 9 and 1.7x10 9 M -1 s -1 ) in aqueous solution. The effect of enhancement of quenching rate constant in [PAA-Ru 4 ] 8+ system could be ascribed to the higher density of Ru per polymer chain. The average number per chain is similar in both systems, but the molecular weight is lower for [PAA-Ru 4 ] 8+ . Furthermore, the larger hydrophilic environment provided by the PAA exposes the Ru probe to the outer surface of the polymer in solution

  11. Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters

    DEFF Research Database (Denmark)

    Naydenova, I; Nikolova, L; Todorov, T

    1998-01-01

    We investigate the polarization properties of holographic gratings in side-chain azobenzene polyesters in which an anisotropic grating that is due to photoinduced linear and circular birefringence is recorded in the volume of the material and a relief grating appears on the surface. A theoretical...... in the appearance of a surface relief with doubled frequency....

  12. Kinetics of the photochromic reaction in a polymer containing azobenzene groups

    Czech Academy of Sciences Publication Activity Database

    Mancheva, I.; Zhivkov, I.; Nešpůrek, Stanislav

    2005-01-01

    Roč. 7, č. 1 (2005), s. 253-256 ISSN 1454-4164 R&D Projects: GA MŠk 1P04OCD14.30 Grant - others:Bulgarian Ministry of Education and Science(BG) x-1322 Keywords : photochromism * azobenzene * relaxation properties Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.138, year: 2005

  13. H-aggregation of azobenzene-substituted amphiphiles in vesicular membranes

    NARCIS (Netherlands)

    Kuiper, JM; Engberts, JBFN

    2004-01-01

    Photochemical switching has been studied of double-tailed phosphate amphiphiles containing azobenzene units in both tails in aqueous vesicular dispersions and in mixed vesicular systems with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Since the ease of switching depends on the strength of the

  14. Photosensitive Cationic Azobenzene Surfactants: Thermodynamics of Hydration and the Complex Formation with Poly(methacrylic acid).

    Science.gov (United States)

    Montagna, Maria; Guskova, Olga

    2018-01-09

    In this computational work, we investigate the photosensitive cationic surfactants with the trimethylammonium or polyamine hydrophilic head and the azobenzene-containing hydrophobic tail. The azobenzene-based molecules are known to undergo a reversible trans-cis-trans isomerization reaction when subjected to UV-visible light irradiation. Combining the density functional theory and the all-atom molecular dynamics simulations, the structural and the hydration properties of the trans- and the cis-isomers and their interaction with the oppositely charged poly(methacrylic acid) in aqueous solution are investigated. We establish and quantify the correlations of the molecular structure and the isomerization state of the surfactants and their hydrophilicity/hydrophobicity and the self-assembling altered by light. For this reason, we compare the hydration free energies of the trans- and the cis-isomers. Moreover, the investigations of the interaction strength between the azobenzene molecules and the polyanion provide additional elucidations of the recent experimental and theoretical studies on the light triggered reversible deformation behavior of the microgels and the polymer brushes loaded with azobenzene surfactants.

  15. Photomechanical Deformation of Azobenzene-Functionalized Polyimides Synthesized with Bulky Substituents (Postprint)

    Science.gov (United States)

    2017-12-06

    5) in acetic acid yielded 6, a protected precursor containing two azobenzene units. Finally, the azoCBODA monomer (7) was obtained by deprotection of...Bunsenges. Phys. Chem. 1980, 84, 680−690. (6) Eisenbach, C. D. Isomerization of aromatic azo chromophores in poly( ethyl acrylate) networks and

  16. Photo-induced deformations in azobenzene-containing side-chain polymers: molecular dynamics study

    Directory of Open Access Journals (Sweden)

    J.Ilnytskyi

    2006-01-01

    Full Text Available We perform molecular dynamics simulations of azobenzene containing side-chain liquid crystalline polymer subject to an external model field that mimicks the reorientations of the azobenzenes upon irradiation with polarized light. The smectic phase of the polymer is studied with the field applied parallel to the nematic director, forcing the trans isomers to reorient perpendicularly to the field (the direction of which can be assosiated with the light polarization. The coupling between the reorientation of azobenzenes and mechanical deformation of the sample is found to depend on the field strength. In a weak field the original smectic order is melted gradually with no apparent change in the simulation box shape, whereas in a strong field two regimes are observed. During the first one a rapid melting of the liquid crystalline order is accompanied by the contraction of the polymer along the field direction (the effect similar to the one observed experimentally in azobenzene containing elastomers. During the slower second regime, the smectic layers are rebuilt to accomodate the preferential direction of chromophores perperdicular to the field.

  17. Submolecular Plasticization Induced by Photons in Azobenzene Materials.

    Science.gov (United States)

    Vapaavuori, Jaana; Laventure, Audrey; Bazuin, C Geraldine; Lebel, Olivier; Pellerin, Christian

    2015-10-28

    We demonstrate experimentally for the first time that the illumination of azobenzene derivatives leads to changes in molecular environment similar to those observed on heating but that are highly heterogeneous at the submolecular scale. This localized photoplasticization, which can be associated with a free volume gradient, helps to understand the puzzling phenomenon of photoinduced macroscopic material flow and photoexpansion upon illumination far below the glass transition temperature (T(g)). The findings stem from the correlation of infrared (IR) spectral band shifts measured upon illumination with those measured at controlled temperatures for two amorphous DR1-functionalized azo derivatives, a polymer, pDR1A, and a molecular glass, gDR1. This new approach reveals that IR spectroscopy can be used as an efficient label-free molecular-scale thermometer that allows the assignment of an effective temperature (T(eff)) to each moiety in these compounds when irradiated. While no band shift is observed upon illumination for the vibrational modes assigned to backbone moieties of pDR1A and gDR1 and a small band shift is found for the spacer moiety, dramatic band shifts are recorded for the azo moiety, corresponding to an increase in T(eff) of up to nearly 200 °C and a molecular environment that is equivalent to thermal heating well above the bulk T(g) of the material. An irradiated azo-containing material thus combines characteristic properties of amorphous materials both below and above its bulk T(g). The direct measurement of T(eff) is a powerful probe of the local environment at the submolecular scale, paving the way toward better rationalization of photoexpansion and the athermal malleability of azo-containing materials upon illumination below their T(g).

  18. Nanosilica and Polyacrylate/Nanosilica: A Comparative Study of Acute Toxicity

    Directory of Open Access Journals (Sweden)

    Ying-Mei Niu

    2016-01-01

    Full Text Available We compared the acute toxicity of nanosilica and polyacrylate/nanosilica instillation in Wistar rats (n=60. Exposure to nanosilica and polyacrylate/nanosilica showed a 30% mortality rate. When compared with saline-treated rats, animals in both exposure groups exhibited a significant reduction of PO2 (P<0.05 at both 24 and 72 hr. after exposure. Both exposure groups exhibited a significant reduction of neutrophils in arterial blood compared to saline controls (P<0.05 24 hr. after exposure. The levels of blood ALT and LDH in exposed groups were found to be significantly increased (P<0.05 24 hr. following exposure. The exposed groups exhibited various degrees of pleural effusion and pericardial effusion. Our findings indicated respiratory exposure to polyacrylate/nanosilica and nanosilica is likely to cause multiple organ toxicity.

  19. Antibacterial activity of chitosan and the interpolyelectrolyte complexes of poly(acrylic acid)-chitosan

    OpenAIRE

    Ortega-Ortiz, Hortensia; Gutiérrez-Rodríguez, Baltazar; Cadenas-Pliego, Gregorio; Jimenez, Luis Ibarra

    2010-01-01

    The antimicrobial activity of chitosan and water soluble interpolyelectrolyte complexes of poly(acrylic acid)-chitosan was studied. Chitosans of two different molecular weights were tested at different concentration for 0.5 to 5 g·L-1 as antimicrobial agents against P. aeruginosa and P. oleovorans. In both cases, the best microbial inhibition was obtained with the concentration of 5 g·L-1. However, the interpolyelectrolyte complexes of poly(acrylic acid)-chitosan with composition φ =2 pr...

  20. Dynamic mechanical and thermal behavior of novel liquid-crystalline polybutadiene-diols with azobenzene groups in side chains

    Czech Academy of Sciences Publication Activity Database

    Poláková, Lenka; Sedláková, Zdeňka; Beneš, Hynek; Valentová, H.; Krakovský, I.; Rabie, F.

    2013-01-01

    Roč. 57, č. 5 (2013), s. 1297-1310 ISSN 0148-6055 Institutional support: RVO:61389013 Keywords : mesophase * azobenzene mesogens * thermal behavior Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.276, year: 2013

  1. Controlled Sol-Gel Transitions of a Thermoresponsive Polymer in a Photoswitchable Azobenzene Ionic Liquid as a Molecular Trigger.

    Science.gov (United States)

    Wang, Caihong; Hashimoto, Kei; Tamate, Ryota; Kokubo, Hisashi; Watanabe, Masayoshi

    2018-01-02

    Producing ionic liquids (ILs) that function as molecular trigger for macroscopic change is a challenging issue. Photoisomerization of an azobenzene IL at the molecular level evokes a macroscopic response (light-controlled mechanical sol-gel transitions) for ABA triblock copolymer solutions. The A endblocks, poly(2-phenylethyl methacrylate), show a lower critical solution temperature in the IL mixture containing azobenzene, while the B midblock, poly(methyl methacrylate), is compatible with the mixture. In a concentrated polymer solution, different gelation temperatures were observed in it under dark and UV conditions. Light-controlled sol-gel transitions were achieved by a photoresponsive solubility change of the A endblocks upon photoisomerization of the azobenzene IL. Therefore, an azobenzene IL as a molecular switch can tune the self-assembly of a thermoresponsive polymer, leading to macroscopic light-controlled sol-gel transitions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mechanism of Macroscopic Motion of Oleate Helical Assemblies: Cooperative Deprotonation of Carboxyl Groups Triggered by Photoisomerization of Azobenzene Derivatives.

    Science.gov (United States)

    Kageyama, Yoshiyuki; Ikegami, Tomonori; Kurokome, Yuta; Takeda, Sadamu

    2016-06-13

    Macroscopic and spatially ordered motions of self-assemblies composed of oleic acid and a small amount of an azobenzene derivative, induced by azobenzene photoisomerization, was previously reported. However, the mechanism of the generation of submillimeter-scale motions by the nanosized structural transition of azobenzene was not clarified. Herein, an underlying mechanism of the motions is proposed in which deprotonation of carboxyl groups in cooperation with azobenzene photoisomerization causes a morphological transition of the self-assembly, which in turn results in macroscopic forceful dynamics. The photoinduced deprotonation was investigated by potentiometric pH titration and FTIR spectroscopy. The concept of hierarchical molecular interaction generating macroscale function is expected to promote the next stage of supramolecular chemistry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Adhesive and structural properties of thermoreversible polyacrylate gels

    Science.gov (United States)

    Flanigan, Cynthia Mowery

    Methods for quantifying very weak adhesive interactions between two bodies in contact have been developed using a low-modulus material in conjunction with a linear elastic fracture mechanics analysis based on the treatment of Johnson, Kendall and Roberts (JKR). Using this approach, axisymmetric adhesion tests have been performed on polyacrylate gel lenses and thin layers, in contact with well-characterized surfaces. These thermally reversible gels were formed by diluting a triblock copolymer with poly(methyl methacrylate) (PMMA) endblocks and a poly(n-butyl acrylate) midblock with a selective solvent for the center block. Rheological studies on this swollen copolymer indicate that the material is completely elastic at room temperature and undergoes a rapid, thermally reversible gelation, thus making it an excellent model system to probe the adhesive properties of soft materials. Adhesive and frictional properties of thin, elastic layers in contact with a glass, hemispherical indenter have been investigated. Studies on these highly compliant gels highlight the significance of finite size corrections to the compliance and displacement between the two contacting bodies. For situations where the applied load is too low to measure experimentally, expressions for G /E, the energy release rate normalized by Young's modulus, are shown to provide an accurate means to quantify adhesion with these low-moduli materials. Small angle X-ray scattering experiments in conjunction with rheological tests have shown that changes in composition and temperature affect the elastic nature of the gel. In addition, an equilibrium gelation process is utilized to produce "dried" polymer layers with reproducible adhesive properties. With this method, acrylic acid moieties have been shown to enhance the adhesive performance of these materials without influencing their structure. Lastly, the development of elastic instabilities within confined gel layers has been examined. The aspect ratio of

  4. Preparation and Characterization of Binary Organogels via Some Azobenzene Amino Derivatives and Different Fatty Acids: Self-Assembly and Nanostructures

    OpenAIRE

    Haiying Guo; Tifeng Jiao; Xihai Shen; Qingrui Zhang; Adan Li; Faming Gao

    2014-01-01

    In present work the gelation behaviors of binary organogels composed of azobenzene amino derivatives and fatty acids with different alkyl chains in various organic solvents were designed and investigated. Their gelation behaviors in 20 solvents were tested as new binary organic gelators. It showed that the length of alkyl substituent chains and azobenzene segment have played a crucial role in the gelation behavior of all gelator mixtures in various organic solvents. Longer alkyl chains in mol...

  5. Photoisomers of Azobenzene Star with a Flat Core: Theoretical Insights into Multiple States from DFT and MD Perspective.

    Science.gov (United States)

    Koch, Markus; Saphiannikova, Marina; Santer, Svetlana; Guskova, Olga

    2017-09-21

    This study focuses on comparing physical properties of photoisomers of an azobenzene star with benzene-1,3,5-tricarboxamide core. Three azobenzene arms of the molecule undergo a reversible trans-cis isomerization upon UV-vis light illumination giving rise to multiple states from the planar all-trans one, via two mixed states to the kinked all-cis isomer. Employing density functional theory, we characterize the structural and photophysical properties of each state indicating a role the planar core plays in the coupling between azobenzene chromophores. To characterize the light-triggered switching of solvophilicity/solvophobicity of the star, the difference in solvation free energy is calculated for the transfer of an azobenzene star from its gas phase to implicit or explicit solvents. For the latter case, classical all-atom molecular dynamics simulations of aqueous solutions of azobenzene star are performed employing the polymer consistent force field to shed light on the thermodynamics of explicit hydration as a function of the isomerization state and on the structuring of water around the star. From the analysis of two contributions to the free energy of hydration, the nonpolar van der Waals and the electrostatic terms, it is concluded that isomerization specificity largely determines the polarity of the molecule and the solute-solvent electrostatic interactions. This convertible hydrophilicity/hydrophobicity together with readjustable occupied volume and the surface area accessible to water, affects the self-assembly/disassembly of the azobenzene star with a flat core triggered by light.

  6. Effect of glow discharge treatment of poly(acrylic acid) preadsorbed onto poly(ethylene)

    NARCIS (Netherlands)

    Terlingen, J.G.A.; Terlingen, Johannes G.A.; Hoffman, Allan S.; Feijen, Jan

    1993-01-01

    In order to introduce carboxylic acid groups at the surface of poly(ethylene) (PE) films, an attempt was made to covalently link a preadsorbed layer of poly(acrylic acid) (PAAc) on a PE film by an argon or tetrafluoromethane (CF4) plasma treatment. Surface analysis was performed by XPS (X-ray

  7. Photoresponsive Release from Azobenzene-Modified Single Cubic Crystal NaCl/Silica Particles

    Directory of Open Access Journals (Sweden)

    Xingmao Jiang

    2011-01-01

    Full Text Available Azobenzene ligands were uniformly anchored to the pore surfaces of nanoporous silica particles with single crystal NaCl using 4-(3-triethoxysilylpropylureidoazobenzene (TSUA. The functionalization delayed the release of NaCl significantly. The modified particles demonstrated a photocontrolled release by trans/cis isomerization of azobenzene moieties. The addition of amphiphilic solvents, propylene glycol (PG, propylene glycol propyl ether (PGPE, and dipropylene glycol propyl ether (DPGPE delayed the release in water, although the wetting behavior was improved and the delay is the most for the block molecules with the longest carbon chain. The speedup by UV irradiation suggests a strong dependence of diffusion on the switchable pore size. TGA, XRD, FTIR, and NMR techniques were used to characterize the structures.

  8. Light propagation through photoinduced chiral structures in azobenzene-containing polymers

    DEFF Research Database (Denmark)

    Nedelchev, L; Nikolova, L; Todorov, T

    2001-01-01

    We investigate light propagation through azobenzene-containing polymers with photoinduced chiral structures. The structures have large pitch but the Mauguin condition is not fulfilled. The eigenmodes are shown to be elliptical and their ellipticity is determined by the ellipticity e(o) of the exc......We investigate light propagation through azobenzene-containing polymers with photoinduced chiral structures. The structures have large pitch but the Mauguin condition is not fulfilled. The eigenmodes are shown to be elliptical and their ellipticity is determined by the ellipticity e......(o) of the exciting light. In amorphous azopolymers, light induces a macroscopic chiral structure comprising the whole illuminated region. The pitch depends on the value of e(o): no chirality is induced if e(o) = 1 (circular polarization). In liquid-crystalline azopolymers circularly polarized light induces...... the formation of many microscopic spirals, which makes the material equivalent to the classical optically active media....

  9. Elucidation of Isomerization Pathways of a Single Azobenzene Derivative Using an STM.

    Science.gov (United States)

    Kazuma, Emiko; Han, Mina; Jung, Jaehoon; Oh, Junepyo; Seki, Takahiro; Kim, Yousoo

    2015-11-05

    The predominant pathway for the isomerization between cis- and trans-azobenzenes-either (i) inversion by the bending of an NNC bond or (ii) rotation by the torsion of two phenyl rings-continues to be a controversial topic. To elucidate each isomerization pathway, a strategically designed and synthesized azobenzene derivative was investigated on a Ag(111) surface. This was achieved by exciting the molecule with tunneling electrons from the tip of a scanning tunneling microscope (STM). Structural analyses of the molecularly resolved STM images reveal that both inversion and rotation pathways are available for isomerization on a metal surface and strongly depend on the initial adsorption structures of the molecule. On the basis of the potential energy diagrams for the isomerization, it is concluded that isomerization pathways on a metal surface are not simply related to the excited states.

  10. Gold Superparticles Functionalized with Azobenzene Derivatives: SERS Nanotags with Strong Signals.

    Science.gov (United States)

    Ma, Ying; Promthaveepong, Kittithat; Li, Nan

    2017-03-29

    The surface-enhanced Raman spectroscopy (SERS) nanotag was proposed as a substitute for fluorescent dye for imaging and biosensors several decades ago. However, its weak signal and poor reproducibility has hindered its application. Here, we report a new strategy to form Au superparticles (AuSPs) with high SERS enhancement via one-pot formation and self-assembly of Au nanoparticles (NPs). An azobenzene-carrying Raman reporter was synthesized to exhibit a large Raman cross-section and multiple bands. The self-assembly of the Raman reporter on AuSPs generated SERS nanotags with intense signals. A Raman reporter carrying boronic acid and azobenzene groups displayed six distinctive bands. Its corresponding SERS nanotag demonstrated a high sensing ability toward glycoprotein through aggregation-induced SERS enhancement or as a substitute for labeled antibodies in an immunoassay of the glycoprotein.

  11. Photo-Responsive Soft Ionic Crystals: Ion-Pairing Assemblies of Azobenzene Carboxylates.

    Science.gov (United States)

    Yamakado, Ryohei; Hara, Mitsuo; Nagano, Shusaku; Seki, Takahiro; Maeda, Hiromitsu

    2017-07-12

    This report delineates the design and synthesis of negatively charged azobenzene derivatives that form photo-responsive ion-pairing assemblies. The azobenzene carboxylates possessing aliphatic chains were prepared as photo-responsive anions that promote the formation of ion-pairing dimension-controlled assemblies, including mesophases, when used in conjunction with a tetrabutylammonium (TBA) cation. The photo-responsive properties of the ion pairs and the precursory carboxylic acids in the bulk state were examined by polarized optical microscopy (POM) and X-ray diffraction (XRD), demonstrating that liquid crystal (LC)-liquid and crystal-liquid phase transitions occurred, depending on the number and lengths of the aliphatic chains of each assembly. An ion pair exhibited photo-induced crystal-crystal phase transitions upon switching between two irradiation wavelengths (365/436 nm). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Interactions of Lysozyme and Azobenzene Derivatives in the Solution and on a Surface

    Science.gov (United States)

    Wei, Tao; Shing, Katherine

    2015-03-01

    The reversible isomerization of the azobenzene and its derivatives can control protein structure in an aqueous environment with the alternation of visible and UV lights for very promising applications in drug delivery. However, an atomistic description of Azo-molecules and protein amino acid residues is still lacking. In this study we performed atomistic molecular dynamics simulation to study the interactions between a lysozyme molecule and the Azobenzene derivative (in the bulk solution and grafted on the Silica surfaces). Protein structural arrangements (i.e., the shape and secondary structures) and its mobility, as a function of tran/cis ratio in the bulk solution and on the self-assembling monolayer surface's density and morphology, are systematically investigated.

  13. Density functional theory calculations on azobenzene derivatives: a comparative study of functional group effect.

    Science.gov (United States)

    Piyanzina, Irina; Minisini, Benoit; Tayurskii, Dmitrii; Bardeau, Jean-François

    2015-02-01

    Density functional theory (DFT) calculations have been used to investigate the structural properties, dipole moments, polarizabilities, Gibbs energies, hardness, electronegativity, HOMO/LUMO energies, and chemical potentials of trans and cis configurations of eight para-substituted azobenzene derivatives. All properties have been obtained using the B3LYP functional and 6-31++G(d,p) basis set. The planar structures have been obtained for all optimized trans configurations. The energy difference between trans and cis configurations for considered derivatives was found to be between 64.2-73.1 kJ/mole. It has been obtained that the p-aminodiazo-benzene (ADAB) has the difference in the dipole moments between trans and cis forms higher than for trans and cis azobenzene.

  14. Collisions induced dissociation and Ab initio study of azobenzene derivatives bond structure and electronic configuration

    Science.gov (United States)

    Rezaee, Mohammadreza; Compton, Robert

    2015-05-01

    Collision induced dissociation (CID) and ab initio calculations were utilized to study a few derivatives of azobenzene molecule and their product ions. High level computational methods along with large basis set size yield values in close agreement with the experimental results. Möller-Plesset and coupled-cluster theory including perturbative triple excitations, CCSD(T), method were performed to obtain a high accuracy estimation of the bond dissociation energy value. The electron affinities have been studied experimentally using the photoelectron spectroscopy method as well as theoretically using ab inito calculations. For the trans-2,2',6,6' tetra-fluoro azobenzene the bond dissociation has been experimentally determined to be 1.88 eV and the vertical detachment energy is 1.78 eV.

  15. Photonic manipulation of topological defects in liquid-crystal emulsions doped with azobenzene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Takahiro [Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Ibaraki (Japan) and Liquid-Crystal Nano-System Project, ERATO/SORST, Japan Science and Technology, Agency, 5-9-9 Tokodai, Tsukuba 300-2635, Ibaraki (Japan)]. E-mail: takahiro.yamamoto@aist.go.jp; Tabe, Yuka [Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Ibaraki (Japan); Liquid-Crystal Nano-System Project, ERATO/SORST, Japan Science and Technology, Agency, 5-9-9 Tokodai, Tsukuba 300-2635, Ibaraki (Japan); Department of Applied Physics, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjyuku, 169-8555, Tokyo (Japan); Yokoyama, Hiroshi [Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Ibaraki (Japan); Liquid-Crystal Nano-System Project, ERATO/SORST, Japan Science and Technology, Agency, 5-9-9 Tokodai, Tsukuba 300-2635, Ibaraki (Japan)

    2006-06-19

    By modulating liquid-crystal alignment on a colloidal sphere, we successfully manipulated topological defects in glycerol-droplet/liquid-crystal emulsions doped with amphiphilic azobenzene derivatives. At an initial state, a disclination loop (Saturn ring) could be observed around the droplet, in which the azobenzene molecules should adsorb onto the droplet and liquid crystal molecules align normally to the surface of the droplet. On irradiation with ultra-violet light ({lambda} = 365 nm), the disclination loop was unfastened and transformed into two point defects called boojums. This should be attributed to the alignment change of the liquid crystal molecules from normal to planar arrangement triggered by trans-to-cis photoisomerization of the adsorbed azo-dyes. On irradiation with visible light causing cis-to-trans photoisomerization ({lambda} = 435 nm), the boojums went back to the Saturn ring reversibly.

  16. Photoresponsive switches at surfaces based on supramolecular functionalization with azobenzene-oligoglycerol conjugates.

    Science.gov (United States)

    Nachtigall, Olaf; Kördel, Christian; Urner, Leonhard H; Haag, Rainer

    2014-09-01

    The synthesis, supramolecular complexation, and switching of new bifunctional azobenzene-oligoglycerol conjugates in different environments is reported. Through the formation of host-guest complexes with surface immobilized β-cyclodextrin receptors, the bifunctional switches were coupled to gold surfaces. The isomerization of the amphiphilic azobenzene derivatives was examined in solution, on gold nanoparticles, and on planar gold surfaces. The wettability of functionalized gold surfaces can be reversibly switched under light-illumination with two different wavelengths. Besides the photoisomerization processes and concomitant effects on functionality, the thermal cis to trans isomerization of the conjugates and their complexes was monitored. Thermal half-lives of the cis isomers were calculated for different environments. Surprisingly, the half-lives on gold nanoparticles were significantly smaller compared to planar gold surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis, Self-Assembly and Photoresponsive Liquid Crystals Based on Azobenzene Derivatives.

    Science.gov (United States)

    Wang, Hongyan; Han, Yi; Yuan, Wei; Wu, Mengjiao; Chen, Yulan

    2018-02-17

    A new class of rod-coil-rod molecules with an azobenzene core were synthesized. They were found to form robust organogels in several kinds of organic solvents. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), FT-IR spectroscopy, UV-vis absorption spectroscopy, 1H NMR, and X-ray diffraction (XRD) revealed that in these organogels, the molecules self-assembled into nanofiber network with an H-type aggregation mode under the joint effect of Pi-Pi stacking, intermolecular hydrogen bonding, and van der Waals forces. Interestingly, the incorporation of the azobenzene mesogene into the rigid core led to photo-isomerizable liquid crystal materials, which exhibited fast responsiveness to light and temperature, along with the trans-cis transition stimulated by UV light and heating. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Photoorientation of azobenzene side groups in a liquid-crystalline polybutadiene-based polymer

    Czech Academy of Sciences Publication Activity Database

    Rais, David; Zakrevskyy, Y.; Stumpe, J.; Nešpůrek, Stanislav; Sedláková, Zdeňka

    2008-01-01

    Roč. 30, č. 8 (2008), s. 1335-1342 ISSN 0925-3467 R&D Projects: GA AV ČR IAA4112401; GA MŠk OC 138 Grant - others:German Bundesministerium für Bildung und Forschung(DE) CZE 03/016 Institutional research plan: CEZ:AV0Z40500505 Keywords : azobenzene * liquid crystalline polymer * polybutadiene Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.714, year: 2008

  19. Kinetics and thermodynamics of amine and diamine signaling by a trifluoroacetyl azobenzene reporter group.

    Science.gov (United States)

    Mertz, Eric; Beil, James B; Zimmerman, Steven C

    2003-08-21

    [reaction: see text] (Trifluoroacetyl)azobenzene dyes were previously employed as amine reporter groups (chemosensors) in a dendrimer-based monomolecular imprinting system. Kinetic and binding studies with a range of amines and diamines show that the highly selective signaling observed for alkane diamines by these imprinted dendrimers arises from a kinetic effect due to intramolecular general base-catalyzed carbinolamine formation with the dye itself. The relationship between diamine structure and carbinolamine stability and rate of formation is described.

  20. Azobenzene Polyesters Used as Gate‐Like Scaffolds in Nanoscopic Hybrid Systems

    DEFF Research Database (Denmark)

    Bernardos, Andrea; Mondragón, Laura; Javakhishvili, Irakli

    2012-01-01

    The synthesis and characterisation of new capped silica mesoporous nanoparticles for on‐command delivery applications is reported. Functional capped hybrid systems consist of MCM‐41 nanoparticles functionalised on the external surface with polyesters bearing azobenzene derivatives and rhodamine B...... with the cytotoxic drug camptothecin (CPT‐PAzo6‐S). Following cell internalisation and lysosome resident enzyme‐dependent gate opening, CPT‐PAzo6‐S induced CPT‐dependent cell death in HeLa cells....

  1. Comparative analysis of cleavable azobenzene-based affinity tags for bioorthogonal chemical proteomics.

    Science.gov (United States)

    Yang, Yu-Ying; Grammel, Markus; Raghavan, Anuradha S; Charron, Guillaume; Hang, Howard C

    2010-11-24

    The advances in bioorthogonal ligation methods have provided new opportunities for proteomic analysis of newly synthesized proteins, posttranslational modifications, and specific enzyme families using azide/alkyne-functionalized chemical reporters and activity-based probes. Efficient enrichment and elution of azide/alkyne-labeled proteins with selectively cleavable affinity tags are essential for protein identification and quantification applications. Here, we report the synthesis and comparative analysis of Na₂S₂O₄-cleavable azobenzene-based affinity tags for bioorthogonal chemical proteomics. We demonstrated that ortho-hydroxyl substituent is required for efficient azobenzene-bond cleavage and show that these cleavable affinity tags can be used to identify newly synthesized proteins in bacteria targeted by amino acid chemical reporters as well as their sites of modification on endogenously expressed proteins. The azobenzene-based affinity tags are compatible with in-gel, in-solution, and on-bead enrichment strategies and should afford useful tools for diverse bioorthogonal proteomic applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Smectites intercalated with azobenzene and aminoazobenzene: Structure changes at nanoscale induced by UV light

    Science.gov (United States)

    Koteja, Anna; Szczerba, Marek; Matusik, Jakub

    2017-12-01

    The photoactive azobenzenes were intercalated into montmorillonite and beidellite in order to obtain a functional material responsive to UV radiation. The smectite modification involved two steps: (1) intercalation with alkylammonium salts, differing in alkyl chain length, and (2) co-intercalation with azobenzene or aminoazobenzene. The structure and chemistry of the obtained materials were thoroughly characterize with the means of XRD, FTIR, DTA/TG, UV-Vis methods and CHN elemental analysis. The mechanisms interpretation was supported with the molecular dynamics simulations. Photoresponse of the obtained materials was monitored through the observation of the basal spacing shifts upon UV radiation. The results proved that both the type of alkylammonium salt and the host mineral influenced heavily the efficiency of subsequent azobenzene intercalation as well as its photoactive behaviour. The evident and regular photoinduced basal spacing shifts were visible when the density of intercalated salts was low. This was achieved in the BId derivatives due to the low layer charge of the mineral. Also the shorter alkyl chain of the co-intercalated salt promoted larger photoresponses.

  3. Tuning the optical emission of MoS2 nanosheets using proximal photoswitchable azobenzene molecules

    Science.gov (United States)

    Li, Juan; Wierzbowski, Jakob; Ceylan, Özlem; Klein, Julian; Nisic, Filippo; Anh, Tuan Le; Meggendorfer, Felix; Palma, Carlos-Andres; Dragonetti, Claudia; Barth, Johannes V.; Finley, Jonathan J.; Margapoti, Emanuela

    2014-12-01

    We report photoluminescence measurements performed on monolayer- and two-layer-MoS2 placed on two types of mixed self-assembled monolayers (mSAMs) of photoswitchable azobenzene molecules. The two mSAMs differ via the electronegative character of the azobenzene derivatives. Thin layers of a transition metal dichalcogenide—MoS2—were mechanically exfoliated on mSAM to allow for direct interaction between the molecules and the MoS2 layers. When the MoS2 nanosheet is in contact with the electropositive azobenzene molecules in trans configuration, an emission side band at lower energies and at low excitation powers suggest n-type doping. The photoisomerization of the molecules from trans to cis configuration lowers the doping, quenching the side band and enhancing the overall PL efficiency by a factor of ˜3. Opposite results were observed with the chlorinated, more electronegative molecules, exhibiting a reversed trend in the PL efficiency between trans and cis, but with an overall larger intensity. The type of doping induced by the two types of mSAMs was determined by Kelvin probe force microscopy technique.

  4. Photo-induced and thermal reactions in thin films of an azobenzene derivative on Bi(111)

    Science.gov (United States)

    Bronner, Christopher; Tegeder, Petra

    2014-05-01

    Azobenzene is a prototypical molecular switch which can be interconverted with UV and visible light between a trans and a cis isomer in solution. While the ability to control their conformation with light is lost for many molecular photoswitches in the adsorbed state, there are some examples for successful photoisomerization in direct contact with a surface. However, there the process is often driven by a different mechanism than in solution. For instance, photoisomerization of a cyano-substituted azobenzene directly adsorbed on Bi(111) occurs via electronic excitations in the substrate and subsequent charge transfer. In the present study we observe two substrate-mediated trans-cis photoisomerization reactions of the same azobenzene derivative in two different environments within a multilayer thin film on Bi(111). Both processes are associated with photoisomerization and one is around two orders of magnitude more efficient than the other. Furthermore, the cis isomers perform a thermally induced reaction which may be ascribed to a back-isomerization in the electronic ground state or to a phenyl ring rotation of the cis isomer.

  5. Surface hopping dynamics of direct trans --> cis photoswitching of an azobenzene derivative in constrained adsorbate geometries

    Science.gov (United States)

    Floß, Gereon; Granucci, Giovanni; Saalfrank, Peter

    2012-12-01

    With ongoing miniaturization of electronic devices, the need for individually addressable, switchable molecules arises. An example are azobenzenes on surfaces which have been shown to be switchable between trans and cis forms. Here, we examine the "direct" (rather than substrate-mediated) channel of the trans → cis photoisomerization after ππ* excitation of tetra-tert-butyl-azobenzene physisorbed on surfaces mimicking Au(111) and Bi(111), respectively. In spirit of the direct channel, the electronic structure of the surface is neglected, the latter merely acting as a rigid platform which weakly interacts with the molecule via Van-der-Waals forces. Starting from thermal ensembles which represent the trans-form, sudden excitations promote the molecules to ππ*-excited states which are non-adiabatically coupled among themselves and to a nπ*-excited and the ground state, respectively. After excitation, relaxation to the ground state by internal conversion takes place, possibly accompanied by isomerization. The process is described here by "on the fly" semiclassical surface hopping dynamics in conjunction with a semiempirical Hamiltonian (AM1) and configuration-interaction type methods. It is found that steric constraints imposed by the substrate lead to reduced but non-vanishing, trans → cis reaction yields and longer internal conversion times than for the isolated molecule. Implications for recent experiments for azobenzenes on surfaces are discussed.

  6. Synthesis and characterization of dicyclopalladated complexes of azobenzene derivatives by experimental and computational methods.

    Science.gov (United States)

    Babić, Darko; Curić, Manda; Molcanov, Kresimir; Ilc, Gregor; Plavec, Janez

    2008-11-17

    A series of doubly cyclopalladated complexes of azobenzene and its unsymmetrical substituted derivatives, namely, {LPdCl(mu-AZB)LPdCl}, where AZB is azobenzene, 4-methylazobenzene, 4-aminoazobenzene, or 4-(dimethylamino)-4'-nitroazobenzene, while L is N,N-dimethylformamide, dimethylsulfoxide, or pyridine, have been prepared. Their structural and spectroscopic properties were determined by X-ray diffraction analysis as well as by (1)H NMR, IR, UV-vis, and fluorimetric studies. Experimental results were rationalized by quantum chemical calculations. Crystal structures of several complexes have been resolved, and for the first time, it was demonstrated that the cyclopalladation may take place at the azobenzene aromatic ring having the strong electron-withdrawing substituent at the para position. In all cases, the metalated carbon and N,N-dimethylformamide or dimethylsulfoxide ligands are mutually trans, whereas the pyridine ligands are in the cis arrangement. cis/trans isomerism in the isolated compounds is explained by comparing the calculated energies of isomeric structures. All of the complexes absorb strongly in the visible region, and according to time-dependent density functional theory calculations, most of the absorptions can be attributed to intraligand pi --> pi* or metal-to-ligand charge-transfer transitions. The fluorescence emission was observed for the complexes with 4-aminoazobenzene or 4-(dimethylamino)-4'-nitroazobenzene. The aromaticity of palladacycles is evaluated by several aromaticity indices and related to relevant experimental findings.

  7. Tuning the optical emission of MoS{sub 2} nanosheets using proximal photoswitchable azobenzene molecules

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan [Physik Department and NIM, Walter Schottky Institute, Technische Universität München, Am Coulombwall 4, Garching D-85748 (Germany); Physik Department E20, Technische Universität München, James-Franck-St. 1, Garching D-85748 (Germany); Wierzbowski, Jakob; Ceylan, Özlem; Klein, Julian; Anh, Tuan Le; Meggendorfer, Felix; Finley, Jonathan J.; Margapoti, Emanuela, E-mail: emanuela.margapoti@wsi.tum.de [Physik Department and NIM, Walter Schottky Institute, Technische Universität München, Am Coulombwall 4, Garching D-85748 (Germany); Nisic, Filippo; Dragonetti, Claudia [Dipartimento di Chimica, Università degli Studi di Milano and UdR dell' INSTM di Milano, Via Golgi 19, I-20133 Milano (Italy); Palma, Carlos-Andres; Barth, Johannes V. [Physik Department E20, Technische Universität München, James-Franck-St. 1, Garching D-85748 (Germany)

    2014-12-15

    We report photoluminescence measurements performed on monolayer- and two-layer-MoS{sub 2} placed on two types of mixed self-assembled monolayers (mSAMs) of photoswitchable azobenzene molecules. The two mSAMs differ via the electronegative character of the azobenzene derivatives. Thin layers of a transition metal dichalcogenide—MoS{sub 2}—were mechanically exfoliated on mSAM to allow for direct interaction between the molecules and the MoS{sub 2} layers. When the MoS{sub 2} nanosheet is in contact with the electropositive azobenzene molecules in trans configuration, an emission side band at lower energies and at low excitation powers suggest n-type doping. The photoisomerization of the molecules from trans to cis configuration lowers the doping, quenching the side band and enhancing the overall PL efficiency by a factor of ∼3. Opposite results were observed with the chlorinated, more electronegative molecules, exhibiting a reversed trend in the PL efficiency between trans and cis, but with an overall larger intensity. The type of doping induced by the two types of mSAMs was determined by Kelvin probe force microscopy technique.

  8. Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels.

    Science.gov (United States)

    Cho, Eugene N; Zhitomirsky, David; Han, Grace G D; Liu, Yun; Grossman, Jeffrey C

    2017-03-15

    Solar thermal fuels (STFs) harvest and store solar energy in a closed cycle system through conformational change of molecules and can release the energy in the form of heat on demand. With the aim of developing tunable and optimized STFs for solid-state applications, we designed three azobenzene derivatives functionalized with bulky aromatic groups (phenyl, biphenyl, and tert-butyl phenyl groups). In contrast to pristine azobenzene, which crystallizes and makes nonuniform films, the bulky azobenzene derivatives formed uniform amorphous films that can be charged and discharged with light and heat for many cycles. Thermal stability of the films, a critical metric for thermally triggerable STFs, was greatly increased by the bulky functionalization (up to 180 °C), and we were able to achieve record high energy density of 135 J/g for solid-state STFs, over a 30% improvement compared to previous solid-state reports. Furthermore, the chargeability in the solid state was improved, up to 80% charged from 40% charged in previous solid-state reports. Our results point toward molecular engineering as an effective method to increase energy storage in STFs, improve chargeability, and improve the thermal stability of the thin film.

  9. Ab initio calculation of the electronic spectrum of azobenzene dyes and its impact on the design of optical data storage materials

    DEFF Research Database (Denmark)

    Åstrand, Per-Olof; Ramanujam, P.S.; Hvilsted, Søren

    2000-01-01

    Electronic excitation energies of 16 azobenzene dyes have been calculated by ab initio methods within the second-order polarization propagator approximation (SOPPA). Good agreement with expriment is found for the lowest singlet and triplet states for both the trans- and cis-azobenzene molecules. ...... candidates for azo components used in materials for data storage....

  10. Dynamically formed hydrous zirconium (IV) oxide-polyelectrolyte membranes. III: Poly(acrylic acid) and substituted poly(acrylic acid) homo, co and terpolymer membranes

    International Nuclear Information System (INIS)

    Van Reenen, A.J.; Sanderson, R.D.

    1989-01-01

    A series of acrylic acid and substituted acrylic acid homo, co and terpolymers was synthesised. These polymers were used as polyelectrolytes in dynamically formed hydrous zirconium (iv) oxide-polyelectrolyte membranes. Substitution of the acrylic acid α-hydrogen was done to increase the number of carboxylic acid groups per monomer unit and to change the acid strength of acrylic acid carboxylic acid group. None of these changes improved the salt rejection of these membranes over that of commercially used poly(acrylic acid). Improvement in rejection was found when a hydrophobic comonomer, vinyl acetate, was used in conjunction with acrylic acid in a copolymer dynamic membrane. 16 refs., 6 figs., 1 tab

  11. Photoinduced Trans-to-cis Phase Transition of Polycrystalline Azobenzene at Low Irradiance Occurs in the Solid State.

    Science.gov (United States)

    Bhattacharjee, Ujjal; Freppon, Daniel; Men, Long; Vela, Javier; Smith, Emily A; Petrich, Jacob W

    2017-09-20

    The ability to produce large-scale, reversible structural changes in a variety of materials by photoexcitation of a wide variety of azobenzene derivatives has been recognized for almost two decades. Because photoexcitation of trans-azobenzene produces the cis-isomer in solution, it has generally been inferred that the macroscopic structural changes occurring in materials are also initiated by a similar large-amplitude trans-to-cis isomerization. This work provides the first demonstration that a trans-to-cis photoisomerization occurs in polycrystalline azobenzene, and is consistent with the previously hypothesized nature of the trigger in the photoactuated mechanisms of the materials in question. It is also demonstrated that under low irradiance, trans-to-cis isomerization occurs in the solid (not via a pre-melted phase); and the presence of the cis-isomer thus lowers the melting point of the sample, providing a liquid phase. A variety of experimental techniques were employed, including X-ray diffraction measurements of polycrystalline azobenzene during exposure to laser irradiation and fluorescence measurements of the solid sample. A practical consequence of this work is that it establishes trans-azobenzene as an easily obtainable and well-defined control for monitoring photoinduced structural changes in X-ray diffraction experiments, using easily accessible laser wavelengths. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dispersion and film-forming properties of poly(acrylic acid)-stabilized carbon nanotubes.

    Science.gov (United States)

    Saint-Aubin, Karell; Poulin, Philippe; Saadaoui, Hassan; Maugey, Maryse; Zakri, Cécile

    2009-11-17

    We present a detailed study of the influence of pH on the dispersion and film-forming properties of poly(acrylic acid)-stabilized carbon nanotubes. Poly(acrylic acid) (PAA) is a weak polyelectrolyte, with a pH-responsive behavior in aqueous solution. We obtain quantitative UV-visible measurements to show that the amount of polyelectrolyte in optimal pH conditions is weak, showing a good efficiency of the polymer as a carbon nanotube dispersing agent. The best dispersion conditions are achieved at pH 5, a value close to the pK(a) of PAA. Apart from this tenuous pH value, the PAA is not efficient at stabilizing nanotubes and atomic force microscopy allows us to explain the delicate balance between the PAA adsorption and the suspension stability. This study finally permits optimal conditions for making homogeneous and conductive composite films to be determined.

  13. Extraction of metal cations by polyterephthalamide microcapsules containing a poly(acrylic acid) gel.

    Science.gov (United States)

    Laguecir, A; Ernst, B; Frère, Y; Danicher, L; Burgard, M

    2002-01-01

    Polyterephthalamide microcapsules containing a poly(acrylic acid) gel as a macromolecular ligand (PAA-CAPS) were prepared using an original two step polymerization process in a water-in-oil inverse emulsion system. A polyamide microcapsule containing acrylic acid, initiator and cross-linking agent, is formed by interfacial polycondensation of terephthaloyl dichloride with hexamethylenediamine. In situ radical polymerization of the microcapsule core acrylic acid is initiated to obtain encapsulated poly(acrylic acid) gel. Reference polyamide microcapsules, i.e. without ligand (CAPS), were also synthesized. The mean diameter of synthesized microcapsules was 210 microm, and the microcapsule wall thickness was evaluated by SEM and TEM observations of microcapsule cross-section cuts. The microcapsule water content was determined by thermogravimetric experiments. The extractabilities of Cu(II), Ni(II), Co(II) and Zn(II) into PAA-CAPS were examined. The stripping of the various cations can be promoted in diluted hydrochloric acid solutions.

  14. Synthesis and characterization of amylose grafted poly(acrylic acid) and its application in ammonia adsorption.

    Science.gov (United States)

    Chen, Qing; Yu, Haojie; Wang, Li; Abdin, Zain-Ul; Yang, Xinpeng; Wang, Junhua; Zhou, Weidong; Zhang, Hongtao; Chen, Xiao

    2016-11-20

    Amylose grafted poly(acrylic acid) (Am-g-PAA) was synthesized by graft copolymerization of amylose with acrylic acid. The structure of Am-g-PAA was confirmed by (1)H NMR and FT-IR spectra. The morphology, crystallinity and thermal properties of amylose and Am-g-PAA were investigated by SEM, XRD and TGA, respectively. The highest degree of substitution (DS) of carboxyl group was 1.96 which was obtained after reacted for 1h at 60°C. Acrylic acid to anhydroglucose mole ratio for DS was 19.81. It was found that a large number of carboxyl groups were grafted on the backbone of amylose. It was also found that ammonia adsorption capacity of amylose increased by grafting poly(acrylic acid) on the backbone of amylose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. New composite systems on the base of polyethylene porous films covered by polypyrrole and polyacrylic acid

    Czech Academy of Sciences Publication Activity Database

    Elyashevich, G. K.; Rosova, E. Yu.; Andreeva, D. V.; Polotskaya, G. A.; Trchová, Miroslava; Pientka, Zbyněk

    2005-01-01

    Roč. 97, č. 4 (2005), s. 1410-1417 ISSN 0021-8995 R&D Projects: GA ČR GA202/02/0698 Grant - others:Russian Foundation of Basic Research(RU) 01-03-32290; Russian Foundation of Basic Research(RU) 04-03-32229 Institutional research plan: CEZ:AV0Z40500505 Keywords : porous polyethylene films * polypyrrole * polyacrylic acid Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.072, year: 2005

  16. Endoscopic treatment of vesicoureteral reflux with polyacrylate polyalcohol copolymer and dextranomer/hyaluronic acid in adults

    OpenAIRE

    Turk,Akif; Selimoglu,Ahmet; Demir,Kadir; Celik,Osman; Saglam,Erkin; Tarhan,Fatih

    2014-01-01

    Purpose Aim of this study is to examine the effectiveness of dextranomer/hyaluronic acid copolymer and polyacrylate polyalcohol copolymer in endoscopic treatment of vesicoureteral reflux disease in adult patients with and without chronic renal failure. Materials and Methods Thirty two patients (12 female, 20 male) with a total of 50 renal units were treated for vesicoureteral reflux. There were 26 (81%) chronic renal failure patients. The success of treatment was evaluated by voiding cyst...

  17. Current state and future prospect on polyacrylic scid based superabsorbent polymer. Polyacrylic sankei kokyusuisei polymer no genjo to kongo no tenkai

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, T.; Kobayashi, H. (Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka (Japan))

    1991-10-01

    A polymer that absorbs water vigorously and swells is called a superabsorbent polymer (SAP). This peculiar character has developed diverse applications including paper diapers, and its production showed a rapid growth to more than 200,000 tons (worldwide) in the past decade. This paper introduces the development and applications for polyacrylic acid-based SAP, a representative SAP. The research began in the U.S.A. in about the year 1976. For its characteristics suitable for paper diapers and cost advantages, the acrylate-based SAP has become accounting for the most at the present. The polymer is manufactured by polymerzation crosslinking of acrylic acid or sodium acrylate to produce polyacrylate crosslinked bodies. The polymer swells to 100 to 1000 times in deionized water, and turns into a hydrogel. Unlike a sponge, the swelled gel will not ooze out water even if pressed. However, its absorption performance decreases extremely in electrolytic aqueous solution, which is a problem for the future development. 17 refs., 5 figs., 7 tabs.

  18. Mass spectrometric identification of an azobenzene derivative produced by smectite-catalyzed conversion of 3-amino-4-hydroxyphenylarsonic acid.

    Science.gov (United States)

    Wershaw, R L; Rutherford, D W; Rostad, C E; Garbarino, J R; Ferrer, Imma; Kennedy, K R; Momplaisir, Georges-Marie; Grange, Andrew

    2003-05-01

    The compound 3-amino-4-hydroxyphenylarsonic acid (3-amino-HPAA) reacts with smectite to form a soluble azobenzene arsonic acid compound. This reaction is of particular interest because it provides a possible mechanism for the formation of a new type of arsenic compound in natural water systems. 3-Amino-HPAA is a degradation product excreted by chickens that are fed rations amended with roxarsone. Roxarsone is used to control coccidial intestinal parasites in most of the broiler chickens grown in the United States. The structure of the azobenzene arsonic acid compound was first inferred from negative-ion and positive-ion low-resolution mass-spectrometric analyses of the supernatant of the smectite suspension. Elemental composition of the parent ion determined by high-resolution positive-ion mass spectrometric measurements was consistent with the proposed structure of the azobenzene arsonic acid compound.

  19. Mass spectrometric identification of an azobenzene derivative produced by smectite-catalyzed conversion of 3-amino-4-hydroxyphenylarsonic acid

    Science.gov (United States)

    Wershaw, R. L.; Rutherford, D.W.; Rostad, C.E.; Garbarino, J.R.; Ferrer, I.; Kennedy, K.R.; Momplaisir, G.-M.; Grange, A.

    2003-01-01

    The compound 3-amino-4-hydroxyphenylarsonic acid (3-amino-HPAA) reacts with smectite to form a soluble azobenzene arsonic acid compound. This reaction is of particular interest because it provides a possible mechanism for the formation of a new type of arsenic compound in natural water systems. 3-Amino-HPAA is a degradation product excreted by chickens that are fed rations amended with roxarsone. Roxarsone is used to control coccidial intestinal parasites in most of the broiler chickens grown in the United States. The structure of the azobenzene arsonic acid compound was first inferred from negative-ion and positive-ion low-resolution mass-spectrometric analyses of the supernatant of the smectite suspension. Elemental composition of the parent ion determined by high-resolution positive-ion mass spectrometric measurements was consistent with the proposed structure of the azobenzene arsonic acid compound. Published by Elsevier Science B.V.

  20. Synthetic gene involving azobenzene-tethered T7 promoter for the photocontrol of gene expression by visible light.

    Science.gov (United States)

    Kamiya, Yukiko; Takagi, Toshiki; Ooi, Hideaki; Ito, Hiroshi; Liang, Xingguo; Asanuma, Hiroyuki

    2015-04-17

    In the present study, we demonstrate photoregulation of gene expression in a cell-free translation system from a T7 promoter containing two azobenzene derivatives at specific positions. As photoswitches, we prepared azobenzene-4'-carboxlyic acid (Azo) and 2,6-dimethylazobenzene-4'-carboxylic acid (DM-Azo), which were isomerized from trans to cis upon irradiation with UV light (λ azobenzene-4'-carobxylic acid (S-DM-Azo), which were cis-isomerized by irradiation with 400 nm visible light. Expression of green fluorescent protein from a promoter modified with S-Azo or S-DM-Azo could be induced by harmless visible light whereas that from a promoter modified with Azo or DM-Azo was induced only by UV light (340-360 nm). Thus, efficient photoregulation of green fluorescent protein production was achieved in a cell-free translation system with visible light without photodamage.

  1. UV/Vis Spectroscopy Studies of the Photoisomerization Kinetics in Self-Assembled Azobenzene-Containing Adlayers.

    Science.gov (United States)

    Krekiehn, N R; Müller, M; Jung, U; Ulrich, S; Herges, R; Magnussen, O M

    2015-08-04

    Direct comparative studies of the photoisomerization of azobenzene derivatives in self-assembled adlayers on Au and as free molecules in dichloromethane solution were performed using UV/vis spectroscopy. For all studied systems a highly reversible trans-cis isomerization in the adlayer is observed. Quantitative studies of the absorbance changes and photoisomerization kinetics reveal that in azobenzenes mounted as freestanding vertical groups on the surface via triazatriangulene-based molecular platforms photoswitching is nearly uninhibited by the local environment in the adlayer. The blue-shift of the π-π* transition in adlayers of these molecules is in good agreement with theoretical studies of the effect of excitonic coupling between the molecules. In contrast, in azobenzene-containing thiol self-assembled monolayers the fraction of photoswitching molecules and the photoisomerization kinetics are significantly reduced compared to free molecules in solution.

  2. Manipulation and assembly of small objects in liquid crystals by dynamical disorganizing effect of push-pull-azobenzene-dye.

    Science.gov (United States)

    Kurihara, Seiji; Ohta, Kazuhiro; Oda, Takahiro; Izumi, Ryo; Kuwahara, Yutaka; Ogata, Tomonari; Kim, Sun-Nam

    2013-01-01

    The phase transition of a nematic liquid crystal containing a push-pull azobenzene dye could be induced efficiently during irradiation with visible light. The dynamical disorganizing effect of the push-pull azobenzene dye on the liquid crystalline order through its trans-cis-trans photoisomerizaion cycle under visible light was contributed to the efficient phase transition. Then, the effects of light irradiation on the motion of small objects dispersed in the liquid crystals containing the push-pull azobenzene were explored, and the manipulation and assembly of those objects were successfully achieved in the nematic phase but also in the smectic phase. The combination of the photo-controlled dynamical change in the liquid crystalline order and the intrinsic self-assembly property of a liquid crystal is promising for use in technologies that require not only the organization of small objects but also the photo-driving of nano- and micro-sized mechanical materials.

  3. Manipulation and assembly of small objects in liquid crystals by dynamical disorganizing effect of push-pull-azobenzene-dye

    Science.gov (United States)

    Kurihara, Seiji; Ohta, Kazuhiro; Oda, Takahiro; Izumi, Ryo; Kuwahara, Yutaka; Ogata, Tomonari; Kim, Sun-Nam

    2013-01-01

    The phase transition of a nematic liquid crystal containing a push-pull azobenzene dye could be induced efficiently during irradiation with visible light. The dynamical disorganizing effect of the push-pull azobenzene dye on the liquid crystalline order through its trans-cis-trans photoisomerizaion cycle under visible light was contributed to the efficient phase transition. Then, the effects of light irradiation on the motion of small objects dispersed in the liquid crystals containing the push-pull azobenzene were explored, and the manipulation and assembly of those objects were successfully achieved in the nematic phase but also in the smectic phase. The combination of the photo-controlled dynamical change in the liquid crystalline order and the intrinsic self-assembly property of a liquid crystal is promising for use in technologies that require not only the organization of small objects but also the photo-driving of nano- and micro-sized mechanical materials. PMID:23835605

  4. High-Performance Li-Ion Capacitor Based on an Activated Carbon Cathode and Well-Dispersed Ultrafine TiO2Nanoparticles Embedded in Mesoporous Carbon Nanofibers Anode.

    Science.gov (United States)

    Yang, Cheng; Lan, Jin-Le; Liu, Wen-Xiao; Liu, Yuan; Yu, Yun-Hua; Yang, Xiao-Ping

    2017-06-07

    A novel Li-ion capacitor based on an activated carbon cathode and a well-dispersed ultrafine TiO 2 nanoparticles embedded in mesoporous carbon nanofibers (TiO 2 @PCNFs) anode was reported. A series of TiO 2 @PCNFs anode materials were prepared via a scalable electrospinning method followed by carbonization and a postetching method. The size of TiO 2 nanoparticles and the mesoporous structure of the TiO 2 @PCNFs were tuned by varying amounts of tetraethyl orthosilicate (TEOS) to increase the energy density and power density of the LIC significantly. Such a subtle designed LIC displayed a high energy density of 67.4 Wh kg -1 at a power density of 75 W kg -1 . Meanwhile, even when the power density was increased to 5 kW kg -1 , the energy density can still maintain 27.5 Wh kg -1 . Moreover, the LIC displayed a high capacitance retention of 80.5% after 10000 cycles at 10 A g -1 . The outstanding electrochemical performance can be contributed to the synergistic effect of the well-dispersed ultrafine TiO 2 nanoparticles, the abundant mesoporous structure, and the conductive carbon networks.

  5. Co9 S8 Nanoparticles-Embedded N/S-Codoped Carbon Nanofibers Derived from Metal-Organic Framework-Wrapped CdS Nanowires for Efficient Oxygen Evolution Reaction.

    Science.gov (United States)

    Wu, Lan-Lan; Wang, Qi-Shun; Li, Jian; Long, Yan; Liu, Yu; Song, Shu-Yan; Zhang, Hong-Jie

    2018-04-17

    Metal-organic frameworks (MOFs) with tunable compositions and morphologies are recognized as efficient self-sacrificial templates to achieve function-oriented nanostructured materials. Moreover, it is urgently needed to develop highly efficient noble metal-free oxygen evolution reaction (OER) electrocatalysts to accelerate the development of overall water splitting green energy conversion systems. Herein, a facile and cost-efficient strategy to synthesize Co 9 S 8 nanoparticles-embedded N/S-codoped carbon nanofibers (Co 9 S 8 /NSCNFs) as highly active OER catalyst is developed. The hybrid precursor of core-shell ZIF-wrapped CdS nanowires is first prepared and then leads to the formation of uniformly dispersed Co 9 S 8 /N, S-codoped carbon nanocomposites through a one-step calcination reaction. The optimal Co 9 S 8 /NSCNFs-850 is demonstrated to possess excellent electrocatalytic performance for OER in 1.0 m KOH solution, affording a low overpotential of 302 mV to reach the current density of 10 mA cm -2 , a small Tafel slope of 54 mV dec -1 , and superior long-term stability for 1000 cyclic voltammetry cycles. The favorable results raise a concept of exploring more MOF-based nanohybrids as precursors to induce the synthesis of novel porous nanomaterials as non-noble-metal electrocatalysts for sustainable energy conversion. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Photo-induced morphological winding and unwinding motion of nanoscrolls composed of niobate nanosheets with a polyfluoroalkyl azobenzene derivative

    Science.gov (United States)

    Nabetani, Yu; Takamura, Hazuki; Uchikoshi, Akino; Hassan, Syed Zahid; Shimada, Tetsuya; Takagi, Shinsuke; Tachibana, Hiroshi; Masui, Dai; Tong, Zhiwei; Inoue, Haruo

    2016-06-01

    Photo-responsive nanoscrolls can be successfully fabricated by mixing a polyfluoroalkyl azobenzene derivative and a niobate nanosheet, which is exfoliated from potassium hexaniobate. In this study, we have found that the photo-responsive nanoscroll shows a morphological motion of winding and unwinding, which is basically due to the nanosheet sliding within the nanoscroll, by efficient photo-isomerization reactions of the intercalated azobenzene in addition to the interlayer distance change of the nanoscrolls. The relative nanosheet sliding of the nanoscroll is estimated to be ca. 280 nm from the AFM morphology analysis. The distance of the sliding motion is over 20 times that of the averaged nanosheet sliding in the azobenzene/niobate hybrid film reported previously. Photo-responsive nanoscrolls can be expected to be novel photo-activated actuators and artificial muscle model materials.Photo-responsive nanoscrolls can be successfully fabricated by mixing a polyfluoroalkyl azobenzene derivative and a niobate nanosheet, which is exfoliated from potassium hexaniobate. In this study, we have found that the photo-responsive nanoscroll shows a morphological motion of winding and unwinding, which is basically due to the nanosheet sliding within the nanoscroll, by efficient photo-isomerization reactions of the intercalated azobenzene in addition to the interlayer distance change of the nanoscrolls. The relative nanosheet sliding of the nanoscroll is estimated to be ca. 280 nm from the AFM morphology analysis. The distance of the sliding motion is over 20 times that of the averaged nanosheet sliding in the azobenzene/niobate hybrid film reported previously. Photo-responsive nanoscrolls can be expected to be novel photo-activated actuators and artificial muscle model materials. Electronic supplementary information (ESI) available: Fig. S1. Photo-isomerization reaction of nanoscrolls. See DOI: 10.1039/c6nr02177h

  7. Tuning the collective switching behavior of azobenzene/Au hybrid materials: flexible versus rigid azobenzene backbones and Au(111) surfaces versus curved Au nanoparticles.

    Science.gov (United States)

    Liu, Chunyan; Zheng, Dong; Hu, Weigang; Zhu, Qiang; Tian, Ziqi; Zhao, Jun; Zhu, Yan; Ma, Jing

    2017-11-09

    The combination of photo-responsive azobenzene (AB) and biocompatible Au nanomaterials possesses potential applications in diverse fields such as biosensing and thermotherapy. To explore the influence of azobenzene moieties and Au substrates on the collective switching behavior, two different azobenzene derivatives (rigid biphenyl-controlled versus flexible alkoxyl chain-linked) and three different Au substrates (a planar Au(111) surface, curved Au 102 (SR) 44 and Au 25 (SR) 18 clusters) were chosen to form six Au@AB combinations. A reactive molecular dynamics (RMD) model considering both the torsion and inversion path was implemented to simulate the collective photo-induced cis-to-trans switching process of AB monolayers on Au substrates. The major driving force for isomerization is demonstrated to be the torsion of the C-N[double bond, length as m-dash]N-C dihedral angle, in addition to the minor contribution from an inversion pathway. The isomerization process can be divided into the preliminary conformation switching stage and the later relaxation stage, in which a gradual self-organization is observed for 40 ps. The Au substrate affects the packing structure of the AB monolayer, while the choice of different kinds of ABs tunes the intermolecular interaction in the monolayer. Flexible alkoxyl-linked F-AB may achieve much faster conversion on Au clusters than on the surface. For rigid biphenyl-based R-AB anchored on Au nanoparticles (AuNPs), a competitive torsion between the biphenyl and C-N[double bond, length as m-dash]N-C dihedral may delay the C-N[double bond, length as m-dash]N-C dihedral torsion and the following isomerization process. After the R-AB molecules were anchored on the Au(111) surface, the strong π-π stacking between biphenyl units accelerates the collective isomerization process. A curvature-dependent effect is observed for R-AB SAMs on different-sized substrates. The cooperation between functional AB monolayers and the Au substrate

  8. Photo-driven directional motion of droplets on the surface of a liquid crystal doped with photochromic azobenzene: theory

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Kazuhiko; Tachiya, M [National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565 (Japan)

    2005-12-14

    Recently, photo-driven directional motion of glycerol droplets on the surface of a liquid crystal doped with photochromic azobenzene derivatives has been reported. We present a theoretical model for this phenomenon. The motion of droplets is induced by a gradient in surface tension, which is produced by the combined effect of photo-isomerization and diffusion of surface azobenzenes. The theoretical relation between the surface tension and the surface concentration of cis isomers is proposed. The experimentally observed depletion zone of droplets can be reasonably well explained in terms of diffusion of droplets in the presence of the gradient in the surface tension.

  9. Holographic recording of surface relief gratings in stilbene azobenzene derivatives at 633 nm

    Energy Technology Data Exchange (ETDEWEB)

    Ozols, A; Saharov, D; Kokars, V; Kampars, V; Maleckis, A; Mezinskis, G; Pludons, A, E-mail: aozols@latnet.l [Faculty of Material Science and Applied Chemistry, Riga Technical University, Azenes iela 14/24, LV-1048, Riga (Latvia)

    2010-11-01

    Holographic recording in stilbene azobenzene derivatives by He-Ne 633 nm laser light has been experimentally studied. It was found that surface relief gratings (SRG) can be recorded by red light. Usually shorter wavelengths are used to induce the trans-cis photo-isomerization in organic materials. SRG with 2 {mu}m period and an amplitude of 130 nm have been recorded with 0.88 W/cm{sup 2} light in about 20 minutes in amorphous films of 3-(4-(bis(2-(trityloxy)ethyl)amino)phenyl)-2-(4-(2-bromo-4-nitrophenyl) diazenyl)phenyl)acrylonitrile spin-coated on glass substrates. Self-diffraction efficiency up to 17.4% and specific recording energy down to 114 J/(cm{sup 2}%) were measured. The recorded SRG were stable as proved by subsequent AFM measurements. The photo-induced changes in absorption spectra did not reveal noticeable signs of trans-cis transformations. Rather, spectrally uniform bleaching of the films took place. We conclude that a photothermally stimulated photo-destruction of chromophores is responsible for the SRG recording. The recording of stable SRG in the stilbene azobenzene derivatives we studied is accompanied by the recording of relaxing volume-phase gratings due to the photo-orientation of chromophores by the linearly polarized recording light. It should also be noted that holographic recording efficiency in stilbene azobenzene derivatives exhibit an unusual non-monotonic sample storage-time dependence presumably caused by the peculiarities of structural relaxation of the films.

  10. Proof for the concerted inversion mechanism in the trans-->cis isomerization of azobenzene using hydrogen bonding to induce isomer locking.

    Science.gov (United States)

    Bandara, H M Dhammika; Friss, Tracey R; Enriquez, Miriam M; Isley, William; Incarvito, Christopher; Frank, Harry A; Gascon, Jose; Burdette, Shawn C

    2010-07-16

    Azobenzene undergoes reversible cistrans photoisomerization upon irradiation. Substituents often change the isomerization behavior of azobenzene, but not always in a predictive manner. The synthesis and properties of three azobenzene derivatives, AzoAMP-1, -2, and -3, are reported. AzoAMP-1 (2,2'-bis[N-(2-pyridyl)methyl]diaminoazobenzene), which possesses two aminomethylpyridine groups ortho to the azo group, exhibits minimal trans-->cis photoisomerization and extremely rapid cis-->trans thermal recovery. AzoAMP-1 adopts a planar conformation in the solid state and is much more emissive (Phi(fl) = 0.003) than azobenzene when frozen in a matrix of 1:1 diethylether/ethanol at 77 K. Two strong intramolecular hydrogen bonds between anilino protons and pyridyl and azo nitrogen atoms are responsible for these unusual properties. Computational data predict AzoAMP-1 should not isomerize following S(2)azobenzene. Confirmation that the AzoAMP-1 and -2 retain excited state photochemistry analogous to azobenzene was provided by ultrafast transient absorption spectroscopy of both compounds in the visible spectral region. The isomerization of azobenzene occurs via a concerted inversion mechanism where both aryl rings must adopt a collinear arrangement prior to inversion. The hydrogen bonding in AzoAMP-1 prevents both aryl rings from adopting this conformation. To further probe the mechanism of isomerization, AzoAMP-3, which has only one anilinomethylpyridine substituent for hydrogen bonding, was prepared and characterized. AzoAMP-3 does not isomerize and exhibits emission (Phi(fl) = 0.0008) at 77 K. The hydrogen bonding motif in AzoAMP-1 and AzoAMP-3 provides the first example where inhibiting the concerted inversion pathway in an azobenzene prevents isomerization. These molecules provide important supporting evidence for the spectroscopic and computational studies aimed at elucidating the isomerization mechanism in azobenzene.

  11. trans-cis photoisomerization of azobenzene-conjugated dithiolato-bipyridine platinum(II) complexes: extension of photoresponse to longer wavelengths and photocontrollable tristability.

    Science.gov (United States)

    Sakamoto, Ryota; Kume, Shoko; Sugimoto, Manabu; Nishihara, Hiroshi

    2009-01-01

    Azobenzene derivatives modified with dithiolato-bipyridine platinum(II) complexes were synthesized, revealing their highly extended photoresponses to the long wavelength region as well as unique photocontrollable tristability. The absorptions of trans-1 and trans-2 with one azobenzene group on the dithiolene and bipyridine ligands, respectively, cover the range from 300 to 700 nm. These absorptions are ascribed, by means of time-dependent (TD)DFT calculations, to transitions from dithiolene(pi) to bipyridine(pi*), namely, interligand charge transfer (CT), pi-pi*, and n-pi* transitions of the azobenzene unit, and pi-pi* transitions of the bipyridine ligand. In addition, only trans-1 shows distinctive electronic bands, assignable to transitions from the dithiolene(pi) to azobenzene(pi*), defined as intraligand CT. Complex 1 shows photoisomerization behavior opposite to that of azobenzene: trans-to-cis and cis-to-trans conversions proceed with 405 and 312 nm irradiation, which correspond to excitation with the intraligand CT, and pi-pi* bands of the azobenzene and bipyridine units, respectively. In contrast, complex 2 shows photoisomerization similar to that of azobenzene: trans-to-cis and cis-to-trans transformations occur with 365 and 405 nm irradiation, respectively. Irradiation at 578 nm, corresponding to excitation of the interligand CT transitions, results in cis-to-trans conversion of both 1 and 2, which is the longest wavelength ever reported to effect the photoisomerization of the azobenzene group. The absorption and photochromism of 4, which has azobenzene groups on both the dithiolato and bipyridine ligands, have characteristics quite similar to those of 1 and 2, which furnishes 4 with photocontrollable tristability in a single molecule using light at 365, 405, and 578 nm. We also clarified that 1 and 2 have high photoisomerization efficiencies, and good thermal stability of the cis forms. Complexes 3 and 5 have almost the identical photoresponse to those

  12. Biphotonic holographic gratings in azobenzene polyesters: Surface relief phenomena and polarization effects

    DEFF Research Database (Denmark)

    Sánchez, C.; Alcalá, R.; Hvilsted, Søren

    2000-01-01

    Biphotonic holographic gratings have been recorded in a side-chain azobenzene liquid crystalline polyester using a blue incoherent source and a He-Ne laser. Intensity gratings and the appearance of surface relief have been observed when two linearly polarized beams from a He-Ne laser are made...... to interfere on a film illuminated with blue light. Polarized holographic gratings are also created with two orthogonally circularly polarized He-Ne beams. All these gratings are stable in darkness but can be erased with blue light. (C) 2000 American Institute of Physics....

  13. High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester

    DEFF Research Database (Denmark)

    Sánchez, C; Alcalá, R; Hvilsted, Søren

    2001-01-01

    High diffraction efficiencies have been achieved with polarization gratings recorded in thin films of an azobenzene side-chain liquid crystalline polyester by means of biphotonic processes. Efficiency values up to 30% have been reached after an induction period of 300 s and subsequent evolution...... with the sample in darkness. These values are at least two orders of magnitude higher than those previously reported for biphotonic recording. The gratings can be erased with unpolarized blue light and partial recovery of the diffraction efficiency has been observed after the erasure process when the sample...... is kept in darkness. Red light illumination of the erased film increases the recovered efficiency value and the recovery rate....

  14. Influence of UV irradiation on the blue and red light photoinduced processes in azobenzene polyesters

    DEFF Research Database (Denmark)

    Rodríguez, F.J.; Sánchez, C.; Villacampa, B.

    2004-01-01

    Birefringence induced in a series of liquid crystalline side-chain azobenzene polyesters with different substituent groups was investigated under irradiation with 488 and 633 nm linearly polarized lights. Two different initial conditions have been used: the effect of a previous irradiation with UV...... light irradiation creates a high concentration of cis isomers and breaks the aggregates, but they are formed again after a few days in dark at RT. Orientation of the chromophores perpendicular to the polarization of the 488 nm light and parallel to the polarization of the 633 nm light was confirmed...

  15. Correlation between substituent constants and hyperpolarizabilities for di-substituted trans-azobenzenes.

    Science.gov (United States)

    Lin, Tsung-Yi; Chaudhari, Ajay; Lee, Shyi-Long

    2013-02-01

    Nonlinear optical properties of a series of disubstituted trans-azobenzenes were studied. The structures were fully optimized by B3LYP/6-31+G* and both static polarizabilities and hyperpolarizabilities were then calculated by the derivative method. In order to show the relationships between dipole moments, (hyper)polarizabilities and the structures, three kinds of substituent constants were applied to correlate with both ground state dipole moment and hyperpolarizabilities. Both physical properties have a satisfactory correlation with substituent constants Σσ(+/-) and bond length alternation. Overall, the electronic excitation contribution to the hyperpolarizabilities is rationalized in terms of the two-level model.

  16. Gel formation and photoactive properties of azobenzene-containing polymer in liquid crystal mixture

    Czech Academy of Sciences Publication Activity Database

    Bobrovsky, A.; Shibaev, V.; Hamplová, Věra; Kašpar, Miroslav; Glogarová, Milada

    2010-01-01

    Roč. 288, 14-15 (2010), 1375-1384 ISSN 0303-402X R&D Projects: GA AV ČR IAA100100911; GA AV ČR(CZ) GA202/09/0047; GA MŠk(CZ) OC10006 Grant - others:EU(XE) COST D35 WG 0013-05 Institutional research plan: CEZ:AV0Z10100520 Keywords : gel * azobenzene-containing polymer * photoisomerization * nematic phase Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.443, year: 2010

  17. Optical and Physical Applications of Photocontrollable Materials: Azobenzene-Containing and Liquid Crystalline Polymers

    Directory of Open Access Journals (Sweden)

    Takashi Fukuda

    2012-01-01

    Full Text Available Photocontrol of molecular alignment is an exceptionally-intelligent and useful strategy. It enables us to control optical coefficients, peripheral molecular alignments, surface relief structure, and actuation of substances by means of photoirradiation. Azobenzene-containing polymers and functionalized liquid crystalline polymers are well-known photocontrollable materials. In this paper, we introduce recent applications of these materials in the fields of mechanics, self-organized structuring, mass transport, optics, and photonics. The concepts in each application are explained based on the mechanisms of photocontrol. The interesting natures of the photocontrollable materials and the conceptual applications will stimulate novel ideas for future research and development in this field.

  18. Evidence of two distinct mechanisms driving photoinduced matter motion in thin films containing azobenzene derivatives.

    Science.gov (United States)

    Fabbri, F; Garrot, D; Lahlil, K; Boilot, J P; Lassailly, Y; Peretti, J

    2011-02-17

    Photoinduced matter motion in thin films containing azobenzene derivatives grafted to a polymer backbone is investigated by means of near-field probe microscopy. We evidence the existence of two different photomechanical processes which produce mass transport. One is governed by the light intensity pattern and the other by the light polarization pattern. The intensity-driven mechanism is found to critically depend on the polymer matrix while the polarization-driven mechanism occurs with almost the same efficiency in different materials. Depending on the relationship between the polarization and intensity patterns, the two processes may either compete or cooperate giving rise to a nontrivial directional mass transport process.

  19. Second-order nonlinear optical properties of mexylaminotriazine-functionalized glass-forming azobenzene derivatives

    Science.gov (United States)

    Umezawa, Hirohito; Jackson, Matthew; Lebel, Olivier; Nunzi, Jean-Michel; Sabat, Ribal Georges

    2016-10-01

    The second-order nonlinear optical coefficients of thin films of mexylaminotriazine-functionalized azobenzene molecular glass derivatives were measured using second harmonic generation. The thin films were poled using a custom corona poling set-up and the second harmonic light from a pulsed 1064-nm laser was detected. Four out of the six tested compounds showed optical nonlinearity and a maximum coefficient of 75 pm/V was obtained. The time dependence of the nonlinear coefficients was studied under ambient light and under dark; the second harmonic generation intensity stayed constant for thiazole-containing derivatives while a significant decay was measured for the other compounds.

  20. Island formation and manipulation of prochiral azobenzene derivatives on Au(111)

    Science.gov (United States)

    Selvanathan, Sofia; Peters, Maike V.; Hecht, Stefan; Grill, Leonhard

    2012-09-01

    Based on previous work with very similar azobenzene derivatives, this study of para-TBA (2,2‧,5,5‧-tetra-tert-butylazobenzene) molecules aims to identify single intact molecules and investigate their adsorption behavior on a Au(111) surface. The molecules are found to be mobile on the surface at the deposition temperature, leading to highly ordered and enantiomerically pure molecular islands. Voltage pulses between the surface and the tip of a scanning tunneling microscope are used to change the chirality of the adsorbate molecules. On the Cu(111) surface instead, single molecules are found on the terraces, which points to a stronger molecule-substrate interaction.

  1. Surface relief grating formation on a single crystal of 4-(dimethylamino)azobenzene

    International Nuclear Information System (INIS)

    Nakano, Hideyuki; Tanino, Takahiro; Shirota, Yasuhiko

    2005-01-01

    Surface relief grating (SRG) formation on an organic single crystal by irradiation with two coherent laser beams has been demonstrated by using 4-(dimethylamino)azobenzene (DAAB). It was found that the SRG formation was greatly depending upon both the coordination of the crystal and the polarization of the writing beams. The dependence of the polarization of writing beams on the SRG formation using the single crystal was found to be quite different from that reported for amorphous polymers and photochromic amorphous molecular materials, suggesting that the mechanism of the SRG formation on the organic crystal is somewhat different from that on amorphous materials

  2. Synthesis of Novel Amphiphilic Azobenzenes and X-ray Scattering Studies of Their Langmuir Monolayers

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Kjær, Kristian; Breiby, Dag Werner

    2008-01-01

    . At the air-water interface, the amphiphilic azobenzenes form noncrystalline but stable Langmuir films that display an unusual reversible monolayer collapse close to 35 mN/m. The structures and phase transitions were studied by X-ray reflectivity (XR) and grazing-incidence X-ray diffraction, both utilizing...... synchrotron radiation. Compression beyond the collapse point does not change the XR data, showing that the film is unchanged at the molecular level, even at areas less than half of that of the collapse. This leads to the conclusion that few macroscopic collapse sites are responsible for reversibly removing...

  3. Azobenzene Modified Imidacloprid Derivatives as Photoswitchable Insecticides: Steering Molecular Activity in a Controllable Manner

    Science.gov (United States)

    Xu, Zhiping; Shi, Lina; Jiang, Danping; Cheng, Jiagao; Shao, Xusheng; Li, Zhong

    2015-10-01

    Incorporating the photoisomerizable azobenzene into imidacloprid produced a photoswitchable insecticidal molecule as the first neonicotinoid example of remote control insecticide performance with spatiotemporal resolution. The designed photoswitchable insecticides showed distinguishable activity against Musca both in vivo and in vitro upon irradiation. Molecular docking study further suggested the binding difference of the two photoisomers. The generation of these photomediated insecticides provides novel insight into the insecticidal activity facilitating further investigation on the functions of insect nicotinic acetylcholine receptors and opens a novel way to control and study insect behavior on insecticide poisoning using light.

  4. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.

    Science.gov (United States)

    Kolpak, Alexie M; Grossman, Jeffrey C

    2011-08-10

    Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. However, large-scale adoption requires enhanced energy storage capacity and thermal stability. Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. Our work also demonstrates that the inclusion of nanoscale templates is an effective strategy for design of highly cyclable, thermally stable, and energy-dense solar thermal fuels.

  5. Measurement of respirable superabsorbent polyacrylate (SAP) dust by ethanol derivatization using gas chromatography-mass spectrometry (GC-MS) detection.

    Science.gov (United States)

    McCormack, Paul; Lemmo, John S; Macomber, Margaret; Holcomb, Mark L; Lieckfield, Robert

    2011-04-01

    Superabsorbent polyacrylate (SAP) is an important industrial chemical manufactured primarily as sodium polyacrylate but occasionally as potassium salt. It has many applications owing to its intrinsic physical property of very high water absorption, which can be more than 100 times it own weight. SAP is commonly used in disposable diapers and feminine hygiene products and is known by a number of synonyms-sodium polyacrylate, superabsorbent polyacrylate (SAP), polyacrylate absorbent (PA), and superabsorbent material (SAM). Germany and The Netherlands have adopted a nonbinding scientific guideline value 0.05 mg/m³ (8-hr time-weighted average, TWA) as the maximum allowable workplace concentration for the respirable dust of SAP (SAP present in reference samples. The accuracy of the method, as determined by comparison with sodium analysis of known reference samples, was greater than 80% over the study range of 5-50 μg of SAP dust. The lower reporting limit of the method is 3.0 μg of SAP per sample, which is equivalent to 3 (μg/m³) for an 8-hr sampling period at the recommended flow rate of 2.2 L/min.

  6. MASS SPECTROMETRIC IDENTIFICATION OF AN AZOBENZENE DERIVATIVE PRODUCED BY SMECTITE-CATALYZED CONVERSION OF 3-AMINO-4-HYDROXPHENYLARSONIC ACID

    Science.gov (United States)

    We report here the first evidence of a possible mechanism for the formation of an azobenzene arsonic acid compound in the environment The compound was formed when 3-amino-4-hydroxyphenylarsonic acid (3-amino-HPAA) was added to aqueous suspensions of smectite clay The 3-amino-HPAA...

  7. An analysis of the anisotropic and topographic gratings in a side-chain liquid crystalline azobenzene polyester

    DEFF Research Database (Denmark)

    Holme, N.C.R.; Nikolova, L.; Ramanujam, P.S.

    1997-01-01

    We have examined in detail the formation of surface relief structures in azobenzene polyesters formed by polarization holography with orthogonally circularly polarized laser beams, We show that it is possible to separate the contribution to the diffraction efficiency into an anisotropic part and ...

  8. Molecular design of ¿super¿ hydrogelators: understanding the gelation process of azobenzene-based sugar derivatives in water

    NARCIS (Netherlands)

    Kobayashi, Hideki; Friggeri, A.; Koumoto, Kazuya; Amaike, Masato; Shinkai, Seiji; Reinhoudt, David

    2002-01-01

    As an attempt to rationally design aqueous organogelators, a bolaamphiphilic azobenzene derivative (1) bearing two sugar groups was synthesized. Compound 1 formed a gel in water even at concentrations as low as 0.05 wt % (0.65 mM). Spectroscopic studies and electron-micrographic observations have

  9. Role of Solvent and Effect of Substituent on Azobenzene Isomerization by Using Room-Temperature Ionic Liquids as Reaction Media.

    Science.gov (United States)

    Angelini, Guido; Canilho, Nadia; Emo, Mélanie; Kingsley, Molly; Gasbarri, Carla

    2015-08-07

    The effects of a para substituent, as the electron-donating -OCH3 and -OtBu groups and the electron-withdrawing -Br and -F atoms, on azobenzene isomerization have been investigated in a series of imidazolium ionic liquids (BMIM PF6, BMIM BF4, BMIM Tf2N, EMIM Tf2N, BM2IM Tf2N, and HMIM Tf2N). The thermal cis-trans conversion tends to be improved in the presence of the substituent, as pointed out by the first-order rate constants measured at 25 °C. Both the rotation and the inversion mechanisms occur in BMIM Tf2N, EMIM Tf2N, and HMIM Tf2N, as highlighted by typical V-shape Hammett plots, but only rotation takes place in BMIM PF6, BMIM BF4, and BM2IM Tf2N. The possible interactions between the cation and the anion of the solvent and both the isomers of the azobenzene derivatives have been studied by small-wide-angle X-ray scattering (SWAXS). The calculated cis population in the photostationary state and the hardness parameter η of the trans isomer show that azobenzene and F-azobenzene are the less reactive molecules for the trans-cis conversion in all the investigated ionic liquids.

  10. Light and Temperature as Dual Stimuli Lead to Self-Assembly of Hyperbranched Azobenzene-Terminated Poly(N-isopropylacrylamide

    Directory of Open Access Journals (Sweden)

    Wenyan Huang

    2016-05-01

    Full Text Available Hyperbranched poly(N-isopropylacrylamides (HBPNIPAMs end-capped with different azobenzene chromophores (HBPNIPAM-Azo-OC3H7, HBPNIPAM-Azo-OCH3, HBPNIPAM-Azo, and HBPNIPAM-Azo-COOH were successfully synthesized by atom transfer radical polymerization (ATRP of N-isopropylacrylamide using different azobenzene-functional initiators. All HBPNIPAMs showed a similar highly branched structure, similar content of azobenzene chromophores, and similar absolute weight/average molecular weight. The different azobenzene structures at the end of the HBPNIPAMs exhibited reversible trans-cis-trans isomerization behavior under alternating UV and Vis irradiation, which lowered the critical solution temperature (LCST due to different self-assembling behaviors. The spherical aggregates of HBPNIPAM-Azo-OC3H7 and HBPNIPAM-Azo-OCH3 containing hydrophobic para substituents either changed to bigger nanorods or increased in number, leading to a change in LCST of −2.0 and −1.0 °C, respectively, after UV irradiation. However, the unimolecular aggregates of HBPNIPAM-Azo were unchanged, while the unstable multimolecular particles of HBPNIPAM-Azo-COOH end-capped with strongly polar carboxyl groups partly dissociated to form a greater number of unimolecular aggregates and led to an LCST increase of 1.0 °C.

  11. Effect of heat treatment on optical, dielectric and mechanical properties of silver nanoparticle embedded CaO-CaF{sub 2}-P{sub 2}O{sub 5} glass

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, G., E-mail: venkatajabili@gmail.com; Shashikala, H.D.

    2015-02-15

    Highlights: • Silver nanoparticle embedded glass were synthesized using melt quenching technique. • Red shift in the SPR peak position indicates increase in size of the nanoparticle. • Ag nanoparticle size was estimated using TEM and XRD analysis. • Enhancement in the dielectric and mechanical properties was observed. - Abstract: Silver nanoparticle have been embedded in CaO-CaF{sub 2}-P{sub 2}O{sub 5} glass using melt quenching technique. The quenched glasses were heat treated at 550 °C for 10, 20, 30, 40 and 50 h. The growth of silver nanoparticle in the glass matrix appeared to be time dependent. FTIR spectra show that silver nanoparticle formation has not affected the vibration bands of basic phosphate tetrahedral network. The increase in compactness of the glass structure is confirmed by increase in measured density of the glasses with increase in the duration of the heat treatment. Glass containing spherical silver nanoparticle shows the red shift and increase in the full width half maxima (FWHM) of the surface plasmon resonance (SPR) in the visible region with increase in the duration of the heat treatment. X-ray diffraction pattern indicated the presence of Ag crystalline peaks along with amorphous structure on heat treating at 550 °C for 50 h. For the glass samples, the increase in dielectric constant and low dielectric loss around 0.005 were observed with increase in duration of the heat treatment. Both Vickers hardness and fracture toughness increased while the brittleness decreased which can be attributed to the increase in size of the nanoparticles in glass matrix.

  12. Prediction of the maximum absorption wavelength of azobenzene dyes by QSPR tools

    Science.gov (United States)

    Xu, Xuan; Luan, Feng; Liu, Huitao; Cheng, Jianbo; Zhang, Xiaoyun

    2011-12-01

    The maximum absorption wavelength ( λmax) of a large data set of 191 azobenzene dyes was predicted by quantitative structure-property relationship (QSPR) tools. The λmax was correlated with the 4 molecular descriptors calculated from the structure of the dyes alone. The multiple linear regression method (MLR) and the non-linear radial basis function neural network (RBFNN) method were applied to develop the models. The statistical parameters provided by the MLR model were R2 = 0.893, Radj2=0.893, qLOO2=0.884, F = 1214.871, RMS = 11.6430 for the training set; and R2 = 0.849, Radj2=0.845, qext2=0.846, F = 207.812, RMS = 14.0919 for the external test set. The RBFNN model gave even improved statistical results: R2 = 0.920, Radj2=0.919, qLOO2=0.898, F = 1664.074, RMS = 9.9215 for the training set, and R2 = 0.895, Radj2=0.892, qext2=0.895, F = 314.256, RMS = 11.6427 for the external test set. This theoretical method provides a simple, precise and an alternative method to obtain λmax of azobenzene dyes.

  13. Optoelectronic properties of four azobenzene-based iminopyridine ligands for photovoltaic application

    Directory of Open Access Journals (Sweden)

    Aziz El alamy

    2017-11-01

    Full Text Available Because of organic π-conjugated materials’ optoelectronic properties and potential applications in a wide range of electronic and optoelectronic devices, such as organic solar cells, these materials, including both polymers and oligomers, have been widely studied in recent years. This work reposts a theoretical study using the DFT method on four azobenzene-based iminopyridines. The theoretical ground-state geometry, electronic structure and optoelectronic parameters (highest occupied molecular orbital (HOMO, lowest unoccupied molecular orbital (LUMO energy levels, open-circuit voltage (Voc and oscillator strengths (O.S of the studied molecules were obtained using the density functional theory (DFT and time-dependent (TDDFT approaches. The effects of the structure length and substituents on the geometric and optoelectronic properties of these materials are discussed to investigate the relationship between the molecular structure and the optoelectronic properties. The results of this study are consistent with the experimental ones and suggest that these materials as good candidates for use in photovoltaic devices. Keywords: π-conjugated materials, azobenzene, optoelectronic properties, DFT calculations, HOMO-LUMO gap

  14. Two-dimensional networks of an azobenzene derivative: bi-pyridine mediation and photo regulation

    Science.gov (United States)

    Zhang, Xuemei; Wang, Shuai; Shen, Yongtao; Guo, Yuanyuan; Zeng, Qingdao; Wang, Chen

    2012-07-01

    Two-dimensional photosensitive supramolecular assemblies based on an azobenzene derivative and bi-pyridine are built up and investigated using scanning tunneling microscopy (STM). In order to probe the photo-induced self-assembled behavior of these two molecules, irradiation experiments with different wavelengths are designed and performed. Our STM results show that the constructed H-bonded networks can be reversibly regulated under irradiation with UV light and visible light.Two-dimensional photosensitive supramolecular assemblies based on an azobenzene derivative and bi-pyridine are built up and investigated using scanning tunneling microscopy (STM). In order to probe the photo-induced self-assembled behavior of these two molecules, irradiation experiments with different wavelengths are designed and performed. Our STM results show that the constructed H-bonded networks can be reversibly regulated under irradiation with UV light and visible light. Electronic supplementary information (ESI) available: UV-Vis spectra and additional STM images. See DOI: 10.1039/c2nr31186k

  15. Fluorescence modulation of cadmium sulfide quantum dots by azobenzene photochromic switches.

    Science.gov (United States)

    Javed, Hina; Fatima, Kalsoom; Akhter, Zareen; Nadeem, Muhammad Arif; Siddiq, Muhammad; Iqbal, Azhar

    2016-02-01

    We have investigated the attachment of azobenzene photochromic switches on the modified surface of cadmium sulfide (CdS) quantum dots (QDs). The modification of CdS QDs is done by varying the concentration of the capping agent (mercaptoacetic acid) and NH 3 in order to control the size of the QDs. The X-ray diffraction studies revealed that the crystallite size of CdS QDs ranged from 6 to 10 nm. The azobenzene photochromic derivatives bis(4-hydroxybenzene-1-azo)4,4'(1,1' diphenylmethane) (I) and 4,4'-diazenyldibenzoic acid (II) were synthesized and attached with surface-modified CdS QDs to make fluorophore-photochrome CdS-(I) and CdS-(II) dyad assemblies. Upon UV irradiation, the photochromic compounds (I) and (II) undergo a reversible trans - cis isomerization. The photo-induced trans - cis transformation helps to transfer photo-excited electrons from the conduction band of the CdS QDs to the lowest unoccupied molecular orbital of cis isomer of photochromic compounds (I) and (II). As a result, the fluorescence of CdS-(I) and CdS-(II) dyads is suppressed approximately five times compared to bare CdS QDs. The fluorescence modulation in such systems could help to design luminescent probes for bioimaging applications.

  16. Molecular structure and modeling studies of azobenzene derivatives containing maleimide groups.

    Science.gov (United States)

    Cojocaru, Corneliu; Airinei, Anton; Fifere, Nicusor

    2013-01-01

    The molecular orbital calculations have been carried out to investigate the structure and stability of (E) / (Z) isomers of some azobenzene derivatives containing maleimide groups. A special attention has been devoted to the compound (E)-1, (E)-1-(4-(phenyldiazenyl)phenyl)-1H-pyrrole-2,5-dione, for which the available crystallographic experimental data have been used to validate the modeling structures computed at the theoretical levels AM1, PM3, RHF/6-31+G(d,p) and B3LYP/6-31+G(d,p). To this end, the discrepancy between experimental and calculated structural parameters has been ascertained in terms of root-mean-square deviation (RMSD). The quantum calculations at the level RHF/6-31+G(d,p) yield the most accurate results on (E)-1 structure giving a deviation error from crystallographic data of about 5.00% for bond lengths and 0.97% for interatomic angles. The theoretical electronic absorption spectra of azobenzene derivatives of concern have been computed by means of configuration-interaction method (CI) at the level of semi-empirical Hamiltonians (AM1 and PM3). Likewise, the molecular energy spectra, electrostatic potential and some quantitative structure activity relationship (QSAR) properties of studied molecules have been computed and discussed in the paper.

  17. Synthesis and characterization of photoactive azobenzene-based chromophores containing a bulky cholesteryl moiety

    Science.gov (United States)

    Yang, Po-Chih; Lu, Ya-Ling; Li, Chung-Yuan

    2012-05-01

    This study describes the synthesis of a series of azobenzene-based chromophores bearing pendent bulky cholesteryl groups, using esterification reactions. The chromophores were composed of liquid crystalline mesophases with six or eleven methylene segments as spacers, and with electron-donating (sbnd OCH3) and electron-withdrawing (sbnd NO2) terminal groups. The target compounds were characterized by nuclear magnetic resonance spectroscopy, differential scanning calorimetry, polarizing optical microscopy, absorption, and photoluminescence spectroscopies. All the azobenzene derivatives with six or eleven methylene segments revealed chiral nematic phases. We investigated the effects of these photochromic compounds' structures on E/Z photoisomerization under UV irradiation. Chromophores containing the electron-withdrawing nitro-group (sbnd NO2) underwent a faster rate of Z to E isomerization in darkness than the electron-donating (sbnd OCH3) groups did; the isomerization process proceeded via a rotation mechanism. Self-assembled aggregates of C6 solution exhibited enhanced fluorescence in THF/water mixtures at 10% water fraction.

  18. Self-Assembled Monolayers of an Azobenzene Derivative on Silica and Their Interactions with Lysozyme.

    Science.gov (United States)

    Wei, Tao; Sajib, Md Symon Jahan; Samieegohar, Mohammadreza; Ma, Heng; Shing, Katherine

    2015-12-22

    The capability of the photoresponsive isomerization of azobenzene derivatives in self-assembled monolayer (SAM) surfaces to control protein adsorption behavior has very promising applications in antifouling materials and biotechnology. In this study, we performed an atomistic molecular dynamics (MD) simulation in combination with free-energy calculations to study the morphology of azobenzene-terminated SAMs (Azo-SAMs) grafted on a silica substrate and their interactions with lysozyme. Results show that the Azo-SAM surface morphology and the terminal benzene rings' packing are highly correlated with the surface density and the isomer state. Higher surface coverage and the trans-isomer state lead to a more ordered polycrystalline backbone as well as more ordered local packing of benzene rings. On the Azo-SAM surface, water retains a high interfacial diffusivity, whereas the adsorbed lysozyme is found to have extremely low mobility but a relative stable secondary structure. The moderate desorption free energy (∼60 kT) from the trans-Azo-SAM surface was estimated by using both the nonequilibrium-theorem-based Jarzynski's equality and equilibrium umbrella sampling.

  19. A mononuclear uranium(IV) single-molecule magnet with an azobenzene radical ligand

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Maria A.; Coutinho, Joana T.; Santos, Isabel C.; Marcalo, Joaquim; Almeida, Manuel; Pereira, Laura C.J. [C" 2TN, Instituto Superior Tecnico, Universidade de Lisboa, Bobadela (Portugal); Baldovi, Jose J.; Gaita-Arino, Alejandro; Coronado, Eugenio [Instituto de Ciencia Molecular, Universitat de Valencia, Paterna (Spain)

    2015-12-01

    A tetravalent uranium compound with a radical azobenzene ligand, namely, [{(SiMe_2NPh)_3-tacn}U{sup IV}(η{sup 2}-N{sub 2}Ph{sub 2{sup .}})] (2), was obtained by one-electron reduction of azobenzene by the trivalent uranium compound [U{sup III}{(SiMe_2NPh)_3-tacn}] (1). Compound 2 was characterized by single-crystal X-ray diffraction and {sup 1}H NMR, IR, and UV/Vis/NIR spectroscopy. The magnetic properties of 2 and precursor 1 were studied by static magnetization and ac susceptibility measurements, which for the former revealed single-molecule magnet behaviour for the first time in a mononuclear U{sup IV} compound, whereas trivalent uranium compound 1 does not exhibit slow relaxation of the magnetization at low temperatures. A first approximation to the magnetic behaviour of these compounds was attempted by combining an effective electrostatic model with a phenomenological approach using the full single-ion Hamiltonian. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Surface modification of magnetite nanoparticle with azobenzene-containing water dispersible polymer

    International Nuclear Information System (INIS)

    Theamdee, Pawinee; Traiphol, Rakchart; Rutnakornpituk, Boonjira; Wichai, Uthai; Rutnakornpituk, Metha

    2011-01-01

    We here report the synthesis of magnetite nanoparticle (MNP) grafted with poly (ethylene glycol) methyl ether methacrylate (PEGMA)-azobenzene acrylate (ABA) statistical copolymer via atom transfer radical polymerization (ATRP) for drug entrapment and photocontrolled release. MNP was synthesized via thermal decomposition of iron (III) acetylacetonate in benzyl alcohol and surface functionalized to obtain ATRP initiating sites. Molar compositions of the copolymer on MNP surface were systematically varied (100:0, 90:10, 70:30, and 50:50 of PEGMA:ABA, respectively) to obtain water dispersible particles with various amounts of azobenzene. The presence of polymeric shell on MNP core was evidenced by transmission electron microscopy (TEM). Drug loading and entrapment efficiencies as well as drug release behavior of the copolymer–MNP complexes were investigated. It was found that when percent of ABA in the copolymers was increased, entrapment and loading efficiencies of prednisolone model drug were enhanced. Releasing rate and percent of the released prednisolone of the complex exposed in UV light were slightly enhanced as compared to the system without UV irradiation. This copolymer–MNP complex with photocontrollable drug release and magnetic field-directed properties is warranted for further studies for potential uses as a novel drug delivery vehicle.

  1. Study of Ag+/PAA (polyacrylic acid) and Ag0/PAA aqueous system at equilibrium

    International Nuclear Information System (INIS)

    Keghouche, N.; Mostafavi, M.; Delcourt, M.O.

    1991-01-01

    When submitted to gamma radiation the system Ag + -PAA-water leads to clusters Ag 0 n /PAA (3 420 nm) interacting with the clusters. Potentiometric measurements carried out on Ag + solutions in the presence of PAA at various pH show that the deprotonated form (polyacrylate anion) is strongly bonded to Ag + , on the opposite of the protonated form of PAA. One of the oligomer clusters can be stabilized for more than one year. Studying it by infra-red spectrometry reveals important modifications in the vibration bands of the COO - group circa 1400 and 1600 cm -1 according to the bonding of PAA with Ag + or Ag 0 [fr

  2. Preparation and Characterization of Chitosan Poly(acrylic acid Magnetic Microspheres

    Directory of Open Access Journals (Sweden)

    Hong-Zhong Li

    2010-07-01

    Full Text Available Spherical microparticles, capable of responding to magnetic fields, were prepared by encapsulating dextran-coated Fe3O4 nanoparticles into chitosan poly(acrylic acid (PAA microspheres template. The obtained magnetic microspheres were characterized by transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FT-IR, scanning electron microscopy (SEM, X-ray powder diffraction (XRD, and thermogravimetry (TG. The results showed that the microspheres were formed and demonstrated magnetic behavior in an applied magnetic field. In addition, magnetite particles were well encapsulated and the composite particles have high magnetite content, which was more than 40%.

  3. Preparation of carboxymethyl chitosan grafted polyacrylic acid hydrogel and its evaluation in vitro and in vivo

    OpenAIRE

    Yuqin CUI; Yingge ZHAO; Ruiqiong TIAN; Xiaoyun ZHANG; Qing SHANG

    2015-01-01

    A novel pH-sensitive carboxymethyl chitosan graft polyacrylic acid(CMC-g-PAA) hydrogel is fabricated via a free radical heat-initiated graft copolymerization reaction with acrylic acid(AA) and carboxymethyl chitosan(CMC) as monomers. The polymerization is successful, which is confirmed via fourier transform infrared spectroscopy (FT-IR). The result of swelling experiment indicates that the final CMC-g-PAA hydrogel has significant pH-sensitivity. Insulin(INS), as a model drug, is loaded into t...

  4. The cis-state of an azobenzene photoswitch is stabilized through specific interactions with a protein surface.

    Science.gov (United States)

    Korbus, Michael; Backé, Sarah; Meyer-Almes, Franz-Josef

    2015-03-01

    The photocontrol of protein function like enzyme activity has been the subject of many investigations to enable reversible and spatiotemporally defined cascading biochemical reactions without the need for separation in miniaturized and parallelized assay setups for academic and industrial applications. A photoswitchable amidohydrolase variant from Bordetella/Alcaligenes with the longest reported half-life (approximately 30 h) for the cis-state of the attached azobenzene group was chosen as a model system to dissect the underlying mechanism and molecular interactions that caused the enormous deceleration of the thermal cis-to-trans relaxation of the azobenzene photoswitch. A systematic site-directed mutagenesis study on the basis of molecular dynamics simulation data was employed to investigate enzyme and thermal cis-to-trans relaxation kinetics in dependence on selected amino acid substitution, which revealed a prominent histidine and a hydrophobic cluster as molecular determinants for the stabilization of the cis-isomer of the attached azobenzene moiety on the protein surface. The nature of the involved interactions consists of polar, hydrophobic, and possibly aromatic Π-Π contributions. The elucidated principles behind the stabilization of the cis-state of azobenzene derivatives on a protein surface can be exploited to design improved biologically inspired photoswitches. Moreover, the findings open the door to highly long-lived cis-states of azobenzene groups yielding improved bistable photoswitches that can be controlled by single light-pulses rather than continuous irradiation with UV light that causes potential photodamage to the employed biomolecules. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Preparation of an antibacterial, hydrophilic and photocatalytically active polyacrylic coating using TiO2 nanoparticles sensitized by graphene oxide.

    Science.gov (United States)

    Nosrati, Rahimeh; Olad, Ali; Shakoori, Sahar

    2017-11-01

    In recent years more attentions have been paid for preparation of coatings with self-cleaning and antibacterial properties. These properties allow the surface to maintain clean and health over long times without any need to cleaning or disinfection. Acrylic coatings are widely used on various surfaces such as automotive, structural and furniture which their self-cleaning and antibacterial ability is very important. The aim of this work is the preparation of a polyacrylic based self-cleaning and antibacterial coating by the modification of TiO 2 as a coating additive. TiO 2 nanoparticles were sensitized to the visible light irradiation using graphene oxide through the preparation of TiO 2 /graphene oxide nanocomposite. Graphene oxide was prepared via a modified Hummers method. TiO 2 /graphene oxide nanocomposite was used as additive in a polyacrylic coating formulation. Hydrophilicity, photocatalytic and antibacterial activities as well as coating stability were evaluated for TiO 2 /graphene oxide modified polyacrylic coating and compared with that of pristine TiO 2 modified and unmodified polyacrylic coatings. TiO 2 /graphene oxide nanocomposite and polyacrylic coating modified by TiO 2 /graphene oxide additive were characterized using FT-IR, UV-Vis, XRD, and FESEM techniques. The effect of TiO 2 /graphene oxide composition and its percent in the coating formulation was evaluated on the polyacrylic coating properties. Results showed that polyacrylic coating having 3% W TiO 2 /graphene oxide nanocomposite additive with TiO 2 to graphene oxide ratio of 100:20 is the best coating considering most of beneficial features such as high photodecolorization efficiency of organic dye contaminants, high hydrophilicity, and stability in water. According to the results, TiO 2 is effectively sensitized by graphene oxide and the polyacrylic coating modified by TiO 2 /graphene oxide nanocomposite shows good photocatalytic activity under visible light irradiation. Copyright © 2017

  6. Photoinduced crystal-to-liquid phase transitions of azobenzene derivatives and their application in photolithography processes through a solid-liquid patterning.

    Science.gov (United States)

    Norikane, Yasuo; Uchida, Emi; Tanaka, Satoko; Fujiwara, Kyoko; Koyama, Emiko; Azumi, Reiko; Akiyama, Haruhisa; Kihara, Hideyuki; Yoshida, Masaru

    2014-10-03

    The direct and reversible transformation of matter between the solid and liquid phases by light at constant temperature is of great interest because of its potential applications in various manufacturing settings. We report a simple molecular design strategy for the phase transitions: azobenzenes having para-dialkoxy groups with a methyl group at the meta-position. The photolithography processes were demonstrated using the azobenzene as a photoresist in a single process combining development and etching of a copper substrate.

  7. Poly(acrylic acid) modifying bentonite with in-situ polymerization for removing lead ions.

    Science.gov (United States)

    He, Y F; Zhang, L; Yan, D Z; Liu, S L; Wang, H; Li, H R; Wang, R M

    2012-01-01

    In this paper, a new kind of poly(acrylic acid) modified clay adsorbent, the poly(acrylic acid)/bentonite composite (PAA/HB) was prepared by in-situ polymerization, and utilized to remove lead(II) ions from solutions. The maximum adsorption of adsorbent is at pH 5 for metal ions, whereas the adsorption starts at pH 2. The effects of contact time (5-60 min), initial concentration of metal ions (200-1,000 mg/L) and adsorbent dosage (0.04-0.12 g/100 mL) have been reported in this article. The experimental data were investigated by means of kinetic and equilibrium adsorption isotherms. The kinetic data were analyzed by the pseudo-first-order and pseudo-second-order equation. The experimental data fitted the pseudo-second-order kinetic model very well. Langmuir and Freundlich isotherms were tried for the system to better understand the adsorption isotherm process. The maximal adsorption capacity of the lead(II) ions on the PAA/HB, as calculated from the Langmuir model, was 769.2 mg/g. The results in this study indicated that PAA/HB was an attractive candidate for removing lead(II) (99%).

  8. Structure and Dynamics of Thin Polyacrylate Gel Films Supported on a Polymeric Substrate

    Science.gov (United States)

    Mani, Sriramvignesh; Islam, Rafikul; Khare, Rajesh

    Recently, we have used molecular dynamics (MD) simulations to demonstrate the viability of polyacrylate gel membranes for pervaporation based separation processes. In practice, these polymeric membranes are usually in the form of thin films that are supported on another polymeric substrate such as polysulfone or cellulose acetate. The structure and dynamics of the polymer constituting the membrane play an important role in governing the separation efficiency of these membranes. Since chain structure and dynamics in supported polymer thin films deviate significantly from their bulk values, it is necessary to understand the effect of the soft polymeric support on the properties of the polymer constituting the membranes. In this work, the structural and dynamic properties of polyacrylate gels that are supported on polysulfone are studied using molecular simulations. Specifically, three different networks formed by poly butyl acrylate (PBA), 50-50 random copolymer of butyl acrylate and 2-hydroxy ethyl acrylate (P(BA50-HEA50)), and poly 2-hydroxyethyl acrylate (PHEA) are considered. The properties of the supported thin film gel systems are characterized by determining the gel structure, glass transition temperature, and chain dynamics. The effect of the polysulfone support on the system behavior is determined by comparing the properties of the supported thin films systems with those of the bulk gel systems.

  9. Characteristics of Sodium Polyacrylate/Nano-Sized Carbon Hydrogel for Biomedical Patch.

    Science.gov (United States)

    Park, Jong-Kyu; Seo, Sun-Kyo; Cho, Seungkwan; Kim, Han-Sung; Lee, Chi-Hwan

    2018-03-01

    Conductive hydrogels were prepared for biomedical patch in order to improve the electrical conductivity. Sodium polyacrylate and nano-sized carbon were mixed and fabricated by aqueous solution gelation process in various contents of nano-sized carbon with 0.1, 0.5, 1.0 and 2.0 wt%. Sodium polyacrylate/nano-sized carbon conductive hydrogels were investigated by molecular structure, surface morphology and electrical conductivity. The conductivity of the hydrogel/nano-sized carbon conductive hydrogel proved to be 10% higher than conductive hydrogel without nano-sized carbon. However, it was founded that conductive hydrogels with nano-sized carbon content from 0.5 up to 2.0 wt% were remarkably decreased. This may be due to the non-uniform distribution of nano-sized carbon, resulting from agglomerates of nano-sized carbon. The developed hydrogel is intended for use in the medical and cosmetic fields that is applicable to supply micro-current from device to human body.

  10. Endoscopic treatment of vesicoureteral reflux with polyacrylate polyalcohol copolymer and dextranomer/hyaluronic acid in adults.

    Science.gov (United States)

    Turk, Akif; Selimoglu, Ahmet; Demir, Kadir; Celik, Osman; Saglam, Erkin; Tarhan, Fatih

    2014-01-01

    Aim of this study is to examine the effectiveness of dextranomer/hyaluronic acid copolymer and polyacrylate polyalcohol copolymer in endoscopic treatment of vesicoureteral reflux disease in adult patients with and without chronic renal failure. Thirty two patients (12 female, 20 male) with a total of 50 renal units were treated for vesicoureteral reflux. There were 26 (81%) chronic renal failure patients. The success of treatment was evaluated by voiding cystouretrography at 3rd and 12th months after subureteric injection. The persistence of reflux was considered as failure. Patients were divided into two groups according to injected material. Age, sex, grade of reflux and treatment results were recorded and evaluated. Reflux was scored as grade 1 in seven (14%), grade 2 in 16 (32%), grade 3 in 21 (42%) and grade 4 in six (12%) renal units. There was not patient with grade 5 reflux. Fourteen renal units (28%) were treated with dextranomer/hyaluronic acid copolymer (group 1) and 36 renal units (72%) were treated with polyacrylate polyalcohol copolymer (group 2). The overall treatment success was achieved at 40 renal units (80%). The treatment was successful at 11 renal units (79%) in group 1 and 29 renal units (81%) in group 2 (p = 0.71). There was not statistically significant difference between two groups with patients with chronic renal failure in terms of treatment success (p = 1.00). The effectiveness of two bulking agents was similar in treatment of vesicoureteral reflux disease in adult patients and patients with chronic renal failure.

  11. Structural and behavioral characteristics of radiolytically synthesized polyacrylic acid–polyacrylonitrile copolymeric hydrogels

    International Nuclear Information System (INIS)

    Bera, Anuradha; Misra, R.K.; Singh, Shailendra K.

    2013-01-01

    Copolymeric hydrogels of polyacrylic acid (PAA) – polyacrylonitrile (PAN) was radiolytically synthesized from their respective monomers with trimethyloltrimethacrylate (TMPTMA) as the crosslinker wherein both polymerization and crosslinking could be achieved in a single step reaction using 60 Co γ-radiation under varying doses and dose rates. The formation of the hydrogels was confirmed by their FT-IR analysis, while their thermal degradation patterns were investigated through thermogravimetric analysis in both the dry and swelled state. The water sorption studies showed rapid swelling behavior of these hydrogels, where swelling (%EWC) was found to be strongly dependent on the ratio of the two monomers in the hydrogels and the swelling kinetics dependent on the dose rates of hydrogel synthesis. These radiolytically synthesized hydrogels responded to electrical stimulus both in terms of the bending speed as well as bending angle under an applied voltage. The nature of the deformation was reversible and can be controlled through switching the voltage on and off. - Highlights: • Polyacrylic acid – polyacrilonitrile copolymeric hydrogel has been radiolytically synthesized. • Trimethyloltrimethacrylate (TMPTMA) used as crosslinker. • Hydrogel has been characterized and tested for electroresponsive character. • Bending angles and bending speed were found dependent upon applied voltage

  12. Fabrication and Properties of polyacrylic acid by ionic surfactant disturbance method

    Science.gov (United States)

    Lawan, S.; Osotchan, T.; Chuajiw, W.; Subannajui, K.

    2017-09-01

    The formation of polymeric materials can be achieved by several methods such as melting and casting, screw extrusion, cross-linking of resin or rubber in a mold, and so on. In this work, the polyacrylic acid is formed by using the emulsion disturbance method. Despite extensively used in the colour painting and coating industries, acrylic emulsion can be processed into a foam and powder configuration by a reaction between acrylic emulsion and salt. The solidification hardly changes the volume between liquid emulsion and solidified polymer which means the final structure of polyacrylic acid is filled with opened air cells. The opened air cell structure is confirmed by the result from scanning electron microscopy. The chemical analysis and crystallography of acrylic powder and foam are examined by Fourier-transform infrared spectroscopy and X-ray diffraction respectively. The phase transformation and Thermal stability are studied by differential scanning calorimetry and thermo gravimetric analysis. Moreover, the mechanical properties of acrylic foam were observed by tensile, compressive and hardness test. In addition to the basic property analysis, acrylic foam was also used in the particle filtration application.

  13. Effect of molecular structure on chiro-optical and photo-optical properties of smart liquid crystalline polyacrylates

    Czech Academy of Sciences Publication Activity Database

    Bobrovsky, A.; Shibaev, V.; Bubnov, Alexej; Hamplová, Věra; Kašpar, Jan; Glogarová, Milada

    2013-01-01

    Roč. 46, č. 11 (2013), 4276-4284 ISSN 0024-9297 R&D Projects: GA ČR GA13-14133S; GA ČR(CZ) GAP204/11/0723 Grant - others:AVČR(CZ) M100101204 Institutional support: RVO:68378271 Keywords : induced circular-dichroism * air-nematic interface * azobenzene Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.927, year: 2013

  14. Pervaporation of alcohol-toluene mixtures through polymer blend membranes of poly(acrylic acid) and poly(vinyl alcohol)

    NARCIS (Netherlands)

    Park, H.C.; Park, H.; Meertens, R.M.; Meertens, R.M.; Mulder, M.H.V.; Smolders, C.A.; Smolders, C.A.

    1994-01-01

    Homogeneous membranes were prepared by blending poly(acrylic acid) with poly(vinyl alcohol). These blend membranes were evaluated for the selective separation of alcohols from toluene by pervaporation. The flux and selectivity of the membranes were determined both as a function of the blend

  15. On the effect of treating poly(acrylic acid) with argon and tetrafluoromethane plasmas: kinetics and degradation mechanism

    NARCIS (Netherlands)

    Terlingen, Johannes G.A.; Terlingen, J.G.A.; Takens, G.A.J.; Takens, Gijsbert A.J.; van der Gaag, Frederik J.; van der Gaag, F.J.; Hoffman, Allan S.; Feijen, Jan

    1994-01-01

    Poly(acrylic acid) (PAAc) films were treated with either an argon or a tetrafluoromethane (CF4) plasma and subsequently analyzed with X-ray photoelectron spectroscopy (XPS). PAAc films were decarboxylated during both types of plasma treatments. In addition, during the CF4 plasma treatment, the PAAc

  16. Comparison of various models to describe the charge-pH dependence of poly(acrylic acid)

    NARCIS (Netherlands)

    Lützenkirchen, J.; Male, van J.; Leermakers, F.A.M.; Sjöberg, S.

    2011-01-01

    The charge of poly(acrylic acid) (PAA) in dilute aqueous solutions depends on pH and ionic strength. We report new experimental data and test various models to describe the deprotonation of PAA in three different NaCl concentrations. A simple surface complexation approach is found to be very

  17. High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester

    International Nuclear Information System (INIS)

    Sanchez, C.; Alcala, R.; Hvilsted, S.; Ramanujam, P. S.

    2001-01-01

    High diffraction efficiencies have been achieved with polarization gratings recorded in thin films of an azobenzene side-chain liquid crystalline polyester by means of biphotonic processes. Efficiency values up to 30% have been reached after an induction period of 300 s and subsequent evolution with the sample in darkness. These values are at least two orders of magnitude higher than those previously reported for biphotonic recording. The gratings can be erased with unpolarized blue light and partial recovery of the diffraction efficiency has been observed after the erasure process when the sample is kept in darkness. Red light illumination of the erased film increases the recovered efficiency value and the recovery rate. [copyright] 2001 American Institute of Physics

  18. Pattern of liquid crystalline droplets induced by two beam interference in azobenzene derivative

    Science.gov (United States)

    Czajkowski, Maciej; Dradrach, Klaudia; Bartkiewicz, Stanislaw; Galewski, Zbigniew

    2013-10-01

    A pattern of liquid crystalline droplets dispersed in the isotropic liquid can be formed during illumination by two interfering laser beams in certain range of the temperature and the light intensity. Azobenzene derivative substituted by long alkyl and alkoxy chains exhibiting smectic phases has been used for the study. The pattern can be reversibly erased and rewritten by shutting down and opening of the interfering beams. Polarized microscope images have shown the formation of numerous liquid crystalline droplets at bright regions of the interference fringes. Influence of the temperature and the light intensity has been studied by measuring the diffraction efficiency dynamics. Photothermal and photoorientational mechanisms of the formation of liquid crystalline droplets pattern have been proposed and discussed.

  19. Building photoswitchable 3,4'-AMPB peptides: Probing chemical ligation methods with reducible azobenzene thioesters

    Directory of Open Access Journals (Sweden)

    Gehad Zeyat

    2012-06-01

    Full Text Available Photoswitchable peptides were synthesized by using cysteine- and auxiliary-based native chemical ligation reactions. For this purpose, the two regioisomeric azobenzene building blocks 3,4'-AMPB thioester 1b and 4,4'-AMPB thioester 2b were employed in the ligation reactions. While 4,4'-AMPB requires the 4,5,6-trimethoxy-2-mercaptobenzyl auxiliary to minimize reduction of the diazene unit, 3,4'-AMPB can be used in combination with the 4,5,6-trimethoxy-2-mercaptobenzyl auxiliary as well as the Nα-2-mercaptoethyl auxiliary. Thus, 3,4'-AMPB derivatives/peptides proved to be significantly less prone to reduction by aliphatic and aromatic thiols than were the 4,4'-AMPB compounds.

  20. Theoretical design of visible light driven azobenzene-based photo-switching molecules

    Science.gov (United States)

    Pang, Juan; Tian, Ziqi; Ma, Jing

    2014-10-01

    The preparation of switchable azobenzene derivatives driven by visible light is desirable for applications in biomolecular systems. o-R-substituted 4,4‧-diacetamidoazobenzene derivatives (Rdbnd H, CH3, OCH3 or OH) were investigated by using both density functional theory (DFT) and reactive molecular dynamics simulations. DFT calculations demonstrated that the nonplanar azo trans geometric structure, which caused by bulky groups tetra substituted in the ortho-position, is the key factor to enable the trans → cis transition with visible light. Furthermore, 100 independent reactive MD simulations demonstrated that 71% trans isomers of tetra o-OCH3-substituted 4,4‧-diacetamidoazobenzene translated to cis, in good agreement with the experimental data.

  1. Dielectric investigations under irradiation of photo chromic copolymers with azobenzene moieties in the side group

    International Nuclear Information System (INIS)

    Turky, G.; Stumpe, J.; Schonhals, A.

    2005-01-01

    Photo chromic polymers are promising materials for optical switching and image storage because the orientation of mesogens in thin films of these materials can be modified by light. Real time dielectric spectroscopy is applied to study the time dependence of the light induced trans/cis-isomerization process for polymethacrylate copolymer system. For the investigated azobenzene group it was found that the dipole moment of the Z state is greater than that of E state. Therefore normalized . increases with increasing irradiation time (E/Z isomerization) at different considered wavelengths. A steady state is reached after about 10000 s. The effect of irradiation reduces at longer and shorter wavelengths. Stretched exponential equation was used to describe the effect of irradiation time on the normalized permittivity

  2. Experimental and Computational study of azobenzene and 2,2',6,6'-tetrafluoroazobenzene cation.

    Science.gov (United States)

    Rezaee, Mohammadreza; Armentrout, Peter B.

    The electronic structure of the protonated azobenzene and it its derivative 2,2',6,6'-tetrafluoroazobenzene were studied using ab initio methods and the bond strength were measured utilizing the collision induced dissociation experiment. Several highly accurate multi-level schemes such as different variations of the Complete Basis Set (CBS) method and the Gaussian (G-n) theory along with DFT study employed to accurately compute the energies of the neutral and the parent cation as well as the fragment ions. The transition state were studied and the dissociation path was identified using B3LYP method along with aug-cc-pVTZ as the basis set. Thermochemical properties such as proton affinity, gas phase basicity and the bond dissociation energies were calculated. Molecular electrostatic potential analysis was performed to identify the charge distribution inside the molecule to study the effects of the protonation reaction. Newton HPC Program, University of Tennessee.

  3. Azobenzene-Based Gel Coated Fibre Bragg Grating Sensor for Moisture Measurement

    Directory of Open Access Journals (Sweden)

    Mohammed Moniruzzaman

    2016-01-01

    Full Text Available A fibre Bragg grating sensor is coated with a novel polymer gel in order to investigate its suitability for nondestructive measurement of moisture in materials that can potentially lose their integrity due to moisture ingress. Absorption and desorption of moisture lead to swelling/shrinkage of an azobenzene-based gel, which induces a strain in the Bragg grating resulting in wavelength shifts. The results demonstrated that the amount of wavelength shift is linearly dependent on the amount of water ingress by the gel. The performance of the proposed optical fibre moisture sensor was found to be repeatable with no detectable hysteresis and has the potential to offer a low-cost route for monitoring moisture content.

  4. Photo-responsive carbon nanomaterials functionalized by azobenzene moieties: structures, properties and application.

    Science.gov (United States)

    Feng, Wei; Luo, Wen; Feng, Yiyu

    2012-10-21

    The ability to tune the microstructures, bandgap, conductance, chemical environment and thermal storage of carbon nanomaterials such as carbon nanotubes, graphene and fullerenes by optical modulation or response is important to design and fabricate advanced optoelectronic nanodevices. This review is focused on optical control and regulation of structures, properties, interface and interaction of a new generation of photo-responsive carbon nanomaterials/azobenzene moieties (Carbon-AZO) hybrids. The optical switching properties of Carbon-AZO hybrids resulting from the photo-isomerization between trans and cis isomers are highlighted and discussed in terms of photo-energy conversion devices including switches, sensors, detectors, fuels and storage. A wide range of advanced energy conversion devices using Carbon-AZO hybrids can be developed in the future by the optimization of the chemical structure, steric conformation, electrostatic environment and functionalization of specific molecules.

  5. Spectroscopic enhancement in nanoparticles embedded glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sahar, M. R., E-mail: mrahim057@gmail.com; Ghoshal, S. K., E-mail: mrahim057@gmail.com [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor (Malaysia)

    2014-09-25

    This presentation provides an overview of the recent progress in the enhancement of the spectroscopic characteristics of the glass embedded with nanoparticles (NPs). Some of our research activities with few significantly new results are highlighted and facilely analyzed. The science and technology dealing with the manipulation of the physical properties of rare earth doped inorganic glasses by embedding metallic NPs or nanoclusters produce the so-called 'nanoglass'. Meanwhile, the spectroscopic enhancement relates the intensity of the luminescence measured at certain transition. The enhancement which expectedly due to the 'plasmonics wave' (referring to the coherent coupling of photons to free electron oscillations called plasmon) occurs at the interface between a conductor and a dielectric. Plasmonics being an emerging concept in advanced optical material of nanophotonics has given this material the ability to exploit the optical response at nanoscale and opened up a new avenue in metal-based glass optics. There is a vast array of plasmonic NPs concepts yet to be explored, with applications spanning solar cells, (bio) sensing, communications, lasers, solid-state lighting, waveguides, imaging, optical data transfer, display and even bio-medicine. Localized surface plasmon resonance (LSPR) can enhance the optical response of nanoglass by orders of magnitude as observed. The luminescence enhancement and surface enhanced Raman scattering (SERS) are new paradigm of research. The enhancement of luminescence due to the influence of metallic NPs is the recurring theme of this paper.

  6. Synthesis, characterization, and study of photoinduced optical anisotropy in polyimides containing side azobenzene units.

    Science.gov (United States)

    Schab-Balcerzak, Ewa; Siwy, Mariola; Kawalec, Michal; Sobolewska, Anna; Chamera, Agata; Miniewicz, Andrzej

    2009-07-30

    In this paper, novel processable aromatic polymers with imide rings and attached as side-chain azobenzene units are presented. Polymers differ in the chemical structures of chromophores and polymer backbones. Azopolymers were obtained by a two-step synthetic approach. This includes the preparation of a precursor poly(esterimide) and poly(etherimide) with pendant phenolic hydroxyl groups, followed by the covalent bonding of NLO chromophores onto the polyimide backbone by the Mitsunobu reaction. The degree of functionalization of polymers was estimated by UV-vis spectroscopy. Polymers were characterized and evaluated by FT-IR, (1)H NMR, X-ray, UV-vis, DSC, and TGA methods. The synthesized polymers exhibited glass transition temperatures in the range of 167-228 degrees C, thermal stability with decomposition temperatures in the range of 275-446 degrees C, and excellent solubilities in common organic solvents. The light-induced optical anisotropy was studied in obtained azopolymers with the help of a holographic grating recording technique. Two polarization geometries were applied for the grating inscription s-s and p-p. The influence of the polarization geometry on the diffraction efficiency dynamics and on the depth of the surface modulation was not observed, which is different from results reported in the literature. Surface relief gratings, which appeared after the light exposure, were observed by atomic force microscopy. Additionally, the optical anisotropy in poly(esterimide)s was investigated by photoinduced birefringence measurements. For the first time, in polyimide with covalently bonded azobenzene derivatives, the high photoinduced birefringence (Delta n = 0.01) was measured.

  7. Effect of Grafted Hydroquinone on the Acid-Base Properties of Poly(acrylic acid in the Presence of Copper (II

    Directory of Open Access Journals (Sweden)

    Nabila Bensacia

    2015-01-01

    Full Text Available Potentiometric titration of poly(acrylic acid and hydroquinone-functionalized poly(acrylic acid was conducted in the presence of copper (II. The effects of hydroquinone functionalizing and copper (II complexing on the potentiometric titration of poly(acrylic acid were studied in an ionic environment and in its absence. Henderson-Hasselbalch equation was applied to assess its validity for this titration. Coordination number and the stability constants of the copper- (II-complexed polymers were determined, and results showed the formation of mostly monodentate and bidentate copper- (II-polymer complexes.

  8. Photoorientation in thin aligned layers of side-group liquid crystalline copolysiloxane doped with azobenzene and stilbene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Wolarz, E.; Fischer, Th.; Stumpe, J

    2003-01-31

    Optically anisotropic films of side-group liquid crystalline copolysiloxane doped with photochromic azobenzene and stilbene derivatives were prepared by using standard liquid crystal cells of 4 {mu}m in thickness. The films were irradiated with high power density laser light with the electric field vector creating an angle equal to 45 deg. with the initial optical axis of the samples. As a result of irradiation, the photoorientation of the photochromic molecules, and the cooperative reorientation of the copolysiloxane side groups occurred. In the case of the copolymer layers containing azobenzene, the optical axis was turned by an angle of 45 deg. during sufficiently long irradiation. The angle of reorientation and the degree of anisotropy were determined for the irradiated areas of the samples.

  9. Regulation of substituent groups on morphologies and self-assembly of organogels based on some azobenzene imide derivatives

    Science.gov (United States)

    Jiao, Tifeng; Wang, Yujin; Zhang, Qingrui; Zhou, Jingxin; Gao, Faming

    2013-04-01

    In this paper, new azobenzene imide derivatives with different substituent groups were designed and synthesized. Their gelation behaviors in 21 solvents were tested as novel low-molecular-mass organic gelators. It was shown that the alkyl substituent chains and headgroups of azobenzene residues in gelators played a crucial role in the gelation behavior of all compounds in various organic solvents. More alkyl chains in molecular skeletons in present gelators are favorable for the gelation of organic solvents. Scanning electron microscopy and atomic force microscopy observations revealed that the gelator molecules self-assemble into different aggregates, from wrinkle, lamella, and belt to fiber with the change of solvents. Spectral studies indicated that there existed different H-bond formations between amide groups and conformations of methyl chains. The present work may give some insight to the design and character of new organogelators and soft materials with special molecular structures.

  10. Preparation and Characterization of Binary Organogels via Some Azobenzene Amino Derivatives and Different Fatty Acids: Self-Assembly and Nanostructures

    Directory of Open Access Journals (Sweden)

    Haiying Guo

    2014-01-01

    Full Text Available In present work the gelation behaviors of binary organogels composed of azobenzene amino derivatives and fatty acids with different alkyl chains in various organic solvents were designed and investigated. Their gelation behaviors in 20 solvents were tested as new binary organic gelators. It showed that the length of alkyl substituent chains and azobenzene segment have played a crucial role in the gelation behavior of all gelator mixtures in various organic solvents. Longer alkyl chains in molecular skeletons in present gelators are favorable for the gelation of organic solvents. Morphological studies revealed that the gelator molecules self-assemble into different aggregates from lamella, wrinkle, to belt with change of solvents. Spectral studies indicated that there existed different H-bond formation and hydrophobic force, depending on different substituent chains in molecular skeletons. The present work may also give new perspectives for designing new binary organogelators and soft materials.

  11. Carbon-14 tracer study of polyacrylate polymer in a wastewater plant

    International Nuclear Information System (INIS)

    Martin, J.E.; King, L.W.; Hylko, J.M.

    1990-01-01

    A highly absorbent consumer-product, polyacrylate-polymer material tagged with carbon-14 ( 14 C), was dosed to a standard on-site aerobic wastewater treatment plant which contained a settling chamber, an aeration chamber, and an effluent chamber. Operation of the test plant was essentially the same as that of a control plant even under exaggerated conditions. About 97% of the polymer material was retained in solids deposited in the primary and aeration chambers, and effluent releases were minimal. The use of a 14 C tagging procedure proved to be a successful method for studying the behavior of these complex materials. It may be useful to conduct a further study on retained solids to determine whether microbial decomposition of the polymer material occurs while they remain in typical plants. (author)

  12. Photo-optical properties of amorphous and crystalline films of azobenzene-containing photochromes with bent-shaped molecular structure

    Czech Academy of Sciences Publication Activity Database

    Bobrovsky, A.; Shibaev, V.; Hamplová, Věra; Bubnov, A.; Novotná, V.; Kašpar, M.; Piryazev, A.; Anokhin, D.; Ivanov, D.

    2016-01-01

    Roč. 316, Feb (2016), s. 75-87 ISSN 1010-6030 R&D Projects: GA ČR GA13-14133S; GA MŠk(CZ) LD14007 Institutional support: RVO:68378271 Keywords : bent-shaped azobenzene-containing compounds * E–Z isomerization * thin films * photoinduced phase transition * photoorientation Subject RIV: CC - Organic Chemistry Impact factor: 2.625, year: 2016

  13. Photoorientation phenomena and structural properties of photochromic liquid crystalline azobenzene-containing polymethacrylate films with different spacer lengths

    Czech Academy of Sciences Publication Activity Database

    Bobrovsky, A.; Shibaev, V.; Piryazev, A.; Anokhin, D.V.; Ivanov, D.A.; Sinitsyna, O.; Hamplová, Věra; Kašpar, Miroslav; Bubnov, Alexej M.

    2017-01-01

    Roč. 218, č. 16 (2017), s. 1-10, č. článku 1700127. ISSN 1022-1352 R&D Projects: GA ČR GA16-12150S; GA MŠk(CZ) LH15305 Institutional support: RVO:68378271 Keywords : photoorientation phenomena * azobenzene * photo-optical properties * liquid crystal * photochromic materials Subject RIV: JJ - Other Materials OBOR OECD: Nano-materials (production and properties) Impact factor: 2.500, year: 2016

  14. Fabrication of narrow surface relief features in a side-chain azobenzene polyester with a scanning near-field microscope

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, N. C. R.; Pedersen, M.

    2001-01-01

    We show that it is possible to fabricate topographic submicron features in a side-chain azobenzene polyester with a scanning near-field optical microscope, Through irradiation at a wavelength of 488 run at intensity levels of 12 W/cm(2), topographic features as narrow as 240 nm and as high as 6 nm...... in high-density optical storage and high-resolution lithography....

  15. Electrochemical supercapacitor electrode material based on polyacrylic acid/polypyrrole/silver composite

    International Nuclear Information System (INIS)

    Patil, Dipali S.; Pawar, Sachin A.; Devan, Rupesh S.; Gang, Myeng Gil; Ma, Yuon-Ron; Kim, Jin Hyeok; Patil, Pramod S.

    2013-01-01

    Highlights: • Polyacrylic acid/polypyrrole/silver composite prepared by chemical polymerization method. • The presence of Ag nanoparticles on PPY spherical granules provides the least resistance path to electron. • The specific capacitance about 145 F g −1 and 226 F g −1 observed for PPY/PAA and PPY/PAA/Ag samples, respectively. • The higher specific energy 7.18 Wh kg −1 and 17.45 Wh kg −1 observed for PPY/PAA and PPY/PAA/Ag respectively at current density of 0.5 mA cm −2 . -- Abstract: In the present work, we have synthesized polypyrrole (PPY)/polyacrylic acid (PAA)/silver (Ag) composite electrodes by chemical polymerization via a simple and cost effective dip coating technique for supercapacitor application. Fourier transform-infrared, Fourier transform-Raman, X-ray photoelectron and energy dispersive X-ray spectroscopy techniques are used for the phase identification. Surface morphology of the films is examined by field emission scanning electron microscopy, which revealed granular structure for PPY, spherical interlaced granules for PPY/PAA and granules with bright spots of Ag nanoparticles for the PPY/PAA/Ag composites. The supercapacitive behavior of the electrodes is tested in three electrode system with 0.1 M H 2 SO 4 electrolyte by using cyclic voltammetery and charge discharge test. The highest specific capacitance 226 F g −1 at 10 mV s −1 and energy density of 17.45 Wh kg −1 at 0.5 mA cm −2 is obtained for the PPY/PAA/Ag composite electrodes. Present work demonstrates an easy way of improving specific capacitance of the polymer electrodes. Thus the work will open a new avenue for designing low cost high performance devices for better supercapacitors

  16. Low light CMOS contact imager with an integrated poly-acrylic emission filter for fluorescence detection.

    Science.gov (United States)

    Dattner, Yonathan; Yadid-Pecht, Orly

    2010-01-01

    This study presents the fabrication of a low cost poly-acrylic acid (PAA) based emission filter integrated with a low light CMOS contact imager for fluorescence detection. The process involves the use of PAA as an adhesive for the emission filter. The poly-acrylic solution was chosen due its optical transparent properties, adhesive properties, miscibility with polar protic solvents and most importantly its bio-compatibility with a biological environment. The emission filter, also known as an absorption filter, involves dissolving an absorbing specimen in a polar protic solvent and mixing it with the PAA to uniformly bond the absorbing specimen and harden the filter. The PAA is optically transparent in solid form and therefore does not contribute to the absorbance of light in the visible spectrum. Many combinations of absorbing specimen and polar protic solvents can be derived, yielding different filter characteristics in different parts of the spectrum. We report a specific combination as a first example of implementation of our technology. The filter reported has excitation in the green spectrum and emission in the red spectrum, utilizing the increased quantum efficiency of the photo sensitive sensor array. The thickness of the filter (20 μm) was chosen by calculating the desired SNR using Beer-Lambert's law for liquids, Quantum Yield of the fluorophore and the Quantum Efficiency of the sensor array. The filters promising characteristics make it suitable for low light fluorescence detection. The filter was integrated with a fully functional low noise, low light CMOS contact imager and experimental results using fluorescence polystyrene micro-spheres are presented.

  17. Endoscopic treatment of vesicoureteral reflux with polyacrylate polyalcohol copolymer and dextranomer/hyaluronic acid in adults

    Directory of Open Access Journals (Sweden)

    Akif Turk

    2014-06-01

    Full Text Available Purpose Aim of this study is to examine the effectiveness of dextranomer/hyaluronic acid copolymer and polyacrylate polyalcohol copolymer in endoscopic treatment of vesicoureteral reflux disease in adult patients with and without chronic renal failure. Materials and Methods Thirty two patients (12 female, 20 male with a total of 50 renal units were treated for vesicoureteral reflux. There were 26 (81% chronic renal failure patients. The success of treatment was evaluated by voiding cystouretrography at 3rd and 12th months after subureteric injection. The persistence of reflux was considered as failure. Patients were divided into two groups according to injected material. Age, sex, grade of reflux and treatment results were recorded and evaluated. Results Reflux was scored as grade 1 in seven (14%, grade 2 in 16 (32%, grade 3 in 21 (42% and grade 4 in six (12% renal units. There was not patient with grade 5 reflux. Fourteen renal units (28% were treated with dextranomer/hyaluronic acid copolymer (group 1 and 36 renal units (72% were treated with polyacrylate polyalcohol copolymer (group 2. The overall treatment success was achieved at 40 renal units (80%. The treatment was successful at 11 renal units (79% in group 1 and 29 renal units (81% in group 2 (p = 0.71. There was not statistically significant difference between two groups with patients with chronic renal failure in terms of treatment success (p = 1.00. Conclusions The effectiveness of two bulking agents was similar in treatment of vesicoureteral reflux disease in adult patients and patients with chronic renal failure.

  18. Molecular characteristics of a fluorescent chemosensor for the recognition of ferric ion based on photoresponsive azobenzene derivative

    Science.gov (United States)

    Chi, Zhen; Ran, Xia; Shi, Lili; Lou, Jie; Kuang, Yanmin; Guo, Lijun

    2017-01-01

    Metal ion recognition is of great significance in biological and environmental detection. So far, there is very few research related to the ferric ion sensing based on photoresponsive azobenzene derivatives. In this work, we report a highly selective fluorescent "turn-off" sensor for Fe3 + ions and the molecular sensing characteristics based on an azobenzene derivative, N-(3,4,5-octanoxyphenyl)-N‧-4-[(4-hydroxyphenyl)azophenyl]1,3,4-oxadiazole (AOB-t8). The binding association constant was determined to be 6.07 × 103 M- 1 in ethanol and the stoichiometry ratio of 2:2 was obtained from Job's plot and MS spectra. The AOB-t8 might be likely to form the dimer structure through the chelation of ferric ion with the azobenzene moiety. Meanwhile, it was found that the photoisomerization property of AOB-t8 was regulated by the binding with Fe3 +. With the chelation of Fe3 +, the regulated molecular rigidity and the perturbed of electronic state and molecular geometry was suggested to be responsible for the accelerated isomerization of AOB-t8 to UV irradiation and the increased fluorescence lifetime of both trans- and cis-AOB-t8-Fe(III). Moreover, the reversible sensing of AOB-t8 was successfully observed by releasing the iron ion from AOB-t8-Fe(III) with the addition of citric acid.

  19. Understanding the effects of packing and chemical terminations on the optical excitations of azobenzene-functionalized self-assembled monolayers

    Science.gov (United States)

    Cocchi, Caterina; Draxl, Claudia

    2017-10-01

    In a first-principles study based on many-body perturbation theory, we analyze the optical excitations of azobenzene-functionalized self-assembled monolayers (SAMs) with increasing packing density and different terminations, considering for comparison the corresponding gas-phase molecules and dimers. Intermolecular coupling increases with the density of the chromophores independently of the functional groups. The intense π → π* resonance that triggers photo-isomerization is present in the spectra of isolated dimers and diluted SAMs, but it is almost completely washed out in tightly packed architectures. Intermolecular coupling is partially inhibited by mixing differently functionalized azobenzene derivatives, in particular when large groups are involved. In this way, the excitation band inducing the photo-isomerization process is partially preserved and the effects of dense packing partly counterbalanced. Our results suggest that a tailored design of azobenzene-functionalized SAMs which optimizes the interplay between the packing density of the chromophores and their termination can lead to significant improvements in the photo-switching efficiency of these systems.

  20. Asymmetric Dimers of Chiral Azobenzene Dopants Exhibiting Unusual Helical Twisting Power upon Photoswitching in Cholesteric Liquid Crystals.

    Science.gov (United States)

    Kim, Yuna; Tamaoki, Nobuyuki

    2016-02-01

    In this study, we synthesized asymmetric dimeric chiral molecules as photon-mode chiral switches for reversible tuning of self-assembled helical superstructures. The chiral switches bearing two mesogen units-cholesterol and azobenzene moieties connected through flexible alkylenedioxy bridges-were doped into nematic liquid crystals, resulting in a chiral nematic (cholesteric) phase. Under irradiation with UV light, photoisomerization of the azobenzene units led to unprecedented switching of the cholesteric pitch and helical twisting power (HTP, β), with a higher HTP found in the cis-rich state (bent-form) than in the trans-state (rod-form). We attribute this behavior to the elongated cybotactic smectic clusters disrupting the helical orientation of the molecules in the cholesteric liquid crystals; their reversible decay and reassembly was evidenced upon sequential irradiation with UV and visible light, respectively. In addition to the photoisomerization of the azobenzene units, the odd/even parity of the alkylenedioxy linkers of the dimeric dopants also had a dramatic effect on the transitions of the cybotactic smectic domains. On the basis of the large rotational reorganization of the cholesteric helix and HTP switching (Δβ/βini of up to 50%), we could control the macroscopic rotational motion of microsized glass rods upon irradiating the surface of a cholesteric liquid crystal film featuring a polygonal fingerprint texture using UV and visible light.

  1. The influence of poly(acrylic) acid number average molecular weight and concentration in solution on the compressive fracture strength and modulus of a glass-ionomer restorative.

    LENUS (Irish Health Repository)

    Dowling, Adam H

    2011-06-01

    The aim was to investigate the influence of number average molecular weight and concentration of the poly(acrylic) acid (PAA) liquid constituent of a GI restorative on the compressive fracture strength (σ) and modulus (E).

  2. Electrical, dielectric and electrochemical characterization of novel poly(acrylic acid)-based polymer electrolytes complexed with lithium tetrafluoroborate

    Science.gov (United States)

    Ngai, Koh Sing; Ramesh, S.; Ramesh, K.; Juan, Joon Ching

    2018-01-01

    A series of novel poly(acrylic acid)-based polymer electrolytes with high conductivities at room temperature has been prepared and studied. Polymer electrolytes composed of poly(acrylic acid) (PAA) and lithium tetrafluoroborate (LiBF4) were prepared by means of solution casting. The effect of the addition of LiBF4 on the properties of the PAA-based electrolyte matrices was analysed and investigated using impedance spectroscopy. The optimized PAA-based solid electrolyte showed an electrochemical stability window of 3.2 V. Thermogravimetric analysis indicated that the incorporation of LiBF4 into PAA matrix enhances the thermal stability. The structural properties of polymer electrolytes were studied by using X-ray diffraction analysis.

  3. Influence of polyacrylic acid nanoparticles on the elastic properties of RBCs membranes in patients with diabetes mellitus type 2

    Czech Academy of Sciences Publication Activity Database

    Melnikova, G.B.; Kuzhel, N.S.; Tolstaya, T.N.; Konstantinova, E.E.; Drozd, E.S.; Shisko, O.N.; Mokhort, T.G.; Antonova, N.; Říha, Pavel; Kowalczuk, A.; Koseva, N.

    2015-01-01

    Roč. 29, č. 4 (2015), s. 12-19 ISSN 1313-2458 Institutional support: RVO:67985874 Keywords : red blood cells * nanoparticles * poly(acrylic acid) * elasticity modulus * atomic force microscopy Subject RIV: BK - Fluid Dynamics http://www.imbm.bas.bg/biomechanics/uploads/Archive2015-4/12-19_Melnikova-Konstantinova_et%20al_abstract-1_18.12.15.pdf

  4. Calculated photo-isomerization efficiencies of functionalized azobenzene derivatives in solar energy materials: azo-functional organic linkers for porous coordinated polymers

    Science.gov (United States)

    Neukirch, Amanda J.; Park, Jinhee; Zobac, Vladmir; Wang, Hong; Jelinek, Pavel; Prezhdo, Oleg V.; Zhou, Hong-Cai; Lewis, James P.

    2015-04-01

    Recently, we used a local orbital density functional theory code called FIREBALL, to study the photoisomerization process in azobenzene derivatives for solar energy materials. Azobenzene functional groups undergo photoisomerization upon light irradiation or application of heat. Zhou et al (2012 J. Am. Chem. Soc. 134 99-102) showed that these azobenzenes can then be introduced into metal-organic frameworks via an organic linker in order to create a reversible switch for CO2 adsorption. In this manuscript, we examined how the addition of organic linkers (isophthalic acid) changes the relaxation times, isomerization mechanism, and quantum yield for both the cis↔trans pathways. We then tuned these properties by substituting functional groups, finding an increase in quantum yield as well as improved optical properties.

  5. Improvement in soil and sorghum health following the application of polyacrylate polymers to a Cd-contaminated soil

    International Nuclear Information System (INIS)

    Guiwei, Q.; Varennes, A. de; Martins, L.L.; Mourato, M.P.; Cardoso, A.I.; Mota, A.M.; Pinto, A.P.; Goncalves, M.L.

    2010-01-01

    Contamination of soils with cadmium (Cd) is a serious global issue due to its high mobility and toxicity. We investigated the application of insoluble polyacrylate polymers to improve soil and plant health. Sorghum was grown in a Cd-contaminated sandy soil. Polyacrylate polymers at 0.2% (w/w) were added to half of the soil. Control soil without plants was also included in the experiment. Growth of sorghum was stimulated in the polymer-amended soil. The concentration of Cd in the shoots, and the activities of catalase and ascorbate peroxidase decreased in plants from polymer-amended soil compared with unamended control. The amount of CaCl 2 -extractable Cd in the polymer-amended soil was 55% of that in the unamended soil. The Cd extracted in sorghum shoots was 0.19 mg per plant grown on soil without polymer and 0.41 mg per plant grown on polymer-amended soil. The total amount of Cd removed from each pot corresponded to 1.5 and more than 6% of soil CaCl 2 -extractable Cd in unamended and polymer-amended soil, respectively. The activities of soil acid phosphatase, β-glucosidase, urease, protease and cellulase were greatest in polymer-amended soil with sorghum. In conclusion, the application of polyacrylate polymers to reduce the bioavailable Cd pool seems a promising method to enhance productivity and health of plants grown on Cd-contaminated soils.

  6. Improvement in soil and sorghum health following the application of polyacrylate polymers to a Cd-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Guiwei, Q. [Department of Agricultural and Environmental Chemistry, Instituto Superior de Agronomia, Technical University of Lisbon (TULisbon), Tapada da Ajuda, 1349-017 Lisboa (Portugal); Soil and Environmental College, Shenyang Agricultural University, 110161 Shenyang, Liaoning Province (China); Varennes, A. de, E-mail: adevarennes@isa.utl.pt [Department of Agricultural and Environmental Chemistry, Instituto Superior de Agronomia, Technical University of Lisbon (TULisbon), Tapada da Ajuda, 1349-017 Lisboa (Portugal); Martins, L.L.; Mourato, M.P.; Cardoso, A.I. [Department of Agricultural and Environmental Chemistry, Instituto Superior de Agronomia, Technical University of Lisbon (TULisbon), Tapada da Ajuda, 1349-017 Lisboa (Portugal); Mota, A.M. [Department of Chemical Engineering, Instituto Superior Tecnico, Technical University of Lisbon (TULisbon), Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Pinto, A.P. [Instituto de Ciencias Agrarias Mediterranicas (ICAM), University of Evora, R. Romao Ramalho no. 59, 7000 Evora (Portugal); Goncalves, M.L. [Department of Chemical Engineering, Instituto Superior Tecnico, Technical University of Lisbon (TULisbon), Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2010-01-15

    Contamination of soils with cadmium (Cd) is a serious global issue due to its high mobility and toxicity. We investigated the application of insoluble polyacrylate polymers to improve soil and plant health. Sorghum was grown in a Cd-contaminated sandy soil. Polyacrylate polymers at 0.2% (w/w) were added to half of the soil. Control soil without plants was also included in the experiment. Growth of sorghum was stimulated in the polymer-amended soil. The concentration of Cd in the shoots, and the activities of catalase and ascorbate peroxidase decreased in plants from polymer-amended soil compared with unamended control. The amount of CaCl{sub 2}-extractable Cd in the polymer-amended soil was 55% of that in the unamended soil. The Cd extracted in sorghum shoots was 0.19 mg per plant grown on soil without polymer and 0.41 mg per plant grown on polymer-amended soil. The total amount of Cd removed from each pot corresponded to 1.5 and more than 6% of soil CaCl{sub 2}-extractable Cd in unamended and polymer-amended soil, respectively. The activities of soil acid phosphatase, {beta}-glucosidase, urease, protease and cellulase were greatest in polymer-amended soil with sorghum. In conclusion, the application of polyacrylate polymers to reduce the bioavailable Cd pool seems a promising method to enhance productivity and health of plants grown on Cd-contaminated soils.

  7. Separation of poly(acrylic acid) salts according to topology using capillary electrophoresis in the critical conditions.

    Science.gov (United States)

    Maniego, Alison R; Ang, Dale; Guillaneuf, Yohann; Lefay, Catherine; Gigmes, Didier; Aldrich-Wright, Janice R; Gaborieau, Marianne; Castignolles, Patrice

    2013-11-01

    Branching was detected in polyacrylates synthesised through radical polymerization via solution-state NMR, while inconsistencies have been reported for the determination of the molar mass of hydrophilic polyacrylates using aqueous-phase and organic-phase size-exclusion chromatography. In this work, poly(sodium acrylate)s, PNaAs, of various topologies were separated for the first time using free-solution capillary electrophoresis (CE). Free-solution CE does not separate the PNaAs by their molar mass, similarly to separations by liquid chromatography in the critical conditions, rather by different topologies (linear, star branched, and hyperbranched). The electrophoretic mobility of PNaAs increases as the degree of branching decreases. Separation is shown to be not only by the topology but also by the end groups as expected for a separation in the critical conditions: replacing a relatively bulky nitroxide end group with hydrogen atom yielded a higher electrophoretic mobility. This novel method, capillary electrophoresis in the critical conditions enabled, for the first time, the separation of hydrophilic polyacrylates according to their topology (branching) and their chain ends. This will allow meaningful and accurate characterization of their branched topologies as well as molar masses and progress in for advanced applications such as drug delivery or flocculation.

  8. Synthesis and Characterization of nano-SiO2 modified fluorine-containing polyacrylate emulsifier-free emulsion

    Science.gov (United States)

    Zhou, Jianhua; Chen, Xin; Duan, Hao; Ma, Jianzhong; Ma, Yurong

    2015-03-01

    Nano-SiO2 modified fluorine-containing polyacrylate emulsifier-free emulsion, consisting of methyl methacrylate, butyl acrylate, dodecafluoroheptyl methacrylate and ethyl silicate, was successfully synthesized by emulsion polymerization using surfmer and sol-gel process. When increasing ethyl silicate content, the latex centrifugal stability decreased, and the latex particle size increased. The contact angle results showed that the finished fabric had an excellent water and oil repellency. Furthermore, compared with fluorine-containing polyacrylate emulsifier-free emulsion, the obtained nano-SiO2 modified fluorine-containing polyacrylate emulsifier-free emulsion proved to be highly solvent-resistant and water-resistant. In addition, the transmission electron microscopy (TEM) indicated that the nano-SiO2 presented on the surface of latex particles. The atomic force microscope (AFM) and energy dispersive X-ray spectrometer (EDX) confirmed that the hybrid film had a rough surface and the organic fluorine segment could migrate onto the film-air interface.

  9. Electrochemical modification of gold electrodes with azobenzene derivatives by diazonium reduction.

    Science.gov (United States)

    Kibena, Elo; Marandi, Margus; Mäeorg, Uno; Venarusso, Luna B; Maia, Gilberto; Matisen, Leonard; Kasikov, Aarne; Sammelselg, Väino; Tammeveski, Kaido

    2013-04-02

    An electrochemical study of Au electrodes electrografted with azobenzene (AB), Fast Garnet GBC (GBC) and Fast Black K (FBK) diazonium compounds is presented. Electrochemical quartz crystal microbalance, ellipsometry and atomic force microscopy investigations reveal the formation of multilayer films. The elemental composition of the aryl layers is examined by X-ray photoelectron spectroscopy. The electrochemical measurements reveal a quasi-reversible voltammogram of the Fe(CN)6 (3-/4-) redox couple on bare Au and a sigmoidal shape for the GBC- and FBK-modified Au electrodes, thus demonstrating that electron transfer is blocked due to the surface modification. The electrografted AB layer results in strongest inhibition of the Fe(CN)6 (3-/4-) response compared with other aryl layers. The same tendencies are observed for oxygen reduction; however, the blocking effect is not as strong as in the Fe(CN)6 (3-/4-) redox system. The electrochemical impedance spectroscopy measurements allowed the calculation of low charge-transfer rates to the Fe(CN)6 (3-) probe for the GBC- and FBK-modified Au electrodes in relation to bare Au. From these measurements it can be concluded that the FBK film is less compact or presents more pinholes than the electrografted GBC layer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Photoresponsive SAMs on gold fabricated from azobenzene-functionalised asparagusic acid derivatives.

    Science.gov (United States)

    Siemeling, Ulrich; Bruhn, Clemens; Bretthauer, Frauke; Borg, Marta; Träger, Frank; Vogel, Florian; Azzam, Waleed; Badin, Mihaela; Strunskus, Thomas; Wöll, Christof

    2009-10-28

    We have prepared a range of azobenzene derivatives equipped with an asparagusic acid-based 1,2-dithiolane headgroup suitable for chemisorption on solid gold substrates. The formation of self-assembled monolayers (SAMs) of the amide cyclo-S2C3H5-4-C(O)NH-p-C6H4-N=N-Ph (1) and the ester cyclo-S2C3H5-4-C(O)O-p-C6H4-N=N-Ph (2) on gold was monitored in situ and in real time by optical second harmonic generation (SHG). The structure and composition of these SAMs was investigated by a range of ex situ methods, viz. ellipsometry, X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and Fourier transform infrared reflection absorption spectroscopy (FTIRRAS). Reversible, but moderate, photoswitchability was observed for these one-component SAMs by ellipsometry and dynamic contact angle measurements. Use of a second 1,2-dithiolane component for lateral dilution of the photoactive terminal groups resulted in a much more pronounced photoresponse.

  11. Collision induced dissociation study of azobenzene and its derivatives: computational and experimental results

    Science.gov (United States)

    Rezaee, Mohammadreza; Compton, Robert

    2015-03-01

    Experimental and computational investigation have been performed in order to study the bond dissociation energy of azobenzene and its derivatives using collision induced dissociation method as well as other energy and structural characteristics. The results have been verified by comparing with results obtained from computational quantum chemistry. We used different density functional methods as well as the Möller-Plesset perturbation theory and the coupled cluster methods to explore geometric, electronic and the spectral properties of the sample molecules. Geometries were calculated and optimized using the 6-311 + + G(2d,2p) basis set and the B3LYP level of theory and these optimized structures have been subjected to the frequency calculations to obtain thermochemical properties by means of different density functional, Möller-Plesset, and coupled cluster theories to obtain a high accuracy estimation of the bond dissociation energy value. The results from experiments and the results obtained from computational thermochemistry are in close agreement. Physics and Astronomy Department

  12. J-aggregates in matrix stabilized two-dimensional azobenzene derivatives.

    Science.gov (United States)

    Shankar, B Vijai; Patnaik, Archita

    2006-10-01

    A two-component film technique at the air-water interface has been used for fabricating matrix stabilized azobenzene J-aggregates. Langmuir monolayers of (E)-1-(3-chloro-4-(alkyloxy)phenyl)-2-phenyldiazene (CnCD, n=8,10,12) have been prepared with stearic acid (STA) as the two-dimensional matrix. Miscibility studies at a molecular level, explored from the monolayer pressure-area isotherms revealed a phase separation of the CnCD from the stearic acid matrix at a compression pressure of 10 mN/m. A 43-nm strong red shift in the 350 nm pi-pi * absorption feature implied formation of highly ordered J-aggregates of CnCDs in conformity with atomic force microscopy and micro-Raman spectral characteristics. While a one-component CnCD failed to form a 2D monolayer, the STA supported CnCD binary system crossed a mixed monolayer phase followed by compression, leading to the formation of matrix stabilized CnCD J-aggregates.

  13. Size Switchable Supramolecular Nanoparticle Based on Azobenzene Derivative within Anionic Pillar[5]arene

    Science.gov (United States)

    Zhang, Cai-Cai; Li, Sheng-Hua; Zhang, Cui-Fang; Liu, Yu

    2016-11-01

    A photo/thermal-switchable supramolecular nanoparticles assembly has been constructed based on an inclusion complex between anionic pillar[5]arene 2C-WP5A and azobenzene derivative Azo-py-OMe (G). The novel anionic pillar[5]arene-based host-guest inclusion complexation was investigated by the 1H NMR titration, 2D ROESY and isothermal titration microcalorimetry (ITC) showing high association constant (Ka) of (2.60 ± 0.06) × 104 M-1 with 1:1 binding stoichiometry. Furthermore, the supramolecular nanoparticles assembly can be conveniently obtained from G and a small amount of 2C-WP5A in aqueous solution, which was so-called “host induced aggregating (HIA)”. The size and morphology of the supramolecular nanoparticles assembly were characterized by TEM and DLS. As a result of the photo/thermal-isomerization of G included in the cavity of 2C-WP5A, the size of these nanoparticles could reversibly change from ~800 nm to ~250 nm, which could switch the solution of this assembly from turbid to clear.

  14. Photoinduced formation of an azobenzene-based CD-active supramolecular cyclic dimer.

    Science.gov (United States)

    Sogawa, Hiromitsu; Terada, Kayo; Miyagi, Yu; Shiotsuki, Masashi; Inai, Yoshihito; Masuda, Toshio; Sanda, Fumio

    2015-04-27

    A series of new photo-responsive amino acid-derived azobenzenedicarboxylic acid derivatives (S)-1 a-e were synthesized. Compound (S)-1 a in the trans form exhibited no circular dichroism (CD) signal in DMF under ambient conditions, whereas intense Cotton effects were observed upon UV irradiation, indicating the formation of a chiral supramolecular structure in the cis form. The CD signals disappeared when trifluoroacetic acid (TFA) was added to the solution. The ester counterpart [(S)-1 a'] showed no CD signal. Hydrogen bonding between the carboxy groups seemed necessary for constructing the supramolecular structure. The kinetic studies of cis to trans isomerization of (S)-1 a demonstrated that the formation of a chiral supramolecule enhances the stability of the cis-azobenzene structure. The ESI mass spectrum of stilbenedicarboxylic acid (S)-4, an analogue of (S)-1 b, confirmed the formation of a dimer. A theoretical CD study revealed that (S)-1 a in the cis form should be present as a cyclic chiral dimer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Optothermal Switching of Cholesteric Liquid Crystals: A Study of Azobenzene Derivatives and Laser Wavelengths

    Directory of Open Access Journals (Sweden)

    Tai-Chieh Huang

    2015-09-01

    Full Text Available The laser-initiated thermal (optothermal switching of cholesteric liquid crystals (CLCs is characterized by using different azobenzene (Azo derivatives and laser wavelengths. Under 405-nm laser irradiation, Azo-doped CLCs undergo phase transition from cholesteric to isotropic. No cis-to-trans photoisomerization occurs when the 405-nm laser irradiation is blocked because only a single laser is used. The fast response of Azo-doped CLCs under the on–off switching of the 405-nm laser occurs because of the optothermal effect of the system. The 660-nm laser, which cannot be used as irradiation to generate the trans–cis photoisomerization of Azo, is used in Anthraquinone (AQ-Azo-doped CLCs to examine the optothermal effect of doped Azo. The results show that the LC-like Azo derivative bearing two methyl groups ortho to the Azo moiety (A4 can greatly lower the clearing temperature and generate large amount of heat in AQ-A4-doped CLCs.

  16. Photoisomerization of amphiphilic azobenzene derivatives in Langmuir Blodgett films prepared as polyion complexes, using ionic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Shembekar, Vishakha R. [Department of Chemistry, Indian Institute of Technology, Bombay, Mumbai-400 076 (India); Contractor, A.Q. [Department of Chemistry, Indian Institute of Technology, Bombay, Mumbai-400 076 (India); Major, S.S. [Department of Physics, Indian Institute of Technology, Bombay, Mumbai-400 076 (India); Talwar, S.S. [Department of Physics, Indian Institute of Technology, Bombay, Mumbai-400 076 (India)]. E-mail: chsstia@phy.iitb.ac.in.z

    2006-07-03

    Polyion complexation in mixed Langmuir and Langmuir Blodgett (LB) films of photochromic amphiphilic azobenzene carboxylic acids, 11-[4-(4-hexylphenyl)azo] phenoxyundecanoic acid, 11-(4-phenylazo)phenoxyundecanoic acid, and diamine grafted poly(methylmethaacrylate) polymers has been studied. Monolayer behaviour of the pure components and mixed films was studied through pressure-area isotherms and LB films were characterized by spectroscopic, X-ray diffraction and Atomic force microscopy techniques. Aggregation (H-type), often observed in LB films of pure amphiphilic azo acids, was partly avoided in the mixed LB films as indicated by absorption spectral studies. Photoisomerization of the polyion complexed LB films was also studied. The results altogether demonstrate that amine grafted polymer enter into a polyion complexation with azo acid carboxylate group. LB films could be obtained by transfer of the composite monolayers and these LB films exhibited different levels of aggregation of the azo acids. Reversible photoisomerization was observed in LB films with unaggregated azo acid.

  17. Characterization of Binary Organogels Based on Some Azobenzene Compounds and Alkyloxybenzoic Acids with Different Chain Lengths

    Directory of Open Access Journals (Sweden)

    Yongmei Hu

    2014-01-01

    Full Text Available In this work the gelation behaviors of binary organogels composed of azobenzene amino derivatives and alkyloxybenzoic acids with different lengths of alkyl chains in various organic solvents were investigated and characterized. The corresponding gelation behaviors in 20 solvents were characterized and shown as new binary organic systems. It showed that the lengths of substituent alkyl chains in compounds have played an important role in the gelation formation of gelator mixtures in present tested organic solvents. Longer methylene chains in molecular skeletons in these gelators seem more suitable for the gelation of present solvents. Morphological characterization showed that these gelator molecules have the tendency to self-assemble into various aggregates from lamella, wrinkle, and belt to dot with change of solvents and gelator mixtures. Spectral characterization demonstrated different H-bond formation and hydrophobic force existing in gels, depending on different substituent chains in molecular skeletons. Meanwhile, these organogels can self-assemble to form monomolecular or multilayer nanostructures owing to the different lengths of due to alkyl substituent chains. Possible assembly modes for present xerogels were proposed. The present investigation is perspective to provide new clues for the design of new nanomaterials and functional textile materials with special microstructures.

  18. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sheyda R Frolova

    Full Text Available The ability of azobenzene trimethylammonium bromide (azoTAB to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav, calcium (ICav, and potassium (IKv currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+ and calcium (Ca2+ currents and potentiation of net potassium (K+ currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential.

  19. Thermodynamics and mesoscopic organisation in Langmuir monolayers of an azobenzene derivative.

    Science.gov (United States)

    Ignés-Mullol, J

    2010-12-15

    We have carried out the analysis of liquid crystalline Langmuir monolayers at the air-water interface composed of the amphiphilic azobenzene derivative 8Az5COOH. By varying the temperature and the isomeric (trans-cis) composition, the monolayer behaviour has been studied in comparison with a shorter homologue, 8Az3COOH, by measuring the surface pressure-area isotherms along with Brewster angle microscopy (BAM). Our data with the pure trans isomer enable a posterior thermodynamic analysis, which was not feasible with the shorter homologue. For the mixed trans-cis monolayers, BAM observations reveal a phase segregation with trans enriched domains surrounded by a cis enriched matrix. Line tension between the two phases is lower than in the shorter homologue. The organisation of the rodlike molecules inside the trans domains results in highly symmetric textures that make the quantitative analysis of the BAM images possible, and a better understanding of the microscopic structure of the monolayer can be achieved. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Motion of Adsorbed Nano-Particles on Azobenzene Containing Polymer Films

    Directory of Open Access Journals (Sweden)

    Sarah Loebner

    2016-12-01

    Full Text Available We demonstrate in situ recorded motion of nano-objects adsorbed on a photosensitive polymer film. The motion is induced by a mass transport of the underlying photoresponsive polymer material occurring during irradiation with interference pattern. The polymer film contains azobenzene molecules that undergo reversible photoisomerization reaction from trans- to cis-conformation. Through a multi-scale chain of physico-chemical processes, this finally results in the macro-deformations of the film due to the changing elastic properties of polymer. The topographical deformation of the polymer surface is sensitive to a local distribution of the electrical field vector that allows for the generation of dynamic changes in the surface topography during irradiation with different light interference patterns. Polymer film deformation together with the motion of the adsorbed nano-particles are recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the surface deformation. The particles undergo either translational or rotational motion. The direction of particle motion is towards the topography minima and opposite to the mass transport within the polymer film. The ability to relocate particles by photo-induced dynamic topography fluctuation offers a way for a non-contact simultaneous manipulation of a large number of adsorbed particles just in air at ambient conditions.

  1. An Improved Method for Separating the Kinetics of the Induction of Anisotropic and Topographic Gratings in Side-Chain Azobenzene Polyesters

    DEFF Research Database (Denmark)

    Helgert, M.; Fleck, B.; Wenke, L.

    2000-01-01

    The induction of anisotropy gratings in side-chain azobenzene polyesters is accompanied by the formation of surface relief. We introduce an improved holographic method to separate the contributions of the anisotropic and the topographic part to the diffraction efficiency by analyzing the polariza......The induction of anisotropy gratings in side-chain azobenzene polyesters is accompanied by the formation of surface relief. We introduce an improved holographic method to separate the contributions of the anisotropic and the topographic part to the diffraction efficiency by analyzing...

  2. Preparation and Properties of Moisture-absorbing Film Impregnated with Polyacrylic Acid Partial Sodium Salt Material

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Suk; Park, Insik [Yonsei University, Wonju (Korea, Republic of); Choi, Hong Yeol [CJ Cheiljedang, Seoul (Korea, Republic of)

    2014-08-15

    Moisture is a major factor causing the deteriorative physical change, microbial growth, and chemical reaction of the products. In this study, the moisture absorbing composite films have been prepared with moisture absorbing material of polyacrylic acid partial sodium salt (PAPSS) impregnated on LLDPE polymer for the functional packaging applications. The results showed that PAPSS impregnated film illustrated uniformly dispersed PAPSS particles in the LLDPE polymer matrix. The transparency of the PAPSS impregnated film decreased slightly at higher PAPSS concentrations. An increase in the PAPSS content for moisture-absorbing films showed a similar decrease in tensile strength, percent elongation at break, and tear strength. Their values of films impregnated with PAPSS of 0.5, 1, and 2% showed no significant difference. Meanwhile, 4% PAPSS films significantly decreased the values of mechanical properties compared to the films impregnated with different PAPSS levels. Values of the oxygen permeability and water vapor permeability for PAPSS impregnated films decreased significantly with greater PAPSS. The results indicate that 4% PAPSS impregnated in LLDPE films had high affinity of moisture absorbencies compared to the other films. The mathematical equation that best described the moisture sorption isotherm of each film sample was the GAB equation at 25 .deg. C. The crystallization and melting temperatures of PAPSS films were influenced by the addition of PAPSS material, but showed good thermal stability.

  3. Direct Synthesis of Hyperbranched Poly(acrylic acid-co-3-hydroxypropionate

    Directory of Open Access Journals (Sweden)

    Efkan Çatıker

    2015-01-01

    Full Text Available Hyperbranched poly(acrylic acid-co-3-hydroxypropionate (PAcHP was synthesized by base-catalyzed hydrogen transfer polymerization of acrylic acid through one step. The copolymers obtained through solution and bulk polymerization were insoluble in water and all organic solvents tried. Structural and compositional characterizations of hyperbranched PAcHP were performed by using FTIR, solid 13C-NMR, TGA, and titrimetric analysis. Acrylate fraction of the hyperbranched PAcHP obtained via bulk polymerization was determined as 60–65% by comparing TGA curves of hyperbranched PAcHP and pure poly(3-hydroxy propionate (PHP. However, analytical titration of the same sample revealed that acrylic acid units were about 47.3%. The results obtained from TGA and analytical titration were used to evaluate the chemical structure of the copolymer. Hyperbranched PAcHP exhibited hydrogel properties. Swelling behavior of the copolymer was investigated at a wide pH range and ionic strength. The dynamic swelling profiles of hyperbranched PAcHP exhibited a fast swelling behavior in the first hour and achieved the equilibrium state within 12 h in PBS. Depending on the conditions, the copolymers exhibited swelling ratios up to 2100%. As the copolymer has easily biodegradable propionate and versatile functional acrylic acid units, it can be used as not only biodegradable material in medical applications but also raw material in personal care commodities.

  4. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing

    International Nuclear Information System (INIS)

    Yuan, Xiaomin; Zhu, Bo; Cai, Xun; Liu, Jianjun; Qiao, Kun; Yu, Junwei

    2017-01-01

    Highlights: • An improved interfacial adhesion in CF/EP composite by FSMPA sizing was put forward. • Sized CFs featured promotions of wettability, chemical activity and mechanical property. • A sizing mechanism containing chemical interaction and physical absorption was proposed. - Abstract: The adhesion behavior of epoxy resin to carbon fibers has always been a challenge, on account of the inertness of carbon fibers and the lack of reactive functional groups. In this work, a modified polyacrylate sizing agent was prepared to modify the interface between the carbon fiber and the epoxy matrix. The surface characteristics of carbon fibers were investigated to determine chemical composition, morphology, wettability, interfacial phase analysis and interfacial adhesion. Sized carbon fibers featured improved wettability and a slightly decreased surface roughness due to the coverage of a smooth sizing layer, compared with the unsized ones. Moreover, the content of surface activated carbon atoms increased from 12.65% to 24.70% and the interlaminar shear strength (ILSS) of carbon fiber/epoxy composites raised by 14.2%, indicating a significant improvement of chemical activity and mechanical property. SEM images of the fractured surface of composites further proved that a gradient interfacial structure with increased thicknesses was formed due to the transition role of the sizing. Based on these results, a sizing mechanism consisting of chemical interaction bonding and physical force absorption was proposed, which provides an efficient and feasible method to solve the poor adhesion between carbon fiber and epoxy matrix.

  5. Preparation and Properties of Moisture-absorbing Film Impregnated with Polyacrylic Acid Partial Sodium Salt Material

    International Nuclear Information System (INIS)

    Lee, Youn Suk; Park, Insik; Choi, Hong Yeol

    2014-01-01

    Moisture is a major factor causing the deteriorative physical change, microbial growth, and chemical reaction of the products. In this study, the moisture absorbing composite films have been prepared with moisture absorbing material of polyacrylic acid partial sodium salt (PAPSS) impregnated on LLDPE polymer for the functional packaging applications. The results showed that PAPSS impregnated film illustrated uniformly dispersed PAPSS particles in the LLDPE polymer matrix. The transparency of the PAPSS impregnated film decreased slightly at higher PAPSS concentrations. An increase in the PAPSS content for moisture-absorbing films showed a similar decrease in tensile strength, percent elongation at break, and tear strength. Their values of films impregnated with PAPSS of 0.5, 1, and 2% showed no significant difference. Meanwhile, 4% PAPSS films significantly decreased the values of mechanical properties compared to the films impregnated with different PAPSS levels. Values of the oxygen permeability and water vapor permeability for PAPSS impregnated films decreased significantly with greater PAPSS. The results indicate that 4% PAPSS impregnated in LLDPE films had high affinity of moisture absorbencies compared to the other films. The mathematical equation that best described the moisture sorption isotherm of each film sample was the GAB equation at 25 .deg. C. The crystallization and melting temperatures of PAPSS films were influenced by the addition of PAPSS material, but showed good thermal stability

  6. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaomin [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Zhu, Bo, E-mail: zhubo@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Cai, Xun, E-mail: caixunzh@sdu.edu.cn [School of Computer Science and Technology, Shandong University, Jinan 250101 (China); Liu, Jianjun [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Qiao, Kun [Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Yu, Junwei [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2017-04-15

    Highlights: • An improved interfacial adhesion in CF/EP composite by FSMPA sizing was put forward. • Sized CFs featured promotions of wettability, chemical activity and mechanical property. • A sizing mechanism containing chemical interaction and physical absorption was proposed. - Abstract: The adhesion behavior of epoxy resin to carbon fibers has always been a challenge, on account of the inertness of carbon fibers and the lack of reactive functional groups. In this work, a modified polyacrylate sizing agent was prepared to modify the interface between the carbon fiber and the epoxy matrix. The surface characteristics of carbon fibers were investigated to determine chemical composition, morphology, wettability, interfacial phase analysis and interfacial adhesion. Sized carbon fibers featured improved wettability and a slightly decreased surface roughness due to the coverage of a smooth sizing layer, compared with the unsized ones. Moreover, the content of surface activated carbon atoms increased from 12.65% to 24.70% and the interlaminar shear strength (ILSS) of carbon fiber/epoxy composites raised by 14.2%, indicating a significant improvement of chemical activity and mechanical property. SEM images of the fractured surface of composites further proved that a gradient interfacial structure with increased thicknesses was formed due to the transition role of the sizing. Based on these results, a sizing mechanism consisting of chemical interaction bonding and physical force absorption was proposed, which provides an efficient and feasible method to solve the poor adhesion between carbon fiber and epoxy matrix.

  7. Nanocomposites of Polyacrylic Acid Nanogels and Biodegradable Polyhydroxybutyrate for Bone Regeneration and Drug Delivery

    Directory of Open Access Journals (Sweden)

    Mikael Larsson

    2014-01-01

    Full Text Available Biodegradable cell scaffolds and local drug delivery to stimulate cell response are currently receiving much scientific attention. Here we present a nanocomposite that combines biodegradation with controlled release of lithium, which is known to enhance bone growth. Nanogels of lithium neutralized polyacrylic acid were synthesized by microemulsion-templated polymerization and were incorporated into a biodegradable polyhydroxybutyrate (PHB matrix. Nanogel size was characterized using dynamic light scattering, and the nanocomposites were characterized with regard to structure using scanning electron microscopy, mechanical properties using tensile testing, permeability using tritiated water, and lithium release in PBS using a lithium specific electrode. The nanogels were well dispersed in the composites and the mechanical properties were good, with a decrease in elastic modulus being compensated by increased tolerance to strain in the wet state. Approximately half of the lithium was released over about three hours, with the remaining fraction being trapped in the PHB for subsequent slow release during biodegradation. The prepared nanocomposites seem promising for use as dual functional scaffolds for bone regeneration. Here lithium ions were chosen as model drug, but the nanogels could potentially act as carriers for larger and more complex drugs, possibly while still carrying lithium.

  8. Bleomycin loaded magnetite nanoparticles functionalized by polyacrylic acid as a new antitumoral drug delivery system.

    Science.gov (United States)

    Xu, Yue; Lin, Yi; Zhuang, Lin; Lin, Jiong; Lv, Jiahong; Huang, Qin; Sun, Jiadong

    2013-01-01

    To prepare, characterize, and analyze the release behavior of bleomycin-loaded magnetite nanoparticles (BLM-MNPs) coated with polyacrylic acid (PAA) as a new drug delivery system that can be specifically distributed in the tumor site. BLM-MNPs coated with PAA were prepared using a solvothermal approach. The particles were characterized using scanning electron microscope (SEM), vibrating sample magnetometer (VSM), and Fourier transform infrared spectroscopy (FTIR). The loading and release behaviors of BLM-MNPs were examined by a mathematical formula and in vitro release profile at pH 7.5. The sphere Fe3O4 nanoparticles with the size of approximately 30 nm exhibit a saturation magnetization of 87 emu/g. The noncoordinated carboxylate groups of PAA confer on the good dispersibility in the aqueous solution and lead to a good loading efficiency of BLM reaching 50% or higher. Approximately 98% of immobilized BLM could be released within 24 h, of which 22.4% was released in the first hour and then the remaining was released slowly and quantitatively in the next 23 hours. BLM-MNPs were prepared and characterized successfully. The particles show high saturation magnetization, high drug loading capacity, and favorable release property, which could contribute to the specific delivery and controllable release of BLM, and the BLM-MNPs could be a potential candidate for the development of treating solid tumors.

  9. Bleomycin Loaded Magnetite Nanoparticles Functionalized by Polyacrylic Acid as a New Antitumoral Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Yue Xu

    2013-01-01

    Full Text Available Objective. To prepare, characterize, and analyze the release behavior of bleomycin-loaded magnetite nanoparticles (BLM-MNPs coated with polyacrylic acid (PAA as a new drug delivery system that can be specifically distributed in the tumor site. Methods. BLM-MNPs coated with PAA were prepared using a solvothermal approach. The particles were characterized using scanning electron microscope (SEM, vibrating sample magnetometer (VSM, and Fourier transform infrared spectroscopy (FTIR. The loading and release behaviors of BLM-MNPs were examined by a mathematical formula and in vitro release profile at pH 7.5. Results. The sphere Fe3O4 nanoparticles with the size of approximately 30 nm exhibit a saturation magnetization of 87 emu/g. The noncoordinated carboxylate groups of PAA confer on the good dispersibility in the aqueous solution and lead to a good loading efficiency of BLM reaching 50% or higher. Approximately 98% of immobilized BLM could be released within 24 h, of which 22.4% was released in the first hour and then the remaining was released slowly and quantitatively in the next 23 hours. Conclusion. BLM-MNPs were prepared and characterized successfully. The particles show high saturation magnetization, high drug loading capacity, and favorable release property, which could contribute to the specific delivery and controllable release of BLM, and the BLM-MNPs could be a potential candidate for the development of treating solid tumors.

  10. Structure and properties of mixtures based on long chain polyacrylate and 1-alcohol composites

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Haifeng, E-mail: haifeng.shi@gmail.com; Zhang, Lingjian; Li, Weiwei; Han, Xu; Zhang, Xingxiang

    2014-02-14

    A series of phase change materials (PCMs) based on long chain polyacrylate and 1-alcohol, i.e., poly (stearyl methacrylate) and 1-tetradecanol (PSMA/C14OH) were prepared through the solution-mixing method. Thermal energy storage capacity, thermal stability and morphology of PSMA/C14OH PCMs were characterized by Fourier transform infrared spectroscopy (FTIR), polarized optical microscopy (POM), field emission scanning electron microscopy (FE-SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC results demonstrated that the heat of fusion of PSMA/C14OH PCMs increased from 85.9 to 172.3 J g{sup −1} with the weight fraction of C14OH increasing from 20 to 80 wt%. And, the thermal stability also enhanced with PSMA weight. The spherulite (ca. 250 μm) in PSMA/C14OH composites containing 60 wt% C14OH proved the compatibility between PSMA and C14OH, indicating the cocrystallization behavior of alkyl side groups appeared. The cocrystallization behavior contributes the enhanced thermal stability of PSMA/C14OH PCMs, and it is suitable as the thermal energy storage materials in the future. - Highlights: • Heat storage capability of PSMA/C14OH PCMs increased with C14OH weight. • The spherulites exhibit the weight-dependence upon C14OH. • The thermal stability of PSMA/C14OH PCMs obviously improved.

  11. Effect of Hofmeister series salts on Absorptivity of aqueous solutions on Sodium polyacrylate

    Science.gov (United States)

    Korrapati, Swathi; Pullela, Phani Kumar; Vijayalakshmi, U.

    2017-11-01

    Sodium polyacrylate (SPA) is a popular super absorbent commonly used in children diapers, sanitary pads, adult diapers etc. The use of SPA is in force from past 30 years and the newer applications like as food preservant are evolving. SPA is recently discovered by our group for improvement of sensitivity of colorimetric agents. Though the discovery of improvement in sensitivity is phenomenal, the mechanism still remains a puzzle. A typical assay reagent contains colorimetric/fluorescent reagents, buffers, salts, stabilizers etc. These chemicals are known to influence the water absorptivity of SPA. If we were to perform chemical/biochemical assays on SPA absorbed reagents effect of salts and other excipients on colorimetric/fluorescence compounds absorbed on SPA is very important. The hofmeister series are standard for studying effect of salts on permeability, stability, aggregation, fluorescence quenching etc. We recently studied affect of urea, sodium chloride, ammonium sulfate, guanidine thiocayanate on fluorescence characteristics of fluorescence compounds and noted that except urea all other reagents have resulted in fluorescence quenching and urea had an opposite effect and increased the fluorescence intensity. This result was attributed to the different water structure around fluorescent in urea solution versus other chaotropic agents.

  12. Efficiency of Sodium Polyacrylate to Improve Durability of Concrete under Adverse Curing Condition

    Directory of Open Access Journals (Sweden)

    Tanvir Manzur

    2015-01-01

    Full Text Available The conventional external curing process requires supply of large amount of water in addition to mixing water as well as strict quality control protocol. However, in a developing country like Bangladesh, many local contractors do not have awareness and required knowledge on importance of curing which often results in weaker concrete with durability issues. Moreover, at times it is difficult to maintain proper external curing process due to nonavailability of water and skilled laborer. Internal curing can be adopted under such scenario since this method is simple and less quality intensive. Usually, naturally occurring porous light weight aggregates (LWA are used as internal curing agent. However, naturally occurring LWA are not available in many countries like Bangladesh. Under these circumstances, Super Absorbent Polymer (SAP can be utilized as an alternative internal curing agent. In this study, sodium polyacrylate (SP as SAP has been used to produce internally cured concrete. Desorption isotherm of SP has been developed to investigate its effectiveness as internal curing agent. Test results showed that internally cured concrete with SP performed better in terms of both strength and durability as compared to control samples when subjected to adverse curing conditions where supply of additional water for external curing was absent.

  13. Degradation Behaviour of Gamma Irradiated Poly(Acrylic Acid)-graft-Chitosan Superabsorbent Hydrogel

    Science.gov (United States)

    Ria Barleany, Dhena; Ilhami, Alpin; Yusuf Yudanto, Dea; Erizal

    2018-03-01

    A series of superabsorbent hydrogels were prepared from chitosan and partially neutralized acrylic acid at room temperature by gamma irradiation technique. The effect of irradiation and chitosan addition to the degradation behaviour of polymer were investigated. The gel content, swelling capacity, Equillibrium Degree of Swelling (EDS), Fourier Transform Infra Red (FTIR), and Scanning Electron Microscopy (SEM) study were also performed. Natural degradation in soil and thermal degradation by using of TGA analysis were observed. The variation of chitosan compositions were 0.5, 1, 1.5, and 2 g and the total irradiation doses were 5, 10, 15, and 20 kGy. The highest water capacity of 583.3 g water/g dry hydrogel was resulted from 5 kGy total irradiation dose and 0,5 g addition of chitosan. From the thermal degradation evaluation by using of TGA analysis showed that irradiation dose did not give a significant influence to the degradation rate. The rate of thermal degradation was ranged between 2.42 to 2.55 mg/min. In the natural test of degradation behaviour by using of soil medium, the hydrogel product with chitosan addition was found to have better degradability compared with the poly(acrylic acid) polymer without chitosan.

  14. Conjugation, characterization and toxicity of lipophosphoglycan-polyacrylic acid conjugate for vaccination against leishmaniasis.

    Science.gov (United States)

    Topuzogullari, Murat; Cakir Koc, Rabia; Dincer Isoglu, Sevil; Bagirova, Melahat; Akdeste, Zeynep; Elcicek, Serhat; Oztel, Olga N; Yesilkir Baydar, Serap; Canim Ates, Sezen; Allahverdiyev, Adil M

    2013-06-03

    Research on the conjugates of synthetic polyelectrolytes with antigenic molecules, such as proteins, peptides, or carbohydrates, is an attractive area due to their highly immunogenic character in comparison to classical adjuvants. For example, polyacrylic acid (PAA) is a weak polyelectrolyte and has been used in several biomedical applications such as immunological studies, drug delivery, and enzyme immobilization. However, to our knowledge, there are no studies that document immune-stimulant properties of PAA in Leishmania infection. Therefore, we aimed to develop a potential vaccine candidate against leishmaniasis by covalently conjugating PAA with an immunologically vital molecule of lipophosphoglycan (LPG) found in Leishmania parasites. In the study, LPG and PAA were conjugated by a multi-step procedure, and final products were analyzed with GPC and MALDI-TOF MS techniques. In cytotoxicity experiments, LPG-PAA conjugates did not indicate toxic effects on L929 and J774 murine macrophage cells. We assume that LPG-PAA conjugate can be a potential vaccine candidate, and will be immunologically characterized in further studies to prove its potential.

  15. Biodegradation of New Polymer Foundry Binders for the Example of the Composition Polyacrylic Acid/Starch

    Directory of Open Access Journals (Sweden)

    Beata Grabowska

    2011-04-01

    Full Text Available The investigations on the biodegradation process pathway of the new polymer binders for the example of water soluble compositionpolyacrylic acid/starch are presented in the hereby paper. Degradation was carried out in water environment and in a soil. Thedetermination of the total oxidation biodegradation in water environment was performed under laboratory conditions in accordance with the static water test system (Zahn-Wellens method, in which the mixture undergoing biodecomposition contained inorganic nutrient,activated sludge and the polymer composition, as the only carbon and energy source. The biodecomposition progress of the polymercomposition sample in water environment was estimated on the basis of the chemical oxygen demand (COD measurements and thedetermination the biodegradation degree, Rt, during the test. These investigations indicated that the composition polyacrylic acid/starchconstitutes the fully biodegradable material in water environment. The biodegradation degree Rt determined in the last 29th day of the test duration achieved 65%, which means that the investigated polymer composition can be considered to be fully biodegradable.During the 6 months biodegradation process of the cross-linked sample of the polymer composition in a garden soil several analysis ofsurface and structural changes, resulting from the sample decomposition, were performed. Those were: thermal analyses (TG-DSC,structural analyses (Raman spectroscopy and microscopic analyses (optical microscopy, AFM.

  16. Thermal performance study of form-stable composite phase change material with polyacrylic

    Science.gov (United States)

    Kee, Shin Yiing; Munusamy, Yamuna; Ong, Kok Seng; Chee, Swee Yong; Sanmuggam, Shimalaa

    2017-04-01

    Phase change material (PCM) is one of the most popular and widely used as thermal energy storage material because it is able to absorb and release a large amount of latent heat during a phase change process over a narrow temperature range. In this work, the form-stable composite PCM was prepared by blending of PMMA and myristic acid in different weight percentage. PMMA was used as a supporting material while myristic acid was used as PCM. Theoretically, PCM can be encapsulated in the support material after blending. However, a small amount of liquid PCMs can leak out from supporting material due to the volume change in phase change process. Therefore, a form-stable composite PCM with polyacrylic coating was studied. Leakage test was carried out to determine the leakage percentage of the form-stable composite PCM. Fourier transform infrared spectroscopy (FTIR) was used to characterize the chemical compatibility of the form-stable PCM composite while differential scanning calorimetry (DSC) was used to study the melting, freezing point and the latent heat of melting and freezing for the form-stable composite PCM.

  17. A self-cleaning coating based on commercial grade polyacrylic latex modified by TiO{sub 2}/Ag-exchanged-zeolite-A nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Nosrati, Rahimeh, E-mail: ra.nosrati@gmail.com [Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Olad, Ali, E-mail: a.olad@yahoo.com [Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Nofouzi, Katayoon, E-mail: nofouzi@tabrizu.ac.ir [Faculty of Veterinary Medicine, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-08-15

    Graphical abstract: - Highlights: • A novel nanocomposite coating based on polyacrylic was prepared. • Nanostructured TiO{sub 2}/Ag-exchanged-zeolite-A composite material was prepared. • Prepared nanocomposite used as additive for modification of polyacrylic latex. • Modified coatings show self-cleaning and antibacterial properties. • Modified coatings show better stability in water in versus of unmodified polymer. - Abstract: The commercial grade polyacrylic latex was modified in order to prepare a self-cleaning coating. TiO{sub 2}/Ag-exchanged-zeolite-A nanocomposite was prepared and used as additive in the matrix of polyacrylic latex to achieve a hydrophilic and photocatalytic coating. FTIR and UV–visible spectroscopy, X-ray diffraction patterns and FESEM were used to characterize the composition and structure of the nanocomposites and coatings. The acrylic coatings, were prepared by using of TiO{sub 2}/Ag-exchanged-zeolite-A additive, had better UV and visible light absorption, hydrophilic, degradation of organic pollutants, stability in water and antimicrobial properties than pristine commercial grade polyacrylic latex coating. According to the results, the modified polyacrylic based coating containing 0.5 wt% of TiO{sub 2}/Ag-exchanged-zeolite-A nanocomposite additive with TiO{sub 2} to Ag-exchanged-zeolite-A ratio of 1:2 was the best coating considering most of useful properties such as small band gap and low water contact angle. The water contact angle for unmodified polyacrylic latex coating was 68° which was decreased to less than 10° in modified coating after 24 h LED lamp illumination.

  18. Probing highly efficient photoisomerization of a bridged azobenzene by a combination of CASPT2//CASSCF calculation with semiclassical dynamics simulation.

    Science.gov (United States)

    Liu, Lihong; Yuan, Shuai; Fang, Wei-Hai; Zhang, Yong

    2011-09-08

    Mechanism of phototriggered isomerization of azobenzene and its derivatives is of broad interest. In this paper, the S(0) and S(1) potential energy surfaces of the ethylene-bridged azobenzene (1) that was recently reported to have highly efficient photoisomerization were determined by ab initio electronic structure calculations at different levels and further investigated by a semiclassical dynamics simulation. Unlike azobenzene, the cis isomer of 1 was found to be more stable than the trans isomer, consistent with the experimental observation. The thermal isomerization between cis and trans isomers proceeds via an inversion mechanism with a high barrier. Interestingly, only one minimum-energy conical intersection was determined between the S(0) and S(1) states (CI) for both cis → trans and trans → cis photoisomerization processes and confirmed to act as the S(1) → S(0) decay funnel. The S(1) state lifetime is ∼30 fs for the trans isomer, while that for the cis isomer is much longer, due to a redistribution of the initial excitation energies. The S(1) relaxation dynamics investigated here provides a good account for the higher efficiency observed experimentally for the trans → cis photoisomerization than the reverse process. Once the system decays to the S(0) state via CI, formation of the trans product occurs as the downhill motion on the S(0) surface, while formation of the cis isomer needs to overcome small barriers on the pathways of the azo-moiety isomerization and rotation of the phenyl ring. These features support the larger experimental quantum yield for the cis → trans photoisomerization than the trans → cis process.

  19. Distinguishing the parallel and vertical orientations and optic axis characteristics determination of azobenzene mesogen by conoscopic polarized microscopy.

    Science.gov (United States)

    Liu, J; Wang, M; Dong, M; Gao, L; Tian, J

    2011-11-01

    Orientational behaviours under the action of linearly polarized light and circularly polarized light of a side-chain azobenzene containing polymer were studied by conoscopic polarized microscopy. The results suggest that the linearly polarized light (473 nm, 20 mW cm(-2)) results in an in-plane orientation of the azobenzene groups. The irradiation with circularly polarized light (473 nm, 20 mW cm(-2)) leads to a tilt orientation (out-of-plane) of the azobenzene groups with the long axis of mesogens aligned along the propagation direction of the actinic light. Characteristic features of the in-plane and out-of-plane orientated films were obtained from their interference figures. The in-plane orientated film shows an interference cross consisting of a broad fuzzy bar, and the cross-centre lies in the centre of view field. In-plane orientated film also yields a flash figure upon a less than 10° rotation of the sample under polarized microscopy. The interference figures yielded from the out-of-plane orientated films consist of narrow bar cross. The locations of those interference figures depend on the oblique angle of the irradiation light. A method for distinguishing the in-plane orientation of the mesogens from the vertically out-of-plane orientation is demonstrated, which is based on comparing the bar width of their interference figures, and by whether they can produce a flash figure upon a small angle rotation of the film. The liquid crystalline film is identified as positive and uniaxial anisotropy after annealing of the perpendicularly irradiated film. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.

  20. Conserving Coherence and Storing Energy during Internal Conversion: Photoinduced Dynamics of cis- and trans-Azobenzene Radical Cations

    KAUST Repository

    Munkerup, Kristin

    2017-10-24

    Light harvesting via energy storage in azobenzene has been a key topic for decades, and the process of energy distribution over the molecular degrees of freedom following photoexcitation remains to be understood. Dynamics of a photoexcited system can exhibit high degrees of non-ergodicity when it is driven by just a few degrees of freedom. Typically, an internal conversion leads to the loss of such localization of dynamics, as the intramolecular energy becomes statistically redistributed over all molecular degrees of freedom. Here, we present a unique case where the excitation energy remains localized even subsequent to internal conversion. Strong-field ionization is used to prepare cis- and trans-azobenzene radical cations on the D1 surface with little excess energy, at the equilibrium neutral geometry. These D1 ions are preferably formed because in this case D1 and D0 switch place in the presence of the strong laser field. The post-ionization dynamics is dictated by the potential energy landscape. The D1 surface is steep downhill along the cis/trans isomerization coordinate and towards a common minimum shared by the two isomers in the region of D1/D0 conical intersection. Coherent cis/trans torsional motion along this coordinate is manifested in the ion transients by a cosine modulation. In this scenario, D0 becomes populated with molecules that are energized mainly along the cis-trans isomerization coordinate, with the kinetic energy above the cis-trans inter-conversion barrier. These activated azobenzene molecules easily cycle back and forth along the D0 surface, and give rise to several periods of modulated signal before coherence is lost. This persistent localization of the internal energy during internal conversion is provided by the steep downhill potential energy surface, small initial internal energy content, and a strong hole-lone pair interaction that drives the molecule along the cis-trans isomerization coordinate to facilitate the transition between

  1. Calculated photo-isomerization efficiencies of functionalized azobenzene derivatives in solar energy materials: azo-functional organic linkers for porous coordinated polymers

    Czech Academy of Sciences Publication Activity Database

    Neukirch, A.J.; Park, J.; Zobač, Vladimír; Wang, H.; Jelínek, Pavel; Prezhdo, O.V.; Zhou, H.-C.; Lewis, J.P.

    2015-01-01

    Roč. 27, č. 13 (2015), s. 134208 ISSN 0953-8984 R&D Projects: GA ČR(CZ) GA14-02079S Institutional support: RVO:68378271 Keywords : photoisomerization * azobenzene * metal-organic frameworks * molecular switches Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.209, year: 2015

  2. Synthesis of 2-aryl-2H-benzotrizoles from azobenzenes and N-sulfonyl azides through sequential rhodium-catalyzed amidation and oxidation in one pot.

    Science.gov (United States)

    Ryu, Taekyu; Min, Jiae; Choi, Wonseok; Jeon, Woo Hyung; Lee, Phil Ho

    2014-06-06

    An efficient synthetic method of 2-aryl-2H-benzotriazoles from nonprefunctionalized azobenzenes and N-sulfonyl azides via sequential Rh-catalyzed amidation (C-N bond formation) and oxidation (N-N bond formation) with PhI(OAc)2 in one pot is reported.

  3. Electric bistability induced by incorporating self-assembled monolayers/aggregated clusters of azobenzene derivatives in pentacene-based thin-film transistors.

    Science.gov (United States)

    Tseng, Chiao-Wei; Huang, Ding-Chi; Tao, Yu-Tai

    2012-10-24

    Composite films of pentacene and a series of azobenzene derivatives are prepared and used as the active channel material in top-contact, bottom-gate field-effect transistors. The transistors exhibit high field-effect mobility as well as large I-V hysteresis as a function of the gate bias history. The azobenzene moieties, incorporated either in the form of self-assembled monolayer or discrete multilayer clusters at the dielectric surface, result in electric bistability of the pentacene-based transistor either by photoexcitation or gate biasing. The direction of threshold voltage shifts, size of hysteresis, response time, and retention characteristics all strongly depend on the substituent on the benzene ring. The results show that introducing a monolayer of azobenzene moieties results in formation of charge carrier traps responsible for slower switching between the bistable states and longer retention time. With clusters of azobenzene moieties as the trap sites, the switching is faster but the retention is shorter. Detailed film structure analyses and correlation with the transistor/memory properties of these devices are provided.

  4. An azobenzene-containing metal-organic framework as an efficient heterogeneous catalyst for direct amidation of benzoic acids: synthesis of bioactive compounds.

    Science.gov (United States)

    Hoang, Linh T M; Ngo, Long H; Nguyen, Ha L; Nguyen, Hanh T H; Nguyen, Chung K; Nguyen, Binh T; Ton, Quang T; Nguyen, Hong K D; Cordova, Kyle E; Truong, Thanh

    2015-12-14

    An azobenzene-containing zirconium metal-organic framework was demonstrated to be an effective heterogeneous catalyst for the direct amidation of benzoic acids in tetrahydrofuran at 70 °C. This finding was applied to the synthesis of several important, representative bioactive compounds.

  5. Synthesis and thermal behavior of telechelic poly(butadiene)diols with azobenzene-based liquid-crystalline units in side chains

    Czech Academy of Sciences Publication Activity Database

    Poláková, Lenka; Sedláková, Zdeňka; Látalová, Petra

    2010-01-01

    Roč. 64, č. 4 (2010), s. 315-326 ISSN 0170-0839 R&D Projects: GA ČR GA202/09/2078 Institutional research plan: CEZ:AV0Z40500505 Keywords : azobenzene mesogens * radical addition * poly(butadiene)diols Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.215, year: 2010

  6. New photoresponsive (meth)acrylate (co)polymers containing azobenzene pendant sidegroups with carboxylic and dimethylamino substituents .2. Synthesis and characterization of polymers and copolymers

    NARCIS (Netherlands)

    Haitjema, HJ; Buruma, R; VanEkenstein, GORA; Tan, YY; Challa, G

    1996-01-01

    The title (co)polymers, used for our investigations on their photoresponsive behaviour were obtained by free radical (co)polymerization. The monomer was either an acrylate or a methacrylate to which an azobenzene group, modified with a para-placed dimethylamino or a carboxylic pendant group, was

  7. New photoresponsive (meth)acrylate (co)polymers containing azobenzene pendant sidegroups with carboxylic and dimethylamino substituents .1. Synthesis and characterization of the monomers

    NARCIS (Netherlands)

    Haitjema, HJ; Buruma, R; VanEkenstein, GORA; Tan, YY; Challa, G

    1996-01-01

    New azobenzene-based (az.b.) monomers with CO2H (acid) or N(CH3)(2) (basic) substituents were synthesized. For some of these compounds new synthetic routes had to be developed, especially for the az.b. monomers with a CO2H substituent (azoacids) where their synthesis, purification and (thermal)

  8. Azobenzene-aminoglycoside: Self-assembled smart amphiphilic nanostructures for drug delivery.

    Science.gov (United States)

    Deka, Smriti Rekha; Yadav, Santosh; Mahato, Manohar; Sharma, Ashwani Kumar

    2015-11-01

    Here, we have designed and synthesized a novel cationic amphiphilic stimuli-responsive azobenzene-aminoglycoside (a small molecule) conjugate, Azo-AG 5, and characterized it by UV and FTIR. Light responsive nature of Azo-AG 5 was assessed under UV-vis light. Self- assembly of Azo-AG 5 in aqueous solutions into nanostructures and their ability to act as drug carrier were also investigated. The nanostructures of Azo-AG 5 showed average hydrodynamic diameter of ∼ 255 nm with aminoglycoside moiety (neomycin) and 4-dimethylaminoazobenzene forming hydrophilic shell and hydrophobic core, respectively. In the hydrophobic core, eosin and aspirin were successfully encapsulated. Dynamic light scattering (DLS) measurements demonstrated that the nanoassemblies showed expansion and contraction on successive UV and visible light irradiations exhibiting reversible on-off switch for controlling the drug release behavior. Similar behavior was observed when these nanostructures were subjected to pH-change. In vitro drug release studies showed a difference in UV and visible light-mediated release pattern. It was observed that the release rate under UV irradiation was comparatively higher than that observed under visible light. Further, azoreductase-mediated cleavage of the azo moiety in Azo-AG 5 nanoassemblies resulted in the dismantling of the structures into aggregated microstructures. Azo-AG 5 nanostructures having positive surface charge (+9.74 mV) successfully interacted with pDNA and retarded its mobility on agarose gel. Stimuli responsiveness of nanostructures and their on-off switch like behavior ensure the great potential as controlled drug delivery systems and in other biomedical applications such as colon-specific delivery and gene delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Azobenzene polyesters used as gate-like scaffolds in nanoscopic hybrid systems.

    Science.gov (United States)

    Bernardos, Andrea; Mondragón, Laura; Javakhishvili, Irakli; Mas, Núria; de la Torre, Cristina; Martínez-Máñez, Ramón; Sancenón, Félix; Barat, José M; Hvilsted, Søren; Orzaez, Mar; Pérez-Payá, Enríque; Amorós, Pedro

    2012-10-08

    The synthesis and characterisation of new capped silica mesoporous nanoparticles for on-command delivery applications is reported. Functional capped hybrid systems consist of MCM-41 nanoparticles functionalised on the external surface with polyesters bearing azobenzene derivatives and rhodamine B inside the mesopores. Two solid materials, Rh-PAzo8-S and Rh-PAzo6-S, containing two closely related polymers, PAzo8 and PAzo6, in the pore outlets have been prepared. Materials Rh-PAzo8-S and Rh-PAzo6-S showed an almost zero release in water due to steric hindrance imposed by the presence of anchored bulky polyesters, whereas a large delivery of the cargo was observed in the presence of an esterase enzyme due to the progressive hydrolysis of polyester chains. Moreover, nanoparticles Rh-PAzo8-S and Rh-PAzo6-S were used to study the controlled release of the dye in intracellular media. Nanoparticles were not toxic for HeLa cells and endocytosis-mediated cell internalisation was confirmed by confocal microscopy. Furthermore, the possible use of capped materials as a drug-delivery system was demonstrated by the preparation of a new mesoporous silica nanoparticle functionalised with PAzo6 and loaded with the cytotoxic drug camptothecin (CPT-PAzo6-S). Following cell internalisation and lysosome resident enzyme-dependent gate opening, CPT-PAzo6-S induced CPT-dependent cell death in HeLa cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Threshold collision-induced dissociation and theoretical study of protonated azobenzene

    Science.gov (United States)

    Rezaee, Mohammadreza; McNary, Christopher P.; Armentrout, P. B.

    2017-10-01

    Protonated azobenzene (AB), H+(C6H5N2C6H5), has been studied using threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer. Product channels observed are C6H5N2+ + C6H6 and C6H5+ + N2 + C6H6. The experimental kinetic energy-dependent cross sections were analyzed using a statistical model that accounts for internal and kinetic energy distributions of the reactants, multiple collisions, and kinetic shifts. From this analysis, the activation energy barrier height of 2.02 ± 0.11 eV for benzene loss is measured. To identify the transition states (TSs) and intermediates (IMs) for these dissociations, relaxed potential energy surface (PES) scans were performed at the B3LYP/aug-cc-pVTZ level of theory. The PES indicates that there is a substantial activation energy along the dissociation reaction coordinate that is the rate-limiting step for benzene loss and at some levels of theory, for subsequent N2 loss as well. Relative energies of the reactant, TSs, IMs, and products were calculated at B3LYP, wB97XD, M06, PBEPBE, and MP2(full) levels of theory using both 6-311++G(2d,2p) and aug-cc-pVTZ basis sets. Comparison of the experimental results with theoretical values from various computational methods indicates how well these theoretical methods can predict thermochemical properties. In addition to these density functional theory and MP2 methods, several high accuracy multi-level calculations such as CBS-QB3, G3, G3MP2, G3B3MP2, G4, and G4MP2 were performed to determine the thermochemical properties of AB including the proton affinity and gas-phase basicity, and to compare the performance of different theoretical methods.

  11. Tolnaftate-Loaded PolyacrylateElectrospun Nanofibers for an Impressive Regimen on Dermatophytosis

    Directory of Open Access Journals (Sweden)

    Shashi Kiran Misra

    2017-11-01

    Full Text Available Dermatophytosis, topical fungal infection is the most common cause of skin bug in the world, generally underestimated and ignored. It is commonly caused by immensely mortifying and keratinophilic fungal eukaryotes which invade keratinized tissues and generate different tinea diseases in Mediterranean countries. We herein fabricated nanofibers/scaffolds embedded with thiocarbamate derivative topical antifungal tolnaftatefor the first time to target the complete elimination of dermatophyte at the site of infection. In this regard, variable combinations of biocompatible Eudragit grades (ERL100 and ERS100 were selected to provide better adhesion on the site of dermatophytosis, ample absorption of exudates during treatment, and customized controlled drug release. Surface topography analysis indicated that the fabricated nanofibers were regular and defect-free, comprising distinct pockets with nanoscaled diameters. Characterization and compatibility studies of tolnaftate, polymers, and their nanofibers were performed through ATR-FTIR, TGA, and PXRD. Remarkable hydrophilicity and an excellent swelling index were obtained from a 3:1 ratio of ERL100/ERS100 electrospun D3 nanofibers, which is an essential benchmark for the fabrication of nanofibrous scaffolds for alleviating dermatophytosis. In vitro drug release investigation revealed that a nonwoven nanomesh of nanofibers could control the rate of drug release for 8 h. A microdilution assay exhibited inhibition of more than 95% viable cells of Trichophyton rubrum for 96 h. However, Microsporum species rigidly restricted the effect of bioactive antifungal nanofibers and hence showed resistance. In vivo activity on Trichophyton rubrum infected Swiss albino mice revealed complete inhibition of fungal pathogens on successive applications of D3 nanofibers for 7 days. This investigation suggests potential uses of tolnaftate loaded polyacrylate nanofibers as dressing materials/scaffolds for effective

  12. An NMR study of sodium poly(acrylate) adsorption on rutile

    International Nuclear Information System (INIS)

    Evershed, P.G.

    2000-05-01

    Adsorption of sodium poly(acrylate) (PA) on rutile particles in aqueous dispersion was studied. Two different molecular weights of PA (2,100 and 30,000) and two different grades of rutile were used. Various pHs, ionic strengths, and PA concentrations were investigated. The main technique employed was measurement of the transverse NMR relaxation of the solvent using the CPMG pulse sequence. Other techniques used to augment these results include electroacoustics, scanning electron microscopy, and measurement of the adsorbed amount of PA by a fluorescence spectroscopy technique using the dye acridine orange. Adsorption of small ions such as Na + , K + , Cl - , and NO 3 - to the particle surface was found to have a significant effect on the measured transverse relaxation rate, that was dependent on the pH and the concentration of the ions. There was usually an additional effect on the relaxation due to the adsorbed PA, but only qualitative rather than quantitative information about the adsorption could be deduced. At pH 4 especially, it could be seen that the results were consistent with the common assertion that polymers adsorb in a flat conformation at low concentration, and only become looped when all of the surface sites are full. At pH 10 it was found that the relaxation rate for the longer chain PA samples fluctuated over time, indicating metastable PA conformations. There were also unusual trends in the relaxation rate for these samples, which could be due to a previously proposed small ion complexation mechanism for PA adsorption at high pH in this system. It is possible that an extensive and comprehensive study using this technique, investigating all of the relevant parameters, especially the effect of small ion adsorption, may allow a quantitative description of the adsorbed conformation. (author)

  13. Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate

    International Nuclear Information System (INIS)

    Sun Xiaoguang; Hou Jun; Kerr, John B.

    2005-01-01

    Comb-shaped single ion conductors have been synthesized by (1) sulfonation of small molecule chloroethyleneglycols, which, after ion exchange to the Li + salt were then converted to the acrylate by reaction with acryloyl chloride and copolymerized with polyethylene glycol monomethyl ether acrylate (Mn = 454, n = 8) (PAE 8 -co-E 3 SO 3 Li); (2) sulfonation of chloride end groups grafted on to prepolymers of polyacrylate ethers (PAE 8 -g-E n SO 3 Li, n = 2, 3). The highest conductivity at 25 deg. C of 2.0 x 10 -7 S cm -1 was obtained for the PAE 8 -co-E 3 SO 3 Li with a salt concentration of EO/Li = 40. The conductivity of PAE 8 -g-E 3 SO 3 Li is lower than that of PAE 8 -co-E 3 SO 3 Li at similar salt concentrations, which is related to the incomplete sulfonation of the grafted polymer that leads to a lower concentration of Li + . The addition of 50 wt.% of plasticizer, PC/EMC (1/1, v/v), to PAE 8 -g-E 2 SO 3 Li increases the ambient conductivity by three orders of magnitude, which is due to the increased ion mobility in a micro-liquid environment and an increase concentration of free ions as a result of the higher dielectric constant of the solvent. A symmetrical Li/Li cell with an electrolyte membrane consisting of 75 wt.% PC/EMC (1/1, v/v) was cycled at a current density of 100 μA cm -2 at 85 deg. C. The cycling profile showed no concentration polarization after a break-in period during the first few cycles, which was apparently due to reaction of the solvent at the lithium metal surface that reacted with lithium metal to form a stable SEI layer

  14. The Effect of Double Crosslinker on Precipitation Polymerization of Poly(acrylic acid

    Directory of Open Access Journals (Sweden)

    Hajar Es-haghi

    2014-06-01

    Full Text Available Cross-linked poly(acrylic acids were prepared by dual cross-linkers via precipitation polymerization method in a binary organic solvent. Polyethylene glycol diacrylate (PEGDA-400 as a long-chain cross-linker and di(trimethylol propane tetraacrylate (DTMPTA as multifunctional cross-linker were used. PEGDA-400 was utilized to increase thickening properties and DTMPTA was used to improve the gel strength. The dual cross-linkers effect on the sample features (i.e., equilibrium swelling, thickening properties and rheological properties was investigated. Maximum amount of swelling was obtained by a high percentage of long-chain cross-linker. The apparent viscosity of the microgels was measured to determine their thickening properties for aqueous media. Maximum viscosity occurred at DT25-PE75 which was dependent on the type of cross-linkers in the polymer structure. The Flory-Rehner equation (from swelling ratio data and rubber elasticity theory (from rheometry data were used to discuss the network structure of the polymer. Increasing density of the network was shown by a sample containing high percentage of a four-functional cross-linker. The rheological properties of the cross-linked polymers were measured to determine storage modulus (strength network. The rheological behaviors demonstrated that the synthesized polymer containing a high amount of four-functional cross-linker had higher storage modulus (G′ than other samples. In addition the consistency coefficient (m and flow behavior index (n parameters of Ostwald equation were investigated as well. As a result, n values in each sample were found to be smaller than 1 and these results were fitted clearly with the pseudoplastic model. Apparent and rotational viscosities were used to determine the optimal cross-linker type (synthesized sample contained a high percentage of long-chain cross-linker.

  15. Efficient biocatalysis in organic media with hemoglobin and poly(acrylic acid) nanogels.

    Science.gov (United States)

    Zore, Omkar V; Lenehan, Patrick J; Kumar, Challa V; Kasi, Rajeswari M

    2014-05-13

    We previously reported that the stability and aqueous catalytic activity of met-hemoglobin (Hb) was improved when covalently conjugated with poly(acrylic acid) (PAA). In the current study, the Hb-PAA-water interface was modified to improve Hb catalytic efficiency in organic solvents (0-80% v/v organic solvent; remainder is the conjugate, the substrate, and water). The protein-polymer-solvent interface modification was achieved by esterifying the carboxylic acid groups of Hb-PAA with ethanol (EtOH) or 1-propanol (1-prop) after activation with carbodiimide. The resulting esters (Hb-PAA-Eth and Hb-PAA-1-prop, respectively) showed high peroxidase-like catalytic activities in acetonitrile (ACN), dimethylformamide (DMF), EtOH, and methanol (MeOH). Catalytic activities depended on the log(P) values of the solvents, which is a measure of solvent lipophilicity. The highest weighted-average activities were noted in MeOH for all three conjugates, and the lowest average activities were noted in DMF for two of the conjugates. Interestingly, the average activities of the conjugates were higher than that of Hb in all solvents except in ACN. The ratio of the catalytic rate constant (kcat) to the Michaelis constant (KM), the catalytic efficiency, for Hb-PAA-Eth in MeOH was the highest noted, and it is ~3-fold higher than that of Hb in buffer; conjugates offered higher efficiencies than Hb at most solvent compositions. This is the very first general, versatile, modular strategy of coupling the enhanced stability of Hb with improved activity in organic solvents via the chemical manipulation of the polymer shell around Hb and provides a robust approach to efficient biocatalysis in organic solvents.

  16. Electron-beam induced RAFT-graft polymerization of poly(acrylic acid) onto PVDF

    International Nuclear Information System (INIS)

    Grasselli, M.; Betz, N.

    2005-01-01

    This paper explores for the first time the post-radiation-induced-graft polymerization on solid substrate using reversible addition-fragmentation transfer (RAFT) mechanism. Radiation-induced graft polymerization onto polymers is a potentially interesting technique to create easily new materials from highly resistant polymers, e.g. surface graft polymerization of acrylic acid (AA) onto poly(vinylidene difluoride) (PVDF) improves its surface properties without losing its excellent mechanical properties. As a consequence of the radical nature of the polymerization processes it is difficult to control molecular weight of grafted chains, and therefore design and standardize the properties of the final product. RAFT polymerization is a suitable method to obtain monodisperse polymers. The ability of the RAFT agents to control the polymer chain length could be an interesting approach to improve the grafted polymers obtained by post-radiation-induced-graft polymerization technique. In this way, graft polymerization of AA onto electron-beam irradiated α-PVDF was performed using trithiocarbonic acid bis(1-phenylethyl) ester as a RAFT agent to control the radical polymerization. We studied several grafting parameters such as solvent, monomer concentration and grafting time in order to achieve a poly(acrylic acid) (PAA) layer onto PVDF surface. Acetic acid was found to be the best solvent for many reasons, as to drive graft polymerization mainly to the polymer surface, complete solubility and stability of all reactants. Hydrolysis of PAA chains was also studied in order to remove the trithiocarbonate functionality from the grafted polymer. A mild chemical condition was achieved in order to have thiol groups that were detected onto the modified PVDF by specific enzymatic reaction

  17. Biocompatibility and bond degradation of poly-acrylic acid coated copper iodide-adhesives.

    Science.gov (United States)

    ALGhanem, Adi; Fernandes, Gabriela; Visser, Michelle; Dziak, Rosemary; Renné, Walter G; Sabatini, Camila

    2017-09-01

    To investigate the effect of poly-acrylic acid (PAA) copper iodide (CuI) adhesives on bond degradation, tensile strength, and biocompatibility. PAA-CuI particles were incorporated into Optibond XTR, Optibond Solo and XP Bond in 0.1 and 0.5mg/ml. Clearfil SE Protect, an MDPB-containing adhesive, was used as control. The adhesives were applied to human dentin, polymerized and restored with composite in 2mm-increments. Resin-dentin beams (0.9±0.1mm 2 ) were evaluated for micro-tensile bond strength after 24h, 6 months and 1year. Hourglass specimens (10×2×1mm) were evaluated for ultimate tensile strength (UTS). Cell metabolic function of human gingival fibroblast cells exposed to adhesive discs (8×1mm) was assessed with MTT assay. Copper release from adhesive discs (5×1mm) was evaluated with UV-vis spectrophotometer after immersion in 0.9% NaCl for 1, 3, 5, 7, 10, 14, 21 and 30 days. SEM, EDX and XRF were conducted for microstructure characterization. XTR and Solo did not show degradation when modified with PAA-CuI regardless of the concentration. The UTS for adhesives containing PAA-CuI remained unaltered relative to the controls. The percent viable cells were reduced for Solo 0.5mg/ml and XP 0.1 or 0.5mg/ml PAA-CuI. XP demonstrated the highest ion release. For all groups, the highest release was observed at days 1 and 14. PAA-CuI particles prevented the bond degradation of XTR and Solo after 1year without an effect on the UTS for any adhesive. Cell viability was affected for some adhesives. A similar pattern of copper release was demonstrated for all adhesives. Copyright © 2017. Published by Elsevier Ltd.

  18. Preparation of carboxymethyl chitosan grafted polyacrylic acid hydrogel and its evaluation in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Yuqin CUI

    2015-10-01

    Full Text Available A novel pH-sensitive carboxymethyl chitosan graft polyacrylic acid(CMC-g-PAA hydrogel is fabricated via a free radical heat-initiated graft copolymerization reaction with acrylic acid(AA and carboxymethyl chitosan(CMC as monomers. The polymerization is successful, which is confirmed via fourier transform infrared spectroscopy (FT-IR. The result of swelling experiment indicates that the final CMC-g-PAA hydrogel has significant pH-sensitivity. Insulin(INS, as a model drug, is loaded into the hydrogel and 216.5 mg/g incorporation of INS is obtained. In vitro release profiles suggest that INS release is (16.3±2.6% when pH is 1.2 after 2 h. INS release is (57.2±3.5% in PBS with pH of 7.4 after the next 2 h. The study indicates that the CMC-g-PAA hydrogel loaded with INS could targeted deliver INS in intestinal, and avoid that INS is destroyed by gastric acid and pepsin. The experiment result on animals indicates that the CMC-g-PAA hydrogel loaded with INS has hypoglycemic effects. With different concentrations of CMC-g-PAA hydrogel co-cultured with Caco-2 cells, the cell survival rates are close to 100%, which indicates that the hydrogel has no cytotoxicity. In sum, the novel CMC-g-PAA hydrogel has a prospective application in the specific-site delivery of proteins and peptides.

  19. A Light-Responsive Self-Assembly Formed by a Cationic Azobenzene Derivative and SDS as a Drug Delivery System.

    Science.gov (United States)

    Geng, Shengyong; Wang, Yuzhu; Wang, Liping; Kouyama, Tsutomu; Gotoh, Toshiaki; Wada, Satoshi; Wang, Jin-Ye

    2017-01-04

    The structure of a self-assembly formed from a cationic azobenzene derivative, 4-cholesterocarbonyl-4'-(N,N,N-triethylamine butyloxyl bromide) azobenzene (CAB) and surfactant sodium dodecyl sulfate (SDS) in aqueous solution was studied by cryo-TEM and synchrotron radiation small-angle X-ray scattering (SAXS). Both unilamellar and multilamellar vesicles could be observed. CAB in vesicles were capable to undergo reversible trans-to-cis isomerization upon UV or visible light irradiation. The structural change upon UV light irradiation could be catched by SAXS, which demonstrated that the interlamellar spacing of the cis-multilamellar vesicles increased by 0.2-0.3 nm. Based on this microstructural change, the release of rhodamine B (RhB) and doxorubicin (DOX) could be triggered by UV irradiation. When incubated NIH 3T3 cells and Bel 7402 cells with DOX-loaded CAB/SDS vesicles, UV irradiation induced DOX release decreased the viability of both cell lines significantly compared with the non-irradiated cells. The in vitro experiment indicated that CAB/SDS vesicles had high efficiency to deliver loaded molecules into cells. The in vivo experiment showed that CAB/SDS vesicles not only have high drug delivery efficiency into rat retinas, but also could maintain high drug concentration for a longer time. CAB/SDS catanionic vesicles may find potential applications as a smart drug delivery system for controlled release by light.

  20. A Light-Responsive Self-Assembly Formed by a Cationic Azobenzene Derivative and SDS as a Drug Delivery System

    Science.gov (United States)

    Geng, Shengyong; Wang, Yuzhu; Wang, Liping; Kouyama, Tsutomu; Gotoh, Toshiaki; Wada, Satoshi; Wang, Jin-Ye

    2017-01-01

    The structure of a self-assembly formed from a cationic azobenzene derivative, 4-cholesterocarbonyl-4‧-(N,N,N-triethylamine butyloxyl bromide) azobenzene (CAB) and surfactant sodium dodecyl sulfate (SDS) in aqueous solution was studied by cryo-TEM and synchrotron radiation small-angle X-ray scattering (SAXS). Both unilamellar and multilamellar vesicles could be observed. CAB in vesicles were capable to undergo reversible trans-to-cis isomerization upon UV or visible light irradiation. The structural change upon UV light irradiation could be catched by SAXS, which demonstrated that the interlamellar spacing of the cis-multilamellar vesicles increased by 0.2-0.3 nm. Based on this microstructural change, the release of rhodamine B (RhB) and doxorubicin (DOX) could be triggered by UV irradiation. When incubated NIH 3T3 cells and Bel 7402 cells with DOX-loaded CAB/SDS vesicles, UV irradiation induced DOX release decreased the viability of both cell lines significantly compared with the non-irradiated cells. The in vitro experiment indicated that CAB/SDS vesicles had high efficiency to deliver loaded molecules into cells. The in vivo experiment showed that CAB/SDS vesicles not only have high drug delivery efficiency into rat retinas, but also could maintain high drug concentration for a longer time. CAB/SDS catanionic vesicles may find potential applications as a smart drug delivery system for controlled release by light.

  1. Using scanning near-field microscopy to study photo-induced mass motions in azobenzene containing thin films

    Science.gov (United States)

    Vu, A. D.; Fabbri, F.; Desboeufs, N.; Boilot, J.-P.; Gacoin, T.; Lahlil, K.; Lassailly, Y.; Martinelli, L.; Peretti, J.

    2014-10-01

    Scanning near-field optical microscopy (SNOM) is used to study the photo-induced deformation of layered structures containing azobenzene derivatives. This approach is particularly relevant since it allows detecting in real-time, with the same probe the surface topography and the optical field distribution at the nanoscale. The correlation between the local light pattern and the ongoing photo-induced deformation in azobenzene-containing thin films is directly evidenced for different light polarization configurations. This unveils several fundamental photodeformation mechanisms, depending not only on the light field properties, but also on the nature of the material. Controlling the projected electromagnetic field distribution allows inscription of various patterns with a resolution at the diffraction limit, i.e. of a few hundreds of nm. Surface relief patterns with characteristic sizes beyond the diffraction limit can also be produced by using the nearfield probe to locally control the photo-mechanical process. Finally, the photo-mechanical properties of azo-materials are exploited to optically patterned metal/dielectric hybrid structures. Gratings are inscribed this way on thin gold films. The characteristic features (enhancement and localization) of the surface plasmons supported by these noble metal structures are studied by near-field optical microscopy.

  2. A reversible conductivity modulation of azobenzene-based ionic liquids in aqueous solutions using UV/vis light.

    Science.gov (United States)

    Li, Zhiyong; Yuan, Xiaoqing; Feng, Ying; Chen, Yongkui; Zhao, Yuling; Wang, Huiyong; Xu, Qingli; Wang, Jianji

    2018-04-27

    Photo-induced conductivity modulation of stimuli-responsive materials is of great importance from the viewpoint of fundamental research and technology. In this work, 5 new kinds of azobenzene-based photo-responsive ionic liquids were synthesized and characterized, and UV/vis light modulation of their conductivity was investigated in an aqueous solution. The factors affecting the conductivity modulation of the photo-responsive fluids, such as photo-isomerization efficiency, photo-regulation aggregation, concentration and chemical structure of the ionic liquids, were examined systematically. It was found that the conductivity of the ionic liquids in water exhibited a significant increase upon UV light irradiation and the ionic liquids with a shorter alkyl spacer in the cation showed a more remarkable photo-induced conductivity enhancement with a maximum increase of 150%. In addition, the solution conductivity was restored (or very close) to the initial value upon an alternative irradiation with visible light. Thus, the solution conductivity can be modulated using alternative irradiation with UV and visible light. Although the reversible photo-isomerization of the azobenzene group under UV/vis irradiation is the origin of the conductivity modulation, the photo-regulated aggregation of the ionic liquid in water is indispensable for the maximum degree of conductivity modulation because UV irradiation can weaken, even break the aggregated cis-isomers of the ionic liquids in an aqueous solution.

  3. Sensitivity of photoelectron diffraction to conformational changes of adsorbed molecules: Tetra-tert-butyl-azobenzene/Au(111

    Directory of Open Access Journals (Sweden)

    A. Schuler

    2017-01-01

    Full Text Available Electron diffraction is a standard tool to investigate the atomic structure of surfaces, interfaces, and adsorbate systems. In particular, photoelectron diffraction is a promising candidate for real-time studies of structural dynamics combining the ultimate time resolution of optical pulses and the high scattering cross-sections for electrons. In view of future time-resolved experiments from molecular layers, we studied the sensitivity of photoelectron diffraction to conformational changes of only a small fraction of molecules in a monolayer adsorbed on a metallic substrate. 3,3′,5,5′-tetra-tert-butyl-azobenzene served as test case. This molecule can be switched between two isomers, trans and cis, by absorption of ultraviolet light. X-ray photoelectron diffraction patterns were recorded from tetra-tert-butyl-azobenzene/Au(111 in thermal equilibrium at room temperature and compared to patterns taken in the photostationary state obtained by exposing the surface to radiation from a high-intensity helium discharge lamp. Difference patterns were simulated by means of multiple-scattering calculations, which allowed us to determine the fraction of molecules that underwent isomerization.

  4. Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive tracks on paper with high conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qijin [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Shen, Wenfeng, E-mail: wfshen@nimte.ac.cn [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Xu, Qingsong [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Tan, Ruiqin [Faculty of Information Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211 (China); Song, Weijie, E-mail: weijiesong@nimte.ac.cn [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China)

    2014-10-15

    Silver nanoparticles with a mean diameter of approximately 30 nm were synthesized by reduction of silver nitrate with triethanolamine in the presence of polyacrylic acid. Silver nanoparticle-based ink was prepared by dispersing silver nanoparticles into a mixture of water and ethylene glycol. The mechanism for the dispersion and aggregation of silver nanoparticles in ink is discussed. The strong electrostatic repulsions of the carboxylate anions of the adsorbed polyacrylic acid molecules disturbed the aggregation of metal particles in solutions with a high pH value (pH > 5). An inkjet printer was used to deposit this silver nanoparticle-based ink to form silver patterns on photo paper. The actual printing qualities of the silver tracks were then analyzed by variation of printing passes, sintering temperature and time. The results showed that sintering temperature and time are associated strongly with the conductivity of the inkjet-printed conductive patterns. The conductivity of printed patterns sintered at 150 °C increased to 2.1 × 10{sup 7} S m{sup −1}, which was approximately one third that of bulk silver. In addition, silver tracks on paper substrate also showed better electrical performance after folding. This study demonstrated that the resulting ink-jet printed patterns can be used as conductive tracks in flexible electronic devices. - Highlights: • An ink from silver nanoparticles coated with polyacrylic acid was prepared. • The ink was used for inkjet-printed tracks at varying printing parameters. • The conductivity of printed tracks sintered at 150 °C increased to 2.1 × 10{sup 7} S/m. • Mechanism for dispersion and aggregation of the nanoparticles in ink is discussed.

  5. Decolourization performance in C. I. Vat Yellow 1 aqueous suspension using hydrophobically modified poly(acrylic acid).

    Science.gov (United States)

    Chen, J; Chen, M C

    2011-01-01

    A series of hydrophobically modified poly(acrylic acid) (PAA), poly(2-phenoxyethyl acrylate-co-acrylic acid) (poly(PHEA-co-AA)), have been synthesized and characterized by Ubbelohde type viscometry, Nuclear Magnetic Resonance (1H NMR) spectrometry and Differential Scanning Calorimetry (DSC). The shear thinning Non-Newtonian fluid behavior of their aqueous solution and the dependence on pH and hydrophobic group contents were found through apparent viscosity and rheological property investigating. Decolourization performance in C. I. Vat Yellow 1 aqueous suspension was evaluated through visible absorbance data. Decolourization performance of hydrophobically associated polymer indicates two times better than that of PAA. The quantitative relationship was mainly studied.

  6. Surface grafted chitosan gels. Part I. Molecular insight into the formation of chitosan and poly(acrylic acid) multilayers

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    molecular weight chitosan shows a similar behavior, although to a much lower extent. Our data demonstrate that the charged monomeric units of chitosan are mainly compensated by carboxylate ions from PAA. Furthermore, the morphology and mechanical properties of the multilayers were investigated in situ using......Composite polyelectrolyte multilayers of chitosan and low molecular weight poly(acrylic acid) (PAA) have been assembled by sequential adsorption as a first step toward building a surface anchored chitosan gel. Silane chemistry was used to graft the first chitosan layer to prevent film detachment...

  7. One-step routes from di- and triblock copolymer precursors to hydrophilic nanoporous poly(acrylic acid)-b-polystyrene

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Jankova Atanasova, Katja; Schulte, Lars

    2008-01-01

    Nanoporous polystyrene with hydrophilic pores was prepared from di- and triblock copolymer precursors. The precursor material was either a poly(tert-butyl acryl ate)-b-polystyrene (PtBA-b-PS) diblock copolymer synthesized by atom transfer radical polymerization (ATRP) or a polydimethylsiloxane......-b-poly(tertbutyl acrylate)-b-polystyrene (PDMS-b-PtBA-b-PS) triblock copolymer synthesized by a combination of living anionic polymerization and ATRP. In the latter copolymer, PS was the matrix and mechanically stable component, PtBA was converted by acidic deprotection to hydrophilic poly(acrylic acid) (PAA) providing...

  8. Fabrication and characterization of stable superhydrophobic fluorinated-polyacrylate/silica hybrid coating

    International Nuclear Information System (INIS)

    Li, Kunquan; Zeng, Xingrong; Li, Hongqiang; Lai, Xuejun

    2014-01-01

    Graphical abstract: - Highlights: • The superhydrophobic PFA/SiO 2 coating was successfully fabricated by spraying. • The synthesized PFA latex showed core–shell structure and good dispersion. • The PFA/SiO 2 coating showed good resistance to acid and base, weather and heat. • The superhydrophobic coating could be fabricated on various substrates. - Abstract: The core–shell fluorinated-polyacrylate (PFA) emulsion was synthesized through emulsion polymerization method and the superhydrophobic PFA/SiO 2 hybrid coating was successfully fabricated on the slide glass by spraying the mixture of PFA emulsion and hydrophobic SiO 2 particles using ethanol as cosolvent. The PFA emulsion was characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), water contact angle (WCA), transmission electron microscopy (TEM), and the effects of SiO 2 content on the wetting behavior and surface morphology of PFA/SiO 2 hybrid coating were investigated. To evaluate the stability of the hybrid coating, the acid and base resistance, weatherability and thermal stability were also studied. Results showed that the obtained PFA latex exhibited a core–shell structure with a particle size of 134.1 nm and a narrow polydispersity of 0.03. With the increase of dodecafluoroheptyl methacrylate (DFMA) content in the latex shell from 0 wt% to 31.8 wt%, the WCA of the PFA film enlarged from 85° to 104°, indicating that the introduction of fluorinated monomer was effective in reducing the surface energy. By adding different amount of SiO 2 particles, the surface morphology and wetting behavior of the PFA/SiO 2 hybrid coatings could be controlled. When the mass ratio of SiO 2 to PFA emulsion was 0.2, the surface roughness (Rq) increased to 173.6 nm and the wetting behavior of the surface became superhydrophobic with a WCA of 153°, resulted from the corporation of low surface energy and the binary nano/microstructure on the surface. The as-prepared PFA

  9. Fabrication and characterization of stable superhydrophobic fluorinated-polyacrylate/silica hybrid coating

    Science.gov (United States)

    Li, Kunquan; Zeng, Xingrong; Li, Hongqiang; Lai, Xuejun

    2014-04-01

    The core-shell fluorinated-polyacrylate (PFA) emulsion was synthesized through emulsion polymerization method and the superhydrophobic PFA/SiO2 hybrid coating was successfully fabricated on the slide glass by spraying the mixture of PFA emulsion and hydrophobic SiO2 particles using ethanol as cosolvent. The PFA emulsion was characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), water contact angle (WCA), transmission electron microscopy (TEM), and the effects of SiO2 content on the wetting behavior and surface morphology of PFA/SiO2 hybrid coating were investigated. To evaluate the stability of the hybrid coating, the acid and base resistance, weatherability and thermal stability were also studied. Results showed that the obtained PFA latex exhibited a core-shell structure with a particle size of 134.1 nm and a narrow polydispersity of 0.03. With the increase of dodecafluoroheptyl methacrylate (DFMA) content in the latex shell from 0 wt% to 31.8 wt%, the WCA of the PFA film enlarged from 85° to 104°, indicating that the introduction of fluorinated monomer was effective in reducing the surface energy. By adding different amount of SiO2 particles, the surface morphology and wetting behavior of the PFA/SiO2 hybrid coatings could be controlled. When the mass ratio of SiO2 to PFA emulsion was 0.2, the surface roughness (Rq) increased to 173.6 nm and the wetting behavior of the surface became superhydrophobic with a WCA of 153°, resulted from the corporation of low surface energy and the binary nano/microstructure on the surface. The as-prepared PFA/SiO2 hybrid coating showed good acid and base corrosion resistance, and it could keep superhydrophobicity after being heated at 250 °C for 2 h or exposed to ambient atmosphere for more than 3 months. Additionally, the superhydrophobic PFA/SiO2 hybrid coating could be applied to various substrates through spraying. This was a green and eco-friendly method in fabricating stable

  10. The elution of metal cyanocomplexes from polyacrylic - and polystyrene- based ion exchange resins using nitrate and thiocyanate eluants

    Directory of Open Access Journals (Sweden)

    J. C. Riani

    2007-09-01

    Full Text Available Ion exchange resins can potentially be applied in cyanide recycling to address growing environmental concerns over the use of cyanide during gold extraction. In the present work the elution of copper-, iron-, and zinc-cyanocomplexes from polyacrylic- and polystyrene-based resins was studied. It was found that iron and copper cyanides are easily eluted from polyacrylic- and polystyrene-based ion exchange resins using either SCN- or NO3-. However, elution of the zinc cyanide complex from polystyrene-based resins was poor when using nitrate solution as eluant. Besides, an increase in elution temperature from 25 °C to 50 °C improved the elution of iron and zinc cyanides from polystyrene-based resins using a nitrate eluant; however temperature did not have any significant effect on other metal cyanocomplexes or for elution using thiocyanate. It was therefore proposed that the optimal combination of resin-eluant was site-specific, and depends on the features of the effluent, processing temperature, eluant concentration, and ion exchange resin under consideration.

  11. Quartz crystal microbalance and infrared reflection absorption spectroscopy characterization of bisphenol A absorption in the poly(acrylate) thin films.

    Science.gov (United States)

    Li, Guifeng; Morita, Shigeaki; Ye, Shen; Tanaka, Masaru; Osawa, Masatoshi

    2004-02-01

    The absorption process of bisphenol A (BPA) in a number of poly(acrylate) thin films, such as poly(2-methoxyethyl acrylate) (PMEA), poly(ethyl acrylate) (PEA), poly(n-butyl methacrylate) (PBMA), and poly(methyl methacrylate) (PMMA), has been investigated by quartz crystal microbalance (QCM) and infrared reflection absorption spectroscopy (IRRAS) measurements. Both QCM and IRRAS measurements show that the BPA molecules absorb in PMEA, PEA, and PBMA thin films but not in PMMA thin film. The differences in the BPA absorption behavior are mainly attributed to the difference in the glass transition temperature (T(g)) between these polymers. This absorption behavior also depends on the BPA concentration and polymer film thickness. Furthermore, IRRAS characterization demonstrates that the hydrogen bonding is formed between the hydroxyl group in BPA and the carbonyl group in the poly(acrylate) thin films. BPA molecule absorbed in these polymer thin films can be removed by ethanol rinse treatment. By optimizing experimental conditions for the QCM electrode modified by PMEA thin film, detection limitation of approximately 1 ppb for BPA can be realized by the in situ QCM measurement. This method is expected to be a sensitive in situ detection way for trace BPA in the environmental study.

  12. Membrane Made of Cellulose Acetate with Polyacrylic Acid Reinforced with Carbon Nanotubes and Its Applicability for Chromium Removal

    Directory of Open Access Journals (Sweden)

    J. A. Sánchez-Márquez

    2015-01-01

    Full Text Available Membranes made of carbon nanotubes and cellulose acetate with polyacrylic acid were designed in order to study their properties and their applicability for chromium removal. The membranes were prepared by phase inversion method using cellulose acetate and polyacrylic acid. Carbon nanotubes were added to the membrane during their process of synthesis in proportions of 1% by weight. The pores in the material are formed in layers, giving the effect of depth and forming a network. Both the carbon nanotubes and membranes were characterized by IR, Raman, and SEM spectroscopy. In addition, the concentration of acidic and basic sites and the surface charge in the materials were determined. The concentration of acid sites for oxidized nanotubes was 4.0 meq/g. The removal of Cr(VI was studied as a function of contact time and of initial concentration of Cr(VI. The removal of Cr(VI (~90% mainly occurs in a contact time from 32 to 64 h when the initial concentration of Cr(VI is 1 mg/L.

  13. Chemically imaging the effects of the addition of nanofibrillated cellulose on the distribution of poly(acrylic acid) in poly(vinyl alcohol)

    Science.gov (United States)

    Craig Clemons; Julia Sedlmair; Barbara Illman; Rebecca Ibach; Carol Hirschmugl

    2013-01-01

    The distribution of poly(acrylic acid) (PAA) in model laminates of nanocellulose and poly(vinyl alcohol) (PVOH) was investigated by FTIR chemical imaging. The method was effective in spatially discerning the three components of the composite. PAA can potentially improve the performance of nanocellulose reinforced PVOH by not only crosslinking the PVOH matrix but also...

  14. Simulation of the photodynamics of azobenzene on its first excited state: Comparison of full multiple spawning and surface hopping treatments

    International Nuclear Information System (INIS)

    Toniolo, A.; Ciminelli, C.; Persico, M.; Martinez, T.J.

    2005-01-01

    We have studied the cis→trans and trans→cis photoisomerization of azobenzene after n→π* excitation using the full multiple spawning (FMS) method for nonadiabatic wave-packet dynamics with potential-energy surfaces and couplings determined 'on the fly' from a reparametrized multiconfigurational semiempirical method. We compare the FMS results with a previous direct dynamics treatment using the same potential-energy surfaces and couplings, but with the nonadiabatic dynamics modeled using a semiclassical surface hopping (SH) method. We concentrate on the dynamical effects that determine the photoisomerization quantum yields, namely, the rate of radiationless electronic relaxation and the character of motion along the reaction coordinate. The quantal and semiclassical results are in good general agreement, confirming our previous analysis of the photodynamics. The SH method slightly overestimates the rate of excited state decay, leading in this case to lower quantum yields

  15. Multiresponsive hydrogel coassembled from phenylalanine and azobenzene derivatives as 3D scaffolds for photoguiding cell adhesion and release.

    Science.gov (United States)

    Liu, Guo-Feng; Ji, Wei; Wang, Wan-Lin; Feng, Chuan-Liang

    2015-01-14

    A multiresponsive hydrogel system coassembled from phenylalanine derivative gelator (LPF2) and azobenzene (Azo) derivative (PPI) is constructed, which can respond to temperature, pH, host-guest interaction, and photoirradiation. A set of techniques including circular dichroism, Fourier transform infrared spectroscopy, (1)H NMR, and X-ray powder diffraction confirm that the hydrogel is formed through hydrogen bonds between amide moieties/pyridine and carbonyl groups, enduing the coassembled hydrogel with multiresponsive properties that make it possible to control cell encapsulation and release in three-dimensional environments under multistimulus, for example, UV irradiation. This study brings a novel approach to develop multistimuli-responsive hydrogels by coassembly of various responsive components for biomedical interest, for example, the controlled delivery of various therapeutic biological agents.

  16. Structure and Reactivity of Half-Sandwich Rh(+3) and Ir(+3) Carbene Complexes. Catalytic Metathesis of Azobenzene Derivatives.

    Science.gov (United States)

    Tindall, Daniel J; Werlé, Christophe; Goddard, Richard; Philipps, Petra; Farès, Christophe; Fürstner, Alois

    2018-02-07

    Traditional rhodium carbene chemistry relies on the controlled decomposition of diazo derivatives with [Rh 2 (OAc) 4 ] or related dinuclear Rh(+2) complexes, whereas the use of other rhodium sources is much less developed. It is now shown that half-sandwich carbene species derived from [Cp*MX 2 ] 2 (M = Rh, Ir; X = Cl, Br, I, Cp* = pentamethylcyclopentadienyl) also exhibit favorable application profiles. Interestingly, the anionic ligand X proved to be a critical determinant of reactivity in the case of cyclopropanation, epoxide formation and the previously unknown catalytic metathesis of azobenzene derivatives, whereas the nature of X does not play any significant role in -OH insertion reactions. This perplexing disparity can be explained on the basis of spectral and crystallographic data of a representative set of carbene complexes of this type, which could be isolated despite their pronounced electrophilicity. Specifically, the donor/acceptor carbene 10a derived from ArC(═N 2 )COOMe and [Cp*RhCl 2 ] 2 undergoes spontaneous 1,2-migratory insertion of the emerging carbene unit into the Rh-Cl bond with formation of the C-metalated rhodium enolate 11. In contrast, the analogous complexes 10b,c derived from [Cp*RhX 2 ] 2 (X = Br, I) as well as the iridium species 13 and 14 derived from [Cp*IrCl 2 ] 2 are sufficiently stable and allow true carbene reactivity to be harnessed. These complexes are competent intermediates for the catalytic metathesis of azobenzene derivatives, which provides access to α-imino esters that would be difficult to make otherwise. Rather than involving metal nitrenes, the reaction proceeds via aza-ylides that evolve into diaziridines; a metastable compound of this type has been fully characterized.

  17. Polyacrylate/nanosilica causes pleural and pericardial effusion, and pulmonary fibrosis and granuloma in rats similar to those observed in exposed workers

    Directory of Open Access Journals (Sweden)

    Zhu X

    2016-04-01

    Full Text Available Xiaoli Zhu,1 Wen Cao,2 Bing Chang,3 Linyuan Zhang,3 Peihuan Qiao,3 Xue Li,4 Lifang Si,5 Yingmei Niu,1 Yuguo Song1 1Department of Occupational Medicine and Clinical Toxicology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China; 2Department of Ultrasound, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China; 3Department of Toxicology, National Institute for Occupational Health and Poison Control, China CDC, Beijing, People’s Republic of China; 4Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China; 5Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China Abstract: Nanomaterials offer great benefit as well as potential damage to humans. Workers exposed to polyacrylate coatings have pleural effusion, pericardial effusion, and pulmonary fibrosis and granuloma, which are thought to be related to the high exposure to nanomaterials in the coatings. The study aimed to determine whether polyacrylate/silica nanoparticles cause similar toxicity in rats, as observed in exposed workers. Ninety male Wistar rats were randomly divided into five groups with 18 rats in each group. The groups included the saline control group, another control group of polyacrylate only, and low-, intermediate-, and high-dose groups of polyacrylate/nanosilica with concentrations of 3.125, 6.25, and 12.5 mg/kg. Seventy-five rats for the 1-week study were terminated for scheduled necropsy at 24 hours, 3 days, and 7 days postintratracheal instillation. The remaining 15 rats (three males/group had repeated ultrasound and chest computed tomography examinations in a 2-week study to observe the pleural and pericardial effusion and pulmonary toxicity. We found that polyacrylate/nanosilica resulted in pleural and pericardial effusions, where nanosilica was isolated and detected

  18. Synthesis of molecularly imprinted organic-inorganic hybrid azobenzene materials by sol-gel for radiation induced selective recognition of 2,4-dichlorophenoxyacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Guang Shuaijiang [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Shi Anzhong, E-mail: zhongshian@yahoo.com.c [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia Qld 4702 (Australia); Chen Lan [Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia Qld 4702 (Australia); Blakey, Idriss, E-mail: i.blakey@ug.edu.a [Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia Qld 4702 (Australia); Whitaker, Andrew [Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia Qld 4702 (Australia)

    2011-02-15

    A novel photoresponsive functional monomer bearing a siloxane polymerisable group and azobenzene moieties was synthesized. This monomer was then used to prepare photoresponsive molecularly imprinted polymers (MIP), which have specific binding sites for 2,4-dichlorophenoxyacetic acid (2,4-D) through hydrogen bonding moieties. The binding affinity of the imprinted recognition sites was switchable by alternate irradiations with ultraviolet and visible light, suggesting that azobenzene groups located inside the binding sites could be used as chemical sensors and the trans-cis isomerization could regulate the affinity for the 2,4-D. In addition, the concentration of the 2,4-D was able to be quantified by monitoring the trans-to-cis photoisomerization rate constant.

  19. In situ atomic force microscopy studies of reversible light-induced switching of surface roughness and adhesion in azobenzene-containing PMMA films

    International Nuclear Information System (INIS)

    Mueller, M.; Gonzalez-Garcia, Y.; Pakula, C.; Zaporojtchenko, V.; Strunskus, T.; Faupel, F.; Herges, R.; Zargarani, D.; Magnussen, O.M.

    2011-01-01

    Thin films in the range 40-80 nm of a blend of PMMA with an azobenzene derivative have been studied directly during UV and blue light irradiation by atomic force microscopy (AFM), revealing highly reversible changes in the surface roughness and the film adhesion. UV light induces an ∼80% increase in surface roughness, whereas illumination by blue light completely reverses these changes. Based on the observed surface topography and transition kinetics a reversible mass flow mechanisms is suggested, where the polarity changes upon switching trigger a wetting-dewetting transition in a surface segregation layer of the chromophore. Similar AFM measurements of the pull-off force indicate a decrease upon UV and an increase after blue light illumination with a complex kinetic behavior: a rapid initial change, attributed to the change in the cis isomer fraction of the azobenzene derivative, and a more gradual change, indicative of slow structural reorganization.

  20. Cis-to- Trans Isomerization of Azobenzene Derivatives Studied with Transition Path Sampling and Quantum Mechanical/Molecular Mechanical Molecular Dynamics.

    Science.gov (United States)

    Muždalo, Anja; Saalfrank, Peter; Vreede, Jocelyne; Santer, Mark

    2018-03-09

    Azobenzene-based molecular photoswitches are becoming increasingly important for the development of photoresponsive, functional soft-matter material systems. Upon illumination with light, fast interconversion between a more stable trans and a metastable cis configuration can be established resulting in pronounced changes in conformation, dipole moment or hydrophobicity. A rational design of functional photosensitive molecules with embedded azo moieties requires a thorough understanding of isomerization mechanisms and rates, especially the thermally activated relaxation. For small azo derivatives considered in the gas phase or simple solvents, Eyring's classical transition state theory (TST) approach yields useful predictions for trends in activation energies or corresponding half-life times of the cis isomer. However, TST or improved theories cannot easily be applied when the azo moiety is part of a larger molecular complex or embedded into a heterogeneous environment, where a multitude of possible reaction pathways may exist. In these cases, only the sampling of an ensemble of dynamic reactive trajectories (transition path sampling, TPS) with explicit models of the environment may reveal the nature of the processes involved. In the present work we show how a TPS approach can conveniently be implemented for the phenomenon of relaxation-isomerization of azobenzenes starting with the simple examples of pure azobenzene and a push-pull derivative immersed in a polar (DMSO) and apolar (toluene) solvent. The latter are represented explicitly at a molecular mechanical (MM) and the azo moiety at a quantum mechanical (QM) level. We demonstrate for the push-pull azobenzene that path sampling in combination with the chosen QM/MM scheme produces the expected change in isomerization pathway from inversion to rotation in going from a low to a high permittivity (explicit) solvent model. We discuss the potential of the simulation procedure presented for comparative calculation of

  1. Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, N.C.R.; Hvilsted, S.

    1996-01-01

    Atomic force and scanning near-field optical microscopic investigations have been carried out on a polarization holographic grating recorded in an azobenzene side-chain Liquid crystalline polyester. It has been found that immediately following laser irradiation, a topographic surface grating......-field optical microscopic scanning of the grating reveals, however, that the bulk of the film remains optically anisotropic. (C) 1996 American Institute of Physics....

  2. Polydopamine Wrapping Silicon Cross-linked with Polyacrylic Acid as High-Performance Anode for Lithium-Ion Batteries.

    Science.gov (United States)

    Bie, Yitian; Yang, Jun; Liu, Xiaolin; Wang, Jiulin; Nuli, Yanna; Lu, Wei

    2016-02-10

    A robust silicon electrode for lithium-ion battery has been developed via prepolymerizing dopamine on silicon particle surface and then chemical binding with poly(acrylic acid) (PAA). In this favorable electrode, silicon nanoparticles are covered by a thin layer of polydopamine (PD) through firm hydrogen bonds between phenolic hydroxyl and hydroxyl, while the elastic polymer layer reacts with PAA binder to form three-dimensional cross-linked binding system. The Si@PD/PAA electrode exhibits more stable cycle performance than conventional electrodes. In the case of thick electrode, a capacity of 3.69 mA h cm(-2) and fairly good rechargeability for 80 cycles can be achieved.

  3. Antibacterial effects of protruding and recessed shark skin micropatterned surfaces of polyacrylate plate with a shallow groove.

    Science.gov (United States)

    Sakamoto, Akihiko; Terui, Yusuke; Horie, Chihiro; Fukui, Takashi; Masuzawa, Toshiyuki; Sugawara, Shintaro; Shigeta, Kaku; Shigeta, Tatsuo; Igarashi, Kazuei; Kashiwagi, Keiko

    2014-12-01

    Antibacterial effects in terms of biofilm formation and swarming motility were studied using polyacrylate plates having protruding or recessed shark skin micropatterned surfaces with a shallow groove (2 μm pattern width and spacing, 0.4 μm pattern height). It was found that biofilm formation and swarming motility of Pseudomonas aeruginosa were strongly inhibited by the shark skin pattern plates with a shallow (0.4 μm) pattern height. Biofilm formation of Staphylococcus aureus was also strongly inhibited. Live bacteria were located on the pattern rather than in the spacing. When the shape of pattern was a linear ridge instead of shark skin, the antibacterial effects were weaker than seen with the shark skin pattern. The results indicate that the pattern of shark skin is important for decreasing bacterial infection even with a shallow feature height. © 2014 Federation of European Microbiological Societies.

  4. Synthesis of polyacrylate/polyethylene glycol interpenetrating network hydrogel and its sorption of heavy-metal ions

    Directory of Open Access Journals (Sweden)

    Qunwei Tang, Xiaoming Sun, Qinghua Li, Jihuai Wu and Jianming Lin

    2009-01-01

    Full Text Available A simple two-step aqueous polymerization method was introduced to synthesize a polyacrylate/polyethylene glycol (PAC/PEG interpenetrating network (IPN hydrogel. On the basis of the effects of the ratio of PAC to PEG, neutralization degree, heavy-metal ion concentration, and temperature on the adsorption behavior of PAC/PEG IPN hydrogel toward Ni2 +, Cr3 + and Cd2 +, the preparation conditions were optimized. In our system, the greatest amount of Ni2 +, Cr3 + and Cd2 + adsorbed were 102.34, 49.38 and 33.41 mg g- 1, respectively. The adsorption abilities of a dried PAC/PEG composite and a swollen PAC/PEG IPN hydrogel were compared. It was found that the efficiency of removing metal ions using the swollen hydrogel was greater than that using the dried composite. The adsorption mechanism and model are also discussed.

  5. A study on the swelling behavior of poly(acrylic acid) hydrogels obtained by electron beam crosslinking

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh, N., E-mail: nasheikh@aeoi.org.i [Radiation Applications Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-3486, Tehran (Iran, Islamic Republic of); Jalili, L. [Polymer group, Technology and Engineering Department, Yazd University, Yazd (Iran, Islamic Republic of); Anvari, F. [Radiation Applications Research School, Nuclear Science and Technology Research Institute, Yazd (Iran, Islamic Republic of)

    2010-06-15

    Poly(acrylic acid) (PAA) hydrogels were prepared by using electron beam (EB) crosslinking of PAA homopolymer from its aqueous solutions. The swelling behavior of the hydrogels was studied as a function of the concentration of PAA solution, radiation dose, pH of the swelling medium and swelling time. Also the environmental pH effect on the water diffusion mode into hydrogels was investigated. These hydrogels clearly showed pH-sensitive swelling behavior with Fickian type of diffusion in the stomach-like pH medium (pH 1.3) and non-Fickian type in the intestine-like pH medium (pH 6.8).

  6. Brij-micelle and polyacrylic acid interaction investigated by Cu 2+-induced pyrene fluorescence: Effect of brij-micelle structure

    Science.gov (United States)

    Bandyopadhyay, Prasun; Ghosh, Amit K.; Bandyopadhyay, Sayan

    2009-07-01

    Fluorescence response of pyrene has been studied in the presence of polyacrylic acid (PAA) and brij surfactant micelles with Cu 2+ as an ionic quencher. The quenched pyrene emission is completely recovered with the addition of PAA (conc. 2.4 × 10 -4 M) for brij 35 (poly-oxyethylene-23 lauryl ether) micelle indicating PAA-Cu 2+ complex formation at the micelle-water interface. This could be due to the relatively easier accessibility of PAA polymer chains near poly-oxyethylene chain of brij 35 micelle compared to brij 30 (poly-oxyethylene-4 lauryl ether) micelle. The interaction between brij-micelle and polymer is confirmed by turbidimetry and NMR spectroscopy.

  7. Poly(acrylic acid)-directed synthesis of colloidally stable single domain magnetite nanoparticles via partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Altan, Cem L. [Department of Chemical Engineering, Yeditepe University, Istanbul 34755 (Turkey); Laboratory of Materials and Interface Chemistry & Soft Matter cryoTEM Research Unit, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands); Gurten, Berna [Department of Chemical Engineering, Yeditepe University, Istanbul 34755 (Turkey); Sadza, Roel [Laboratory of Materials and Interface Chemistry & Soft Matter cryoTEM Research Unit, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands); Yenigul, Elcin [Department of Chemical Engineering, Yeditepe University, Istanbul 34755 (Turkey); Sommerdijk, Nico A.J.M., E-mail: n.sommerdijk@tue.nl [Laboratory of Materials and Interface Chemistry & Soft Matter cryoTEM Research Unit, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands); Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands); Bucak, Seyda, E-mail: seyda@yeditepe.edu.tr [Department of Chemical Engineering, Yeditepe University, Istanbul 34755 (Turkey)

    2016-10-15

    Octahedral, single domain magnetite nanoparticles with average size of ~55 nm were synthesized through oxidative aging of a ferrous hydroxide (Fe(OH){sub 2}) precursor at high pH in water. The synthesis was also carried out in the presence of the hydrophilic polymer poly(acrylic acid). Presence of the polymer changed the particle morphology from octahedral to spherical while average size decreased to 40–50 nm. Although these particles have a tendency to precipitate due to their high magnetic moment, dispersions of these particles were obtained in the presence of this particular polymer which made the particles stable in water for several days making them suitable for various biotechnological applications such as cell separation owing to their low toxicity. - Highlights: • Stable, single domain magnetite nanoparticles are synthesized via partial oxidation. • Particles are readily stabilized in water by a biocompatible polymer. • Steric barrier is essential for the stabilization of large magnetite nanoparticles.

  8. Radiation preparation of drug carriers based polyacrylic acid (PAAc) using poly(vinyl pyrrolidone) (PVP) as a template polymer

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Rehim, H.A. [National Center for Radiation Research and Technology, Poymer, 3-Ahmed El-Zomor, P.O. Box 29, Cairo, Naser City (Egypt)]. E-mail: ha_rehim@hotmail.com; Hegazy, E.A. [National Center for Radiation Research and Technology, Poymer, 3-Ahmed El-Zomor, P.O. Box 29, Cairo, Naser City (Egypt); Khalil, F.H. [National Center for Radiation Research and Technology, Poymer, 3-Ahmed El-Zomor, P.O. Box 29, Cairo, Naser City (Egypt); Hamed, N.A. [National Center for Radiation Research and Technology, Poymer, 3-Ahmed El-Zomor, P.O. Box 29, Cairo, Naser City (Egypt)

    2007-01-15

    The present study deals with the radiation synthesis of stimuli response hydrophilic polymers from polyacrylic acid (PAAc). To maintain the property of PAAc and control the water swellibility for its application as a drug delivery system, radiation polymerization of AAc in the presence of poly(vinyl pyrrolidone) (PVP) as a template polymer was carried out. Characterization of the prepared PAA/PVP inter-polymer complex was investigated by determining gel content, swelling property, hydrogel microstructure and the release rate of caffeine as a model drug. The release rate of caffeine from the PAA/PVP inter-polymer complexes showed pH-dependency, and seemed to be mainly controlled by the dissolution rate of the complex above a pK {sub a} of PAAc. The prepared inter-polymer complex could be used for application as drug carriers.

  9. Interpolymer complexes of poly(acrylic acid) and poly(ethylene glycol) for low dishing in STI CMP

    Science.gov (United States)

    Seo, Jihoon; Moon, Jinok; Moon, Sunho; Paik, Ungyu

    2015-10-01

    Although poly(acrylic acid) (PAA) has been used as a passivation agent for high polish rate selectivity between SiO2 and Si3N4 in STI CMP, it causes severe dishing during the over-polishing step. Here, we fabricated interpolymer complexes of PAA and poly(ethylene glycol) (PEG) as passivation agent for low dishing as well as high selectivity. PAA and PEG form a cross-linked network structure through H-bonding, which is called an "interpolymer complex". During the over-polishing step, the cross-linked network structure of the PAA-PEG interpolymer complex prevents abrasives from polishing SiO2 in the trenches, resulting in a significant decrease in dishing. These results provide researchers with a new approach toward passivation agents to provide low dishing in STI CMP.

  10. 3D hierarchical Ag nanostructures formed on poly(acrylic acid) brushes grafted graphene oxide as promising SERS substrates

    Science.gov (United States)

    Xing, Guoke; Wang, Ke; Li, Ping; Wang, Wenqin; Chen, Tao

    2018-03-01

    In this study, in situ generation of Ag nanostructures with various morphology on poly(acrylic acid) (PAA) brushes grafted onto graphene oxide (GO), for use as substrates for surface-enhanced Raman scattering (SERS), is demonstrated. The overall synthetic strategy involves the loading of Ag precursor ions ((Ag+ and [Ag(NH3)2]+) onto PAA brush-grafted GO, followed by their in situ reduction to Ag nanostructures of various morphology using a reducing agent (NaBH4 or ascorbic acid). Novel 3D hierarchical flowerlike Ag nanostructures were obtained by using AgNO3 as precursor and ascorbic acid as reducing agent. Using 4-aminothiophenol as probe molecules, the as-prepared hierarchical Ag nanostructures exhibited excellent SERS performance, providing enhancement factors of ∼107.

  11. Quantum chemical investigation of thermal cis-to-trans isomerization of azobenzene derivatives: substituent effects, solvent effects, and comparison to experimental data.

    Science.gov (United States)

    Dokić, Jadranka; Gothe, Marcel; Wirth, Jonas; Peters, Maike V; Schwarz, Jutta; Hecht, Stefan; Saalfrank, Peter

    2009-06-18

    Quantum chemical calculations of various azobenzene (AB) derivatives have been carried out with the goal to describe the energetics and kinetics of their thermal cis --> trans isomerization. The effects of substituents, in particular their type, number, and positioning, on activation energies have been systematically studied with the ultimate goal to tailor the switching process. Trends observed for mono- and disubstituted species are discussed. A polarizable continuum model is used to study, in an approximate fashion, the cis --> trans isomerization of azobenzenes in solution. The nature of the transition state(s) and its dependence on substituents and the environment is discussed. In particular for push-pull azobenzenes, the reaction mechanism is found to change from inversion in nonpolar solvents to rotation in polar solvents. Concerning kinetics, calculations based on the Eyring transition state theory give usually reliable activation energies and enthalpies when compared to experimentally determined values. Also, trends in the resulting rate constants are correct. Other computed properties such as activation entropies and thus preexponential rate factors are in only moderate agreement with experiment.

  12. Azobenzene-functionalized gold nanoparticles as hybrid double-floating-gate in pentacene thin-film transistors/memories with enhanced response, retention, and memory windows.

    Science.gov (United States)

    Tseng, Chiao-Wei; Huang, Ding-Chi; Tao, Yu-Tai

    2013-10-09

    Gold nanoparticles (Au-NPs) with surfaces covered with a self-assembled monolayer of azobenzene derivatives were prepared at the interface of dielectric insulator SiO2 and pentacene thin film. Transistors constructed with these composite channel materials exhibited electric bistability upon different gate biases, with the monolayer serving as a barrier layer, a work function modulator, as well as additional charge trapping sites at the Au-NPs/semiconductor interface at the same time. In comparison with simple alkanethiol monolayer-covered Au-NPs, the CH3-substituted azobenzene-functionalized Au-NPs result in a transistor memory device with about 70% more charges trapped, much faster response time as well as higher retention time. Besides, depending on the substituent on the azobenzene moieties (CH3, H, or CF3) and the tethering alkyl chain length, the speed at which the carriers are trapped (affecting switching response) and the stability of the carriers that are trapped (affecting memory retention) can be modulated to improve the device performance. The structural characterization and electronic characteristics of these devices will be detailed.

  13. Consequences of enamel preparation with sodium hypochlorite, polyacrylic and phosphoric acids for the bonding of brackets with resin-modified glass ionomer cements

    OpenAIRE

    Trindade, Alessandra Marques; Pereira, Tatiana Bahia Junqueira; Smith Neto, Perrin; Horta, Martinho Campolina Rebello; Pithon, Matheus Melo; Akaki, Emílio; Oliveira, Dauro Douglas

    2013-01-01

    The aim of this study was to evaluate the effects of deproteinization with 5.25% sodium hypochlorite (NaOCl) prior to enamel conditioning with 10% polyacrylic acid (PAA) and 35% phosphoric acid (PA) on the bond strength (BS) of brackets bonded with resin-modified glass ionomer cement (RMGIC). One hundred human premolars extracted for orthodontic reasons were divided into 5 groups (n = 20 in each group): G1 (control), enamel conditioning with PA, application of adhesive and bonding of brackets...

  14. Study of morphology and mechanical properties of hydrophilic films based on compositions of poly(acrylic acid) and poly(2-hydroxy ethylvinylether)

    International Nuclear Information System (INIS)

    Bitekenova, A.; Dzhusupbekova, A.; Khutoryanskij, V.; Nurkeeva, Z.

    2003-01-01

    The hydrophilic films based on compositions of poly(acrylic acid) and poly(2-hydroxy ethylvinylether) were obtained from blend of the corresponding monomers. Radiation crosslinking of composite materials are realize by γ-irradiation method and the gelation doses were calculated. It was shown that mechanical properties of films depend on composition (content of notion component) and conditions of crosslinking. The morphology of polymeric films was investigated by scanning electron microscopy

  15. β-Cyclodextrin- and adamantyl-substituted poly(acrylate self-assembling aqueous networks designed for controlled complexation and release of small molecules

    Directory of Open Access Journals (Sweden)

    Liang Yan

    2017-09-01

    Full Text Available Three aqueous self-assembling poly(acrylate networks have been designed to gain insight into the factors controlling the complexation and release of small molecules within them. These networks are formed between 8.8% 6A-(2-aminoethylamino-6A-deoxy-6A-β-cyclodextrin, β-CDen, randomly substituted poly(acrylate, PAAβ-CDen, and one of the 3.3% 1-(2-aminoethylamidoadamantyl, ADen, 3.0% 1-(6-aminohexylamidoadamantyl, ADhn, or 2.9% 1-(12-aminododecylamidoadamantyl, ADddn, randomly substituted poly(acrylates, PAAADen, PAAADhn and PAAADddn, respectively, such that the ratio of β-CDen to adamantyl substituents is ca. 3:1. The variation of the characteristics of the complexation of the dyes methyl red, methyl orange and ethyl orange in these three networks and by β-cyclodextrin, β-CD, and PAAβ-CDen alone provides insight into the factors affecting dye complexation. The rates of release of the dyes through a dialysis membrane from the three aqueous networks show a high dependence on host–guest complexation between the β-CDen substituents and the dyes as well as the structure and the viscosity of the network as shown by ITC, 1H NMR and UV–vis spectroscopy, and rheological studies. Such networks potentially form a basis for the design of controlled drug release systems.

  16. Azobenzene-caged sulforhodamine dyes: a novel class of ‘turn-on’ reactive probes for hypoxic tumor cell imaging

    Science.gov (United States)

    Chevalier, Arnaud; Piao, Wen; Hanaoka, Kenjiro; Nagano, Tetsuo; Renard, Pierre-Yves; Romieu, Anthony

    2015-12-01

    New sulforhodamine-based fluorescent ‘turn-on’ probes have been developed for the direct imaging of cellular hypoxia. Rapid access to this novel class of water-soluble ‘azobenzene-caged’ fluorophores was made possible through an easily-implementable azo-coupling reaction between a fluorescent primary arylamine derived from a sulforhodamine 101 scaffold (named SR101-NaphtNH 2 ) and a tertiary aniline whose N-substituents are neutral, cationic, or zwitterionic. The detection mechanism is based on the bioreductive cleavage of the azo bond that restores strong far-red fluorescence (emission maximum at 625 nm) by regenerating the original sulforhodamine SR101-NaphtNH 2 . This valuable fluorogenic response was obtained for the three ‘smart’ probes studied in this work, as shown by an in vitro assay using rat liver microsomes placed under aerobic and then under hypoxic conditions. Most importantly, the probe namely SR101-NaphtNH 2 -Hyp-diMe was successfully applied for imaging the hypoxic status of tumor cells (A549 cells).

  17. Supra-dendron Gelator Based on Azobenzene-Cyclodextrin Host-Guest Interactions: Photoswitched Optical and Chiroptical Reversibility.

    Science.gov (United States)

    Xie, Fan; Ouyang, Guanghui; Qin, Long; Liu, Minghua

    2016-12-12

    A novel amphiphilic dendron (AZOC 8 GAc) with three l-glutamic acid units and an azobenzene moiety covalently linked by an alkyl spacer has been designed. The compound formed hydrogels with water at very low concentration and self-assembled into chiral-twist structures. The gel showed a reversible macroscopic volume phase transition in response to pH variations and photo-irradiation. During the photo-triggered changes, although the gel showed complete reversibility in its optical absorptions, only an incomplete chiroptical property change was achieved. On the other hand, the dendron could form a 1:1 inclusion complex through a host-guest interaction with α-cyclodextrin (α-CD), designated as supra-dendron gelator AZOC 8 GAc/α-CD. The supra-dendron showed similar gelation behavior to that of AZOC 8 GAc, but with enhanced photoisomerization-transition efficiency and chiroptical switching capacity, which was completely reversible in terms of both optical and chiroptical performances. The self-assembly of the supra-dendron is a hierarchical or multi-supramolecular self-assembling process. This work has clearly illustrated that the hierarchical and multi-supramolecular self-assembling system endows the supramolecular nanostructures or materials with superior reversible optical and chiroptical switching. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Photo-switching of a non-ionic azobenzene amphiphile in Langmuir and Langmuir-Blodgett films.

    Science.gov (United States)

    Piosik, Emilia; Kotkowiak, Michał; Korbecka, Izabela; Galewski, Zbigniew; Martyński, Tomasz

    2017-08-30

    The concept of programmable and reconfigurable soft matter has emerged in science in the last few decades and can be realized by photoisomerization of azobenzene derivatives. This possibility results in great application potential of these compounds in optical storage devices, molecular junctions of electronic devices, command layers of liquid crystal displays or holographic gratings. In this paper, we present the results of a study on the organization and isomerization of the non-ionic and amphiphilic methyl 4-[(E)-2-[4-(nonyloxy)phenyl]diazen-1-yl]benzoate (LCA) in a 2D layer architecture of Langmuir and Langmuir-Blodgett (LB) films supported by spectroscopic studies on LCA chloroform solutions. Our investigation has shown a significantly different molecular organization of LCA depending on the ratio of trans and cis isomers in the monolayers. Taking advantage of a relatively low packing density and aggregation strength in the cis-LCA monolayer, we demonstrated the reversible isomerization in the LB film initially formed of LCA molecules in the cis form, while in the trans-LCA monolayer this effect was not observed. Our approach allows the formation of a switchable monolayer made of the amphiphilic LCA showing liquid crystalline properties without introducing an ionic group into the molecule structure, mixing with another compound or changing the subphase pH to provide free space for the molecules' isomerization.

  19. Hydrogen bonds induced supramolecular self-assembly of azobenzene derivatives on the highly oriented pyrolytic graphite surface

    Science.gov (United States)

    Miao, Xinrui; Cheng, Zhiyu; Ren, Biye; Deng, Wenli

    2012-08-01

    The self-assembly of azobenzene derivatives (CnAzCOOH) with various lengths of peripheral alkyl chains (with carbon number of n = 8, 10, 12, 14, 16) were observed by scanning tunneling microscopy on highly oriented pyrolytic graphite (HOPG) surface. The effect of van der Waals interactions and the intermolecular hydrogen bonding on the two-dimensional self-assembly was systematically studied. No alkyl-chain length effect was observed according to the STM images. All kinds of CnAzCOOH adopting the same pattern self-assembled on the HOPG surface, suggesting the formation of the two-dimensional structures was dominated by the hydrogen bonding of the functional groups. It could be found that two CnAzCOOH molecules formed a hydrogen-bonded dimer with “head-to-head” fashion as expected; however, the dimers organized themselves in the form of relative complex lamellae. Three dimers as a group arranged side by side and formed a well-defined stripe with periodic dislocations due to the registry mechanism of the alkyl chain with the underlying HOPG surface. The hydrogen bonds between the adjacent dimers in one lamella were formed and dominated the self-assembled pattern.

  20. Ultrafast photoisomerization and its single-shot pump pulse efficiency of trans-azobenzene derivative: Compound for photosensitive DNA

    Science.gov (United States)

    Chen, Tao; Yamaguchi, Atsushi; Igarashi, Kazumasa; Nakagawa, Naoya; Nishioka, Hidenori; Asanuma, Hiroyuki; Yamashita, Mikio

    2012-03-01

    The femtosecond photoisomerization processes of trans (T) 4-carboxy-2',6'-dimethylazobenzen, which has been employed recently as an efficient photoregulator of DNA hybridization, were clarified by the rate equation analysis of measured transient absorbance changes with (350 nm) and without (380 nm) ground-state absorption of both the reactant (T) and photoproduct ( cis: C) isomers under S 2T-band excitation (360 nm, 150 fs pump): after excitation to the S 2T state with a 450-fs lifetime, ~ 1.5% of the T-molecules in the S 2T state are isomerized to the C-form within ~ 6 ps through the intermediate state (so called bottleneck state), but most of those return back to the T ground-state S 2T via the internal conversion processes with an ultrafast kinetic rate of 2.2 × 10 12 s - 1 . Moreover, the rate equation analysis enables us to determine the T-to-C photoisomerization rate ηT,C per pump pulse to be 0.0011 at the pump energy of 80 nJ from the amplitude A3,350 of the offset component in the 350-nm probe signal, and to obtain the photoisomerization quantum yield Φ T,C = 0.094. The latter value is slightly lower than that of T-azobenzene, and well agrees with that (Φ T,C = 0.097) measured by the conventional CW irradiation method using a photostationary state.

  1. Effect of photoisomerization of azobenzene dopants on the flexoelectric properties of short-pitch cholesteric liquid crystals

    Science.gov (United States)

    Komitov, Lachezar; Ruslim, Christian; Ichimura, Kunihiro

    2000-05-01

    The flexoelectric properties of short-pitch cholesteric mixtures doped with three different azobenzenes, 4,4'-dihexyloxyazobenzene (4,4'-azo), 3,3'-dihexyloxy-2,2'-dimethylazobenzene (3,3'-azol), and 3,3'- dihexanoyloxy-2,2'-dimethylazobenzene (3,3'-azo2), respectively, were studied upon illumination with uv light. Their effective flexoelectric coefficients were derived from the flexoelectro-optic response of the mixtures aligned in uniform lying helix texture. Considering the fact that the pitch of the mixtures became shorter upon uv illumination, an increase of their effective flexoelectric coefficients was found to take place due to the photoisomerization of the dyes. The largest change was found for the coefficient of the guest-host mixture containing 4,4'-azo dye, most probably due to the bent shape of the dye cis-isomer. This observation is in good agreement with our previous studies on the influence of the molecular shape on the liquid-crystal flexoelectric properties and it suggests a possible way for enhancement of the amplitude of flexoelectro-optic response in cholesterics by using liquid-crystal materials with pronounced molecular shape dissymmetry.

  2. Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage.

    Science.gov (United States)

    Feng, Yiyu; Liu, Hongpo; Luo, Wen; Liu, Enzuo; Zhao, Naiqin; Yoshino, Katsumi; Feng, Wei

    2013-11-19

    Reduced graphene oxide-azobenzene (RGO-AZO) hybrids were prepared via covalent functionalization for long-term solar thermal storage. Thermal barrier (ΔEa) of cis to tran reversion and thermal storage (ΔH) were improved by molecular hydrogen bonds (H-bonds) through ortho- or para-substitution of AZO. Intramolecular H-bonds thermally stabilized cis-ortho-AZO on RGO with a long-term half-life of 5400 h (ΔEa = 1.2 eV), which was much longer than that of RGO-para-AZO (116 h). RGO-para-AZO with one intermolecular H-bond showed a high density of thermal storage up to 269.8 kJ kg(-1) compared with RGO-ortho-AZO (149.6 kJ kg(-1)) with multiple intra- and intermolecular H-bonds of AZO according to relaxed stable structures. Thermal storage in experiment was the same order magnitude to theoretical data based on ΔH calculated by density functional theory and packing density. Photoactive RGO-AZO hybrid can be developed for high-performance solar thermal storage by optimizing molecular H-bonds.

  3. Enhancement in the critical current density of C-doped MgB2 wire using a polyacrylic acid dopant.

    Science.gov (United States)

    Lee, Seung Muk; Hwang, Soo Min; Lee, Chang Min; Kim, Won; Joo, Jinho; Lim, Jun Hyung; Kim, Chan-Joong; Hong, Gye-Won

    2012-02-01

    C-doped MgB2 wires were fabricated from a polyacrylic acid (PAA) using a conventional in-situ PIT technique. The effects of the PAA content on the lattice parameter, microstructure, critical temperature (Tc) and critical current density (Jc) were examined. With increasing PAA content, the amount of MgO in the sample increased but the crystallinity, a-axis lattice parameter, and Tc of MgB2 wires decreased, indicating that the C that decomposed from PAA during heat treatment had substituted for B. All doped samples exhibited a higher Jc than the undoped sample at high magnetic field, and the Jc(B) property improved with increasing PAA content: for the 7 wt% doped sample, the Jc was approximately 3-times higher than that of the pristine sample (1.28 kA/cm2 vs. 3.43 kA/cm2) at 5 K and 6.6 T. The improved Jc(B) of the doped sample was attributed to the decreased grain size, enlarged lattice distortion and increased C doping level.

  4. Synthesis and implication of novel poly(acrylic acid)/nanosorbent embedded hydrogel composite for lead ion removal.

    Science.gov (United States)

    Bhatia, Mayuri; Rajulapati, Satish Babu; Sonawane, Shirish; Girdhar, Amandeep

    2017-11-27

    Lead stands second among the deadly heavy metal pollutants owing to the incompetent mechanism possessed by the human body for its removal. A polymeric hydrogel in the form of composite was prepared using acrylic acid (monomer) and novel nanofiller that possess super adsorbent properties with restricted gel seepage into flowing ionic liquid. The filler used is an adsorbent which is biocompatible, biodegradable, economical, abundant, non-hazardous and easy to synthesize. The invariably porous nanofiller, the Nanobentonite(clay), was synthesized using ion exchange reaction by creating acidic environment for accelerated dispersion with exfoliation by CTAB to enhance cation exchange capacity. NanobentoFnite was capable of removing >97% lead ion in batch adsorption study and followed pseudo-second order kinetic model. Freundlich isotherm suggested a removal capacity of ~20 mg/g. Thus, the successfully experimented adsorbent was implicated as filler to form polyacrylic acid nanoclay hydrogel polymerized in ultrasonic bath. The amount of filler was varied from 0.25 to 2 wt% to get 94% removal, analyzed using ICP-OES. The prepared adsorbents were characterized before and after adsorption using TEM, FESEM, XRD, FTIR and DSC to understand the structural changes and metal-sorbent interaction. Thus, the novel nanosorbent/composite are promiscuous and competent in terms of availability, reusability and longevity to remove heavy metal ions.

  5. Characterization and Antimicrobial Property of Poly(Acrylic Acid Nanogel Containing Silver Particle Prepared by Electron Beam

    Directory of Open Access Journals (Sweden)

    Jong-Bae Choi

    2013-05-01

    Full Text Available In this study, we developed a one step process to synthesize nanogel containing silver nanoparticles involving electron beam irradiation. Water-soluble silver nitrate powder is dissolved in the distilled water and then poly(acrylic acid (PAAc and hexane are put into this silver nitrate solution. These samples are irradiated by an electron beam to make the PAAc nanogels containing silver nanoparticles (Ag/PAAc nanogels. The nanoparticles were characterized by scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS. In addition, the particle size and zeta-potential were confirmed by a particle size analyzer (PSA. The antibacterial properties of the nanogels were evaluated by paper diffusion test. The Ag/PAAc nanogels had an antibacterial effect against Escherichia coli and Staphylococcus aureus. The nanogels also demonstrated a good healing effect against diabetic ulcer. The size of the Ag/PAAc nanogels decreased with increasing irradiation doses, and the absolute value of the zeta potential increased with increasing irradiation doses. Also, the Ag/PAAc nanogels exhibited good antibacterial activity against both Gram-negative and Gram-positive bacteria. In in vivo wound healing, the Ag/PAAc nanogels have a good healing effect.

  6. Poly(acrylic acid)/polyethylene glycol hygrogel prepared by using gamma-ray irradiation for mucosa adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Young-Chang; Park, Jong-Seok; Shin, Jung-Woong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Gwon, Hui-Jeong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Khil, Myung-Seob [Chonbuk National University, Jeonju (Korea, Republic of); Lee, Deok-Won [Maxillofacial Surgery Dental Hospital, Seoul (Korea, Republic of); Ahn, Sung-Jun [JADAM Co., LTD., Seogwipo (Korea, Republic of)

    2015-01-15

    A buccal delivery system provides a much milder environment for drug delivery compared to an oral delivery which presents a hostile environment for drugs, especially proteins and polypeptides, owing to acid hydrolysis. Local delivery in an oral cavity has particular applications in the treatment of toothaches, periodontal disease, and bacterial infections. Poly(acrylic acid) (PAA)-based hydrogels prepared using a chemical initiator have been attempted for a mucoadhesive system owing to their flexibility and excellent bioadhesion. In this experiment, PAA and polyethylene glycol (PEG) were selected to prepare using a radiation process a bioadhesive hydrogel for adhesion to mucosal surfaces. PAA and PEG were dissolved in purified water to prepare a homogeneous PAA/PEG solution, and the solution was then irradiated using an electron beam at dose up to 70 kGy to make the hydrogels. Their physical properties, such as gel percent, swelling percent, and adhesive strength to mucosal surfaces, were investigated. In this experiment, various amounts of PEG were incorporated into the PAA to enhance the mucoadhesive property of the hydrogels. The effect of the molecular weight of PEG on the mucoadhesion was also examined.

  7. Polyacrylic acid polymer brushes as substrates for the incorporation of anthraquinone derivatives. Unprecedented application of decorated polymer brushes on organocatalysis

    Science.gov (United States)

    Ruiz-Muelle, Ana Belén; Contreras-Cáceres, Rafael; Oña-Burgos, Pascual; Rodríguez-Dieguez, Antonio; López-Romero, Juan Manuel; Fernández, Ignacio

    2018-01-01

    The synthesis of amino-terminated anthraquinone derivatives and their incorporation onto polymer brushes for the fabrication of silicon-based nanometric functional coatings are described for the first time. The general process involves the covalent grafting of anthraquinone 1 onto two different polymer-brushes by amidation reactions. They are composed by amino- and carboxy-terminated poly(acrylic acid) chains (PAA-NH2- and PAA-COOH, respectively) tethered by one end to an underlying silicon oxide (SiO2) substrate in a polymer brush configuration. A third substrate is fabricated by UV induced hydrosilylation reaction using undecenoic acid as adsorbate on hydrogen-terminated Si(111) surfaces. One- and two-dimensional nuclear magnetic resonance (NMR), FT-IR, MS and X-ray diffraction (XRD) were used to characterize anthraquinone 1. Ellipsometric and X-ray photoelectron spectroscopy (XPS) measurements demonstrated the presence of the polymer brushes on the silicon wafers, and atomic force microscopy (AFM) was used to study its surface morphology. The covalent linkage between anthraquinone and polymer brushes was proven by XPS and confocal fluorescence microscopy. The resulting surfaces were assayed in the heterogenous organocatalytic transformation of (1H)-indole into 3-benzyl indole with moderate yields but with high recyclability.

  8. On the rheology of mixed systems of hydrophobically modified polyacrylate microgels and surfactants: Role of the surfactant architecture.

    Science.gov (United States)

    Alves, Luís; Lindman, Björn; Klotz, Björn; Böttcher, Axel; Haake, Hans-Martin; Antunes, Filipe E

    2018-03-01

    The rheological control of suspensions is of key interest in the formulation design. A chemically cross-linked hydrophobically modified poly(acrylic acid) (HMCL-PAA), used as rheology modifier, is pH sensitive and shows swelling behavior above a critical pH due to the ionization of the acrylic acid groups. At low pH, HMCL-PAA suspensions are liquid and turbid. The binding of surfactants to HMCL-PAA, at low pH conditions, can result in significant changes on rheology and transparency of the polymeric suspensions, due to the swelling of the microgel particles. The influence of surfactants addition on the rheological properties and transparency of HMCL-PAA suspensions was determined. A systematic study was performed using different types of surfactants (ionic, non-ionic and zwitterionic). The gelation efficiency of HMCL-PAA suspensions at low pH is strongly dependent on surfactant architecture: ionic surfactants are found to be much more efficient than non-ionic or zwitterionic surfactants. Ionic surfactants lead to a liquid-to-gel transition accompanied by an increase of transparency of the suspensions. Among the ionic surfactants, anionics show stronger interactions with the polymer. Also the surfactant hydrophobicity is relevant; the more hydrophobic the surfactant, the stronger is the binding to the polymer and thus the larger the particle swelling. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Dispersion mechanism of polyacrylic acid-coated nanoparticle in protic ionic liquid, N,N-diethylethanolammonium trifluoromethanesulfonate.

    Science.gov (United States)

    Kanzaki, Ryo; Guibert, Clément; Fresnais, Jérôme; Peyre, Véronique

    2018-04-15

    Ionic liquids (ILs) are extremely concentrated electrolyte solutions. The ubiquitous presence of ions induces specific behaviors for chemical reactions compared to reactions in water solutions. This is also the case for the stability of colloidal dispersions, for which the DLVO model cannot be applied as the ionic strength is out of the model range. In a previous work, in the protic IL ethylammonium nitrate (doi: https://doi.org//10.1016/j.jcis.2015.04.059), we observed an unexpected influence of the pH on the stability of dispersion of maghemite nanoparticles coated with poly(acrylic acid) (pAA). To clarify and generalize these observations, we investigated here the pH response of the dispersion in a second protic ionic liquid with a different acid-base nature, diethylethanolammonium trifluoromethanesulfonate. pH titrations of the dispersions were achieved with an IS-FET electrode and the associated thermodynamic constants determined. The colloid structural properties were examined by small angle X-ray scattering. Under acidic or mildly basic condition, a stable dispersion was obtained, i.e., when the degree of dissociation of pAA, α, was α  0.7. Dispersions form quite dense but reversible aggregates in the intermediate α range. A model for the solvation layer around the particles is proposed and generalizes the former findings. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Blood-Vessel Mimicking Structures by Stereolithographic Fabrication of Small Porous Tubes Using Cytocompatible Polyacrylate Elastomers, Biofunctionalization and Endothelialization

    Directory of Open Access Journals (Sweden)

    Birgit Huber

    2016-04-01

    Full Text Available Blood vessel reconstruction is still an elusive goal for the development of in vitro models as well as artificial vascular grafts. In this study, we used a novel photo-curable cytocompatible polyacrylate material (PA for freeform generation of synthetic vessels. We applied stereolithography for the fabrication of arbitrary 3D tubular structures with total dimensions in the centimeter range, 300 µm wall thickness, inner diameters of 1 to 2 mm and defined pores with a constant diameter of approximately 100 µm or 200 µm. We established a rinsing protocol to remove remaining cytotoxic substances from the photo-cured PA and applied thio-modified heparin and RGDC-peptides to functionalize the PA surface for enhanced endothelial cell adhesion. A rotating seeding procedure was introduced to ensure homogenous endothelial monolayer formation at the inner luminal tube wall. We showed that endothelial cells stayed viable and adherent and aligned along the medium flow under fluid-flow conditions comparable to native capillaries. The combined technology approach comprising of freeform additive manufacturing (AM, biomimetic design, cytocompatible materials which are applicable to AM, and biofunctionalization of AM constructs has been introduced as BioRap® technology by the authors.

  11. Poly(Acrylic acid–Based Hybrid Inorganic–Organic Electrolytes Membrane for Electrical Double Layer Capacitors Application

    Directory of Open Access Journals (Sweden)

    Chiam-Wen Liew

    2016-05-01

    Full Text Available Nanocomposite polymer electrolyte membranes (NCPEMs based on poly(acrylic acid(PAA and titania (TiO2 are prepared by a solution casting technique. The ionic conductivity of NCPEMs increases with the weight ratio of TiO2.The highest ionic conductivity of (8.36 ± 0.01 × 10−4 S·cm−1 is obtained with addition of 6 wt % of TiO2 at ambient temperature. The complexation between PAA, LiTFSI and TiO2 is discussed in Attenuated total reflectance-Fourier Transform Infrared (ATR-FTIR studies. Electrical double layer capacitors (EDLCs are fabricated using the filler-free polymer electrolyte or the most conducting NCPEM and carbon-based electrodes. The electrochemical performances of fabricated EDLCs are studied through cyclic voltammetry (CV and galvanostatic charge-discharge studies. EDLC comprising NCPEM shows the specific capacitance of 28.56 F·g−1 (or equivalent to 29.54 mF·cm−2 with excellent electrochemical stability.

  12. Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties and water absorbency.

    Science.gov (United States)

    Zhong, Ming; Liu, Yi-Tao; Liu, Xiao-Ying; Shi, Fu-Kuan; Zhang, Li-Qin; Zhu, Mei-Fang; Xie, Xu-Ming

    2016-06-28

    Poly(acrylic acid) (PAA) hydrogels with superior mechanical properties, based on a single network structure with dual cross-linking, are prepared by one-pot free radical polymerization. The network structure of the PAA hydrogels is composed of dual cross-linking: a dynamic and reversible ionic cross-linking among the PAA chains enabled by Fe(3+) ions, and a sparse covalent cross-linking enabled by a covalent cross-linker (Bis). Under deformation, the covalently cross-linked PAA chains remain intact to maintain their original configuration, while the Fe(3+)-enabled ionic cross-linking among the PAA chains is broken to dissipate energy and then recombined. It is found that the mechanical properties of the PAA hydrogels are significantly influenced by the contents of covalent cross-linkers, Fe(3+) ions and water, which can be adjusted within a substantial range and thus broaden the applications of the hydrogels. Meanwhile, the PAA hydrogels have excellent recoverability based on the dynamic and reversible ionic cross-linking enabled by Fe(3+) ions. Moreover, the swelling capacity of the PAA hydrogels is as high as 1800 times in deionized water due to the synergistic effects of ionic and covalent cross-linkings. The combination of balanced mechanical properties, efficient recoverability, high swelling capacity and facile preparation provides a new method to obtain high-performance hydrogels.

  13. Synthesis and characterization of self-crosslinking fluorinated polyacrylate soap-free latices with core-shell structure

    Science.gov (United States)

    Xu, Wei; An, Qiufeng; Hao, Lifen; Zhang, Dan; Zhang, Min

    2013-03-01

    Novel self-crosslinking fluorinated polyacrylate soap-free latices (FMBN) with core-shell structure were synthesized by semicontinuous seeded emulsion polymerization method from dodecafluoroheptyl methacrylate (DFMA), methyl methacrylate (MMA), butyl acrylate (BA), and N-methylolamide (NMA) in the presence of a polymerizable emulsifier-ammonium allyloxtmethylate nonylphenol ethoxylates sulfate (DNS-86). Effects of the DNS-86 and DFMA amounts on stability and properties of the FMBN emulsions were studied. Besides, the latices and their film were characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (1H NMR) spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser particle size analyzer, differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), contact angle goniometer, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. FT-IR spectra and 1H NMR spectrum showed that DFMA successfully participated in soap-free emulsion polymerization and monomers formed the fluorinated acrylate copolymer. The resulted latex particles had the core-shell structure. The films formed from the FMBN latices thus had two Tg. Their thermal stability and Tg of the shell phase increased gradually with augment of DFMA amount in polymer. XPS, AFM and hydrophobicity analyses indicated the fluoroalkyl groups had the tendency to enrich at the film-air interface. This enrichment of fluorine at the film-air interface was more evident after the annealing process. Water contact angles of the FMBN film before and after the annealing process could attain 115.5° and 117.5°, individually.

  14. Right- and Left-Handed Helices, What is in between? Interconversion of Helical Structures of Alternating Pyridinedicarboxamide/m-(phenylazo)azobenzene Oligomers.

    Science.gov (United States)

    Tao, Peng; Parquette, Jon R; Hadad, Christopher M

    2012-12-11

    Some unnatural polymers/oligomers have been designed to adopt a well-defined, compact, three-dimensional folding capability. Azobenzene units are common linkages in these oligomer designs. Two alternating pyridinedicarboxamide/m-(phenylazo)azobenzene oligomers that can fold into both right- and left-handed helices were studied computationally in order to understand their dynamical properties. Helical structures were shown to be the global minima among the many different conformations generated from the Monte Carlo simulations, and extended conformations have higher potential energies than compact ones. To understand the interconversion process between right- and left-handed helices, replica-exchange molecular dynamic (REMD) simulations were performed on both oligomers, and with this method, both right- and left-handed helices were successfully sampled during the simulations. REMD trajectories revealed twisted conformations as intermediate structures in the interconversion pathway between the two helical forms of these azobenzene oligomers. This mechanism was observed in both oligomers in current study and occurred locally in the larger oligomer. This discovery indicates that the interconversion between helical structures with different handedness goes through a compact and partially folded structure instead of globally unfold and extended structure. This is also verified by the nudged elastic band (NEB) calculations. The temperature weighted histogram analysis method (T-WHAM) was applied on the REMD results to generate contour maps of the potential of mean force (PMF). Analysis showed that right- and left-handed helices are equally sampled in these REMD simulations. In large oligomers, both right- and left-handed helices can be adopted by different parts of the molecule simultaneously. The interconversion between two helical forms can occur in the middle of the helical structure and not necessarily at the termini of the oligomer.

  15. Conoscopic evidence of the UV light-induced flexoelectric effect in homeotropic layers of nematic liquid crystal doped with azobenzene derivatives

    Science.gov (United States)

    Marinov, Y. G.; Hadjichristov, G. B.; Petrov, A. G.; Sridevi, S.; Hiremath, U. S.; Yelamaggad, C. V.; Prasad, S. K.

    2010-11-01

    A digitalized version of the standard method of conoscopy was employed to register the bend deformation of molecular orientation in homeotropic nematic layers caused by an in-plane applied DC electric field, and influenced by UV light illumination. Two guest-host systems prepared by mixing of a nematic liquid crystal and an azobenzene-containing photochromic liquid crystalline material featuring a longitudinal molecular asymmetry, were studied. Upon continuous UV irradiation, a photo-isomerization of the photochromic molecules occurs resulting in an enhanced flexoelectric response of the guest-host mixtures. The dependence of the photoflexoeffect on the field strength and UV light intensity was also examined.

  16. Conoscopic evidence of the UV light-induced flexoelectric effect in homeotropic layers of nematic liquid crystal doped with azobenzene derivatives

    International Nuclear Information System (INIS)

    Marinov, Y G; Hadjichristov, G B; Petrov, A G; Sridevi, S; Hiremath, U S; Yelamaggad, C V; Prasad, S K

    2010-01-01

    A digitalized version of the standard method of conoscopy was employed to register the bend deformation of molecular orientation in homeotropic nematic layers caused by an in-plane applied DC electric field, and influenced by UV light illumination. Two guest-host systems prepared by mixing of a nematic liquid crystal and an azobenzene-containing photochromic liquid crystalline material featuring a longitudinal molecular asymmetry, were studied. Upon continuous UV irradiation, a photo-isomerization of the photochromic molecules occurs resulting in an enhanced flexoelectric response of the guest-host mixtures. The dependence of the photoflexoeffect on the field strength and UV light intensity was also examined.

  17. Poly(acrylic acid)-block-poly(vinyl alcohol) anchored maghemite nanoparticles designed for multi-stimuli triggered drug release

    Science.gov (United States)

    Liu, Ji; Detrembleur, Christophe; Debuigne, Antoine; de Pauw-Gillet, Marie-Claire; Mornet, Stéphane; Vander Elst, Luce; Laurent, Sophie; Labrugère, Christine; Duguet, Etienne; Jérôme, Christine

    2013-11-01

    Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene blue (MB), a cationic model drug. The triggered release of MB was studied under various stimuli such as pH, ionic strength and temperature. Local heating generated under alternating magnetic field (AMF) application was studied, and remotely AMF-triggered release was also confirmed, while a mild heating-up of the release medium was observed. Furthermore, their potential application as magnetic resonance imaging (MRI) contrast agents was explored via relaxivity measurements and acquisition of T2-weighted images. Preliminary studies on the cytotoxicity against mouse fibroblast-like L929 cell line and also their cellular uptake within human melanoma MEL-5 cell line were carried out. In conclusion, this kind of stimuli-responsive nanoparticles appears to be promising carriers for delivering drugs to some tumour sites or into cellular compartments with an acidic environment.Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene

  18. The influence of polymer topology on pharmacokinetics: differences between cyclic and linear PEGylated poly(acrylic acid) comb polymers.

    Science.gov (United States)

    Chen, Bo; Jerger, Katherine; Fréchet, Jean M J; Szoka, Francis C

    2009-12-16

    Water-soluble polymers for the delivery of chemotherapeutic drugs passively target solid tumors as a consequence of reduced renal clearance and the enhanced permeation and retention (EPR) effect. Elimination of the polymers in the kidney occurs due to filtration through biological nanopores with a hydrodynamic diameter comparable to the polymer. Therefore we have investigated chemical features that may broadly be grouped as "molecular architecture" such as: molecular weight, chain flexibility, number of chain ends and branching, to learn how they impact polymer elimination. In this report we describe the synthesis of four pairs of similar molecular weight cyclic and linear polyacrylic acid polymers grafted with polyethylene glycol (23, 32, 65, 114 kDa) with low polydispersities using ATRP and "click" chemistry. The polymers were radiolabeled with (125)I and their pharmacokinetics and tissue distribution after intravenous injection were determined in normal and C26 adenocarcinoma tumored BALB/c mice. Cyclic polymers above the renal threshold of 30 kDa had a significantly longer elimination time (between 10 and 33% longer) than did the comparable linear polymer (for the 66 kDa cyclic polymer, t(1/2,beta)=35+/-2 h) and a greater area under the serum concentration versus time curve. This resulted in a greater tumor accumulation of the cyclic polymer than the linear polymer counterpart. Thus water-soluble cyclic comb polymers join a growing list of polymer topologies that show greatly extended circulation times compared to their linear counterparts and provide alternative polymer architecture for use as drug carriers.

  19. Study on the enhanced adsorption properties of lysozyme on polyacrylic acid modified TiO2 nano-adsorbents

    Science.gov (United States)

    Liu, Yufeng; Jin, Zu; Meng, Hao; Zhang, Xia

    2018-01-01

    The adsorption and immobilization of enzymes onto solid carriers has been focused on due to their many advantages, such as improved stability against a thermal or organic solvent and a good cycle usability. TiO2 nanoparticles is one of excellent nano-adsorbents owing to its excellent biocompatibility, non-inflammatory, and abundant surface hydroxyl groups, which are convenient to be combined with various functional groups. In this paper polyacrylic acid (PAA) modified TiO2 nanoparticles were synthesized through an in situ light-induced polymerization of acrylic acid on the surface of TiO2 nanoparticles. The structure and surface physicochemical properties of the PAA/TiO2 nanoparticles were characterized by TEM, XRD, FT-IR, Zeta potential measurements and TG-DSC. The experimental results showed that the isoelectric point of PAA/TiO2 significantly reduced to 1.82 compared with that of pure TiO2 nanoparticles (6.08). In the adsorption tests of lysozyme (Lyz), the PAA/TiO2 nanoparticles displayed enhanced adsorption activity compared with pristine TiO2. The maximum adsorption capacity of PAA/TiO2 for Lyz was 225.9 mg g‑1 under the optimum conditions where the initial concentration of Lyz was 300 mg ml‑1, the addition amount of PAA/TiO2 was 6.4 mg, the adsorption time was 30 min and the pH value was 7.0. The sodium dodecyl sulfate (SDS, 0.5%) presented the best efficiency (76.86%) in the removal of adsorbed Lyz, and the PAA/TiO2 nanoparticles showed excellent adsorption stability based on five cyclic adsorption–desorption tests. The fitting calculation results of the adsorption isotherm and the thermodynamics indicated the adsorption was an exothermic, entropy increasing, spontaneous and monomolecular layer adsorption process.

  20. Results of Treatment of Grades IV and V Vesicoureteral Reflux with Endoscopic Injection of Polyacrylate Polyalcohol Copolymer.

    Science.gov (United States)

    De Badiola, Francisco Ignacio; Soria, Ricardo; Vagni, Roberto Luis; Ormaechea, María Nieves; Moldes, Juan Manuel; Benmaor, César

    2013-01-01

    Here we report the results of a review of a prospectively maintained database of the use polyacrylate polyalcohol copolymer (PPC) injection to correct grades IV and V VUR. All children with grades IV and V primary VUR that presented with febrile urinary tract infection while on prophylaxis, in a 3-year period, were treated with a sub-ureteral injection of PPC. Institutional ethical approval was obtained. Exclusion criteria were incomplete bladder emptying documented on videourodynamic study, ureteral duplication, paraureteral diverticula, and poor ureteral emptying observed during fluoroscopy and previous open surgical or endoscopic treatment. Pre- and post-operative evaluation included urinalysis, renal and bladder ultrasonography, DMSA scan, and videourodynamic studies. Thirty-three children [36 renal units (RU)] were included with a median age of 57 months (range 7-108). There were 18 boys and 15 girls. Thirty RU had grade IV and 6 grade V VUR. Median follow-up time was 32 months (range 7-58). Reflux was cured in 32/36 RU with the first injection, but another two patients were reimplanted because of dilatation. Complications included early urinary tract infection in seven children, transient lower urinary tract symptoms in five children. Progressive ureteral dilatation was noted in four children and was treated with insertion of a double J stent. Two of these children eventually required an ureteroneocystostomy. The use of PPC to treat grades IV and V vesicoureteral reflux in young children has an overall success rate of 83.3%. Persistent ureteral dilatation was present in 11% associated with high injection volume. Future studies will attempt to maintain a high success rate reducing the volume of injection and the incidence of dilatation.

  1. Interactions between poly(acrylic acid) and sodium dodecyl sulfate: isothermal titration calorimetric and surfactant ion-selective electrode studies.

    Science.gov (United States)

    Wang, C; Tam, K C

    2005-03-24

    Interaction between a monodispersed poly(acrylic acid) (PAA) (M(W) = 5670 g/mol, M(w)/M(n) = 1.02) with sodium dodecyl sulfate (SDS) was investigated using isothermal titration calorimetry (ITC), ion-selective electrode (ISE), and dynamic light scattering measurements. Contrary to previous studies, we report for the first time evidence of interaction between SDS and PAA when the degree of neutralization (alpha) of PAA is lower than 0.2. Hydrocarbon chains of SDS cooperatively bind to apolar segments of PAA driven by hydrophobic interaction. The interaction is both enthalpy and entropy favored (deltaH is negative but deltaS is positive). In 0.05 wt % PAA solution, the SDS concentration corresponding to the onset of binding (i.e., CAC) is approximately 2.4 mM and the saturation concentration (i.e., C(S)) is approximately 13.3 mM when alpha = 0. When PAA was neutralized and ionized, the binding was hindered by the enhanced electrostatic repulsion between negatively charged SDS and PAA chains and improved solubility of the polymer. With increasing alpha to 0.2, CAC increases to approximately 6.2 mM, C(S) drops to 8.6 mM, and the interaction is significantly weakened where the amount of bound SDS on PAA is reduced considerably. The values of CAC and C(S) derived from different techniques are in good agreement. The binding results in the formation of mixed micelles on apolar PAA coils, which then expands and dissociates into single PAA chains. The majority of unneutralized PAA molecules exist as single polymer chains stabilized by bound SDS micelles in solution after the saturation concentration.

  2. Characterization of titanium dioxide nanoparticles modified with polyacrylic acid and H2O2 for use as a novel radiosensitizer.

    Science.gov (United States)

    Morita, Kenta; Miyazaki, Serika; Numako, Chiya; Ikeno, Shinya; Sasaki, Ryohei; Nishimura, Yuya; Ogino, Chiaki; Kondo, Akihiko

    2016-12-01

    An induction of polyacrylic acid-modified titanium dioxide with hydrogen peroxide nanoparticles (PAA-TiO 2 /H 2 O 2 NPs) to a tumor exerted a therapeutic enhancement of X-ray irradiation in our previous study. To understand the mechanism of the radiosensitizing effect of PAA-TiO 2 /H 2 O 2 NPs, analytical observations that included DLS, FE-SEM, FT-IR, XAFS, and Raman spectrometry were performed. In addition, highly reactive oxygen species (hROS) which PAA-TiO 2 /H 2 O 2 NPs produced with X-ray irradiation were quantified by using a chemiluminescence method and a EPR spin-trapping method. We found that PAA-TiO 2 /H 2 O 2 NPs have almost the same characteristics as PAA-TiO 2 . Surprisingly, there were no significant differences in hROS generation. However, the existence of H 2 O 2 was confirmed in PAA-TiO 2 /H 2 O 2 NPs, because spontaneous hROS production was observed w/o X-ray irradiation. In addition, PAA-TiO 2 /H 2 O 2 NPs had a curious characteristic whereby they absorbed H 2 O 2 molecules and released them gradually into a liquid phase. Based on these results, the H 2 O 2 was continuously released from PAA-TiO 2 /H 2 O 2 NPs, and then released H 2 O 2 assumed to be functioned indirectly as a radiosensitizing factor.

  3. Photoreversible switching of the lower critical solution temperature in a photoresponsive host-guest system of pillar[6]arene with triethylene oxide substituents and an azobenzene derivative.

    Science.gov (United States)

    Ogoshi, Tomoki; Kida, Kanako; Yamagishi, Tada-aki

    2012-12-12

    A new water-soluble thermoresponsive pillar[6]arene with triethylene oxide groups was synthesized. The pillar[6]arene showed lower critical solution temperature behavior in aqueous solution. Its clouding point was photoreversibly switched based on a photoresponsive host-guest system. The trans form of an azobenzene guest formed a stable 1:1 complex with the pillar[6]arene. Complexation increased the clouding point. Irradiation with UV light induced a conformation change for the azobenzene guest from the trans to cis form, and dethreading occurred because of a size mismatch between the cis form and the pillar[6]arene cavity. This dethreading decreased the clouding point. The photoresponsive host-guest system was reversible, and the clouding point could be switched by alternating irradiation with UV or visible light. We demonstrated photoresponsive reversible clear-to-turbid and turbid-to-clear transitions for the solution based on the reversible switching of the clouding point using the photosensitive host-guest system.

  4. Superior Z→E and E→Z photoswitching dynamics of dihydrodibenzodiazocine, a bridged azobenzene, by S1(nπ*) excitation at λ = 387 and 490 nm.

    Science.gov (United States)

    Siewertsen, Ron; Schönborn, Jan Boyke; Hartke, Bernd; Renth, Falk; Temps, Friedrich

    2011-01-21

    The ultrafast Z→E and E→Z photoisomerisation dynamics of 5,6-dihydrodibenzo[c,g][1,2]diazocine (1), the parent compound of a class of bridged azobenzene-based photochromic molecular switches with a severely constrained eight-membered heterocyclic ring as central unit, have been studied by femtosecond time-resolved spectroscopy in n-hexane as solvent and by quantum chemical calculations. The diazocine contrasts with azobenzene (AB) in that its Z rather than E isomer is the energetically more stable form. Moreover, it stands out compared to AB for the spectrally well separated S(1)(nπ*) absorption bands of its two isomers. The Z isomer absorbs at around λ = 404 nm, the E form has its absorption maximum around λ = 490 nm. The observed transient spectra following S(1)(nπ*) photoexcitation show ultrafast excited-state decays with time constants τ(1) = 70 fs for the Z and derivatives constitute outstanding candidates for photoswitchable molecular tweezers and other applications.

  5. A DFT study on photoinduced surface catalytic coupling reactions on nanostructured silver: selective formation of azobenzene derivatives from para-substituted nitrobenzene and aniline.

    Science.gov (United States)

    Zhao, Liu-Bin; Huang, Yi-Fan; Liu, Xiu-Min; Anema, Jason R; Wu, De-Yin; Ren, Bin; Tian, Zhong-Qun

    2012-10-05

    We propose that aromatic nitro and amine compounds undergo photochemical reductive and oxidative coupling, respectively, to specifically produce azobenzene derivatives which exhibit characteristic Raman signals related to the azo group. A photoinduced charge transfer model is presented to explain the transformations observed in para-substituted ArNO(2) and ArNH(2) on nanostructured silver due to the surface plasmon resonance effect. Theoretical calculations show that the initial reaction takes place through excitation of an electron from the filled level of silver to the lowest unoccupied molecular orbital (LUMO) of an adsorbed ArNO(2) molecule, and from the highest occupied molecular orbital (HOMO) of an adsorbed ArNH(2) molecule to the unoccupied level of silver, during irradiation with visible light. The para-substituted ArNO(2)(-)˙ and ArNH(2)(+)˙ surface species react further to produce the azobenzene derivatives. Our results may provide a new strategy for the syntheses of aromatic azo dyes from aromatic nitro and amine compounds based on the use of nanostructured silver as a catalyst.

  6. Iron nanoparticles embedded in carbon films: structural and optical properties

    Science.gov (United States)

    Mashayekhi, Fatemeh; Shafiekhani, Azizollah; Sebt, Seyed Ali

    2016-06-01

    In the present work amorphous hydrogenated carbon films with sputtered iron nanoparticles (Fe NPs @ a-C:H) were deposited by co-deposition of RF-sputtering and RF-plasma enhanced chemical vapor deposition methods using acetylene gas and iron target on quartz and silicon substrates. Samples were prepared in different initial pressures and during constant deposition time. The crystalline structure of Fe NPs @ a-C:H was studied using X-ray diffraction and selected area electron diffraction patterns. The X-ray photoelectron spectroscopy analysis presents that increasing the initial pressure decreases the atomic ratio of Fe/C and the sp3-hybridized carbon content in prepared samples. The transmission electron microscope image shows the encapsulated Fe NPs in carbon films. The optical properties and localized surface plasmon resonance (LSPR) of samples were studied using UV-visible spectrophotometry, which is shown that increasing of Fe content decreases the intensity of LSPR peak and increases the optical band gap.

  7. Optoelectronic device with nanoparticle embedded hole injection/transport layer

    Science.gov (United States)

    Wang, Qingwu [Chelmsford, MA; Li, Wenguang [Andover, MA; Jiang, Hua [Methuen, MA

    2012-01-03

    An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

  8. Ferroelectric nanoparticle-embedded sponge structure triboelectric generators

    Science.gov (United States)

    Park, Daehoon; Shin, Sung-Ho; Yoon, Ick-Jae; Nah, Junghyo

    2018-05-01

    We report high-performance triboelectric nanogenerators (TENGs) employing ferroelectric nanoparticles (NPs) embedded in a sponge structure. The ferroelectric BaTiO3 NPs inside the sponge structure play an important role in increasing surface charge density by polarized spontaneous dipoles, enabling the packaging of TENGs even with a minimal separation gap. Since the friction surfaces are encapsulated in the packaged device structure, it suffers negligible performance degradation even at a high relative humidity of 80%. The TENGs also demonstrated excellent mechanical durability due to the elasticity and flexibility of the sponge structure. Consequently, the TENGs can reliably harvest energy even under harsh conditions. The approach introduced here is a simple, effective, and reliable way to fabricate compact and packaged TENGs for potential applications in wearable energy-harvesting devices.

  9. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil.

    Science.gov (United States)

    Kumar, Ashavani; Vemula, Praveen Kumar; Ajayan, Pulickel M; John, George

    2008-03-01

    Developing bactericidal coatings using simple green chemical methods could be a promising route to potential environmentally friendly applications. Here, we describe an environmentally friendly chemistry approach to synthesize metal-nanoparticle (MNP)-embedded paint, in a single step, from common household paint. The naturally occurring oxidative drying process in oils, involving free-radical exchange, was used as the fundamental mechanism for reducing metal salts and dispersing MNPs in the oil media, without the use of any external reducing or stabilizing agents. These well-dispersed MNP-in-oil dispersions can be used directly, akin to commercially available paints, on nearly all kinds of surface such as wood, glass, steel and different polymers. The surfaces coated with silver-nanoparticle paint showed excellent antimicrobial properties by killing both Gram-positive human pathogens (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). The process we have developed here is quite general and can be applied in the synthesis of a variety of MNP-in-oil systems.

  10. Role of ITO nanoparticles embedded into electrospun ITO nanofibers

    Science.gov (United States)

    Yoon, Sangcheol; Kim, Hyebin; Cha, Seung-Jae; Shin, Eun-Sol; Noh, Yong-Young; Hong, Sung-Jei; Park, Byoungchoo; Hwang, Inchan

    2017-11-01

    Both crystallization and molecular density are significant to achieve high electrical conductivity of transparent electrodes. Herein, we investigated the embedding effects of indium tin oxide (ITO) nanoparticles (NPs) into ITO nanofibers (NFs) synthesized by utilizing an electrospinning technique from ITO precursor solutions. We found that the ITO NPs might act as nucleation seeds that initiate crystallization of ITO, evidenced by flake-like morphologies which cannot be observed without ITO NPs. XRD measurements reveal that the ITO is crystalline with a higher degree and the size of ITO crystallites increases in the presence of ITO NPs embedded into NFs. Embedding ITO NPs leads to the formation of short fibers, but there is still large space between fibers as they are vertically stacked in the films, resulting in low electrical conductivity. Interestingly, a high ratio of ITO NPs enhances the electrical conductivity, as compared to a low ratio, which we attribute to the high fiber density on substrates due to the formation of shorter ITO NFs. Our results highlight that the ITO NPs influence not only the ITO crystallization but also the lengths of NFs. High electrical conductivity of NF films can be obtained by a high degree of crystallization and the optimum NF length that reduces spaces between NFs in the films.

  11. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil

    Science.gov (United States)

    Kumar, Ashavani; Vemula, Praveen Kumar; Ajayan, Pulickel M.; John, George

    2008-03-01

    Developing bactericidal coatings using simple green chemical methods could be a promising route to potential environmentally friendly applications. Here, we describe an environmentally friendly chemistry approach to synthesize metal-nanoparticle (MNP)-embedded paint, in a single step, from common household paint. The naturally occurring oxidative drying process in oils, involving free-radical exchange, was used as the fundamental mechanism for reducing metal salts and dispersing MNPs in the oil media, without the use of any external reducing or stabilizing agents. These well-dispersed MNP-in-oil dispersions can be used directly, akin to commercially available paints, on nearly all kinds of surface such as wood, glass, steel and different polymers. The surfaces coated with silver-nanoparticle paint showed excellent antimicrobial properties by killing both Gram-positive human pathogens (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). The process we have developed here is quite general and can be applied in the synthesis of a variety of MNP-in-oil systems.

  12. PtNi nanoparticles embedded in porous silica microspheres as ...

    Indian Academy of Sciences (India)

    pension of SiO2 microspheres. H2PtCl6·6H2O aqueous solution (0.03352 mol/L, 0.08 mL) and Ni(NO3)2·6H2O. (0.9 mg) (with initial mass ratio of Pt:Ni=3:1) were dis- solved in ethylene glycol (20 mL). Then, this metal salt solution was added to the above SiO2 suspension fol- lowed by addition of hydrazine hydrate (85 wt% ...

  13. Laser-generated plasma by carbon nanoparticles embedded into polyethylene

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Ceccio, G.; Cutroneo, Mariapompea

    2016-01-01

    Roč. 375, MAY (2016), s. 93-99 ISSN 0168-583X R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) LM2011019 Institutional support: RVO:61389005 Keywords : carbon nanoparticles * laser-generated plasma * Time-of-flight measurements * advanced targets Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.109, year: 2016

  14. Cobalt magnetic nanoparticles embedded in carbon matrix: biofunctional validation

    Energy Technology Data Exchange (ETDEWEB)

    Krolow, Matheus Z., E-mail: matheuskrolow@ifsul.edu.br [Universidade Federal de Pelotas, Engenharia de Materiais, Centro de Desenvolvimento Tecnologico (Brazil); Monte, Leonardo G.; Remiao, Mariana H.; Hartleben, Claudia P.; Moreira, Angela N.; Dellagostin, Odir A. [Universidade Federal de Pelotas, Nucleo de Biotecnologia, Centro de Desenvolvimento Tecnologico (Brazil); Piva, Evandro [Universidade Federal de Pelotas, Faculdade de Odontologia (Brazil); Conceicao, Fabricio R. [Universidade Federal de Pelotas, Nucleo de Biotecnologia, Centro de Desenvolvimento Tecnologico (Brazil); Carreno, Neftali L. V. [Universidade Federal de Pelotas, Engenharia de Materiais, Centro de Desenvolvimento Tecnologico (Brazil)

    2012-09-15

    Carbon nanostructures and nanocomposites display versatile allotropic morphologies, physico-chemical properties and have a wide range of applications in mechanics, electronics, biotechnology, structural material, chemical processing, and energy management. In this study we report the synthesis, characterization, and biotechnological application of cobalt magnetic nanoparticles, with diameter approximately 15-40 nm, embedded in carbon structure (Co/C-MN). A single-step chemical process was used in the synthesis of the Co/C-MN. The Co/C-MN has presented superparamagnetic behavior at room temperature an essential property for immunoseparation assays carried out here. To stimulate interactions between proteins and Co/C-MN, this nanocomposite was functionalized with acrylic acid (AA). We have showed the bonding of different proteins onto Co/C-AA surface using immunofluorescence assay. A Co/C-AA coated with monoclonal antibody anti-pathogenic Leptospira spp. was able to capture leptospires, suggesting that it could be useful in immunoseparation assays.

  15. Cobalt magnetic nanoparticles embedded in carbon matrix: biofunctional validation

    International Nuclear Information System (INIS)

    Krolow, Matheus Z.; Monte, Leonardo G.; Remião, Mariana H.; Hartleben, Cláudia P.; Moreira, Ângela N.; Dellagostin, Odir A.; Piva, Evandro; Conceição, Fabricio R.; Carreño, Neftalí L. V.

    2012-01-01

    Carbon nanostructures and nanocomposites display versatile allotropic morphologies, physico-chemical properties and have a wide range of applications in mechanics, electronics, biotechnology, structural material, chemical processing, and energy management. In this study we report the synthesis, characterization, and biotechnological application of cobalt magnetic nanoparticles, with diameter approximately 15–40 nm, embedded in carbon structure (Co/C-MN). A single-step chemical process was used in the synthesis of the Co/C-MN. The Co/C-MN has presented superparamagnetic behavior at room temperature an essential property for immunoseparation assays carried out here. To stimulate interactions between proteins and Co/C-MN, this nanocomposite was functionalized with acrylic acid (AA). We have showed the bonding of different proteins onto Co/C-AA surface using immunofluorescence assay. A Co/C-AA coated with monoclonal antibody anti-pathogenic Leptospira spp. was able to capture leptospires, suggesting that it could be useful in immunoseparation assays.

  16. PtNi nanoparticles embedded in porous silica microspheres as ...

    Indian Academy of Sciences (India)

    SEM, EDS, TEM, FTIR, XRD, ICP-AES, XPS and nitrogen adsorption/desorption analysis were employed to systematically investigate the morphology and structure of the obtained SiO2 microspheres and SiO₂/PtNi nanocatalysts. Results show that uniform PtNi nanoparticles can be homogeneously and firmly embedded ...

  17. Optical Fiber Sensors Based on Nanoparticle-Embedded Coatings

    Directory of Open Access Journals (Sweden)

    Aitor Urrutia

    2015-01-01

    Full Text Available The use of nanoparticles (NPs in scientific applications has attracted the attention of many researchers in the last few years. The use of NPs can help researchers to tune the physical characteristics of the sensing coating (thickness, roughness, specific area, refractive index, etc. leading to enhanced sensors with response time or sensitivity better than traditional sensing coatings. Additionally, NPs also offer other special properties that depend on their nanometric size, and this is also a source of new sensing applications. This review focuses on the current status of research in the use of NPs within coatings in optical fiber sensing. Most used sensing principles in fiber optics are briefly described and classified into several groups: absorbance-based sensors, interferometric sensors, fluorescence-based sensors, fiber grating sensors, and resonance-based sensors, among others. For each sensor group, specific examples of the utilization of NP-embedded coatings in their sensing structure are reported.

  18. Multilayer silver nanoparticles embedded in graded-index dielectric layers

    Science.gov (United States)

    Shokeen, Poonam; Jain, Amit; Gupta, Vinay; Kapoor, Avinashi

    2017-04-01

    A pulsed laser deposited SiO2/Ag/ZnO/Ag/TiO2 multilayer structure is studied to enhance the light trapping capability of thin-film solar cell. Structural and optical properties of structure are studied with scanning electron microscopy, x-ray diffraction, photoluminescence and UV-visible spectroscopy. Proposed geometry improves the extinction spectra and quenches photoluminescence in comparison to TiO2/Ag and SiO2/Ag/ZnO geometry. Finite-difference time-domain (FDTD) simulations indicate a promising effect of the proposed geometries on thin-film solar cells. Twofold enhancement in total quantum efficiency of an optimized multilayer plasmonic graded-index thin-film solar cell is observed in comparison to the pristine solar cell. Results suggest a more concerted study of multilayer plasmonic nanostructures with graded-index anti-reflection coatings to improve the performance of thin-film photovoltaic devices.

  19. An investigation into interactions between polyacrylic polymers and a non-ionic surfactant: an emulsion preformulation study.

    Science.gov (United States)

    Simovic, S; Tamburic, S; Milic-Askrabic, J; Rajic, D

    1999-07-20

    The aim of this study was to investigate possible interactions between a polymeric emulsifier and a non-ionic surfactant, with a view of achieving better understanding of emulsion stabilisation mechanisms. The polymeric emulsifier used was acrylates/C10-30 alkyl acrylate crosspolymer (Pemulen TR-2(R)), while Polyoxyethylene 20 sorbitan mono-oleate (Polysorbate 80) has been chosen as a model surfactant. Both materials were used within the concentration range relevant for their practical application. A 0.2%w/w aqueous dispersion of polymeric emulsifier, containing various amounts of surfactant (from 0.01 to 1.0% w/w) was used throughout the study. Interfacial aspects of the proposed polymer/surfactant interactions were analysed by means of surface tension measurements. Changes in the network structure of the test dispersions were quantified by continuous shear rheometry, supported by the texture analysis. To analyse the influence of hydrophobic alkyl groups present on the Pemulen TR-2(R) chains, an unmodified, hydrophilic polyacrylic acid polymer, Carbopol 934P(R), was assessed under the same conditions. The results obtained by both surface tension and rheological studies have revealed large differences in behaviour of the two polymers in the presence of the model surfactant. Pemulen TR-2(R) was shown to desorb the surfactant from the surface, within the whole concentration range studied. Furthermore, an increase in viscosity and texture profile parameters with increasing Polysorbate 80 concentration up to 0.3% w/w was evident in the case of Pemulen TR-2(R) dispersions. This was followed by a decrease in the gel network strength at higher surfactant concentrations. On the other hand, Carbopol 934P(R) has shown no signs of surfactant desorption and only small changes in the network structure with the increasing concentration of surfactant. It is shown in this study that an interaction between a polymeric emulsifier Pemulen TR-2(R) and a non-ionic surfactant

  20. Thin film of Poly(acrylic acid-co-allyl acrylate as a Sacrificial Protective Layer for Hydrophilic Self Cleaning Glass

    Directory of Open Access Journals (Sweden)

    Jānis Lejnieks

    2010-05-01

    Full Text Available Poly(acrylic acid-co-allyl acrylate statistical copolymers were synthesized in a controlled manner in two steps: first tert.butyl acrylate and allyl acrylate were polymerized via atom transfer radical polymerization (ATRP and afterwords the tert.butyl protective groups were removed via hydrolysis. Samples of self cleaning glass (SCG were coated with thin films of poly(acrylic acid-co-allyl acrylate and cross-linked afterwards by UV irradiation (in the presence of a photoinitiator and an accelerator. Solution cast thin films were transparent and homogeneous before and after UV cross-linking. The irradiated samples were found to be hydrophilic (Θ < 20° and water insoluble. The coating prevented the spontaneous hydrophobization of the SCG by residual silicon exhaled from the sealing material. The TiO2 photocatalyst that covers the glass surface was found to strip the protective coating. The rate of the photooxidation process was measured by IR spectroscopy. The real field performance of the protective coating was also tested.

  1. High Energy Density in Azobenzene-based Materials for Photo-Thermal Batteries via Controlled Polymer Architecture and Polymer-Solvent Interactions.

    Science.gov (United States)

    Jeong, Seung Pyo; Renna, Lawrence A; Boyle, Connor J; Kwak, Hyunwook S; Harder, Edward; Damm, Wolfgang; Venkataraman, Dhandapani

    2017-12-19

    Energy densities of ~510 J/g (max: 698 J/g) have been achieved in azobenzene-based syndiotactic-rich poly(methacrylate) polymers. The processing solvent and polymer-solvent interactions are important to achieve morphologically optimal structures for high-energy density materials. This work shows that morphological changes of solid-state syndiotactic polymers, driven by different solvent processings play an important role in controlling the activation energy of Z-E isomerization as well as the shape of the DSC exotherm. Thus, this study shows the crucial role of processing solvents and thin film structure in achieving higher energy densities.

  2. Increased efficiency of light-emitting diodes incorporating anodes functionalized with fluorinated azobenzene monolayers and a green-emitting polyfluorene derivative

    Science.gov (United States)

    Lazzerini, G. M.; Mian, S.; Di Stasio, F.; Merari Masillamani, A.; Crivillers, N.; Reinders, F.; Mayor, M.; Samorı, P.; Cacialli, F.

    2012-10-01

    We investigate the functionalization of gold anodes with azobenzene-based self-assembled monolayers (AZO-SAM) and the influence of such functionalization on the external quantum efficiency (EQE) of polyfluorene-based light-emitting diodes (LEDs). Photoluminescence and electroluminescence measurements show that the AZO-SAMs do not modify the shape of the emission spectrum of the active layer. Instead, AZO-SAMs enhance the EQE of LEDs by an order of magnitude (from 0.018% to 0.18%) and decrease the turn-on voltage from 7.9 V to 6.2 V by reducing the injection barrier at the anode, thus promoting a better balance between hole and electron populations in the active layer.

  3. Growth of isotropic domains as a mechanism of dynamic diffraction grating recording in low molecular liquid-crystalline derivatives of azobenzene.

    Science.gov (United States)

    Czajkowski, Maciej; Bartkiewicz, Stanislaw; Mysliwiec, Jaroslaw

    2012-03-15

    In this paper, we propose and explain the mechanism of dynamic molecular motions and isotropic domain formation during the diffraction grating recording in low molecular liquid-crystalline azobenzene derivatives. The photochromic molecules of 4-heptyl-4'-methoxyazobenzene, showing nematic liquid-crystalline properties close to the room temperature (from T = 34 °C), are used. A one-dimensional model of the grating formation is formulated based on in vivo polarized microscope observations. Formation and growth of the isotropic domains induced by the sinusoidally modulated Gaussian light intensity distribution is proposed as the mechanism and is used for experimental data fitting. The influence of the recording light intensity, grating period, and temperature on the domain growth rate factor is checked. © 2012 American Chemical Society

  4. The first 3-fold interpenetrating framework containing both azobenzene-3,3′-dicarboxylicate and 1,2-bis(4-pyridylethylene

    Directory of Open Access Journals (Sweden)

    Yaping Duan

    2014-12-01

    Full Text Available The reactions of Co II or Ni II acetate with azobenzene-3,3′-dicarboxylic acid (3,3′-H2AZDB and 1,2-bis(4-pyridylethylene (bpe afforded two isomorphic compounds [M 2(3,3′-AZDB2(bpe2]n (M=Co (1 and Ni (2 under hydrothermal conditions. They were characterized by elemental analysis, IR spectra, thermogravimetric analysis and single-crystal X-ray diffraction technique. The structures of compounds 1 and 2 have similar 3-D 3-fold interpenetrating structures in which each 3-D net displayed a 6-connected pcu network consisting of M 2+-AZDB2− layers and bpe pillars. Variable-temperature magnetic-susceptibility measurements revealed the occurrence of weak antiferromagnetic interactions between the Co(II atoms in 1.

  5. Luminescence and Magnetic Properties of Two Three-Dimensional Terbium and Dysprosium MOFs Based on Azobenzene-4,4′-Dicarboxylic Linker

    Directory of Open Access Journals (Sweden)

    Belén Fernández

    2016-02-01

    Full Text Available We report the in situ formation of two novel metal-organic frameworks based on terbium and dysprosium ions using azobenzene-4,4′-dicarboxylic acid (H2abd as ligand, synthesized by soft hydrothermal routes. Both materials show isostructural three-dimensional networks with channels along a axis and display intense photoluminescence properties in the solid state at room temperature. Textural properties of the metal-organic frameworks (MOFs have been fully characterized although no appreciable porosity was obtained. Magnetic properties of these materials were studied, highlighting the dysprosium material displays slightly frequency-dependent out of phase signals when measured under zero external field and under an applied field of 1000 Oe.

  6. Electrochemical impedance spectroscopy study of a surface confined redox reaction: The reduction of azobenzene on mercury in the absence of diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, Francisco, E-mail: dapena@us.es [Department of Physical Chemistry, University of Seville, c/Profesor Garcia Gonzalez no 2, 41012 Seville (Spain); Rueda, Manuela; Hidalgo, Jose; Martinez, Elisa; Navarro, Inmaculada [Department of Physical Chemistry, University of Seville, c/Profesor Garcia Gonzalez no 2, 41012 Seville (Spain)

    2011-09-30

    The kinetics of azobenzene reduction on mercury electrodes in the absence of diffussional mass transport is studied by electrochemical impedance spectroscopy (EIS) in acetic acid/acetate buffered solutions at different pH values. Cyclic voltammetry experiments confirm the absence of diffusion effects and provide the values of the surface equilibrium potential. The analysis of the impedance frequency spectrums at every potential within the faradaic region conforms well the model and provides the global rate constant of the process, k{sub f}. The potential dependence of k{sub f} suggests the existence of an EE mechanism, with two electron transfers controlling the overall rate. The kinetic parameters of every step are obtained and their pH dependences clarify the role played by the protonation steps.

  7. Interaction of Fe(II) with Polyacrylic Acid as a Simplification of Humic Acid: Comparison of Ion Exchange and Solvent Extraction Methods

    International Nuclear Information System (INIS)

    Budi Setiawan

    2007-01-01

    To estimate the safety assessment around the disposal facility, the interaction behavior of radionuclides/metal ions into organic material (such as humic acids) exist in natural water becomes an important study. To avoid the effect of heterogeneous composition of humic acid, polyacrylic acids (abbrev. APA) was used as are representative of homogeneous polymeric weak acid. The experiments have been carried out by solvent extraction and ion exchange methods to find out the suitable method for the study of complex formation of Fe(II) with humic acid(AH) and APA. The solvent extraction experiment has been done by using diphenylthiocarbazone (dithizone) in CCl 4 and C Fe(II) were 10 -8 M to 10 -5 M, pH around 5 and I=0.1M NaCI. In ionic exchange experiment, C Fe(II) were 10 -8 to 10 -4 M, pH from 4.8 to 5.5 in I=0.1M NaCl. The apparent complex formation constant is defined as β α = [ML]/([M][R]), where [M] and [ML] are concentration of free and bound of Fe(II) and [R] is the concentration of dissociated carboxylic group in macromolecules of PAA. The results shown that, for solvent extraction experiments, variable concentration of Fe(II) had no appreciable influence on the distribution ratio of Fe(II)-polyacrylate at the tracer concentration with the log D to be 1.32 ± 0.03 (pcH 5.25). At macro concentration, the distribution ratio of Fe(II) becomes smaller due to oxidation and obtained log D value to be 1.04 ± 0.07 (pcH 5.34). An interest kind was observed at higher PAA concentration, the distribution ratio curve becomes higher presumably due to the problem on redox sensitive characteristic of Fe(II) and/or coagulation of Fe(II)-polyacrylate at the interface of aqueous-organic phases. In case of ionic exchange method, the plot of I/Kd versus [R] gives a straight line result indicating this method is appropriate and more superior compare than solvent extraction method to determine the complex formation constant. (author)

  8. Assessment of the Polyacrylic Acid for an Ammonia Water Treatment and for Alloy 800NG SG Tube Material in Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Lamouroux, Christine; You, Dominique; Plancque, Gabriel; Roy, Marc; Laire, Charles; Schnongs, Philippe

    2012-09-01

    To prevent the Steam Generators (SG) fouling by corrosion products or the Tube Support Plate (TSP) blockage the on-line injection of a dispersant such the Polyacrylic Acid (PAA) could be a relevant water treatment. Long-term trials performed in PWRs have shown that the PAA, injected at the SG inlet, facilitate the evacuation of the iron oxides by the SG blowdown. Given the ammonia treatment of the secondary water of the Belgian PWRs, the R and D program carried out was devoted to: - Verify the innocuousness of the PAA and its degradation products versus Alloy 800NG SCC susceptibility in case of over concentrations and sludge presence, - Assess the potential impact of the PAA and its thermal degradation products on the specific NH 3 water treatment. The main results can be summarized as following: The corrosion tests performed with PAA in case of over concentrations and sludge couldn't point out any negative effect of the dispersant on the SCC susceptibility of tubing materials such as Alloy 800NG. No significant modification of the tube oxide layer has been observed. At the SG operating temperature, the PAA is decomposed and a large spectrum from high to lower molecular weights polymers than the initial PAA arises. The fragmentation of the polymer into low molecular weight polyacrylic acids is obtained within 20 minutes and the average molecular weight is reduced by 50% from the original one. The thermal degradation products, their quantity and their kinetic of appearance, have been determined. The generated acetate concentration during the on-line dispersant application should remain low compared to the current values observed in the SG water. From the numerical simulation based on acetate concentration and on the kinetic law deduced from the experimental work, it can be concluded that in a 2-phase medium, the margin on the water pH compared to the neutral pH remains high. At 180 deg. C, no impact on the water pH is identified, taking into account realistic

  9. Photoionization and trans-to-cis isomerization of β-cyclodextrin-encapsulated azobenzene induced by two-color two-laser-pulse excitation

    Science.gov (United States)

    Takeshita, Tatsuya; Hara, Michihiro

    2018-03-01

    Azobenzene (1) and the complex resulting from the incorporation of 1 with cyclodextrin (1/CD) are attractive for light-driven applications such as micromachining and chemical biology tools. The highly sensitive photoresponse of 1 is crucial for light-driven applications containing both 1 and 1/CD to reach their full potential. In this study, we investigated the photoionization and trans-to-cis isomerization of 1/CD induced by one- and two-color two-laser pulse excitation. Photoionization of 1/CD, which was induced by stepwise two-photon absorption, was observed using laser pulse excitation at 266 nm. Additionally, simultaneous irradiation with 266 and 532 nm laser pulses increased the trans-to-cis isomerization yield (Υt → c) by 27%. It was concluded that the increase in Υt → c was caused by the occurrence of trans-to-cis isomerization in the higher-energy singlet state (Sn), which was reached by S1 → Sn transition induced by laser pulse excitation at 532 nm. The results of this study are potentially applicable in light-driven applications such as micromachining and chemical biology tools.

  10. A multireference perturbation study of the NN stretching frequency of trans-azobenzene in nπ* excitation and an implication for the photoisomerization mechanism.

    Science.gov (United States)

    Harabuchi, Yu; Ishii, Moe; Nakayama, Akira; Noro, Takeshi; Taketsugu, Tetsuya

    2013-02-14

    A multireference second-order perturbation theory is applied to calculate equilibrium structures and vibrational frequencies of trans-azobenzene in the ground and nπ* excited states, as well as the reaction pathways for rotation and inversion mechanism in the nπ* excited state. It is found that the NN stretching frequency exhibits a slight increase at the minimum energy structure in the nπ* state, which is explained by the mixing of the NN stretching mode with the CN symmetric stretching mode. We also calculate the NN stretching frequency at several selected structures along the rotation and inversion pathways in the nπ* state, and show that the frequency decreases gradually along the rotation pathway while it increases by ca. 300 cm(-1) along the inversion pathway. The frequencies and energy variations along the respective pathways indicate that the rotation pathway is more consistent with the experimental observation of the NN stretching frequency in nπ* excitation.

  11. Dual photo- and pH-responsive supramolecular nanocarriers based on water-soluble pillar[6]arene and different azobenzene derivatives for intracellular anticancer drug delivery.

    Science.gov (United States)

    Hu, Xiao-Yu; Jia, Keke; Cao, Yu; Li, Yan; Qin, Shan; Zhou, Fan; Lin, Chen; Zhang, Dongmei; Wang, Leyong

    2015-01-12

    Two novel types of supramolecular nanocarriers fabricated by the amphiphilic host-guest inclusion complex formed from water-soluble pillar[6]arene (WP6) and azobenzene derivatives G1 or G2 have been developed, in which G1 is structurally similar to G2 but has an extra phenoxy group in its hydrophobic region. Supramolecular micelles can be initially formed by WP6 with G1, which gradually transform into layered structures with liquid-crystalline properties, whereas stable supramolecular vesicles are obtained from WP6 and G2, which exhibit dual photo- and pH-responsiveness. Notably, the resulting WP6⊃G2 vesicles can efficiently encapsulate anticancer drug mitoxantrone (MTZ) to achieve MTZ-loaded vesicles, which maintain good stability in a simulated normal physiological environment, whereas in an acid environment similar to that of tumor cells or with external UV irradiation, the encapsulated drug is promptly released. More importantly, cytotoxicity assay indicates that such vesicles have good biocompatibility and the MTZ-loaded vesicles exhibit comparable anticancer activity to free MTZ, especially with additional UV stimulus, whereas its cytotoxicity for normal cells was remarkably reduced. Flow cytometric analysis further confirms that the cancer cell death caused by MTZ-loaded vesicles is associated with apoptosis. Therefore, the dual pH- and UV-responsive supramolecular vesicles are a potential platform for controlled release and targeted anticancer drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Subsequent radical fragmentation reactions of N, N-diethylamino-substituted azobenzene derivatives in a Fourier transform ion cyclotron resonance mass spectrometer using collision-induced dissociation and photodissociation.

    Science.gov (United States)

    Clemen, Martin; Grotemeyer, Jürgen

    2017-12-01

    The fragmentation behavior of N, N-diethylamino-substituted azobenzene derivatives is investigated by high-resolving mass spectrometry using a Fourier transform ion cyclotron resonance mass spectrometer. Former investigations by photodissociation as well as collision-induced dissociation experiments used to induce a loss of C 3 H 8 from the diethylamino group. The position of the additional proton in [M + H] + ions is important due to the sequences of radical fragmentation reactions. Two possibilities arise. First, a charge is located at the azo group leading to a methyl radical loss. The second possibility is that the charge has been located on the aniline nitrogen of the molecule resulting in an ethyl radical loss. Only o-ethyl red has shown the overall loss of C 3 H 8 in a two-step radical reaction mechanism. Nevertheless, p-ethyl red and ethyl yellow have shown systematic fragmentation reactions as well. Loss of C 3 H 8 has not been likely regarding both these molecules. All experimental findings together with quantum chemical calculations as well as kinetic calculations support the proposed fragmentation mechanisms of the three azo dyes.

  13. A light-driven modulation of electric conductance through the adsorption of azobenzene onto silicon-doped- and pyridine-like N3-vacancy graphene.

    Science.gov (United States)

    Zhao, Jun; Liu, Chunyan; Ma, Jing

    2017-12-14

    The ability to modulate the conductance of an electronic device under light irradiation is crucial to the practical applications of nanoscale electronics. Density functional theory calculations predict that the conductance of the photo-responsive graphene-based nanocomposites can be tuned through the noncovalent adsorption of an azobenzene (AB) derivative onto pristine, Si-doped, and pyridine-like N 3 -vacancy graphene. AB@graphene systems were found to exhibit a visible-light response within the low-frequency region, rendering the trans-to-cis isomerizations of these nanocomposites under the irradiation of solar light. The excellent solar light absorption performances of these hybrids can then be used to modulate the conductance of both N 3 -vacancy- and Si-doped-graphene AB hybrids effectively through the reversible change of the effective conjugate length of the AB molecule in the photoisomerization. In addition, the solar thermal energy up to 1.53 eV per AB molecule can be stored in the designed nanocomposites with the doped graphene. These findings provide clues for making multifunctional materials with potential applications as both optically controlled nanoelectronics and solar energy storage devices.

  14. Supramolecular Phase-Selective Gelation by Peptides Bearing Side-Chain Azobenzenes: Effect of Ultrasound and Potential for Dye Removal and Oil Spill Remediation

    Science.gov (United States)

    Bachl, Jürgen; Oehm, Stefan; Mayr, Judith; Cativiela, Carlos; Marrero-Tellado, José Juan; Díaz Díaz, David

    2015-01-01

    Phase selective gelation (PSG) of organic phases from their non-miscible mixtures with water was achieved using tetrapeptides bearing a side-chain azobenzene moiety. The presence of the chromophore allowed PSG at the same concentration as the minimum gelation concentration (MGC) necessary to obtain the gels in pure organic phases. Remarkably, the presence of the water phase during PSG did not impact the thermal, mechanical, and morphological properties of the corresponding organogels. In the case of miscible oil/water mixtures, the entire mixture was gelled, resulting in the formation of quasi-hydrogels. Importantly, PSG could be triggered at room temperature by ultrasound treatment of the mixture or by adding ultrasound-aided concentrated solution of the peptide in an oil-phase to a mixture of the same oil and water. Moreover, the PSG was not affected by the presence of salts or impurities existing in water from natural sources. The process could be scaled-up, and the oil phases (e.g., aromatic solvents, gasoline, diesel fuel) recovered almost quantitatively after a simple distillation process, which also allowed the recovery and reuse of the gelator. Finally, these peptidic gelators could be used to quantitatively remove toxic dyes from aqueous solutions. PMID:26006247

  15. Photo-aligned blend films of azobenzene-containing polyimides with and without side-chains for inducing inclined alignment of liquid crystal molecules

    Science.gov (United States)

    Usami, Kiyoaki; Sakamoto, Kenji

    2011-08-01

    We have succeeded in controlling the pretilt angle of liquid crystal (LC) molecules over the whole range of 0 to 90° by using photo-aligned blend films of two azobenzene-containing polyimides (Azo-PIs) with and without side-chains. The Azo-PIs were synthesized from pyromellitic dianhydride and a mixture of 4,4'-diaminoazobenzene and 4-(4'-propylbi(cyclohexan)-4-yl)phenyl 3,5-diaminobenzoate (PBCP-DABA). PBCP-DABA is a diamine to introduce a side-chain structure into the polyimide. Defect-free uniform LC alignment was obtained in the pretilt angle (θp) ranges of θp ≤ 11° and θp ≥ 78°. Previously, we reported that the pretilt angle can be controlled using pure photo-aligned films of Azo-PIs with different molar fractions of PBCP-DABA. For the pure photo-aligned films, the defect-free pretilt angle ranges were θp < 5° and θp ≥ 85°. These results suggest that the azimuthal anchoring strength of the blend Azo-PI film is stronger than that of the pure films of Azo-PIs with side-chains, at least for the pretilt angle range from 5 to 11°. We found that the defect-free pretilt angle range can be extended by using the blend Azo-PI films instead of the pure Azo-PI films.

  16. Photo-induced isomerization of ethylene-bridged azobenzene explored by ab initio based non-adiabatic dynamics simulation: A comparative investigation of the isomerization in the gas and solution phases

    Science.gov (United States)

    Cao, Jun; Liu, Li-Hong; Fang, Wei-Hai; Xie, Zhi-Zhong; Zhang, Yong

    2013-04-01

    Azobenzene is one of the most widely used photoactive units and recently an ethylene-bridged azobenzene (BAB) was reported to have greatly enhanced conversion efficiency, quantum yield, and other favorable properties. As the first step towards exploring its photo-switchable character in real systems, we report here a systematic study on the photoisomerization dynamics between trans (E) and cis (Z) isomers in the gas phase and the CH3OH solution, using ab initio based surface hopping and molecular dynamics, which is the first report of dynamics simulation to reveal the environmental effects on BAB photoreactions. Results show that while the relatively faster S1 relaxation of the photo-induced E → Z process is only mildly affected by the solvent effect, the relatively slower S1 relaxation of the reverse reaction becomes even slower in the solution compared to the gas phase. The subsequent S0 dynamics from the conical intersection between S1 and S0 (CI_E) to Z is accelerated in solution compared to the gas phase because of avoided re-crossing to the S1 state, while the S0 dynamics from the conical intersection between S1 and S0 (CI_Z) to E are basically the same in both phases. Overall, the solvent effect was found to enhance the back-and-forth photo-switch efficiency between the Z and E isomers compared to the gas phase, while the quantum yields are reduced. But the solution yields of both the forward and backward photoreactions are still around 0.4. Therefore, BAB may have good photo-responsive properties if used as a photoactive unit in real systems. These results will facilitate future experimental and theoretical studies in this area to help design new azobenzene derivatives as photoactive units in biological processes, nanoscale devices, and photo-responsive materials.

  17. Physically cross-linked polymer binder based on poly(acrylic acid) and ion-conducting poly(ethylene glycol-co-benzimidazole) for silicon anodes

    Science.gov (United States)

    Lim, Sanghyun; Lee, Kukjoo; Shin, Inseop; Tron, Artur; Mun, Junyoung; Yim, Taeeun; Kim, Tae-Hyun

    2017-08-01

    The practical applications of Si electrodes in lithium-ion batteries are limited since they undergo large changes in volume during charge and discharge, and consequently become highly deteriorated. A novel binder system holding silicon particles together and preventing disintegration of the electrode during operation hence needs to be developed to enable reliable cycleability. In the current work, such a new polymer binder system, based on poly(acrylic acid) (PAA) and poly(ethylene glycol-co-benzimidazole) (PEGPBI), is developed for silicon anodes. The physical crosslinking using acid-base interactions between PAA and PBI, together with the ion-conducting PEG group, yields physical properties for the resulting PAA-PEGPBI-based anodes that are better than those of electrodes based on the currently available PAA binder, and yields good cell performances. A Si-based electrode with high loading levels of 1.0-1.3 mg cm-2 (0.7-0.91 Si mg cm-2) is reliably manufactured using specifically PAA-PEGPBI-2, which is made with 2 wt% of PEGPBI relative to PAA, and shows a very high capacity value of 1221 mAh g-1 at a rate of 0.5 C after 50 cycles, and a high capacity value of more than 1600 mAh g-1 at a high rate of 2 C.

  18. Microwave-assisted synthesis of biocompatible europium-doped calcium hydroxyapatite and fluoroapatite luminescent nanospindles functionalized with poly(acrylic acid).

    Science.gov (United States)

    Escudero, Alberto; Calvo, Mauricio E; Rivera-Fernández, Sara; de la Fuente, Jesús M; Ocaña, Manuel

    2013-02-12

    Europium-doped calcium hydroxyapatite and fluoroapatite nanophosphors functionalized with poly(acrylic acid) (PAA) have been synthesized through a one-pot microwave-assisted hydrothermal method from aqueous basic solutions containing calcium nitrate, sodium phosphate monobasic, and PAA, as well as sodium fluoride in the case of the fluoroapatite particles. In both cases a spindlelike morphology was obtained, resulting from an aggregation process of smaller subunits which also gave rise to high specific surface area. The size of the nanospindles was 191 (32) × 40 (5) nm for calcium hydroxyapatite and 152 (24) × 38 (6) nm for calcium fluoroapatite. The luminescent nanoparticles showed the typical red luminescence of Eu(3+), which was more efficient for the fluoroapatite particles than for the hydroxyapatite. This is attributed to the presence of OH(-) quenchers in the latter. The nanophosphors showed negligible toxicity for Vero cells. Both PAA-functionalized nanophosphors showed a very high (up to at least 1 week) colloidal stability in 2-(N-morpholino)ethanesulfonic acid (MES) at pH 6.5, which is a commonly used buffer for physiological pH. All these features make both kinds of apatite-based nanoparticles promising tools for biomedical applications, such as luminescent biolabels and tracking devices in drug delivery systems.

  19. Nanoparticles of Block Ionomer Complexes from Double Hydrophilic Poly(acrylic acid)- b-poly(ethylene oxide)- b-poly(acrylic acid) Triblock Copolymer and Oppositely Charged Surfactant

    Science.gov (United States)

    Peng, Zhiping; Sun, Yuelong; Liu, Xinxing; Tong, Zhen

    2010-01-01

    The novel water-dispersible nanoparticles from the double hydrophilic poly(acrylic acid)- b-poly(ethylene oxide)- b-poly(acrylic acid) (PAA- b-PEO- b-PAA) triblock copolymer and oppositely charged surfactant dodecyltrimethyl ammonium bromide (DTAB) were prepared by mixing the individual aqueous solutions. The structure of the nanoparticles was investigated as a function of the degree of neutralization (DN) by turbidimetry, dynamic light scattering (DSL), ζ-potential measurement, and atomic force microscope (AFM). The neutralization of the anionic PAA blocks with cationic DTAB accompanied with the hydrophobic interaction of alkyl tails of DTAB led to formation of core-shell nanoparticles with the core of the DTAB neutralized PAA blocks and the shell of the looped PEO blocks. The water-dispersible nanoparticles with negative ζ-potential were obtained over the DN range from 0.4 to 2.0 and their sizes depended on the DN. The looped PEO blocks hindered the further neutralization of the PAA blocks with cationic DTAB, resulting in existence of some negative charged PAA- b-PEO- b-PAA backbones even when DN > 1.0. The spherical and ellipsoidal nature of these nanoparticles was observed with AFM.

  20. The existence of optimal molecular weight for poly(acrylic acid) binders in silicon/graphite composite anode for lithium-ion batteries

    Science.gov (United States)

    Hu, Bin; Shkrob, Ilya A.; Zhang, Shuo; Zhang, Linghong; Zhang, Jingjing; Li, Yan; Liao, Chen; Zhang, Zhengcheng; Lu, Wenquan; Zhang, Lu

    2018-02-01

    Poly(acrylic acid) (PAA) based binders have been widely used for the high capacity silicon anodes of lithium-ion batteries. While numerous promising progress has been reported, there is no general guideline for choosing the right PAA binders for optimized cycling performance. In this report, aiming to optimize the cycling performance of the Si/graphite composite anodes (15 wt% Si), we systemically investigated a series of PAA binders by validating their molecular weights (MWs) and correlating them to the cycling performance of the anodes fabricated with such binders. The gel permeation chromatography (GPC) was used to validate the MWs of six PAA binders (PAA1 to PAA6). Those binders then underwent a series of characterizations, including rheology study, half-cell cycling, scanning electron microscope (SEM), and Fourier-transform infrared spectroscopy (FTIR). It is observed that the MWs of PAA binders not only affected the viscosities of the binder solutions but also impacted the cycling performance, possibly due to the cohesion changes. A range of 24-150 kDa is found to be optimal for minimizing the rate and extent of capacity fade and maintaining the cohesion in the electrode matrix despite the dramatic volumetric changes due to Si alloying.

  1. Can poly(acrylic) acid molecular weight mixtures improve the compressive fracture strength and elastic modulus of a glass-ionomer restorative?

    Science.gov (United States)

    Dowling, Adam H; Fleming, Garry J P

    2011-11-01

    To optimize the compressive fracture strength (σ) and elastic modulus (E) of a glass-ionomer (GI) restorative using poly(acrylic) acid (PAA) weight average molecular weight (M(w)) mixtures. 174 PAA solutions were prepared (four control PAA M(w)s at three PAA concentrations (25, 35 and 45%) (n=12) and six M(w) mixtures (Groups A-F at nine blend ratios and three PAA concentrations (n=162))). The viscosity (η) of each PAA solution was determined using a digital viscometer. The PAA solutions were hand-mixed with a commercial GI restorative powder (Ionofil Molar; Voco, Cuxhaven, Germany) and σ and E were determined using cylindrical (6 mm height, 4 mm diameter) specimens (n=20) at 24 h. Data were analyzed using analyses of variance (ANOVA) (three-, two- and one-way) and regression analyses at p0.083). The current approach to improving the mechanical properties of GI restoratives using PAA M(w) mixtures is encouraging, however, further manipulation of the GI restorative system by optimizing PAA M(w) mixtures, blend ratios and PAA concentrations is required to elicit further improvements in σ and E without impacting upon the η of the PAA solution. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Nanoparticles of Block Ionomer Complexes from Double Hydrophilic Poly(acrylic acid-b-poly(ethylene oxide-b-poly(acrylic acid Triblock Copolymer and Oppositely Charged Surfactant

    Directory of Open Access Journals (Sweden)

    Sun Yuelong

    2009-01-01

    Full Text Available Abstract The novel water-dispersible nanoparticles from the double hydrophilic poly(acrylic acid-b-poly(ethylene oxide-b-poly(acrylic acid (PAA-b-PEO-b-PAA triblock copolymer and oppositely charged surfactant dodecyltrimethyl ammonium bromide (DTAB were prepared by mixing the individual aqueous solutions. The structure of the nanoparticles was investigated as a function of the degree of neutralization (DN by turbidimetry, dynamic light scattering (DSL,ζ-potential measurement, and atomic force microscope (AFM. The neutralization of the anionic PAA blocks with cationic DTAB accompanied with the hydrophobic interaction of alkyl tails of DTAB led to formation of core–shell nanoparticles with the core of the DTAB neutralized PAA blocks and the shell of the looped PEO blocks. The water-dispersible nanoparticles with negative ζ-potential were obtained over the DN range from 0.4 to 2.0 and their sizes depended on the DN. The looped PEO blocks hindered the further neutralization of the PAA blocks with cationic DTAB, resulting in existence of some negative charged PAA-b-PEO-b-PAA backbones even when DN > 1.0. The spherical and ellipsoidal nature of these nanoparticles was observed with AFM.

  3. Biointerfacial phenomena of amlodipine buccomucosal tablets of HPMC matrix system containing polyacrylate polymer/β-cyclodextrin: Correlation of swelling and drug delivery performance.

    Science.gov (United States)

    Panda, Brajabihari; Subhadarsini, Rajalaxmi; Mallick, Subrata

    2016-01-01

    This study focuses on the development of amlodipine bilayer buccal tablets of hydroxypropyl methylcellulose (HPMC) matrix system containing polyacrylate polymer (Carbopol(®))/β-cyclodextrin as the drug layer and ethylcellulose as the non-swellable backing layer, and their biointerfacial phenomena. Tablets were evaluated for swelling, erosion and mucoadhesion using buccal mucosal tissue ex vivo. In vitro drug release and ex vivo drug transport across mucosal tissue were also performed in phosphate buffer (pH 6.8). The relationship of swelling with buccoadhesion and buccal permeation of various bilayer tablet formulations containing HPMC alone and in combination with Carbopol or drug-β-cyclodextrin complex has been prepared. Overall buccoadhesion of the tablet with combination of HPMC and Carbopol was increased significantly compared with that of HPMC alone. Presence of cyclodextrin did not change bioadhesion force and swelling behavior significantly. Ex vivo permeation was increased with the increase of HPMC proportion in other formulations as observed in in vitro dissolution. Drug-cyclodextrin complexes in the tablet improved permeation due to its improved dissolution at the site of biointerface of tablet and buccomucosa. Correlations of ex vivo and in vitro data have been established to predict the buccomucosal permeation from the swelling index or drug release alone.

  4. High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites.

    Science.gov (United States)

    Wang, Yongguang; Tang, Shaochun; Vongehr, Sascha; Syed, Junaid Ali; Wang, Xiangyu; Meng, Xiangkang

    2016-02-17

    Improving the solubility of conductive polymers to facilitate processing usually decreases their conductivity, and they suffer from poor cycling stability due to swelling-shrinking during charging cycles. We circumvent these problems with a novel preparation method for nitrogen-doped graphene (NG) enhanced polyacrylic acid/polyaniline (NG-PAA/PANI) composites, ensuring excellent processibility for scalable production. The content of PANI is maximized under the constraint of still allowing defect-free coatings on filaments of carbon cloth (CC). The NG content is then adjusted to optimize specific capacitance. The optimal CC electrodes have 32 wt.% PANI and 1.3 wt.% NG, thus achieving a high capacitance of 521 F/g at 0.5 F/g. A symmetric supercapacitor made from 20 wt.% PANI CC electrodes has more than four times the capacitance (68 F/g at 1 A/g) of previously reported flexible capacitors based on PANI-carbon nanotube composites, and it retains the full capacitance under large bending angles. The capacitor exhibits high energy and power densities (5.8 Wh/kg at 1.1 kW/kg), a superior rate capability (still 81% of the 1 A/g capacitance at 10 A/g), and long-term electrochemical stability (83.2% retention after 2000 cycles).

  5. Preparation and characterization of poly(acrylic acid)—corn starch blend for use as chemical sand-fixing materials

    Science.gov (United States)

    Dang, Xugang; Chen, Hui; Shan, Zhihua

    2017-07-01

    One chemical sand-fixing materials based on poly(acrylic acid)-corn starch (PACS) blend was studied in this work. The PACS blend was prepared by solution mixing method between PA and CS. In order to prepare sand-fixing materials for environmental applications using the well-established method of spraying evenly PACS blend solution on the surfaces of fine sand. Fourier transform infrared spectroscopy (FT-IR) revealed the existence of the intermolecular interactions between the blend components. Scanning electron microscope (SEM) analysis showed a continuous phase of blend, and it also showed the good sand-fixing capacity. The test results of hygroscopicity and water retention experiments indicated that the blends had excellent water-absorbing and water-retention capacity. The results of contact angle measurements between the PACS solutions and fine sand showed that the PACS blend has a satisfactory effect on fine sand wetting. And the PACS, as a sand-fixation material, has excellent sand-fixation rate up to 99.5%.

  6. Poly(acrylic acid)-templated silver nanoclusters as a platform for dual fluorometric turn-on and colorimetric detection of mercury (II) ions.

    Science.gov (United States)

    Tao, Yu; Lin, Youhui; Huang, Zhenzhen; Ren, Jinsong; Qu, Xiaogang

    2012-01-15

    An easy prepared fluorescence turn-on and colorimetric dual channel probe was developed for rapid assay of Hg(2+) ions with high sensitivity and selectivity by using poly(acrylic acid)-templated silver nanoclusters (PAA-AgNCs). The PAA-AgNCs exhibited weak fluorescence, while upon the addition of Hg(2+) ions, AgNCs gives a dramatic increase in fluorescence as a result of the changes of the AgNCs states. The detection limit was estimated to be 2 nM, which is much lower than the Hg(2+) detection requirement for drinking water of U.S. Environmental Protection Agency, and the turn-on sensing mode offers additional advantage to efficiently reduce background noise. Also, a colorimetric assay of Hg(2+) ions can be realized due to the observed absorbance changes of the AgNCs. More importantly, the method was successfully applied to the determination of Hg(2+) ions in real water samples, which suggests our proposed method has a great potential of application in environmental monitoring. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Mechanical properties of a waterborne pressure-sensitive adhesive with a percolating poly(acrylic acid)-based diblock copolymer network: effect of pH.

    Science.gov (United States)

    Gurney, Robert S; Morse, Andrew; Siband, Elodie; Dupin, Damien; Armes, Steven P; Keddie, Joseph L

    2015-06-15

    Copolymerizing an acrylic acid comonomer is often beneficial for the adhesive properties of waterborne pressure-sensitive adhesives (PSAs). Here, we demonstrate a new strategy in which poly(acrylic acid) (PAA) is distributed as a percolating network within a PSA film formed from a polymer colloid. A diblock copolymer composed of PAA and poly(n-butyl acrylate) (PBA) blocks was synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization and adsorbed onto soft acrylic latex particles prior to their film formation. The thin adsorbed shells on the particles create a percolating network that raises the elastic modulus, creep resistance and tensile strength of the final film. When the film formation occurs at pH 10, ionomeric crosslinking occurs, and high tack adhesion is obtained in combination with high creep resistance. The results show that the addition of an amphiphilic PAA-b-PBA diblock copolymer (2.0 wt.%) to a soft latex provides a simple yet effective means of adjusting the mechanical and adhesive properties of the resulting composite film. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. One-step formation of lipid-polyacrylic acid-calcium carbonate nanoparticles for co-delivery of doxorubicin and curcumin.

    Science.gov (United States)

    Peng, Jianqing; Fumoto, Shintaro; Miyamoto, Hirotaka; Chen, Yi; Kuroda, Naotaka; Nishida, Koyo

    2017-09-01

    A doxorubicin (Dox) and curcumin (Cur) combination treatment regimen has been widely studied in pre-clinical research. However, the nanoparticles developed for this combination therapy require a consecutive drug loading process because of the different water-solubility of these drugs. This study provides a strategy for the "one-step" formation of nanoparticles encapsulating both Dox and Cur. We took advantage of polyacrylic acid (PAA) and calcium carbonate (CaCO 3 ) to realise a high drug entrapment efficiency (EE) and pH-sensitive drug release using a simplified preparation method. Optimisation of lipid ratios and concentrations of CaCO 3 was conducted. Under optimal conditions, the mean diameter of PEGylated lipid/PAA/CaCO 3 nanoparticles with encapsulated Cur and Dox (LPCCD) was less than 100 nm. An obvious pH-sensitive release of both drugs was observed, with different Dox and Cur release rates. Successful co-delivery of Cur and Dox was achieved via LPCCD on HepG2 cells. LPCCD altered the bio-distribution of Dox and Cur in vivo and decreased Dox-induced cardiotoxicity. The current investigation has developed an efficient ternary system for co-delivery of Dox and Cur to tumours, using a "one-step" formation resulting in nanoparticles possessing remarkable pH-sensitive drug release behaviour, which may be valuable for further clinical studies and eventual clinical application.

  9. Photosensitive and all-optically fast-controllable photonic bandgap device and laser in a dye-doped blue phase with a low-concentration azobenzene liquid crystal.

    Science.gov (United States)

    Lin, Jia-De; Lin, Yu-Meng; Mo, Ting-Shan; Lee, Chia-Rong

    2014-04-21

    This work demonstrates the feasibility of a novel photosensitive and all-optically fast-controllable photonic bandgap (PBG) device based on a dye-doped blue phase (DDBP), embedded with a low-concentration azobenzene liquid crystal (azo-LC). PBG of the DDBP can be reversibly fast-tuned off and on with the successive illumination of a weak UV and green beams. UV irradiation can transform the trans azo-LCs into bend cis isomers, which can easily disturb LCs at the boundary between the double twisting cylinders (DTCs) and the disclinations, and, then, quickly destabilize BPI to become a BPIII-like texture with randomly-oriented DTCs. Doing so may quickly destroy the BP PBG structure. However, with the successive illumination of a green beam, the BPI PBG device can be fast-turned on, owing to the fast disappearance of the disturbance of the azo-LCs on the boundary LCs via the green-beam-induced cis → trans back isomerization. The response time and irradiated energy density for turning off (on) the BP PBG device under the UV (green) beam irradiation are only 120 ms (120 ms) and 0.764 mJ/cm(2) (2.12 mJ/cm(2)), respectively, which are a thousand-fold reduction in photoswitching a traditional cholesteric LC (CLC) PBG device based on similar experimental conditions (i.e., materials used, azo-LC concentration (1 wt%), spectral position of PBG peak, sample thickness, and temperature difference for a working temperature lower than the clearing one). The BP PBG device can significantly contribute to efforts to develop a photosensitive and all-optically fast-controlling LC laser.

  10. Impact of the molecular structure of an indandione fragment containing azobenzene derivatives on the morphology and electrical properties of thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pudzs, Kaspars, E-mail: kaspars.pudzs@cfi.lu.lv [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, Riga LV-1063 (Latvia); Vembris, Aivars; Grzibovskis, Raitis; Latvels, Janis [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, Riga LV-1063 (Latvia); Zarins, Elmars [Institute of Applied Chemistry, Riga Technical University, 14/24 Azenes Street, Riga LV-1048 (Latvia)

    2016-04-15

    The solution casting method is low-cost processing method. Moreover, it is possible to prepare amorphous thin films by using this method, and thus, both optical quality and electrical properties could be improved in compare to polycrystalline films made by thermal evaporation in vacuum. Therefore, low-molecular-weight compounds that form amorphous structure from solution could be promising in organic electronics. In this work film morphology, molecule energy levels, and charge carrier mobility in thin films of indandione fragment containing azobenzene derivatives were studied. Deep charge carrier trapping states that drastically influenced charge carrier mobility were observed for polycrystalline films with the model compound 2-(4-((4-(dimethylamino)phenyl)diazenyl)benzylidene)-1H-indene-1, 3(2H)-dione. This issue was overcome by attaching bulky groups to the model compound. An amorphous thin film without deep trapping states was obtained. Electron and hole mobilities of these materials at electric field 160 to 600 kV/cm were between 10{sup −5} and 10{sup −6} cm{sup 2}V{sup −1}s{sup −1} and between 10{sup −6} to 10{sup −7} cm{sup 2}V{sup −1}s{sup −1}, respectively. Charge carrier mobility, molecular ionization energy, and electron affinity energy were influenced by bulky groups. - Highlights: • Deep charge carriers trapping states could be observed in polycrystalline films. • Amorphous thin film was obtained by attaching bulky groups to the chromophore. • Different bulky groups change molecule packaging in thin film. • Distance between molecules influence charge carrier mobility. • Distance between molecules influence energy levels of the molecule.

  11. Poly(amic acid)s and their poly(amide imide) counterparts containing azobenzene moieties: Characterization, imidization kinetics and photochromic properties

    Energy Technology Data Exchange (ETDEWEB)

    Konieczkowska, Jolanta [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland); Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice (Poland); Janeczek, Henryk [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland); Kozanecka-Szmigiel, Anna, E-mail: annak@if.pw.edu.pl [Faculty of Physics, Warsaw University of Technology, 75 Koszykowa Str., 00-662 Warszawa (Poland); Schab-Balcerzak, Ewa, E-mail: eschab-balcerzak@cmpw-pan.edu.pl [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland)

    2016-09-01

    We report on a series of novel photochromic poly(amide imide)s and their poly(amic acid) precursors bearing azobenzene chromophores as the side groups. The chemical structures of the polymers were designed so that they exhibited an enhanced thermal stability combined with a large and stable birefringence photogenerated by light of the wavelengths belonging to a wide spectral range. The polymers possessed rigidly attached azochromophores in the content of either one or two per a repeating unit, which in the latter case differed in their structures. The imidization kinetics of the poly(amic acid)s was investigated by differential scanning calorimetry and the kinetic parameters were estimated using Ozawa and Kissinger methods. Measurements of the selected physical properties of the polymers, such as solubility, supramolecular structure, linear absorption, thermal stability, glass transition and photochromic response were performed and used for determination of the structure-property relations. The measurements of photochromic properties showed a very efficient generation of optical anisotropy upon blue and violet irradiation, for both the poly(amide imide)s containing two different chromophores in the repeating unit and for their precursors. For these poly(amide imide)s and for their precursors an exceptionally slow decrease in the photoinduced optical anisotropy in the dark was also observed. - Highlights: • Three azopoly(amide imide)s were obtained from azopoly(amic acid)s. • Chosen physicochemical properties and photochromic responses were measured. • Desired optical response was found for polymers with two azo-dyes in repeating unit. • Structure-property relations were shown.

  12. Evaluation of the antifouling and photocatalytic properties of poly(vinylidene fluoride) plasma-grafted poly(acrylic acid) membrane with self-assembled TiO2

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Semblante, Galilee Uy; Lu, Shao-Chung; Damodar, Rahul A.; Wei, Ta-Chin

    2012-01-01

    Highlights: ► Plasma and grafting parameters that maximized TiO 2 binding sites were found. ► PVDF hydrophilicity was vastly improved compared to other modification techniques. ► At least 1.5% TiO 2 and 30 min UV exposure were needed to attain full flux recovery. ► Photocatalytic membranes could remove up to 42% of 50 mg/l RB5 dye. - Abstract: Immobilization of TiO 2 is a promising approach that produces antifouling and photocatalytic membranes that could help advance wastewater treatment and re-use processes. In this study, poly(acrylic acid) (PAA) was plasma-grafted on commercial poly(vinylidene fluoride) (PVDF) to introduce functional groups on the membrane surface that can support the nanoparticles. It was found that plasma treatment at 100 W for 120 s followed by liquid grafting with 70% aqueous AA at 60 °C for 2 h maximized the number of TiO 2 binding sites. Membrane hydrophilicity was tremendously enhanced by the self-assembly of TiO 2 , following a direct proportionality to TiO 2 loading. The membrane with 0.5% TiO 2 loading maintained the highest pure water flux and the best protein antifouling property. UV irradiation triggered the photodegradation of strongly bound foulants, but at least 1.5% TiO 2 and 30 min cumulative irradiation were necessary to completely recover the membrane's original performance. The TiO 2 -modified membranes removed 30–42% of 50 mg/l aqueous Reactive Black 5 (RB5) dye. The fabricated membranes demonstrate huge potential for use in membrane reactors with high hydrophilicity, fouling mitigation, and photocatalytic capability.

  13. The outcomes of two different bulking agents (dextranomer hyaluronic acid copolymer and polyacrylate-polyalcohol copolymer in the treatment of primary vesico-ureteral reflux

    Directory of Open Access Journals (Sweden)

    Hakan Taşkinlar

    2016-06-01

    Full Text Available ABSTRACT Purpose Subureteral injection of bulking agents in the endoscopic treatment of vesicoureteral reflux is widely accepted therapy with high success rates. Although the grade of vesicoureteric reflux and experience of surgeon is the mainstay of this success, the characteristics of augmenting substances may have an effect particularly in the long term. In this retrospective study, we aimed to evaluate the clinical outcomes of the endoscopic treatment of vesicoureteric reflux (VUR with two different bulking agents: Dextranomer/hyaluronic acid copolymer (Dx/HA and Polyacrylate polyalcohol copolymer (PPC. Materials and Methods A total 80 patients (49 girls and 31 boys aged 1-12 years (mean age 5.3 years underwent endoscopic subureteral injection for correction of VUR last six years. The patients were assigned to two groups: subureteral injections of Dx/HA (45 patients and 57 ureters and PPC (35 patients and 45 ureters. VUR was grade II in 27 ureters, grade III in 35, grade IV in 22 and grade V in 18 ureters. Results VUR was resolved in 38 (66.6% of 57 ureters and this equates to VUR correction in 33 (73.3% of the 45 patients in Dx/HA group. In PPC group, overall success rate was 88.8% (of 40 in 45 ureters. Thus, Thus, this equates to VUR correction in 31 (88.5% of the 35 patients. Conclusions Our short term data show that two different bulking agent injections provide a high level of reflux resolution and this study revealed that success rate of PPC was significantly higher than Dx/HA with less material.

  14. Endoscopic treatment of grades IV and V vesicoureteral reflux with two bulking substances: Dextranomer hyaluronic acid copolymer versus polyacrylate polyalcohol copolymer in children.

    Science.gov (United States)

    Kocaoglu, Canan

    2016-10-01

    We aimed at evaluating the efficacy and complications of two bulking substances: dextranomer/hyaluronic acid copolymer(Dx/Ha;Dexell®) versus polyacrylate polyalcohol copolymer(PPC;Vantris®) in subureteric injection treatment of children with high grades (grades IV-V) vesicoureteral reflux(VUR). Data of patients undergoing endoscopic treatment of high grade VUR (January 2009-August 2015) were retrospectively investigated. Patients with high grade VUR caused by posterior urethral valve, duplex system, paraureteral diverticula and neurogenic bladder were excluded. Classical subureteric injection method (STING) was used. Seventy-three children (45 girls and 28 boys) who had 88 refluxing renal units (RRUs) with grades IV-V VUR (n=64/n=24) underwent endoscopic treatment using Dx/Ha (n=63 RRUs) and PPC (n=25 RRUs). Mean age of patients in Dx/Ha and PPC groups were 6 (3) and 6 (3.75) year (p=0.81), and volumes of these substances given were 1.3 (1) and 1 (0.5) mL (p=0.003), respectively. Overall, for the first endoscopic injection, success rate of grades IV-V VUR per RRU was 53.9% with Dx/Ha, compared to 80% in PPC-injected group, (p=0.024). Late ureterovesical junction obstruction developed only in one patient in PPC-injected group. No ureteral obstruction was observed in Dx/Ha-injected group. Endoscopic injection of PPC resulted in significantly higher success rate, compared to Dx/Ha in subureteric injection treatment of children with high grade VUR. However, the development of late ureterovesical junction obstruction should also be taken into account in PPC injection. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Comparison of histopathological characteristics of polyacrylate polyalcohol copolymer with dextranomer/hyaluronic acid after injection beneath the bladder mucosa layer: a rabbit model.

    Science.gov (United States)

    Kajbafzadeh, Abdol-Mohammad; Sabetkish, Shabnam; Khorramirouz, Reza; Sabetkish, Nastaran

    2017-05-01

    To compare short- and long-term local tissue reaction of polyacrylate polyalcohol copolymer (PPC) with dextranomer/hyaluronic acid (DHA) in rabbits. Eight healthy New Zealand rabbits were randomly divided into two groups. In group I (control group), DHA was injected just beneath the mucosal layer of the bladder wall, while PPC was injected in group II. Subcutaneous injection of both bulking agents was also performed in nude mice. Histological evaluations with leukocyte common antibody (LCA), CD68, CD31, and CD34 were conducted on biopsies 1 and 6 months postoperatively. Scanning electron microscopy (SEM) and MTT assay were also performed for these two bulking agents. SEM images revealed larger particle size of PPC. LCA and CD68 staining was significantly higher in group II as compared with group I in both short- and long-term follow-ups. However, in groups I and II, expression of CD31 (101 ± 0.5 vs. 92 ± 0.25, p > 0.05) and CD34 (115 ± 0.75 vs. 103 ± 0.5, p > 0.05) was not significantly different in long-term follow-up. Remarkably, severe fibrosis was observed in group II as compared to mild fibrosis in group I one month after injection. The results of in vivo application of these bulking agents in nude mice were in accordance with the results obtained from rabbit model. MTT assay revealed that cell proliferation was significantly higher in the presence of DHA as compared with PPC. Severe inflammation and fibrosis in PPC may be due to continued foreign body reaction, presence of alcohol polymers, or larger particle sizes.

  16. Ingenious route for ultraviolet-induced graft polymerization achieved on inorganic particle: Fabricating magnetic poly(acrylic acid) densely grafted nanocomposites for Cu{sup 2+} removal

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qi, E-mail: roundzking@163.com [School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444 (China); Luo, Wenjun [Faculty of Material and Chemistry, China University of Geosciences, Wuhan, 430074 (China); Zhang, Xing [School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444 (China)

    2017-08-15

    Highlights: • A novel PAA brushes-decorated magnetic adsorbent was prepared successfully. • The preparation approach was simple, rapid, and efficient. • Densely polymer grafting can be achieved on inorganic substrate by the method. • The g-MNPs exhibits an outstanding adsorption performance for Cu{sup 2+}. • The Cu{sup 2+}-saturated adsorbent can be separated and regenerated easily. - Abstract: In this study, ultraviolet (UV)-induced graft technology is improved to be successfully applied on inorganic substrate for fabricating a novel poly(acrylic acid) (PAA) brushes-decorated magnetic nano-composite particles (g-MNPs) as a potential adsorbent toward Cu{sup 2+} ion. The most fascinating features of the resultant g-MNPs are the abundant and highly accessible carboxyl groups present in PAA brushes and the rapid separation from the medium by magnetic field after adsorption. Through the new and high-efficiency surface-initiated polymerization route, the densely PAA brushes was successfully immobilized on the MNPs surface with a high grafting yield of 88.3%. Excitingly, the g-MNPs exhibited an exceptional performance for Cu{sup 2+} adsorption, e.g., ultrahigh adsorption capacity (up to 152.1 mg g{sup −1}), rapid adsorption rate (within 30 min) and low residual concentration (below 1.3 ppm). Full kinetic and isotherm analysis as well as thermodynamic study were also undertaken, the results showed that Cu{sup 2+} adsorption followed Langmuir isotherm and the pseudo-second-order kinetic model, the adsorption rate was controlled by two sequential periods of external and intraparticle diffusion. According to the calculated value of thermodynamic parameters, the Cu{sup 2+} adsorption onto g-MNPs was a spontaneous endothermic process. Furthermore, the excellent reusability of the resultant adsorbent was also confirmed, which can keep above 95% adsorption capacity and desorption rate in 8 consecutive cycles.

  17. Superparamagnetic iron oxide polyacrylic acid coated γ-Fe(2)O(3) nanoparticles do not affect kidney function but cause acute effect on the cardiovascular function in healthy mice

    DEFF Research Database (Denmark)

    Iversen, Nina Kerting; Frische, Sebastian; Thomsen, Karen Sand

    2013-01-01

    This study describes the distribution of intravenously injected polyacrylic acid (PAA) coated γ-Fe(2)O(3) NPs (10mgkg(-1)) at the organ, cellular and subcellular levels in healthy BALB/cJ mice and in parallel addresses the effects of NP injection on kidney function, blood pressure and vascular...... the cytoplasm of the proximal tubule, in podocytes and mesangial cells. The renofunctional effects of NPs were evaluated by arterial acid-base status and measurements of glomerular filtration rate (GFR) after instrumentation with chronically indwelling catheters. Arterial pH was 7.46±0.02 and 7.41±0.02 in mice...

  18. Photo-induced isomerization of ethylene-bridged azobenzene explored by ab initio based non-adiabatic dynamics simulation: A comparative investigation of the isomerization in the gas and solution phases

    Energy Technology Data Exchange (ETDEWEB)

    Cao Jun; Liu Lihong; Fang Weihai [Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Xie Zhizhong [Department of Chemistry, School of Science, Wuhan University of Technology, Wuhan 430070 (China); Zhang Yong [Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, New Jersey 07030 (United States)

    2013-04-07

    Azobenzene is one of the most widely used photoactive units and recently an ethylene-bridged azobenzene (BAB) was reported to have greatly enhanced conversion efficiency, quantum yield, and other favorable properties. As the first step towards exploring its photo-switchable character in real systems, we report here a systematic study on the photoisomerization dynamics between trans (E) and cis (Z) isomers in the gas phase and the CH{sub 3}OH solution, using ab initio based surface hopping and molecular dynamics, which is the first report of dynamics simulation to reveal the environmental effects on BAB photoreactions. Results show that while the relatively faster S{sub 1} relaxation of the photo-induced E{yields}Z process is only mildly affected by the solvent effect, the relatively slower S{sub 1} relaxation of the reverse reaction becomes even slower in the solution compared to the gas phase. The subsequent S{sub 0} dynamics from the conical intersection between S{sub 1} and S{sub 0} (CI{sub E}) to Z is accelerated in solution compared to the gas phase because of avoided re-crossing to the S{sub 1} state, while the S{sub 0} dynamics from the conical intersection between S{sub 1} and S{sub 0} (CI{sub Z}) to E are basically the same in both phases. Overall, the solvent effect was found to enhance the back-and-forth photo-switch efficiency between the Z and E isomers compared to the gas phase, while the quantum yields are reduced. But the solution yields of both the forward and backward photoreactions are still around 0.4. Therefore, BAB may have good photo-responsive properties if used as a photoactive unit in real systems. These results will facilitate future experimental and theoretical studies in this area to help design new azobenzene derivatives as photoactive units in biological processes, nanoscale devices, and photo-responsive materials.

  19. Economic benefit of a polyacrylate-based hydrogel compared to an amorphous hydrogel in wound bed preparation of venous leg ulcers

    Directory of Open Access Journals (Sweden)

    Kaspar D

    2015-04-01

    Full Text Available Daniela Kaspar,1 Jörg Linder,1 Petra Zöllner,1 Ulrich Simon,2 Hans Smola1,31Medical Competence Centre, Paul Hartmann AG, Heidenheim, Germany; 2Scientific Computing Centre, Ulm University, Ulm, Germany; 3Department of Dermatology, University of Cologne, Cologne, GermanyObjective: To assess the cost-effectiveness of a polyacrylate (PA-based hydrogel compared to an amorphous hydrogel in wound bed preparation for venous leg ulcers.Method: A cost-effectiveness analysis was undertaken alongside a multicenter, randomized controlled trial performed in France. A total of 75 patients with venous leg ulcers extensively covered with fibrin and necrotic tissue were randomized to a PA-containing hydrogel or an amorphous hydrogel. Wounds were treated for 14 days and costs were estimated from the German payer's perspective. Medical costs included study treatment, wound treatment supply, and labor time. The clinical benefit was expressed as the number of patients with wounds >50% covered with granulation tissue within 14 days. The incremental cost-effectiveness ratio (ICER was expressed as the additional cost spent with >50% granulation tissue per day per patient within 14 days of leg ulcer care.Results: Because of individual pricing of wound dressings in hospitals, cost data were derived from the outpatient sector. A total of 33 patients were treated using the PA-based hydrogel and 37 patients using the amorphous hydrogel. The estimated total direct costs per patient and per 14 days of therapy were €306 for both treatment groups. However, with the PA-based hydrogel, 2.5 additional days with wounds covered >50% with granulation tissues were gained within 14 days of leg ulcer care compared to the comparator. The ICER was €0 per additional day spent with >50% granulation tissue.Conclusion: Although there were a greater number of dressing changes in the PA-based hydrogel treatment, the total treatment cost for 14 days of leg ulcer care was the same for both

  20. Synthesis and Characterization of Novel Dendrons Bearing Amino-Nitro-Substituted Azobenzene Units and Oligo(ethylene glycol Spacers: Thermal, Optical Properties, Langmuir Blodgett Films and Liquid-Crystalline Behaviour

    Directory of Open Access Journals (Sweden)

    Ernesto Rivera

    2013-01-01

    Full Text Available In this work, we report the synthesis and characterization of a novel series of first and second generation Fréchet type dendrons bearing amino-nitro substituted azobenzene units and tetra(ethylene glycol spacers. These compounds were fully characterized by FTIR, 1H and 13C-NMR spectroscopies, and their molecular weights were determined by MALDI-TOF-MS. The thermal properties of the obtained dendrons were studied by TGA and DSC and their optical properties by absorption spectroscopy in solution and cast film. Molecular calculations were performed in order to determine the optimized geometries of these molecules in different environments. Besides, Langmuir and Langmuir Blodgett films were prepared with the first generation dendrons that were shown to be amphiphilic. Finally, some of the dendrons showed a liquid crystalline behaviour, which was studied by light polarized microscopy as a function of the temperature in order to determine the transition temperatures and the structure of the mesophase.

  1. Synthesis and characterization of novel liquid-crystalline azo-dyes bearing two amino-nitro substituted azobenzene units and a well-defined, oligo(ethylene glycol) spacer

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo, Carolina [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510 Mexico D.F. (Mexico); Rivera, Ernesto, E-mail: riverage@iim.unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510 Mexico D.F. (Mexico); Valdez-Hernandez, Yazmin; Carreon-Castro, Maria del Pilar [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510 Mexico D.F. (Mexico)

    2011-10-17

    Highlights: {yields} Novel dyes containing azobenzene and oligo(ethylene glycol) were synthesized. {yields} Absorption spectra of RED-PEG dyes in CHCl{sub 3} showed {lambda}{sub max} = 440-480 nm. {yields} Absorption spectra of RED-PEG dyes in film revealed the formation of H-aggregates. {yields} Their liquid-crystalline behaviour was confirmed by light polarized microscopy. {yields} These liquid-crystalline dyes can form Langmuir films on the air-water interface. - Abstract: Four novel liquid-crystalline azo-dyes bearing two amino-nitro substituted azobenzene units linked by a well-defined oligo(ethylene glycol) spacer (DIRED-PEG series): (E)-N,N'-(2,2'-oxybis(ethane-2,1-diyl))bis(N-methyl-4-((E)-(4-nitrophenyl) diazenyl) benzenamine) (DIRED-PEG-2), (E)-N,N'-(2,2'-(ethane-1,2-diylbis(oxy)) bis(ethane-2,1-diyl)) bis(N-methyl-4-((E)-(4-nitrophenyl) diazenyl) benzenamine) (DIRED-PEG-3), (E)-N,N'-(2,2'-(2,2'-oxybis (ethane-2,1-diyl) bis(oxy)) bis(ethane-2,1-diyl)) bis(N-methyl-4-((E)-(4-nitrophenyl) diazenyl) benzenamine) (DIRED-PEG-4) and N1,N17-dimethyl-N1,N17-bis (4-((E)-(4-nitrophenyl) diazenyl) phenyl)-3,6,9,12,15-pentaoxaheptadecane-1,17-diamine (DIRED-PEG-6) have been synthesized. These dyes were fully characterized by FTIR, {sup 1}H and {sup 13}C NMR spectroscopies, and their thermal and optical properties were studied. Besides, the liquid-crystalline behaviour of these compounds was monitored in function of the temperature by light polarized microscopy. Finally, Langmuir films were prepared with these dyes.

  2. Use of quantitative-structure property relationship (QSPR) and artificial neural network (ANN) based approaches for estimating the octanol-water partition coefficients of the 209 chlorinated trans-azobenzene congeners.

    Science.gov (United States)

    Wilczyńska-Piliszek, Agata J; Piliszek, Sławomir; Falandysz, Jerzy

    2012-01-01

    Polychlorinated azobenzenes (PCABs) can be found as contaminant by products in 3,4-dichloroaniline and its derivatives and in the herbicides Diuron, Linuron, Methazole, Neburon, Propanil and SWEP. Trans congeners of PCABs are physically and chemically more stable and so are environmentally relevant, when compared to unstable cis congeners. In this study, to fulfill gaps on environmentally relevant partitioning properties of PCABs, the values of n-octanol/water partition coefficients (log K(OW)) have been determined for 209 congeners of chloro-trans-azobenzene (Ct-AB) by means of quantitative structure-property relationship (QSPR) approach and artificial neural networks (ANN) predictive ability. The QSPR methods used based on geometry optimalization and quantum-chemical structural descriptors, which were computed on the level of density functional theory (DFT) using B3LYP functional and 6-311++G basis set in Gaussian 03 and of the semi-empirical quantum chemistry method (PM6) of the molecular orbital package (MOPAC). Polychlorinated dibenzo-p-dioxins (PCDDs), -furans (PCDFs) and -biphenyls (PCBs), to which PCABs are related, were reference compounds in this study. An experimentally obtained data on physical and chemical properties of PCDD/Fs and PCBs were reference data for ANN predictions of log K(OW) values of Ct-ABs in this study. Both calculation methods gave similar results in term of absolute log K(OW) values, while the models generated by PM6 are considered highly efficient in time spent, when compared to these by DFT. The estimated log K(OW) values of 209 Ct-ABs varied between 5.22-5.57 and 5.45-5.60 for Mono-, 5.56-6.00 and 5.59-6.07 for Di-, 5.89-6.56 and 5.91-6.46 for Tri-, 6.10-7.05 and 6.13-6.80 for Tetra-, 6.43-7.39 and 6.48-7.14 for Penta-, 6.61-7.78 and 6.98-7.42 for Hexa-, 7.41-7.94 and 7.34-7.86 for Hepta-, 7.99-8.17 and 7.72-8.20 for Octa-, 8.35-8.42 and 8.10-8.62 for NonaCt-ABs, and 8.52-8.60 and 8.81-8.83 for DecaCt-AB. These log K(OW) values

  3. Observation of ketoprofen nanoparticles embedded in bacterial cellulose/acrylic acid composite using TEM

    International Nuclear Information System (INIS)

    Nadia Halib; Mohd Cairul Iqbal Mohd Amin; Ishak Ahmad; Noriah Jamal

    2008-08-01

    Over the past few decades, the growth of hydrogel technology has advanced in many fields ranging from food additives, pharmaceuticals and biomedical implants. More over the development of many functional monomers and macromers has contributed in broaden the versatility of hydrogel applications. Hydrogels now, play an important role in tissues engineering scaffolds and drug carriers. Hydrogel-based delivery devices have become a major area of research interest with several prototypes are already undergo final stage of product development (Lin et al., 2006). While material properties, interaction parameters, kinetic events and transport phenomena within complex hydrogel systems were among the key parameters that govern the rate and extend of drug release, the delivering of active compounds from gel matrix system mainly comply to either one of three mechanisms: 1) eruption of gel 2) swelling of gel networks 3) diffusion of solute from gel matrix. Diffusion control is the most applicable mechanism to describe drug release (Amsden,1998) which is highly depends on mesh size of hydrogel network and chemical structure of composing monomer ( Mason et al., 2001). In order to understand and be able to predict the release pattern of active solutes, it is important to locate and identify site of solutes deposition within the matrix. (Author)

  4. Structural and size evolution of indium nanoparticles embedded in aluminum synthesized by ion implantation

    Science.gov (United States)

    Yan, Yan-Xia; Liu, Meng; Hu, Mei-Juan; Zhu, Hong-Zhi; Wang, Huan

    2017-12-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant No. 11505160) and the Director Foundation of Institute of Materials, Chinese Academy of Engineering Physics (Grant No. SJZD201406).

  5. Modeling of optical absorption of silver prolate nanoparticles embedded in sol-gel glasses

    International Nuclear Information System (INIS)

    Renteria, V.M.; Garcia-Macedo, J.

    2005-01-01

    Silver prolate nanoparticles were obtained in silica gels prepared by the sol-gel process. Heating them at 900 deg. C for few minutes, the samples showed a yellow-orange color. A strong optical absorption with an asymmetric peak centred at 425 nm due to surface plasmon resonance of silver nanoparticles was observed. High-resolution transmission electron microscopy images showed silver prolate particles (average axial ratio AR = 0.76) randomly oriented with broad size distribution. The size changed from 9 to 3 nm and the prolate form changed to almost spherical (AR = 0.92) when the samples were heated longer time at 900 deg. C. In these samples, the absorption peak was shifted from 425 up to 460 nm. After heat treatment, the absorption spectrum did not change any more in some months, indicating that the particles obtained through this method are stable at room temperature. The Gans theory was used to fit the experimental spectra. The fit was not good until we assumed in the calculations all the physical features come from the system such as the volume fraction, shape and size of the metallic particles, and refractive index of the silica matrix. It was necessary to consider also a refractive index that come from oxidation on the surface of the metallic particles. With these considerations the fit with the Gans theory was good enough, and the difference between the calculated and experimental spectra was very small, factor 20 better than when oxidation is ignored. So then, the oxidation from the metallic particles must be taken in account to explain the experimental absorption spectra. These results are discussed

  6. Modeling of optical absorption of silver prolate nanoparticles embedded in sol-gel glasses

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, V.M. [Departamento de Estado Solido, Instituto de Fisica, UNAM, P.O. Box 20-364, 01000 Mexico, Distrito Federal (Mexico); Garcia-Macedo, J. [Departamento de Estado Solido, Instituto de Fisica, UNAM, P.O. Box 20-364, 01000 Mexico, Distrito Federal (Mexico)]. E-mail: gamaj@fisica.unam.mx

    2005-05-15

    Silver prolate nanoparticles were obtained in silica gels prepared by the sol-gel process. Heating them at 900 deg. C for few minutes, the samples showed a yellow-orange color. A strong optical absorption with an asymmetric peak centred at 425 nm due to surface plasmon resonance of silver nanoparticles was observed. High-resolution transmission electron microscopy images showed silver prolate particles (average axial ratio AR = 0.76) randomly oriented with broad size distribution. The size changed from 9 to 3 nm and the prolate form changed to almost spherical (AR = 0.92) when the samples were heated longer time at 900 deg. C. In these samples, the absorption peak was shifted from 425 up to 460 nm. After heat treatment, the absorption spectrum did not change any more in some months, indicating that the particles obtained through this method are stable at room temperature. The Gans theory was used to fit the experimental spectra. The fit was not good until we assumed in the calculations all the physical features come from the system such as the volume fraction, shape and size of the metallic particles, and refractive index of the silica matrix. It was necessary to consider also a refractive index that come from oxidation on the surface of the metallic particles. With these considerations the fit with the Gans theory was good enough, and the difference between the calculated and experimental spectra was very small, factor 20 better than when oxidation is ignored. So then, the oxidation from the metallic particles must be taken in account to explain the experimental absorption spectra. These results are discussed.

  7. Plasmonic properties of silver nanoparticles embedded in diamond like carbon films: Influence of structure and composition

    Energy Technology Data Exchange (ETDEWEB)

    Meškinis, Š., E-mail: sarunas.meskinis@fei.lt [Kaunas University of Technology, Institute of Materials Science, Savanoriu Ave. 271, Kaunas LT-50131 (Lithuania); Čiegis, A.; Vasiliauskas, A.; Tamulevičienė, A.; Šlapikas, K. [Kaunas University of Technology, Institute of Materials Science, Savanoriu Ave. 271, Kaunas LT-50131 (Lithuania); Juškėnas, R.; Niaura, G. [Institute of Chemistry, Center for Physical Sciences and Technology, Goštauto Str. 9, Vilnius LT-01108 (Lithuania); Tamulevičius, S. [Kaunas University of Technology, Institute of Materials Science, Savanoriu Ave. 271, Kaunas LT-50131 (Lithuania)

    2014-10-30

    Highlights: • Optical properties of DLC films containing silver (DLC:Ag) depends on substrate bias. • Position of the plasmonic peak depends on composition of DLC:Ag films. • Position of the plasmonic peak depends on structure of Ag nanoclusters. • Influence of composition prevails influence of the structure of DLC matrix. - Abstract: In the present study optical properties of hydrogenated diamond like carbon nanocomposite films containing silver nanoparticles (DLC:Ag) deposited by direct current (DC) unbalanced reactive magnetron sputtering were studied in 180–1100 nm range. Different substrate bias was used during deposition of the films. Structure of the films was investigated by multiwavelength Raman scattering spectroscopy and X-ray diffractometry (XRD). Chemical composition of the samples was studied by X-ray photoelectron spectroscopy (XPS), surface morphology was investigated by atomic force microscopy (AFM). Red shift of the surface plasmon resonance peak of DLC:Ag films with the increase of Ag atomic concentration was observed. It was found that high atomic concentration of oxygen in DLC:Ag films results in some redshift of the plasmonic peak, too. Such a behavior is explained by increase of the refractive index of the dielectric medium surrounding silver nanoparticle due to possible presence of the silver oxide interlayer at the Ag nanocluster and diamond like carbon matrix interface. It was demonstrated that influence of the increased Ag atomic concentration on position of the surface plasmon resonance peak of DLC:Ag films clearly prevails influence of the increased sp{sup 3}/sp{sup 2} ratio of the diamond like carbon matrix. Correlation between the structure of Ag nanocrystallites studied by XRD and position of the surface plasmon resonance peak position was observed.

  8. Exchange bias of Ni nanoparticles embedded in an antiferromagnetic IrMn matrix

    International Nuclear Information System (INIS)

    Kuerbanjiang, Balati; Herr, Ulrich; Wiedwald, Ulf; Haering, Felix; Ziemann, Paul; Biskupek, Johannes; Kaiser, Ute

    2013-01-01

    The magnetic properties of Ni nanoparticles (Ni-NPs) embedded in an antiferromagnetic IrMn matrix were investigated. The Ni-NPs of 8.4 nm mean diameter were synthesized by inert gas aggregation. In a second processing step, the Ni-NPs were in situ embedded in IrMn films or SiO x films under ultrahigh vacuum (UHV) conditions. Findings showed that Ni-NPs embedded in IrMn have an exchange bias field H EB = 821 Oe at 10 K, and 50 Oe at 300 K. The extracted value of the exchange energy density is 0.06 mJ m −2 at 10 K, which is in good accordance with the results from multilayered thin film systems. The Ni-NPs embedded in SiO x did not show exchange bias. As expected for this particle size, they are superparamagnetic at T = 300 K. A direct comparison of the Ni-NPs embedded in IrMn or SiO x reveals an increase of the blocking temperature from 210 K to around 400 K. The coercivity of the Ni-NPs exchange coupled to the IrMn matrix at 10 K is 8 times larger than the value for Ni-NPs embedded in SiO x . We studied time-dependent remanent magnetization at different temperatures. The relaxation behavior is described by a magnetic viscosity model which reflects a rather flat distribution of energy barriers. Furthermore, we investigated the effects of different field cooling processes on the magnetic properties of the embedded Ni-NPs. Exchange bias values fit to model calculations which correlate the contribution of the antiferromagnetic IrMn matrix to its grain size. (paper)

  9. Preparation of CuS nanoparticles embedded in poly(vinyl alcohol ...

    Indian Academy of Sciences (India)

    WINTEC

    of methods have been developed for the synthesis of CuS nanostructures including hydrothermal route (Zhang et al. 2004a,b; Ji et al 2005; Zhu et al 2005; Roy and. Srivastava 2006), organogel (Xue et al 2004), hydrogel- assisted synthesis (Kalyanikutty et al 2006), template- free chemical route (Gautam et al 2004), ...

  10. Static and ultrafast optical properties of nanolayered composites. Gold nanoparticles embedded in polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, Mareike

    2012-08-16

    In the course of this thesis gold nanoparticle/polyelectrolyte multilayer structures were prepared, characterized, and investigated according to their static and ultrafast optical properties. Using the dip-coating or spin-coating layer-by-layer deposition method, gold-nanoparticle layers were embedded in a polyelectrolyte environment with high structural perfection. Typical structures exhibit four repetition units, each consisting of one gold-particle layer and ten double layers of polyelectrolyte (cationic+anionic polyelectrolyte). The structures were characterized by X-ray reflectivity measurements, which reveal Bragg peaks up to the seventh order, evidencing the high stratification of the particle layers. In the same measurements pronounced Kiessig fringes were observed, which indicate a low global roughness of the samples. Atomic force microscopy (AFM) images verified this low roughness, which results from the high smoothing capabilities of polyelectrolyte layers. This smoothing effect facilitates the fabrication of stratified nanoparticle/polyelectrolyte multilayer structures, which were nicely illustrated in a transmission electron microscopy image. The samples' optical properties were investigated by static spectroscopic measurements in the visible and UV range. The measurements revealed a frequency shift of the reflectance and of the plasmon absorption band, depending on the thickness of the polyelectrolyte layers that cover a nanoparticle layer. When the covering layer becomes thicker than the particle interaction range, the absorption spectrum becomes independent of the polymer thickness. However, the reflectance spectrum continues shifting to lower frequencies (even for large thicknesses). The range of plasmon interaction was determined to be in the order of the particle diameter for 10 nm, 20 nm, and 150 nm particles. The transient broadband complex dielectric function of a multilayer structure was determined experimentally by ultrafast pump-probe spectroscopy. This was achieved by simultaneous measurements of the changes in the reflectance and transmittance of the excited sample over a broad spectral range. The changes in the real and imaginary parts of the dielectric function were directly deduced from the measured data by using a recursive formalism based on the Fresnel equations. This method can be applied to a broad range of nanoparticle systems where experimental data on the transient dielectric response are rare. This complete experimental approach serves as a test ground for modeling the dielectric function of a nanoparticle compound structure upon laser excitation.

  11. Photopolymerization Synthesis of Magnetic Nanoparticle Embedded Nanogels for Targeted Biotherapeutic Delivery

    Science.gov (United States)

    Denmark, Daniel J.

    Conventional therapeutic techniques treat the patient by delivering a biotherapeutic to the entire body rather than the target tissue. In the case of chemotherapy, the biotherapeutic is a drug that kills healthy and diseased cells indiscriminately which can lead to undesirable side effects. With targeted delivery, biotherapeutics can be delivered directly to the diseased tissue significantly reducing exposure to otherwise healthy tissue. Typical composite delivery devices are minimally composed of a stimuli responsive polymer, such as poly(N-isopropylacrylamide), allowing for triggered release when heated beyond approximately 32 °C, and magnetic nanoparticles which enable targeting as well as provide a mechanism for stimulus upon alternating magnetic field heating. Although more traditional methods, such as emulsion polymerization, have been used to realize these composite devices, the synthesis is problematic. Poisonous surfactants that are necessary to prevent agglomeration must be removed from the finished polymer, increasing the time and cost of the process. This study seeks to further explore non-toxic, biocompatible, non-residual, photochemical methods of creating stimuli responsive nanogels to advance the targeted biotherapeutic delivery field. Ultraviolet photopolymerization promises to be more efficient, while ensuring safety by using only biocompatible substances. The reactants selected for nanogel fabrication were N -isopropylacrylamide as monomer, methylene bisacrylamide as cross-linker, and Irgacure 2959 as ultraviolet photo-initiator. The superparamagnetic nanoparticles for encapsulation were approximately 10 nm in diameter and composed of magnetite to enable remote delivery and enhanced triggered release properties. Early investigations into the interactions of the polymer and nanoparticles employ a pioneering experimental setup, which allows for coincident turbidimetry and alternating magnetic field heating of an aqueous solution containing both materials. Herein, a low-cost, scalable, and rapid, custom ultraviolet photo-reactor with in-situ, spectroscopic monitoring system is used to observe the synthesis as the sample undergoes photopolymerization. This method also allows in-situ encapsulation of the magnetic nanoparticles simplifying the process. Size characterization of the resulting nanogels was performed by Transmission Electron Microscopy revealing size-tunable nanogel spheres between 50 and 800 nm by varying the ratio and concentration of the reactants. Nano-Tracking Analysis indicates that the nanogels exhibit minimal agglomeration as well as provides a temperature-dependent particle size distribution. Optical characterization utilized Fourier Transform Infrared and Ultraviolet Spectroscopy to confirm successful polymerization. When samples of the nanogels encapsulating magnetic nanoparticles were subjected to an alternating magnetic field a temperature increase was observed indicating that triggered release is possible. Furthermore, a model, based on linear response theory that innovatively utilizes size distribution data, is presented to explain alternating magnetic field heating results. The results presented here will advance targeted biotherapeutic delivery and have a wide range of applications in medical sciences like oncology, gene delivery, cardiology and endocrinology.

  12. Synthesis and characterization of TGA-capped CdTe nanoparticles embedded in PVA matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, S.K.; Kaur, Ramneek; Sharma, Mamta [Panjab University, Department of Physics, Center of Advanced Study in Physics, Chandigarh (India)

    2014-10-25

    This paper reports the synthesis and characterization of TGA-capped CdTe nanoparticles and its nanocomposite in a PVA matrix prepared by ex situ technique. The crystallite sizes of the CdTe nanoparticles and nanocomposite calculated from X-ray diffraction patterns are 6.07 and 7.75 nm with hexagonal structure, respectively. The spherical nature of the CdTe nanoparticles is confirmed from transmission electron microscopy measurements. Fourier transform infrared spectroscopy shows good interaction between the CdTe nanoparticles and PVA matrix. The absorption and emission spectra have also been studied. The stability of the TGA-capped CdTe nanoparticles increases after dispersion in a PVA matrix. In electrical measurements, the dark conductivity and the steady-state photoconductivity of CdTe nanocomposite thin films have been studied. The effect of temperature and intensity on the transient photoconductivity of CdTe nanocomposite is also studied. The values of differential life time have been calculated from the decay of photocurrent with time. The non-exponential decay of photoconductivity is observed indicating that the traps exist at all the energies in the band gap, making these materials suitable for various optoelectronic devices. (orig.)

  13. Synthesis and characterization of TGA-capped CdTe nanoparticles embedded in PVA matrix

    International Nuclear Information System (INIS)

    Tripathi, S.K.; Kaur, Ramneek; Sharma, Mamta

    2015-01-01

    This paper reports the synthesis and characterization of TGA-capped CdTe nanoparticles and its nanocomposite in a PVA matrix prepared by ex situ technique. The crystallite sizes of the CdTe nanoparticles and nanocomposite calculated from X-ray diffraction patterns are 6.07 and 7.75 nm with hexagonal structure, respectively. The spherical nature of the CdTe nanoparticles is confirmed from transmission electron microscopy measurements. Fourier transform infrared spectroscopy shows good interaction between the CdTe nanoparticles and PVA matrix. The absorption and emission spectra have also been studied. The stability of the TGA-capped CdTe nanoparticles increases after dispersion in a PVA matrix. In electrical measurements, the dark conductivity and the steady-state photoconductivity of CdTe nanocomposite thin films have been studied. The effect of temperature and intensity on the transient photoconductivity of CdTe nanocomposite is also studied. The values of differential life time have been calculated from the decay of photocurrent with time. The non-exponential decay of photoconductivity is observed indicating that the traps exist at all the energies in the band gap, making these materials suitable for various optoelectronic devices. (orig.)

  14. Toxicity of nanoparticles embedded in paints compared with pristine nanoparticles in mice.

    Science.gov (United States)

    Smulders, Stijn; Luyts, Katrien; Brabants, Gert; Landuyt, Kirsten Van; Kirschhock, Christine; Smolders, Erik; Golanski, Luana; Vanoirbeek, Jeroen; Hoet, Peter H M

    2014-09-01

    The unique physical and chemical properties of nanomaterials have led to their increased use in many industrial applications, including as a paint additive. For example, titanium dioxide (TiO2) engineered nanoparticles (ENPs) have well-established anti-UV, self-cleaning, and air purification effects. Silver (Ag) ENPs are renowned for their anti-microbial capabilities and silicon dioxide (SiO2) ENPs are used as fire retardants and anti-scratch coatings. In this study, the toxic effects and biodistribution of three pristine ENPs (TiO2, Ag, and SiO2), three aged paints containing ENPs (TiO2, Ag, and SiO2) along with control paints without ENPs were compared. BALB/c mice were oropharyngeally aspirated with ENPs or paint particles (20 μg/aspiration) once a week for 5 weeks and sacrificed either 2 or 28 days post final aspiration treatment. A bronchoalveolar lavage was performed and systemic blood toxicity was evaluated to ascertain cell counts, induction of inflammatory cytokines, and key blood parameters. In addition, the lung, liver, kidney, spleen, and heart were harvested and metal concentrations were determined. Exposure to pristine ENPs caused subtle effects in the lungs and negligible alterations in the blood. The most pronounced toxic effects were observed after Ag ENPs exposure; an increased neutrophil count and a twofold increase in pro-inflammatory cytokine secretion (keratinocyte chemoattractant (KC) and interleukin-1ß (IL-1ß)) were identified. The paint containing TiO2 ENPs did not modify macrophage and neutrophil counts, but mildly induced KC and IL-1ß. The paints containing Ag or SiO2 did not show significant toxicity. Biodistribution experiments showed distribution of Ag and Si outside the lung after aspiration to respectively pristine Ag or SiO2 ENPs. In conclusion, we demonstrated that even though direct exposure to ENPs induced some toxic effects, once they were embedded in a complex paint matrix little to no adverse toxicological effects were identified. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Nanocomposites of monodisperse nanoparticles embedded in high-K oxide matrices – a general preparation strategy

    Czech Academy of Sciences Publication Activity Database

    Kubíčková, Simona; Plocek, Jiří; Mantlíková, Alice; Vejpravová, Jana

    2014-01-01

    Roč. 4, č. 10 (2014), s. 5113-5121 ISSN 2046-2069 R&D Projects: GA ČR GAP108/10/1250 Institutional support: RVO:68378271 ; RVO:61388980 Keywords : nanocomposite * sol-gel method * hydrothermal method * high-K oxide * high coercivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.840, year: 2014

  16. Natural Fe3O4 nanoparticles embedded zinc–tellurite glasses: Polarizability and optical properties

    International Nuclear Information System (INIS)

    Widanarto, W.; Sahar, M.R.; Ghoshal, S.K.; Arifin, R.; Rohani, M.S.; Hamzah, K.; Jandra, M.

    2013-01-01

    Modifying the optical behavior of zinc–tellurite glass by embedding magnetic nanoparticles has implication in nanophotonics. A series of zinc–tellurite glasses containing natural Fe 3 O 4 nanoparticles with composition (80 − x)TeO 2 ·xFe 3 O 4 ·20ZnO (0 ≤ x ≤ 2) in mol% are synthesized by melt quenching method and their optical properties are investigated using FTIR and UV–vis–NIR spectroscopies. Lorentz–Lorenz relations are exploited to determine the refractive index, molar refraction and electronic polarizability. The sharp absorption peaks of FTIR spectra show a shift from 667 cm −1 to 671 cm −1 in the presence of nanoparticles that increase the non-bridging oxygen, confirmed by the intensity change of the TeO 3 peak at 752 cm −1 . A new peak around 461 cm −1 is also observed which is attributed to the band characteristic of covalent Fe–O linkages. A decrease in the Urbach energy as much as 0.122 eV and the optical energy band gap with the increase of Fe 3 O 4 concentration (0.5–1.0 mol%) is evidenced. Electronic polarizability of the glasses increases with increasing Fe 3 O 4 nanoparticles concentration up to 1 mol%. Interestingly, the polarizability tends to decrease with the further increase of Fe 3 O 4 concentration at 2 mol%. The role of magnetic nanoparticles in influencing the structural and optical behavior are examined and understood. - Highlights: ► Incorporation of natural Fe 3 O 4 nanoparticles into the zinc–tellurite glass. ► Influence of magnetic nanoparticles in modifying structure and optical properties. ► Enhancement of refraction index and change in electronic polarizability

  17. Fabrication of Octahedral Gold Nanoparticle embedded Polymer Pattern based on Electron Irradiation and Thermal Treatment

    International Nuclear Information System (INIS)

    Kim, Yong Nam; Lee, Hyeok Moo; Cho, Sung Oh

    2011-01-01

    Noble metal nanoparticles (NPs) such as gold (Au), silver, and copper have been a hot research issue due to their unique optical, electronic, and catalytic properties. On account of the size- and shape- dependent properties of the noble metal NPs, most researches are concentrated on tailoring sizes and shapes of the noble metal NPs. In particular, noble metal NPs with Platonic shapes such as tetrahedron, cube, octahedron, dodecahedron, and icosahedron have significant impact on a variety of applications including surface-enhancement spectroscopy, biochemical sensing, and nanodevice fabrication because sharp corners of the metals lead to high local electric-field enhancement. In addition, patterning or controlled assembly of noble metal NPs is indispensible for biological sensors, micro-/nano-electronic devices, photonic and photovoltaic devices, and surface-enhanced Raman scattering (SERS)-active substrates. Although Platonic noble metal NPs with well defined sizes have been intensively studied, patterning of Platonic noble metal NPs has been rarely demonstrated. Here, we present a strategy to fabricate patterned Au nano-octahedra embedded polymer films by selectively irradiating an electron beam onto HAuCl 4 -loadaed poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) block copolymer (BCP) precursor films followed by thermal treatment. The BCP plays a important role for the patterning of the precursor film due to a cross-linking behavior under electron irradiation

  18. PtRu nanoparticles embedded in nitrogen doped carbon with highly stable CO tolerance and durability

    Science.gov (United States)

    Ling, Ying; Yang, Zehui; Yang, Jun; Zhang, Yunfeng; Zhang, Quan; Yu, Xinxin; Cai, Weiwei

    2018-02-01

    As is well known, the lower durability and sluggish methanol oxidation reaction (MOR) of PtRu alloy electrocatalyst blocks the commercialization of direct methanol fuel cells (DMFCs). Here, we design a new PtRu electrocatalyst, with highly stable CO tolerance and durability, in which the PtRu nanoparticles are embedded in nitrogen doped carbon layers derived from carbonization of poly(vinyl pyrrolidone). The newly fabricated electrocatalyst exhibits no loss in electrochemical surface area (ECSA) and MOR activity after potential cycling from 0.6-1.0 V versus reversible hydrogen electrode, while commercial CB/PtRu retains only 50% of its initial ECSA. Meanwhile, due to the same protective layers, the Ru dissolution is decelerated, resulting in stable CO tolerance. Methanol oxidation reaction (MOR) testing indicates that the activity of newly fabricated electrocatalyst is two times higher than that of commercial CB/PtRu, and the fuel cell performance of the embedded PtRu electrocatalyst was comparable to that of commercial CB/PtRu. The embedded PtRu electrocatalyst is applicable in real DMFC operation. This study offers important and useful information for the design and fabrication of durable and CO tolerant electrocatalysts.

  19. Core–shell Au/Ag nanoparticles embedded in silicate sol–gel ...

    Indian Academy of Sciences (India)

    Administrator

    catalytic reduction and sensing of hydrogen peroxide in comparison to monometal Au and Ag nanoparticles ... metal catalyst. It has been reported in many cases that bimetallic systems display a core–shell struc- ture, where a thin shell of second metal surrounds a ... The homogeneous MTMOS sol–gel matrix was pre- pared.

  20. Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS

    International Nuclear Information System (INIS)

    Schamm, S.; Bonafos, C.; Coffin, H.; Cherkashin, N.; Carrada, M.; Ben Assayag, G.; Claverie, A.; Tence, M.; Colliex, C.

    2008-01-01

    Fabrication of systems in which Si nanoparticles are embedded in a thin silica layer is today mature for non-volatile memory and opto-electronics applications. The control of the different parameters (position, size and density) of the nanoparticles population is a key point to optimize the properties of such systems. A review of dedicated transmission electron microscopy (TEM) methods, which can be used to measure these parameters, is presented with an emphasis on those relying on electron energy-loss spectroscopy (EELS). Defocused bright-field imaging can be used in order to determine topographic information of a whole assembly of nanoparticles, but it is not efficient for looking at individual nanoparticles. High-resolution electron imaging or dark-field imaging can be of help in the case of crystalline particles but they always provide underestimated values of the nanocrystals population. EELS imaging in the low-energy-loss domain around the Si plasmon peak, which gives rise to strong signals, is the only way to visualize all Si nanoparticles within a silica film and to perform reliable size and density measurements. Two complementary types of experiments are investigated and discussed more extensively: direct imaging with a transmission electron microscope equipped with an imaging filter (EFTEM) and indirect imaging from spectrum-imaging data acquired with a scanning transmission electron microscope equipped with a spectrometer (STEM-PEELS). The direct image (EFTEM) and indirect set of spectra (STEM-PEELS) are processed in order to deliver images where the contribution of the silica matrix is minimized. The contrast of the resulting images can be enhanced with adapted numerical filters for further morphometric analysis. The two methods give equivalent results, with an easier access for EFTEM and the possibility of a more detailed study of the EELS signatures in the case of STEM-PEELS. Irradiation damage in such systems is also discussed