WorldWideScience

Sample records for azobenzene nanoparticle-embedded polyacrylic

  1. Photo-Reversible Supramolecular Hydrogels Assembled by α-Cyclodextrin and Azobenzene Substituted Poly(acrylic acid)s

    NARCIS (Netherlands)

    Wang, Mingwei; Zhang, Xiaojun; Li, Li; Wang, Junyou; Wang, Jie; Ma, Jun; Yuan, Zhenyu; Lincoln, Stephen F.; Guo, Xuhong

    2016-01-01

    Photo-reversible supramolecular hydrogels based on the mixture of α-cyclodextrin (α-CD) and azobenzene (Azo) substituted poly(acrylic acid) s were prepared. Effects of substitution degree of Azo, polymer concentration and tethered chain length on the reversible sol-gel transition of these mixture

  2. Azobenzene-functionalized cascade molecules

    DEFF Research Database (Denmark)

    Archut, A.; Vogtle, F.; De Cola, L.;

    1998-01-01

    Cascade molecules bearing up to 32 azobenzene groups in the periphery have been prepared from poly(propylene imine) dendrimers and N-hydroxysuccinimide esters. The dendritic azobenzene species show similar isomerization properties as the corresponding azobenzene monomers. The all-E azobenzene...

  3. Nanoparticle embedded enzymes for improved lateral flow sensors

    DEFF Research Database (Denmark)

    Özalp, Veli Cengiz; Zeydanlı, Uğur S.; Lunding, Anita

    2013-01-01

    In this study, combining the nanoparticle embedded sensors with lateral flow assays, a novel strategy for ensuring the quality of signalling in lateral flow assays (LFAs) was developed. A LFA for reactive oxygen species (ROS) is reported that is based on horse radish peroxidase (HRP) which is co......-entrapped with Texas Red dextran inside porous polyacrylamide nanoparticles. In this system, enzymes are protected in the porous matrix of polyacrylamide which freely allows the diffusion of the analyte. The sensor is rapid and sensitive for quantification of hydrogen peroxide concentrations. A test solution...... of hydrogen peroxides was quantified with this novel LFA-ROS sensor to obtain a linear range between 1 and 25 μM. Nanoparticle embedding of enzymes is proposed here as a general strategy for developing enzyme-based lateral flow assays, eliminating adverse effects associated with biological samples....

  4. Nanoparticle embedded enzymes for improved lateral flow sensors.

    Science.gov (United States)

    Özalp, Veli C; Zeydanlı, Uğur S; Lunding, Anita; Kavruk, Murat; Öz, M Tufan; Eyidoğan, Füsun; Olsen, Lars F; Öktem, Hüseyin A

    2013-08-01

    In this study, combining the nanoparticle embedded sensors with lateral flow assays, a novel strategy for ensuring the quality of signalling in lateral flow assays (LFAs) was developed. A LFA for reactive oxygen species (ROS) is reported that is based on horse radish peroxidase (HRP) which is co-entrapped with Texas Red dextran inside porous polyacrylamide nanoparticles. In this system, enzymes are protected in the porous matrix of polyacrylamide which freely allows the diffusion of the analyte. The sensor is rapid and sensitive for quantification of hydrogen peroxide concentrations. A test solution of hydrogen peroxides was quantified with this novel LFA-ROS sensor to obtain a linear range between 1 and 25 μM. Nanoparticle embedding of enzymes is proposed here as a general strategy for developing enzyme-based lateral flow assays, eliminating adverse effects associated with biological samples.

  5. Fe nanoparticles embedded in MgO crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shalimov, Artem; Potzger, Kay; Talut, Georg; Reuther, Helfried; Zhou, Shengqiang; Baehtz, Carsten; Fassbender, Juergen [Forschungszentrum Dresden-Rossendorf, Bautzner Landstrasse 128, 01328 Dresden (Germany); Geiger, Dorin; Lichte, Hannes [Technical University, Dresden (Germany); Misiuk, Andrzej [Institute of Electron Technology, Warsaw (Poland); Stromberg, Frank [Universitaet Duisburg-Essen (Germany)

    2009-07-01

    Iron nanoparticles embedded in MgO crystals were synthesized by Fe{sup +} ion implantation at an energy of 100 keV and varying fluences from 3.10{sup 16} to 3.10{sup 17} cm{sup -2}. Investigations of structural and magnetic properties of Fe nanoparticles have been performed using magnetometry, X-ray diffraction, transmission electron microscopy and Moessbauer spectroscopy, as well as by theoretical Preisach modeling of bistable magnetic systems. It has been found that {alpha}- and {gamma}-Fe nanoparticles are formed for all fluences. The content of the {alpha}-Fe phase increases at higher fluences and after annealing. The influence of post-implantation annealing at 800 C in vacuum and under enhanced up to 10 kbar hydrostatic pressure in argon atmosphere on the formation of nanoparticles has been analyzed.

  6. Preparation and characterization of Ag nanoparticle-embedded polymer electrospun nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Dong Guoping, E-mail: guoping_dong@163.com; Xiao Xiudi; Liu, Xiaofeng; Qian Bin [Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics (China); Ma Zhijun; Ye Song [Zhejiang University, State Key Laboratory of Silicon Materials (China); Chen Danping [Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics (China); Qiu Jianrong, E-mail: jrqiu@zju.edu.c [Zhejiang University, State Key Laboratory of Silicon Materials (China)

    2010-05-15

    Poly (vinyl alcohol) (PVA) and poly (vinyl pyrrolidone) (PVP) nanofibers embedding Ag nanoparticles (5-18 nm) have been prepared successfully by electrospinning at room temperature. Scanning electron microscope (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier transform IR spectra (FTIR), and Raman scattering were used to characterize the structure and properties of Ag nanoparticle-embedded PVA and PVP nanofibers before and after heat treatment at different temperature. The antibacterial activity of Ag nanoparticle-embedded PVP nanofibers after heat treatment was also tested, which indicated that the biological activity of yeast cells was effectively inhibited by these Ag nanoparticle-embedded PVP nanofibers.

  7. In Situ Synthesis of Metal Nanoparticle Embedded Hybrid Soft Nanomaterials.

    Science.gov (United States)

    Divya, Kizhmuri P; Miroshnikov, Mikhail; Dutta, Debjit; Vemula, Praveen Kumar; Ajayan, Pulickel M; John, George

    2016-09-20

    The allure of integrating the tunable properties of soft nanomaterials with the unique optical and electronic properties of metal nanoparticles has led to the development of organic-inorganic hybrid nanomaterials. A promising method for the synthesis of such organic-inorganic hybrid nanomaterials is afforded by the in situ generation of metal nanoparticles within a host organic template. Due to their tunable surface morphology and porosity, soft organic materials such as gels, liquid crystals, and polymers that are derived from various synthetic or natural compounds can act as templates for the synthesis of metal nanoparticles of different shapes and sizes. This method provides stabilization to the metal nanoparticles by the organic soft material and advantageously precludes the use of external reducing or capping agents in many instances. In this Account, we exemplify the green chemistry approach for synthesizing these materials, both in the choice of gelators as soft material frameworks and in the reduction mechanisms that generate the metal nanoparticles. Established herein is the core design principle centered on conceiving multifaceted amphiphilic soft materials that possess the ability to self-assemble and reduce metal ions into nanoparticles. Furthermore, these soft materials stabilize the in situ generated metal nanoparticles and retain their self-assembly ability to generate metal nanoparticle embedded homogeneous organic-inorganic hybrid materials. We discuss a remarkable example of vegetable-based drying oils as host templates for metal ions, resulting in the synthesis of novel hybrid nanomaterials. The synthesis of metal nanoparticles via polymers and self-assembled materials fabricated via cardanol (a bioorganic monomer derived from cashew nut shell liquid) are also explored in this Account. The organic-inorganic hybrid structures were characterized by several techniques such as UV-visible spectroscopy, scanning electron microscopy (SEM), and

  8. Discrete angle rotations of Bi nanoparticles embedded in a Ga matrix

    Science.gov (United States)

    Be'er, Avraham; Kofman, Richard; Lereah, Yossi

    2010-02-01

    Spontaneous instabilities of nanoparticles are known to be influenced by the temperature, and strongly depend on the particle size. However, it is not clear what is the role of the surrounding material that is in contact with the particle. Here we report on the difference between spontaneous rotations of Bi nanoparticles embedded in amorphous SiO and those embedded in liquid Ga. The phenomenon was studied quantitatively by time resolved transmission electron microscopy using Fourier Transform analysis of highresolution electron microscopy images. While rotations of Bi nanoparticles embedded in amorphous SiO occur by all angles, the rotations of Bi nanoparticles embedded in liquid Ga occur by discrete angles. Our results point quantitatively, for the first time, to the role and importance of the contacting surrounding surface during the rotation of nanoparticles.

  9. Understanding the Thermal Stability of Silver Nanoparticles Embedded in a-Si

    DEFF Research Database (Denmark)

    Gould, Anna L.; Kadkhodazadeh, Shima; Wagner, Jakob Birkedal

    2015-01-01

    The inclusion of silver plasmonic nanoparticles in silicon is highly relevant for photovoltaics as it may enhance optical absorption. We report an investigation of the stability of such pristine silver nanoparticles embedded in a-Si upon heat treatment. We have investigated the morphological...

  10. Strain Distribution of Au and Ag Nanoparticles Embedded in Al2O3 Thin Film

    Directory of Open Access Journals (Sweden)

    Honghua Huang

    2014-01-01

    Full Text Available Au and Ag nanoparticles embedded in amorphous Al2O3 matrix are fabricated by the pulsed laser deposition (PLD method and rapid thermal annealing (RTA technique, which are confirmed by the experimental high-resolution transmission electron microscope (HRTEM results, respectively. The strain distribution of Au and Ag nanoparticles embedded in the Al2O3 matrix is investigated by the finite-element (FE calculations. The simulation results clearly indicate that both the Au and Ag nanoparticles incur compressive strain by the Al2O3 matrix. However, the compressive strain existing on the Au nanoparticle is much weaker than that on the Ag nanoparticle. This phenomenon can be attributed to the reason that Young’s modulus of Au is larger than that of Ag. This different strain distribution of Au and Ag nanoparticles in the same host matrix may have a significant influence on the technological potential applications of the Au-Ag alloy nanoparticles.

  11. Nickel nanoparticles embedded in carbon foam for improving electromagnetic shielding effectiveness

    Science.gov (United States)

    Kumar, Rajeev; Kumari, Saroj; Dhakate, Sanjay R.

    2015-06-01

    To improve electromagnetic shielding effectiveness of light weight carbon foam (CF), magnetic nanoparticles were embedded in it during processing. The CF was developed from the coal tar pitch and mixture of coal tar pitch-Nickel (Ni) nanoparticles by sacrificial template technique and heat treated to up 1,000 °C. To ascertain the effect of Ni nanoparticles embedded in CF, it was characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, vector network analyzer and vibration sample magnetometer. It is observed that Ni nanoparticles embedded in the carbon material play an important role for improving the structure and electrical conductivity of CF-Ni by catalytic carbonization. The structural investigation suggests that the Ni nanoparticles embedded in the carbon material in bulk as well on the surface of CF. The CF demonstrates excellent shielding response in the frequency range 8.2-12.4 GHz in which total shielding effectiveness (SE) dominated by absorption losses. The total SE is -25 and -61 dB of CF and CF-Ni, it is governed by absorption losses -48.5 dB in CF-Ni. This increase is due to the increase in dielectric and magnetic losses of ferromagnetic Ni nanoparticles with high surface area. Thus, light weight CF embedded with small amount of magnetic nanoparticles can be useful material for stealth technology.

  12. Photoinduced micropattern in an azobenzene polymer film

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The micropattern observed in the amorphous azobenzene polymer film by degenerated four-wave mixing has been reported. Patterns with well-defined structures are examined with the scanning electron microscopy and the polarizing optical microscopy. It is demonstrated that the control of photoinduced micropattern in the azobenzene polymer film is possible by using appropriate polarized writing beams with total incident power exceeding a certain threshold.

  13. 21 CFR 173.73 - Sodium polyacrylate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium polyacrylate. 173.73 Section 173.73 Food and... Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium polyacrylate (CAS... of Weight Average and Number Average Molecular Weight of Sodium Polyacrylate,” which is...

  14. Silver nanoparticle-embedded polymersome nanocarriers for the treatment of antibiotic-resistant infections

    Science.gov (United States)

    Geilich, Benjamin M.; van de Ven, Anne L.; Singleton, Gloria L.; Sepúlveda, Liuda J.; Sridhar, Srinivas; Webster, Thomas J.

    2015-02-01

    The rapidly diminishing number of effective antibiotics that can be used to treat infectious diseases and associated complications in a physician's arsenal is having a drastic impact on human health today. This study explored the development and optimization of a polymersome nanocarrier formed from a biodegradable diblock copolymer to overcome bacterial antibiotic resistance. Here, polymersomes were synthesized containing silver nanoparticles embedded in the hydrophobic compartment, and ampicillin in the hydrophilic compartment. Results showed for the first time that these silver nanoparticle-embedded polymersomes (AgPs) inhibited the growth of Escherichia coli transformed with a gene for ampicillin resistance (bla) in a dose-dependent fashion. Free ampicillin, AgPs without ampicillin, and ampicillin polymersomes without silver nanoparticles had no effect on bacterial growth. The relationship between the silver nanoparticles and ampicillin was determined to be synergistic and produced complete growth inhibition at a silver-to-ampicillin ratio of 1 : 0.64. In this manner, this study introduces a novel nanomaterial that can effectively treat problematic, antibiotic-resistant infections in an improved capacity which should be further examined for a wide range of medical applications.

  15. Superhydrophobic wind turbine blade surfaces obtained by a simple deposition of silica nanoparticles embedded in epoxy

    Energy Technology Data Exchange (ETDEWEB)

    Karmouch, Rachid, E-mail: karmouch@emt.inrs.ca [INRS-Centre Energie Materiaux Telecommunications, 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada); Ross, Guy G. [INRS-Centre Energie Materiaux Telecommunications, 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2010-11-15

    Samples of wind turbine blade surface have been covered with a superhydrophobic coating made of silica nanoparticles embedded in commercial epoxy paint. The superhydrophobic surfaces have a water contact angle around 152{sup o}, a hysteresis less than 2{sup o} and a water drop sliding angle around 0.5{sup o}. These surfaces are water repellent so that water drops cannot remain motionless on the surface. Examination of coated and uncoated surfaces with scanning electron microscopy and atomic force microscopy, together with measurements of water contact angles, indicates that the air trapped in the cavity enhances the water repellency similarly to the lotus leaf effect. Moreover, this new coating is stable under UVC irradiation and water pouring. The production of this nanoscale coating film being simple and low cost, it can be considered as a suitable candidate for water protection of different outdoor structures.

  16. Coulomb blockade effects in silicon nanoparticles embedded in thin silicon-rich oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Sanchez, A; Barreto, J; Dominguez, C [IMB-CNM (CSIC), Campus UAB, Bellaterra 08193, Barcelona (Spain); Aceves, M; Yu, Z [INAOE, Electronics Department, Apartado 51, Puebla, 72000 (Mexico); Luna-Lopez, J A [CCMC, UNAM, Optics Department, Ensenada, BC, 22800 (Mexico)], E-mail: alfredo.morales@cnm.es

    2008-04-23

    Silicon nanoparticles (Si-nps) embedded in silicon oxide matrix were created using silicon-rich oxide (SRO) films deposited by low pressure chemical vapour deposition (LPCVD) followed by a thermal annealing at 1100 deg. C. The electrical properties were studied using metal-oxide-semiconductor (MOS) structures with the SRO films as the active layers. Capacitance versus voltage (C-V) exhibited downward and upward peaks in the accumulation region related to charge trapping and de-trapping effects of Si-nps, respectively. Current versus voltage (I-V) measurements showed fluctuations in the form of spike-like peaks and a clear staircase at room temperature. These effects have been related to the Coulomb blockade (CB) effect in the silicon nanoparticles embedded in SRO films. The observed quantum effects are due to 1 nm nanoparticles.

  17. Cobalt diselenide nanoparticles embedded within porous carbon polyhedra as advanced electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Wu, Renbing; Xue, Yanhong; Liu, Bo; Zhou, Kun; Wei, Jun; Chan, Siew Hwa

    2016-10-01

    Highly efficient and cost-effective electrocatalyst for the oxygen reduction reaction (ORR) is crucial for a variety of renewable energy applications. Herein, strongly coupled hybrid composites composed of cobalt diselenide (CoSe2) nanoparticles embedded within graphitic carbon polyhedra (GCP) as high-performance ORR catalyst have been rationally designed and synthesized. The catalyst is fabricated by a convenient method, which involves the simultaneous pyrolysis and selenization of preformed Co-based zeolitic imidazolate framework (ZIF-67). Benefiting from the unique structural features, the resulting CoSe2/GCP hybrid catalyst shows high stability and excellent electrocatalytic activity towards ORR (the onset and half-wave potentials are 0.935 and 0.806 V vs. RHE, respectively), which is superior to the state-of-the-art commercial Pt/C catalyst (0.912 and 0.781 V vs. RHE, respectively).

  18. Pt nanoparticles embedded on reduced graphite oxide with excellent electrocatalytic properties

    Science.gov (United States)

    Saravanan, Gengan; Mohan, Subramanian

    2016-11-01

    Economically viable electrochemical approach has been developed for the synthesis of Pt nanoparticles through electrodeposition technique on the surface of Reduced Graphite Oxide (RGO). Pt nanoparticles embedded Reduced Graphite Oxide on Glassy Carbon Electrode are employed (Pt-rGO/GCE) for electrooxidation of formic acid. Scanning Electron Microscopy (SEM) image and Transmission Electron Microscopy (TEM) image shows that reduced graphite oxide act as an excellent support to anchor the Pt nanoparticles. Cyclic voltammetry results confirmed that Pt-rGO/GCE enhanced current density as many folds than that of bare platinum electrode for electrooxidation of formic acid. X-ray diffraction (XRD) patterns for Pt-graphene composites illustrate that peaks at 69.15 and 23° for Pt (220) and graphene carbon (002) respectively. 13C NMR spectrum of the electrochemically reduced graphite oxide resonance contains only one peak at 133 ppm which retains graphitic sp2 carbon and does not contain any oxygenated carbon and the carbonyl carbons.

  19. Magneto-optical Faraday rotation of semiconductor nanoparticles embedded in dielectric matrices.

    Science.gov (United States)

    Savchuk, Andriy I; Stolyarchuk, Ihor D; Makoviy, Vitaliy V; Savchuk, Oleksandr A

    2014-04-01

    Faraday rotation has been studied for CdS, CdTe, and CdS:Mn semiconductor nanoparticles synthesized by colloidal chemistry methods. Additionally these materials were prepared in a form of semiconductor nanoparticles embedded in polyvinyl alcohol films. Transmission electron microscopy and atomic force microscopy analyses served as confirmation of nanocrystallinity and estimation of the average size of the nanoparticles. Spectral dependence of the Faraday rotation for the studied nanocrystals and nanocomposites is correlated with a blueshift of the absorption edge due to the confinement effect in zero-dimensional structures. Faraday rotation spectra and their temperature behavior in Mn-doped nanocrystals demonstrates peculiarities, which are associated with s, p-d exchange interaction between Mn²⁺ ions and band carriers in diluted magnetic semiconductor nanostructures.

  20. Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon for highly effective adsorption of rhodamine B

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lin, E-mail: tanglin@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Cai, Ye; Yang, Guide; Liu, Yuanyuan [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Zeng, Guangming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Zhou, Yaoyu; Li, Sisi; Wang, Jiajia; Zhang, Sheng; Fang, Yan; He, Yibin [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2014-09-30

    Highlights: • Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon (Co/OMC) was applied as a novel adsorption material to remove rhodamine B. • Co/OMC was synthesized by directly introducing cobalt into OMC through a simple infusing method. • High removal capacity of rhodamine B: maximum adsorption capacity reaches 468 mg/g at 200 mg/L initial rhodamine B concentration. • Very quick adsorption property: 96% of rhodamine B can be removed within 25 min. - Abstract: Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon (Co/OMC), prepared through a simple method involving infusing and calcination, was used as a highly effective adsorbent for rhodamine B (Rh B) removal. Several techniques, including SEM, HRTEM, nitrogen adsorption–desorption isotherms, XRD, Raman spectra, EDX, zeta potential and VSM measurement, were applied to characterize the adsorbent. Batch tests were conducted to investigate the adsorption performance. The adsorption capacity of the resultant adsorbent was relatively high compared with raw ordered mesoporous carbon (OMC) and reached an equilibrium value of 468 mg/g at 200 mg/L initial Rh B concentration. Removal efficiency even reached 96% within 25 min at 100 mg/L initial Rh B concentration. Besides, the adsorption amount increased with the increase of solution pH, adsorbent dose and initial Rh B concentration. Kinetics study showed that the adsorption agreed well with pseudo-second-order model (R{sup 2} = 0.999) and had a significant correlation with intra-particle diffusion model in the both two adsorption periods. Furthermore, thermodynamics research indicated that the adsorption process was endothermic and spontaneous in nature. The adsorption isotherms fitted well with Langmuir model, demonstrating the formation of mono-molecular layer on the surface of Co/OMC during adsorption process. The results confirmed that Co/OMC has the potential superiority in removal of Rh B from aqueous solution.

  1. Unusual photoanisotropic alignment in amorphous azobenzene polymers

    DEFF Research Database (Denmark)

    Ramanujam, P.S.

    2015-01-01

    560 and 630nm, where the absorption is minimal, results in a possible uniaxial hedgehog arrangement of the molecules. Experiments performed with a dye laser, which can be tuned continuously between 560 and 630nm, are described. Not only azobenzene but also another photosensitive molecule...

  2. Photoinduced Deformation of Azobenzene Polyester Films

    DEFF Research Database (Denmark)

    Bublitz, D.; Helgert, M.; Fleck, B.;

    2000-01-01

    We investigate two types of azobenzene side-chain polyesters which have shown opposite behaviour in light-induced surface grating formation experiments. Thin films of these polymers prepared on a water surface undergo opposite changes of shape under the influence of polarized light. We propose...

  3. Melting of iron nanoparticles embedded in silica prepared by mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Peng; Ma, Ji [Institute of Materials Science and Engineering, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Cao, Hui, E-mail: caoh@lzu.edu.cn [Institute of Materials Science and Engineering, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Liu, Yi [Department of Biology Science, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201203 (China); Wang, Lianwen, E-mail: lwwang@lzu.edu.cn [Institute of Materials Science and Engineering, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Li, Jiangong [Institute of Materials Science and Engineering, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2013-08-20

    Highlights: • Melting of metallic nanoparticles was studied for some eight elements. • This slim range of materials is successfully expanded to iron. • A mechanical-milled iron–silica composite is employed. • For iron particles of 15 nm in diameter, the melting point depression is 30 K. • The measured data is in agreement with our theoretical calculations. -- Abstract: For decades, experimental studies on the size-dependent melting of metals are regretfully limited to some eight archetypal examples. In this work, to expand this slim range of materials, the melting behavior of Fe nanoparticles embedded in SiO{sub 2} prepared by using mechanical milling are investigated. Effects of factors in sample preparation on the size, isolation and thermal stability of Fe nanoparticles are systematically studied. On this basis, the size-dependent melting of Fe is successfully traced: for Fe nanoparticles with a diameter of about 15 nm, the melting point depression is 30 °C in comparison with bulk Fe, in accordance with our recent theoretical prediction.

  4. Shaping of Au nanoparticles embedded in various layered structures by swift heavy ion beam irradiation

    Science.gov (United States)

    Dawi, E. A.; ArnoldBik, W. M.; Ackermann, R.; Habraken, F. H. P. M.

    2016-10-01

    We present a novel method to extend the ion-beam induced shaping of metallic nanoparticles in various layered structures. Monodisperse Au nanoparticles having mean diameter of 30 nm and their ion-shaping process is investigated for a limited number of experimental conditions. Au nanoparticles were embedded within a single plane in various layered structures of silicon nitride films (Si3N4), combinations of oxide-nitride films (SiO2-Si3N4) and amorphous silicon films (a-Si) and have been sequentially irradiated at 300 K at normal incidence with 50 and 25 MeV Ag ions, respectively. Under irradiation with heavy Ag ions and with sequential increase of the irradiation fluence, the evolution of the Au peak derived from the Rutherford Backscattering Spectrometry show broadening in Au peak, which indicates that the Au becomes distributed over a larger depth region, indicative of the elongation of the nanoparticles. The latter is observed almost for every layer structure investigated except for Au nanoparticles embedded in pure a-Si matrix. The largest elongation rate at all fluences is found for the Au nanoparticles encapsulated in pure Si3N4 films. For all irradiation energy applied, we again demonstrate the existence of both threshold and saturation fluences for the elongation effects mentioned.

  5. Magnetic properties of Ni nanoparticles embedded in silica matrix (KIT-6) synthesized via novel chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Dalavi, Shankar B.; Panda, Rabi N., E-mail: rnp@goa.bits-pilani.ac.in [Department of Chemistry, BITS-Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa-403726 (India); Raja, M. Manivel [Defence Metallurgical Research Laboratory, Hyderabad-500058 (India)

    2015-06-24

    Thermally stable Ni nanoparticles have been embedded in mesoporous silica matrix (KIT-6) via novel chemical reduction method by using superhydride as reducing agent. X-ray diffraction (XRD) study confirms that pure and embedded Ni nanoparticles crystallize in face centered cubic (fcc) structure. Crystallite sizes of pure Ni, 4 wt% and 8 wt% Ni in silica were estimated to be 6.0 nm, 10.4 nm and 10.5 nm, respectively. Morphology and dispersion of Ni in silica matrix were studied by scanning electron microscopy (SEM). Magnetic study shows enhancement of magnetic moments of Ni nanoparticles embedded in silica matrix compared with that of pure Ni. The result has been interpreted on the basis of size reduction and magnetic exchange effects. Saturation magnetization values for pure Ni, 4 wt% and 8 wt% Ni in silica were found to be 15.77 emu/g, 5.08 emu/g and 2.00 emu/g whereas coercivity values were 33.72 Oe, 92.47 Oe and 64.70 Oe, respectively. We anticipate that the observed magnetic properties may find application as soft magnetic materials.

  6. Polymeric nanoparticles-embedded organogel for roxithromycin delivery to hair follicles.

    Science.gov (United States)

    Główka, Eliza; Wosicka-Frąckowiak, Hanna; Hyla, Kinga; Stefanowska, Justyna; Jastrzębska, Katarzyna; Klapiszewski, Łukasz; Jesionowski, Teofil; Cal, Krzysztof

    2014-09-01

    Drug delivery into hair follicles with the use of nanoparticles (NPs) is gaining more importance as drug-loaded NPs may accumulate in hair follicle openings. The aim was to develop and evaluate a pluronic lecithin organogel (PLO) with roxithromycin (ROX)-loaded NPs for follicular targeting. Polymeric NPs were evaluated in terms of particle shape, size, zeta potential, suspension stability, encapsulation efficiency and in vitro drug release. Lyophilized NPs were incorporated into the PLO and rheological measurements of the nanoparticles-embedded organogels were done. The fate of the NPs in the skin was traced by incorporation of a fluorescent dye into the NPs. As a result, ROX was efficiently incorporated into polymeric NPs characterized by the appropriate size (approximately 300 nm) allowing drug delivery to hair follicles. In ex vivo human skin penetration studies, horizontal skin sections revealed fluorescence deep in the hair follicles. Although the organogel has higher affinity to the lipidic follicular area than an aqueous suspension of NPs, it did not seem to improve penetration of the NPs along the hair shaft. The results proved that it was possible to achieve preferential targeting to the pilosebaceous unit using polymeric NPs formulated either into the aqueous suspension or semisolid topical formulation.

  7. Graphene oxide catalyzed cis-trans isomerization of azobenzene

    Directory of Open Access Journals (Sweden)

    Dongha Shin

    2014-09-01

    Full Text Available We report the fast cis-trans isomerization of an amine-substituted azobenzene catalyzed by graphene oxide (GO, where the amine functionality facilitates the charge transfer from azobenzene to graphene oxide in contrast to non-substituted azobenzene. This catalytic effect was not observed in stilbene analogues, which strongly supports the existence of different isomerization pathways between azobenzene and stilbene. The graphene oxide catalyzed isomerization is expected to be useful as a new photoisomerization based sensing platform complementary to GO-based fluorescence quenching methods.

  8. Cooperative Switching in Nanofibers of Azobenzene Oligomers

    Science.gov (United States)

    Weber, Christopher; Liebig, Tobias; Gensler, Manuel; Zykov, Anton; Pithan, Linus; Rabe, Jürgen P.; Hecht, Stefan; Bléger, David; Kowarik, Stefan

    2016-05-01

    Next-generation molecular devices and machines demand the integration of molecular switches into hierarchical assemblies to amplify the response of the system from the molecular level to the meso- or macro-scale. Here, we demonstrate that multi-azobenzene oligomers can assemble to form robust supramolecular nanofibers in which they can be switched repeatedly between the E- and Z-configuration. While in isolated oligomers the azobenzene units undergo reversible photoisomerization independently, in the nanofibers they are coupled via intermolecular interactions and switch cooperatively as evidenced by unusual thermal and kinetic behavior. We find that the photoisomerization rate from the Z-isomer to the E-isomer depends on the fraction of Z-azobenzene in the nanofibers, and is increased by more than a factor of 4 in Z-rich fibers when compared to E-rich fibers. This demonstrates the great potential of coupling individual photochromic units for increasing their quantum efficiency in the solid state with potential relevance for actuation and sensing.

  9. Pt nanoparticles embedded on reduced graphite oxide with excellent electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, Gengan, E-mail: saravanan3che@gmail.com [Central University of Tamil Nadu, Department of Chemistry, Thiruvarur, 610101 (India); Mohan, Subramanian, E-mail: sanjnamohan@yahoo.com [EMFT Division, CSIR-Central Electrochemical Research Institute, Tamilnadu, Karaikudi 630 006 (India)

    2016-11-15

    Graphical abstract: RGO/Nano Pt: This study explore the electrocatalytic oxidation performance of reduced graphite oxide (RGO) anchored with nano Pt. This graphene composite reveal superior electrooxidation performance that is associated with the flexible RGO matrix and the uniform distribution of Pt particles, which enhances surface area, fast electron transfer, uniform particle size distribution; consequently, the RGO matrix provides more stability to Pt particles during electrooxidation process. Display Omitted - Highlights: • Greener electrochemical method applied to prepare well-dispersed Pt-rGO. • Pt-rGO large surface area excellent charge transfer better catalytic activity. • Low-cost highly efficient carbon-based electrodes for direct formic acid fuel cell. • rGO an excellent support to anchor Pt nanoparticles on its surface. • Pt-rGO distinctly enhanced current density towards formic acid electrooxidation. - Abstract: Economically viable electrochemical approach has been developed for the synthesis of Pt nanoparticles through electrodeposition technique on the surface of Reduced Graphite Oxide (RGO). Pt nanoparticles embedded Reduced Graphite Oxide on Glassy Carbon Electrode are employed (Pt-rGO/GCE) for electrooxidation of formic acid. Scanning Electron Microscopy (SEM) image and Transmission Electron Microscopy (TEM) image shows that reduced graphite oxide act as an excellent support to anchor the Pt nanoparticles. Cyclic voltammetry results confirmed that Pt-rGO/GCE enhanced current density as many folds than that of bare platinum electrode for electrooxidation of formic acid. X-ray diffraction (XRD) patterns for Pt-graphene composites illustrate that peaks at 69.15 and 23° for Pt (220) and graphene carbon (002) respectively. {sup 13}C NMR spectrum of the electrochemically reduced graphite oxide resonance contains only one peak at 133 ppm which retains graphitic sp{sup 2} carbon and does not contain any oxygenated carbon and the carbonyl

  10. Oxidation behavior of Cu nanoparticles embedded into semiconductive TiO{sub 2} matrix

    Energy Technology Data Exchange (ETDEWEB)

    Stranak, Vitezslav, E-mail: stranak@prf.jcu.cz [University of South Bohemia, Faculty of Science, Branisovska 31, 37005 Ceske Budejovice (Czech Republic); Drache, Steffen; Wulff, Harm [University of Greifswald, Institute of Physics, Felix-Hausdorff-Str. 6, 17489 Greifswald (Germany); Hubicka, Zdenek [Institute of Physics, Academy of Science of the Czech Republic, Na Slovance 2, 18221 Prague (Czech Republic); Tichy, Milan [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague (Czech Republic); Kruth, Angela [Leibniz Institute for Plasma Science and Technology, INP Greifswald e.V., Felix-Hausdorff-Straße 2, 17489 Greifswald (Germany); Helm, Christiane A.; Hippler, Rainer [University of Greifswald, Institute of Physics, Felix-Hausdorff-Str. 6, 17489 Greifswald (Germany)

    2015-08-31

    Metal nanoparticles embedded into a semiconductive matrix represent a promising material for widely sought advanced technological applications. We focused our interest on the preparation of TiO{sub 2} matrix with embedded Cu nanoparticles. In particular, we studied the effect of reactive discharge (Ar/O{sub 2}) exposition on copper oxidation, which can result in two stable forms: cuprous oxide (Cu{sub 2}O) and cupric oxide (CuO). Copper nanoparticles, of size in range 10–50 nm, were produced by magnetron sputtering in combination with gas aggregation. The beam of Cu nanoparticles was impinging onto a silicon substrate which was directly exposed to a reactive Ar/O{sub 2} magnetron discharge providing sputtering of Ti target at the same time. The properties of deposited nanocomposite Cu({sub x}O)–TiO{sub 2} were investigated by X-ray photoelectron spectroscopy, grazing incidence X-ray diffractometry, X-ray reflectometry and scanning electron microscopy techniques to reveal the nanocomposite properties and to understand the oxidation process of embedded Cu nanoparticles. It was found that CuO is preferentially formed if copper is exposed to active oxygen species (O{sup +}, O{sup −}, O{sup ⁎} etc.) produced in the reactive magnetron discharge. On the other hand, Cu{sub 2}O was observed in the case of copper reaction in ambient Ar/O{sub 2} atmosphere. As a result, two possible copper oxidation mechanisms are proposed, employing chemical kinetics. - Highlights: • Cu–TiO{sub 2} nanocomposite was prepared by plasma assisted methods. • Embedded Cu always occurs in oxidized phase depending on the way of oxidation. • CuO is formed if copper is exposed to active oxygen species produced in Ar/O{sub 2} discharge. • Cu{sub 2}O appears in the case of copper reaction in an ambient oxygen-based atmosphere. • Two possible copper oxidation mechanisms are proposed.

  11. Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action

    Directory of Open Access Journals (Sweden)

    Nagy A

    2011-09-01

    Full Text Available Amber Nagy1, Alistair Harrison2, Supriya Sabbani3, Robert S Munson, Jr2, Prabir K Dutta3, W James Waldman11Department of Pathology, The Ohio State University; 2Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, 3Department of Chemistry, The Ohio State University, Columbus, OH, USABackground: The focus of this study is on the antibacterial properties of silver nanoparticles embedded within a zeolite membrane (AgNP-ZM.Methods and Results: These membranes were effective in killing Escherichia coli and were bacteriostatic against methicillin-resistant Staphylococcus aureus. E. coli suspended in Luria Bertani (LB broth and isolated from physical contact with the membrane were also killed. Elemental analysis indicated slow release of Ag+ from the AgNP-ZM into the LB broth. The E. coli killing efficiency of AgNP-ZM was found to decrease with repeated use, and this was correlated with decreased release of silver ions with each use of the support. Gene expression microarrays revealed upregulation of several antioxidant genes as well as genes coding for metal transport, metal reduction, and ATPase pumps in response to silver ions released from AgNP-ZM. Gene expression of iron transporters was reduced, and increased expression of ferrochelatase was observed. In addition, upregulation of multiple antibiotic resistance genes was demonstrated. The expression levels of multicopper oxidase, glutaredoxin, and thioredoxin decreased with each support use, reflecting the lower amounts of Ag+ released from the membrane. The antibacterial mechanism of AgNP-ZM is proposed to be related to the exhaustion of antioxidant capacity.Conclusion: These results indicate that AgNP-ZM provide a novel matrix for gradual release of Ag+.Keywords: silver nanoparticles, zeolite, antibacterial agent, oxidative stress

  12. Subsurface Synthesis and Characterization of Ag Nanoparticles Embedded in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Vilayur Ganapathy, Subramanian; Devaraj, Arun; Colby, Robert J.; Pandey, Archana; Varga, Tamas; Shutthanandan, V.; Manandhar, Sandeep; El-Khoury, Patrick Z.; Kayani, Asghar N.; Hess, Wayne P.; Thevuthasan, Suntharampillai

    2013-03-08

    Metal nanoparticles exhibit localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the dielectric medium surrounding it. LSPR causes field enhancement near the surface of the nanoparticle making them interesting candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix form hotspots which are prime locations for LSPR spectroscopy and sensing. This study involves synthesizing partially buried Ag nanoparticles in MgO and investigating the characteristics of this material system. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 10000C for 10 and 30 hours. A detailed optical and structural characterization was carried out to understand the evolution of Ag nanoparticle microstructure and size distribution inside the MgO matrix. Micro x-ray diffraction (MicroXRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes as seen from aberration corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  13. Optically induced surface relief phenomena in azobenzene polymers

    DEFF Research Database (Denmark)

    Holme, NCR; Nikolova, Ludmila; Hvilsted, Søren

    1999-01-01

    Azobenzene polymers and oligomers show intriguing surface relief features when irradiated with polarized laser light. We show through atomic force microscopic investigation of side-chain azobenzene polymers after irradiation through an amplitude mask that large peaks or trenches result depending ...

  14. Rewritable azobenzene polyester for polarization holographic data storage

    DEFF Research Database (Denmark)

    Kerekes, A; Sajti, Sz.; Loerincz, Emoeke;

    2000-01-01

    Optical storage properties of thin azobenzene side-chain polyester films were examined by polarization holographic measurements. The new amorphous polyester film is the candidate material for the purpose of rewritable holographic memory system. Temporal formation of anisotropic and topographic...... and erasing was tested. The ability of azobenzene polyester for rewriting was found satisfactory after many writing-erasing cycles....

  15. The still unknown azobenzene - Wavelength dependent photoanisotropy in amorphous azobenzene polymers

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Jensen, Ole Bjarlin; Tidemand-Lichtenberg, Peter

    2013-01-01

    We demonstrate a new type of anisotropy in thin films of amorphous azobenzene polymers induced between 570 and 633 nm, where the absorbance in the film is on the order of 0.05. The anisotropy has a pronounced radial contribution. This observation points to an additional mechanism for the alignment...

  16. Phase decomposition of AuFe alloy nanoparticles embedded in silica matrix under swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pannu, Compesh, E-mail: Compesh@gmail.com [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi (India); Bala, Manju; Singh, U.B. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi (India); Srivastava, S.K. [Department of Physics and Astronomy, Indian Institute of Technology Kharagpur, Kharagpur (India); Kabiraj, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi (India); Avasthi, D.K. [Amity University, Noida 201313, Uttar Pradesh (India)

    2016-07-15

    AuFe alloy nanoparticles embedded in silica matrix are synthesized using atom beam sputtering technique and subsequently irradiated with 100 MeV Au ions at various fluences ranging from 1 × 10{sup 13} to 6 × 10{sup 13} ions/cm{sup 2}. The X-ray diffraction, absorption spectroscopy, X-ray photo electron spectroscopy and transmission electron microscopy results show that swift heavy ion irradiation leads to decomposition of AuFe alloy nanoparticles from surface region and subsequent reprecipitation of Au and Fe nanoparticles occur. The process of phase decomposition and reprecipitation of individual element nanoparticles is explained on the basis of inelastic thermal spike model.

  17. Thin films of metal-organic compounds and metal nanoparticle-embedded polymers for nonlinear optical applications

    Indian Academy of Sciences (India)

    S Philip Anthony; Shatabdi Porel; D Narayana Rao; T P Radhakrishnan

    2005-11-01

    Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which form perfectly polar assemblies in their crystalline state are found to organize as uniaxially oriented crystallites in vapor deposited thin films on glass substrate. Optical second harmonic generation from these films is investigated. A simple protocol is developed for the in-situ fabrication of highly monodisperse silver nanoparticles in a polymer film matrix. The methodology can be used to produce free-standing films. Optical limiting capability of the nanoparticle-embedded polymer film is demonstrated.

  18. Dispersion of "guava-like" silica/polyacrylate nanocomposite particles in polyacrylate matrix

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A series of "guava-like" silica/polyacrylate nanocomposite particles with close silica content and different grafting degrees were prepared via mini-emulsion polymerization using 3-(trimethoxysilyl)propyl methacrylate (TSPM) modified silica/acrylate dispersion.The silica/polyacrylate composite particles were melt-mixed with unfilled polyacrylate (PA) resin to prepare corresponding silica/polyacrylate molded composites and the dispersion mechanism of these silica particles from the "guava-like" composite particles into polyacrylate matrix was studied.It was calculated that about 110 silica particles were accumulated in the bulk of every silica/polyacrylate composite latex particle.Both the solubility tests of silica/polyacrylate composite latex particles in tetrahydrofuran (THF) and the section transmission electron microscope (TEM) micrographs of silica/polyacrylate molded composites indicated that the grafting degree of silica particles played a crucial role in the dispersion of silica/polyacrylate composite particles into the polyacrylate matrix.When the grafting degree of polyacrylate onto silica was in a moderate range (ca.20%-70%),almost all of silica particles in these "guava-like" composite particles were dispersed into the polyacrylate matrix in a primary-particle-level.However,at a lower grafting degree,massive silica aggregations were found in molded composites because of the lack of steric protection.At a greater grafting degree (i.e.,200%),a cross-linked network was formed in the silica/polyacrylate composite particles,which prevented the dispersion of composite particles in THF and polyacrylate matrix as primary particles.

  19. Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermo-optical devices

    Science.gov (United States)

    Jiménez de Castro, M.; Cabello, F.; Toudert, J.; Serna, R.; Haro-Poniatowski, E.

    2014-09-01

    The optical transmission at a fixed visible wavelength of Bi nanoparticles embedded in a dielectric is known to show a sharp hysteretic evolution as a function of the temperature due to the reversible melting-solidification of the nanoparticles. In this work, we explore the temperature-dependent optical response of Bi nanoparticles embedded in a doped germanate glass (GeO2-Al2O3-Na2O) in a broad range from the visible to the near infrared. The transmission contrast induced by melting of the nanoparticles is shown to be strongly wavelength-dependent and evolves from positive to negative as the wavelength increases. This behaviour is well modelled using effective medium calculations, assuming that the nanoparticles size, shape, and distribution are unmodified upon melting, while their dielectric function turns from that of solid Bi to that of liquid Bi thus modifying markedly their optical response. These results open a route to the spectral tailoring of the thermo-optical response of Bi nanoparticles-based materials, which can be profitable for the engineering of wavelength-selective thermo-optical modulators and filters with optimized amplitude of modulation and wavelength dependence.

  20. Frequency-dependent magnetic susceptibility of magnetite and cobalt ferrite nanoparticles embedded in PAA hydrogel.

    Science.gov (United States)

    van Berkum, Susanne; Dee, Joris T; Philipse, Albert P; Erné, Ben H

    2013-05-14

    Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid)-based hydrogels (PAA). To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network.

  1. Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel

    Directory of Open Access Journals (Sweden)

    Ben H. Erné

    2013-05-01

    Full Text Available Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid-based hydrogels (PAA. To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network.

  2. Polarisation-sensitive optical elements in azobenzene polyesters and peptides

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Dam-Hansen, Carsten; Berg, Rolf Henrik;

    2006-01-01

    In this article, we describe fabrication of polarisation holographic optical elements in azobenzene polyesters. Both liquid crystalline and amorphous side-chain polyesters have been utilised. Diffractive optical elements such as lenses and gratings that are sensitive to the polarisation...... of the incident light have been fabricated with polarisation holography. Computer-generated optical elements and patterns have also been written with a single polarised laser beam. Recording of polarisation defects enabling easy visualisation is also shown to be feasible in azobenzene polyesters....

  3. Holographic Gratings in Azobenzene Side-Chain Polymethacrylates

    DEFF Research Database (Denmark)

    Andruzzi, Luisa; Altomare, Angelina; Ciardelli, Francesco

    1999-01-01

    Optical storage properties of thin unoriented liquid crystalline and amorphous side-chain azobenzene polymethacrylate films are examined by polarization holographic measurements. The investigated materials are free radical copolymers derived from two photochromic monomers, 6-(4-oxy-4'-cyanoazoben......Optical storage properties of thin unoriented liquid crystalline and amorphous side-chain azobenzene polymethacrylate films are examined by polarization holographic measurements. The investigated materials are free radical copolymers derived from two photochromic monomers, 6-(4-oxy-4...

  4. Effect of deposition time on structure of silver nanoparticles embedded in diamond-like carbon matrix made by RF-PECVD method

    Directory of Open Access Journals (Sweden)

    S Abdolghaderi

    2015-01-01

    Full Text Available Silver nanoparticles embedded in DLC matrix, were prepared by co-deposition of RF-Sputtering and RF-PECVD method from acetylene gas and sliver target. The RF power and initial pressure of chamber were fixed. Variations of morphology, optical and electrical properties of these films over time were investigated

  5. Silver nanoparticles embedded in amine-functionalized silicate sol-gel network assembly for sensing cysteine, adenosine and NADH

    Energy Technology Data Exchange (ETDEWEB)

    Maduraiveeran, Govindhan; Ramaraj, Ramasamy, E-mail: ramarajr@yahoo.com [Madurai Kamaraj University, Centre for Photoelectrochemistry, School of Chemistry (India)

    2011-09-15

    Silver nanoparticles embedded in amine-functionalized silicate sol-gel network were synthesized and used for sensing biomolecules such as cysteine, adenosine, and {beta}-nicotinamide adenine dinucleotide (NADH). The sensing of these biomolecules by the assembly of silver nanoparticles was triggered by the optical response of the surface plasmon resonance (SPR) of the silver nanoparticles. The optical sensor exhibited the lowest detection limit (LOD) of 5, 20, and 5 {mu}M for cysteine, adenosine, and NADH, respectively. The sensing of biomolecules in the micromolar range by using the amine-functionalized silicate sol-gel embedded silver nanoparticles was studied in the presence of interference molecules like uridine, glycine, guanine, and guanosine. Thus, the present approach might open up a new avenue for the development of silver nanoparticles-based optical sensor devices for biomolecules.

  6. Preparation and optical properties of GaSb nanoparticles embedded in SiO2 composite films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The composite films of GaSb nanoparticles embedded in SiO2 matrices were fabricated by radio-frequency magnetron co-sputtering. Transmission electron microscope and X-ray diffraction pattern indicate that the GaSb nanoparticles were uniformly dispersed in SiO2 matrices. Room temperature transmission spectra exhibit a blue shift of about 2.73 eV. The blue shift increases with decreasing size of GaSb nanoparticles, suggesting the existence of quantum size effects. Room temperature Raman spectra show that there is a larger Raman peak red shift and broadening of the composite films than that of bulk GaSb. This phenomenon is explained by photon confinement effect and tensile stress effect.

  7. Effect of MgO nanoparticles embedded into Bi-2212/Ag tapes on the microstructure and superconducting properties

    Energy Technology Data Exchange (ETDEWEB)

    Ilyushechkin, Alexander Y. [CSIRO, Pullenvale 4069, QLD (Australia); Agranovski, Igor E., E-mail: i.agranovski@griffith.edu.a [Griffith School of Engineering, Griffith University, 170 Kessels Rd, Nathan, Brisbane 4111, QLD (Australia); Altman, Igor S. [Griffith School of Engineering, Griffith University, 170 Kessels Rd, Nathan, Brisbane 4111, QLD (Australia); Institute of Advanced Machinery and Design, Seoul National University, Seoul 151-742 (Korea, Republic of); Choi, Mansoo [Institute of Advanced Machinery and Design, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2010-02-25

    Magnesium oxide nanoparticles embedded into Bi-2212/Ag tapes may significantly improve transport properties of the tapes in magnetic fields as flux pinning centres. The effect of the addition of ultra-fine MgO particles, obtained by Mg combustion, in Bi-2212/Ag tapes was investigated in order to improve critical current densities of the tapes in magnetic fields. Optimization of the MgO concentration and uniformity of the MgO particles distribution across the tapes were also investigated. Microstructure of Bi-2212 ceramic layer and J{sub c} of the tapes were enhanced with addition of MgO nanoparticles with concentrations of up to 4 wt.%. Higher MgO concentrations lead to degradation of the samples' microstructure and a corresponding decrease of absolute J{sub c} values in self-field.

  8. Core-shell Au/Ag nanoparticles embedded in silicate sol-gel network for sensor application towards hydrogen peroxide

    Indian Academy of Sciences (India)

    Shanmugam Manivannan; Ramasamy Ramaraj

    2009-09-01

    The electrocatalytic activity of core-shell Au100-Ag ( = 15, 27, 46, and 60) bimetallic nanoparticles embedded in methyl functionalized silicate MTMOS network towards the reduction of hydrogen peroxide was investigated by using cyclic voltammetry and chronoamperometric techniques. Core-shell Au/Ag bimetallic nanoparticles were characterized by absorption spectra and HRTEM. The MTMOS silicate sol-gel embedded Au73Ag27 core-shell nanoparticles modified electrode showed better synergistic electrocatalytic effect towards the reduction of hydrogen peroxide when compared to monometal MTMOS-Aunps and MTMOS-Agnps modified electrodes. These modified electrodes were studied without immobilizing any enzyme in the MTMOS sol-gel matrix. The present study highlights the influence of molar composition of Ag nanoparticles in the Au/Ag bimetallic composition towards the electrocatalytic reduction and sensing of hydrogen peroxide in comparison to monometal Au and Ag nanoparticles.

  9. Fabrication of ZnO nanoparticles-embedded hydrogenated diamond-like carbon films by electrochemical deposition technique

    Institute of Scientific and Technical Information of China (English)

    Zhang Pei-Zeng; Li Rui-Shan; Pan Xiao-Jun; Xie Er-Qing

    2013-01-01

    ZnO nanoparticles-embedded hydrogenated diamond-like carbon (ZnO-DLC) films have been prepared by electrochemical deposition in ambient conditions.The morphology,composition,and microstructure of the films have been investigated.The results show that the resultant films are hydrogenated diamond-like carbon films embedded with ZnO nanoparticles in wurtzite structure,and the content and size of the ZnO nanoparticles increase with increasing deposition voltage,which are confirmed by X-ray photoelectron spectroscopy (XPS),Raman,and transmission electron microscope (TEM).Furthermore,a possible mechanism used to describe the growth process of ZnO-DLC films by electrochemical deposition is also discussed.

  10. THEORETICAL DEPENDENCE OF LONG WAVELENGTH PHOTOEMISSION UPON THE SIZE OF Ag NANOPARTICLES EMBEDDED IN BaO SEMICONDUCTOR THIN FILM

    Institute of Scientific and Technical Information of China (English)

    杨海; 蔡武德; 许北雪; 吴锦雷

    2001-01-01

    The dependence of long wavelength photoemission upon the size of Ag nanoparticles embedded in a BaO semicon- ductor is predicted and discussed theoretically. The calculated results show that the increase in the diameter of the Ag nanoparticle, in the range from 1.5 to 37.0nm, leads to the emergence of a roughly Gaussian form of the photoemission spectra and the peaks become markedly narrower. The results also show that the increase in the diameter of the Agnanoparticle leads to the decrease of the long wavelength threshold. The incident light wavelength corresponding to the peak value of the photoemission gets bigger with the increase of the size of Ag nanoparticles, thus showing a redshift.

  11. Active systems based on silver-montmorillonite nanoparticles embedded into bio-based polymer matrices for packaging applications.

    Science.gov (United States)

    Incoronato, A L; Buonocore, G G; Conte, A; Lavorgna, M; Nobile, M A Del

    2010-12-01

    Silver-montmorillonite (Ag-MMT) antimicrobial nanoparticles were obtained by allowing silver ions from nitrate solutions to replace the Na(+) of natural montmorillonite and to be reduced by thermal treatment. The Ag-MMT nanoparticles were embedded in agar, zein, and poly(ε-caprolactone) polymer matrices. These nanocomposites were tested in vitro with a three-strain cocktail of Pseudomonas spp. to assess antimicrobial effectiveness. The results indicate that Ag-MMT nanoparticles embedded into agar may have antimicrobial activity against selected spoilage microorganisms. No antimicrobial effects were recorded with active zein and poly(ε-caprolactone). The water content of the polymeric matrix was the key parameter associated with antimicrobial effectiveness of this active system intended for food packaging applications.

  12. Light scattering measurement of sodium polyacrylate products

    Science.gov (United States)

    Lama, Nisha; Norwood, David; Boone, Steven; Massie-Boyer, Valerie

    2015-03-01

    In the presentation, we will describe the use of a multi-detector HPLC incorporating the DAWN EOS multi-angle laser light scattering (MALLS) detector to measure the properties such as molecular weight, RMS radius, contour and persistence length and polydispersity of sodium polyacrylate products. The samples of sodium polyacrylate are used in various industries as thickening agents, coating dispersants, artificial snow, laundry detergent and disposable diapers. Data and results obtained from the experiment will be presented.

  13. Plasmonic properties of Ag nanoparticles embedded in GeO2-SiO2 matrix by atom beam sputtering.

    Science.gov (United States)

    Mohapatra, Satyabrata

    2016-02-01

    Nanocomposite thin films containing Ag nanoparticles embedded in the GeO2-SiO2 matrix were synthesized by the atom beam co-sputtering technique. The structural, optical and plasmonic properties and the chemical composition of the nanocomposite thin films were studied by transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX), UV-visible absorption spectroscopy and X-ray photoelectron spectroscopy (XPS). UV-visible absorption studies on Ag-SiO2 nanocomposites revealed the presence of a strong localized surface plasmon resonance (LSPR) peak characteristic of Ag nanoparticles at 413 nm, which showed a blue shift of 26 nm (413 to 387 nm) along with a significant broadening and drastic decrease in intensity with the incorporation of 16 at% of Ge into the SiO2 matrix. TEM studies on Ag-GeO2-SiO2 nanocomposite thin films confirmed the presence of Ag nanoparticles with an average size of 3.8 nm in addition to their aggregates with an average size of 16.2 nm. Thermal annealing in air resulted in strong enhancement in the intensity of the LSPR peak, which showed a regular red shift of 51 nm (from 387 to 438 nm) with the increase in annealing temperature up to 500 °C. XPS studies showed that annealing in air resulted in oxidation of excess Ge atoms in the nanocomposite into GeO2. Our work demonstrates the possibility of controllably tuning the LSPR of Ag nanoparticles embedded in the GeO2-SiO2 matrix by single-step thermal annealing, which is interesting for optical applications.

  14. Review of the recent progress in photoresponsive molecularly imprinted polymers containing azobenzene chromophores.

    Science.gov (United States)

    Wei, Yu-bo; Tang, Qian; Gong, Cheng-bin; Lam, Michael Hon-Wah

    2015-11-05

    Photoresponsive molecularly imprinted polymers (PMIPs) containing azobenzene have received wide research attention in recent years and made notable achievements. This article reviews the recent developments on PMIPs containing azobenzene. Topics include the following: (i) brief introduction of azobenzene, molecularly imprinted polymers, and PMIPs containing azobenzene; (ii) progress in functional monomers, cross-linkers, and polymerization conditions; (iii) preparation methods, properties, applications, as well as advantages and disadvantages of conventional PMIPs; (iv) substrate, preparation method, and applications of photoresponsive surface molecularly imprinted polymers; and (v) some perspectives for further development of PMIPs containing azobenzene.

  15. Multilevel charging and discharging mechanisms of nonvolatile memory devices based on nanocomposites consisting of monolayered Au nanoparticles embedded in a polystyrene layer

    Science.gov (United States)

    Yeol Yun, Dong; Hyun Lee, Nam; Seong Kim, Hak; Wook Lee, Sang; Whan Kim, Tae

    2014-01-01

    Capacitance-voltage (C-V) curves for Al/Au nanoparticles embedded in a polystyrene (PS) layer/p-Si devices at 300 K showed a metal-insulator-semiconductor behavior with flat-band voltage shifts of the C-V curves due to the existence of charge trapping. Memory windows between 2.6 and 9.9 V were observed at different sweep voltages, indicative of multilevel behavior. Capacitance-time measurements demonstrated that the charge-trapping capability of Au nanoparticles embedded in a PS layer was maintained for retention times larger than 1 × 104 s without significant degradation. The multilevel charging and discharging mechanisms of the memory devices are described on the basis of the experimental results.

  16. Approximate photochemical dynamics of azobenzene with reactive force fields.

    Science.gov (United States)

    Li, Yan; Hartke, Bernd

    2013-12-14

    We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).

  17. Approximate photochemical dynamics of azobenzene with reactive force fields

    Science.gov (United States)

    Li, Yan; Hartke, Bernd

    2013-12-01

    We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).

  18. Mechano-synthesis, structural and magnetic characterization, and heat release of α-Fe nanoparticles embedded in a wüstite matrix

    Energy Technology Data Exchange (ETDEWEB)

    Batista, S.O.S.; Morales, M.A.; Santos, W.C. dos; Iglesias, C.A. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Urca, 22290-180 Rio de Janeiro, RJ (Brazil); Carriço, A.S. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Bohn, F., E-mail: felipebohn@gmail.com [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Medeiros, S.N. de [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil)

    2015-10-01

    We report a study of the structural and magnetic properties, as well as of the heat release, of an iron/wüstite composite, prepared from iron powder and water by high energy mechanical milling. We identify that the produced sample consists of α-Fe nanoparticles embedded in a wüstite matrix and has high stability in time. Moreover, we observe that it presents noticeable features, as exchange bias effect at low temperatures and, when an alternating magnetic field is applied, its temperature reaches ∼46 °C in ∼600 s. Thus, the results and the possibility of tuning the magnetic properties of α-Fe nanoparticles embedded in a wüstite matrix, through interface interactions, place this system as a very attractive candidate for biomedical applications such as magnetic hyperthermia agent for cancer therapy. - Highlights: • We investigate the structural and magnetic properties, as well as the heat release, of an iron/wüstite composite. • The samples are produced using high energy mechanical milling. • Fe nanoparticles embedded in a wüstite matrix have high stability in time. • When an alternating magnetic field is applied, the sample temperature increases up to ∼46°C. • The composite is an interesting candidate for biomedical applications, such as magnetic hyperthermia agent for cancer therapy.

  19. Gold nanoparticle-embedded silk protein-ZnO nanorod hybrids for flexible bio-photonic devices

    Science.gov (United States)

    Gogurla, Narendar; Kundu, Subhas C.; Ray, Samit K.

    2017-04-01

    Silk protein has been used as a biopolymer substrate for flexible photonic devices. Here, we demonstrate ZnO nanorod array hybrid photodetectors on Au nanoparticle-embedded silk protein for flexible optoelectronics. Hybrid samples exhibit optical absorption at the band edge of ZnO as well as plasmonic energy due to Au nanoparticles, making them attractive for selective UV and visible wavelength detection. The device prepared on Au-silk protein shows a much lower dark current and a higher photo to dark-current ratio of ∼105 as compared to the control sample without Au nanoparticles. The hybrid device also exhibits a higher specific detectivity due to higher responsivity arising from the photo-generated hole trapping by Au nanoparticles. Sharp pulses in the transient photocurrent have been observed in devices prepared on glass and Au-silk protein substrates due to the light induced pyroelectric effect of ZnO, enabling the demonstration of self-powered photodetectors at zero bias. Flexible hybrid detectors have been demonstrated on Au-silk/polyethylene terephthalate substrates, exhibiting characteristics similar to those fabricated on rigid glass substrates. A study of the performance of photodetectors with different bending angles indicates very good mechanical stability of silk protein based flexible devices. This novel concept of ZnO nanorod array photodetectors on a natural silk protein platform provides an opportunity to realize integrated flexible and self-powered bio-photonic devices for medical applications in near future.

  20. Two-Solvent Method Synthesis of NiO/ZnO Nanoparticles Embedded in Mesoporous SBA-15: Photocatalytic Properties Study

    Science.gov (United States)

    Dai, Peng; Yan, Tao-tao; Yu, Xin-xin; Bai, Zhi-man; Wu, Ming-zai

    2016-04-01

    Different loadings of NiO/ZnO nanoparticles embedded in mesoporous silica (SBA-15) were prepared via a two-solvent method with the ordered hexagonal mesoporous structure of SBA-15 kept. X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, diffusive reflective UV-vis spectroscopy, and N2 adsorption porosimetry were employed to characterize the nanocomposites. The results indicate that the ordered hexagonal mesoporous structure of SBA-15 is kept and the absorption band edges of the nanocomposites shift into the ultraviolet light regime. The photocatalytic activity of our samples for degradation of methylene orange was investigated under UV light irradiation, and the results show that the nanocomposites have higher photodegradation ability toward methylene orange than commercial pure P-25. The photocatalytic activity of the nanocomposites was found to be dependent on both the adsorption ability of the SBA-15 and the photocatalytic activity of NiO-ZnO nanoparticles encapsulated in SBA-15. In addition, there is an optimal loading of NiO-ZnO nanoparticles. Too high or low loading will lower the photodegradation ability of the nanocomposites.

  1. MOF-Derived Hollow Co9 S8 Nanoparticles Embedded in Graphitic Carbon Nanocages with Superior Li-Ion Storage.

    Science.gov (United States)

    Liu, Jun; Wu, Chao; Xiao, Dongdong; Kopold, Peter; Gu, Lin; van Aken, Peter A; Maier, Joachim; Yu, Yan

    2016-05-01

    Novel electrode materials consisting of hollow cobalt sulfide nanoparticles embedded in graphitic carbon nanocages (HCSP⊂GCC) are facilely synthesized by a top-down route applying room-temperature synthesized Co-based zeolitic imidazolate framework (ZIF-67) as the template. Owing to the good mechanical flexibility and pronounced structure stability of carbon nanocages-encapsulated Co9 S8 , the as-obtained HCSP⊂GCC exhibit superior Li-ion storage. Working in the voltage of 1.0-3.0 V, they display a very high energy density (707 Wh kg(-1) ), superior rate capability (reversible capabilities of 536, 489, 438, 393, 345, and 278 mA h g(-1) at 0.2, 0.5, 1, 2, 5, and 10C, respectively), and stable cycling performance (≈26% capacity loss after long 150 cycles at 1C with a capacity retention of 365 mA h g(-1) ). When the work voltage is extended into 0.01-3.0 V, a higher stable capacity of 1600 mA h g(-1) at a current density of 100 mA g(-1) is still achieved.

  2. Optical nonlinearity and-ultrafast dynamics of ion exchanged silver nanoparticles embedded in soda-lime silicate glass

    Institute of Scientific and Technical Information of China (English)

    YANG XiuChun; LI ZhiHui; LI WeiJie; XU JingXian; DONG ZhiWei; QIAN ShiXiong

    2008-01-01

    Ag nanoparticles embedded in soda-lime silicate glass were fabricated by ion-exchange and subsequently annealing method. Z-scan technique, femtosecond time-resolved optical Kerr effect (OKE) technique and femtosecond pump-probe experiment were used to investigate the effects of laser wavelength and laser pulse duration as well as annealing temperature on the third-order optical nonlinearity and ultrafast dynamics of the composites. It was found that the third-order susceptibility of Ag nanoparticles composite glass measured by 400 nm pulse source is larger than that measured by 800 nm pulse source due to an enhancement effect of local field near surface plasmon resonance of Ag nanoparticles in silicate glass. The third-order optical nonlinearity measured by ns laser source is about two orders of magnitude larger than that measured from fs pulse. The annealing temperature has an important effect on the third-order optical nonlinearity and ultrafast dynamics of the composites. Third-order nonlinear susceptibility upto 10-10 esu and fast relaxation process up to 0.2 ps have been obtained in Ag nanoparticles doped glass,

  3. Enhancement in field emission current density of Ni nanoparticles embedded in thin silica matrix by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Debalaya; Patra, Rajkumar; Srivastava, P.; Ghosh, S., E-mail: santanu1@physics.iitd.ac.in [Nanostech Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Kumar, H. [Nanostech Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Instituto de Física, Universidade de São Paulo, USP, 05508-090 São Paulo, SP (Brazil); Kabiraj, D.; Avasthi, D. K. [Inter University Accelerator Centre, New Delhi 110067 (India); Vayalil, Sarathlal K.; Roth, S. V. [DESY, Petra III, Hamburg (Germany)

    2014-05-07

    The field emission (FE) properties of nickel nanoparticles embedded in thin silica matrix irradiated with 100 MeV Au{sup +7} ions at various fluences are studied here. A large increase in FE current density is observed in the irradiated films as compared to their as deposited counterpart. The dependence of FE properties on irradiation fluence is correlated with surface roughness, density of states of valence band and size distribution of nanoparticles as examined with atomic force microscope, X-ray photoelectron spectroscopy, and grazing incidence small angle x-ray scattering. A current density as high as 0.48 mA/cm{sup 2} at an applied field 15 V/μm has been found for the first time for planar field emitters in the film irradiated with fluence of 5.0 × 10{sup 13} ions/cm{sup 2}. This significant enhancement in the current density is attributed to an optimized size distribution along with highest surface roughness of the same. This new member of field emission family meets most of the requirements of cold cathodes for vacuum micro/nanoelectronic devices.

  4. High-temperature XRD study of thermally induced structural and chemical changes in iron oxide nanoparticles embedded in porous carbons

    Energy Technology Data Exchange (ETDEWEB)

    Schettino, M. A.; Freitas, J. C. C., E-mail: jairccfreitas@yahoo.com.b [Universidade Federal do Espirito Santo, Departamento de Fisica (Brazil); Morigaki, M. K. [Universidade Federal do Espirito Santo, Departamento de Quimica (Brazil); Nunes, E.; Cunha, A. G.; Passamani, E. C.; Emmerich, F. G. [Universidade Federal do Espirito Santo, Departamento de Fisica (Brazil)

    2010-10-15

    Magnetic carbon-based nanomaterials have promising applications in many fields owing to their biocompatibility and thermal/mechanical stability. This study describes a high-temperature X-ray diffraction (XRD) study of the chemical and structural transformations suffered by superparamagnetic iron oxide nanoparticles embedded in porous carbons. The nanoparticles were prepared from the decomposition of iron pentacarbonyl over porous carbons, resulting in nanometer-sized iron oxides homogeneously dispersed into the carbon matrix. The thermally induced changes in these materials were followed by in situ high-temperature XRD, using synchrotron radiation. The growing of the nanoparticles and of the carbon crystallites were first observed, followed by the reduction of the iron oxides to form {alpha}-Fe (at temperatures as low as 400 {sup o}C in some cases) and {gamma}-Fe(C). The temperatures at which these chemical reactions occurred were dependent on the total time spent on heating and on the nature of the iron oxides formed in the as prepared materials. A noticeably large thermal expansion coefficient was also observed for the iron oxide nanocrystals. The formation of austenitic iron, stabilized by the presence of carbon, was found to be only partially reversible upon cooling.

  5. A remarkably efficient azobenzene peptide for holographic information storage

    DEFF Research Database (Denmark)

    Rasmussen, P.H.; Ramanujam, P.S.; Hvilsted, S.

    1999-01-01

    A new family of proline-based azobenzene peptides (DNO) for holographic information storage is reported.:By use of polarization holography, it was found that gratings with extraordinarily high diffraction efficiency (up to 80%) can be recorded in hundreds of milliseconds in a similar to 13-mu m...

  6. Photoinduced Circular Anisotropy in Side-Chain Azobenzene Polyesters

    DEFF Research Database (Denmark)

    Nikolova, L.; Todorov, T.; Ivanov, M.;

    1997-01-01

    We report for the first time the inducing of large circular anisotropy in previously unoriented films of side-chain azobenzene polyesters on illumination with circularly polarized light at a wavelength of 488 nm. The circular dichroism and optical activity are measured simultaneously in real time...

  7. The Volume Holographic Optical Storage Potential in Azobenzene Containing Polymers

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Sanchez, Carlos; Alcalá, Rafael

    2009-01-01

    Volume holographic data storage is one of the most promising techniques to improve both the storage capacity of devices and the transfer data rate. Among the materials proposed as storage data media, azobenzene containing polymers have received much attention. Some of their properties seem to be ...

  8. Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters

    DEFF Research Database (Denmark)

    Nedelchev, L.; Nikolova, L.; Matharu, A.

    2002-01-01

    A study of the propagation of elliptically polarized light and the resulting formation of macroscopic chiral structures in a series of azobenzene side-chain copolyesters, in which the morphology is varied from liquid crystalline to amorphous, is reported. Real-time measurements are presented...

  9. Pattern Formation and Quasicrystal Structure in Azobenzene Polymer Film

    Institute of Scientific and Technical Information of China (English)

    XU Ze-Da; CAI Zhi-Gang; ZHANG Ling-Zhi; LIU Yan-Fa; YANG Jie; SHE Wei-Long; ZHOU Jian-Ying

    2000-01-01

    Pattern formation in azobenzene polymer film by degenerate four-wave mixing is reported. Island arrays with specific patterns are analyzed with scanning electron microscopy and polarizing optical microscopy. It is demonstrated that the control of photo-induced nanostructure sized micropattern in the nonlinear organic film is possible by using properly polarized writing beams with the total incident power exceeding a certain threshold.

  10. Gold-nanoparticle-embedded nafion composite modified on glassy carbon electrode for highly selective detection of arsenic(III).

    Science.gov (United States)

    Huang, Jing-Fang; Chen, Hsiao-Hua

    2013-11-15

    A Cu(I)-ion-mediating Au reduction is proposed for preparing an Au-nanoparticle-embedded nafion (NF(Aunano)) composite. The NF(Aunano) composite consisted of highly dense, well-dispersed, and protecting-agent-free Au nanocrystals with a narrow particle size (4.8±0.1 nm) distribution. The NF(Aunano) composite was characterized as a function of composition and particle size distribution using powder X-ray diffraction, transmission electron microscopy, and electrochemical measurements. It was demonstrated that the NF(Aunano) composite provided high activity in the redox behavior of As(III), and was used as a potential sensing material with low Au loading for As(III) detection. An NF(Aunano)-composite-modified electrode is easy to prepare and regenerate. The dynamic range of a calibration curve from 0.1 to 12.0 μg L(-1) (from 1.3 to 160 nM), y=23.98x (in μA μM(-1))+0.42 (R(2)=0.999), showed linear behavior with a slope of 23.98 μA μM(-1). The detection limit is as low as 0.047 μg L(-1) (0.63 nM). The chelating agent ethylenediaminetetraacetate (EDTA) can selectively chelate with interfering metal ions, forming bulky complexes or bulky anions that are excluded from the NF film. The presence of EDTA effectively eliminated interference from several metal ions, particularly Cu(II) and Hg(II), which are generally considered to be major interferents in the electroanalysis of As(III). This method was applicable to As(III) analysis in three real water samples, namely groundwater, lake, and drinking waters.

  11. Macroscale cobalt-MOFs derived metallic Co nanoparticles embedded in N-doped porous carbon layers as efficient oxygen electrocatalysts

    Science.gov (United States)

    Lu, Hai-Sheng; Zhang, Haimin; Liu, Rongrong; Zhang, Xian; Zhao, Huijun; Wang, Guozhong

    2017-01-01

    Metal-organic frameworks (MOFs) materials have aroused great research interest in different areas owing to their unique properties, such as high surface area, various composition, well-organized framework and controllable porous structure. Controllable fabrication of MOFs materials at macro-scale may be more promising for their large-scale practical applications. Here we report the synthesis of macro-scale Co-MOFs crystals using 1,3,5-benzenetricarboxylic acid (H3BTC) linker in the presence of Co2+, triethylamine (TEA) and nonanoic acid by a facile solvothermal reaction. Further, the as-fabricated Co-MOFs as precursor was pyrolytically treated at different temperatures in N2 atmosphere to obtain metallic Co nanoparticles embedded in N-doped porous carbon layers (denoted as Co@NPC). The results demonstrate that the Co-MOFs derived sample obtained at 900 °C (Co@NPC-900) shows a porous structure (including micropore and mesopore) with a surface area of 110.8 m2 g-1 and an N doping level of 1.62 at.% resulted from TEA in the pyrolysis process. As electrocatalyst, the Co@NPC-900 exhibits bifunctional electrocatalytic activities toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media which are key reactions in some renewable energy technologies such as fuel cells and rechargeable metal-air batteries. The results indicate that the Co@NPC-900 can afford an onset potential of 1.50 V (vs. RHE) and a potential value of 1.61 V (vs. RHE) at a current density of 10 mA cm-2 for ORR and OER with high applicable stability, respectively. The efficient catalytic activity of Co@NPC-900 as bifunctional oxygen electrocatalyst can be ascribed to N doping and embedded metallic Co nanoparticles in carbon structure providing catalytic active sites and porous structure favourable for electrocatalysis-related mass transport.

  12. Geometry Control of Photo-induced Microstructures in an Azobenzene Polymer Film

    Institute of Scientific and Technical Information of China (English)

    Xu Ze-Da; LI Zhen; LIANG Li-Zhen; PENG Zhuo-Lun; CAI Zhi-Gang; ZHOU Jian-Ying; NINULESCU Valerica; ZHANG Ling-Zhi

    2001-01-01

    The mechanisms of photo-induced microstructures in an azobenzene polymer film are presented. They are based on the spatial periodic modulation of optical intensity and the photoisomerization of azobenzene molecules with the movement of main chains. Experiment and theory jointly point out the possibility of photo-inducing desired spatial microstructures in an azobenzene organic polymer via adequate optical lattices and adequately polarized ‘writing' beams.

  13. Two-solvent method synthesis of SnO{sub 2} nanoparticles embedded in SBA-15: Gas-sensing and photocatalytic properties study

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Peng; Zhang, Lili; Li, Guang; Sun, Zhaoqi [Key Laboratory of Information Materials and Device, School of Physics and Materials Science, Anhui University, Hefei 230039 (China); Liu, Xiansong [Engineering Technology Research Center of Magnetic Materials, Hefei 230039 (China); Wu, Mingzai, E-mail: mingzaiwu@gmail.com [Key Laboratory of Information Materials and Device, School of Physics and Materials Science, Anhui University, Hefei 230039 (China); Engineering Technology Research Center of Magnetic Materials, Hefei 230039 (China)

    2014-02-01

    Graphical abstract: Different loadings of SnO{sub 2} nanoparticles embedded in mesoporous silica (sample S1, S2 and S3) show higher response to H{sub 2} at lower operating temperature than pure SnO{sub 2} nanoparticles. - Highlights: • Two-solvent method is firstly used to synthesize SnO{sub 2} nanoparticles embedded in mesoporous silica (SBA-15). • The SnO{sub 2}/SBA-15 nanocomposites show higher response to H{sub 2} at lower operating temperature than pure SnO{sub 2} nanoparticles. • The SnO{sub 2}/SBA-15 nanocomposites have higher photodegradation ability toward methylene blue than pure SnO{sub 2} nanoparticles. - Abstract: Different loadings of SnO{sub 2} nanoparticles embedded in mesoporous silica (SBA-15) were prepared via a two-solvent method with the ordered hexagonal mesoporous structure of SBA-15 kept. X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy and N{sub 2} adsorption porosimetry were employed to characterize the nanocomposites. Compared with pure SnO{sub 2} nanoparticles, the SnO{sub 2}/SBA-15 nanocomposites show higher response to H{sub 2} at lower operating temperature. The photocatalytic activity of as-prepared SnO{sub 2}/SBA-15 for degradation of methylene blue was investigated under UV light irradiation and the results show that the SnO{sub 2}/SBA-15 nanocomposites have higher photodegradation ability toward methylene blue than pure SnO{sub 2} nanoparticles.

  14. Influence of hydrogen bonding on the generation and stabilization of liquid crystalline polyesters, poly(esteramide)s and polyacrylates

    Indian Academy of Sciences (India)

    C K S Pillai; K Y Sandhya; J D Sudha; M Saminathan

    2003-08-01

    Induction and stabilization of liquid crystallinity through hydrogen bonding (HB) are now well-established. Interesting observations made on the influence of HB on LC behaviour of amido diol-based poly(esteramide)s, poly(esteramide)s containing nitro groups and azobenzene mesogen-based polyacrylates will be discussed. The use of amido diol as an important precursor for the synthesis of novel PEAs containing inbuilt di-amide linkage enabled generation of extensive hydrogen bondings between the amide–amide and amide–ester groups which stabilized the mesophase structures of the PEAs. The contributions of hydrogen bonding to the generation and stabilization of mesophase structures were plainly evident from the observation of liquid crystallinity even in PEAs prepared from fully aliphatic amido diols. Replacement of terephthaloyl units by isophthaloyl moiety totally vanquished liquid crystalline phases while biphenylene and naphthalene units did only reduce the transition temperatures as expected. The occurrence of the smectic phases in some of the polymers indicated possibly self-assembly through the formation of hetero intermolecular hydrogen bonded networks. A smectic polymorphism and in addition, a smectic-to-nematic transition, were observed in the monomers and polymers based on 1,4-phenylene[bis-(3-nitroanthranilidic acid)] containing nitro groups. A smectic polymorphism was also observed as a combined effect of hydrogen bonded carboxyl groups and laterally substituted alkyl side chains in the case of azobenzene mesogen containing side chain polyacrylates. It was further shown that the presence of the mesophase enhances the non-linear optical (NLO) response of these polymers.

  15. Co-Rich ZnCoO Nanoparticles Embedded in Wurtzite Zn1-xCoxO Thin Films: Possible Origin of Superconductivity.

    Science.gov (United States)

    Zeng, Yu-Jia; Gauquelin, Nicolas; Li, Dan-Ying; Ruan, Shuang-Chen; He, Hai-Ping; Egoavil, Ricardo; Ye, Zhi-Zhen; Verbeeck, Johan; Hadermann, Joke; Van Bael, Margriet J; Van Haesendonck, Chris

    2015-10-14

    Co-rich ZnCoO nanoparticles embedded in wurtzite Zn0.7Co0.3O thin films are grown by pulsed laser deposition on a Si substrate. Local superconductivity with an onset Tc at 5.9 K is demonstrated in the hybrid system. The unexpected superconductivity probably results from Co3+ in the Co-rich ZnCoO nanoparticles or from the interface between the Co-rich nanoparticles and the Zn0.7Co0.3O matrix.

  16. Polymer scaffolds bearing azobenzene - Potential for optical information storage

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Ramanujam, P.S.

    2001-01-01

    The fundamental optical storage mechanism of the laser light addressable azobenzene moiety is briefly introduced. A modular and flexible synthesis design furnishes polyester matrices covalently integrating cyanoazobenzene in regularly spaced side chains. Thin films of these materials are particul......The fundamental optical storage mechanism of the laser light addressable azobenzene moiety is briefly introduced. A modular and flexible synthesis design furnishes polyester matrices covalently integrating cyanoazobenzene in regularly spaced side chains. Thin films of these materials...... are particularly well suited for holographic storage. Notable figures of merits of liquid crystalline polyesters are response time to blue-green laser light of the order of nanoseconds, storage capacity expressed as 5000 lines/mm, and high, permanent (almost nine years) diffraction efficiency of the order of 50...

  17. Threshold collision induced dissociation experiment for azobenzene and its derivatives

    Science.gov (United States)

    Rezaee, Mohammadreza; Compton, Robert

    In this study we investigated protonated azobenzene cation and properties of trans 2,2',6,6'-tetrafluoroazobenzene anion using the collision induced dissociation method and the results are compared with the results from ab initio electronic structure calculations. We measured the bond dissociation energies experimentally and found which theoretical quantum chemistry methods yield best results. Several high accuracy multi-level calculations such as CBS-QB3, G3 and G4 had been carried out to obtain reliable thermochemical information for azobenzene and several of its derivatives and their anion or cation. We also performed other experiments such as Raman spectroscopy to study these light sensitive molecules with promising applications such as photo-switching.

  18. Photophysical characteristics of polyaniline with photochromic azobenzene side groups

    Institute of Scientific and Technical Information of China (English)

    Feng Wei; Huang Kun; Wan Mei-Xiang

    2005-01-01

    Photochromic characteristics and optical molecular reorientation in conducting polymer such as polyaniline derivatives containing photochromic azobenzene moieties (PAPNPAPOA) in side chain are studied. Changes in the UV-vis absorption, refractive index, thickness, contact angle and morphology of these films after irradiation of a linearly polarized light with a wavelength of 365nm are measured. The trans-cis isomerization of PAPNPAPOA is proved irreversible even after withdrawing the UV light for a long time. That the structure of main-chain attends by the trans-cis isomerization of side-chain is confirmed by the absorption and the solution colour during the UV irradiation. These effects are discussed by taking the trans-cis isomerization of azobenzene into consideration.

  19. Azobenzene Modified Polymer Electrolyte Membrane for Ion Gating

    Science.gov (United States)

    Piedrahita, Camilo; Mballa, Mireille; He, Ruixuan; Kyu, Thein

    By virtue of ion concentration gradient across cell membranes, neuron cells are highly polarized driving electrical potential difference (e.g., Gibbs law). To regulate and control ion movement, living cells have specific channels with gates that are permeable to cations, enabling or excluding them via charge polarity and size. This mechanism for generating and transmitting signals from one neuron to another controls body movement via brain function. By virtue of trans-cis isomerization, azobenzene derivative (AZO) has been heavily sought for ion-gating in biological cells as a means of signal generation and transmission through nervous systems. In this work, PEM consisted of PEGDA/SCN/LiTFSI was modified with AZO derivatives for gating of lithium ions. At low concentrations of azobenzene of 3 wt Supported by NSF-DMR 1502543.

  20. Propagation of polarized light through azobenzene polyester films

    DEFF Research Database (Denmark)

    Nedelchev, L; Matharu, A; Nikolova, Ludmila;

    2002-01-01

    When elliptically polarized light of appropriate wavelength Corresponding to trans-cis-trans isomerisation process is incident on thin films of azobenzene polyesters, a helical structure is induced. We investigate the propagation of the exciting light beam (self-induced) as well as a probe light...... beam outside the absorption band through the polyester films. Investigations are carried out in one amorphous and one liquid crystalline polyester. We show that amorphous polyester after irradiation behaves like classical helical material....

  1. The Azobenzene Optical Storage Puzzle - Demands on the Polymer Scaffold?

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Ramanujam, PS

    2001-01-01

    The basic mechanism of optical information storage utilizing the azobenzene photoaddressable moiety will briefly be introduced. A synthetically flexible polyester matrix covalently integrating cyanoazobenzene in regularly spaced side chains is particularly well suited for holographic storage...... of the nature of the main chain on polyester morphology and on the permanency of the induced anisotropy are discussed. Arguments for the design and methods of preparation of other very different polymer scaffolds supporting the cyanoazobenzene are elucidated. Whereas oligopeptides invariably form amorphous...

  2. The azobenzene optical storage puzzle - Demands on the polymer scaffold?

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Ramanujam, P.S.

    2001-01-01

    The basic mechanism of optical information storage utilizing the azobenzene photoaddressable moiety will briefly be introduced. A synthetically flexible polyester matrix covalently integrating cyanoazobenzene in regularly spaced side chains is particularly well suited for holographic storage...... of the nature of the main chain on polyester morphology and on the permanency of the induced anisotropy are discussed. Arguments for the design and methods of preparation of other very different polymer scaffolds supporting the cyanoazobenzene are elucidated. Whereas oligopeptides invariably form amorphous...

  3. Physical processes in azobenzene polymers on irradiation with polarized light

    DEFF Research Database (Denmark)

    Holme, N.C.R.; Nikolova, L.; Norris, T.B.;

    1999-01-01

    . A transition route based on experimental results for the theoretically calculated energy level scheme is proposed. Physical observations of surface relief in thin films of azobenzene polymers when irradiated with polarized light are reported. These include two beam polarization holographic observations...... and single beam transmission measurements through a mask, followed by atomic force microscope and profiler investigations. It is concluded that none of the prevalent theories can explain all the observed facts....

  4. Azobenzene-based inhibitors of human carbonic anhydrase II

    Directory of Open Access Journals (Sweden)

    Leander Simon Runtsch

    2015-07-01

    Full Text Available Aryl sulfonamides are a widely used drug class for the inhibition of carbonic anhydrases. In the context of our program of photochromic pharmacophores we were interested in the exploration of azobenzene-containing sulfonamides to block the catalytic activity of human carbonic anhydrase II (hCAII. Herein, we report the synthesis and in vitro evaluation of a small library of nine photochromic sulfonamides towards hCAII. All molecules are azobenzene-4-sulfonamides, which are substituted by different functional groups in the 4´-position and were characterized by X-ray crystallography. We aimed to investigate the influence of electron-donating or electron-withdrawing substituents on the inhibitory constant Ki. With the aid of an hCAII crystal structure bound to one of the synthesized azobenzenes, we found that the electronic structure does not strongly affect inhibition. Taken together, all compounds are strong blockers of hCAII with Ki = 25–65 nM that are potentially photochromic and thus combine studies from chemical synthesis, crystallography and enzyme kinetics.

  5. Slower processes of the ultrafast photo-isomerization of an azobenzene observed by IR spectroscopy

    NARCIS (Netherlands)

    Koller, F.O.; Sobotta, C.; Schrader, T.E.; Cordes, T.; Schreier, W.J.; Sieg, A.; Gilch, P.

    2007-01-01

    The photo-induced trans–cis isomerization of the azobenzene derivative 4-nitro-4'-(dimethylamino)azobenzene in polar solution was studied by femtosecond UV/Vis and IR spectroscopy. The UV/Vis experiment reveals two excited state processes; the slower one (1 ps) is the internal conversion to the grou

  6. Azobenzene side-chain liquid crystalline polyesters with outstanding optical storage properties

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Pedersen, M; Holme, NCR

    1998-01-01

    on azobenzene, iii- the methylene main-chain segment length, and iv-the polyester molecular mass, all influence the optical storage properties. A general synthetic route to novel mesogenic azobenzene diols comprising parameters i and ii is outlined. Polyesters with molecular masses (parameter iv) up to 100...

  7. Reversible switching of electrical conductivity in an AOT-isooctane-water microemulsion via photoisomerization of azobenzene.

    Science.gov (United States)

    Bufe, Markus; Wolff, Thomas

    2009-07-21

    The electrical conductivity of microemulsions composed of aerosol OT (AOT), isooctane, and water as a function of temperature was studied in the absence and presence of azobenzene, and consequences of an in situ trans-cis photoisomerization of azobenzene were investigated. A conductivity onset upon raising the temperature of a water-in-oil microemulsion indicates percolation. Small amounts (0.1-5% w/w) of solubilized azobenzene induce higher percolation temperatures T(p) (by up to 19 K), and photoisomerization of azobenzene shifts T(p) back to values that may be below T(p) in the absence of azobenzene. Consequently, the microemulsion can be switched from nonconducting to conducting by exposing samples to UV-light at lambda > 310 nm, without varying temperature or composition. The effect reverts within several minutes after turning off the irradiation lamp through thermal reisomerization. By that, reversible switching of electrical conductivity is brought about.

  8. Polyacrylate membranes for tunable liquid-filled microlenses

    Science.gov (United States)

    Zhang, Wei; Zappe, Hans; Seifert, Andreas

    2013-04-01

    We present the use of polyacrylate membranes for the fabrication of pneumatically actuated variable lenses. Whereas the most commonly used membrane material for tunable liquid-filled lenses is polydimethylsiloxane (PDMS), polyacrylate membranes have the advantages of high resistance to swelling in silicone oil and enhanced compatibility with a wide range of aqueous optical liquids. These features are quantitatively demonstrated by comparing the material properties and performance of PDMS and polyacrylate membrane lenses. The optical transparency of polyacrylate is more than 92%. The surface roughness is below 3.3 nm rms, and reversible elastic deformation could be demonstrated. Optical measurements show that the cutoff frequency of the modulation transfer function of polyacrylate lenses with different liquid fillings, using a reference contrast of 0.2, is more than 1.5 times larger than that of the same system assembled with PDMS membranes filled with water.

  9. Thin Film Encapsulation of Light-Emitting Diodes with Photopolymerized Polyacrylate and Silver Films

    Institute of Scientific and Technical Information of China (English)

    WANG Li-Duo; WU Zhao-Xin; LI Yang; QIU Yong

    2005-01-01

    @@ A thin film encapsulation of organic light-emitting diodes (OLEDs) is investigated with a multi-layer stack of polyacrylate-Ag-polyacrylate-Ag-polyacrylate-Ag-polyacrylate (PAPAPAP). It is shown that the fabrication of polyacrylate films by a wet process does not affect the electroluminescent (EL) characteristics of the devices and polyacrylate films together with the silver layers can perform to minimize oxygen and water diffusion into the organic light-emitting device. The structure of polyacrylate(20 μm)-Ag(200nm)-polyacrylate(20 μm)-Ag(200nm)-polyacrylate(20μm)-Ag(200nm)-polyacrylate(20μm) is demonstrated to enhance dramatically the lifetime of OLEDs.

  10. Azobenzene dye-coupled quadruply hydrogen-bonding modules as colorimetric indicators for supramolecular interactions

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2012-04-01

    Full Text Available The facile coupling of azobenzene dyes to the quadruply hydrogen-bonding modules 2,7-diamido-1,8-naphthyridine (DAN and 7-deazaguanine urea (DeUG is described. The coupling of azobenzene dye 2 to mono-amido DAN units 4, 7, and 9 was effected by classic 4-(dimethylaminopyridine (DMAP-catalyzed peptide synthesis with N-(3-dimethylaminopropyl-N’-ethyl carbodiimide hydrochloride (EDC as activating agent, affording the respective amide products 5, 8, and 10 in 60–71% yield. The amide linkage was formed through either the aliphatic or aromatic ester group of 2, allowing both the flexibility and absorption maximum to be tuned. Azobenzene dye 1 was coupled to the DeUG unit 11 by Steglich esterification to afford the product amide 12 in 35% yield. Alternatively, azobenzene dye 16 underwent a room-temperature copper-catalyzed azide–alkyne Huisgen cycloaddition with DeUG alkyne 17 to give triazole 18 in 71% yield. Azobenzene coupled DAN modules 5, 8, and 10 are bright orange–red in color, and azobenzene coupled DeUG modules 12 and 18 are orange–yellow in color. Azobenzene coupled DAN and DeUG modules were successfully used as colorimetric indicators for specific DAN–DeUG and DAN–UPy (2-ureido-4(1H-pyrimidone quadruply hydrogen-bonding interactions.

  11. Correlation between the molecular structure and trans←→ cis isomerization characteristics of azobenzenes

    Institute of Scientific and Technical Information of China (English)

    HAN Mina; HONDA Takumu

    2012-01-01

    Photochemical and thermal isomerization of various azobenzenes was systematically investigated to understand the correlation between the molecular structure and trans←→cis isomerization characteristics of azobenzenes.A blue shift in π-π* absorption band of ortho-alkylated azobenzenes (1o and 2o) was observed together with a reduction in molar extinction coefficient (ε) in comparison with both meta-alkylated azobenzenes (4m and 5m) and 7p lacking the meta and ortho substituents.For ortho-alkylated azobenzene,photochemical trans-to-cis isomerization and thermal back cis-to-trans isomerization in solution occurred slowly when compared with 4m,5m and 7p.The half-life time of the cis form of 2o was found to be 380 h,which is about 8-50 times longer than those of comparable 4m,5m (43-13 h) and 7p (7h).Furthermore,comparison of the molecular structure and isomerization characteristics of azobenzene thiol (2oand 5m) self-assembled monolayers on flat gold surfaces indicates that the trans-to-cis photoconversion in monolayer systems is influenced by steric hindrance and strong intermolecular interaction between azobenzene units.

  12. Modification of nucleic acids by azobenzene derivatives and their applications in biotechnology and nanotechnology.

    Science.gov (United States)

    Li, Jing; Wang, Xingyu; Liang, Xingguo

    2014-12-01

    Azobenzene has been widely used as a photoregulator due to its reversible photoisomerization, large structural change between E and Z isomers, high photoisomerization yield, and high chemical stability. On the other hand, some azobenzene derivatives can be used as universal quenchers for many fluorophores. Nucleic acid is a good candidate to be modified because it is not only the template of gene expression but also widely used for building well-organized nanostructures and nanodevices. Because the size and polarity distribution of the azobenzene molecule is similar to a nucleobase pair, the introduction of azobenzene into nucleic acids has been shown to be an ingenious molecular design for constructing light-switching biosystems or light-driven nanomachines. Here we review recent advances in azobenzene-modified nucleic acids and their applications for artificial regulation of gene expression and enzymatic reactions, construction of photoresponsive nanostructures and nanodevices, molecular beacons, as well as obtaining structural information using the introduced azobenzene as an internal probe. In particular, nucleic acids bearing multiple azobenzenes can be used as a novel artificial nanomaterial with merits of high sequence specificity, regular duplex structure, and high photoregulation efficiency. The combination of functional groups with biomolecules may further advance the development of chemical biotechnology and biomolecular engineering.

  13. Temperature Dependence of Photoinduced Birefringence in an Azobenzene Polymer

    Institute of Scientific and Technical Information of China (English)

    XU Hong-Tao; WANG Chang-Shun; PAN Xu; ZHANG Xiao-Qiang; WANG Chuan-Yu; SUN Cun-Ying

    2007-01-01

    The photoinduced birefringence in an azobenzene polymer is investigated at different temperatures between -20℃ to 50℃. It is found that there is a peak value of photoinduced birefringence in the temperature dependence of the photoinduced birefringence under a certain pumping intensity. With the pump light in 90 mW/cm2,the peak value of the photoinduced birefringence appeared at about 0℃. The effect of temperature on the photoinduced birefringence is discussed using the competition mechanism between the photoinduced reorientation and the thermal random motion.

  14. Shapeshifting photoswitchable azobenzene compounds and their biological applications

    Science.gov (United States)

    Peddie, Victoria; Heng, Sabrina; Mustafa, Sanam; Thomas, Jacob; Hutchinson, Mark R.; Abell, Andrew D.

    2016-11-01

    The photoisomerisation of azobenzenes between trans and cis results in well-defined changes in geometry and a considerable change of polarity. Thus, incorporating an azobenezene into a bioactive compound provides an opportunity to control biological activity, with ideally one configuration being active and the other inactive. This can allow the role of a specific biomolecule to be probed in its native environment by controlling activity both spatially and temporally using light. Incorporating such a photoswitchable moiety into the structure of a known GRK2 inhibitor can generate photoswitchable inhibitors, which can be used to reversibly regulate the activity of GRK2, and hence GPRCs.

  15. Functionalized graphene and graphene oxide solution via polyacrylate coating.

    Science.gov (United States)

    Saha, Arindam; Basiruddin, S K; Ray, S C; Roy, S S; Jana, Nikhil R

    2010-12-01

    Water soluble graphene with various chemical- and biofunctionalities is essential for their different applications. However, exfoliated graphenes are insoluble in water and water soluble graphene oxide precipitate if they are chemically reduced to graphene. We have developed a polyacrylate coating method for graphene oxide and then chemically reduced it into graphene. We found that polyacrylate coating can improve the colloidal stability of both graphene and graphene oxide. The coated graphene has been characterized using XPS, FTIR, XRD and micro-Raman spectroscopy. The primary amine present on the coating backbone has been used to derive glucose functionalized water soluble graphene. Various other functional graphenes can be anticipated from the polyacrylate coated graphene.

  16. In Situ X-Ray Diffraction Study on Surface Melting of Bi Nanoparticles Embedded in a SiO2 Matrix

    Science.gov (United States)

    Chen, Xiao-Ming; Huo, Kai-Tuo; Liu, Peng

    2014-01-01

    Bi nanoparticles embedded in a SiO2 matrix were prepared via the high energy ball milling method. The melting behavior of Bi nanoparticles was studied by means of differential scanning calorimetry (DSC) and high-temperature in situ X-ray diffraction (XRD). DSC cannot distinguish the surface melting from ‘bulk’ melting of the Bi nanoparticles. The XRD intensity of the Bi nanoparticles decreases progressively during the in situ heating process. The variation in the normalized integrated XRD intensity versus temperature is related to the average grain size of Bi nanoparticles. Considering the effects of temperature on Debye—Waller factor and Lorentz-polarization factor, we discuss the XRD results in accordance with surface melting. Our results show that the in situ XRD technique is effective to explore the surface melting of nanoparticles.

  17. Structure dependence of photochromism and thermochromism of azobenzene-functionalized polythiophenes

    Directory of Open Access Journals (Sweden)

    2007-07-01

    Full Text Available Two novel azobenzene-functionalized polythiophenes, poly[4-((4-(phenylazophenoxybutyl-3-thienylacetate] (P4 and the copolymer of 3-hexylthiophene and 4-((4-(phenylazophenoxybutyl-3-thienylacetate (COP64 have been synthesized. The structure dependence of photoluminescence features and thermochromic behaviors of both azobenzene-functionalized polymers was investigated. The results show that polymer structure has a strong influence on the conformation and optical properties of the resulting polythiophene derivatives. The photochemical control of photoluminescence property was achieved with homopolymer P4 using photoactive azobenzene side chains.

  18. Quantum theory and experimental studies of absorption spectra and photoisomerization of azobenzene polymers

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Ramanujam, P.S.; Johansen, P.M.;

    1998-01-01

    The microscopic properties of azobenzene chromophores are important for a correct description of optical storage systems based on photoinduced anisotropy in azobenzene polymers. A quantum model of these properties is presented and verified by comparison to experimental absorption spectra for trans...... and cis isomers of cyano methoxy azobenzene. In addition, the trans --> cis quantum efficiency is measured, and hence the combined experimental and theoretical work allows one to determine the essential molecular properties, including magnitude and anisotropy of the absorption cross section and various...

  19. Conformational Dynamics of o-Fluoro-Substituted Z-Azobenzene.

    Science.gov (United States)

    Rastogi, S K; Rogers, R A; Shi, J; Gao, C; Rinaldi, P L; Brittain, W J

    2015-11-20

    A conformational analysis of o-fluoro Z-azobenzene reveals a slight preference for aromatic C-F/π interaction. Density functional theory (DFT) indicates that the conformation with a C-F/π interaction is preferred by approximately 0.3-0.5 kcal/mol. Ground-state conformations were corroborated with X-ray crystallography. (Z)-Azobenzene (Z-AB) with at least one o-fluoro per ring displays (19)F-(19)F through-space (TS) coupling. 2D J-resolved NMR was used to distinguish through-bond from TS coupling ((TS)JFF). (TS)JFF decreases as the temperature is lowered and the multiplets coalesce into broad singlets. We hypothesize that the coalescence temperature (Tc) corresponds to the barrier for phenyl rotation. The experimentally determined barrier of 8-10 kcal/mol has been qualitatively verified by DFT where transition states with a bisected geometry were identified with zero-point energies of 6-9 kcal/mol relative to ground state. These values are significantly higher that values estimated from previous theoretical studies but lie within a reasonable range for phenyl rotation in hydrocarbon systems.

  20. An Optimized Glutamate Receptor Photoswitch with Sensitized Azobenzene Isomerization.

    Science.gov (United States)

    Gascón-Moya, Marta; Pejoan, Arnau; Izquierdo-Serra, Mercè; Pittolo, Silvia; Cabré, Gisela; Hernando, Jordi; Alibés, Ramon; Gorostiza, Pau; Busqué, Félix

    2015-10-16

    A new azobenzene-based photoswitch, 2, has been designed to enable optical control of ionotropic glutamate receptors in neurons via sensitized two-photon excitation with NIR light. In order to develop an efficient and versatile synthetic route for this molecule, a modular strategy is described which relies on the use of a new linear fully protected glutamate derivative stable in basic media. The resulting compound undergoes one-photon trans-cis photoisomerization via two different mechanisms: direct excitation of its azoaromatic unit and irradiation of the pyrene sensitizer, a well-known two-photon sensitive chromophore. Moreover, 2 presents large thermal stability of its cis isomer, in contrast to other two-photon responsive switches relying on the intrinsic nonlinear optical properties of push-pull substituted azobenzenes. As a result, the molecular system developed herein is a very promising candidate for evoking large photoinduced biological responses during the multiphoton operation of neuronal glutamate receptors with NIR light, which require accumulation of the protein-bound cis state of the switch upon repeated illumination.

  1. Damping properties of silicone rubber/polyacrylate sequential interpenetrating networks

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-bing; HUANG Zhi-xiong; ZHANG Lian-meng

    2006-01-01

    Silicone rubber/polyacrylate sequential interpenetrating polymer networks(IPNs) were prepared by silicone rubber sheet dipped into the solution composed of different acrylate monomers and benzoyl peroxides(BPOs) for different time at room temperature and then acrylate polymerized at 80 ℃ for 2 h. The molecular structure and damping properties of sequential IPNs were studied by means of FT-IR and dynamic mechanical analysis(DMA),respectively. The FT-IR spectrum shows that polyacrylate distributes unevenly along the thickness direction of IPNs,i.e. the concentration of polyacrylate decreases from the midst to the surface of the IPNs. The DMA shows that cold crystallization of silicone in the temperature range from -47 ℃ to -30 ℃ is reduced and loss factor of IPNs is improved after interpenetrating with polyacrylate. This suggestes that IPNs can be used as damping materials.

  2. Azobenzene C-Nucleosides for Photocontrolled Hybridization of DNA at Room Temperature.

    Science.gov (United States)

    Goldau, Thomas; Murayama, Keiji; Brieke, Clara; Asanuma, Hiroyuki; Heckel, Alexander

    2015-12-01

    Herein, we report the reversible light-regulated destabilization of DNA duplexes by using azobenzene C-nucleoside photoswitches. The incorporation of two different azobenzene residues into DNA and their photoswitching properties are described. These new residues demonstrate a photoinduced destabilization effect comparable to the widely applied D-threoninol-linked azobenzene switch, which is currently the benchmark. The photoswitches presented herein show excellent photoswitching efficiencies in DNA duplexes - even at room temperature - which are superior to commonly used azobenzene-based nucleic acid photoswitches. In addition, these photoswitching residues exhibit high thermal stability and excellent fatigue resistance, thus rendering them one of the most efficient candidates for the regulation of duplex stability with light.

  3. Theoretical Investigation of Nonlinear Optical Properties of Organic and Transition Metal Hybrid Azobenzene Dendrimers

    Institute of Scientific and Technical Information of China (English)

    LIU Cai-Ping; LIU Ping; WU Ke-Chen

    2008-01-01

    In this work, we report a theoretical exploration of the responses of organic azo-benzene dendrimers. The polarizabilities, the first and second hyperpolarizabilities of the azobenzene monomers (GO), and the first, second and third generation (G1, G2 and G3, respectively) are investigated by semi-empirical methods. The calculated results show that the nonlinear optical (NLO)properties of these organic dendrimers are mainly determined by the azobenzene chromospheres.Additionally, the values of β and γ increase almost in proportion to the number of chromophores. On the other hand, two types of transition metal hybrid azobenzene dendrimers (core-hybrid and branch-end hybrid according to the sites combined with transition metals) are simulated and discussed in detail in the framework of time-dependent density functional theory (TDDFT). The calculated results reveal that the NLO responses of these metal dendrimers distinctly varied as a result of altering the charge transfer transition scale and the excitation energies.

  4. Azobenzene Polyesters Used as Gate‐Like Scaffolds in Nanoscopic Hybrid Systems

    DEFF Research Database (Denmark)

    Bernardos, Andrea; Mondragón, Laura; Javakhishvili, Irakli

    2012-01-01

    The synthesis and characterisation of new capped silica mesoporous nanoparticles for on‐command delivery applications is reported. Functional capped hybrid systems consist of MCM‐41 nanoparticles functionalised on the external surface with polyesters bearing azobenzene derivatives and rhodamine B...

  5. The ground and excited state electron affinities of cytosine and trans-azobenzene

    Science.gov (United States)

    Chen, Edward C. M.; Herder, Charles; Chen, Edward S.

    2007-06-01

    The electron capture detector, reduction potential, electron transfer and photon methods of determining electron affinities are compared. The adiabatic electron affinities are (in eV): t-azobenzene(O 2), 1.578(5); t-azobenzene, 1.378(5); cytosine, 1.043(5) from anion photoelectron spectra. The largest or ground state value for trans-azobenzene and an excited state electron affinity for cytosine, 0.70 eV are also determined by reduction potentials. Other excited state energies are (in eV): t-azobenzene, 0.328(5), 0.589(5), 0.690(5), 0.768(5), 0.954(5), 1.038(5), 1.150(5), 1.275(5) and cytosine, 0.089(5), 0.098(5), 0.198(5), 0.235(5). The cytosine values are consistent with electron transport and radiation damage and repair in DNA.

  6. Controlled swelling and adsorption properties of polyacrylate/montmorillonite composites

    Energy Technology Data Exchange (ETDEWEB)

    Natkanski, Piotr [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Kustrowski, Piotr, E-mail: kustrows@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Bialas, Anna; Piwowarska, Zofia [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Michalik, Marek [Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Krakow (Poland)

    2012-10-15

    A series of novel polyacrylate/montmorillonite composites was synthesized by in situ polymerization in aqueous slurry of clay. Dissociated (obtained by adding ammonium or sodium hydroxide) and undissociated forms of acrylic acid were used as monomers in the hydrogel synthesis. The structure and composition of the samples were studied by powder X-ray diffraction, diffuse reflectance infra-red Fourier transform spectroscopy, thermogravimetry and elemental analysis. It has been found that the kind of monomer influences strongly the location of a polymer chain in the formed composite. Complete intercalation of hydrogel into the interlayer space of montmorillonite was observed for sodium polyacrylate, whereas polyacrylic acid and ammonium polyacrylate mainly occupied the outer surface of the clay. The position of hydrogel determined the swelling and adsorption properties of the studied composites. The important factor influencing the kinetics of Fe(III) cation adsorption was pH. The analysis of adsorption isotherms allowed to propose the mechanism of Fe(III) cation adsorption. Highlights: Black-Right-Pointing-Pointer Polyacrylate hydrogels can be introduced into the interlayers of clay. Black-Right-Pointing-Pointer The position of hydrogel in the composite depends on the polymer type. Black-Right-Pointing-Pointer Ammonium polyacrylate places outside the clay, sodium one is intercalated into it. Black-Right-Pointing-Pointer Swelling and adsorption capacities can be controlled by the polymer position. Black-Right-Pointing-Pointer High adsorption efficiency in Fe(III) removal was observed.

  7. Irradiance and Temperature Dependence of Photo-Induced Orientation in Two Azobenzene-Based Polymers

    Science.gov (United States)

    1998-06-23

    and Almeria Natansohn* Department of Chemistry, Queen’s University, Kingston, Ontario, K7L 3N6 Paul Rochon Department of Physics, Royal Military...1. IRRADIANCE AND TEMPERATURE DEPENDENCE OF PHOTO-INDUCED ORIENTATION IN TWO AZOBENZENE-BASED POLYMERS Dennis Hore and Almeria Natansohn...IRRADIANCE AND TEMPERATURE DEPENDENCE OF PHOTO-INDUCED ORIENTATION IN TWO AZOBENZENE-BASED POLYMERS Dennis Hore and Almeria Natansohn Department of

  8. Fluorinated Azobenzenes for Shape-Persistent Liquid Crystal Polymer Networks.

    Science.gov (United States)

    Iamsaard, Supitchaya; Anger, Emmanuel; Aßhoff, Sarah Jane; Depauw, Alexis; Fletcher, Stephen P; Katsonis, Nathalie

    2016-08-16

    Liquid crystal polymer networks respond with an anisotropic deformation to a range of external stimuli. When doped with molecular photoswitches, these materials undergo complex shape modifications under illumination. As the deformations are reversed when irradiation stops, applications where the activated shape is required to have thermal stability have been precluded. Previous attempts to incorporate molecular switches into thermally stable photoisomers were unsuccessful at photogenerating macroscopic shapes that are retained over time. Herein, we show that to preserve photoactivated molecular deformation on the macroscopic scale, it is important not only to engineer the thermal stability of the photoswitch but also to adjust the cross-linking density in the polymer network and to optimize the molecular orientations in the material. Our strategy resulted in materials containing fluorinated azobenzenes that retain their photochemical shape for more than eight days, which constitutes the first demonstration of long-lived photomechanical deformation in liquid-crystal polymer networks.

  9. Light scattering of thin azobenzene side-chain polyester layers

    DEFF Research Database (Denmark)

    Kerekes, Á.; Lörincz, E.; Ramanujam, P.S.;

    2002-01-01

    Light scattering properties of liquid crystalline and amorphous azobenzene side-chain polyester layers used for optical data storage were examined by means of transmissive scatterometry. Comparative experiments show that the amorphous polyester has significantly lower light scattering...... characteristics than the liquid crystalline polyester. The amorphous samples have negligible polarization part orthogonal to the incident beam. the liquid crystalline samples have relative high orthogonal polarization part in light scattering, The light scattering results can be used to give a lower limit...... for the domain size in thin liquid crystalline polyester layers being responsible for the dominant light scattering. The characteristic domain Sizes obtained from the Fourier transformation of polarization microscopic Pictures confirm these values....

  10. Antimicrobial azobenzene compounds and their potential use in biomaterials

    Science.gov (United States)

    Sessa, L.; Concilio, S.; Iannelli, P.; De Santis, F.; Porta, A.; Piotto, S.

    2016-04-01

    We recently synthesized a class of active compounds with azobenzene structure [1] and lowest in silico toxicity values. The antimicrobial activity of these molecules and their thermal stability are very promising and indicate that they may have interesting and therapeutically significant applications. This work aims to develop new materials with antibacterial and antifungal activity inserting different percentages of synthetic antimicrobial azo compounds in commercial polymer matrices. We realized thin films using solvent casting and melt compounding techniques. The obtained materials retained the proprieties of the pure matrices. This means that azo dye dissolved in the matrix does not influence the thermal behavior and the morphology of the material. Tested films exhibited the capability to inhibit biofilms formation of S. aureus and C. albicans. Spectrophotometric investigation of the azo compound released from the polymer matrices confirmed that the realized materials might be interesting for biomedical tools, antibacterial surfaces, and films for active packaging.

  11. Photomechanical Bending of Azobenzene-Based Photochromic Molecular Fibers

    Directory of Open Access Journals (Sweden)

    Riku Matsui

    2013-03-01

    Full Text Available Microfibers composed of azobenzene-based photochromic amorphous molecular materials, namely low molecular-mass photochromic materials with a glass-forming property, could be fabricated. These fibers were found to exhibit mechanical bending motion upon irradiation with a laser beam. In addition, the bending direction could be controlled by altering the polarization direction of the irradiated light without changing the position of the light source or the wavelength of the light. In-situ fluorescence observation of mass transport induced at the surface of the fiber doped with CdSe quantum dots suggested that the bending motions were related with the photoinduced mass transport taking place near the irradiated surface of the fiber.

  12. Photochromic switching of the DNA helicity induced by azobenzene derivatives

    Science.gov (United States)

    Deiana, Marco; Pokladek, Ziemowit; Olesiak-Banska, Joanna; Młynarz, Piotr; Samoc, Marek; Matczyszyn, Katarzyna

    2016-06-01

    The photochromic properties of azobenzene, involving conformational changes occurring upon interaction with light, provide an excellent tool to establish new ways of selective regulation applied to biosystems. We report here on the binding of two water-soluble 4-(phenylazo)benzoic acid derivatives (Azo-2N and Azo-3N) with double stranded DNA and demonstrate that the photoisomerization of Azo-3N leads to changes in DNA structure. In particular, we show that stabilization and destabilization of the B-DNA secondary structure can be photochemically induced in situ by light. This photo-triggered process is fully reversible and could be an alternative pathway to control a broad range of biological processes. Moreover, we found that the bicationic Azo-3N exhibited a higher DNA-binding constant than the monocationic Azo-2N pointing out that the number of positive charges along the photosensitive polyamines chain plays a pivotal role in stabilizing the photochrome-DNA complex.

  13. Azobenzene-based supramolecular polymers for processing MWCNTs

    Science.gov (United States)

    Maggini, Laura; Marangoni, Tomas; Georges, Benoit; Malicka, Joanna M.; Yoosaf, K.; Minoia, Andrea; Lazzaroni, Roberto; Armaroli, Nicola; Bonifazi, Davide

    2012-12-01

    Photothermally responsive supramolecular polymers containing azobenzene units have been synthesised and employed as dispersants for multi-walled carbon nanotubes (MWCNTs) in organic solvents. Upon triggering the trans-cis isomerisation of the supramolecular polymer intermolecular interactions between MWCNTs and the polymer are established, reversibly affecting the suspensions of the MWCNTs, either favouring it (by heating, i.e. cis --> trans isomerisation) or inducing the CNTs' precipitation (upon irradiation, trans --> cis isomerisation). Taking advantage of the chromophoric properties of the molecular subunits, the solubilisation/precipitation processes have been monitored by UV-Vis absorption spectroscopy. The structural properties of the resulting MWCNT-polymer hybrid materials have been thoroughly investigated via thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and atomic force microscopy (AFM) and modelled with molecular dynamics simulations.Photothermally responsive supramolecular polymers containing azobenzene units have been synthesised and employed as dispersants for multi-walled carbon nanotubes (MWCNTs) in organic solvents. Upon triggering the trans-cis isomerisation of the supramolecular polymer intermolecular interactions between MWCNTs and the polymer are established, reversibly affecting the suspensions of the MWCNTs, either favouring it (by heating, i.e. cis --> trans isomerisation) or inducing the CNTs' precipitation (upon irradiation, trans --> cis isomerisation). Taking advantage of the chromophoric properties of the molecular subunits, the solubilisation/precipitation processes have been monitored by UV-Vis absorption spectroscopy. The structural properties of the resulting MWCNT-polymer hybrid materials have been thoroughly investigated via thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and atomic force microscopy

  14. Cobalt Nanoparticle-Embedded Porous Carbon Nanofibers with Inherent N- and F-Doping as Binder-Free Bifunctional Catalysts for Oxygen Reduction and Evolution Reactions.

    Science.gov (United States)

    Singhal, Richa; Kalra, Vibha

    2017-01-18

    Efficient, low-cost, non-precious metal-based, and stable bifunctional electrocatalysts are key to various energy storage and conversion devices such as regenerative fuel cells and metal-air batteries. In this work, we report cobalt nanoparticle-embedded porous carbon nanofibers with inherent N- and F-doping as binder-free bifunctional electrocatalysts with excellent activity for both the oxygen reduction and oxygen evolution reaction (ORR/OER) in an alkaline medium. Single-step electrospinning of a solution of the polymer mixture (carbon precursor) and the cobalt precursor followed by controlled pyrolysis with an intermediate reduction step in H2 (to reduce cobalt oxides to cobalt) was utilized to synthesize an integrated freestanding catalyst. The fabricated catalyst with effective structural and electronic interaction between the cobalt metal nanoparticles and the N- and F-doped carbon defect sites showed enhanced catalytic properties compared to the benchmark catalysts for ORR and OER (Pt, Ir, and Ru). The ORR potential at the current density of -3 mA cm(-2) was 0.81 VRHE and the OER potential at a current density of 10 mA cm(-2) was 1.595 VRHE , resulting in a ΔE of only 0.785 V.

  15. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities.

    Science.gov (United States)

    Zhang, Zhijie; Wu, Yunping; Wang, Zhihua; Zou, Xueyan; Zhao, Yanbao; Sun, Lei

    2016-12-01

    Silver nanoparticle-embedded polyvinyl alcohol (PVA) nanofibers were prepared through electrospinning technique, using as antimicrobial agents and surface-enhanced Raman scattering (SERS) substrates. Ag nanoparticles (NPs) were synthesized in liquid phase, followed by evenly dispersing in PVA solution. After electrospinning of the mixed solution at room temperature, the PVA embedded with Ag NPs (Ag/PVA) composite nanofibers were obtained. The morphologies and structures of the as-synthesized Ag nanoparticles and Ag/PVA fibers were characterized by the techniques of transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Ag NPs have an average diameter of 13.8nm, were found to be uniformly dispersed in PVA nanofibers. The Ag/PVA nanofibers provided robust antibacterial activities against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) microorganisms. It's also found that Ag/PVA nanofibers make a significant contribution to the high sensitivity of SERS to 4-mercaptophenol (4-MPh) molecules.

  16. Nanosilica and Polyacrylate/Nanosilica: A Comparative Study of Acute Toxicity.

    Science.gov (United States)

    Niu, Ying-Mei; Zhu, Xiao-Li; Chang, Bing; Tong, Zhao-Hui; Cao, Wen; Qiao, Pei-Huan; Zhang, Lin-Yuan; Zhao, Jing; Song, Yu-Guo

    2016-01-01

    We compared the acute toxicity of nanosilica and polyacrylate/nanosilica instillation in Wistar rats (n = 60). Exposure to nanosilica and polyacrylate/nanosilica showed a 30% mortality rate. When compared with saline-treated rats, animals in both exposure groups exhibited a significant reduction of PO2 (P polyacrylate/nanosilica and nanosilica is likely to cause multiple organ toxicity.

  17. Antitumor activity of polyacrylates of noble metals in experiment

    Directory of Open Access Journals (Sweden)

    Larisa A. Ostrovskaya

    2014-08-01

    Full Text Available The aim of this research has been the study of the antitumor activity of polymetalacrylate derivatives containing in their structure noble metals. Metallic derivatives of polyacrylic acid were not previously tested as antitumor agents.The antitumor activity of polyacrylates, containing argentum (argacryl, aurum (auracryl and platinum (platacryl against experimental models of murine solid tumors (Lewis lung carcinoma and Acatol adenocarcinoma as well as acute toxicity have been studied. It is found that the polyacrylates of noble metals are able to inhibit tumor growth up to 50-90% in comparison with the control. Auracryl induced the inhibition of the Lewis lung carcinoma and Acatol adenocarcinoma by 80 and 90% in comparison with the control, results recommending it for further advanced preclinical studies.

  18. Novel Nanocomposite Optical Plastics: Dispersion of Titanium in Polyacrylates

    Directory of Open Access Journals (Sweden)

    Gunjan Suri

    2010-01-01

    Full Text Available Polyacrylates have become the preferred materials for optical applications replacing the conventionally used glass due to their superior optical clarity. The major disadvantage with polyacrylates is their low (1.40–1.50 refractive index besides their poor impact resistance. The improvements in refractive index as well as mechanical properties can be achieved by way of incorporation of metals or metal compounds in the matrix. A novel methodology for the incorporation of high refractive index metals into low refractive index polymeric materials to improve the refractive index and impact resistance of the latter has been developed. With the in-situ formation of nanoparticles of TiO2, the refractive index of polyacrylates improved from 1.45 to 1.53 and the Abbe number increased from 40 to 57. One of the interesting dimension of this study pertains to the possibility of tailor-making of the two key optical properties of materials by way of varying the amount of TiO2 being formed in-situ. Thermal stability and impact resistance of nano dispersed (4.3% by wt. of Ti polyacrylates are found to be better than the neat polyacrylates. Moreover, TiO2-containing polyacrylate is of light weight. TEM, SEM, and IR analysis confirms the in-situ formation of nanoparticles of TiO2. Gamma irradiation has been used as an eco-friendly technique for polymerization. The developed compositions can be cast polymerized into clear and bubble free material for optical applications.

  19. Functionalized graphene and graphene oxide solution via polyacrylate coating

    Science.gov (United States)

    Saha, Arindam; Basiruddin, Sk; Ray, S. C.; Roy, S. S.; Jana, Nikhil R.

    2010-12-01

    Water soluble graphene with various chemical- and biofunctionalities is essential for their different applications. However, exfoliated graphenes are insoluble in water and water soluble graphene oxide precipitate if they are chemically reduced to graphene. We have developed a polyacrylate coating method for graphene oxide and then chemically reduced it into graphene. We found that polyacrylate coating can improve the colloidal stability of both graphene and graphene oxide. The coated graphene has been characterized using XPS, FTIR, XRD and micro-Raman spectroscopy. The primary amine present on the coating backbone has been used to derive glucose functionalized water soluble graphene. Various other functional graphenes can be anticipated from the polyacrylate coated graphene.Water soluble graphene with various chemical- and biofunctionalities is essential for their different applications. However, exfoliated graphenes are insoluble in water and water soluble graphene oxide precipitate if they are chemically reduced to graphene. We have developed a polyacrylate coating method for graphene oxide and then chemically reduced it into graphene. We found that polyacrylate coating can improve the colloidal stability of both graphene and graphene oxide. The coated graphene has been characterized using XPS, FTIR, XRD and micro-Raman spectroscopy. The primary amine present on the coating backbone has been used to derive glucose functionalized water soluble graphene. Various other functional graphenes can be anticipated from the polyacrylate coated graphene. Electronic supplementary information (ESI) available: Details of XPS, XRD, AFM and FTIR of polymer coated GO and G and results of fluorescence quenching experiments. See DOI: 10.1039/c0nr00376j

  20. Preparation and Photochemical Behavior of a Cationic Azobenzene Dye-Montmorillonite Intercalation Compound

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Montmorillonite/cationic azobenzene dye(p-(δ-triethylammoniobutoxy)-p'-methyl-azobenzene bromide) intercalation compounds were prepared by the conventional ion exchange method. As compared with that of pure cationic azo-dye, the thermal stability of the intercalated dye was greatly enhanced, and the absorption band corresponding to azobenzene group in intercalated dye shifted towards longer wave length by 38 nm. This could be ascribed to the strong conjugation of cationic azo-dye supramolecular order structure(J cluster) confined in a nanoscale space of montmorillonite interlayer gallery. UV/vis spectra data show that the intercalated azo dye in the montmorillonite interlayer space exhibited reversible trans-to-cis photoisomerization and daylight cis-to-trans back reaction. FTIR indicates the successful intercalation of cationic azo-dye into the montmorillonite interlayer.

  1. Synthesis and Site-Specific Incorporation of Red-Shifted Azobenzene Amino Acids into Proteins.

    Science.gov (United States)

    John, Alford A; Ramil, Carlo P; Tian, Yulin; Cheng, Gang; Lin, Qing

    2015-12-18

    A series of red-shifted azobenzene amino acids were synthesized in moderate-to-excellent yields via a two-step procedure in which tyrosine derivatives were first oxidized to the corresponding quinonoidal spirolactones followed by ceric ammonium nitrate-catalyzed azo formation with the substituted phenylhydrazines. The resulting azobenzene-alanine derivatives exhibited efficient trans/cis photoswitching upon irradiation with a blue (448 nm) or green (530 nm) LED light. Moreover, nine superfolder green fluorescent protein (sfGFP) mutants carrying the azobenzene-alanine analogues were expressed in E. coli in good yields via amber codon suppression with an orthogonal tRNA/PylRS pair, and one of the mutants showed durable photoswitching with the LED light.

  2. Investigation of interpolymer complexes based on methylcellulose and polyacrylic acid

    Directory of Open Access Journals (Sweden)

    Zh. Nurpeysova

    2012-12-01

    Full Text Available In the given work the patterns of formation interpolymer complexes in the methylcellulose and polyacrylic acid system were studied by turbidimetry. It is shown that the increase in molecular weight and concentration of polymers promotes efficient formation of interpolymer complexes.

  3. Preparation and icephobic properties of polymethyltrifluoropropylsiloxane-polyacrylate block copolymers

    Science.gov (United States)

    Li, Xiaohui; Zhao, Yunhui; Li, Hui; Yuan, Xiaoyan

    2014-10-01

    Five polymethyltrifluoropropylsiloxane (PMTFPS)-polyacrylate block copolymers (PMTFPS-b-polyacrylate) were synthesized by free radical polymerization of methyl methacrylate, n-butyl acrylate and hydroxyethyl methacrylate using PMTFPS macroazoinitiator (PMTFPS-MAI) in range of 10-50 mass percentages. The morphology, surface chemical composition and wettability of the prepared copolymer films were investigated by transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and water contact angle measurement. Delayed icing time and ice shear strength of the films were also detected for the icephobic purpose. The surface morphologies of the copolymers were different from those of the bulk because of the migration of the PMTFPS segments to the air interface during the film formation. Maximal delayed icing time (186 s at -15 °C) and reduction of the ice shear strength (301 ± 10 kPa) which was significantly lower than that of polyacrylates (804 ± 37 kPa) were achieved when the content of PMTFPS-MAI was 20 wt%. The icephobicity of the copolymers was attributed primarily to the enrichment of PMTFPS on the film surface and synergistic effect of both silicone and fluorine. Thus, the results show that the PMTFPS-b-polyacrylate copolymer can be used as icephobic coating materials potentially.

  4. Light propagation through photoinduced chiral structures in azobenzene-containing polymers

    DEFF Research Database (Denmark)

    Nedelchev, L; Nikolova, L; Todorov, T;

    2001-01-01

    We investigate light propagation through azobenzene-containing polymers with photoinduced chiral structures. The structures have large pitch but the Mauguin condition is not fulfilled. The eigenmodes are shown to be elliptical and their ellipticity is determined by the ellipticity e(o) of the exc......We investigate light propagation through azobenzene-containing polymers with photoinduced chiral structures. The structures have large pitch but the Mauguin condition is not fulfilled. The eigenmodes are shown to be elliptical and their ellipticity is determined by the ellipticity e...

  5. Photo-Induced Magnetic Anisotropy of Polymer Film Containing Azobenzene Organic Free Radical Group

    Institute of Scientific and Technical Information of China (English)

    徐则达; 张勇; 陈小芳; 范星河; 宛新华; 周其凤

    2003-01-01

    The forward degenerate four-wave mixing geometry was employed to induce microstructure in an organic free radical azobenzene polymer film. Before irradiated with Ar+ laser beams (λ = 514.5 nm), the azobenzene organic free radical polymer exhibits magnetic isotropic measured by superconducting quantum interference device. After photo-induced microstructure, the polymer film becomes magnetic anisotropy. When the applied magnetic field H = 50 Gauss, the magnetization along the normal direction of the polymer film is Mz = 5.5 × 10-5 emu/g,which is larger than Mx = 4.1 × 10-5 emu/g in the direction parallel to the polymer film.

  6. Effects of Laser-Induced Heating on the Photoinduced Birefringence in Azobenzene-Side-Chain Copolymer

    Institute of Scientific and Technical Information of China (English)

    杨军; 明海; 章江英; 王沛; 郎建英; 鲁拥华; 刘剑; 张其锦

    2003-01-01

    The photoinduced birefringence was observed in the polymer poly[2-(4-(4-cyanophenyl) diazenyl phenyloxy) ethoxyl methacrylatel with a cw 532nm laser. The azobenzene polymer character has been studied under the conditions of various illuminating time and light intensities. By analysing the processes of reorientation, the effect of laser-induced heating has been introduced to the buildup of photoinduced birefringence in azobenzene-side-chain copolymer. The curves for the buildup of birefringence were fitted with a modified function, i.e., biexponential curves and Gaussian curves. The relationship among all the parameters has also been presented. With the modified fitting function, we obtain a better fitting result.

  7. Surface relief measurements in side-chain azobenzene polyesters with different substituents

    DEFF Research Database (Denmark)

    Helgert, M.; Wenke, L.; Hvilsted, Søren;

    2001-01-01

    Light-induced surface modification of a series of liquid-crystalline side-chain azobenzene polyesters which have the same main- and side-chain structure but eleven different substituents on the azobenzene is investigated. Using a transmission mask as well as single focused beams we show...... that the formation of the surface relief is dependent on the substituents. In both experiments irradiation with p-polarized light generates peaks for the CN, CF3, CH3 and F substituents, while fur a Cl substituent valleys art: observed. Also s-polarized light is found to produce surface deformations. An amorphous...

  8. Photoregulated potassium ion permeation through dihexadecyl phosphate bilayers containing azobenzene and stilbene surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Y.; Hurst, J.K. [Washington State Univ., Pullman, WA (United States). Dept. of Chemistry

    1999-05-11

    Photoresponsive asymmetrically organized systems based upon small unilamellar dihexadecyl phosphate (DHP) vehicles were constructed by entrapping high concentrations of potassium ion within the vesicular aqueous core and incorporating either an amphiphilic trans-azobenzene-containing phosphate monoester or an amphiphilic trans-stilbene-containing carboxylic acid into its membrane structure. Spectroscopic measurements indicated that the azobenzene derivative was molecularly dispersed in the hydrocarbon phase of the vesicle and that the extent of aggregation of the membrane-localized stilbene derivative was minor. Thermal K{sup +} leak rates from the doped vesicles were very low, with calculated permeability coefficients (P) of {approximately}4 {times} 10{sup {minus}12} cm/s at 40 C for DHP vesicles containing 5.5 mol % of the trans-azobenzene derivative and {approximately}1.5 {times} 10{sup {minus}11} cm/s at 38 C for vesicles containing 5.5 mol % of the trans-stilbene derivative; for comparison, P {approx_equal} 2 {times} 10{sup {minus}12} cm/s for undoped vesicles at 40 C. Photoexcitation of the azobenzene-doped vesicles at 360 nm caused >90% trans {r_arrow} cis photoisomerization over the measured temperature range (25--40 C), with complete reversion to the trans isomer upon photoexcitation at 450 nm. Photoexcitation of deoxygenated suspensions of the stilbene-doped vesicles at 315 nm gave {approximately}80% conversion to the cis isomer in the photostationary state, which was not reversible. At 25 C, K{sup +} leak rates for the isomeric azobenzene-doped vesicles were nearly identical; at 40 C, K{sup +} leakage for the DHP vesicles containing the cis-azobenzene isomer corresponded to P {approx_equal} 2 {times} 10{sup {minus}11} cm/s, 5-fold greater than that of the trans isomer. In trans {r_arrow} cis {r_arrow} trans photocycling experiments, K{sup +} leak rates alternately increased and decreased, indicating that the vesicles remained intact. At 40 C, K

  9. Preparation and icephobic properties of polymethyltrifluoropropylsiloxane–polyacrylate block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaohui; Zhao, Yunhui [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Li, Hui [School of Chemistry and Chemical Engineering, Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022 (China); Yuan, Xiaoyan, E-mail: xyuan28@yahoo.com [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2014-10-15

    Highlights: • PMTFPS–b-polyacrylate copolymers in five different compositions were synthesized. • Enrichment of PMTFPS amounts at the surface made high F/Si value. • Icing delay time was related to the surface roughness. • Ice shear strength was decreased by the synergistic effect of silicone and fluorine. - Abstract: Five polymethyltrifluoropropylsiloxane (PMTFPS)–polyacrylate block copolymers (PMTFPS–b-polyacrylate) were synthesized by free radical polymerization of methyl methacrylate, n-butyl acrylate and hydroxyethyl methacrylate using PMTFPS macroazoinitiator (PMTFPS-MAI) in range of 10–50 mass percentages. The morphology, surface chemical composition and wettability of the prepared copolymer films were investigated by transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and water contact angle measurement. Delayed icing time and ice shear strength of the films were also detected for the icephobic purpose. The surface morphologies of the copolymers were different from those of the bulk because of the migration of the PMTFPS segments to the air interface during the film formation. Maximal delayed icing time (186 s at −15 °C) and reduction of the ice shear strength (301 ± 10 kPa) which was significantly lower than that of polyacrylates (804 ± 37 kPa) were achieved when the content of PMTFPS-MAI was 20 wt%. The icephobicity of the copolymers was attributed primarily to the enrichment of PMTFPS on the film surface and synergistic effect of both silicone and fluorine. Thus, the results show that the PMTFPS–b-polyacrylate copolymer can be used as icephobic coating materials potentially.

  10. H-aggregation of azobenzene-substituted amphiphiles in vesicular membranes

    NARCIS (Netherlands)

    Kuiper, JM; Engberts, JBFN

    2004-01-01

    Photochemical switching has been studied of double-tailed phosphate amphiphiles containing azobenzene units in both tails in aqueous vesicular dispersions and in mixed vesicular systems with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Since the ease of switching depends on the strength of the b

  11. Synthesis of Novel Amphiphilic Azobenzenes and X-ray Scattering Studies of Their Langmuir Monolayers

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Kjær, Kristian; Breiby, Dag Werner;

    2008-01-01

    . At the air-water interface, the amphiphilic azobenzenes form noncrystalline but stable Langmuir films that display an unusual reversible monolayer collapse close to 35 mN/m. The structures and phase transitions were studied by X-ray reflectivity (XR) and grazing-incidence X-ray diffraction, both utilizing...

  12. Synthesis of azobenzene-containing liquid crystalline gelator for use in liquid crystal gels

    Institute of Scientific and Technical Information of China (English)

    Guang Wang; Xiao Liang Zhao; Yue Zhao

    2008-01-01

    A liquid crystalline gelator containing the azobenzene chromophore was synthesized for the first time; it was used to form self-assembled network in nematic liquid crystals resulting in liquid crystal gels with distinct features.? 2008 Guang Wang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  13. Synthesis and characterization of conjugated polymer containing azobenzene and oxadiazole units

    Institute of Scientific and Technical Information of China (English)

    Yue Zhang; Shi Jun Yu; Lu Wang; Cong Li

    2009-01-01

    A novel conjugated polymer containing azobenzene and oxadiazole units was synthesized through multi-step synthesis.The structures and properties of monomer and polymer were characterized and evaluated with IR,1H NMR,UV,TGA and GPC,respectively.Polymer with long side chain of alkoxy shows good solubility,thermal stability and photoisomerization property.

  14. Surface Organization, Light-Driven Surface Changes, and Stability of Semifluorinated Azobenzen Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Paik,M.; Krishnan, S.; You, F.; Li, X.; Hexemer, A.; Ando, Y.; Kang, S.; Fischer, D.; Kramer, E.; Ober, C.

    2007-01-01

    A series of polymers with 4-perfluoroalkyl-modified azobenzene side groups was investigated for its light-induced changes in surface properties. The ultraviolet (UV) light activated trans to cis isomerization of the azobenzene group, and the influence of molecular order and orientation on this process were studied using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and water contact angle measurements. Light-induced molecular reorganization in the near-surface region was studied by NEXAFS using in situ UV irradiation of polymer thin films. Differential scanning calorimetry and wide-angle X-ray scattering studies showed that sufficiently long fluoroalkyl groups formed well-ordered smectic mesophases in the bulk, as well as on the surface, which was evidenced by NEXAFS. The disruption of mesogen packing by photoisomerization was found to be influenced by the fluoroalkyl segment length. Surfaces with perfluorohexyl and perfluorooctyl groups that showed high orientational order were also highly resistant to light-induced changes. In such cases, the trans-cis isomerization resulted in greater lowering of the azobenzene phenyl ring order parameters than the perfluoroalkyl order parameters. UV exposure caused reorientation of the phenyl rings of the azobenzene group, but the terminal perfluoroalkyl segments remained more or less ordered.

  15. Photoisomerization quantum yield of azobenzene-modified DNA depends on local sequence.

    Science.gov (United States)

    Yan, Yunqi; Wang, Xin; Chen, Jennifer I L; Ginger, David S

    2013-06-05

    Photoswitch-modified DNA is being studied for applications including light-harvesting molecular motors, photocontrolled drug delivery, gene regulation, and optically mediated assembly of plasmonic metal nanoparticles in DNA-hybridization assays. We study the sequence and hybridization dependence of the photoisomerization quantum yield of azobenzene attached to DNA via the popular d-threoninol linkage. Compared to free azobenzene we find that the quantum yield for photoisomerization from trans to cis form is decreased 3-fold (from 0.094 ± 0.004 to 0.036 ± 0.002) when the azobenzene is incorporated into ssDNA, and is further reduced 15-fold (to 0.0056 ± 0.0008) for azobenzene incorporated into dsDNA. In addition, we find that the quantum yield is sensitive to the local sequence including both specific mismatches and the overall sequence-dependent melting temperature (Tm). These results serve as design rules for efficient photoswitchable DNA sequences tailored for sensing, drug delivery, and energy-harvesting applications, while also providing a foundation for understanding phenomena such as photonically controlled hybridization stringency.

  16. Influence of UV irradiation on the blue and red light photoinduced processes in azobenzene polyesters

    DEFF Research Database (Denmark)

    Rodríguez, F.J.; Sánchez, C.; Villacampa, B.

    2004-01-01

    Birefringence induced in a series of liquid crystalline side-chain azobenzene polyesters with different substituent groups was investigated under irradiation with 488 and 633 nm linearly polarized lights. Two different initial conditions have been used: the effect of a previous irradiation with U...

  17. Effect of heat and film thickness on a photoinduced phase transition in azobenzene liquid crystalline polyesters

    DEFF Research Database (Denmark)

    Sanchez, C; Alcala, R; Hvilsted, Søren

    2003-01-01

    The liquid crystal to isotropic phase transition induced with 488 nm light in films of liquid crystalline azobenzene polyesters has been studied as a function of temperature, light intensity, and film thickness. That phase transition is associated with the photoinduced trans-cis-trans isomerizati...

  18. High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester

    DEFF Research Database (Denmark)

    Sánchez, C; Alcalá, R; Hvilsted, Søren

    2001-01-01

    High diffraction efficiencies have been achieved with polarization gratings recorded in thin films of an azobenzene side-chain liquid crystalline polyester by means of biphotonic processes. Efficiency values up to 30% have been reached after an induction period of 300 s and subsequent evolution w...

  19. Biphotonic holographic gratings in azobenzene polyesters: Surface relief phenomena and polarization effects

    DEFF Research Database (Denmark)

    Sánchez, C.; Alcalá, R.; Hvilsted, Søren

    2000-01-01

    Biphotonic holographic gratings have been recorded in a side-chain azobenzene liquid crystalline polyester using a blue incoherent source and a He-Ne laser. Intensity gratings and the appearance of surface relief have been observed when two linearly polarized beams from a He-Ne laser are made to ...

  20. Synthesis and Conformation of Substituted Chiral Binaphthyl-Azobenzene Cyclic Dyads with Chiroptical Switching Capabilities

    Directory of Open Access Journals (Sweden)

    Masuki Kawamoto

    2011-02-01

    Full Text Available Optically active binaphthyl-azobenezene cyclic dyads were synthesized to develop a photochromic switching molecule. Azobenezene moieties were cis-trans isomerized by photoirradiation. As a reflection of the structural change, the specific optical rotation and circular dichroism underwent significant shifts. Under certain conditions, the positive-negative and zero-positive (or zero-negative signals were reversed. Optical rotation may potentially be applied in noise-cancelling nondestructive photoswiches. The conformations were studied by experimental and theoretical methods. The results revealed that the helical chirality, (P or (M, of the cis-azobenzene moiety was induced by intramolecular axial chirality. The twist direction depended on the axial chirality as well as the azobenzene linkage position to the binaphthyls, but was independent of the identity of substituted groups. 2,2’-Linked-(R-binaphthyl was found to induce cis-(P-azobenzene, whereas symmetrically 7,7’-linked-(R-binaphthyl was found to induce cis-(M-azobenzene.

  1. Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters

    DEFF Research Database (Denmark)

    Naydenova, I; Nikolova, L; Todorov, T;

    1998-01-01

    We investigate the polarization properties of holographic gratings in side-chain azobenzene polyesters in which an anisotropic grating that is due to photoinduced linear and circular birefringence is recorded in the volume of the material and a relief grating appears on the surface. A theoretical...

  2. PHOTORESPONSIVE BEHAVIOR OF AZOBENZENE-BASED (METH)ACRYLIC (CO)POLYMERS IN THIN-FILMS

    NARCIS (Netherlands)

    HAITJEMA, HJ; VONMORGEN, GL; TAN, YY; CHALLA, G

    1994-01-01

    The reversible photoisomerization and the thermal isomerization of azobenzene-based (Az.b.) groups covalently bound to (meth)acrylic (co)polymers were investigated in thin films. For the amorphous polymers it was found that a broad range of the thermal cis --> trans isomerization rates could be obta

  3. Theoretical model of photoinduced anisotropy in liquid-crystalline azobenzene side-chain polyesters

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Johansen, Per Michael; Holme, N.C.R.;

    1998-01-01

    A theoretical framework for the temporal behavior of photoinduced anisotropy in liquid-crystalline azobenzene side-chain polyesters is constructed. The domain structure of the material is taken into account and inter molecular interactions are included through a mean-field description. Photoinduced...

  4. Azobenzene-based surface patterns revisited: New insights with new materials? (Conference Presentation)

    Science.gov (United States)

    Priimagi, Arri

    2016-09-01

    This contribution focuses on a relatively old topic of azobenzene photomechanics, namely the photoinduced surface patterning. The phenomenon was demonstrated alreay in 1995, yet it has not redeemed its promise as a simple, one-step patterning method that could challenge the more conventional microfabrication techniques. However, inspired by recent advances in fabrication techniques, materials development, and theoretical modelling, the field is going through a revival from both fundamental and applied perspectives. (i) How much (or how little) azobenzene needed in order to create the surface patterns? (ii) What is the maximum size of objects that can be moved with light? (iii) Can one pattern crystalline materials? (iv) Under what conditions ss the patterning process light-reversible? These questions will herein be addressed via four case studies, all employing supramolecular materials where non-covalent intermolecular interactions are used to attach the azobenzenes into a passive host matrix. All azobenzene-based material movements are triggered by photoisomerization and are therefore inherently related to one another, and therefore we believe our observations to provide useful insights also for photomobile materials and photomechanical actuation.

  5. Structure control for fine tuning fluorescence emission from side-chain azobenzene polymers.

    Science.gov (United States)

    Smitha, P; Asha, S K

    2007-06-14

    New fluorescent azobenzene dyes and side-chain polymers have been synthesized and characterized and their photophysical properties studied. A series of azobenzene dyes having different fluorophores such as phenol (S1), phenylphenol (S2) and naphthol (S3) incorporated in them were synthesized. S2 had unusually high fluorescence with a quantum yield of phi f = 0.2 recorded in dichloromethane (DCM), whereas S1 and S3 were found to be weakly fluorescent. The azobenzene dyes were converted into methacrylate monomers having short ethyleneoxy spacers and then free radically polymerized. Phenylphenol-based azobenzene polymer (P2) continued to show fluorescence, whereas fluorescence was completely quenched in the case of phenol (P1)- and naphthol (P3)-based polymers. Phenylphenol, though twisted in the ground state is known to have a more planar geometry in the excited state--a factor that enables it to retain its fluorescence behavior even when it is incorporated as part of an azobenzene unit. In contrast, naphthol, which is a better fluorophore compared to phenylphenol, loses much of its emissive behavior upon coupling to the azobenzene unit. The extent of trans to cis photoisomerization in solution was very low (approximately 17%) for P2 after 30 min of continuous irradiation using 365 nm light, in contrast to approximately 40% for P1 under identical conditions. This is attributed to the steric repulsion brought about by the bulky phenylphenol units that restrict rotation. A 2-fold enhancement in fluorescence emission was observed for P2 upon irradiation by UV light at 360 nm, which relaxed to the original intensity in about 7 day's time. The higher emission of the cis azobenzenes is generally attributed to an inhibition of photoinduced electron transfer (PET) mechanism. The emission of P2 showed a concentration dependence which increased initially and then decreased in intensity with the formation of a new red-shifted peak at higher concentration due to aggregation

  6. Assessing bio-available silver released from silver nanoparticles embedded in silica layers using the green algae Chlamydomonas reinhardtii as bio-sensors

    Energy Technology Data Exchange (ETDEWEB)

    Pugliara, Alessandro [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France); LAPLACE (LAboratoire PLAsma et Conversion d' Energie), Université de Toulouse, CNRS, UPS, INPT, 118 route de Narbonne, F-31062 Toulouse (France); Makasheva, Kremena; Despax, Bernard [LAPLACE (LAboratoire PLAsma et Conversion d' Energie), Université de Toulouse, CNRS, UPS, INPT, 118 route de Narbonne, F-31062 Toulouse (France); Bayle, Maxime; Carles, Robert; Benzo, Patrizio; BenAssayag, Gérard; Pécassou, Béatrice [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France); Sancho, Maria Carmen; Navarro, Enrique [IPE (Instituto Pirenaico de Ecología)-CSIC, Avda. Montañana 1005, Zaragoza 50059 (Spain); Echegoyen, Yolanda [I3A, Department of Analytical Chemistry, University of Zaragoza, C/ María de Luna 3, 50018, Zaragoza (Spain); Bonafos, Caroline, E-mail: bonafos@cemes.fr [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France)

    2016-09-15

    Silver nanoparticles (AgNPs) because of their strong antibacterial activity are widely used in health-care sector and industrial applications. Their huge surface-volume ratio enhances the silver release compared to the bulk material, leading to an increased toxicity for microorganisms sensitive to this element. This work presents an assessment of the toxic effect on algal photosynthesis due to small (size < 20 nm) AgNPs embedded in silica layers. Two physical approaches were originally used to elaborate the nanocomposite structures: (i) low energy ion beam synthesis and (ii) combined silver sputtering and plasma polymerization. These techniques allow elaboration of a single layer of AgNPs embedded in silica films at defined nanometer distances (from 0 to 7 nm) beneath the free surface. The structural and optical properties of the nanostructures were studied by transmission electron microscopy and optical reflectance. The silver release from the nanostructures after 20 h of immersion in buffered water was measured by inductively coupled plasma mass spectrometry and ranges between 0.02 and 0.49 μM. The short-term toxicity of Ag to photosynthesis of Chlamydomonas reinhardtii was assessed by fluorometry. The obtained results show that embedding AgNPs reduces the interactions with the buffered water free media, protecting the AgNPs from fast oxidation. The release of bio-available silver (impacting on the algal photosynthesis) is controlled by the depth at which AgNPs are located for a given host matrix. This provides a procedure to tailor the toxicity of nanocomposites containing AgNPs. - Highlights: • Controlled synthesis of 2D arrays of silver nanoparticles embedded in silica. • Assessing bio-available silver release using the green algae as bio-sensors. • The Ag release can be controlled by the distance nanoparticles/dielectric surface. • All the Ag released in solution is in the form of Ag{sup +} ions. • Toxicity comparable to similar concentrations of

  7. Synthesis of Polyacrylate/Polysiloxane Copolymer and Its Damping Performance

    Institute of Scientific and Technical Information of China (English)

    夏宇正; 石淑先; 焦书科; 李素青

    2003-01-01

    The copolymer of polyacrylate/polysiloxane for vibration damping materials was synthesized through emulsion polymerization. The effects of the amount of methyl methacrylate (MMA),polysiloxane containing vinyl, initiator and emulsifier on the conversion, stability of polyacrylate/polysiloxane emulsion were discussed when the emulsion was prepared by pre-emulsifying half continuous method. The graft copolymer has good vibration damping performance. The widest glass transition region of the copolymer spans 100℃, and the highest value of tanδ reached 2.0. The glass transition of the samples was examined by dynamic mechanical analysis (DMA). The vibration damping performance of the graft copolymer was affected by the amount of poly-vinyl dimethylsiloxane (PVMS).

  8. PHOTOINDUCED HOLOGRAPHIC PHASE GRATINGS BURIED IN AZOBENZENE SIDE-CHAIN POLYMER FILMS WITH A CHIRAL GROUP

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    An optically active polymer (PM1) containing azobenzene moieties with a chiral group (s-2-methyl-butyl) was synthesized by homopolymerization of monomer, 4-[2-(methacryloyloxy)ethyloxy]-4'-(s-2-methyl-1-butyloxycarbonyl)azobenzene, using the free radical polymerization method. The polymer dissolved in tetrahydrofuran (THF) could be easily processed into high optical quality films. The optical anisotropy of the polymer films was investigated by polarizing optical microscopy (POM). The experimental results showed that irradiation with a circularly polarized beam could align the orientation of the molecules in the polymer films. Moreover, the holographic phase gratings of photo-induced polymer films were detected by atomic force microscopy (AFM) and POM. In comparison with polymer containing no chiral group, it was found from the preliminary measurement of the photo-induced holographic phase gratings that PM1 containing a chiral group could form holographic phase gratings buried in the films.

  9. Novel azobenzene-phthalocyanine dyads——design of photo-modulated J-aggregation

    Institute of Scientific and Technical Information of China (English)

    NIU LiHong; ZHONG Cheng; CHEN ZiHui; ZHANG Zhi; LI ZhongYu; ZHANG FuShi; TANG YingWu

    2009-01-01

    Based on the J-aggregation mechanism of α-aryl/alkoxy-subetituted zinc phthalocyanines(Pcs) in non-coordinating solvents, two novel azobenzene-phthalocyanine dyads (3-azo-ZnPc and 4-azo-ZnPc) were synthesized with the aim of developing Pc compounds whose ability to form J-aggregation could be photo-modulated. It was found that 3-azo-ZnPc in chloroform could be effectively photo-controlled in a wide range. This phenomenon could be explained by the changes in the geometry and dipole moment of azobenzene during the photo-isomerization process. 4-azo-ZnPc did not have this ability at all, with or without UV light illumination. The positions of the oxygen atoms to which the aryl/alkoxy substitution was attached relatively were found important in determining the aggregation ability.

  10. Orientation of azobenzene molecules in polymer films induced by all-optical poling

    Institute of Scientific and Technical Information of China (English)

    Xiaoxia Zhong(钟晓霞); Shouyu Luo(罗售余); Xiuqin Yu(虞秀琴); Qu Li(李劬); Yingli Chen(陈英礼); Yu Sui(隋郁); Jie Yin(印杰)

    2003-01-01

    A model of the alignment of azobenzene molecules in polymer film induced by all-optical poling is proposedand verified by experiment. We found that when the writing beams of frequencies ω and 2ω are both linearlypolarized with their polarization directions parallel to each other, azobenzene molecules tend to reorientto the direction perpendicular to the writing beams polarization. At the end of the writing process, moremolecules orient to the direction perpendicular to the writing beams polarization than those which orientto the parallel direction. The alignment of molecules parallel or perpendicular to the polarization of thewriting beams is characteristic of polarity or no polarity, respectively. The alignment of molecules alongthe polarization of writing beams results in the second order nonlinearity in the polymer film. Accordingto the model, a new method to improve the optical poling efficiency is put forward.

  11. Cis-trans isomerisation of azobenzenes studied by laser-coupled NMR spectroscopy and DFT calculations.

    Science.gov (United States)

    Wazzan, Nuha A; Richardson, Patricia R; Jones, Anita C

    2010-07-30

    In a combined experimental and computational study of a group of para-substituted azobenzenes, the effects of substituents and solvent on the kinetics of thermal cis-to-trans isomerisation have been examined and the success of DFT calculations in predicting kinetic parameters assessed. Mono-substituted species are predicted to isomerise by inversion in both non-polar and polar solvent, whereas for push-pull azobenzenes the mechanism is predicted to change from inversion to rotation on going from non-polar to polar solvent. Computed free energies of activation qualitatively reproduce experimental trends but do not quantitatively predict the kinetics of cis-trans isomerisation. The polarisable continuum model of solvation fails to predict the experimentally observed influence of solvent on the entropy of activation.

  12. Recent advances towards azobenzene-based light-driven real-time information-transmitting materials

    Directory of Open Access Journals (Sweden)

    Jaume García-Amorós

    2012-07-01

    Full Text Available Photochromic switches that are able to transmit information in a quick fashion have attracted a growing interest within materials science during the last few decades. Although very fast photochromic switching materials working within hundreds of nanoseconds based on other chromophores, such as spiropyranes, have been successfully achieved, reaching such fast relaxation times for azobenzene-based photochromic molecular switches is still a challenge. This review focuses on the most recent achievements on azobenzene-based light-driven real-time information-transmitting systems. Besides, the main relationships between the structural features of the azo-chromophore and the thermal cis-to-trans isomerisation, the kinetics and mechanism are also discussed as a key point for reaching azoderivatives endowed with fast thermal back-isomerisation kinetics.

  13. Photoinduced reversible switching of porosity in molecular crystals based on star-shaped azobenzene tetramers.

    Science.gov (United States)

    Baroncini, Massimo; d'Agostino, Simone; Bergamini, Giacomo; Ceroni, Paola; Comotti, Angiolina; Sozzani, Piero; Bassanetti, Irene; Grepioni, Fabrizia; Hernandez, Taylor M; Silvi, Serena; Venturi, Margherita; Credi, Alberto

    2015-08-01

    The development of solid materials that can be reversibly interconverted by light between forms with different physico-chemical properties is of great interest for separation, catalysis, optoelectronics, holography, mechanical actuation and solar energy conversion. Here, we describe a series of shape-persistent azobenzene tetramers that form porous molecular crystals in their E-configuration, the porosity of which can be tuned by changing the peripheral substituents on the molecule. Efficient E→Z photoisomerization of the azobenzene units takes place in the solid state and converts the crystals into a non-porous amorphous melt phase. Crystallinity and porosity are restored upon Z→E isomerization promoted by visible light irradiation or heating. We demonstrate that the photoisomerization enables reversible on/off switching of optical properties such as birefringence as well as the capture of CO2 from the gas phase. The linear design, structural versatility and synthetic accessibility make this new family of materials potentially interesting for technological applications.

  14. Preparation of a cationic azobenzene dye-montmorillonite intercalation compound and its photochemical behavior

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Montmorillonite/cationic azobenzene dye (GTL) intercalation compounds were prepared by the conventional ion exchange method. As compared with that of pure GTL, the thermal stability of the intercalated GTL was greatly enhanced, and the absorption band corresponding to azobenzene group in intercalated GTL shifted towards a longer wavelength by 55 nm, which could be ascribed to the strong conjugation of GTL supramolecular order structure (J cluster) confined in a nanoscale space of montmorillonite interlayer gallery. The microstructures of the resulting intercalation compounds could be successfully controlled by varying the amount of dye loaded as evidenced by the basal spacing of the intercalation compounds. The intercalated azo dye in the montmorillonite interlayer space exhibited reversible trans-to-cis photoisomerization and thermal cis-to-trans reaction. FTIR proved the successful intercalation of GTL into the silicate layer.

  15. Cyclometalated platinum(II) with ethynyl-linked azobenzene ligands: an original switching mode.

    Science.gov (United States)

    Savel, Paul; Latouche, Camille; Roisnel, Thierry; Akdas-Kilig, Huriye; Boucekkine, Abdou; Fillaut, Jean-Luc

    2013-12-28

    The photophysical properties of 6-phenyl-2,2'-bipyridyl platinum(ii) complexes bearing different σ-alkynyl-linked azobenzene ancillary ligands were investigated. These complexes exhibited strong, broad, structureless charge-transfer bands in the visible region, which were red-shifted when the electron-donating ability of the para substituent on the azo-acetylide ligand increased. When excited at the charge-transfer absorption band, the complexes exhibited weak green emission, which was assigned to a triplet metal-to-ligand charge transfer/interligand charge transfer emission ((3)MLCT/(3)L'LCT). The presence of an amino substituent in the azobenzene moiety opened the possibility of protonation, which led to the formation of an azonium based derivative and resulted in drastic perturbations of the molecular orbitals and photophysical properties of the Pt-acetylide complex. These studies are fully supported by DFT and TD-DFT calculations.

  16. Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release

    Science.gov (United States)

    Meng, Xiangshi; Gui, Bo; Yuan, Daqiang; Zeller, Matthias; Wang, Cheng

    2016-01-01

    Stimuli-responsive metal-organic frameworks (MOFs) have gained increasing attention recently for their potential applications in many areas. We report the design and synthesis of a water-stable zirconium MOF (Zr-MOF) that bears photoresponsive azobenzene groups. This particular MOF can be used as a reservoir for storage of cargo in water, and the cargo-loaded MOF can be further capped to construct a mechanized MOF through the binding of β-cyclodextrin with the azobenzene stalks on the MOF surface. The resulting mechanized MOF has shown on-command cargo release triggered by ultraviolet irradiation or addition of competitive agents without premature release. This study represents a simple approach to the construction of stimuli-responsive mechanized MOFs, and considering mechanized UiO-68-azo made from biocompatible components, this smart system may provide a unique MOF platform for on-command drug delivery in the future. PMID:27493996

  17. Compound grating structures in photonic crystals for resonant excitation of azobenzene

    DEFF Research Database (Denmark)

    Jahns, Sabrina; Kallweit, Christine; Adam, Jost;

    -difference time-domain (FDTD) calculations for determination of resonance positions and electric field strengths in compound grating structures. By superimposing two single-period gratings a photonic crystal can be designed supporting multiple guided mode resonances suitable to switch azobenzenes between...... is small and thus a high excitation light intensity is required. We investigate the enhancement of the local energy density using periodically nanostructured surfaces in a high refractive index material. Such photonic crystals support quasi-guided modes visible as resonances in the reflection as well...... as in the transmission light spectrum. These guided modes have field contributions decaying exponentially in the near field of the photonic crystal. Azobenzene immobilized on the photonic crystal surface will experience a significantly increased light intensity compared to non-resonant surfaces. We performed finite...

  18. Low Driving Voltage and Analysis of Azobenzene Polymer Doped Liquid Crystal Grating

    Institute of Scientific and Technical Information of China (English)

    SONG Jing; LIU Yong-Gang; MA Ji; XUAN Li

    2006-01-01

    We mix azobenzene polymer and liquid crystal in certain ratio. Then the mixture is injected into cells. Nonlinearly photoinduced birefringence takes place when linearly polarized ultraviolet is applied with the pattern photomask covering on the cells, which results in the formation of azobenzene polymer doped liquid crystalgrating. The obtained grating is characterized by an optical microscope and a He-Ne laser. The results indicate that the samples have clear grating structure, and the diffraction efficiencies can be modulated by electric field. The sample driving voltage is 0.6 V/μm. It is lower than the driving voltage of holographic polymer dispersed liquid crystal transmission grating and could be matched with the driving integrated circuit.

  19. Trans-cis photoisomerization of azobenzene by n→π* excitation:A semiclassical dynamics study

    Institute of Scientific and Technical Information of China (English)

    Shuai Yuan; Wei Feng Wu; Yusheng Dou; Jian She Zhao

    2008-01-01

    A realistic dynamics simulation study is reported for the trans-cis photoisomerization of azobenzene triggered by the n→π*excitation and the results show that the formation of cis isomer follows the rotational motion around the N=N bond.The simulation find that the CNN bond angle bending vibrations also play a significant role in the vibronic coupling between the HOMO and LUMO,which essentially leads a nonadiabatic transition of the molecule to the electronic ground state.

  20. Influence of the substituent on azobenzene side-chain polyester optical storage materials

    DEFF Research Database (Denmark)

    Pedersen, M; Hvilsted, Søren; Holme, NCR;

    1999-01-01

    , chloro, and bromo. C-13 NMR spectroscopic and molecular mass investigations substantiate good film forming characteristics. The optical storage performance of thin polyester films are investigated through polarization holography. The resulting diffraction efficiency is mapped and discussed as a function...... of irradiation power and exposure time. Polytetradecanedioates with cyano-, nitro-, methyl-, fluoro-, or trinuoromethyl-azobenzene reach more than 50% diffraction efficiency. Investigations of anisotropy induced at different temperatures reveal that the polyesters are only photosensitive in a narrow temperature...

  1. Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels.

    Science.gov (United States)

    Cho, Eugene N; Zhitomirsky, David; Han, Grace G D; Liu, Yun; Grossman, Jeffrey C

    2017-03-15

    Solar thermal fuels (STFs) harvest and store solar energy in a closed cycle system through conformational change of molecules and can release the energy in the form of heat on demand. With the aim of developing tunable and optimized STFs for solid-state applications, we designed three azobenzene derivatives functionalized with bulky aromatic groups (phenyl, biphenyl, and tert-butyl phenyl groups). In contrast to pristine azobenzene, which crystallizes and makes nonuniform films, the bulky azobenzene derivatives formed uniform amorphous films that can be charged and discharged with light and heat for many cycles. Thermal stability of the films, a critical metric for thermally triggerable STFs, was greatly increased by the bulky functionalization (up to 180 °C), and we were able to achieve record high energy density of 135 J/g for solid-state STFs, over a 30% improvement compared to previous solid-state reports. Furthermore, the chargeability in the solid state was improved, up to 80% charged from 40% charged in previous solid-state reports. Our results point toward molecular engineering as an effective method to increase energy storage in STFs, improve chargeability, and improve the thermal stability of the thin film.

  2. Photo Induced Membrane Separation for Water Purification and Desalination Using Azobenzene Modified Anodized Alumina Membranes.

    Science.gov (United States)

    Fujiwara, Masahiro; Imura, Tatsuki

    2015-06-23

    Water purification and desalination to produce end-use water are important agendas in 21st century, because the global water shortage is becoming increasingly serious. Those processes using light energy, especially solar energy, without the consumption of fossil fuels are desired for creating sustainable society. For these earth-friendly water treatments, nanoporous materials and membranes are expected to provide new technologies. We have reported before that the repetitive photo isomerization of azobenzene groups between the trans and cis isomers induced by the simultaneous irradiation of UV and visible lights accelerates the molecular movement of nearby molecules in nanoporous materials. After further studies, we recently found that the permeation of water through azobenzene modified anodized alumina membranes as a photo responsive nanoporous membrane was achieved by the simultaneous irradiation of UV and visible lights, while no water penetration occurred under no light, only single UV or visible light. The photo induced permeation of water was promoted by the vaporization of water with the repetitive photo isomerization of azobenzene. This membrane permeation achieved the purification of water solutions, because dye molecules and a protein dissolved in aqueous solutions were not involved in the photo induced penetrated water. When 3.5% of sodium chloride solution as model seawater was employed for this membrane separation, the salt content of the permeated water was less than 0.01% to accomplish the complete desalination of seawater.

  3. Tuning the optical emission of MoS{sub 2} nanosheets using proximal photoswitchable azobenzene molecules

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan [Physik Department and NIM, Walter Schottky Institute, Technische Universität München, Am Coulombwall 4, Garching D-85748 (Germany); Physik Department E20, Technische Universität München, James-Franck-St. 1, Garching D-85748 (Germany); Wierzbowski, Jakob; Ceylan, Özlem; Klein, Julian; Anh, Tuan Le; Meggendorfer, Felix; Finley, Jonathan J.; Margapoti, Emanuela, E-mail: emanuela.margapoti@wsi.tum.de [Physik Department and NIM, Walter Schottky Institute, Technische Universität München, Am Coulombwall 4, Garching D-85748 (Germany); Nisic, Filippo; Dragonetti, Claudia [Dipartimento di Chimica, Università degli Studi di Milano and UdR dell' INSTM di Milano, Via Golgi 19, I-20133 Milano (Italy); Palma, Carlos-Andres; Barth, Johannes V. [Physik Department E20, Technische Universität München, James-Franck-St. 1, Garching D-85748 (Germany)

    2014-12-15

    We report photoluminescence measurements performed on monolayer- and two-layer-MoS{sub 2} placed on two types of mixed self-assembled monolayers (mSAMs) of photoswitchable azobenzene molecules. The two mSAMs differ via the electronegative character of the azobenzene derivatives. Thin layers of a transition metal dichalcogenide—MoS{sub 2}—were mechanically exfoliated on mSAM to allow for direct interaction between the molecules and the MoS{sub 2} layers. When the MoS{sub 2} nanosheet is in contact with the electropositive azobenzene molecules in trans configuration, an emission side band at lower energies and at low excitation powers suggest n-type doping. The photoisomerization of the molecules from trans to cis configuration lowers the doping, quenching the side band and enhancing the overall PL efficiency by a factor of ∼3. Opposite results were observed with the chlorinated, more electronegative molecules, exhibiting a reversed trend in the PL efficiency between trans and cis, but with an overall larger intensity. The type of doping induced by the two types of mSAMs was determined by Kelvin probe force microscopy technique.

  4. Microscopic theory of light-induced deformation in amorphous side-chain azobenzene polymers.

    Science.gov (United States)

    Toshchevikov, V; Saphiannikova, M; Heinrich, G

    2009-04-16

    We propose a microscopic theory of light-induced deformation of side-chain azobenzene polymers taking into account the internal structure of polymer chains. Our theory is based on the fact that interaction of chromophores with the polarized light leads to the orientation anisotropy of azobenzene macromolecules which is accompanied by the appearance of mechanical stress. It is the first microscopic theory which provides the value of the light-induced stress larger than the yield stress. This result explains a possibility for the inscription of surface relief gratings in glassy side-chain azobenzene polymers. For some chemical architectures, elongation of a sample demonstrates a nonmonotonic behavior with the light intensity and can change its sign (a stretched sample starts to be uniaxially compressed), in agreement with experiments. Using a viscoplastic approach, we show that the irreversible strain of a sample, which remains after the light is switched off, decreases with increasing temperature and can disappear at certain temperature below the glass transition temperature. This theoretical prediction is also confirmed by recent experiments.

  5. Femtosecond pump-probe photoionization-photofragmentation spectroscopy of azobenzene cation

    Institute of Scientific and Technical Information of China (English)

    HO; JrWei

    2010-01-01

    We report the studies of ultrafast dynamics of azobenzene cations using femtosecond photoionization-photofragmentation spectroscopy. In our experiment,a femtosecond pump pulse first prepares an ensemble of azobenzene cations via photoionization of neutrals. A delayed probe pulse then brings the evolving ionic system to higher states that ultimately undergo ion fragmentation. The dynamics is followed by monitoring either the parent-ion depletion or fragment-ion formation as a function of the pump-probe delay time. The observed transients for azobenzene cations are characterized by a constant ion depletion modulated by a rapidly damped oscillatory signal with a period of about 1 ps. Theoretical calculations suggest that the oscillation arises from a vibration motion along the twisting inversion coordinate involving displacements in CNNC and phenyl-ring torsions. The oscillation is damped rapidly with a time constant of about 1.2 ps,suggesting that energy dissipation from the active mode to bath modes takes place on this time scale.

  6. Synthesis and characterization of dicyclopalladated complexes of azobenzene derivatives by experimental and computational methods.

    Science.gov (United States)

    Babić, Darko; Curić, Manda; Molcanov, Kresimir; Ilc, Gregor; Plavec, Janez

    2008-11-17

    A series of doubly cyclopalladated complexes of azobenzene and its unsymmetrical substituted derivatives, namely, {LPdCl(mu-AZB)LPdCl}, where AZB is azobenzene, 4-methylazobenzene, 4-aminoazobenzene, or 4-(dimethylamino)-4'-nitroazobenzene, while L is N,N-dimethylformamide, dimethylsulfoxide, or pyridine, have been prepared. Their structural and spectroscopic properties were determined by X-ray diffraction analysis as well as by (1)H NMR, IR, UV-vis, and fluorimetric studies. Experimental results were rationalized by quantum chemical calculations. Crystal structures of several complexes have been resolved, and for the first time, it was demonstrated that the cyclopalladation may take place at the azobenzene aromatic ring having the strong electron-withdrawing substituent at the para position. In all cases, the metalated carbon and N,N-dimethylformamide or dimethylsulfoxide ligands are mutually trans, whereas the pyridine ligands are in the cis arrangement. cis/trans isomerism in the isolated compounds is explained by comparing the calculated energies of isomeric structures. All of the complexes absorb strongly in the visible region, and according to time-dependent density functional theory calculations, most of the absorptions can be attributed to intraligand pi --> pi* or metal-to-ligand charge-transfer transitions. The fluorescence emission was observed for the complexes with 4-aminoazobenzene or 4-(dimethylamino)-4'-nitroazobenzene. The aromaticity of palladacycles is evaluated by several aromaticity indices and related to relevant experimental findings.

  7. Optical Input/Electrical Output Memory Elements based on a Liquid Crystalline Azobenzene Polymer.

    Science.gov (United States)

    Mosciatti, Thomas; Bonacchi, Sara; Gobbi, Marco; Ferlauto, Laura; Liscio, Fabiola; Giorgini, Loris; Orgiu, Emanuele; Samorì, Paolo

    2016-03-01

    Responsive polymer materials can change their properties when subjected to external stimuli. In this work, thin films of thermotropic poly(metha)acrylate/azobenzene polymers are explored as active layer in light-programmable, electrically readable memories. The memory effect is based on the reversible modifications of the film morphology induced by the photoisomerization of azobenzene mesogenic groups. When the film is in the liquid crystalline phase, the trans → cis isomerization induces a major surface reorganization on the mesoscopic scale that is characterized by a reduction in the effective thickness of the film. The film conductivity is measured in vertical two-terminal devices in which the polymer is sandwiched between a Au contact and a liquid compliant E-GaIn drop. We demonstrate that the trans → cis isomerization is accompanied by a reversible 100-fold change in the film conductance. In this way, the device can be set in a high- or low-resistance state by light irradiation at different wavelengths. This result paves the way toward the potential use of poly(metha)acrylate/azobenzene polymer films as active layer for optical input/electrical output memory elements.

  8. QSPR Study on the Glass Transition Temperature of Polyacrylates

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Structural parameters of 22 polyacrylic compounds were computed at two levels using Hartree-Fock and DFT methods. Based on the experimental data of glass transition temperature (Tg), four-parameter (energy of the lowest unoccupied molecular orbital (ELOMO), the highest positive charge (Qmax+), dipole moments (μ) and the next highest occupied molecular orbital (ENLOMO)) dependent equations were developed using structural parameters as theoretical descriptors. Especially, Tg dependent equation calculated at the HF/6-31G(d) level is more advantageous than others in view of their correlation and predictive abilities. This dependent equation was validated by variance inflation factors (VIF) and t-test methods.

  9. Radiation synthesis and characterization of polyacrylic acid hydrogels

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The pH-sensitive polyacrylic acid (PAA) hydrogels were synthesized by gamma-ray irradiation at an ambient temperature. The influences of dose, monomer concentration, cross-linking agent content, pH, and ionic strength on the swelling ratio (SR) of the PAA hydrogels were investigated in detail. The results show that the SR of the hydrogel decreases with an increase in the dose, monomer concentration, and cross-linking agent content. In alkaline solution, the SR of the hydrogels is much higher than that in acid solution. Also, the ionic strength can influence the SR of the hydrogels. The more the concentration, the lower the SR.

  10. The Humidity Sensor Using the Polyacrylic Emulsion Containing Magnesium Chloride

    Institute of Scientific and Technical Information of China (English)

    Ching-Han Yu; Jung-Chuan Chou; Tai-Ping Sun; Shen-Kan Hsiung

    2006-01-01

    An impedance type humidity sensor based on the polyacrylic emulsion containing magnesium chloride (MgCl2)without chemical modification was investigated. The impedances of the sensor were measured from various relative humidity in the frequency range between 0.1kHz and 100 kHz. The sensor has a good sensitivity from 60%RH to 90%RH. According to the experimental results, the response time is about 240 seconds in the adsorption process and 310 seconds in the desorption process.

  11. Core-shell Co@Co3O4 nanoparticle-embedded bamboo-like nitrogen-doped carbon nanotubes (BNCNTs) as a highly active electrocatalyst for the oxygen reduction reaction

    Science.gov (United States)

    Xiao, Junwu; Chen, Chen; Xi, Jiangbo; Xu, Yangyang; Xiao, Fei; Wang, Shuai; Yang, Shihe

    2015-04-01

    The current bottleneck for fuel cells and metal-air batteries lies in the sluggish oxygen reduction reaction (ORR) on the cathode side. Despite tremendous efforts, to develop a highly efficient ORR catalyst at low cost remains a great challenge. Herein, we have synthesized core-shell Co@Co3O4 nanoparticles embedded in the bamboo-like N-doped carbon tubes (BNCNTs) by a simple approach comprising thermal treatment of cobalt carbonate hydroxide and urea and oxidization. The ORR catalytic activities of the Co@Co3O4/BNCNT composites are closely dependent on the oxidization degree of the Co nanoparticles and the N content in the BNCNTs. When oxidized at 300 °C, the as-formed Co@Co3O4/BNCNTs-300 composite catalyst with an N/C molar ratio of ~1.6% achieves the maximum ORR catalytic activity. The composite catalyst also exhibits a higher ORR catalytic activity than the Co3O4/carbon nanotube (CNT) catalyst. The tolerance for methanol molecules and the cycle stability performance of the composite catalyst are even superior to those of the highly efficient Pt/C catalyst. Such an excellent ORR catalytic activity can be ascribed to (1) the core-shell Co@Co3O4 nanoparticles embedded in BNCNTs, (2) the N-doping in BNCNTs, and (3) the synergetic effect of (1) and (2) on Co3O4 firmly attached to both Co nanoparticles and BNCNTs, resulting in accelerated electron transport and enhanced charge delocalization.The current bottleneck for fuel cells and metal-air batteries lies in the sluggish oxygen reduction reaction (ORR) on the cathode side. Despite tremendous efforts, to develop a highly efficient ORR catalyst at low cost remains a great challenge. Herein, we have synthesized core-shell Co@Co3O4 nanoparticles embedded in the bamboo-like N-doped carbon tubes (BNCNTs) by a simple approach comprising thermal treatment of cobalt carbonate hydroxide and urea and oxidization. The ORR catalytic activities of the Co@Co3O4/BNCNT composites are closely dependent on the oxidization degree of

  12. Biodegradability of a polyacrylate superabsorbent in agricultural soil.

    Science.gov (United States)

    Wilske, Burkhard; Bai, Mo; Lindenstruth, Beate; Bach, Martin; Rezaie, Zahra; Frede, Hans-Georg; Breuer, Lutz

    2014-01-01

    Superabsorbent polymers (SAP) are used, inter alia, as soil amendment to increase the water holding capacity of soils. Biodegradability of soil conditioners has become a desired key characteristic to protect soil and groundwater resources. The present study characterized the biodegradability of one acrylate based SAP in four agricultural soils and at three temperatures. Mineralisation was measured as the (13)CO₂ efflux from (13)C-labelled SAP in soil incubations. The SAP was either single-labelled in the carboxyl C-atom or triple-labelled including additionally the two C-atoms interlinked in the SAP backbone. The dual labelling allowed estimating the degradation of the polyacrylate main chain. The (13)CO₂ efflux from samples was measured using an automated system including wavelength-scanned cavity ring-down spectroscopy. Based on single-labelled SAP, the mean degradation after 24 weeks varied between 0.45% in loamy sand and 0.82% in loam. However, the differences between degradation rates in different soils were not significant due to a large intra-replicate variability. Similarly, mean degradation did not differ significantly between effective temperature regimes of 20° and 30 °C after 12 weeks. Results from the triple-labelled SAP were lower as compared to their single-labelled variant. Detailed results suggest that the polyacrylate main chain degraded in the soils, if at all, at rates of 0.12-0.24 % per 6 months.

  13. Mechanism of Concentration Dependence of Water Diffusivity in Polyacrylate Gels

    Science.gov (United States)

    Mani, Sriramvignesh; Khabaz, Fardin; Khare, Rajesh

    Membrane based separation processes offer an energy efficient alternative to traditional distillation based separation processes. In this work, we focus on the molecular mechanisms underlying the process of separation of dilute ethanol-water mixture using polyacrylate gels as pervaporation membranes. The diffusivities of the components in swollen gels exhibit concentration dependence. We have used molecular dynamics (MD) simulations to study the correlation between the dynamics of solvent (water and ethanol) molecules, polymer dynamics and solvent structure in the swollen gel systems as a function of solvent concentration. Three different polyacrylate gels were studied: (1) poly n-butyl acrylate (PBA), (2) copolymer of butyl acrylate and 2-hydroxyethyl acrylate P(BA50-HEA50), and (3) poly 2-hydroxyethyl acrylate (PHEA). Simulation results show that solvent concentration has a significant effect on local structure of the solvent molecules and chain dynamics; these factors (local structure and chain dynamics), in turn, affect the diffusivity of these molecules. At low concentration, solvent molecules are well dispersed in the gel matrix and form hydrogen bonds with the polymer. Solvent mobility is correlated with polymer mobility in this configuration and consequently water and ethanol molecules exhibit slower dynamics, this effect is especially significant in PHEA gel. At high solvent concentration, water molecules form large clusters in the system accompanied by enhancement in mobility of both the gel network and the solvent molecules.

  14. Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates.

    Science.gov (United States)

    Glennon-Alty, Laurence; Williams, Rachel; Dixon, Simon; Murray, Patricia

    2013-04-01

    Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-β), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-β. Within a few days of culture on the biomimetic polyacrylates, both mouse and human MSCs, and a mesenchymal-like mouse-kidney-derived stem cell line, began to form multi-layered aggregates and started to express the chondrocyte-specific markers, Sox9, collagen II and aggrecan. Moreover, collagen II tended to be expressed in the centre of the aggregates, similarly to developing limb buds in vivo. Surface analysis of the substrates indicated that those with the highest surface amine content were most effective at promoting MSC chondrogenesis. These results highlight the importance of surface group functionality and the distribution of those groups in the design of substrates to induce MSC chondrogenesis.

  15. Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes

    KAUST Repository

    Lee, Kuang-Tsin

    2009-11-01

    MnO2·nH2O supercapacitors with potassium polyacrylate (PAAK) and potassium polyacrylate-co-polyacrylamide (PAAK-co-PAAM) gel polymer electrolytes (GPEs) having the weight compositions of polymer:KCl:H2O = 9%:6.7%:84.3% have been characterized for their electrochemical performance. Compared with the liquid electrolyte (LE) counterpart, the GPE cells exhibit remarkable (∼50-130%) enhancement in specific capacitance of the oxide electrode, and the extent of the enhancement increases with increasing amount of the carboxylate groups in the polymers as well as with increasing oxide/electrolyte interfacial area. In situ X-ray absorption near-edge structure (XANES) analysis indicates that the oxide electrodes of the GPE cells possess higher Mn-ion valences and are subjected to greater extent of valence variation than that of the LE cell upon charging/discharging over the same potential range. Copolymerization of PAAK with PAAM greatly improves the cycling stability of the MnO2·nH2O electrode, and the improvement is attributable to the alkaline nature of the amino groups. Both GPEs exhibit ionic conductivities greater than 1.0 × 10-1 S cm-1 and are promising for high-rate applications. © 2009 Elsevier Ltd. All rights reserved.

  16. Mass spectrometric identification of an azobenzene derivative produced by smectite-catalyzed conversion of 3-amino-4-hydroxyphenylarsonic acid

    Science.gov (United States)

    Wershaw, R. L.; Rutherford, D.W.; Rostad, C.E.; Garbarino, J.R.; Ferrer, I.; Kennedy, K.R.; Momplaisir, G.-M.; Grange, A.

    2003-01-01

    The compound 3-amino-4-hydroxyphenylarsonic acid (3-amino-HPAA) reacts with smectite to form a soluble azobenzene arsonic acid compound. This reaction is of particular interest because it provides a possible mechanism for the formation of a new type of arsenic compound in natural water systems. 3-Amino-HPAA is a degradation product excreted by chickens that are fed rations amended with roxarsone. Roxarsone is used to control coccidial intestinal parasites in most of the broiler chickens grown in the United States. The structure of the azobenzene arsonic acid compound was first inferred from negative-ion and positive-ion low-resolution mass-spectrometric analyses of the supernatant of the smectite suspension. Elemental composition of the parent ion determined by high-resolution positive-ion mass spectrometric measurements was consistent with the proposed structure of the azobenzene arsonic acid compound. Published by Elsevier Science B.V.

  17. Photo-induced morphological winding and unwinding motion of nanoscrolls composed of niobate nanosheets with a polyfluoroalkyl azobenzene derivative.

    Science.gov (United States)

    Nabetani, Yu; Takamura, Hazuki; Uchikoshi, Akino; Hassan, Syed Zahid; Shimada, Tetsuya; Takagi, Shinsuke; Tachibana, Hiroshi; Masui, Dai; Tong, Zhiwei; Inoue, Haruo

    2016-06-16

    Photo-responsive nanoscrolls can be successfully fabricated by mixing a polyfluoroalkyl azobenzene derivative and a niobate nanosheet, which is exfoliated from potassium hexaniobate. In this study, we have found that the photo-responsive nanoscroll shows a morphological motion of winding and unwinding, which is basically due to the nanosheet sliding within the nanoscroll, by efficient photo-isomerization reactions of the intercalated azobenzene in addition to the interlayer distance change of the nanoscrolls. The relative nanosheet sliding of the nanoscroll is estimated to be ca. 280 nm from the AFM morphology analysis. The distance of the sliding motion is over 20 times that of the averaged nanosheet sliding in the azobenzene/niobate hybrid film reported previously. Photo-responsive nanoscrolls can be expected to be novel photo-activated actuators and artificial muscle model materials.

  18. Photo-orientation of azobenzene-containing liquid-crystalline materials by means of domain structure rearrangement.

    Science.gov (United States)

    Bogdanov, Alexey V; Vorobiev, Andrey Kh

    2013-11-07

    A novel mechanism of photo-orientation of azobenzene-containing liquid-crystalline materials is proposed. This mechanism is based on the notion of photochemically induced domain rearrangement driven by destabilization of liquid-crystalline phase in light absorbing domains due to photochemical formation of non-mesogenic cis-azobenzene moieties. The experimental evidence of photoinduced movement of a domain boundary is presented, and the velocity of this movement is measured. A mathematical model for photo-orientation of a polydomain azobenzene-containing material is formulated. The values of model parameters for a liquid-crystalline azopolymer have been measured in separate experiments. Theoretical predictions demonstrate quantitative agreement with the experimental observations.

  19. Fabrication of narrow surface relief features in a side-chain azobenzene polyester with a scanning near-field microscope

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, N. C. R.; Pedersen, M.;

    2001-01-01

    We show that it is possible to fabricate topographic submicron features in a side-chain azobenzene polyester with a scanning near-field optical microscope, Through irradiation at a wavelength of 488 run at intensity levels of 12 W/cm(2), topographic features as narrow as 240 nm and as high as 6 nm...... have been reproducibly recorded in a thin film of the polyester. These observations are consistent with the fact that at low intensities peaks are produced evolving into formation of trenches at high intensities in the case of amorphous side-chain azobenzene polyesters. This may find applications...

  20. Nanometer TiO2 Modified Polyacrylic Copolymer Sizing Agent

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of new-type nanometer TiO2 modified polyacrylic copolymer sizing agent were synthesized from acrylic acid, ethyl acrylate, nanometer TiO2, oleic acid etc.by orthogonal design method. Results of the studies show that the synthetic method used in this paper was a new way and had never been found in the synthesis of acrylate sizing agent, and that the properties of those new-type size-agent were be improved, which had potential for substituting PVA (polyvinyl alcohol) sizing agent. The technology for solving the problem of nano-scale powder agglomeration and dispersion were also studied. The transmission electron microscope (TEM) observation showed that nano-TiO2 had good dispersion and stability in aqueous solution and in sizing agent solution.

  1. Polyacrylate microspheres composite for all-solid-state reference electrodes.

    Science.gov (United States)

    Kisiel, Anna; Donten, Mikołaj; Mieczkowski, Józef; Rius-Ruiz, F Xavier; Maksymiuk, Krzysztof; Michalska, Agata

    2010-09-01

    A novel concept is proposed for the encapsulation of components within polyacrylate microspheres, prior to their incorporation into a membrane phase. Thus finer and better controlled dispersion of heterogeneous membrane components can be achieved. This concept was verified by using a poly(n-butyl acrylate) membrane-based reference electrode as an example. In this example the proper dispersion of solid constituents of the heterogeneous membrane and prevention of their leakage are both of primary importance. Potassium chloride-loaded poly(n-butyl acrylate) microspheres were prepared and then left in contact with silver nitrate to convert some of the KCl into AgCl. The material obtained was introduced into a poly(n-butyl acrylate) membrane. The reference electrode membranes obtained in this way were characterized with much more stable potential (both in different electrolytes and over time) compared with electrodes prepared by the direct introduction of KCl and AgCl to the membrane.

  2. Functionalized gold nanorod solution via reverse micelle based polyacrylate coating.

    Science.gov (United States)

    Basiruddin, S K; Saha, Arindam; Pradhan, Narayan; Jana, Nikhil R

    2010-05-18

    Functionalization of gold nanorods is a key issue for their biomedical application, and currently it is performed via either electrostatic interaction or thiol based strategy. We have developed a polyacrylate based coating chemistry for gold nanorods that can be used in deriving a variety of functional nanorods with high colloidal stability. The coating processes can introduce primary amines, fluorescein, or poly(ethylene glycol) (PEG) on the nanorod surface in one step process. While fluorescein incorporation can produce fluorescent nanorods, primary amine groups can be used for further functionalization. Various functional nanorods have been successfully synthesized from these coated nanorods and used in different applications. Glucose and biotin functionalized nanorods are used for protein detection, and oleyl functionalized nanorods with fluorescein incorporated in the polymer shell are used for fluorescence based cell labeling.

  3. Vibrational spectra study of phosphorus dendrimer containing azobenzene units on the surface

    Science.gov (United States)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2013-08-01

    The FTIR and FT Raman spectra of the first generation dendrimers, possessing oxybenzaldehyde (G1) or oxyphenylazobenzaldehyde (G2) terminal groups and sodium 4-[4-oxyphenyl)azo]-benzaldehyde (SOAB) were studied. The structural optimization and normal mode analysis were performed for dendrimer G2 on the basis of the density functional theory (DFT). These calculations gave the frequencies of vibrations, infrared intensities and Raman scattering activities for the E- and Z-forms of azobenzene unit. The energy differences between the E- and Z-forms are 12.62 and 25.16 kcal/mol for SOAB and G2. The calculated in gas phase dipole moments for the E- and Z-forms are equal to 20.86, 18.28 D (SOAB) and 7.56, 8.88 D (G2). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that dendrimer G2 molecule has a concave lens structure with planar sbnd Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)Pdbnd S and sbnd Osbnd C6H4sbnd Ndbnd Nsbnd C6H4sbnd CHdbnd O fragments and slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of dendrimer G2 were interpreted by means of potential energy distributions. Relying on DFT calculations a complete vibrational assignment is proposed. The strong band 1598 cm-1 in the IR spectra show marked changes of the optical density in dependence of substituents in the aromatic ring. The differences in the IR and Raman spectra of SOAB and G2 for the E- and Z-forms of azobenzene units were cleared up. During structural isomerization of azobenzene units, redistribution of band intensities appears to a much higher extent than frequency shifts.

  4. Investigation of Polyacrylate Anion-Exchangers for Separation of Rare Earth Element Complexes with EDTA

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The rare earth complexes with EDTA, Ln(edta), show an unusual sequence of affinity for the anion-exchangers. The sorption and chromatographic separation of Y3+ for Nd3+ complexes with EDTA was studied by using the strongly basic gel and macroporous polyacrylate anion-exchangers, Amberlite IRA 458 and Amberlite 958, and the weakly basic gel polyacrylate anion-exchanger, Amberlite IRA-68. The investigations on sorption and separation of rare earth complexes with EDTA on the polyacrylate anion-exchangers applied mainly in the environment protection so far indicate that they can be applied in anionexchange separation of lanthanide complexes with aminopolycarboxylic acids. It was shown that the weakly basic polyacrylate gel anion-exchanger Amberlite IRA-68 is the most effective in purification of Y3+ from Nd3+ in comparison with the strongly basic anion-exchangers of this type.

  5. Research on the chemical mechanism in the polyacrylate latex modified cement system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Min [The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China); Wang, Rumin, E-mail: wangmin19@mail.nwpu.edu.cn [The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China); Zheng, Shuirong [The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China); Northwestern Polytechnical University–East China University of Science and Technology Combined Research Institute of New High Speed Railway Materials (China); Farhan, Shameel; Yao, Hao; Jiang, Hao [The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China)

    2015-10-15

    In this paper, the chemical mechanism in the polyacrylate latex modified cement system was investigated by Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), gel permeation chromatography (GPC) and compact pH meter. All results have shown that the chemical reactions in the polyacrylate modified system can be divided into three stages. The hydration reactions of cement can produce large amounts of Ca(OH){sub 2} (calcium hydroxide) and lead the whole system to be alkali-rich and exothermic at the first stage. Subsequently, this environment can do great contributions to the hydrolysis of ester groups in the polyacrylate chains, resulting in the formation of carboxyl groups at the second stage. At the third stage, the final crosslinked network structure of the product was obtained by the reaction between the carboxyl groups in the polyacrylate latex chains and Ca(OH){sub 2}.

  6. STUDIES ON THE BLEND OF POLYACRYLATE EMULSIONS AND TACKIFIER RESIN EMULSIONS

    Institute of Scientific and Technical Information of China (English)

    HU Shuwen; YANG Yukun

    1996-01-01

    A series of polyacrylate emulsions were blended with tackifier resin emulsions such as modified rosin emulsion, C5 resin and C9 resin emulsion. The miscibility of the polyacrylates and tackifier resins was investigated by means of SEM and visual observation. The phase diagrams of the miscibility change systematically with the polarity of polyacrylates and tackifier resins. The influence of the content of the tackifier resins on the adhesion properties of the polyacrylate emulsions were also studied. The results show that the 180℃ peel strength is improved as the amount of the tackifier resin increases and comes to a maximum at a specific content. The ball tack property decreases slightly and the hold strength changes complicatedly as the tackifier resin increases.

  7. Substrate-Controlled Transformation of Azobenzenes to Indazoles and Indoles via Rh(III)-Catalysis.

    Science.gov (United States)

    Cai, Shangjun; Lin, Songyun; Yi, Xiangli; Xi, Chanjuan

    2017-01-06

    Rh(III)-catalyzed substrate-controlled transformation of azobenzenes to indazoles and 2-acyl (NH) indoles is achieved via C-H functionalization. Generally, good functional groups tolerance, satisfying yields, and excellent regio-selectivity are achieved in this reaction. Mechanistically, the reaction with acrylates undergoes β-hydride elimination, while the reaction with vinyl ketones or acrylamides undergoes nucleophilic addition. Copper acetate was supposed to play different roles in the β-hydride elimination to furnish indazoles and nucleophilic addition of C-Rh bond to deliver 2-acyl (NH) indoles.

  8. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.

    Science.gov (United States)

    Kolpak, Alexie M; Grossman, Jeffrey C

    2011-08-10

    Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. However, large-scale adoption requires enhanced energy storage capacity and thermal stability. Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. Our work also demonstrates that the inclusion of nanoscale templates is an effective strategy for design of highly cyclable, thermally stable, and energy-dense solar thermal fuels.

  9. Second- and third-order nonlinearities of novel push-pull azobenzene polymers.

    Science.gov (United States)

    El Ouazzani, Hasnaa; Iliopoulos, Konstantinos; Pranaitis, Mindaugas; Krupka, Oksana; Smokal, Vitaliy; Kolendo, Aleksey; Sahraoui, Bouchta

    2011-03-10

    In this work, the second- and third-order nonlinear optical response of spin-deposited thin films of three different push-pull side chain azobenzene polymers is investigated by the second- and third-harmonic Maker fringes techniques using 30 ps laser pulses at a fundamental wavelength of 1064 nm. Measurements were carried out before and after aligning the chromophores by corona poling of the films, while different polarization configurations have been utilized. Strong dependence of the response upon the structure of the systems has been found, which is related to the different charge transfer within the molecules. The reported findings are compared with already published results.

  10. Second-order nonlinear optical properties of mexylaminotriazine-functionalized glass-forming azobenzene derivatives

    Science.gov (United States)

    Umezawa, Hirohito; Jackson, Matthew; Lebel, Olivier; Nunzi, Jean-Michel; Sabat, Ribal Georges

    2016-10-01

    The second-order nonlinear optical coefficients of thin films of mexylaminotriazine-functionalized azobenzene molecular glass derivatives were measured using second harmonic generation. The thin films were poled using a custom corona poling set-up and the second harmonic light from a pulsed 1064-nm laser was detected. Four out of the six tested compounds showed optical nonlinearity and a maximum coefficient of 75 pm/V was obtained. The time dependence of the nonlinear coefficients was studied under ambient light and under dark; the second harmonic generation intensity stayed constant for thiazole-containing derivatives while a significant decay was measured for the other compounds.

  11. Optical and Physical Applications of Photocontrollable Materials: Azobenzene-Containing and Liquid Crystalline Polymers

    Directory of Open Access Journals (Sweden)

    Takashi Fukuda

    2012-01-01

    Full Text Available Photocontrol of molecular alignment is an exceptionally-intelligent and useful strategy. It enables us to control optical coefficients, peripheral molecular alignments, surface relief structure, and actuation of substances by means of photoirradiation. Azobenzene-containing polymers and functionalized liquid crystalline polymers are well-known photocontrollable materials. In this paper, we introduce recent applications of these materials in the fields of mechanics, self-organized structuring, mass transport, optics, and photonics. The concepts in each application are explained based on the mechanisms of photocontrol. The interesting natures of the photocontrollable materials and the conceptual applications will stimulate novel ideas for future research and development in this field.

  12. Synthesis and Characterization of Nonsymmetric Liquid Crystal Dimer Containing Biphenyl and Azobenzene Moiety

    Directory of Open Access Journals (Sweden)

    S. Sandy Subala

    2013-01-01

    Full Text Available Calamitic liquid crystalline dimer containing azobenzene moiety and a decyloxy biphenyl linked by flexible spacers {4-[7-(4′-decyloxy-biphenyl-4-yloxy-alkyloxy]-phenyl}-(4-decyl-phenyl-diazene has been synthesized and characterized by spectroscopic methods. The transition temperatures and phase behaviours were studied by Differential Scanning Calorimeter (DSC and Polarizing Optical Microscope (POM. The synthesized compounds exhibited enantiotropic liquid crystal phase with higher spacer display nematic and smectic C phases while lower spacer shows nematic and smectic A phases.

  13. Azobenzene Modified Imidacloprid Derivatives as Photoswitchable Insecticides: Steering Molecular Activity in a Controllable Manner

    Science.gov (United States)

    Xu, Zhiping; Shi, Lina; Jiang, Danping; Cheng, Jiagao; Shao, Xusheng; Li, Zhong

    2015-10-01

    Incorporating the photoisomerizable azobenzene into imidacloprid produced a photoswitchable insecticidal molecule as the first neonicotinoid example of remote control insecticide performance with spatiotemporal resolution. The designed photoswitchable insecticides showed distinguishable activity against Musca both in vivo and in vitro upon irradiation. Molecular docking study further suggested the binding difference of the two photoisomers. The generation of these photomediated insecticides provides novel insight into the insecticidal activity facilitating further investigation on the functions of insect nicotinic acetylcholine receptors and opens a novel way to control and study insect behavior on insecticide poisoning using light.

  14. Formulating gels for decreased mucociliary transport using rheologic properties: Polyacrylic acids

    OpenAIRE

    Shah, Ankur J.; Donovan, Maureen D.

    2007-01-01

    The purpose of these studies was to identify the rheologic properties of polyacrylic acid gels necessary for optimal reductions in mucociliary clearance. The mucociliary transport of 2 bioadhesive polyacrylic acid polymers, polycarbophil and carbopol, was assessed in vitro by measuring their clerance rates across explants of ciliated bovine tracheal tissue. The viscoelastic properties of polymer gels were measured in the presence of mucus using controlled stress rheometry. Combinations of app...

  15. Preparation of Poly(acrylic acid) Hydrogel by Radiation Crosslinking and Its Application for Mucoadhesives

    OpenAIRE

    Young-Chang Nho; Jong-Seok Park; Youn-Mook Lim

    2014-01-01

    A mucoadhesive drug delivery system can improve the effectiveness of a drug by maintaining the drug concentration and allowing targeting and localization of the drug at a specific site. Acrylic-based hydrogels have been used extensively as a mucoadhesive system owing to their flexibility and excellent bioadhesion. In this experiment, poly(acrylic acid) was selected to prepare the bioadhesive hydrogel adhering to mucosal surfaces using a radiation process. Poly(acrylic acid) was dissolved in ...

  16. Temperature-induced collapse of alkaline Earth cation-polyacrylate anion complexes.

    Science.gov (United States)

    Lages, Sebastian; Schweins, Ralf; Huber, Klaus

    2007-09-06

    Polyacrylate anions are used to inhibit CaCO3 precipitation and may be a promising additive to control formation of inorganic nanoparticles. The origin of this applicability lies in specific interactions between the alkaline earth cations and the carboxylate functions along the polyacrylate chains. In the absence of CO32- anions, these interactions eventually cause precipitation of polyelectrolytes. Extended investigation of dilute sodium polyacrylate solutions approaching this precipitation threshold revealed a dramatic shrinking of the PA coil dimensions once the threshold is reached (Eur. Phys. J. E 2001, 5, 117). Recent isothermal calorimetric titration experiments by Antonietti et al. (Macromolecules 2004, 37, 3444) indicated that the driving force of this precipitation is entropic in nature. In the present work, we investigated the impact of temperature on the structural changes of dissolved polyacrylate chains decorated with alkaline earth cations. To this end, large polyacrylate chains were brought close to the precipitation threshold by the addition of distinct amounts of Ca2+ or Sr2+ cations. The resulting structural intermediates were then subjected to temperature variations in the range of 15 degrees C polyacrylate coils were recorded by means of light and neutron scattering. As a major result, we could unambiguously demonstrate that the coils can reversibly be collapsed and extended by increasing and decreasing the temperature, respectively.

  17. Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface

    Science.gov (United States)

    Ylikantola, A.; Linnanto, J.; Knuutinen, J.; Oravilahti, A.; Toivakka, M.

    2013-07-01

    The interactions between calcite pigment and sodium polyacrylate dispersing agent, widely used in papermaking as paper coating components, were investigated using classical force field and quantum chemical approaches. The objective was to understand interactions between the calcite surface and sodium polyacrylate polymer at 300 K using molecular dynamics simulations. A quantum mechanical ab initio Hartree-Fock method was also used to obtain detailed information about the sodium polyacrylate polymer structure. The effect of water molecules (moisture) on the interactions was also examined. Calculations showed that molecular weight, branching and the orientation of sodium polyacrylate polymers influence the interactions between the calcite surface and the polymer. The force field applied, and also water molecules, were found to have an impact on all systems studied. Ab initio Hartree-Fock calculations indicated that there are two types of coordination between sodium atoms and carboxylate groups of the sodium polyacrylate polymer, inter- and intra-carboxylate group coordination. In addition, ab initio Hartree-Fock calculations of the structure of the sodium polyacrylate polymer produced important information regarding interactions between the polymers and carboxylated styrene-butadiene latex particles.

  18. Kinetics of chromium ion absorption by cross-linked polyacrylate films

    Science.gov (United States)

    May, C. E.

    1984-01-01

    Three cross-linked ion exchange membranes were studied as to their ability to absorb chromium ion from aqueous chromium III nitrate solutions. Attention was given to the mechanism of absorption, composition of the absorbed product, and the chemical bonding. The membranes were: calcium polyacrylate, polyacrylic acid, and a copolymer of acrylic acid and vinyl alcohol. For the calcium polyacrylate and the copolymer, parabolic kinetics were observed, indicating the formation of a chromium polyacrylate phase as a coating on the membrane. The rate of absorption is controlled by the diffusion of the chromium ion through this coating. The product formed in the copolymer involves the formation of a coordination complex of a chromium ion with 6 carboxylic acid groups from the same molecule. The absorption of the chromium ion by the polyacrylic acid membranes appears to be more complicated, involving cross-linking. This is due to the coordination of the chromium ion with carboxylic acid groups from more than one polymer molecule. The absorption rate of the chromium ion by the calcium salt membrane was found to be more rapid than that by the free polyacrylic acid membrane.

  19. Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface

    Energy Technology Data Exchange (ETDEWEB)

    Ylikantola, A. [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); Linnanto, J., E-mail: juha.m.linnanto@gmail.com [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); University of Tartu, Institute of Physics, Riia 142, EE-51014 Tartu (Estonia); Knuutinen, J.; Oravilahti, A. [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); Toivakka, M. [Åbo Akademi University, Laboratory of Paper Coating and Converting and Center for Functional Materials, FI-20500 Turku/Åbo (Finland)

    2013-07-01

    The interactions between calcite pigment and sodium polyacrylate dispersing agent, widely used in papermaking as paper coating components, were investigated using classical force field and quantum chemical approaches. The objective was to understand interactions between the calcite surface and sodium polyacrylate polymer at 300 K using molecular dynamics simulations. A quantum mechanical ab initio Hartree–Fock method was also used to obtain detailed information about the sodium polyacrylate polymer structure. The effect of water molecules (moisture) on the interactions was also examined. Calculations showed that molecular weight, branching and the orientation of sodium polyacrylate polymers influence the interactions between the calcite surface and the polymer. The force field applied, and also water molecules, were found to have an impact on all systems studied. Ab initio Hartree–Fock calculations indicated that there are two types of coordination between sodium atoms and carboxylate groups of the sodium polyacrylate polymer, inter- and intra-carboxylate group coordination. In addition, ab initio Hartree–Fock calculations of the structure of the sodium polyacrylate polymer produced important information regarding interactions between the polymers and carboxylated styrene-butadiene latex particles.

  20. Ab initio calculation of the electronic spectrum of azobenzene dyes and its impact on the design of optical data storage materials

    DEFF Research Database (Denmark)

    Åstrand, Per-Olof; Ramanujam, P.S.; Hvilsted, Søren

    2000-01-01

    Electronic excitation energies of 16 azobenzene dyes have been calculated by ab initio methods within the second-order polarization propagator approximation (SOPPA). Good agreement with expriment is found for the lowest singlet and triplet states for both the trans- and cis-azobenzene molecules......, the experimental singlet π → π* transitions are reproduced for a set of azobenzene dyes with different electron donor and acceptor groups and the correct shifts in excitation energy are obtained for the different substituents. It has also been demonstrated that ab initio methods can be used to determine suitable...... candidates for azo components used in materials for data storage....

  1. Photoswitching of azobenzene-containing self-assembled monolayers as a tool for control over silicon surface electronic properties

    Science.gov (United States)

    Malyar, Ivan V.; Titov, Evgenii; Lomadze, Nino; Saalfrank, Peter; Santer, Svetlana

    2017-03-01

    We report on photoinduced remote control of work function and surface potential of a silicon surface modified with a photosensitive self-assembled monolayer consisting of chemisorbed azobenzene molecules (4-nitroazobenzene). It was found that the attachment of the organic monolayer increases the work function by hundreds of meV due to the increase in the electron affinity of silicon substrates. The change in the work function on UV light illumination is more pronounced for the azobenzene jacketed silicon substrate (ca. 250 meV) in comparison to 50 meV for the unmodified surface. Moreover, the photoisomerization of azobenzene results in complex kinetics of the work function change: immediate decrease due to light-driven processes in the silicon surface followed by slower recovery to the initial state due to azobenzene isomerization. This behavior could be of interest for electronic devices where the reaction on irradiation should be more pronounced at small time scales but the overall surface potential should stay constant over time independent of the irradiation conditions.

  2. Remarkable enhancement of the photoreactivity of a polyfluoroalkyl azobenzene derivative in an organic-inorganic nano-layered microenvironment.

    Science.gov (United States)

    Ramakrishnan, Vivek; Yamamoto, Daisuke; Sasamoto, Shin; Shimada, Tetsuya; Nabetani, Yu; Tachibana, Hiroshi; Inoue, Haruo

    2014-11-21

    Organic-inorganic hybrids composed of polyfluoroalkyl azobenzene surfactant (abbreviated as C3F-Azo-C6H) and inorganic layered compounds are able to undergo reversible three-dimensional morphology changes such as interlayer space changes and nanosheet sliding in a giant scale due to reversible trans-cis isomerization of the azobenzene moiety upon photo-irradiation. In this paper, we have systematically studied the relationship between the layered hybrid microstructures of C3F-Azo-C6H-clay and their photoreactivity for understanding the mechanism of the photo-induced morphology change. The photoreactivity was found to be very much affected by the surrounding microenvironments. As compared with it in solution, the cis-trans photo-isomerization in C3F-Azo-C6H-clay nano-layered film was substantially enhanced with the quantum yield exceeding unity (Φ = 1.9), while the trans-cis isomerization was rather retarded. The corresponding hydrocarbon analogue of the azobenzene surfactant (C3H-Azo-C6H) did not show such an enhancement. The enhancement was discussed in terms of a cooperative effect among adjacent azobenzene moieties along with polyfluoroalkyl chains and the inorganic clay nanosheet to prevent a dissipation of the excess energy being liberated during the photo-isomerization within the nano-layered microenvironment.

  3. Molecular design of super hydrogelators: understanding the gelation process of azobenzene-based sugar derivatives in water

    NARCIS (Netherlands)

    Kobayashi, Hideki; Friggeri, Arianna; Koumoto, Kazuya; Amaike, Masato; Shinkai, Seiji; Reinhoudt, David N.

    2002-01-01

    As an attempt to rationally design aqueous organogelators, a bolaamphiphilic azobenzene derivative (1) bearing two sugar groups was synthesized. Compound 1 formed a gel in water even at concentrations as low as 0.05 wt % (0.65 mM). Spectroscopic studies and electron-micrographic observations have cl

  4. Temperature- and Photocontrolled Unfolding/Folding of a Triple-Helical Azobenzene-Stapled Collagen Peptide Monitored by Infrared Spectroscopy.

    Science.gov (United States)

    Lorenz, Lisa; Kusebauch, Ulrike; Moroder, Luis; Wachtveitl, Josef

    2016-05-04

    The triple-helical structure of a model collagen peptide possessing azobenzene-derived clamps integrated in all three strands as side-chain-to-side-chain crosslinks is analyzed by IR spectroscopy in comparative thermal excursion experiments with the triple helix of a typical reference collagen peptide consisting of only glycine-proline-hydroxyproline repeats. By exploiting the known stabilizing effects of aqueous alcoholic solvents on the unique collagen fold, deuterated ethylene glycol/water (1:1) is used as a solvent to investigate the effect of the light-switchable trans/cis-azobenzene clamp on the stability of the triple helix in terms of H/D exchange rates and thermal unfolding. Results of this comparative analysis clearly reveal only a minor destabilization of the triple helix by the hydrophobic azobenzene moieties compared to the reference collagen peptide as reflected by a lower midpoint of the thermal unfolding and higher rates of H/D exchange. However, it also reveals that the driving force exerted by the trans-to-cis photoisomerization of the azobenzene moieties is insufficient for unfolding of the compact triple-helical collagen fold. Only temperature-dependent untightening of this fold with heating results in a reversible photomodulated unfolding and refolding of the azo-collagen peptide into the original triple helix.

  5. An analysis of the anisotropic and topographic gratings in a side-chain liquid crystalline azobenzene polyester

    DEFF Research Database (Denmark)

    Holme, N.C.R.; Nikolova, L.; Ramanujam, P.S.;

    1997-01-01

    We have examined in detail the formation of surface relief structures in azobenzene polyesters formed by polarization holography with orthogonally circularly polarized laser beams, We show that it is possible to separate the contribution to the diffraction efficiency into an anisotropic part...

  6. 10,000 optical write, read, and erase cycles in an azobenzene sidechain liquid-crystalline polyester

    DEFF Research Database (Denmark)

    Holme, NCR; Ramanujam, P.S.; Hvilsted, Søren

    1996-01-01

    We show far what is believed to he the first time that it is possible tu generate 10,000 rapid write, read, and erase cycles optically in an azobenzene sidechain liquid-crystalline polyester. We do this by exposing the film alternately to visible light from an argon laser at 488 nm and ultraviolet...

  7. OPTICAL PHASE CONJUGATION RESPONSE OF PHOTOINDUCED POLYMER FILMS CONTAINING AZOBENZENE MOIETIES WITH CHIRAL GROUP

    Institute of Scientific and Technical Information of China (English)

    Ze-da Xu; Yong Zhang; Xing-he Fan; Xin-hua Wan; Qi-feng Zhou

    2002-01-01

    An optically active monomer containing azobenzene moieties with chiral group (s-2-methyl-butyl), 4-[2-(methacryloyloxy)ethyloxy]-4'-(s-2-methyl-1-butyloxycarbonyl) azobenzene (M1) was synthesized. Polymer (PM1) possessing optical phase conjugated response was obtained by homopolymerization of the optically active monomer (M1) using free radical polymerization. The polymer was very soluble in common solvents and good optical quality films could be easily fabricated by spin coating. The optical phase conjugated responses of the polymer PM1 were measured by degenerate four-wave mixing (DFWM). In comparison with polymer containing no chiral group, it was found from the preliminary measurement of photoisomeric change that optical phase conjugated response of the PM1 in the long-range order hexagonal symmetry microstructure could be easily controlled by choosing the appropriate polarization direction of the irradiating beams (514.5 nm) and the irradiating number, presumably due to the chiral group in the PM1 molecular structure. For the case of the polymer investigated here, a chiral group side chain was introduced to increase optical phase conjugated response intensity with different polarization directions of the irradiating beams, which aims originally at searching for a new photoactive material.

  8. Fluorescence modulation of cadmium sulfide quantum dots by azobenzene photochromic switches.

    Science.gov (United States)

    Javed, Hina; Fatima, Kalsoom; Akhter, Zareen; Nadeem, Muhammad Arif; Siddiq, Muhammad; Iqbal, Azhar

    2016-02-01

    We have investigated the attachment of azobenzene photochromic switches on the modified surface of cadmium sulfide (CdS) quantum dots (QDs). The modification of CdS QDs is done by varying the concentration of the capping agent (mercaptoacetic acid) and NH3 in order to control the size of the QDs. The X-ray diffraction studies revealed that the crystallite size of CdS QDs ranged from 6 to 10 nm. The azobenzene photochromic derivatives bis(4-hydroxybenzene-1-azo)4,4'(1,1' diphenylmethane) (I) and 4,4'-diazenyldibenzoic acid (II) were synthesized and attached with surface-modified CdS QDs to make fluorophore-photochrome CdS-(I) and CdS-(II) dyad assemblies. Upon UV irradiation, the photochromic compounds (I) and (II) undergo a reversible trans-cis isomerization. The photo-induced trans-cis transformation helps to transfer photo-excited electrons from the conduction band of the CdS QDs to the lowest unoccupied molecular orbital of cis isomer of photochromic compounds (I) and (II). As a result, the fluorescence of CdS-(I) and CdS-(II) dyads is suppressed approximately five times compared to bare CdS QDs. The fluorescence modulation in such systems could help to design luminescent probes for bioimaging applications.

  9. Impact of sodium polyacrylate on the amorphous calcium carbonate formation from supersaturated solution.

    Science.gov (United States)

    Liu, J; Pancera, S; Boyko, V; Gummel, J; Nayuk, R; Huber, K

    2012-02-21

    A detailed in situ scattering study has been carried out on the formation of amorphous calcium carbonate (ACC) particles modulated by the presence of small amounts of sodium polyacrylate chains. The work is aiming at an insight into the modulation of ACC formation by means of two polyacrylate samples differing in their molecular weight by a factor of 50. The ACC formation process was initiated by an in situ generation of CO(3)(2-) ions via hydrolysis of 10 mM dimethylcarbonate in the presence of 10 mM CaCl(2). Analysis of the formation process by means of time-resolved small-angle X-ray and light scattering in the absence of any additives provided evidence for a monomer addition mechanism for the growth of ACC particles. ACC formation under these conditions sets in after a lag-period of some 350 s. In the presence of sodium polyacrylate chains, calcium polyacrylate aggregates are formed during the lag-period, succeeded by a modulated ACC growth in a second step. The presence of anionic polyacrylate chains changed the shape of the growing particles toward loose and less homogeneous entities. In the case of low amounts (1.5-7.5 mg/L) of the long chain additive with 97 kDa, the size of the aggregates is comparable to the size of the successively formed hybrid particles. No variation of the lag-period has been observed in this case. Use of the short chain additive with 2 kDa enabled increase of the additive concentration up to 100 mg/L and resulted in a significant increase of the lag-period. This fact, together with the finding that the resulting hybrid particles remained stable in the latter case, identified short chain sodium polyacrylates as more efficient modulators than long chain polyacrylates.

  10. Preparation of mesoporous SiO2@azobenzene-COOH chemoselective nanoprobes for comprehensive mapping of amino metabolites in human serum.

    Science.gov (United States)

    Li, Hua; Qin, Qian; Qiao, Lizhen; Shi, Xianzhe; Xu, Guowang

    2015-06-30

    A novel type of mesoporous SiO2@H4/D4 tagged azobenzene-COOH chemoselective nanoprobe was developed for comprehensive mapping of amino metabolites in complex biological samples with high specificity and sensitivity.

  11. Properties of Polyacrylate Latex Prepared Under Different Emulsified Systems

    Institute of Scientific and Technical Information of China (English)

    CHEN Lijun; WU Fengqin

    2012-01-01

    The polyacrylate latexes were synthesized via pre-emulsified and semi-continuous seeded emulsion polymerization technology when conventional surfactant or polymerizable surfactant was used as emulsifiers.The resultant latexes and their films were characterized with the contact angle determinator and rheometer.Effect of the polymerizable surfactant on water resistance,stability and rheology of the latex was studied.Results show that the water resistance of film is increased first then decreased with the increase of the amount of the polymerizable surfactant.There exists the optimum value of the amount of the polymerizable surfactant for the water resistance of the film.In comparison with the latex prepared with the conventional surfactant,both the mechanical stability and the freezing-thaw stability of the latex are improved when the polymerizable surfactant is used during the course of the emulsion polymerization.The resultant latex has rheological properties of pseudo-plastic fluid and belongs to non-Newtonian fluid.

  12. Antimicrobial activity of poly(acrylic acid) block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  13. Omniphobic low moisture permeation transparent polyacrylate/silica nanocomposite.

    Science.gov (United States)

    Hsu, Sheng-Hao; Chang, Yuan-Ling; Tu, Yu-Chieh; Tsai, Chieh-Ming; Su, Wei-Fang

    2013-04-24

    We report the development of low moisture permeation and transparent dense polyacrylate/silica nanocomposite material that can exhibit both superhydrophobic and oleophobic (omniphobic) properties. The material was prepared by a three-step process. The first step involved the preparation of UV polymerizable solventless hybrid resin and the fabrication of nanocomposite. The hybrid resin consisted of a mixture of acrylate monomer, initiator, and acrylate-modified different size silica nanoparticles. The second step was to roughen the surface of the nanocomposite with unique nanotexture by oxygen plasma. In the third step, we applied a low surface tension fluoro monolayer on the treated surface. The nanocomposite exhibits desired superhydrophobicity and oleophobicity with a water contact angle of 158.2° and n-1-octadecene contact angle of 128.5°, respectively; low moisture permeation of 1.44 g·mm/m(2)·day; and good transparency (greater than 82% at 450-800 nm for ~60 μm film). The material has potential applications in optoelectronic encapsulation, self-cleaning coating, etc.

  14. Preparation of Poly(acrylic acid Hydrogel by Radiation Crosslinking and Its Application for Mucoadhesives

    Directory of Open Access Journals (Sweden)

    Young-Chang Nho

    2014-03-01

    Full Text Available A mucoadhesive drug delivery system can improve the effectiveness of a drug by maintaining the drug concentration and allowing targeting and localization of the drug at a specific site. Acrylic-based hydrogels have been used extensively as a mucoadhesive system owing to their flexibility and excellent bioadhesion. In this experiment, poly(acrylic acid was selected to prepare the bioadhesive hydrogel adhering to mucosal surfaces using a radiation process. Poly(acrylic acid was dissolved in water to a prepare poly(acrylic acid solution, and the solution was then irradiated by an electron beam at up to 75 kGy to make hydrogels. Their physical properties, such as gel percent, swelling percent and adhesive strength to mucosal surfaces, were investigated. Triamcinolone acetonide was used as a model drug. The dried poly(acrylic acid film was dipped in a 0.1 wt% triamcinolone acetonide solution in ethanol, and then dried at 25 °C. The release of triamcinolone acetonide was determined at different time intervals, and UV (Ultraviolet-Vis spectroscopy was used to determine the released concentration of triamcinolone acetonide at 238 nm. It was shown that poly(acrylic acid-based drug carriers were successfully prepared for use in a bioadhesive drug delivery system.

  15. Kinetics of copper ion absorption by cross-linked calcium polyacrylate membranes

    Science.gov (United States)

    Philipp, W. H.; May, C. E.

    1983-01-01

    The absorption of copper ions from aqueous copper acetate solutions by cross-linked calcium acrylate membranes was found to obey parabolic kinetics similar to that found for oxidation of metals that form protective oxide layers. For pure calcium polyacrylate membranes the rate constant was essentially independent of copper acetate concentration and film thickness. For a cross-linked copolymer film of polyvinyl alcohol and calcium polyacrylate, the rate constant was much greater and dependent on the concentration of copper acetate. The proposed mechanism in each case involves the formation of a copper polyacrylate phase on the surface of the membrane. The diffusion of the copper ion through this phase appears to be the rate controlling step for the copolymer film. The diffusion of the calcium ion is apparently the rate controlling step for the calcium polyacrylate. At low pH, the copper polyacrylate phase consists of the normal copper salt; at higher pH, the phase appears to be the basic copper salt.

  16. The inhibition of matrix metalloproteinase activity in chronic wounds by a polyacrylate superabsorber.

    Science.gov (United States)

    Eming, Sabine; Smola, Hans; Hartmann, Berenike; Malchau, Gebhart; Wegner, Ronny; Krieg, Thomas; Smola-Hess, Sigrun

    2008-07-01

    Excessive matrix metalloproteinase (MMP) levels have been observed in wound fluid of impaired healing wounds. This is thought to interfere with granulation tissue formation as newly formed extracellular matrix and cytokines are degraded and the wound becomes deadlocked, unable to progress to the next healing stages. In the cleansing phase, associated with high MMP activity levels, hydroactive wound dressings containing polyacrylate superabsorber particles are particularly effective. We tested whether these particles can block MMP activity in wound fluid obtained from chronic venous leg ulcers. Polyacrylate superabsorber particles inhibited MMP activity by more than 87% in a fluorogenic peptide substrate assay. Further analysis revealed two underlying molecular mechanisms. First, experiments showed direct binding of MMPs to the particles. Secondly, polyacrylate superabsorber particles can bind Ca2+ and Zn2+ ions competing with MMPs for divalent ions required for enzymatic activity. Furthermore, we provide the first evidence in vivo that MMPs bind effectively to polyacrylate superabsorber particles within the hostile environment of chronic wounds. We conclude that polyacrylate superabsorber particles can rescue the highly proteolytic microenvironment of non-healing wounds from MMP activity so that more conductive conditions allow healing to proceed.

  17. SYNTHESIS AND PROPERTIES OF A NEW AZOBENZENE SIDE-CHAIN POLYMER CONTAINING A TEMPO RADICAL

    Institute of Scientific and Technical Information of China (English)

    Yong Zhang; Ze-da Xu; Xing-he Fan; Xiao-fang Chen; Xin-hua Wan; Qi-feng Zhou

    2002-01-01

    To allow anisotropies of optical properties in a magnetic field, nitroxide radical is introduced into the ortho-position of the phenylene ring in the side chain. A new azobenzene side-chain polymer (TEMPO-PAZ) containing TEMPOradical was synthesized. The polymer has a good solubility in organic solvents. The ESR spectrum of the polymer indicatedthree absorption lines characteristic of TEMPO radical. The optical phase conjugated responses (I4) of the polymer filmswere investigated by degenerate four-wave mixing (DFWM). The experimental results showed that optical phase conjugatedresponse of the TEMPO-PAZ could be easily controlled by choosing the appropriate direction of magnetic field presumablydue to the nitroxide radical in the TEMPO-PAZ molecular structure. For the polymer investigated here, the nitroxide radicalwas introduced to increase optical phase conjugated response intensity in a magnetic field, aiming originally at searching fora new photo-active organic magnetic multifunctional materials.

  18. MORPHOLOGY STUDY OF A SERIES OF AZOBENZENE-CONTAINING SIDE-ON LIQUID CRYSTALLINE TRIBLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Wei Deng; Annie Br(u)let; Pierre-antoine Albouy; Patrick Keller; Xiao-gong Wang; Min-hui Li

    2012-01-01

    A series of azobenzene containing side-on liquid crystalline ABA triblock copolymers were investigated.This triblock series possesses the same central liquid crystal block B and various lengths of the amorphous block A.Transmission electron microscopy (TEM),small angle X-rays and neutron scattering (SAXS and SANS) were used to study their morphologies.Aider annealing the samples over weeks at a temperature within the nematic temperature range of block B,different morphologies (disordered,lamellar,perforated layer and hexagonal cylinder) were observed by TEM.The alignment behavior of these azo triblock copolymers in the magnetic field for artificial muscle application,as well as the phase period and the order-disorder transition (ODT) were studied in situ by SANS.

  19. Magnetic and optical bistability in tetrairon(III) single molecule magnets functionalized with azobenzene groups.

    Science.gov (United States)

    Prasad, Thazhe Kootteri; Poneti, Giordano; Sorace, Lorenzo; Rodriguez-Douton, Maria Jesus; Barra, Anne-Laure; Neugebauer, Petr; Costantino, Luca; Sessoli, Roberta; Cornia, Andrea

    2012-07-21

    Tetrairon(III) complexes known as "ferric stars" have been functionalized with azobenzene groups to investigate the effect of light-induced trans-cis isomerization on single-molecule magnet (SMM) behaviour. According to DC magnetic data and EPR spectroscopy, clusters dispersed in polystyrene (4% w/w) exhibit the same spin (S = 5) and magnetic anisotropy as bulk samples. Ligand photoisomerization, achieved by irradiation at 365 nm, has no detectable influence on static magnetic properties. However, it induces a small but significant acceleration of magnetic relaxation as probed by AC susceptometry. The pristine behaviour can be almost quantitatively recovered by irradiation with white light. Our studies demonstrate that magnetic and optical bistability can be made to coexist in SMM materials, which are of current interest in molecular spintronics.

  20. Near-field lithography on the azobenzene polymer liquid crystal films

    Institute of Scientific and Technical Information of China (English)

    Douguo Zhang; Jian Liu; Zebo Zhang; Li Cao; Anlian Pan; Pei Wang; Yonghua Lu; Ming Bai; Jun Yang; Lin Tang; Jiangying Zhang; Hai Ming; Qijin Zhang

    2005-01-01

    @@ In this article, we reported near-field research on azobenzene polymer liquid crystal films using scanning near-field optical microscopy (SNOM). Optical writing and subsequently topographic reading of the patterns with subwavelength resolution were carried out in our experiments. Nanometer scale dots and lines were successfully fabricated on the films and the smallest dot diameter is about 120 nm. The width of the line fabricated is about 250 nm. This method is also a choice for nanolithography. The mechanism of the surface deformation on the polymer films was briefly analyzed from the viewpoint of gradient force in the optical near field. The intensity distribution of the electric field near the tip aperture was numerically simulated using finite-difference time-domain (FDTD) method and the numerical simulation results were consistent with the experimental results.

  1. New Azobenzene Dye Colorimetric and Ratiometric Chemosensors for Mercury(Ⅱ)Ion

    Institute of Scientific and Technical Information of China (English)

    GUO Min; XUE wei; GUAN Mingyun; SUN Jianhua; YIN Gui

    2009-01-01

    A new series of azobenzene dyes,which possessed colorimetric and ratiometric recognition to Hg2+ based on the mechanism of internal charge transfer(ICT),was developed and characterized.The molecules involving azo and imino functional groups can coordinate with Hg2+ to result in a large blue shift from 453 to 363 nm corresponding to a notable color change from orange to pale yellow in aqueous methanol solution(H2O/CH3OH = 1/4,V/V),which can be applied to naked eye detection of Hg2+.The sensitivity,selectivity and binding mode of the sensors to Hg2+ were investigated by UV-Vis spectroscopy.

  2. Nanosilica and Polyacrylate/Nanosilica: A Comparative Study of Acute Toxicity

    Directory of Open Access Journals (Sweden)

    Ying-Mei Niu

    2016-01-01

    Full Text Available We compared the acute toxicity of nanosilica and polyacrylate/nanosilica instillation in Wistar rats (n=60. Exposure to nanosilica and polyacrylate/nanosilica showed a 30% mortality rate. When compared with saline-treated rats, animals in both exposure groups exhibited a significant reduction of PO2 (P<0.05 at both 24 and 72 hr. after exposure. Both exposure groups exhibited a significant reduction of neutrophils in arterial blood compared to saline controls (P<0.05 24 hr. after exposure. The levels of blood ALT and LDH in exposed groups were found to be significantly increased (P<0.05 24 hr. following exposure. The exposed groups exhibited various degrees of pleural effusion and pericardial effusion. Our findings indicated respiratory exposure to polyacrylate/nanosilica and nanosilica is likely to cause multiple organ toxicity.

  3. Attenuating the size and molecular carrier capabilities of polyacrylate nanoparticles by a hydrophobic fluorine effect.

    Science.gov (United States)

    Labruère, Raphaël; Turos, Edward

    2012-08-15

    This study investigates the effect of introducing alkyl chain fluorination on the properties of polyacrylate nanoparticles prepared in aqueous solution by emulsion polymerization. For this, 2,2,3,3,4,4,4-heptafluorobutyl acrylate (1) and methyl trifluoroacrylate (2) were tested as monomers as a means to prepare fluorinated polyacrylate nanoparticles to evaluate how side chain fluorination may affect nanoparticle size and drug carrier properties. Our results show that as fluorine content within the polyacrylate matrix increases, the size of the nanoparticle systematically diminishes, from 45 nm (for nanoparticles containing no fluoroacrylate) to ~7 nm (for nanoparticles constructed solely of fluoroacrylate). We also observe that as fluoroacrylate content and hydrophobicity increases, the nanoparticles decrease their ability to incorporate lipophilic molecules during the process of emulsification. These findings have meaningful implications in the implementation of fluorinated nanoparticles in molecular delivery.

  4. Synthesis, characterization and degradation behavior of admicelled polyacrylate-natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Pongpilaipruet, Angkana; Magaraphan, Rathanawan, E-mail: rathanawan.k@chula.ac.th

    2015-06-15

    In order to improve weatherability of the cured natural rubber, the novel introduction of good ozone resistant polymers such as polyacrylates (poly(methyl acrylate) (PMA) or poly(methyl methacrylate) (PMMA)) into natural rubber (NR) by admicellar polymerization was investigated in this work. The admicellar polymerization to synthesize polyacrylate layer over the surface of NR latex particles was performed with varying monomer type (PMA and PMMA) and content (50 and 100 mM). The admicelled PMMA showed higher molecular weight than PMA. Fourier transform infrared spectra of the admicellar synthesized natural rubbers exhibited characteristic peaks of those polyacrylates. Micrographs from transmission electron and field emission scanning electron microscopes (FE-SEM) revealed the coatings of PMA and PMMA over the rubber particles, suggesting a core-shell structure. Thermogravimetric analysis revealed that the admicelled rubbers not only showed an improvement in heat stability but also a single decomposition temperature. After vulcanization, FE-SEM results showed the cured admicelled rubbers had phase transformation from core-shell to phase separation (aggregate domains of polyacrylate-rich phase) with smooth interface. This agreed well to their one glass transition temperature (∼−48 °C) which indicated good miscibility between NR and each polyacrylate. The cracks generated after exposure to ozone found in the admicelled rubbers were smaller than those in NR, suggesting better ozone resistance was achieved. Increasing monomer concentration led to less cracks or much better ozone resistance. Furthermore, changes in mechanical properties after ozone exposure of the admicelled PMA-NR were less than those of the admicelled PMMA-NR (having the same shell content) and the NR, respectively. - Highlights: • We use admicellar technique to add polyacrylates to NR in form of core-shell rubber. • This core-shell structure was physically formed as seen by the phase

  5. Effects of an AMPS-modifi ed Polyacrylic Acid Superplasticizer on the Performance of Concrete Materials

    Institute of Scientific and Technical Information of China (English)

    CHEN Baofan

    2015-01-01

    A self-made 2-acrylamide-2-methyl propylene sulfonic (AMPS)-modified polyacrylic acid superplasticizer and two other commercially available superplasticizers with different molecular structures are used in this study to investigate the effect of an AMPS-modifi ed polyacrylic acid superplasticizer on the properties of concrete materials. In the experiments, initial and 1.5 h slumps over time after admixtion are determined by adding different dosages of three superplasticizers into the premixed concrete to characterize the slump loss resistance of the premixed concrete. The water-reducing rates of three different types of concrete are determined to characterize the water-reducing capacity of the concrete with each superplasticizer. The 3, 7 and 28 d compressive strength is determined to characterize the mechanical properties of the concrete with each superplasticizer. In the meanwhile, 1, 1.5 and 2.0 h slump loss rates over time after admixtion are determined by adding different dosages of the three superplasticizers into the high-performance concrete (HPC) to characterize the slump loss resistance of HPC. The 7, 28, 60 and 90 d compressive strength is determined to characterize the compressive properties of HPC with each superplasticizer. The dry shrinkage rates of three different types of HPC are determined with each superplasticizer. Electricfl ux after standard curing for 56 d and chloride ion diffusion coeffi cient after curing for 28 d of HPC are determined to characterize the impermeability of HPC with each superplasticizer. The cross-section was examined using a scanning electron microscopy (SEM) system. Results demonstrate that the AMPS-modifi ed polyacrylic acid superplasticizer has better water-reducing effect and slump than the two commercially available polyacrylic acid superplasticizers. The AMPS-modifi ed polyacrylic acid superplasticizer also shows signifi cant improvement of the compressive strength, especially in comprehensive performance of HPC. In

  6. Covalent Functionalization of Multiwalled Carbon Nanotubes with Poly(acrylic acid)

    Institute of Scientific and Technical Information of China (English)

    LIU, Yan-Xin; DU, Zhong-Jie; LI, Yan; ZHANG, Chen; LI, Hang-Quan

    2006-01-01

    Covalent functionalization of multiwalled carbon nanotubes (MWNT) with poly(acrylic acid) has been successfully achieved via grafting of poly(acryloyl chloride) on nanotube surface by esterification reaction of acyl chloride-bound polymer with hydroxyl functional groups present on acid-oxidized MWNT and hydrolysis of polymer attached to nanotubes. Polymer-functionalized MWNT could possess remarkably high solubility in water, and their aqueous solution was very stable without any observable black deposit for a long time. Characterizations of such functionalized MWNT samples using Fourier transform infrared spectrometer, transmission electron microscopy and nuclear magnetic resonance techniques indicated that poly(acrylic acid) was covalently attached to the surface of MWNT.

  7. Preparation of Polyacrylate-based Conductive Coatings and Its PTC Effect

    Institute of Scientific and Technical Information of China (English)

    XIONG Chuan-xi; HU Hui-rong; ZHOU Zhi-yong; ZHANG Yi; DONG Li-jie

    2004-01-01

    Polyacrylate- based conductive coatings were prepared from polyacrylate emulsion as matrix andcarbon black (CB) whose surface was treated with titanate coupling agent as conducting particles. One kind oforganic crystal was added to study its effects on the electrical conductivity and PTC ( positive temperature coeffi-cient ) effect of the conductive coatings. Experimental results show that the coatings containing only polyacrylateemulsion and CB exhibit an excellent electrical conductivity but bad PTC effect, and when organic crystal is added,PTC effect is characterized and can increase by 2 orders of magtitude. The critical transformation temperature ofpolyacrylate emulsion/CB PTC composites is decided by melting point of organic crystals.

  8. Nanosilica and Polyacrylate/Nanosilica: A Comparative Study of Acute Toxicity

    OpenAIRE

    Ying-Mei Niu; Xiao-Li Zhu; Bing Chang; Zhao-Hui Tong; Wen Cao; Pei-Huan Qiao; Lin-Yuan Zhang; Jing Zhao; Yu-Guo Song

    2016-01-01

    We compared the acute toxicity of nanosilica and polyacrylate/nanosilica instillation in Wistar rats (n = 60). Exposure to nanosilica and polyacrylate/nanosilica showed a 30% mortality rate. When compared with saline-treated rats, animals in both exposure groups exhibited a significant reduction of PO2 (P < 0.05) at both 24 and 72 hr. after exposure. Both exposure groups exhibited a significant reduction of neutrophils in arterial blood compared to saline controls (P < 0.05) 24 hr. after expo...

  9. Regulation of substituent groups on morphologies and self-assembly of organogels based on some azobenzene imide derivatives

    Science.gov (United States)

    Jiao, Tifeng; Wang, Yujin; Zhang, Qingrui; Zhou, Jingxin; Gao, Faming

    2013-04-01

    In this paper, new azobenzene imide derivatives with different substituent groups were designed and synthesized. Their gelation behaviors in 21 solvents were tested as novel low-molecular-mass organic gelators. It was shown that the alkyl substituent chains and headgroups of azobenzene residues in gelators played a crucial role in the gelation behavior of all compounds in various organic solvents. More alkyl chains in molecular skeletons in present gelators are favorable for the gelation of organic solvents. Scanning electron microscopy and atomic force microscopy observations revealed that the gelator molecules self-assemble into different aggregates, from wrinkle, lamella, and belt to fiber with the change of solvents. Spectral studies indicated that there existed different H-bond formations between amide groups and conformations of methyl chains. The present work may give some insight to the design and character of new organogelators and soft materials with special molecular structures.

  10. Voltage-controlled nonvolatile molecular memory of an azobenzene monolayer through solution-processed reduced graphene oxide contacts.

    Science.gov (United States)

    Min, Misook; Seo, Sohyeon; Lee, Sae Mi; Lee, Hyoyoung

    2013-12-23

    The solution-processed fabrication of an azobenzene (ABC10) monolayer-based nonvolatile memory device on a reduced graphene oxide (rGO) electrode is successfully accomplished. Trans--cis isomerizations of ABC10 between two rGO electrodes in a crossbar device are controlled by applied voltage. An rGO soft-contact top electrode plays an important role in the conformational-change-dependent conductance switching process of an ABC10 monolayer.

  11. Large work function shift of gold induced by a novel perfluorinated azobenzene-based self-assembled monolayer.

    Science.gov (United States)

    Crivillers, Núria; Osella, Silvio; Van Dyck, Colin; Lazzerini, Giovanni M; Cornil, David; Liscio, Andrea; Di Stasio, Francesco; Mian, Shabbir; Fenwick, Oliver; Reinders, Federica; Neuburger, Markus; Treossi, Emanuele; Mayor, Marcel; Palermo, Vincenzo; Cacialli, Franco; Cornil, Jérôme; Samorì, Paolo

    2013-01-18

    Tune it with light! Self-assembled monolayers on gold based on a chemisorbed novel azobenzene derivative with a perfluorinated terminal phenyl ring are prepared. The modified substrate shows a significant work function increase compared to the bare metal. The photo-conversion between trans and cis isomers chemisorbed on the surface shows great perspectives for being an accessible route to tune the gold properties by means of light.

  12. Molecular characteristics of a fluorescent chemosensor for the recognition of ferric ion based on photoresponsive azobenzene derivative

    Science.gov (United States)

    Chi, Zhen; Ran, Xia; Shi, Lili; Lou, Jie; Kuang, Yanmin; Guo, Lijun

    2017-01-01

    Metal ion recognition is of great significance in biological and environmental detection. So far, there is very few research related to the ferric ion sensing based on photoresponsive azobenzene derivatives. In this work, we report a highly selective fluorescent "turn-off" sensor for Fe3 + ions and the molecular sensing characteristics based on an azobenzene derivative, N-(3,4,5-octanoxyphenyl)-N‧-4-[(4-hydroxyphenyl)azophenyl]1,3,4-oxadiazole (AOB-t8). The binding association constant was determined to be 6.07 × 103 M- 1 in ethanol and the stoichiometry ratio of 2:2 was obtained from Job's plot and MS spectra. The AOB-t8 might be likely to form the dimer structure through the chelation of ferric ion with the azobenzene moiety. Meanwhile, it was found that the photoisomerization property of AOB-t8 was regulated by the binding with Fe3 +. With the chelation of Fe3 +, the regulated molecular rigidity and the perturbed of electronic state and molecular geometry was suggested to be responsible for the accelerated isomerization of AOB-t8 to UV irradiation and the increased fluorescence lifetime of both trans- and cis-AOB-t8-Fe(III). Moreover, the reversible sensing of AOB-t8 was successfully observed by releasing the iron ion from AOB-t8-Fe(III) with the addition of citric acid.

  13. 聚苯胺/聚丙烯酸(酯)复合材料制备方法研究进展%Research progress of preparation of polyaniline/polyacrylic(polyacrylate) composites

    Institute of Scientific and Technical Information of China (English)

    李玉峰; 高晓辉; 祝晶晶; 童丽萍; 樊丽权

    2015-01-01

    Polyaniline/polyacrylic(polyacrylate) composites possess excellent performance of processibility,film-forming properties,adhesion,electrical properties and anti-corrosion properties. In this paper,the research on polyaniline/polyacrylic(polyacrylate) blend composites and polyaniline/polyacrylic (polyacrylate) polymerization composites at home and abroad is reviewed. The preparation methods , properties and applications of various kinds of polyaniline/polyacrylic(polyacrylate) composites are presented. The advantages and disadvantages of these preparation methods are further compared. The blending method is simple and easy to control,so it has wide application. The polymerization method could combine polyaniline with polyacrylic(polyacrylate) at molecular level to improve comprehensive properties. The interpenetrating network polymerization method realizes compatibility of two different molecular chains by network interpenetrating. The paper proposes that composite polyaniline and polyacrylic(polyacrylate) at molecular level is the main development direction in the future.%聚苯胺/聚丙烯酸(酯)复合材料具有良好的可加工性、成膜性、附着力、电学性能以及防腐蚀性能。本文回顾了国内外在聚苯胺/聚丙烯酸(酯)混合复合材料和聚苯胺/聚丙烯酸(酯)聚合复合材料等方面的研究工作,介绍了各种聚苯胺/聚丙烯酸(酯)复合材料的制备方法、性能及应用,并比较了这些制备方法的优缺点。分析结果表明:混合复合法工艺简单、易于控制、适用范围广;聚合复合法将聚苯胺和聚丙烯酸(酯)在分子水平上结合,使聚苯胺和聚丙烯酸(酯)的优异性能得以综合发挥;而互穿网络聚合法通过网络互穿实现了两种差别较大的分子链的强制相溶。提出在分子水平上的复合是聚苯胺/聚丙烯酸(酯)复合材料研究的主要发展方向。

  14. Molecular Understanding and Structural-Based Design of Polyacrylamides and Polyacrylates as Antifouling Materials.

    Science.gov (United States)

    Chen, Hong; Zhao, Chao; Zhang, Mingzhen; Chen, Qiang; Ma, Jie; Zheng, Jie

    2016-04-12

    Design and synthesis of highly bioinert and biocompatible antifouling materials are crucial for a broad range of biomedical and engineering applications. Among antifouling materials, polyacrylamides and polyacrylates have proved so promising because of cheap raw materials, ease of synthesis and applicability, and abundant functional groups. The strong surface hydration and the high surface packing density of polyacrylamides and polyacrylates are considered to be the key contributors to their antifouling property. In this article, we review our studies on the design and synthesis of a series of polyacrylamides and polyacrylates with different molecular structures. These polymers can be fabricated into different architectural forms (brushes, nanoparticles, nanogels, and hydrogels), all of which are highly resistant to the attachment of proteins, cells, and bacteria. We find that small structural changes in the polymers can lead to large enhancement in surface hydration and antifouling performance, both showing a positive correlation. This reveals a general design rule for effective antifouling materials. Furthermore, polyacrylamides and polyacrylates are readily functionalized with other bioactive compounds to achieve different new multifunctionalities.

  15. Influence of sodium polyacrylate on the rheology of aqueous Laponite dispersions.

    Science.gov (United States)

    Labanda, Jordi; Llorens, Joan

    2005-09-01

    Aqueous Laponite dispersions containing a sodium polyacrylate were analyzed, at fixed ionic strength and pH, by rheometric and electroacoustic (for zeta-potential determinations) techniques at 7 days after their preparation. The rheological behavior of these dispersions was determined by oscillatory and flow experiments. Addition of sodium polyacrylate modifies the interactions between Laponite particles and therefore the physical state of the dispersion. The phase diagram of Laponite dispersion as a function of sodium polyacrylate concentration shows different sol-gel transitions for a specific Laponite concentration as a function of the polyacrylate concentration. Under equilibrium flow conditions the Laponite dispersions fit the pseudoplastic Oswald-de Waele power law model. At the same time, these dispersions show thixotropy, which was analyzed using a second-order kinetic equation. The kinetic processes were characterized by breakdown and build-up parameters, which were found to depend on shear rate. This kinetic equation was modified by a power law exponent of viscosity with shear rate that takes into account the viscosity variations when the shear rates are suddenly changed, in order to fit the hysteresis loops.

  16. Formulating gels for decreased mucociliary transport using rheologic properties: polyacrylic acids.

    Science.gov (United States)

    Shah, Ankur J; Donovan, Maureen D

    2007-04-20

    The purpose of these studies was to identify the rheologic properties of polyacrylic acid gels necessary for optimal reductions in mucociliary clearance. The mucociliary transport of 2 bioadhesive polyacrylic acid polymers, polycarbophil and carbopol, was assessed in vitro by measuring their clearance rates across explants of ciliated bovine tracheal tissue. The viscoelastic properties of polymer gels were measured in the presence of mucus using controlled stress rheometry. Combinations of apparent viscosity (eta) and complex modulus (G*) were found to be the most useful parameters in the identification of polyacrylic acid formulations capable of decreasing mucociliary transport rate (MTR). A narrow range of eta and G* values suitable for reducing mucociliary clearance, while remaining sufficiently fluid for intranasal administration, were identified. The correlations between the rheologic parameters of the polycarbophil gels and their mucociliary transport rates were used to identify other polyacrylic acid gels that also had suitable mucociliary clearance properties, demonstrating that these parameters can be used to direct the optimization of formulations using simple in vitro rheologic testing.

  17. Static and Dynamic Mechanical Behavior of Hydroxyapatite-Polyacrylic Acid Composites Under Simulated Body Fluid

    Directory of Open Access Journals (Sweden)

    Kalpana S. Katti

    2006-01-01

    Full Text Available In this work, we have investigated mechanical response of hydroxyapatite/polyacrylic composites under dry, wet and simulated body fluid conditions. Hydroxyapatite (HAP is mineralized under two conditions; one, in presence of polyacrylic acid (in situ HAP, second, in absence of polyacrylic acid (ex situ HAP. Further, in situ and ex situ HAP are mixed with polyacrylic acid to make HAP/PAAc composites. Interfacial interactions between PAAc and HAP have been studied using photoacoustic Fourier transform infrared spectroscopy (PAS-FTIR. The mechanical response of the composites under wet condition is studied by soaking composite samples in simulated body fluid (SBF. Under wet conditions, SBF and water weaken the HAP-HAP interface significantly. PAS-FTIR data suggests that PAAc attaches to HAP through the dissociated carboxylate groups. The water and SBF soaked samples showed creep-like behavior and exhibit large residual strain after unloading. Loading under different strain rates has significant effect on mechanical properties of these composites. Both in situ and ex situ 70:30 composites exhibit highest elastic modulus at strain rate of 0.01 sec-1. XRD study indicates formation of Ca2P2O7 phase in ex situ composite after soaking in SBF and water for 3 hours, whereas in situ composites showed presence of only hydroxyapatite phase after soaking in SBF and water for same duration of time.

  18. Development of nanoparticulate drug delivery systems based on thiolated poly(acrylic acid).

    Science.gov (United States)

    Thaurer, Michael H; Deutel, Britta; Schlocker, Wolfgang; Bernkop-Schnürch, Andreas

    2009-05-01

    In this study the preparation and stabilization of poly(acrylic acid)-cysteine nanoparticles and incorporation of a fluorescence marked model-compound was investigated. Nanoparticles were prepared by ionic gelation of a poly(acrylic acid)-cysteine conjugate with calcium chloride. Poly(acrylic acid)-cysteine nanoparticles display high cohesive properties due to a cross-linking process via calcium bridges in the core and the pervasive formation of disulphide bonds and were 139 ± 34 nm in size. Nanoparticles were loaded with FITC-dextrans (flourescein isothiocyanate-dextrans) of 4, 20 and 40 kDa molecular mass as model-compound via sonication method or via vibration method for 3 and 24 h. In vitro release studies showed an initial burst release followed by an extended release of model-compounds. The lower the molecular mass of the FITC-dextrans, the higher was the amount of incorporated and released model compounds. Vibration seems to be a proper method for the incorporation of hydrophilic and macromolecular drugs in poly(acrylic acid)-cysteine nanoparticles.

  19. Magnetite nanoparticles embedded in biodegradable porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Granitzer, P., E-mail: petra.granitzer@uni-graz.a [Institute of Physics, Karl Franzens University Graz, Universitaetsplatz 5, 8010 Graz (Austria); Institute for Electron Microscopy, University of Technology Graz, Steyrergasse 17, 8010 Graz (Austria); Rumpf, K. [Institute of Physics, Karl Franzens University Graz, Universitaetsplatz 5, 8010 Graz (Austria); Roca, A.G.; Morales, M.P. [Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Poelt, P.; Albu, M. [Institute for Electron Microscopy, University of Technology Graz, Steyrergasse 17, 8010 Graz (Austria)

    2010-05-15

    Magnetite nanoparticles, which are coated with oleic acid in a hexane solution and exhibit an average diameter of 7.7 nm, were embedded in a porous silicon (PS) matrix by immersion under defined parameters (e.g. concentration, temperature, time). The porous silicon matrix is prepared by anodization of a highly n-doped silicon wafer in an aqueous HF-solution. Magnetic characterization of the samples has been performed by SQUID-magnetometry. The superparamagnetic behaviour of the magnetite nanoparticles is represented by temperature-dependent magnetization measurements. Zero field (ZFC)/field cooled (FC) experiments indicate magnetic interactions between the particles. For the infiltration into the PS-templates different concentrations of the magnetite nanoparticles are used and magnetization measurements are performed in respect with magnetic interactions between the particles. The achieved porous silicon/magnetite specimens are not only interesting due to their transition between superparamagnetic and ferromagnetic behaviour, and thus for magnetic applications but also because of the non-toxicity of both materials giving the opportunity to employ the system in medical applications as drug delivery or in medical diagnostics.

  20. Photoinduced formation of an azobenzene-based CD-active supramolecular cyclic dimer.

    Science.gov (United States)

    Sogawa, Hiromitsu; Terada, Kayo; Miyagi, Yu; Shiotsuki, Masashi; Inai, Yoshihito; Masuda, Toshio; Sanda, Fumio

    2015-04-27

    A series of new photo-responsive amino acid-derived azobenzenedicarboxylic acid derivatives (S)-1 a-e were synthesized. Compound (S)-1 a in the trans form exhibited no circular dichroism (CD) signal in DMF under ambient conditions, whereas intense Cotton effects were observed upon UV irradiation, indicating the formation of a chiral supramolecular structure in the cis form. The CD signals disappeared when trifluoroacetic acid (TFA) was added to the solution. The ester counterpart [(S)-1 a'] showed no CD signal. Hydrogen bonding between the carboxy groups seemed necessary for constructing the supramolecular structure. The kinetic studies of cis to trans isomerization of (S)-1 a demonstrated that the formation of a chiral supramolecule enhances the stability of the cis-azobenzene structure. The ESI mass spectrum of stilbenedicarboxylic acid (S)-4, an analogue of (S)-1 b, confirmed the formation of a dimer. A theoretical CD study revealed that (S)-1 a in the cis form should be present as a cyclic chiral dimer.

  1. Conformal Electroplating of Azobenzene-Based Solar Thermal Fuels onto Large-Area and Fiber Geometries.

    Science.gov (United States)

    Zhitomirsky, David; Grossman, Jeffrey C

    2016-10-05

    There is tremendous growth in fields where small functional molecules and colloidal nanomaterials are integrated into thin films for solid-state device applications. Many of these materials are synthesized in solution and there often exists a significant barrier to transition them into the solid state in an efficient manner. Here, we develop a methodology employing an electrodepositable copolymer consisting of small functional molecules for applications in solar energy harvesting and storage. We employ azobenzene solar thermal fuel polymers and functionalize them to enable deposition from low concentration solutions in methanol, resulting in uniform and large-area thin films. This approach enables conformal deposition on a variety of conducting substrates that can be either flat or structured depending on the application. Our approach further enables control over film growth via electrodepsition conditions and results in highly uniform films of hundreds of nanometers to microns in thickness. We demonstrate that this method enables superior retention of solar thermal fuel properties, with energy densities of ∼90 J/g, chargeability in the solid state, and exceptional materials utilization compared to other solid-state processing approaches. This novel approach is applicable to systems such as photon upconversion, photovoltaics, photosensing, light emission, and beyond, where small functional molecules enable solid-state applications.

  2. Application of peptide nucleic acids containing azobenzene self-assembled electrochemical biosensors in detecting DNA sequences

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Hybridization of peptide nucleic acids probe containing azobenzene (NH2-TNT4, N-PNAs) with DNA was performed by covalently immobilizing of NH2-TNT4 in sequence on the 3-mercaptopropionic acid self-assembled monolayer modified gold electrode with the helps of N-(3-dimethylaminopropy1)-N’-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), and the hybrid was coded as N-PNAs/DNA. Using [Fe(CN)6]4-/3- (1:1) as the electrochemical indicator, the electrochemical properties of the N-PNAs self-assembled monolayer (N-PNAs-SAMs) and N-PNAs/DNA hybridization system under the conditions of before and after UV light irradiation were characterized with cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectra (EIS). Results showed that the redox currents decreased with the increase of irradiation time, suggesting that the ability of the charge transfer on the electrode surface was weakened and the conformation of hybrid system had been changed, and the control of PNAs/DNA hybridization could be realized by UV light irradiation.

  3. Photochromic molecular gyroscope with solid state rotational states determined by an azobenzene bridge.

    Science.gov (United States)

    Commins, Patrick; Garcia-Garibay, Miguel A

    2014-02-21

    We describe the synthesis, characterization, photochemical isomerization, and rotational dynamics of a crystalline molecular gyroscope containing an azobenzene bridge (trans-2) that spans from one end of the stator to other, with the intention of exploring its function as a molecular brake. While single crystal X-ray diffraction analysis of a photochemically inactive dichloromethane solvate was used to confirm the molecular and packing structures of trans-2, a nanocrystalline pseudopolymorph was shown to be photoactive, and it was analyzed by powder X-ray diffraction (PXRD), scanning electron microscopy, and variable temperature solid state (2)H NMR before and after photoisomerization. It was shown that the nanocrystalline suspension irradiated with λ = 340 nm reaches a photostationary state with 34% of cis-isomer, as compared to that observed in solution where the corresponding value is 74%. Line shape analysis of solid state (2)H NMR spectra of a phenylene-d4 isotopologue, obtained as a function of temperature, indicated that rotation in crystals of the trans-2 isomer, with a mean activation energy of 4.6 ± 0.6 kcal/mol and a pre-exponential factor exp(29.4 ± 1.7), is ten times faster than that of samples containing the cis-2 isomer, which has a higher mean activation energy of 5.1 ± 0.6 kcal/mol and a lower pre-exponential factor of exp(27.9 ± 1.3).

  4. Size Switchable Supramolecular Nanoparticle Based on Azobenzene Derivative within Anionic Pillar[5]arene

    Science.gov (United States)

    Zhang, Cai-Cai; Li, Sheng-Hua; Zhang, Cui-Fang; Liu, Yu

    2016-11-01

    A photo/thermal-switchable supramolecular nanoparticles assembly has been constructed based on an inclusion complex between anionic pillar[5]arene 2C-WP5A and azobenzene derivative Azo-py-OMe (G). The novel anionic pillar[5]arene-based host-guest inclusion complexation was investigated by the 1H NMR titration, 2D ROESY and isothermal titration microcalorimetry (ITC) showing high association constant (Ka) of (2.60 ± 0.06) × 104 M‑1 with 1:1 binding stoichiometry. Furthermore, the supramolecular nanoparticles assembly can be conveniently obtained from G and a small amount of 2C-WP5A in aqueous solution, which was so-called “host induced aggregating (HIA)”. The size and morphology of the supramolecular nanoparticles assembly were characterized by TEM and DLS. As a result of the photo/thermal-isomerization of G included in the cavity of 2C-WP5A, the size of these nanoparticles could reversibly change from ~800 nm to ~250 nm, which could switch the solution of this assembly from turbid to clear.

  5. Study on the prediction of visible absorption maxima of azobenzene compounds

    Institute of Scientific and Technical Information of China (English)

    LIU Jun-na; CHEN Zhi-rong; YUAN Shen-feng

    2005-01-01

    The geometries of azobenzene compounds are optimized with B3LYP/6-311 G* method, and analyzed with nature bond orbital, then their visible absorption maxima are calculated with TD-DFT method and ZINDO/S method respectively. The results agree well with the observed values. It was found that for the calculation of visible absorption using ZINDO/S method could rapidly yield better results by adjusting OWFπ-π (the relationship between π-π overlap weighting factor) value than by the TD-DFT method. The method of regression showing the linear relationship between OWFπ-π and BLN-N (nitrogen-nitrogen bond lengths) as OWFπ-π=-8.1537+6.5638BLN-N, can be explained in terms of quantum theory, and also be used for prediction of visible absorption maxima of other azobenzne dyes in the same series. This study on molecules' orbital geometry indicates that their visible absorption maxima correspond to the electron transition from HOMO (the highest occupied molecular orbital) to LUMO (the lowest unoccupied molecular orbital).

  6. Synthesis of organic-inorganic hybrid azobenzene materials for the preparation of nanofibers by electrospinning

    Science.gov (United States)

    Bućko, Aleksandra; Zielińska, Sonia; Ortyl, Ewelina; Larkowska, Maria; Barille, Regis

    2014-12-01

    The new photochromic hybrid materials containing different mole fractions of highly photoactive 4-[(E)-[4-[ethyl(2-hydroxyethyl)amino]phenyl]azo]-N-(4-methylpyrimidin-2-yl)benzenesulfonamide (SMERe) were prepared by a low temperature sol-gel process. The guest-host systems with triethoxyphenylsilane matrix were obtained. These materials were used to form thin transparent films by a spin-coating technique. Then the ability of thin hybrid films to reversible trans-cis photoisomerization under illumination was investigated using ellipsometry and UV-Vis spectroscopy. The reversible changes of refractive index of the films under illumination were in the range of 0.005-0.056. The maximum absorption of these materials was located at 462-486 nm. Moreover, the organic-inorganic azobenzene materials were used to form nanofibers by electrospinning using various parameters of the process. The microstructure of electrospun fibers depended on sols properties (e.g. concentration and viscosity of the sols) and process conditions (e.g. the applied voltage, temperature or type of the collector) at ambient conditions. The morphology of obtained nanofibers was analyzed by an optical microscopy and scanning electron microscopy. In most instances, the beadless fibers were obtained. The wettability of the surface of electrospun fibers deposited on glass substrates was investigated.

  7. Optical storage in azobenzene-containing epoxy polymers processed as Langmuir Blodgett films

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, Raquel; Mondragon, Iñaki [‘Materials - Technologies’ Group, Department of Chemical and Environmental Engineering, Polytechnic School, Universidad País Vasco/Euskal Herriko Unibertsitatea, Pza Europa 1, 20018 Donostia-San Sebastián (Spain); Sanfelice, Rafaela C.; Pavinatto, Felippe J.; Oliveira, Osvaldo N. [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São Carlense, 400, Centro, CEP 13560-970, São Carlos (Brazil); Oyanguren, Patricia [Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), J. B. Justo 4302, 7600 Mar del Plata (Argentina); Galante, María J., E-mail: galant@fi.mdp.edu.ar [Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), J. B. Justo 4302, 7600 Mar del Plata (Argentina)

    2013-04-01

    In this study, azocopolymers containing different main-chain segments have been synthesized with diglycidyl ether of bisphenol A (DGEBA, DER 332, n = 0.03) and the azochromophore Disperse Orange 3 (DO3) cured with two monoamines, viz. benzylamine (BA) and m-toluidine (MT). The photoinduced birefringence was investigated in films produced with these azopolymers using the spin coating (SC) and Langmuir Blodgett (LB) techniques. In the LB films, birefringence increased with the content of azochromophore and the film thickness, as expected. The nanostructured nature of the LB films led to an enhanced birefringence and faster dynamics in the writing process, compared to the SC films. In summary, the combination of azocopolymers and the LB method may allow materials with tuned properties for various optical applications, including in biological systems were photoisomerization may be used to trigger actions such as drug delivery. Highlights: ► Langmuir Blodgett (LB) films of epoxy-based azopolymers were obtained and analyzed. ► Optical properties of LB and spin coated (SC) films were compared. ► Azo content, structure, laser power and number of layers were main factors studied. ► LB films had larger free volume for the azobenzenes isomerization than SC. ► LB films led to higher birefringence and faster dynamics compared to SC.

  8. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sheyda R Frolova

    Full Text Available The ability of azobenzene trimethylammonium bromide (azoTAB to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav, calcium (ICav, and potassium (IKv currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+ and calcium (Ca2+ currents and potentiation of net potassium (K+ currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential.

  9. Quantitative Structure-activity Relationships for Anaerobic Biodegradation of Substituted Azobenzenes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-yi; ZHU Huai-wu; LUO Shi-xia; WANG Zheng-wu; XIAO Han

    2004-01-01

    The degradation rates of the azo-bonds of a series of substituted azobenzenes caused by anaerobic sludge digestion were determined by measuring the biggest change of the absorption peak area of the UV-Vis spectra of the anaerobic sludge system before and after degradation. The electronic structure of the molecules was calculated by using the quantum chemistry semiempirical method AM1. The research on the correlation between the biodegradability of the azo-bond and the molecular structure descriptors has led to the following results. (1) There is an obvious relationship between the degradation rate D and the difference Δqπ in π-charge density of the azo-bond. (2) The different substituents in the molecules result in a wave pattern of π-charge distribution and the increasing of the flowability of π-electron. A good flowability of the π-charge favors the reduction between electron contributing azo groups. (3) The effect of the substituents on the π-electron system depends on the electromerization of the substituents in combination with the conjugated systems.

  10. Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics.

    Science.gov (United States)

    Carroll, Elizabeth C; Berlin, Shai; Levitz, Joshua; Kienzler, Michael A; Yuan, Zhe; Madsen, Dorte; Larsen, Delmar S; Isacoff, Ehud Y

    2015-02-17

    Mammalian neurotransmitter-gated receptors can be conjugated to photoswitchable tethered ligands (PTLs) to enable photoactivation, or photoantagonism, while preserving normal function at neuronal synapses. "MAG" PTLs for ionotropic and metabotropic glutamate receptors (GluRs) are based on an azobenzene photoswitch that is optimally switched into the liganding state by blue or near-UV light, wavelengths that penetrate poorly into the brain. To facilitate deep-tissue photoactivation with near-infrared light, we measured the efficacy of two-photon (2P) excitation for two MAG molecules using nonlinear spectroscopy. Based on quantitative characterization, we find a recently designed second generation PTL, L-MAG0460, to have a favorable 2P absorbance peak at 850 nm, enabling efficient 2P activation of the GluK2 kainate receptor, LiGluR. We also achieve 2P photoactivation of a metabotropic receptor, LimGluR3, with a new mGluR-specific PTL, D-MAG0460. 2P photoswitching is efficiently achieved using digital holography to shape illumination over single somata of cultured neurons. Simultaneous Ca(2+)-imaging reports on 2P photoswitching in multiple cells with high temporal resolution. The combination of electrophysiology or Ca(2+) imaging with 2P activation by optical wavefront shaping should make second generation PTL-controlled receptors suitable for studies of intact neural circuits.

  11. Genotoxicity of a variety of azobenzene and aminoazobenzene compounds in the hepatocyte/DNA repair test and the Salmonella/mutagenicity test.

    Science.gov (United States)

    Mori, H; Mori, Y; Sugie, S; Yoshimi, N; Takahashi, M; Ni-i, H; Yamazaki, H; Toyoshi, K; Williams, G M

    1986-04-01

    Genotoxicity of 39 azo dye compounds of azobenzenes, aminoazobenzenes, and diaminoazobenzenes was examined in the hepatocyte primary culture/DNA repair test. Azobenzene (AzB) and 3,3'- or 4,4'-substituted azobenzenes such as (CH3)2AzB, (CH2OH)2AzB, (CH2OCOCH3)2AzB, and (CH2Cl)2AzB did not generate DNA repair, indicating lack of genotoxicity of these compounds. In contrast, all of 24 aminoazobenzenes, including those of unknown carcinogenicity, i.e., 3'-methyl-4-aminoazobenzene, 3'-CH2OH-aminoazobenzene, 3'-hydroxymethyl-N-methyl-4-aminoazobenzene, 3'-COOH-methylaminoazobenzene, 4'-formyl-N,N-dimethyl-4-aminoazobenzene, 3'-CH2Cl-dimethylaminoazobenzene, 4'-CH2Cl-dimethylaminoazobenzene, and 2'-, 3'-, or 4'-CH2OCOCH3-dimethylaminoazobenzene, elicited DNA repair synthesis. A positive DNA repair response was obtained for the 3 of 6 tested diaminoazobenzenes, i.e., N'-acetyl-N'-methyl-4-amino-dimethylaminoazobenzene, N'-acetyl-N'-methyl-4-amino-methylaminoazobenzene, and N'-acetyl-N'-methyl-4-amino-N-acetyl-methylaminoazobenzene, which are known to be carcinogenic. These results indicate that the amino group is functional for the expression of genotoxicity of azobenzene compounds. Twenty-one azobenzenes of these 3 classes were also examined for their mutagenicity in the Salmonella/mutagenicity assay. These results were almost identical with those of the DNA repair test except for several azo dyes such as AzB and 4,4'-(CH2Oacetyl)2AzB of the azobenzenes and N'-acetyl-4-amino-dimethylaminoazobenzene and N'-acetyl-N-methyl-4-amino-N-acetyl methylaminoazobenzene of the diaminoazobenzenes.

  12. Azobenzene-derived tris-β-diketonate lanthanide complexes: reversible trans-to-cis photoisomerization in solution and solid state.

    Science.gov (United States)

    Lin, Li-Rong; Wang, Xuan; Wei, Gao-Ning; Tang, Hui-Hui; Zhang, Hui; Ma, Li-Hua

    2016-10-14

    Novel azobenzene-derived β-diketonates (4,4,5,5,6,6,6-heptafluoro-1-azobenzene-1,3-hexanedione (LA), 4,4,5,5,6,6,6-heptafluoro-1-(4-dimethylamino)azobenzene-1,3-hexanedione (LB)) were designed and their complexes with lanthanide cations (La(3+), Eu(3+), Gd(3+), Yb(3+)) were prepared and characterized by (1)H NMR, FT-IR, and elemental analysis. Three of the complexes were crystallized successfully and identified by X-ray diffraction. It was significant to find that LA showed remarkably reversible trans-to-cis isomerization properties, however, LB, bearing an electron donor compared with LA, slowed down the isomerization to an extent. The presence of Ln(iii) enhanced the reversible trans-to-cis isomerization properties of both LA and LB a little upon photoirradiation in organic solvents, and amazingly increased the fatigue resistance. In addition, the complexes doped in polymethyl methacrylate (PMMA) films produced a similar phenomenon as well as when in solution. Theoretical calculations based on time dependent density functional theory (TD-DFT) were performed for geometry optimization and to determine the excitation energies of LA and LB to gain further insight into the electronic structure of the complexes, and the data were consistent with the experimental results. The excellent reversible photoisomerization properties of the newly designed Ln(iii) complexes can offer important advantages that will help with the further study of these materials to reach their full potential in applications such as molecular switching devices.

  13. Research on various factors influencing the moisture absorption property of sodium polyacrylate

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Sodium polyacrylate was synthesized with acrylic acid as the monomer, and sodium bisulfate and ammonium persulfate as the initiator, by means of aqueous solution polymerization. The factors influencing the properties of moisture absorption, such as monomer concentration, dosage of initiator, and reaction temperature were systematically investigated. The experimental results indicate that the moisture-absorbing property of this polymer was better than other traditional material, such as silica gel, and molecular sieve. The best reaction condition and formula are based on the orthogonal experiment design. The optimum moisture absorbency of sodium polyacrylate reaches 1.01 g/g. The mathematical correlation of this polymer with various factors and moisture absorbency is obtained based on the multiple regression analysis. The moisture content intuitive analysis table shows that neutralization degree has the most significant influence on moisture absorbency, followed by monomer concentration and reaction temperature, while other factors have less influence.

  14. Fabrication of polyacrylate core-shell nanoparticles via spray drying method

    Science.gov (United States)

    Chen, Pengpeng; Cheng, Zenghui; Chu, Fuxiang; Xu, Yuzhi; Wang, Chunpeng

    2016-05-01

    Fine polyacrylate particles are thought to be environmental plastisols for car industry. However, these particles are mainly dried through demulsification of the latexes, which is not reproducible and hard to be scaled up. In this work, a spray drying method had been applied to the plastisols-used acrylate latex. By adjusting the core/shell ratio, spray drying process of the latex was fully studied. Scanning electronic microscopy observation of the nanoparticles before and after spray drying indicated that the core-shell structures could be well preserved and particles were well separated by spray drying if the shell was thick enough. Otherwise, the particles fused into each other and core-shell structures were destroyed. Polyacrylate plastisols were developed using diisononylphthalate as a plasticizer, and plastigels were obtained after heat treatment of the sols. Results showed that the shell thickness also had a great influence on the storage stability of the plastisols and mechanical properties of the plastigels.

  15. SYNTHESIS, CROSSLINKING MECHANISM AND PROPERTIES OF A POLYACRYLATE/POLYURETHANE COMPOSITE COATING

    Institute of Scientific and Technical Information of China (English)

    TANG Liming; GUO Wei; ZHOU Qixiang

    1997-01-01

    A polyacrylate/polyurethane (P(A)/P(U)) composite coating has been prepared by crosslinking an acetoacetylated polyacrylate with a vinylic group terminated polyurethane at room temperature. A model Michael reaction between ethyl acetoacetate (EAA) and methyl acrylate (MA) was designed to study the crosslinking mechanism. It was found that the two active hydrogen atoms in acetoacetyl group can both add to vinylic groups and the yield of mono- and bis-adducts are much affected by the molar ratio of acetoacetyl to vinylic groups. Higher crosslinking degree and better properties could be obtained with decreasing the molar ratio of the two active groups from 1/1 to 0.6/1 in the composite coatings.

  16. Optical waveguide BTX gas sensor based on polyacrylate resin thin film.

    Science.gov (United States)

    Kadir, Razak; Yimit, Abliz; Ablat, Hayrensa; Mahmut, Mamtimin; Itoh, Kiminori

    2009-07-01

    An optical sensor sensitive to BTX has been developed by spin coating a thin film of polyacrylate resin onto a tin- diffused glass optical waveguide. A pair of prism coupler was employed for optical coupling matched with diiodomethane (CH2l2). The guided wave transmits in waveguide layer and passes through the film as an evanescent wave. Polyacrylate film has a strong capacity of absorbing oil gases. The film is stable in N2 but benzene exposure at room temperature can result in rapid and reversible changes of transmittance (7) and refractive index (n1) of this film. It has been demonstrated that the sensor containing a 10 mm boardand about a hundred nanometers thick resin film can detect lower than 8 ppm BTX.

  17. In vivo studies of polyacrylate nanoparticle emulsions for topical and systemic applications.

    Science.gov (United States)

    Greenhalgh, Kerriann; Turos, Edward

    2009-03-01

    We have recently reported on a new nanomedicine containing antibiotic-conjugated polyacrylate nanoparticles, which has shown activity against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and no cytotoxicity toward human dermal cells. The water-based nanoparticle emulsion is capable of solubilizing lipophilic antibiotics for systemic administration, and the nanoparticle drug delivery vehicle has shown protective properties for antibiotics from hydrolytic cleavage by bacterial penicillinases, thus rejuvenating the drug's activity against resistant microbes such as MRSA. Here we report the first in vivo study of this penicillin-conjugated nanoparticle emulsion in determining toxicological responses initiated upon systemic and topical application in a murine model. Favorable results were observed in vivo upon both routes of administration and, when topically applied to a dermal abrasion model, the emulsion enhanced wound healing by an average of 3 to 5 days. This study suggests that polyacrylate nanoparticle-containing emulsions may afford promising opportunities for treating both skin and systemic infections.

  18. Spectroscopy of a Gamma Irradiated Poly(Acrylic Acid)-Clotrimazole System

    Institute of Scientific and Technical Information of China (English)

    M.Todica; C.V.Pop; Luciana Udrescu; Traian Stefan

    2011-01-01

    A poly(acrylic acid)-clotrimazole system,gamma irradiated at different doses,is investigated by Raman spectroscopy.Modifications of the spectrum of the polymeric matrix appear for doses of radiation greater than 333 Gy,whereas the spectrum of clotrimazole remains unaffected at these doses of radiation.These changes correlate with modification of the vibration modes of COOH and CH2 groups of a polymeric matrix after irradiation.%A poly(acrylic acid)-clotrimazole system, gamma irradiated at different doses, is investigated by Raman spec-troscopy. Modifications of the spectrum of the polymeric matrix appear for doses of radiation greater than 333 Gy, whereas the spectrum of clotrimazole remains unaffected at these doses of radiation. These changes correlate with modification of the vibration modes of COOH and CH2 groups of a polymeric matrix after irradiation.

  19. Dispersion and film-forming properties of poly(acrylic acid)-stabilized carbon nanotubes.

    Science.gov (United States)

    Saint-Aubin, Karell; Poulin, Philippe; Saadaoui, Hassan; Maugey, Maryse; Zakri, Cécile

    2009-11-17

    We present a detailed study of the influence of pH on the dispersion and film-forming properties of poly(acrylic acid)-stabilized carbon nanotubes. Poly(acrylic acid) (PAA) is a weak polyelectrolyte, with a pH-responsive behavior in aqueous solution. We obtain quantitative UV-visible measurements to show that the amount of polyelectrolyte in optimal pH conditions is weak, showing a good efficiency of the polymer as a carbon nanotube dispersing agent. The best dispersion conditions are achieved at pH 5, a value close to the pK(a) of PAA. Apart from this tenuous pH value, the PAA is not efficient at stabilizing nanotubes and atomic force microscopy allows us to explain the delicate balance between the PAA adsorption and the suspension stability. This study finally permits optimal conditions for making homogeneous and conductive composite films to be determined.

  20. Synthesis and characterization of amylose grafted poly(acrylic acid) and its application in ammonia adsorption.

    Science.gov (United States)

    Chen, Qing; Yu, Haojie; Wang, Li; Abdin, Zain-Ul; Yang, Xinpeng; Wang, Junhua; Zhou, Weidong; Zhang, Hongtao; Chen, Xiao

    2016-11-20

    Amylose grafted poly(acrylic acid) (Am-g-PAA) was synthesized by graft copolymerization of amylose with acrylic acid. The structure of Am-g-PAA was confirmed by (1)H NMR and FT-IR spectra. The morphology, crystallinity and thermal properties of amylose and Am-g-PAA were investigated by SEM, XRD and TGA, respectively. The highest degree of substitution (DS) of carboxyl group was 1.96 which was obtained after reacted for 1h at 60°C. Acrylic acid to anhydroglucose mole ratio for DS was 19.81. It was found that a large number of carboxyl groups were grafted on the backbone of amylose. It was also found that ammonia adsorption capacity of amylose increased by grafting poly(acrylic acid) on the backbone of amylose.

  1. Effect of Grafted Hydroquinone on the Acid-Base Properties of Poly(acrylic acid) in the Presence of Copper (II)

    OpenAIRE

    Nabila Bensacia; Saâd Moulay; François Garin; Ioana Fechete; Anne Boos

    2015-01-01

    Potentiometric titration of poly(acrylic acid) and hydroquinone-functionalized poly(acrylic acid) was conducted in the presence of copper (II). The effects of hydroquinone functionalizing and copper (II) complexing on the potentiometric titration of poly(acrylic acid) were studied in an ionic environment and in its absence. Henderson-Hasselbalch equation was applied to assess its validity for this titration. Coordination number and the stability constants of the copper- (II-)complexed polymer...

  2. IN SITU INTERFEROMETRIC STUDY ON THE GELATION PROCESS OF POLYACRYLIC ACID GELS

    Institute of Scientific and Technical Information of China (English)

    Ying Guan; Qiang Chen; Xian-min Zhang; Yu-xing Peng; Jian Xu

    2000-01-01

    In situ interferometry was used to investigate the gelation process of polyacrylic acid (PAA) gels. The basic principle of the in situ interferometry technique is illustrated. It can give sufficient information for non-destructive and successful investigation of the whole gelation process. The effect of initiator concentration on the gelation process was studied. The polymerization rate of AA increases with increasing initiator concentration. The error arising from the thermal effect in the gelation process can be neglected.

  3. Synthesis and Properties of IPN Hydrogels Based on Konjac Glucomannan and Poly(acrylic acid)

    Institute of Scientific and Technical Information of China (English)

    Bing LIU; Zhi Lan LIU; Ren Xi ZHUO

    2006-01-01

    Novel interpenetrating polymer network (IPN) hydrogels based on konjac glucomannan (KGM) and poly(acrylic acid) (PAA) were prepared by polymerization and cross-linking of acrylic acid (AA) in the pre-fabricated KGM gel. The IPN gel was analyzed by FT-IR. The studies on the equilibrium swelling ratio of IPN hydrogels revealed their sensitive response to environmental pH value. The results of in vitro degradation showed that the IPN hydrogels retain the enzymatic degradation character of KGM.

  4. Lowering the resistivity of polyacrylate ion-selective membranes by platinum nanoparticles addition.

    Science.gov (United States)

    Jaworska, Ewa; Kisiel, Anna; Maksymiuk, Krzysztof; Michalska, Agata

    2011-01-01

    The effect of platinum nanoparticles introduction into polyacrylate membranes was examined. Platinum nanoparticles were added to the membrane cocktail before photopolymerization of the poly(n-butyl acrylate) based ion-selective membranes. Thus obtained sensors were characterized with significantly lowered electrical resistance and increased stability of potential readings compared to classical poly(n-butyl acrylate) membranes. The analytical parameters of platinum nanoparticle containing membranes were well comparable with those of classical membranes.

  5. Modification of polyamide 6.6 dyeing properties by grafting with poly(acrylic acid)

    OpenAIRE

    Miranda, Teresa; Santos, Jorge Gomes; Soares, Graça M. B.

    2012-01-01

    978-972-8063-67-2 The wet chemical surface modification continues to be a growing area of research interest. This study describes preparation and characterization of poly (acrylic acid)-grafted polyamide 6.6 fabric. Poly(acrylic acid) has been grafted onto polyamide backbone using benzoyl peroxide (BPO) as catalyst in aqueous medium. The benzoyl peroxide initiator optimum concentration was 0.03 M. The best conditions for optimum grafting reaction were reaction time 120 min, grafting tem...

  6. Evidence of Hydrogen Bonding in Chloroform and Polyacrylates from NMR Measurements

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The presence of hydrogen bonding in chloroform and polyacrylate mixtures was demonstrated by observation of 1H- and 13C-NMR chemical shifts. Comparison of the nuclear magnetic resonance (NMR) chemical shift in polymer solutions with their low molecular mass analogues showed the effect of steric hindrance on hydrogen bonding. This initial investigation is helpful for understanding the intermolecular interaction in relatively weak hydrogen bonding polymer solutions.

  7. The capture and stabilization of curcumin using hydrophobically modified polyacrylate aggregates and hydrogels.

    Science.gov (United States)

    Harada, Takaaki; Pham, Duc-Truc; Lincoln, Stephen F; Kee, Tak W

    2014-08-07

    Hydrophobically modified polyacrylates are shown to suppress the degradation of the medicinal pigment curcumin under physiological conditions. In aqueous solution, the 3% octadecyl randomly substituted polyacrylate, PAAC18, forms micelle-like aggregates at a concentration of 1 wt %. Under both conditions, PAAC18 shows a remarkable ability to suppress the degradation of curcumin at pH 7.4 and 37 °C such that its degradation half-life is increased by 1600-2000-fold. The suppression of degradation is attributed to hydrophobic interactions between curcumin and the octadecyl substituents of PAAC18 within the micelle-like aggregates and the hydrogel, as indicated by 2D NOESY (1)H NMR spectroscopy. UV-visible absorption titration results are consistent with the interaction of curcumin with five octadecyl substituents on average, which appears to substantially exclude water and greatly decrease the curcumin degradation rate. Dynamic light scattering and zeta potential measurements show the average hydrodynamic diameters of the PAAC18 aggregates to be 0.86-1.15 μm with a negative surface charge. In contrast to the octadecyl substitution, the 3% dodecyl randomly substituted polyacrylate, PAAC12, shows a negligible effect on slowing the degradation of curcumin, consistent with the dodecyl substituents being insufficiently long to capture curcumin in a adequately hydrophobic environment. These observations indicate the potential for PAAC18 to act as a model drug delivery system.

  8. Structure and Hydrogen Bonding of Water in Polyacrylate Gels: Effects of Polymer Hydrophilicity and Water Concentration.

    Science.gov (United States)

    Mani, Sriramvignesh; Khabaz, Fardin; Godbole, Rutvik V; Hedden, Ronald C; Khare, Rajesh

    2015-12-10

    The ability to tune the hydrophilicity of polyacrylate copolymers by altering their composition makes these materials attractive candidates for membranes used to separate alcohol-water mixtures. The separation behavior of these polyacrylate membranes is governed by a complex interplay of factors such as water and alcohol concentrations, water structure in the membrane, polymer hydrophilicity, and temperature. We use molecular dynamics simulations to investigate the effect of polymer hydrophilicity and water concentration on the structure and dynamics of water molecules in the polymer matrix. Samples of poly(n-butyl acrylate) (PBA), poly(2-hydroxyethyl acrylate) (PHEA), and a 50/50 copolymer of BA and HEA were synthesized in laboratory, and their properties were measured. Model structures of these systems were validated by comparing the simulated values of their volumetric properties with the experimental values. Molecular simulations of polyacrylate gels swollen in water and ethanol mixtures showed that water exhibits very different affinities toward the different (carbonyl, alkoxy, and hydroxyl) functional groups of the polymers. Water molecules are well dispersed in the system at low concentrations and predominantly form hydrogen bonds with the polymer. However, water forms large clusters at high concentrations along with the predominant formation of water-water hydrogen bonds and the acceleration of hydrogen bond dynamics.

  9. Effect of Molecular Structure on the Performance of Polyacrylic Acid Superplasticizer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rongguo; GUO Huiling; LEI Jiaheng; ZHANG Anfu; GU Huajun

    2007-01-01

    The effects of structure parameters, such as molecular structure, segment kinds, molecular weight, and organic functional groups, on the performance of polyacrylic acid superplasticizer were discussed. According to the differences of chain sections, functional groups, etc, polyacrylic acid superplasticizer could be divided into A, B, C three parts. Among them, A chain section included sulfonic acid groups, B chain section carboxyl groups, C chain section polyester. Polyacrylic acid superplasticizers with different matching of A, B, C chain sections, different length of C chain section and different molecular weights were synthesized by acrylic acid, polyethylene glycol, sodium methyl allylsulfonate; the relation between the molecular structure and performance was also studied. The expetimental results indicate that the water-reduction ratio increases obviously with the increment of the proportion of sodium methyl allylsulfonate chain section in the molecular; the slump retention increases greatly with the increment of the proportion of acrylic acid chain section; the dispersion of cement particles increases with the increment of the chain length of polyethylene glycol; when the molecular weight is in the range of 5000, the dispersion and slump retentibity increase with the increment of the average molecular weight of polymers.

  10. Effect of Water Concentration on the Molecular Structure of Polyacrylate Gels

    Science.gov (United States)

    Mani, Sriramvignesh; Khabaz, Fardin; Khare, Rajesh

    2015-03-01

    Recent studies have suggested pervaporation to be a promising alternative method for separation of aqueous solution of alcohol compared to distillation based separation processes. The ability to tune the hydrophobic/hydrophilic character makes polyacrylate gels attractive candidate materials for separating water-alcohol mixture by pervaporation. Experimentally, it is observed that the amount of water absorbed in the gel i.e. the degree of swelling of the gel shows a large variation with polymer chemistry. Relatively few studies exist highlighting the effects of water concentration on the membrane separation efficiency which in turn is directly related to the internal molecular structure of the water rich membranes. In this regard, an all-atom molecular dynamics (MD) simulation is employed to study water structure in polyacrylate gels. As a first step, polyacrylate copolymer systems with varying degree of hydrophobicity are prepared using the simulated annealing polymerization technique. Atomistic structures of gels containing different amounts of water are also prepared. Effect of water content on the acrylate-water system microstructure is determined by characterizing the packing of water molecules as well as the hydrogen bonding in these systems. In addition, the change in dynamics of water molecules due to the interactions with polymer is captured by monitoring the auto-correlation function of their dipole vector.

  11. Rheological characterization of cataplasm bases composed of cross-linked partially neutralized polyacrylate hydrogel.

    Science.gov (United States)

    Wang, Jian; Zhang, Hongqin; An, Dianyun; Yu, Jian; Li, Wei; Shen, Teng; Wang, Jianxin

    2014-10-01

    Viscoelasticity is a useful parameter for characterizing the intrinsic properties of the cross-linked polyacrylate hydrogel used in cataplasm bases. The aim of this study was to investigate the effects of various formulation parameters on the rheological characteristics of polyacrylate hydrogel. The hydrogel layers were formed using a partially neutralized polyacrylate (Viscomate(™)), which contained acrylic acid and sodium acrylate in different copolymerization ratios, as the cross-linked gel framework. Dihydroxyaluminum aminoacetate (DAAA), which produces aluminum ions, was used as the cross-linking agent. Rheological analyses were performed using a "stress amplitude sweep" and a "frequency sweep". The results showed that greater amounts of acrylic acid in the structure of Viscomate as well as higher concentrations of DAAA and Viscomate led to an increase in the elastic modulus (G'). However, greater amounts of acrylic acid in the structure of Viscomate and higher concentrations of DAAA had an opposite on the viscous modulus (G″); this might be owing to higher steric hindrance. The results of this study can serve as guidelines for the optimization of formulations for cataplasms.

  12. Poly(vinylidene fluoride) polymer based nanocomposites with enhanced energy density by filling with polyacrylate elastomers and BaTiO3 nanoparticles

    Science.gov (United States)

    Yu, Ke; Bai, Yuanyuan; Zhou, Yongcun; Niu, Yujuan; Wang, Hong

    2014-02-01

    Polyacrylate elastomers were introduced into poly(vinylidene fluoride) polymer-based nanocomposites filled with BaTiO3 nanoparticles and the three-phase nanocomposite films were prepared. The energy discharged of the nanocomposite with 3 vol. % polyacrylate elastomers is 8.8 J/cm3, approximately 11% higher compared to that of the nanocomposite without adding polyacrylate elastomers. Large elastic deformation of the polyacrylate elastomers increases Maxwell-Wagner-Sillars interfacial polarization and space charge polarization of the nanocomposites with the electric field increasing, which results in increased maximum polarization and energy discharged of the nanocomposites.

  13. Properties of mixed-crystalline organic material prepared by zone levelling IV. Melting properties and excess enthalpies of (trans-azobenzene + trans-stilbene)

    NARCIS (Netherlands)

    Bouwstra, J.A.; Leeuw, V.V. de; Miltenburg, J.C.

    1985-01-01

    Homogeneous mixed crystals of (trans-azobenzene + trans-stilbene) were prepared. Molar heat capacities of the pure substances and the mixed crystals were determined at temperatures from 300 to 400 K. The melting temperatures and molar enthalpies of fusion were measured for trans-stilbene and trans-a

  14. Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, N.C.R.; Hvilsted, S.

    1996-01-01

    Atomic force and scanning near-field optical microscopic investigations have been carried out on a polarization holographic grating recorded in an azobenzene side-chain Liquid crystalline polyester. It has been found that immediately following laser irradiation, a topographic surface grating...

  15. Photo-responsive and thermoreversible networks from the self-assembly of azobenzene-containing liquid crystal triblock copolymers (Conference Presentation)

    Science.gov (United States)

    Kurji, Zuleikha; Kornfield, Julia A.; Kuzyk, Mark G.

    2016-09-01

    We report the synthesis of azobenzene-containing coil-liquid crystal-coil triblock copolymers that can serve as mechano-optic actuators for applications that include non-invasively steering fiber optics. The coil (polystyrene) end-blocks phase segregate from the liquid crystal midblock forming of uniform and uniformly-spaced physical crosslinks, resulting in highly reproducible and thermoreversible networks by self-assembly. These polymers are elastic in the melt (at room temperature) and can be easily spun, coated or molded. Mechanical stretching results in a temporary monodomain alignment. Starting from identical triblock prepolymers (with polystyerene end blocks and 1,2-polybutadiene midblocks), a matched pair (azobenzene-containing, and non-azobenzene-containing) of liquid crystal triblock copolymers was synthesized. These triblocks were then be blended to prepare a series of elastomers with 0 to 5% azobenzene groups, while matching in nearly all other physical properties (cross-link density, modulus, birefringence, etc.), allowing the effect of concentration of photo-responsive groups to be unambiguously determined. Results will be presented that demonstrate this approach to independent control of optical density and photo-mechanical sensitivity.

  16. Dethreading of a Photoactive Azobenzene-Containing Molecular Axle from a Crown Ether Ring: A Computational Investigation.

    Science.gov (United States)

    Tabacchi, Gloria; Silvi, Serena; Venturi, Margherita; Credi, Alberto; Fois, Ettore

    2016-06-17

    Pseudorotaxanes formed by a dibenzo[24]crown-8 ring (R) and a dialkylammonium axle bearing either two E- or two Z-azobenzene units (EE-A or ZZ-A) revealed useful for the construction of light-powered molecular machines and motors, as they provide the opportunity of photocontrolling self-assembly/disassembly processes. The potential energies profiles for the dethreading of these complexes have been investigated by adopting a combination of first-principles molecular dynamics, metadynamics and quantum-chemical geometry optimization approaches. While the dethreading of the EE-A axle is associated with a monotonic energy increase, for that of the ZZ-A axle a transition state and an intermediate structure, in which the components are still threaded together, are found. The rate determining step for the dethreading of the ZZ axle has a higher energy barrier than that of the EE axle, in agreement with the experimental kinetic data. Moreover, the results suggest that the elliptic shape of the ring cavity is important for discriminating between the E and Z terminal azobenzene during dethreading.

  17. A Light-Responsive Self-Assembly Formed by a Cationic Azobenzene Derivative and SDS as a Drug Delivery System

    Science.gov (United States)

    Geng, Shengyong; Wang, Yuzhu; Wang, Liping; Kouyama, Tsutomu; Gotoh, Toshiaki; Wada, Satoshi; Wang, Jin-Ye

    2017-01-01

    The structure of a self-assembly formed from a cationic azobenzene derivative, 4-cholesterocarbonyl-4‧-(N,N,N-triethylamine butyloxyl bromide) azobenzene (CAB) and surfactant sodium dodecyl sulfate (SDS) in aqueous solution was studied by cryo-TEM and synchrotron radiation small-angle X-ray scattering (SAXS). Both unilamellar and multilamellar vesicles could be observed. CAB in vesicles were capable to undergo reversible trans-to-cis isomerization upon UV or visible light irradiation. The structural change upon UV light irradiation could be catched by SAXS, which demonstrated that the interlamellar spacing of the cis-multilamellar vesicles increased by 0.2-0.3 nm. Based on this microstructural change, the release of rhodamine B (RhB) and doxorubicin (DOX) could be triggered by UV irradiation. When incubated NIH 3T3 cells and Bel 7402 cells with DOX-loaded CAB/SDS vesicles, UV irradiation induced DOX release decreased the viability of both cell lines significantly compared with the non-irradiated cells. The in vitro experiment indicated that CAB/SDS vesicles had high efficiency to deliver loaded molecules into cells. The in vivo experiment showed that CAB/SDS vesicles not only have high drug delivery efficiency into rat retinas, but also could maintain high drug concentration for a longer time. CAB/SDS catanionic vesicles may find potential applications as a smart drug delivery system for controlled release by light.

  18. Through-space (19)F-(19)F spin-spin coupling in ortho-fluoro Z-azobenzene.

    Science.gov (United States)

    Rastogi, Shiva K; Rogers, Robert A; Shi, Justin; Brown, Christopher T; Salinas, Cindy; Martin, Katherine M; Armitage, Jacob; Dorsey, Christopher; Chun, Gao; Rinaldi, Peter; Brittain, William J

    2016-02-01

    We report through-space (TS) (19)F-(19)F coupling for ortho-fluoro-substituted Z-azobenzenes. The magnitude of the TS-coupling constant ((TS) JFF ) ranged from 2.2-5.9 Hz. Using empirical formulas reported in the literature, these coupling constants correspond to non-bonded F-F distances (dFF) of 3.0-3.5 Å. These non-bonded distances are significantly smaller than those determined by X-ray crystallography or density functional theory, which argues that simple models of (19)F-(19)F TS spin-spin coupling solely based dFF are not applicable. (1)H, (13)C and (19)F data are reported for both the E and Z isomers of ten fluorinated azobenzenes. Density functional theory [B3YLP/6-311++G(d,p)] was used to calculate (19) F chemical shifts, and the calculated values deviated 0.3-10.0 ppm compared with experimental values.

  19. A Light-Responsive Self-Assembly Formed by a Cationic Azobenzene Derivative and SDS as a Drug Delivery System

    Science.gov (United States)

    Geng, Shengyong; Wang, Yuzhu; Wang, Liping; Kouyama, Tsutomu; Gotoh, Toshiaki; Wada, Satoshi; Wang, Jin-Ye

    2017-01-01

    The structure of a self-assembly formed from a cationic azobenzene derivative, 4-cholesterocarbonyl-4′-(N,N,N-triethylamine butyloxyl bromide) azobenzene (CAB) and surfactant sodium dodecyl sulfate (SDS) in aqueous solution was studied by cryo-TEM and synchrotron radiation small-angle X-ray scattering (SAXS). Both unilamellar and multilamellar vesicles could be observed. CAB in vesicles were capable to undergo reversible trans-to-cis isomerization upon UV or visible light irradiation. The structural change upon UV light irradiation could be catched by SAXS, which demonstrated that the interlamellar spacing of the cis-multilamellar vesicles increased by 0.2–0.3 nm. Based on this microstructural change, the release of rhodamine B (RhB) and doxorubicin (DOX) could be triggered by UV irradiation. When incubated NIH 3T3 cells and Bel 7402 cells with DOX-loaded CAB/SDS vesicles, UV irradiation induced DOX release decreased the viability of both cell lines significantly compared with the non-irradiated cells. The in vitro experiment indicated that CAB/SDS vesicles had high efficiency to deliver loaded molecules into cells. The in vivo experiment showed that CAB/SDS vesicles not only have high drug delivery efficiency into rat retinas, but also could maintain high drug concentration for a longer time. CAB/SDS catanionic vesicles may find potential applications as a smart drug delivery system for controlled release by light. PMID:28051069

  20. Polyacrylate-water partitioning of biocidal compounds: enhancing the understanding of biocide partitioning between render and water.

    Science.gov (United States)

    Bollmann, Ulla E; Ou, Yi; Mayer, Philipp; Trapp, Stefan; Bester, Kai

    2015-01-01

    In recent years, the application of polymer-based renders and paints for façade coatings of buildings has risen enormously due to the increased mounting of thermal insulation systems. These materials are commonly equipped with biocides - algaecides, fungicides, and bactericides - to protect the materials from biological deterioration. However, the biocides need to be present in the water phase in order to be active and, hence, they are flushed of the material by rain water. In order to increase the knowledge about the partitioning of biocides from render into the water phase, partition constants between the polymer - in this case polyacrylate - and water were studied using glass fibre filters coated with polyacrylate. The polyacrylate-water partition constants (logKAcW) of ten biocides used in construction material varied between 1.66 (isoproturon) and 3.57 (dichloro-N-octylisothiazolinone). The correlation of the polyacrylate-water partition constants with the octanol-water partition constants is significant, but the polyacrylate-water partition constants were predominantly below octanol-water partition constants (Kow). The comparison with render-water distribution constants showed that estimating the leaching of biocides from render based on polymer-water partitioning is a useful and practical tool.

  1. Biocides from façade coatings in urban surface waters: Estimating the leaching of biocides from render by polyacrylate-water partitioning constants?

    DEFF Research Database (Denmark)

    Bollmann, Ulla E.; Styszko, K.; Ou, Yi;

    2015-01-01

    polyacrylate-water partition constants in comparison to render-water distribution constants was introduced for this purpose. The results showed that polyacrylate-water partition constants might serve as a useful and practical tool which would be closer to the reality than the commonly used water solubilty...

  2. Room temperature fabrication of SiO{sub 2}/polyacrylic ester multilayer composites by spin-coating

    Energy Technology Data Exchange (ETDEWEB)

    Kakisawa, Hideki, E-mail: KAKISAWA.Hideki@nims.go.jp [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, 305-0047 (Japan); Diem, Nguyen Thuy Bich [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-4, Komaba, Meguro-ku, 153-8904 Tokyo (Japan); Sumitomo, Taro [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, 305-0047 (Japan); Kagawa, Yutaka [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-4, Komaba, Meguro-ku, 153-8904 Tokyo (Japan)

    2010-10-15

    Alternate spin-coating was done to fabricate an organic/inorganic multiplayer composite at room temperature. SiO{sub 2}/polyacrylic ester multilayer composites were obtained by coating an aqueous alkoxysilane-modified polyacrylic ester emulsion and an alkoxysilane liquid alternately on a substrate. We examined the layer thickness when the concentration of aqueous emulsion and disk rotating speed in spin-coating were changed, and found that the thickness decreased when the concentration was decreased and when the rotating speed was increased. Layers with a submicron thickness were obtained in optimum conditions for both polyacrylic ester and SiO{sub 2} layers. A multilayer composite with 31 layers in total was successfully fabricated without interface delamination or discontinuity of any layer; it showed good light transmittance through the visible light range. The potential of alternate spin-coating as a room temperature process for fabricating organic/inorganic multilayer composites was proven.

  3. A facile fabrication of light diffusing film with LDP/polyacrylates composites coating for anti-glare LED application

    Science.gov (United States)

    Song, Shisen; Sun, Yaojie; Lin, Yandan; You, Bo

    2013-05-01

    In this paper, we present a facile coating technique to fabricate the light diffusing film with hemispherical surface convex micro-structure. The coating was prepared by different ratio of light-diffusing particles (LDP)/polyacrylates composites via in situ radical polymerization, with the H2SO4 and vinyl triethoxysilane (A-151) pretreatment made the LDP better dispersed and incorporated with polyacrylate polymer chains. When the mass ratio (LDP/polyacrylate) was 0.5, the film obtained the highest light-diffusing effect and more than 90% transmittance due to the formation of hemispherical surface convex micro-structure. The light diffusing films have excellent anti-glare property if applied to LED light system.

  4. Solid-state reference electrodes based on carbon nanotubes and polyacrylate membranes.

    Science.gov (United States)

    Rius-Ruiz, F Xavier; Kisiel, Anna; Michalska, Agata; Maksymiuk, Krzystof; Riu, Jordi; Rius, F Xavier

    2011-04-01

    A novel potentiometric solid-state reference electrode containing single-walled carbon nanotubes as the transducer layer between a polyacrylate membrane and the conductor is reported here. Single-walled carbon nanotubes act as an efficient transducer of the constant potentiometric signal originating from the reference membrane containing the Ag/AgCl/Cl(-) ions system, and they are needed to obtain a stable reference potentiometric signal. Furthermore, we have taken advantage of the light insensitivity of single-walled carbon nanotubes to improve the analytical performance characteristics of previously reported solid-state reference electrodes. Four different polyacrylate polymers have been selected in order to identify the most efficient reservoir for the Ag/AgCl system. Finally, two different arrangements have been assessed: (1) a solid-state reference electrode using photo-polymerised n-butyl acrylate polymer and (2) a thermo-polymerised methyl methacrylate:n-butyl acrylate (1:10) polymer. The sensitivity to various salts, pH and light, as well as time of response and stability, has been tested: the best results were obtained using single-walled carbon nanotubes and photo-polymerised n-butyl acrylate polymer. Water transport plays an important role in the potentiometric performance of acrylate membranes, so a new screening test method has been developed to qualitatively assess the difference in water percolation between the polyacrylic membranes studied. The results presented here open the way for the true miniaturisation of potentiometric systems using the excellent properties of single-walled carbon nanotubes.

  5. Measurement of respirable superabsorbent polyacrylate (SAP) dust by ethanol derivatization using gas chromatography-mass spectrometry (GC-MS) detection.

    Science.gov (United States)

    McCormack, Paul; Lemmo, John S; Macomber, Margaret; Holcomb, Mark L; Lieckfield, Robert

    2011-04-01

    Superabsorbent polyacrylate (SAP) is an important industrial chemical manufactured primarily as sodium polyacrylate but occasionally as potassium salt. It has many applications owing to its intrinsic physical property of very high water absorption, which can be more than 100 times it own weight. SAP is commonly used in disposable diapers and feminine hygiene products and is known by a number of synonyms-sodium polyacrylate, superabsorbent polyacrylate (SAP), polyacrylate absorbent (PA), and superabsorbent material (SAM). Germany and The Netherlands have adopted a nonbinding scientific guideline value 0.05 mg/m³ (8-hr time-weighted average, TWA) as the maximum allowable workplace concentration for the respirable dust of SAP (polyacrylate dust collected on filter cassettes in the workplace environment. This method is an alternative to the commonly used sodium-based method, which is limited owing to potential interference by other sources of sodium from the workplace and laboratory environments. The alcohol derivatization method effectively eliminates sodium interference from several classes of sodium compounds, as shown by their purposeful introduction at two and six times the equivalent amount of SAP present in reference samples. The accuracy of the method, as determined by comparison with sodium analysis of known reference samples, was greater than 80% over the study range of 5-50 μg of SAP dust. The lower reporting limit of the method is 3.0 μg of SAP per sample, which is equivalent to 3 (μg/m³) for an 8-hr sampling period at the recommended flow rate of 2.2 L/min.

  6. Character of the distribution of radiation-grafted polyacrylic acid in polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Agamalyan, M.M.; Babkin, I.Yu.; Burukhin, S.B.; Evmenenko, G.A.

    1988-03-01

    The supramolecular structure of the radiation-grafted polyethylene-polyacrylic acid system has been studied by means of the small-angle scattering of thermal neutrons. It has been shown that the grafted polymer in polyethylene forms particles of a microphase, whose disperse composition includes fractions with significantly different dimensions. The distribution function of the particles with respect to their radius has been presented. The concentration of the tiny formations coincides in order of magnitude with the concentration of the polymerization centers calculated from the radiation-chemical yield of active centers for polyethylene. The quantitative composition of the scattering particles has been evaluated.

  7. Dynamic Behavior and Mass Transport in Polyacrylic Acid Gel by Dynamic Light Scattering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Dynamic behaviors on polyacrylic acid (PAA) gels and mass (small molecules) transports in the gels have been studied mainly by dynamic light scattering (DLS). The cross-linking degree (fc), monomer concentration (Cm) and temperature of the gels have significant influences on its dynamic behavior and mass transport in the gels. The increase of fc leads to decrease of the mesh sizes of the gels, thus the obstacle of the gels for mass transport is increased. As a result, small molecular diffusion Dk in the gels is decreased. So even if for small molecules, the Dk also is influenced.

  8. Effects of Polar Organic Solvent on Separation of Y(edta)-/Nd(edta)- Complexes on Polyacrylic Anion Exchangers

    Institute of Scientific and Technical Information of China (English)

    Halina Hubicka; Dorota Kolodynska

    2005-01-01

    The use of polar organic solvents for the separations of rare earth elements (Ⅲ) is effective especially for their extensive separations despite the solubility limitations. The study shows that polyacrylate anion exchangers, particularly the weakly basic, gel anion exchanger Amberlite IRA 68, can be applied to the separation of rare earth complexes with EDTA in H2O-methanol and H2O-ethanol systems. In most cases the determined distribution coefficients of Ln3+ complexes with EDTA in mixed media like water-methanol on polyacrylate anion exchangers are larger than those in pure water media.

  9. Structure-property relationships of symmetrical and asymmetrical azobenzene derivatives as gelators and their self-assemblies.

    Science.gov (United States)

    Balamurugan, Rathinam; Kai-Ming, Wu; Chien, Chih-Chieh; Liu, Jui Hsiang

    2014-11-28

    Two different series of symmetrical and asymmetrical azobenzenes containing terminal cholesteryl/adamantyl derivatives (SAC/SAA and AAC) with varying spacer lengths (alkyl chains) have been developed. The gelation and aggregation of these derivatives were studied relative to structural motifs, spacer lengths, solvent affinity, temperatures and light conditions. Among these derivatives, the cholesteryl derivatives that have short alkyl chains (derivatives with longer alkyl chains (11 spacer) and adamantyl derivatives did not possess this ability. Self-assembled fibrous structures were constructed by gelators with short alkyl chains (derivatives, respectively. However, the cholesteryl derivative without a spacer (AAC0) did not exhibit any liquid crystalline phase but acted as an efficient gelator relative to the other gelators in this study.

  10. Optical properties of azobenzene-functionalized self-assembled monolayers: Intermolecular coupling and many-body interactions

    Science.gov (United States)

    Cocchi, Caterina; Moldt, Thomas; Gahl, Cornelius; Weinelt, Martin; Draxl, Claudia

    2016-12-01

    In a joint theoretical and experimental work, the optical properties of azobenzene-functionalized self-assembled monolayers (SAMs) are studied at different molecular packing densities. Our results, based on density-functional and many-body perturbation theory, as well as on differential reflectance (DR) spectroscopy, shed light on the microscopic mechanisms ruling photo-absorption in these systems. While the optical excitations are intrinsically excitonic in nature, regardless of the molecular concentration, in densely packed SAMs intermolecular coupling and local-field effects are responsible for a sizable weakening of the exciton binding strength. Through a detailed analysis of the character of the electron-hole pairs, we show that distinct excitations involved in the photo-isomerization at low molecular concentrations are dramatically broadened by intermolecular interactions. Spectral shifts in the calculated DR spectra are in good agreement with the experimental results. Our findings represent an important step forward to rationalize the excited-state properties of these complex materials.

  11. Reflection Band Control of Inverse Opal Film with Photoresponse Properties of Push-Pull Type Azobenzene LC Polymers

    Directory of Open Access Journals (Sweden)

    Sunnam Kim

    2008-01-01

    Full Text Available DcAz2Mc and DR1Mc molecules having push-pull type of azobenzene groups are synthesized, and their photo-orientational behaviors are investigated in the polymer system. In order to understand the relationship between a molecular structure and its physical properties, electronic structure calculation is computationally carried out. Regarding to their photo response properties, the copolymers of poly(DcAz2Mc-co-M6PBMe and poly(DR1Mc-co-M6PBMe are infiltrated into inverse opal films, and Bragg reflection shifts are observed under photostimuli. When the linearly polarized light is irradiated, Bragg reflection bands are shifted to the longer wavelength region as reflective index increases.

  12. Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams.

    Science.gov (United States)

    Hrozhyk, Uladzimir A; Serak, Svetlana V; Tabiryan, Nelson V; Hoke, Landa; Steeves, Diane M; Kimball, Brian R

    2010-04-12

    This study compares optical switching capabilities of liquid crystal (LC) materials based on different classes of azobenzene dyes. LCs based on molecules containing benzene rings with nearly symmetrical pi-pi conjugation respond more efficiently to a cw beam than to a nanosecond laser pulse and maintain the changes induced by the beam for tens of hours. Using azo dye molecules containing two benzene rings with push-pull pi-pi conjugation we demonstrate high photosensitivity to both a cw beam as well as nanosecond laser pulse with only 1 s relaxation of light-induced changes in material properties. Even faster, 1 ms restoration time is obtained for azo dye molecules containing hetaryl (benzothiazole) ring with enhanced push-pull pi-pi conjugation. These materials respond most efficiently to pulsed excitation while discriminating cw radiation.

  13. Research on various factors influencing the moisture absorption property of sodium polyacrylate

    Institute of Scientific and Technical Information of China (English)

    ZHANG ChunXiao; ZHANG WanXi; PAN ZhenYuan; ZHANG XiYao; LIU Jian; YUE ChongWang

    2009-01-01

    Sodium polyacrylate was synthesized with acrylic acid as the monomer,and sodium bisulfate and ammonium persulfate as the initiator,by means of aqueous solution polymerization.The factors influencing the properties of moisture absorption,such as monomer concentration,dosage of initiator,and reaction temperature were systematically investigated.The experimental results indicate that the moisture-absorbing property of this polymer was better than other traditional material,such as silica gel,and molecular sieve.The best reaction condition and formula are based on the orthogonal experiment design.The optimum moisture absorbency of sodium polyacrylate reaches 1.01 g/g.The mathematical correlation of this polymer with various factors and moisture absorbency is obtained based on the multiple regression analysis.The moisture content intuitive analysis table shows that neutralization degree has the most significant influence on moisture absorbency,followed by monomer concentration and reaction temperature,while other factors have less influence.

  14. Thermodynamic Equilibrium Morphology Prediction of Polyurethane/Polyacrylate Composite Latex Particles

    Institute of Scientific and Technical Information of China (English)

    CHAI Shu-Ling; JIN Ming-Martin

    2008-01-01

    Composite particles were prepared by seeded surfactant-free batch emulsion polymerization at 80 ℃ using K2S2O8 as an initiator, and polyurethane aqueous dispersion as seed particles. The acrylate monomers were continuously added into the reactor under a starving condition in the second stage polymerization. The synthesized hybrid emulsions were found to form an inverted core-shell structure with polyacrylate as the core and with polyurethane as the shell from the observation with a transmission electron microscope. The interfacial tensions between polymer and polymer as well as polymer and water were calculated with a simple method according to harmonic mean equation and used in a mathematical model based on the minimum interfacial energy change principle to predict the equilibrium morphology. The observed particle morphologies were in good agreement with the predicted ones. The surface properties of the dried films formed from polyurethane (PU)/polyacrylate (PA) composite emulsions were also studied by contact angle measurements, showing that the shell part of the composite emulsions is preferentially oriented toward the surface layers of the dried films.

  15. A convenient method to prepare emulsified polyacrylate nanoparticles from powders [corrected] for drug delivery applications.

    Science.gov (United States)

    Garay-Jimenez, Julio C; Turos, Edward

    2011-08-01

    We describe a method to obtain purified, polyacrylate nanoparticles in a homogeneous powdered form that can be readily reconstituted in aqueous media for in vivo applications. Polyacrylate-based nanoparticles can be easily prepared by emulsion polymerization using a 7:3 mixture of butyl acrylate and styrene in water containing sodium dodecyl sulfate as a surfactant and potassium persulfate as a water-soluble radical initiator. The resulting emulsions contain nanoparticles measuring 40-50 nm in diameter with uniform morphology, and can be purified by centrifugation and dialysis to remove larger coagulants as well as residual surfactant and monomers associated with toxicity. These purified emulsions can be lyophilized in the presence of maltose (a non-toxic cryoprotectant) to provide a homogeneous dried powder, which can be reconstituted as an emulsion by addition of an aqueous diluent. Dynamic light scattering and microbiological experiments were carried out on the reconstituted nanoparticles. This procedure allows for ready preparation of nanoparticle emulsions for drug delivery applications.

  16. Clay-polymer nanocomposite material from the delamination of kaolinite in the presence of sodium polyacrylate.

    Science.gov (United States)

    Letaief, Sadok; Detellier, Christian

    2009-09-15

    A chemical route for the delamination of kaolinite in a polymeric matrix is reported in this work. The strategy that was used is based on mixing polyelectrolytes of opposite charges, an organic polyanion, polyacrylate, with an inorganic polycation resulting from the modification of the internal surfaces of kaolinite. The delamination was carried out by the reaction of sodium polyacrylate (PANa) with kaolinite whose internal aluminol surfaces were previously grafted with triethanolamine and subsequently quaternized with iodomethane (TOIM-K) to form an extended lamellar inorganic polycation. X-ray diffraction as well as scanning electron microscopy (SEM) confirmed the complete delamination of the kaolinite particles. 13C CP/MAS NMR showed the removal of the ammonium groups resulting from hydrolysis of the internal surfaces once exposed, and 29Si CP/MAS NMR spectra were in agreement with the retention of the 1:1 aluminosilicate kaolinite layers structures. From the thermogravimetry (TG) data, the respective percentages in mass of PA and kaolinite in the delaminated nanocomposite could be estimated to be 61% and 39%, respectively, in the conditions of the particular experiment. The procedure was repeated several times to show the reproducibility of the delamination. The interlayer functionalization of kaolinite was crucial for the success of the delamination procedure. SEM pictures show that some individual kaolinite platelets fold and form curved structures.

  17. Fast redox of composite electrode of nitroxide radical polymer and carbon with polyacrylate binder

    Science.gov (United States)

    Komaba, Shinichi; Tanaka, Tatsuya; Ozeki, Tomoaki; Taki, Takayuki; Watanabe, Hiroaki; Tachikawa, Hiroyuki

    For organic radical batteries, poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA) has been reported as a promising positive electrode material. The PTMA/C composite electrode prepared with polyacrylate binder demonstrated the fast redox performance for the application to aprotic secondary batteries. When the variation in discharge capacities of the PTMA/C composite electrode was tested galvanostatically at 20 C rates, the electrode retained 96% of the initial capacity after 1000 cycles. This is attributed to the fact that the redox of PTMA is a simple reaction to form the oxoammonium salt doped with ClO 4 - anions in the electrolyte. When the PTMA/C composite electrode was discharged at different C rates, the electrode retained 81% of the theoretical capacity even at 50 C rates. This remarkably high rate capability originates from the fast electron-transfer kinetic of the 2,2,6,6-tetramethylpiperidine- N-oxyl (so-called TEMPO) radical, partially jelled polyacrylate binder, and the improved conductivity throughout the electrode by thoroughly mixing with carbon.

  18. Fabrication of monodisperse hollow silica spheres and effect on water vapor permeability of polyacrylate membrane.

    Science.gov (United States)

    Bao, Yan; Yang, Yongqiang; Ma, Jianzhong

    2013-10-01

    Polystyrene/silica core-shell spheres were fabricated using polystyrene as templates by hydrolysis and condensation of tetraethyl orthosilicate through a sol-gel process, in which polystyrene was synthesized by emulsion polymerization. Then, hollow silica spheres were obtained after selective removal of the organic polystyrene core from the polystyrene/silica core-shell spheres by tetrahydrofuran etching. The effect of hollow silica spheres on water vapor permeability, mechanical property, and water uptake of polyacrylate membrane were investigated. The microstructure analysis shows that the mean size and wall thickness of hollow silica spheres are 170 nm and 20 nm, respectively. The silica shells consist of amorphous silica seed assembly with a broad size distribution, which roughen the surfaces of hollow silica spheres greatly. The specific surface area of hollow silica spheres is bigger than that of polystyrene/silica core-shell spheres. Hollow silica spheres can significantly improve water vapor permeability of polyacrylate membrane, but lead to the reduction in mechanical property.

  19. External polyacrylate-coating as alternative material for preparation of photopolymerized sol-gel monolithic column.

    Science.gov (United States)

    Vaz, Fernando Antonio Simas; de Castro, Patrícia Mendonça; Molina, Celso; Ribeiro, Sidney José Lima; Polachini, Ferminio César; Messaddeq, Younes; Nunes, Adriana Palombo; de Oliveira, Marcone Augusto Leal

    2008-06-30

    Photopolymerized sol-gel monolithic columns for use in capillary electrochromatography were prepared in 125 microm i.d. polyacrylate-coated fused-silica capillaries. The polyacrylate-coating, unlike the polyimide one, is transparent to the radiation used (approximately 370 nm), and thus, no coating removal is necessary. This is a very important particularity since intrinsic capillary column characteristics, such as flexibility and mechanical resistance, are unchanged. A mixture containing metacryloxypropyltrimethoxysilane (MPTMS) as the polymeric precursor, hydrochloric acid as the catalyst, toluene as the porogen and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (Irgacure 819) as the photoinitiator was irradiated at 370 nm for 20 min inside the capillaries to prepare the columns through sol-gel approach. The versatility and viability of the use of polyacrilate as a new capillary external coating were shown through preparation of two columns under different conditions, which were tested in electrochromatography for separation of standard mixture containing thiourea (marker compound), propylbenzene, phenanthrene and pyrene.

  20. The Study of Water Stability for SBS and Polyacrylate Composite Modified Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    HU Qiusheng

    2014-09-01

    Full Text Available Polyacrylate (Polyacrylate, called PAE is a kind of thermoplastic polymer latex, which is easy to form a waterproof membrane and has greater adhesion ,always be used in concrete to enhance its ability to resist water corrosion.SBS is an inorganic modifier for modified asphalt mixture will help to improve the high and low temperature stability and other road performance, ect.However,its ability to enhanced asphalt mixture’s resistance for water damage is not obvious. In order to research the two composite modified asphalt mixture’s resistance effects to water damage , the Marshall Stability Test and Fort Kentucky Flooding Scattering Experiments were used on asphalt mixtures, SBS modified asphalt mixture and composite modified asphalt mixture and the effect of different composite modified PAE content were studied. The results showed that: PAE can significantly improve the water stability of asphalt mixture, what’s more, with the increase use of PAE,the mass loss rate of asphalt mixture decreases steadily.

  1. Development of thiolated poly(acrylic acid) microparticles for the nasal administration of exenatide.

    Science.gov (United States)

    Millotti, Gioconda; Vetter, Anja; Leithner, Katharina; Sarti, Federica; Shahnaz Bano, Gul; Augustijns, Patrick; Bernkop-Schnürch, Andreas

    2014-12-01

    The purpose of this study was to develop a microparticulate formulation for nasal delivery of exenatide utilizing a thiolated polymer. Poly(acrylic acid)-cysteine (PAA-cys) and unmodified PAA microparticles loaded with exenatide were prepared via coprecipitation of the drug and the polymer followed by micronization. Particle size, drug load and release of incorporated exenatide were evaluated. Permeation enhancing properties of the formulations were investigated on excised porcine respiratory mucosa. The viability of the mucosa was investigated by histological studies. Furthermore, ciliary beat frequency (CBF) studies were performed. Microparticles displayed a mean size of 70-80 µm. Drug encapsulation was ∼80% for both thiolated and non-thiolated microparticles. Exenatide was released from both thiolated and non-thiolated particles in comparison to exenatide in buffer only within 40 min. As compared to exenatide dissolved in buffer only, non-thiolated and thiolated microparticles resulted in a 2.6- and 4.7-fold uptake, respectively. Histological studies performed before and after permeation studies showed that the mucosa is not damaged during permeation studies. CBF studies showed that the formulations were cilio-friendly. Based on these results, poly(acrylic acid)-cysteine-based microparticles seem to be a promising approach starting point for the nasal delivery of exenatide.

  2. Synthesis of molecularly imprinted organic-inorganic hybrid azobenzene materials by sol-gel for radiation induced selective recognition of 2,4-dichlorophenoxyacetic acid

    Science.gov (United States)

    Shuai Jiang, Guang; An Zhong, Shi; Chen, Lan; Blakey, Idriss; Whitaker, Andrew

    2011-02-01

    A novel photoresponsive functional monomer bearing a siloxane polymerisable group and azobenzene moieties was synthesized. This monomer was then used to prepare photoresponsive molecularly imprinted polymers (MIP), which have specific binding sites for 2,4-dichlorophenoxyacetic acid (2,4-D) through hydrogen bonding moieties. The binding affinity of the imprinted recognition sites was switchable by alternate irradiations with ultraviolet and visible light, suggesting that azobenzene groups located inside the binding sites could be used as chemical sensors and the trans-cis isomerization could regulate the affinity for the 2,4-D. In addition, the concentration of the 2,4-D was able to be quantified by monitoring the trans-to-cis photoisomerization rate constant.

  3. 石墨烯/偶氮杂化材料研究进展%Progress on graphene/azobenzene hybrid materials

    Institute of Scientific and Technical Information of China (English)

    王东瑞; 王晓工

    2012-01-01

    Graphene, a true two dimensional nanomaterial with the layer thickness of one atom, has showed many outstanding properties and aroused tremendous research enthusiasm. Azobenzene-containing polymers and other materials have also attracted considerable attention because of the unique photoresponsive properties. Graphene/ azobenzene hybrids materials can combine interesting properties of graphere and azobenzene-containing materials and have been studied in authors and other laboratories in recent years. This review highlighted some recent research progresses in this area. The content of this article included the preparations of graphene/azobenzene hybrids materials through surface-grafting of azo polymers, covalent-bonding modification with low-molecular-weight azo compounds and electrostatic layer-by-layer deposition. The photoresponsive properties and application in the electronchemical energy storage device of the materials were also reviewed in some detail.%石墨烯作为一种新型二维平面纳米材料,表现出许多优异的物理性质.含偶氮苯的化合物和聚合物作为功能材料具有独特的光响应性质.将石墨烯的特性与偶氮材料的光响应性相结合,有望发展一类具有卓越性能的新型光电功能材料.本文总结了石墨烯/偶氮杂化材料这一研究方向的最新进展,重点介绍了杂化材料的制备、表征和光电功能性质等,并简要展望了这类材料的发展前景.

  4. A New Biindenylidenedione Compound with Two Azobenzene Units:Synthesis and Photochromic Behavior Both in Solution and in the Solid State

    Institute of Scientific and Technical Information of China (English)

    LIU Juyan; HAN Jie; WANG Juanyu; PANG Meili; MENG Jiben

    2009-01-01

    A new photochromic biindenylidenedione compound bearing two azobenzene units was synthesized and characterized by means of 1H NMR,13C NMR,ESI-MS and elemental analysis.The photochromic and photo-induced radical properties were investigated by means of UV-Vis and electron spin resonance spectroscopy,respectively.The results showed that the title compound exhibited photochromic behavior with good fatigue resistances both in solution and in the solid state.

  5. Synthesis of dense poly(acrylic acid) brushes and their interaction with amine-functional silsesquioxane nanoparticles

    NARCIS (Netherlands)

    Retsch, Markus; Walther, Andreas; Loos, Katja; Mueller, Axel H. E.; Müller, Axel H.E.

    2008-01-01

    Poly(acrylic acid) polyetectrolyte brushes were synthesized by surface-initiated atom transfer radical polymerization (SI-ATRP) of tert-butyl acrylate on planar gold surfaces and subsequent hydrolysis. Three types of monolayers with different numbers of thiol binding sites per initiating unit were u

  6. Comparison of various models to describe the charge-pH dependence of poly(acrylic acid)

    NARCIS (Netherlands)

    Lützenkirchen, J.; Male, van J.; Leermakers, F.A.M.; Sjöberg, S.

    2011-01-01

    The charge of poly(acrylic acid) (PAA) in dilute aqueous solutions depends on pH and ionic strength. We report new experimental data and test various models to describe the deprotonation of PAA in three different NaCl concentrations. A simple surface complexation approach is found to be very success

  7. On the effect of treating poly(acrylic acid) with argon and tetrafluoromethane plasmas: Kinetics and degradation mechanism

    NARCIS (Netherlands)

    Terlingen, Johannes G.A.; Takens, Gijsbert A.J.; Gaag, van der Frederik J.; Hoffman, Allan S.; Feijen, Jan

    1994-01-01

    Poly(acrylic acid) (PAAc) films were treated with either an argon or a tetrafluoromethane (CF4) plasma and subsequently analyzed with X-ray photoelectron spectroscopy (XPS). PAAc films were decarboxylated during both types of plasma treatments. In addition, during the CF4 plasma treatment, the PAAc

  8. Sustainable and scalable production of monodisperse and highly uniform colloidal carbonaceous spheres using sodium polyacrylate as the dispersant.

    Science.gov (United States)

    Gong, Yutong; Xie, Lei; Li, Haoran; Wang, Yong

    2014-10-28

    Monodisperse, uniform colloidal carbonaceous spheres were fabricated by the hydrothermal treatment of glucose with the help of a tiny amount of sodium polyacrylate (PAANa). This synthetic strategy is effective at high glucose concentration and for scale-up experiments. The sphere size can be easily tuned by the reaction time, temperature and glucose concentration.

  9. Analyzing freely dissolved concentrations of cationic surfactant utilizing ion-exchange capability of polyacrylate coated solid-phase microextraction fibers

    NARCIS (Netherlands)

    Chen, Y.; Droge, S.T.J.; Hermens, J.L.M.

    2012-01-01

    A 7-μm polyacrylate (PA) coated fiber was successfully employed to determine freely dissolved concentrations of cationic surfactants by solid-phase microextraction (SPME) and utilizing the capability of the PA-coating to sorb organic cations via ion-exchange at carboxylic groups. Measured fiber-wate

  10. Polyacrylate/nanosilica causes pleural and pericardial effusion, and pulmonary fibrosis and granuloma in rats similar to those observed in exposed workers.

    Science.gov (United States)

    Zhu, Xiaoli; Cao, Wen; Chang, Bing; Zhang, Linyuan; Qiao, Peihuan; Li, Xue; Si, Lifang; Niu, Yingmei; Song, Yuguo

    2016-01-01

    Nanomaterials offer great benefit as well as potential damage to humans. Workers exposed to polyacrylate coatings have pleural effusion, pericardial effusion, and pulmonary fibrosis and granuloma, which are thought to be related to the high exposure to nanomaterials in the coatings. The study aimed to determine whether polyacrylate/silica nanoparticles cause similar toxicity in rats, as observed in exposed workers. Ninety male Wistar rats were randomly divided into five groups with 18 rats in each group. The groups included the saline control group, another control group of polyacrylate only, and low-, intermediate-, and high-dose groups of polyacrylate/nanosilica with concentrations of 3.125, 6.25, and 12.5 mg/kg. Seventy-five rats for the 1-week study were terminated for scheduled necropsy at 24 hours, 3 days, and 7 days postintratracheal instillation. The remaining 15 rats (three males/group) had repeated ultrasound and chest computed tomography examinations in a 2-week study to observe the pleural and pericardial effusion and pulmonary toxicity. We found that polyacrylate/nanosilica resulted in pleural and pericardial effusions, where nanosilica was isolated and detected. Effusion occurred on day 3 and day 5 post-administration of nanocomposites in the 6.25 and 12.5 mg/kg groups, it gradually rose to a maximum on days 7-10 and then slowly decreased and disappeared on day 14. With an increase in polyacrylate/nanosilica concentrations, pleural effusion increased, as shown by ultrasonographic qualitative observations. Pulmonary fibrosis and granuloma were also observed in the high-dose polyacrylate/nanosilica group. Our study shows that polyacrylate/nanosilica results in specific toxicity presenting as pleural and pericardial effusion, as well as pulmonary fibrosis and granuloma, which are almost identical to results in reported patients. These results indicate the urgent need and importance of nanosafety and awareness of toxicity of polyacrylate/nanosilica.

  11. Symmetrical trimeric star-shaped mesogens based on 1,3,5-trisubstituted benzene incorporating Schiff base and azobenzene fragments as the peripheral units: Synthesis and mesomorphic properties

    Indian Academy of Sciences (India)

    Guan-Yeow Yeap; Yew-Hong Ooi; Nozomi Uchida; Masato M Ito

    2014-05-01

    Two series of symmetrical three-armed star-shaped mesogens based on 1,3,5-trihydroxybenzene as a core unit, interconnecting three Schiff base or azobenzene moieties via oxymethylene spacers have been synthesized and characterized by spectroscopic techniques. Every member in these series possesses either chlorine (Cl) or bromine (Br) terminal atom, with different alkyl spacer length (CH2 whereby ranging from 3 to 6). Their thermal stability and mesomorphic properties are investigated by employing DSC and POM. The dependence of phase transition in relation to the alkyl spacer length is shown by both series. These star-shaped mesogens exhibit only nematic and smectic phases. The difference between the two series lies on the structure of linking group in the peripheral units (-CH=N- for series PSB-X- and -N=N- for series PAZ-X-). Therefore, a comparison study of the mesomorphic properties between these two series of star-shaped mesogens is discussed whereby the azobenzene-basedmesogens are thermally more stable than the Schiff base counterpart. In addition, soft crystalline phase is observed for the azobenzene-based star-shaped mesogens possessing hexyl alkyl spacer.

  12. Research and application of polyacrylate emulsion adhesives%丙烯酸酯乳液胶粘剂的研究及应用

    Institute of Scientific and Technical Information of China (English)

    王善伟; 杜新胜; 徐惠俭; 柳彩霞

    2015-01-01

    综述了近年来我国丙烯酸酯乳液胶粘剂的最新研究现状,并介绍了丙烯酸酯乳液胶粘剂在压敏胶及包装材料中的应用,指出了我国丙烯酸酯乳液胶粘剂的发展方向。%The latest research situation of polyacrylate emulsion adhesives was reviewd and the application of polyacrylate emulsion adhesives in the pressure sensitive adhesives and the packaging materials was described. Finally the development trend of polyacrylate emulsion adhesives was prospected.

  13. Effect of Grafted Hydroquinone on the Acid-Base Properties of Poly(acrylic acid in the Presence of Copper (II

    Directory of Open Access Journals (Sweden)

    Nabila Bensacia

    2015-01-01

    Full Text Available Potentiometric titration of poly(acrylic acid and hydroquinone-functionalized poly(acrylic acid was conducted in the presence of copper (II. The effects of hydroquinone functionalizing and copper (II complexing on the potentiometric titration of poly(acrylic acid were studied in an ionic environment and in its absence. Henderson-Hasselbalch equation was applied to assess its validity for this titration. Coordination number and the stability constants of the copper- (II-complexed polymers were determined, and results showed the formation of mostly monodentate and bidentate copper- (II-polymer complexes.

  14. Radiation synthesis of superabsorbent poly(acrylic acid)-carrageenan hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Sanju; Kumar, Manmohan; Varshney, Lalit E-mail: lalitv@magnum.barc.ernet.in

    2004-04-01

    A series of superabsorbent hydrogels were prepared from carrageenan and partially neutralized acrylic acid by gamma irradiation at room temperature. The gel fraction, swelling kinetics and the equilibrium degree of swelling (EDS) of the hydrogels were studied. It was found that the incorporation of even 1% carrageenan (sodium salt) increases the EDS of the hydrogels from {approx}320 to {approx}800 g/g. Thermal analysis were carried out to determine the amount of free water and bound water in the hydrogels. Under optimum conditions, poly(acrylic acid)-carrageenan hydrogels with high gel fraction ({approx}80%) and very high EDS ({approx}800 g/g) were prepared gamma radiolytically from aqueous solution containing 15% partially neutralized acrylic acid and 1-5% carrageenan. The hydrogels were also found to be sensitive to the pH and the ionic strength of the medium.

  15. Synthesis and characterization of zinc chloride containing poly(acrylic acid) hydrogel by gamma irradiation

    Science.gov (United States)

    Park, Jong-Seok; Kuang, Jia; Gwon, Hui-Jeong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Seob Khil, Myung; Nho, Young-Chang

    2013-07-01

    In this study, the characterization of zinc chloride incorporated into a poly(acrylic acid) (PAAc) hydrogel prepared by gamma-ray irradiation was investigated. Zinc chloride powder with different concentrations was dissolved in the PAAc solution, and it was crosslinked with gamma-ray irradiation. The effects of various parameters such as zinc ion concentration and irradiation doses on characteristics of the hydrogel formed were investigated in detail for obtaining an antibacterial wound dressing. In addition, the gel content, pH-sensitive (pH 4 or 7) swelling ratio, and UV-vis absorption spectra of the zinc particles in the hydrogels were characterized. Moreover, antibacterial properties of these new materials against Staphylococcus aureus and Escherichia coli strains were observed on solid growth media. The antibacterial tests indicated that the zinc chloride containing PAAc hydrogels have good antibacterial activity.

  16. Photodetection and transport properties of surface capped silicon nanowires arrays with polyacrylic acid

    Directory of Open Access Journals (Sweden)

    Kamran Rasool

    2013-08-01

    Full Text Available Efficient hybrid photodetector consisting of silicon nanowires (SiNWs (∼40 μm capped with Polyacrylic Acid (PAA is demonstrated. Highly diluted PAA with deionized (DI water was spun directly on vertical SiNW arrays prepared by metal assisted electroless chemical etching (MACE technique. We have observed ∼9, 4 and 9 times enhancement in responsivity, detectivity and external quantum efficiency in SiNWs/PAA hybrid device in comparison to SiNWs only device. Higher electrical current and photodetection may be due to the increment of hydrophilic content (acceptor like states on SiNWs interface. The higher photosensitivity can also be attributed to the presence of low refractive index PAA around SiNWs which causes funneling of photon energy into SiNWs. Surface roughness of SiNWs leads to immobilization of charge carriers and hence shows persistent photoconductivity.

  17. Structural and behavioral characteristics of radiolytically synthesized polyacrylic acid-polyacrylonitrile copolymeric hydrogels

    Science.gov (United States)

    Bera, Anuradha; Misra, R. K.; Singh, Shailendra K.

    2013-10-01

    Copolymeric hydrogels of polyacrylic acid (PAA) - polyacrylonitrile (PAN) was radiolytically synthesized from their respective monomers with trimethyloltrimethacrylate (TMPTMA) as the crosslinker wherein both polymerization and crosslinking could be achieved in a single step reaction using 60Co γ-radiation under varying doses and dose rates. The formation of the hydrogels was confirmed by their FT-IR analysis, while their thermal degradation patterns were investigated through thermogravimetric analysis in both the dry and swelled state. The water sorption studies showed rapid swelling behavior of these hydrogels, where swelling (%EWC) was found to be strongly dependent on the ratio of the two monomers in the hydrogels and the swelling kinetics dependent on the dose rates of hydrogel synthesis. These radiolytically synthesized hydrogels responded to electrical stimulus both in terms of the bending speed as well as bending angle under an applied voltage. The nature of the deformation was reversible and can be controlled through switching the voltage on and off.

  18. Poly-Acrylic Acid Derivatives as Diesel Flow Improver for Paraffin-Based Daqing Diesel

    Institute of Scientific and Technical Information of China (English)

    Cuiyu Jiang; Ming Xu; Xiaoli Xi; Panlun Qi; Hongyan Shang

    2006-01-01

    Since the diesel products from paraffin-based Daqing crude oil showed low sensitivity to certain commercial diesel pour point depressant (PPDs) that resulted from the high content of paraffin, certain poly-acrylic acid derivatives (PADE) with-COOR,-COOH,-CONHR, and -COO-NH3+R groups by molecular design on the mechanics of diesel; PPDs were synthesized and evaluated as cold flow improver for Daqing 0# diesel in this paper. The pure PADE was superior to the commercial PPDs and displayed a substantial ability of wax crystals dispersion. There was a synergistic effect among the PADE and T1804 and secondary amine. The synergism clearly improved the low temperature performance of Daqing diesel products and could reduce the cold filter plugging point of 0# diesel by 6-7 ℃.

  19. Isomerization and fluorescence depolarization of merocyanine 540 in polyacrylic acid. Effect of H

    Indian Academy of Sciences (India)

    Dipankar Sukul; Sobhan Sen; Partha Dutta; Kankan Bhattacharyya

    2002-10-01

    Dynamics of isomerization and fluorescence depolarization of merocyanine 540 (MC540) in an aqueous solution of polyacrylic acid (PAA) have been studied using picosecond time resolved fluorescence spectroscopy. It is observed that the dynamics of isomerization and depolarization are sensitive enough to monitor the uncoiling of PAA at high H (> 6). At low H (< 3), when the polymer remains in a hypercoiled form, polymer bound MC540 experiences very high microscopic friction and, hence, the isomerization and depolarization processes are very slow. At high H (> 6) a polyanion is formed and the polymer assumes an extended configuration due to electrostatic repulsion. At high H (> 6), the anionic probe MC540 is expelled from the polyanion to bulk water and the dynamics of isomerization and fluorescence depolarization become faster by 12 and 5 times respectively, compared to those at low H.

  20. ABS polymer electroless plating through a one-step poly(acrylic acid) covalent grafting.

    Science.gov (United States)

    Garcia, Alexandre; Berthelot, Thomas; Viel, Pascal; Mesnage, Alice; Jégou, Pascale; Nekelson, Fabien; Roussel, Sébastien; Palacin, Serge

    2010-04-01

    A new, efficient, palladium- and chromium-free process for the electroless plating of acrylonitrile-butadiene-styrene (ABS) polymers has been developed. The process is based on the ion-exchange properties of poly(acrylic acid) (PAA) chemically grafted onto ABS via a simple and one-step method that prevents using classical surface conditioning. Hence, ABS electroless plating can be obtained in three steps, namely: (i) the grafting of PAA onto ABS, (ii) the copper Cu(0) seeding of the ABS surface, and (iii) the nickel or copper metallization using commercial-like electroless plating bath. IR, XPS, and SEM were used to characterize each step of the process, and the Cu loading was quantified by atomic absorption spectroscopy. This process successfully compares with the commercial one based on chromic acid etching and palladium-based seed layer, because the final metallic layer showed excellent adhesion with the ABS substrate.

  1. Preparation and characterization of interpenetrating networks based on polyacrylates and poly(lactic acid

    Directory of Open Access Journals (Sweden)

    H. Kaczmarek

    2012-01-01

    Full Text Available Three different, multifunctional acrylic monomers were photopolymerized in a matrix of poly(lactic acid, PLA, using 2-hydroxy-2-methyl-1-phenyl-propan-1-one as a photoinitiator. The kinetics of the photopolymerization of monomers in PLA, studied with Fourier Transform Infrared Spectroscopy, has been compared to analogous processes of pure monomers under the same conditions (room temperature, air atmosphere. Additionally, poly(ethylene glycol was added to acrylate/PLA blends as plasticizer.The highly crosslinked networks obtained were characterized by FTIR and optical microscopy. The amount of insoluble gel has been estimated gravimetrically. It was found that the studied systems are characterized by very high polymerization rate, moreover, efficient grafting of polyacrylates on PLA takes place. The observed morphology indicates the heterogeneity of formed networks. The glass transition temperature of PLA in studied blends has been determined by differential scanning calorimetry.

  2. Effects of postthermal treatment and UV irradiation on the structure of titania-polyacrylate nanocomposites

    Institute of Scientific and Technical Information of China (English)

    Tao Wan; Fei Feng; Yuechuan Wang

    2006-01-01

    The effects of postthermal treatment and irradiation time on the structure and thermal stability of TiO2/polyacrylate nanocomposites by a sol-gel process in reverse micelles and subsequent rapid photopolymerization were investigated, and the hybrid films were characterized by thermal gravimetry analysis (TGA), X-ray photoelectron spectrum (XPS), and atomic force microscopy (AFM).XPS data suggested that the prolongation of irradiation time and the postthermal treatment promoted titania formation, with the former affecting more remarkably. TGA data showed that TiO2-hybrid films could upgrade the decomposition onset temperature (Tonset) as well as the temperature at which there is a maximum mass loss rate (Tmax). AFM data demonstrated that the inorganic titania particles with a mean diameter of 25.26-28.84 nm were homogeneously distributed in the organic matrix.

  3. Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil.

    Science.gov (United States)

    Zhuang, Wenhua; Li, Longguo; Liu, Chao

    2013-01-01

    Based on the laboratory study, the effects of sodium polyacrylate (SP) was investigated at 5 rates of 0, 0.08, 0.2, 0.5, and 1%, on water retention, saturated hydraulic conductivity(Ks), infiltration characteristic and water distribution profiles of a sandy soil. The results showed that water retention and available water capacity effectively increased with increasing SP rate. The Ks and the rate of wetting front advance and infiltration under certain pond infiltration was significantly reduced by increasing SP rate, which effectively reduced water in a sandy soil leaking to a deeper layer under the plough layer. The effect of SP on water distribution was obviously to the up layer and very little to the following deeper layers. Considering both the effects on water retention and infiltration capacity, it is suggested that SP be used to the sandy soil at concentrations ranging from 0.2 to 0.5%.

  4. Polyacrylate adsorbents for the selective adsorption of cholesterol-rich lipoproteins from plasma or blood

    Directory of Open Access Journals (Sweden)

    Heuck, Claus-Chr.

    2011-01-01

    Full Text Available Polyacrylate (PAA adsorbents selectively bind low density lipoproteins (LDL from human plasma and blood, whereas very low density lipoproteins (VLDL are only minimally adsorbed. The adsorption of cholesterol-rich lipoproteins to PAA adsorbents is related to the molecular weight (mw of the polyanion ligand. Ca++ and Mg++ inhibit the binding of LDL to PAA adsorbents. The chemical composition of the organic hardgels of the adsorbents does not have an influence on adsorption. The selective adsorption of LDL to PAA adsorbents can be explained to result from their low negative surface charge density and the specific colloid-chemical properties of the surface-bound PAA, which do not prevent LDL from binding to charge-like domains of the ligand. By contrast, VLDL and high density lipoproteins (HDL are repelled from the adsorbents due to their higher negative surface charge density.

  5. IMMOBILIZATION OF GLUCOSE OXIDASE AND CELLULASE BY CHITOSAN-POLYACRYLIC ACID COMPLEX

    Institute of Scientific and Technical Information of China (English)

    WANG Lingzhi; JIANG Yingyan; ZHANG Changde; HUANG Dexiu

    1990-01-01

    This study is concerned with chitosan-polyacrylic acid complex as a carrier to immobilize glucose oxidase (GOD) and cellulase. The optimum temperature of the immobilized GOD (IG) was determined to be 60 ℃ which is higher than that of the native GOD about 40 ℃ . The optimum temperature of the immobilized cellulase (IC) was determined to be about 30 ℃ higher than that of native cellulase. Both of the optimum pH of IG and IC shifted one pH unit to acid. Immobilized enzyme may be used in more wide pH range. Their storage life are much longer compared with their native states. Both of them can be reused at least 12 times.

  6. CHOLESTERIC LIQUID CRYSTALLINE CHARACTER ON THE SURFACE OF CHITOSAN/POLYACRYLIC ACID COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Yan-ming Dong; Yu-song; Wu Mian Wang

    2001-01-01

    The cholesteric liquid crystalline structure in chitosan/polyacrylic acid composite films was studied by surface techniques. A periodical lamellar-like structure was observed in the permanganic acid etched film surface by both scanning electron microscopy (SEM) and atomic force microscopy (AFM), instead of the thumb-print texture which can be detected with polarized optical microscopy. It is suggested that the periodical lamellar-like structure is induced by the etching selectivity between cholesteric layers due to different molecular arrangement on the film surface. Four kinds of perpendicular disclinations, I.e. Χ→τ- + λ+, χ→λ- + τ+, χ→τ- + τ+ and χ→λ- + λ+, were found in the composite films from SEM observations. The smallest periodicity of lamellar-like structure (equals to halfpitch) is 20~40 nm measured with AFM.

  7. Synthetic polyacrylate polymers as particulate intranasal vaccine delivery systems for the induction of mucosal immune response.

    Science.gov (United States)

    Zaman, Mehfuz; Simerska, Pavla; Toth, Istvan

    2010-04-01

    The nasal route as a site of vaccine delivery for both local and systemic effect is currently of considerable interest. The administration of vaccines to mucosal surfaces such as the nasopharynx associated lymphoid tissues confers many advantages since the nasal mucosa is a primary site through which most inhaled antigens are encountered. However, the success of intranasally delivered mucosal vaccines is limited by lack of effective vaccine formulations or delivery systems suitable for use in humans. This review provides a brief overview of the mucosal immune system at the nasal surface, enhancement techniques for induction of mucosal immune response after intranasal administration of particulate systems and an explanation of the inherent properties of polyacrylate polymer-based particulate systems that may facilitate mucosal immune responses.

  8. Intrinsically stretchable transparent electrodes based on silver-nanowire-crosslinked-polyacrylate composites

    Science.gov (United States)

    Hu, Weili; Niu, Xiaofan; Li, Lu; Yun, Sungryul; Yu, Zhibin; Pei, Qibing

    2012-08-01

    Stretchable transparent composites have been synthesized consisting of a silver nanowire (AgNW) network embedded in the surface layer of a crosslinked poly(acrylate) matrix. The interpenetrating networks of AgNWs and the crosslinked polymer matrix lead to high surface conductivity, high transparency, and rubbery elasticity. The presence of carboxylic acid groups on the polymer chains enhances the bonding between AgNWs and the polymer matrix, and further increases the stretchability of the composites. The sheet resistance of the composite electrode increases by only 2.3 times at 50% strain. Repeated stretching to 50% strain and relaxation only causes a small increase of the sheet resistance after 600 cycles. The morphology of the composites during reversible stretching and relaxation has been investigated to expound the conductivity changes.

  9. Polyacrylate adsorbents for the selective adsorption of cholesterol-rich lipoproteins from plasma or blood.

    Science.gov (United States)

    Heuck, Claus-Chr

    2011-01-24

    Polyacrylate (PAA) adsorbents selectively bind low density lipoproteins (LDL) from human plasma and blood, whereas very low density lipoproteins (VLDL) are only minimally adsorbed. The adsorption of cholesterol-rich lipoproteins to PAA adsorbents is related to the molecular weight (mw) of the polyanion ligand. Ca(++) and Mg(++) inhibit the binding of LDL to PAA adsorbents. The chemical composition of the organic hardgels of the adsorbents does not have an influence on adsorption. The selective adsorption of LDL to PAA adsorbents can be explained to result from their low negative surface charge density and the specific colloid-chemical properties of the surface-bound PAA, which do not prevent LDL from binding to charge-like domains of the ligand. By contrast, VLDL and high density lipoproteins (HDL) are repelled from the adsorbents due to their higher negative surface charge density.

  10. Polyacrylate bound TiSb2 electrodes for Li-ion batteries

    Science.gov (United States)

    Gómez-Cámer, Juan Luis; Novák, Petr

    2015-01-01

    Crystalline TiSb2 electrodes prepared using two different binders, PVDF and lithium polyacrylate (LiPAA), were examined as negative electrodes in Li-ion batteries. The cycle life of the electrodes is strongly influenced by the choice of the binder, reaching ca. 120 cycles with LiPAA vs. ca. 90 cycles achieved with the common binder PVDF. Moreover, rate capability is improved using LiPAA binder. The reduction in TiSb2 particle size is shown to influence the average practical specific charge at high charge/discharge rates. The reasons for this improvement are discussed and the optimized electrode was demonstrated in full Li-ion cells.

  11. Wheat Gluten Blends with Maleic Anhydride-Functionalized Polyacrylate Cross-Linkers for Improved Properties.

    Science.gov (United States)

    Diao, Cheng; Xia, Hongwei; Parnas, Richard S

    2015-10-14

    A family of polyacrylate-based cross-linkers was synthesized to maximize the toughness of high Tg, high modulus wheat gluten blends in the glassy state. Mechanical testing and damping measurements were conducted to provide an example where the work of fracture and strength of the blend substantially exceeds polystyrene while maintaining flexure stiffness in excess of 3 GPa. The new rubbery cross-linkers, polymethyl acrylate-co-maleic anhydride and polyethyl acrylate-co-maleic anhydride, improve WG mechanical properties and reduce water absorption simultaneously. MDSC, FTIR, HPLC, and NMR data confirmed the cross-linking reaction with wheat gluten. Flexural, DMA, and water absorption testing were carried out to characterize the property improvements. DMA was conducted to investigate the relationship between energy damping and mechanical property improvement. If the cross-linker damping temperature is close to the testing temperature, the entire sample exhibits high damping, toughness, and strength.

  12. Poly(acrylic acid) microspheres loaded with lidocaine: preparation and characterization for arterial embolization.

    Science.gov (United States)

    Cui, Dai-Chao; Lu, Wan-Liang; Sa, Er-A; Gu, Meng-Jie; Lu, Xiao-Jing; Fan, Tian-Yuan

    2012-10-15

    A new embolic agent, poly(acrylic acid) microspheres (PMs), was synthesized and the cytocompatibility was proved by mouse L929 fibroblast cells. An analgesic drug, lidocaine, was loaded on the PMs to relief pain caused by embolization. PMs and lidocaine loaded microspheres (LMs) were characterized by investigating infrared spectrum, morphology, particle size, and equilibrium water contents (EWC). A series of tests were employed to evaluate the elasticity of PMs, LMs and Embosphere™, including once compression, twice compression, and stress relaxation test. The pressures of PMs and LMs passing through a catheter were measured on line by our new designed device. Drug release was studied with T-cell apparatus. The properties of PMs and LMs were proved to be suitable for embolization. Both PMs and LMs in this study might be potential embolic agents in the future.

  13. Poly(acrylic acid surface grafted polypropylene films: Near surface and bulk mechanical response

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available Radical photo-grafting polymerization constitutes a promising technique for introducing functional groups onto surfaces of polypropylene films. According to their final use, surface grafting should be done without affecting overall mechanical properties. In this work the tensile drawing, fracture and biaxial impact response of biaxially oriented polypropylene commercial films grafted with poly(acrylic acid (PAA were investigated in terms of film orientation and surface modification. The variations of surface roughness, elastic modulus, hardness and resistance to permanent deformation induced by the chemical treatment were assessed by depth sensing indentation. As a consequence of chemical modification the optical, transport and wettability properties of the films were successfully varied. The introduced chains generated a PAA-grafted layer, which is stiffer and harder than the neat polypropylene surface. Regardless of the surface changes, it was proven that this kind of grafting procedure does not detriment bulk mechanical properties of the PP film.

  14. Poly(acrylic acid)-stabilized colloidal gold nanoparticles: synthesis and properties.

    Science.gov (United States)

    Jans, Hilde; Jans, Karolien; Lagae, Liesbet; Borghs, Gustaaf; Maes, Guido; Huo, Qun

    2010-11-12

    Combining the intriguing optical properties of gold nanoparticles with the inherent physical and dynamic properties of polymers can give rise to interesting hybrid nanomaterials. In this study, we report the synthesis of poly(acrylic acid) (PAA)-capped gold nanoparticles. The polyelectrolyte-wrapped gold nanoparticles were fully characterized and studied via a combination of techniques, i.e. UV-vis and infrared spectroscopy, dark field optical microscopy, SEM imaging, dynamic light scattering and zeta potential measurements. Although PAA-capped nanoparticles have been previously reported, this study revealed some interesting aspects of the colloidal stability and morphological change of the polymer coating on the nanoparticle surface in an electrolytic environment, at various pH values and at different temperatures.

  15. Modified Polyacrylic Acid-Zinc Composites: Synthesis, Characterization and Biological Activity

    Directory of Open Access Journals (Sweden)

    Mohammed Rafi Shaik

    2016-02-01

    Full Text Available Polyacrylic acid (PAA is an important industrial chemical, which has been extensively applied in various fields, including for several biomedical purposes. In this study, we report the synthesis and modification of this polymer with various phenol imides, such as succinimide, phthalimide and 1,8-naphthalimide. The as-synthesized derivatives were used to prepare polymer metal composites by the reaction with Zn+2. These composites were characterized by using various techniques, including NMR, FT-IR, TGA, SEM and DSC. The as-prepared PAA-based composites were further evaluated for their anti-microbial properties against various pathogens, which include both Gram-positive and Gram-negative bacteria and different fungal strains. The synthesized composites have displayed considerable biocidal properties, ranging from mild to moderate activities against different strains tested.

  16. Poly(acrylic acid)-grafted graphene oxide as an intracellular protein carrier.

    Science.gov (United States)

    Kavitha, Thangavelu; Kang, Inn-Kyu; Park, Soo-Young

    2014-01-14

    A pH-sensitive poly(acrylic acid)-grafted graphene oxide (GO-PAA) nanocarrier was synthesized by in situ atom transfer radical polymerization to allow the oral delivery of hydrophilic macromolecular proteins in their active forms to specific cells or organs. The synthesis, morphology, and physiochemical properties of GO-PAA were examined. A model protein, bovine serum albumin (BSA) labeled with fluorescein isothiocyanate (FITC) (BSAFITC), was loaded onto GO-PAA through noncovalent interactions and its release was arrested at acidic pH similar to stomach, whereas at pH similar to intestine it was reduced, which paves way for site specific delivery without its degradation in the gastrointestinal tract. Confocal laser microscopy showed that the BSAFITC-loaded GO-PAA was internalized by KB cells by endocytosis and released into cytoplasm. Thus the GO-PAA as a transmembrane transporter is a new class of drug transporters with potential protein delivery applications.

  17. Cascade enzymatic catalysis in poly(acrylic acid) brushes-nanospherical silica for glucose detection.

    Science.gov (United States)

    Zhao, Yan; Wang, Ying; Zhang, Xiaobin; Kong, Rongmei; Xia, Lian; Qu, Fengli

    2016-08-01

    The ultrasensitive monitoring of glucose with a fast and accurate method is significant in potential therapeutics and optimizes protein biosynthesis. Incorporation of enzyme into matrix is considered as promising candidates for constructing highly sensitive glucose-responsive systems. In this study, three-dimensional poly(acrylic acid) brushes-nanospherical silica (PAA-nano silica) with high amplification capability and stability were used to covalently immobilize bienzymes for cascade enzymatic catalysis. The major advantages of PAA-nano silica-bienzyme co-incorporation is that the enzymes are proximity distribution, and such close confinement both minimized the diffusion of intermediates among the enzymes in the consecutive reaction and improve the utilization efficiency of enzymes, thereby enhancing the overall reaction efficiency and specificity. Thus, this present bienzymatic biosensor shows robust signal amplification and ultrasensitivity of glucose-responsive properties with a detection limit of 0.04μM.

  18. Polyethylenimine-polyacrylic acid nanocomposites: Type of bonding does influence the gene transfer efficacy and cytotoxicity.

    Science.gov (United States)

    Tripathi, Sushil K; Ahmadi, Zeba; Gupta, Kailash C; Kumar, Pradeep

    2016-04-01

    The main aim of the current study is to compare the physicochemical properties, cytotoxicity and gene-transfer ability of electrostatically and covalently linked nanocomposites of polyethylenimine (PEI) and polyacrylic acid (PAA) on mammalian cells. Two series of nanocomposites, ionic PEI-PAA (iPP) and covalent PEI-PAA (cPP), were synthesized by varying the amounts of polyacrylic acid (PAA). Physicochemical characterization revealed that iPP nanopcomposites were of bigger sized than cPP nanocomposites with zeta potential almost comparable. Nucleic acid binding assay displayed that iPP and cPP nanocomposites, having sufficient cationic charge, efficiently interacted with plasmid DNA and completely retarded its electrophoretic mobility on agarose gel. In vitro MTT assay showed slightly higher cell viability of cPP/pDNA complexes over their ionic counterparts. Both the series of nanocomposite/pDNA complexes exhibited considerably higher transfection efficacy compared to pDNA complexes of native bPEI and the standard transfection reagent, Lipofectamine, with cPP/pDNA complexes performed much better than iPP/pDNA complexes. Flow cytometry further confirmed these findings where cPP-4/pDNA complex showed transfection in ∼ 85% HEK293 cells, while iPP-2/pDNA complex transfected ∼ 67% HEK293 cells. Lipofectamine/pDNA and bPEI/pDNA complexes could transfect just ∼ 35% and ∼ 26% HEK293 cells. All these results demonstrate the superiority of covalently linked nanocomposites (cPP) which could be used as efficient carriers for nucleic acids in future gene delivery applications.

  19. Endoscopic treatment of vesicoureteral reflux with polyacrylate polyalcohol copolymer and dextranomer/hyaluronic acid in adults

    Directory of Open Access Journals (Sweden)

    Akif Turk

    2014-06-01

    Full Text Available Purpose Aim of this study is to examine the effectiveness of dextranomer/hyaluronic acid copolymer and polyacrylate polyalcohol copolymer in endoscopic treatment of vesicoureteral reflux disease in adult patients with and without chronic renal failure. Materials and Methods Thirty two patients (12 female, 20 male with a total of 50 renal units were treated for vesicoureteral reflux. There were 26 (81% chronic renal failure patients. The success of treatment was evaluated by voiding cystouretrography at 3rd and 12th months after subureteric injection. The persistence of reflux was considered as failure. Patients were divided into two groups according to injected material. Age, sex, grade of reflux and treatment results were recorded and evaluated. Results Reflux was scored as grade 1 in seven (14%, grade 2 in 16 (32%, grade 3 in 21 (42% and grade 4 in six (12% renal units. There was not patient with grade 5 reflux. Fourteen renal units (28% were treated with dextranomer/hyaluronic acid copolymer (group 1 and 36 renal units (72% were treated with polyacrylate polyalcohol copolymer (group 2. The overall treatment success was achieved at 40 renal units (80%. The treatment was successful at 11 renal units (79% in group 1 and 29 renal units (81% in group 2 (p = 0.71. There was not statistically significant difference between two groups with patients with chronic renal failure in terms of treatment success (p = 1.00. Conclusions The effectiveness of two bulking agents was similar in treatment of vesicoureteral reflux disease in adult patients and patients with chronic renal failure.

  20. Cisplatin-incorporated nanoparticles of poly(acrylic acid-co-methyl methacrylate copolymer

    Directory of Open Access Journals (Sweden)

    Lee KD

    2013-08-01

    Full Text Available Kyung Dong Lee,1,* Young-Il Jeong,2,* Da Hye Kim,3,4 Gyun-Taek Lim,2 Ki-Choon Choi5 1Department of Oriental Medicine Materials, Dongshin University, Naju, South Korea; 2Department of Polymer Engineering, Chonnam National University, Gwangju, South Korea; 3Faculty of Life and Environmental Science, Shimane University, Matsue, Japan; 4United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan; 5Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea *These authors contributed equally to this work Background: Although cisplatin is extensively used in the clinical field, its intrinsic toxicity limits its clinical use. We investigated nanoparticle formations of poly(acrylic acid-co-methyl methacrylate (PAA-MMA incorporating cisplatin and their antitumor activity in vitro and in vivo. Methods: Cisplatin-incorporated nanoparticles were prepared through the ion-complex formation between acrylic acid and cisplatin. The anticancer activity of cisplatin-incorporated nanoparticles was assessed with CT26 colorectal carcinoma cells. Results: Cisplatin-incorporated nanoparticles have small particle sizes of less than 200 nm with spherical shapes. Drug content was increased according to the increase of the feeding amount of cisplatin and acrylic acid content in the copolymer. The higher acrylic acid content in the copolymer induced increase of particle size and decrease of zeta potential. Cisplatin-incorporated nanoparticles showed a similar growth-inhibitory effect against CT26 tumor cells in vitro. However, cisplatin-incorporated nanoparticles showed improved antitumor activity against an animal tumor xenograft model. Conclusion: We suggest that PAA-MMA nanoparticles incorporating cisplatin are promising carriers for an antitumor drug-delivery system. Keywords: cisplatin, nanoparticle, poly(acrylic acid-co-methyl methacrylate, ion complexes

  1. Magnetic hyperthermia studies on water-soluble polyacrylic acid-coated cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Surendra, M. [Indian Institute of Technology Madras, Department of Physics, Nano Functional Materials Technology Centre, Materials Research Centre (India); Annapoorani, S. [Anna University of Technology, Department of Nanotechnology (India); Ansar, Ereath Beeran; Harikrishna Varma, P. R. [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Bioceramics Laboratory (India); Ramachandra Rao, M. S., E-mail: msrrao@iitm.ac.in [Indian Institute of Technology Madras, Department of Physics, Nano Functional Materials Technology Centre, Materials Research Centre (India)

    2014-12-15

    We report on synthesis and hyperthermia studies in the water-soluble ferrofluid made of polyacrylic acid-coated cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with different particle sizes. Magnetic nanoparticles were synthesized using co-precipitation method and particle size was varied as 6, 10, and 14 nm by varying the precursor to surfactant concentration. PAA surfactant bonding and surfactant thickness were studied by FTIR and thermogravimetric analysis. At room temperature, nanoparticles show superparamagnetism and saturation magnetization was found to vary from 33 to 44 emu/g with increase in the particle size from 6 to 14 nm, and this increase was attributed to the presence of a magnetic inert layer of 4 Å thick. Effect of particle size, concentration, and alternating magnetic field strength at 275 kHz on specific absorption rate were studied by preparing ferrofluids in deionized water at different concentrations. Ferrofluids at a concentration of 1.25 g/L, with 10 min of AMF exposure of strength ∼15.7 kA/m show stable temperatures ∼48, 58, and 68 °C with increase in the particle sizes 6, 10, and 14 nm. A maximum specific absorption rate of 251 W/g for ferrofluid with a particle size of 10 nm at 1.25 g/L, 15.7 kA/m, and 275 kHz was observed. Viability of L929 fibroblasts is measured by MTT assay cytotoxicity studies using the polyacrylic acid-coated CoFe{sub 2}O{sub 4} nanoparticles.

  2. Low Light CMOS Contact Imager with an Integrated Poly-Acrylic Emission Filter for Fluorescence Detection

    Directory of Open Access Journals (Sweden)

    Yonathan Dattner

    2010-05-01

    Full Text Available This study presents the fabrication of a low cost poly-acrylic acid (PAA based emission filter integrated with a low light CMOS contact imager for fluorescence detection. The process involves the use of PAA as an adhesive for the emission filter. The poly-acrylic solution was chosen due its optical transparent properties, adhesive properties, miscibility with polar protic solvents and most importantly its bio-compatibility with a biological environment. The emission filter, also known as an absorption filter, involves dissolving an absorbing specimen in a polar protic solvent and mixing it with the PAA to uniformly bond the absorbing specimen and harden the filter. The PAA is optically transparent in solid form and therefore does not contribute to the absorbance of light in the visible spectrum. Many combinations of absorbing specimen and polar protic solvents can be derived, yielding different filter characteristics in different parts of the spectrum. We report a specific combination as a first example of implementation of our technology. The filter reported has excitation in the green spectrum and emission in the red spectrum, utilizing the increased quantum efficiency of the photo sensitive sensor array. The thickness of the filter (20 μm was chosen by calculating the desired SNR using Beer-Lambert’s law for liquids, Quantum Yield of the fluorophore and the Quantum Efficiency of the sensor array. The filters promising characteristics make it suitable for low light fluorescence detection. The filter was integrated with a fully functional low noise, low light CMOS contact imager and experimental results using fluorescence polystyrene micro-spheres are presented.

  3. The influence of poly(acrylic) acid number average molecular weight and concentration in solution on the compressive fracture strength and modulus of a glass-ionomer restorative.

    LENUS (Irish Health Repository)

    Dowling, Adam H

    2011-06-01

    The aim was to investigate the influence of number average molecular weight and concentration of the poly(acrylic) acid (PAA) liquid constituent of a GI restorative on the compressive fracture strength (σ) and modulus (E).

  4. Pancytopenia with severe thrombocytopenia in a patient treated with twice-weekly LDL-apheresis by polyacrylate adsorption from whole blood.

    Science.gov (United States)

    Nowack, Rainer; Wiedemann, Günther

    2010-01-01

    Pancytopenia with severe thrombocytopenia occurred in a patient treated with low-density lipoprotein (LDL)-apheresis by polyacrylate adsorption from whole blood, after treatment frequency had been increased from once to twice a week. Cell counts recovered with discontinuation of LDL-apheresis, but thrombocytopenia recurred after resumption of twice-weekly treatments. Thrombocyte counts remained stable following the replacement of polyacrylate adsorption from whole blood by double-filtration plasmapheresis. The complications' close coincidence with twice-weekly polyacrylate adsorption from whole blood suggests a causal relationship, although by a still unknown mechanism. Monitoring of thrombocytes should be advised in patients treated with LDL-apheresis by polyacrylate adsorption from whole blood.

  5. Light-induced reversible modification of the work function of a new perfluorinated biphenyl azobenzene chemisorbed on Au (111)

    Science.gov (United States)

    Masillamani, Appan Merari; Osella, Silvio; Liscio, Andrea; Fenwick, Oliver; Reinders, Federica; Mayor, Marcel; Palermo, Vincenzo; Cornil, Jérôme; Samorì, Paolo

    2014-07-01

    We describe the synthesis of a novel biphenyl azobenzene derivative exhibiting: (i) a protected thiol anchoring group in the α-position to readily form self-assembled monolayers (SAMs) on Au surfaces; and (ii) a terminal perfluorinated benzene ring in the ω-position to modify the surface properties. The design of this molecule ensured both an efficient in situ photoswitching between the trans and cis isomers when chemisorbed on Au(111), due to the presence of a biphenyl bridge between the thiol protected anchoring group and the azo dye, and a significant variation of the work function of the SAM in the two isomeric states, induced by the perfluorinated phenyl head group. By exploiting the light responsive nature of the chemisorbed molecules, it is possible to dynamically modify in situ the work function of the SAM-covered electrode, as demonstrated both experimentally and by quantum-chemical calculations, revealing changes in work function up to 220 meV. These findings are relevant for tuning the work function of metallic electrodes, and hence to dynamically modulate charge injection at metal-semiconductor interfaces for organic opto-electronic applications.We describe the synthesis of a novel biphenyl azobenzene derivative exhibiting: (i) a protected thiol anchoring group in the α-position to readily form self-assembled monolayers (SAMs) on Au surfaces; and (ii) a terminal perfluorinated benzene ring in the ω-position to modify the surface properties. The design of this molecule ensured both an efficient in situ photoswitching between the trans and cis isomers when chemisorbed on Au(111), due to the presence of a biphenyl bridge between the thiol protected anchoring group and the azo dye, and a significant variation of the work function of the SAM in the two isomeric states, induced by the perfluorinated phenyl head group. By exploiting the light responsive nature of the chemisorbed molecules, it is possible to dynamically modify in situ the work function of

  6. Synthesis and characterization of nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianhua, E-mail: zhoujianh@21cn.com [College of Resource and Environment, Shaanxi University of Science and Technology, Xi’an 710021 (China); Shaanxi Research Institute of Agricultural Products Processing Technology, Xi’an 710021 (China); Chen, Xin; Duan, Hao; Ma, Jianzhong; Ma, Yurong [College of Resource and Environment, Shaanxi University of Science and Technology, Xi’an 710021 (China)

    2015-03-15

    Graphical abstract: Nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion was synthesized by emulsifier-free emulsion polymerization and sol–gel process using ethyl silicate as precursor for nano-SiO{sub 2}. - Highlights: • Nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion was successfully synthesized by emulsion polymerization using surfmer and sol–gel process. • The contact angle results showed that the finished fabric had an excellent water and oil repellency. • The nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion proved to be highly solvent-resistant and water-resistant. • The transmission electron microscopy (TEM) indicated that the nano-SiO{sub 2} presented on the surface of latex particles. • The atomic force microscope (AFM) and energy dispersive X-ray spectrometer (EDX) confirmed that the hybrid film had a rough surface and the organic fluorine segment could migrate onto the film–air interface. - Abstract: Nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion, consisting of methyl methacrylate, butyl acrylate, dodecafluoroheptyl methacrylate and ethyl silicate, was successfully synthesized by emulsion polymerization using surfmer and sol–gel process. When increasing ethyl silicate content, the latex centrifugal stability decreased, and the latex particle size increased. The contact angle results showed that the finished fabric had an excellent water and oil repellency. Furthermore, compared with fluorine-containing polyacrylate emulsifier-free emulsion, the obtained nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion proved to be highly solvent-resistant and water-resistant. In addition, the transmission electron microscopy (TEM) indicated that the nano-SiO{sub 2} presented on the surface of latex particles. The atomic force microscope (AFM) and energy dispersive X-ray spectrometer

  7. Small-angle neutron scattering from mixtures of sodium dodecyl sulfate and a cationic, bolaform surfactant containing azobenzene.

    Science.gov (United States)

    Hubbard, F Pierce; Santonicola, Gabriella; Kaler, Eric W; Abbott, Nicholas L

    2005-07-05

    This paper reports on the microstructures formed in aqueous solutions containing mixtures of sodium dodecyl sulfate (SDS) and a photosensitive, bolaform surfactant, bis(trimethylammoniumhexyloxy)azobenzene dibromide (BTHA). By using quasi-elastic light scattering and small-angle neutron scattering, we determined that aqueous solutions containing SDS and the trans isomer of BTHA (0.1 wt % total surfactant, 15 mol % BTHA, 85 mol % SDS) form vesicles with average hydrodynamic diameters of 1350 +/- 50 angstroms and bilayer thicknesses of 35 +/- 2 angstroms. The measured bilayer thickness is consistent with a model of the vesicle bilayer in which the trans isomer of BTHA spans the bilayer. Upon illumination with UV light, the BTHA underwent photoisomerization to produce a cis-rich photostationary state (80% cis isomer). We measured this photoisomerization to drive the reorganization of vesicles into cylindrical aggregates with cross-sectional radii of 19 +/- 3 angstroms and average hydrodynamic diameters of 240 +/- 50 angstroms. Equilibration of the cis-rich solution in the dark at 25 degrees C for 12 h or illumination of the solution with visible light leads to the recovery of the trans-rich photostationary state of the solution and the reformation of vesicles, thus demonstrating the potential utility of this system as the basis of a tunable fluid.

  8. Assessing computationally efficient isomerization dynamics: Delta-SCF density-functional theory study of azobenzene molecular switching

    CERN Document Server

    Maurer, Reinhard J; 10.1063/1.3664305

    2012-01-01

    We present a detailed comparison of the S0, S1 (n -> \\pi*) and S2 (\\pi -> \\pi*) potential energy surfaces (PESs) of the prototypical molecular switch azobenzene as obtained by Delta-self-consistent-field (Delta-SCF) Density-Functional Theory (DFT), time-dependent DFT (TD-DFT) and approximate Coupled Cluster Singles and Doubles (RI-CC2). All three methods unanimously agree in terms of the PES topologies, which are furthermore fully consistent with existing experimental data concerning the photo-isomerization mechanism. In particular, sum-method corrected Delta-SCF and TD-DFT yield very similar results for S1 and S2, when based on the same ground-state exchange-correlation (xc) functional. While these techniques yield the correct PES topology already on the level of semi-local xc functionals, reliable absolute excitation energies as compared to RI-CC2 or experiment require an xc treatment on the level of long-range corrected hybrids. Nevertheless, particularly the robustness of Delta-SCF with respect to state c...

  9. Light-induced reversible modification of the work function of a new perfluorinated biphenyl azobenzene chemisorbed on Au (111).

    Science.gov (United States)

    Masillamani, Appan Merari; Osella, Silvio; Liscio, Andrea; Fenwick, Oliver; Reinders, Federica; Mayor, Marcel; Palermo, Vincenzo; Cornil, Jérôme; Samorì, Paolo

    2014-08-07

    We describe the synthesis of a novel biphenyl azobenzene derivative exhibiting: (i) a protected thiol anchoring group in the α-position to readily form self-assembled monolayers (SAMs) on Au surfaces; and (ii) a terminal perfluorinated benzene ring in the ω-position to modify the surface properties. The design of this molecule ensured both an efficient in situ photoswitching between the trans and cis isomers when chemisorbed on Au(111), due to the presence of a biphenyl bridge between the thiol protected anchoring group and the azo dye, and a significant variation of the work function of the SAM in the two isomeric states, induced by the perfluorinated phenyl head group. By exploiting the light responsive nature of the chemisorbed molecules, it is possible to dynamically modify in situ the work function of the SAM-covered electrode, as demonstrated both experimentally and by quantum-chemical calculations, revealing changes in work function up to 220 meV. These findings are relevant for tuning the work function of metallic electrodes, and hence to dynamically modulate charge injection at metal-semiconductor interfaces for organic opto-electronic applications.

  10. Toward Spatiotemporally Controlled Synthesis of Photoresponsive Polymers: Computational Design of Azobenzene-Containing Monomers for Light-Mediated ROMP.

    Science.gov (United States)

    Zhou, Qunfei; Fursule, Ishan; Berron, Brad J; Beck, Matthew J

    2016-09-15

    Density functional theory calculations have been used to identify the optimum design for a novel, light-responsive ring monomer expected to allow spatial and temporal control of ring-opening metathesis polymerization (ROMP) via light-mediated changes in ring strain energy. The monomer design leverages ring-shaped molecules composed of 4,4'-diaminoazobenzene (ABn) closed by alkene-α,ω-dioic acid linkers. The atomic geometries, formation enthalpies and ring strain energies of azobenzene (AB)-containing rings with various length linkers have been calculated. The AB(2,2) monomer is identified as having optimal properties for light-mediated ROMP, including high thermodynamic stability, low ring strain energy (RSE) with cis-AB, and high RSE with trans-AB. Time-dependent DFT calculations have been used to explore the photoisomerization mechanism of isolated AB and AB-containing rings, and calculations show that trans-to-cis and cis-to-trans photoisomerization of the optimal AB(2,2) ring molecule can be achieved with monochromatic green and blue light, respectively. The AB(2,2) monomer identified here is expected to allow precise, reversible, spatial and temporal light-mediated control of ROMP through AB photoisomerization, and to have promising potential applications in the fabrication of patterned and/or responsive AB-containing polymer materials.

  11. Molecular structure and vibrational and chemical shift assignments of 3'-chloro-4-dimethylamino azobenzene by DFT calculations.

    Science.gov (United States)

    Toy, Mehmet; Tanak, Hasan

    2016-01-05

    In the present work, a combined experimental and theoretical study on ground state molecular structure, spectroscopic and nonlinear optical properties of azo compound 3'-chloro-4-dimethlamino azobenzene are reported. The molecular geometry, vibrational wavenumbers and the first order hyperpolarizability of the title compound were calculated with the help of density functional theory computations. The optimized geometric parameters obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The vibrational transitions were identified based on the recorded FT-IR spectra in the range of 4000-400cm(-1) for solid state. The (1)H isotropic chemical shifts with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. Using the TD-DFT method, electronic absorption spectra of the title compound have been predicted, and good agreement is determined with the experimental ones. To investigate the NLO properties of the title compound, the polarizability and the first hyperpolarizability were calculated using the density functional B3LYP method with the 6-311++G(d,p) basis set. According to results, the title compound exhibits non-zero first hyperpolarizability value revealing second order NLO behavior. In addition, DFT calculations of the title compound, molecular electrostatic potential and frontier molecular orbitals were also performed at 6-311++G(d,p) level of theory.

  12. Synthesis, optical and thermal behaviour of palladium(II) complexes with 4-(4-alkoxy-2-hydroxybenzylideneamino)azobenzene

    Indian Academy of Sciences (India)

    Boon-Teck Heng; Guan-Yeow Yeap; Daisuke Takeuchi

    2013-11-01

    A series of new Pd(II) complexes derived from the reaction of palladium acetate with 4-(4-alkoxy-2-hydroxybenzylideneamino)azobenzene having the flexible terminal chain of OCH2+1, in which n are even numbers ranging from 8 to 16, has been successfully synthesized. The physical measurement and spectroscopic techniques (FTIR and 1H-NMR) reveal that the Pd(II) complexes possess the Pd-N and Pd-O coordination modes in which the central Pd(II) adopts square-planar geometry. The observation under the polarized light shows that all the ligands and Pd(II) complexes exhibit enantiotropic mesophases. The ligands with -octyloxy and -decyloxy flexible chains exhibit the nematic (N) and smectic A (SmA) phases whilst the Pd(II) complexes show exclusive SmA phase. The SmA phase observed in Pd(II) complexes can be supported by the presence of focal conic fan-shaped texture with the presence of curved lines which are prominent during the cooling process. On the other hand, the comparison studies show that Pd(II) complexes possess exceptional higher phase transition temperatures as compared to the corresponding Cu(II) and Ni(II) complexes.

  13. 含手性碳偶氮苯化合物的合成及其光致变色性能%Synthesis and Photochromic Properties of Azobenzene Compounds Containing Chiral Carbon

    Institute of Scientific and Technical Information of China (English)

    陈思; 谢孔良

    2009-01-01

    Two novel azobenzene compounds containing ehiral carbon, 4-(formic acid ethyl lactate ester)-4'-N, N-bi-methyl azobenzene and 4-(formic acid ethyl lactate ester)- 4'- N, N-bi-methyl bi-azobenzene, had been synthesized by reactions of sulfonyl chlorination and esterfication. The azobenzene compounds containing chiral carbon were characterized and detected by paper chromatography method and Infrared (IR) spectrum. The Ultraviolet-visible light (UV-Vis) spectrum results showed that the two compunds have good photochromism properties and the chiral carbon had significant effect on UV-Vis spectrum. Research shows that single-azobenzene structure of the compound has larger transformation in the absorption spectrum than bi-azobenzene structure of the compound.%采用重氮化偶合反应合成得到偶氮苯染料母体,再经酰氯化、酯化反应合成出两种新型的含手性碳的偶氮苯化合物4-甲酸乳酸乙酯酯基-4'-N,N-二甲基偶氮苯和4-甲酸乳酸乙酯酯基-4'-N,N-二甲基双偶氮苯,并用纸色谱、傅里叶红外(IR)光谱进行了监测和表征.经紫外一可见光(UV-Vis)光谱测试表明两种化合物显示出良好的光致变色性能,与母体化合物的对比可以看出,接入手性碳后光致变色光谱表现出明显的变化,且单偶氮结构的化合物要比双偶氮结构的化合物光致变色光谱明显.

  14. Influence of He/O 2 atmospheric pressure plasma jet treatment on subsequent wet desizing of polyacrylate on PET fabrics

    Science.gov (United States)

    Li, Xuming; Lin, Jun; Qiu, Yiping

    2012-01-01

    The influence of He/O2 atmospheric pressure plasma jet (APPJ) treatment on subsequent wet desizing of polyacrylate on PET fabrics was studied in the present paper. Weight loss results indicated that the weight loss increased with an increase of plasma treatment time. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed an increased surface roughness after the plasma treatment. SEM also showed that the fiber surfaces were as clean as unsized fibers after 35 s treatment followed by NaHCO3 desizing. X-ray photoelectron spectroscopy (XPS) analysis indicated that oxygen-based functional groups increased for the plasma treated polyacrylate sized fabrics. The percent desizing ratio (PDR) results showed that more than 99% PDR was achieved after 65 s plasma treatment followed by a 5 min NaHCO3 desizing. Compared to conventional wet desizing, indicating that plasma treatment could significantly reduce desizing time.

  15. The Fouling of Zirconium(IV) Hydrous Oxide–Polyacrylate Dynamically Formed Membranes during the Nanofiltration of Lactic Acid Solutions

    OpenAIRE

    Ewa Polom

    2013-01-01

    The results of investigations of flux decline during nanofiltration (NF) of lactic acid solutions using dynamically formed zirconium(IV) hydrous oxide/polyacrylate membranes (Zr(IV)/PAA) under conditions resulting in low and high lactic acid rejection are reported. The experimental permeate flux versus time curves were analyzed in the frame of resistance in a series model with the aim of developing the characteristic of resistances. Analysis of experimental data and results of calculations sh...

  16. Characterization and Antimicrobial Property of Poly(Acrylic Acid) Nanogel Containing Silver Particle Prepared by Electron Beam

    OpenAIRE

    Jong-Bae Choi; Jong-Seok Park; Myung-Seob Khil; Hui-Jeong Gwon; Youn-Mook Lim; Sung-In Jeong; Young-Min Shin; Young-Chang Nho

    2013-01-01

    In this study, we developed a one step process to synthesize nanogel containing silver nanoparticles involving electron beam irradiation. Water-soluble silver nitrate powder is dissolved in the distilled water and then poly(acrylic acid) (PAAc) and hexane are put into this silver nitrate solution. These samples are irradiated by an electron beam to make the PAAc nanogels containing silver nanoparticles (Ag/PAAc nanogels). The nanoparticles were characterized by scanning electron microscopy (S...

  17. Improvement in soil and sorghum health following the application of polyacrylate polymers to a Cd-contaminated soil.

    Science.gov (United States)

    Guiwei, Q; de Varennes, A; Martins, L L; Mourato, M P; Cardoso, A I; Mota, A M; Pinto, A P; Gonçalves, M L

    2010-01-15

    Contamination of soils with cadmium (Cd) is a serious global issue due to its high mobility and toxicity. We investigated the application of insoluble polyacrylate polymers to improve soil and plant health. Sorghum was grown in a Cd-contaminated sandy soil. Polyacrylate polymers at 0.2% (w/w) were added to half of the soil. Control soil without plants was also included in the experiment. Growth of sorghum was stimulated in the polymer-amended soil. The concentration of Cd in the shoots, and the activities of catalase and ascorbate peroxidase decreased in plants from polymer-amended soil compared with unamended control. The amount of CaCl(2)-extractable Cd in the polymer-amended soil was 55% of that in the unamended soil. The Cd extracted in sorghum shoots was 0.19 mg per plant grown on soil without polymer and 0.41 mg per plant grown on polymer-amended soil. The total amount of Cd removed from each pot corresponded to 1.5 and more than 6% of soil CaCl(2)-extractable Cd in unamended and polymer-amended soil, respectively. The activities of soil acid phosphatase, beta-glucosidase, urease, protease and cellulase were greatest in polymer-amended soil with sorghum. In conclusion, the application of polyacrylate polymers to reduce the bioavailable Cd pool seems a promising method to enhance productivity and health of plants grown on Cd-contaminated soils.

  18. Synthesis and Characterization of nano-SiO2 modified fluorine-containing polyacrylate emulsifier-free emulsion

    Science.gov (United States)

    Zhou, Jianhua; Chen, Xin; Duan, Hao; Ma, Jianzhong; Ma, Yurong

    2015-03-01

    Nano-SiO2 modified fluorine-containing polyacrylate emulsifier-free emulsion, consisting of methyl methacrylate, butyl acrylate, dodecafluoroheptyl methacrylate and ethyl silicate, was successfully synthesized by emulsion polymerization using surfmer and sol-gel process. When increasing ethyl silicate content, the latex centrifugal stability decreased, and the latex particle size increased. The contact angle results showed that the finished fabric had an excellent water and oil repellency. Furthermore, compared with fluorine-containing polyacrylate emulsifier-free emulsion, the obtained nano-SiO2 modified fluorine-containing polyacrylate emulsifier-free emulsion proved to be highly solvent-resistant and water-resistant. In addition, the transmission electron microscopy (TEM) indicated that the nano-SiO2 presented on the surface of latex particles. The atomic force microscope (AFM) and energy dispersive X-ray spectrometer (EDX) confirmed that the hybrid film had a rough surface and the organic fluorine segment could migrate onto the film-air interface.

  19. Analyzing freely dissolved concentrations of cationic surfactant utilizing ion-exchange capability of polyacrylate coated solid-phase microextraction fibers.

    Science.gov (United States)

    Chen, Yi; Droge, Steven T J; Hermens, Joop L M

    2012-08-24

    A 7-μm polyacrylate (PA) coated fiber was successfully employed to determine freely dissolved concentrations of cationic surfactants by solid-phase microextraction (SPME) and utilizing the capability of the PA-coating to sorb organic cations via ion-exchange at carboxylic groups. Measured fiber-water partitioning coefficients (K(fw)) were constant below a fiber loading of 2mmol per liter polyacrylate, allowing for simple and accurate analysis in a concentration range that is relevant from a risk assessment point of view. Ion-exchange was confirmed to be the main sorption mechanism because of a decreasing K(fw) with either higher CaCl(2) concentrations or lower pH, and maximum fiber uptake at the polyacrylate cation-exchange capacity (CEC, at 30mmol/L PA). Fiber-water sorption isotherms were established in various aqueous media in toxicological relevant concentrations. The developed SPME method has a high potential for application in ecotoxicological studies, as demonstrated in sorption studies with humic acid in different electrolyte solutions at aqueous concentrations down to the sub nM range. Cationic surfactant sorption affinities for humic acid also depend on medium composition but are orders of magnitude higher than to the PA fiber on a sorbent weight basis.

  20. Langmuir monolayer and Langmuir-Blodgett films formed by a melamine-headed azobenzene-derived amphiphile: interfacial assembly affected by host-guest interaction.

    Science.gov (United States)

    Xu, Weihong; Wang, Yanhua; Xiao, Yunxia; Liu, Fang; Lu, Guo-Yuan

    2009-04-09

    A novel azobenzene-derived amphiphile with a melamine head, 2Azo-2C12H2-melamine, has been synthesized. pi-A isotherm measurements displayed that this amphiphile is able to form a stable Langmuir monolayer on both pure water and barbituric acid (BA)- or thymine (T)-containing subphases. The collapse surface pressure and limiting molecular area of its Langmuir monolayer on pure water are 40 mN/m and 0.56 nm2, respectively. However, when barbituric acid or thymine was introduced into the subphase, the corresponding pi-A isotherms of the monolayers exhibited a lower collapse surface pressure (22 mN/m for BA, 21 mN/m for T) and smaller limiting molecular area (0.54 nm2 for BA and 0.52 nm2 for T). UV-vis and FT-IR studies of the LB films formed by 2Azo-2C12H25-melamine have also been carried out. The results indicated that the LB films of 2Azo-2C12H25-melamine deposited from pure water undergo distinct collapse of the H-aggregate upon UV irradiation, while the LB films deposited from a BA- or T-containing subphase retain the H-aggregate. The host-guest-interaction-induced blockage of azobenzene photoisomerization should be responsible for the stabilized H-aggregate. A 1:1 host/guest binding mode to form a linear supramolecular polymeric chain has been proposed in the Langmuir monolayers formed on a BA- or T-containing subphase. The current results suggest that the host-guest interaction should be an effective means to manipulate the interfacial assembly of azobenzene-derived amphiphiles.

  1. Electrical induction and optical erasure of birefringence in the isotropic liquid phase of a dichiral azobenzene liquid-crystalline compound (Presentation Recording)

    Science.gov (United States)

    Yamamoto, Takahiro; Nishiyama, Isa

    2015-10-01

    Liquid crystal is a representative soft matter, which has physical properties between those of conventional liquid and those of crystal in a temperature range above a melting point. A liquid-crystal display (LCD) employs the response of the liquid-crystal alignment to the electric field and is a key device of an information display. For common LCDs, the precise control of the initial alignment of LC molecules is needed so that a good dark state, thus a high contrast ratio, can be obtained. If the birefringence can be induced in the liquid phase by the application of electric field, it is of great use as a material for the LCD application. In this study, we will report a unique property of dichiral azobenzene liquid crystals: an electric induction of birefringence in a liquid phase of an antiferroelectric dichiral azobenzene liquid crystal. The optically isotropic texture changes into the homogenous birefringent texture by the application of the in-plane electric field above the clearing temperature of the liquid crystal. We find that one of the possible reasons of the induction of the birefringence in the isotropic phase is the electrically-induced increase of the phase transition temperature between the antiferroelectric liquid-crystalline and "liquid" phases, i.e., increase in the clearing temperature. The resulting birefringence can be disappeared by the irradiation of UV light, due to the photoinduced isomerization of the azobenzene compound, thus dual control of the birefringent structure, by the irradiation of light and/or by the application of the electric field, is achieved.

  2. Right- and Left-Handed Helices, What is in between? Interconversion of Helical Structures of Alternating Pyridinedicarboxamide/m-(phenylazo)azobenzene Oligomers.

    Science.gov (United States)

    Tao, Peng; Parquette, Jon R; Hadad, Christopher M

    2012-12-11

    Some unnatural polymers/oligomers have been designed to adopt a well-defined, compact, three-dimensional folding capability. Azobenzene units are common linkages in these oligomer designs. Two alternating pyridinedicarboxamide/m-(phenylazo)azobenzene oligomers that can fold into both right- and left-handed helices were studied computationally in order to understand their dynamical properties. Helical structures were shown to be the global minima among the many different conformations generated from the Monte Carlo simulations, and extended conformations have higher potential energies than compact ones. To understand the interconversion process between right- and left-handed helices, replica-exchange molecular dynamic (REMD) simulations were performed on both oligomers, and with this method, both right- and left-handed helices were successfully sampled during the simulations. REMD trajectories revealed twisted conformations as intermediate structures in the interconversion pathway between the two helical forms of these azobenzene oligomers. This mechanism was observed in both oligomers in current study and occurred locally in the larger oligomer. This discovery indicates that the interconversion between helical structures with different handedness goes through a compact and partially folded structure instead of globally unfold and extended structure. This is also verified by the nudged elastic band (NEB) calculations. The temperature weighted histogram analysis method (T-WHAM) was applied on the REMD results to generate contour maps of the potential of mean force (PMF). Analysis showed that right- and left-handed helices are equally sampled in these REMD simulations. In large oligomers, both right- and left-handed helices can be adopted by different parts of the molecule simultaneously. The interconversion between two helical forms can occur in the middle of the helical structure and not necessarily at the termini of the oligomer.

  3. The Modification of Sodium Polyacrylate Water Solution Cooling Properties by AL2O3

    Directory of Open Access Journals (Sweden)

    Wojciech Gęstwa

    2010-01-01

    Based on cooling curves, it can be concluded that for the water solution of sodium polyacrylate with AL2O3 nanoparticles in comparison to water and 10% polymer water solution lower cooling speed is obtained. The cooling medium containing nanoparticles provides lower cooling speed in the smallest surface austenite occurance (500–600 C in the charts of the CTP for most nonalloy structural steels and low-alloy steels. However lower cooling temperature at the beginning of martensitic transformation causes the formation of smaller internal stresses, leading to smaller dimensional changes and hardening deformation. For the quenching media the wetting angle was appointed by the drop-shape method. These studies showed the best wettability of polymer water solution (sodium polyacrylate with the addition of AL2O3 nanoparticles, whose wetting angle was about 65 degrees. Obtaining the smallest wetting angle for the medium containing nanoparticles suggests that the heat transfer to the cooling medium is larger. This allows slower cooling at the same time ensuring its homogeneity. The obtained values of wetting angle confirm the conclusions drawn on the basis of cooling curves and allowus to conclude that in the case of the heat transfer rate it will have a lower value than for water and 10% polymer water solution. In the research on hardened carburized steel samples C10 and 16MnCr5 surface hardness, impact strength and changes in the size of cracks in Navy C-ring sample are examined. On this basis of the obtained results it can be concluded that polymer water solution with nanoparticles allows to obtain a better impact strength at comparable hardness on the surface. Research on the dimensional changes on the basis of the sample of Navy C-ring also shows small dimensional changes for samples carburized and hardened in 10% polymer water solution with the addition of nanoparticles AL2O3. Smaller dimensional changes were obtained for samples of steel 16MnCr5 thanfar C10. The

  4. A self-cleaning coating based on commercial grade polyacrylic latex modified by TiO{sub 2}/Ag-exchanged-zeolite-A nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Nosrati, Rahimeh, E-mail: ra.nosrati@gmail.com [Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Olad, Ali, E-mail: a.olad@yahoo.com [Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Nofouzi, Katayoon, E-mail: nofouzi@tabrizu.ac.ir [Faculty of Veterinary Medicine, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-08-15

    Graphical abstract: - Highlights: • A novel nanocomposite coating based on polyacrylic was prepared. • Nanostructured TiO{sub 2}/Ag-exchanged-zeolite-A composite material was prepared. • Prepared nanocomposite used as additive for modification of polyacrylic latex. • Modified coatings show self-cleaning and antibacterial properties. • Modified coatings show better stability in water in versus of unmodified polymer. - Abstract: The commercial grade polyacrylic latex was modified in order to prepare a self-cleaning coating. TiO{sub 2}/Ag-exchanged-zeolite-A nanocomposite was prepared and used as additive in the matrix of polyacrylic latex to achieve a hydrophilic and photocatalytic coating. FTIR and UV–visible spectroscopy, X-ray diffraction patterns and FESEM were used to characterize the composition and structure of the nanocomposites and coatings. The acrylic coatings, were prepared by using of TiO{sub 2}/Ag-exchanged-zeolite-A additive, had better UV and visible light absorption, hydrophilic, degradation of organic pollutants, stability in water and antimicrobial properties than pristine commercial grade polyacrylic latex coating. According to the results, the modified polyacrylic based coating containing 0.5 wt% of TiO{sub 2}/Ag-exchanged-zeolite-A nanocomposite additive with TiO{sub 2} to Ag-exchanged-zeolite-A ratio of 1:2 was the best coating considering most of useful properties such as small band gap and low water contact angle. The water contact angle for unmodified polyacrylic latex coating was 68° which was decreased to less than 10° in modified coating after 24 h LED lamp illumination.

  5. PREPARATION AND PROPERTIES OF ETHYL-CYANOETHYL CELLULOSE/POLYACRYLIC ACID COMPOSITE FILMS WITH REFLECTION COLORS

    Institute of Scientific and Technical Information of China (English)

    Yong Huang

    2001-01-01

    Ethyl-cyanoethyl cellulose [(E-CE)C]/acrylic acid (AA) becomes a cholesteric liquid crystalline solution with vivid colors when the (E-CE)C concentration is 42 wt% ~52 wt%. (E-CE)C/polyacrylic acid (PAA) composites with cholesteric structure were prepared by polymerizing AA in (E-CE)C/AA liquid crystalline solutions. The layers of ordered polymer chains in the cholesteric phase were inclined during polymerization and the degree of the inclination depended on the polymerization temperature and the concentration of the solution before polymerization. The cholesteric structure in the composites could not be changed when temperature was lower than 100C. Cross-linking of the PAA in composites improved their water-resistance. The cholesteric order of the composites without cross-linking was destroyed when they where immersed in water. The color derived from the selective reflection of the cholesteric phase of the cross-linked composites turned from blue to red after the composites absorbed water. The color of the composites could be returned to the original one when the absorbed water was removed from the swollen composites.

  6. Efficiency of Sodium Polyacrylate to Improve Durability of Concrete under Adverse Curing Condition

    Directory of Open Access Journals (Sweden)

    Tanvir Manzur

    2015-01-01

    Full Text Available The conventional external curing process requires supply of large amount of water in addition to mixing water as well as strict quality control protocol. However, in a developing country like Bangladesh, many local contractors do not have awareness and required knowledge on importance of curing which often results in weaker concrete with durability issues. Moreover, at times it is difficult to maintain proper external curing process due to nonavailability of water and skilled laborer. Internal curing can be adopted under such scenario since this method is simple and less quality intensive. Usually, naturally occurring porous light weight aggregates (LWA are used as internal curing agent. However, naturally occurring LWA are not available in many countries like Bangladesh. Under these circumstances, Super Absorbent Polymer (SAP can be utilized as an alternative internal curing agent. In this study, sodium polyacrylate (SP as SAP has been used to produce internally cured concrete. Desorption isotherm of SP has been developed to investigate its effectiveness as internal curing agent. Test results showed that internally cured concrete with SP performed better in terms of both strength and durability as compared to control samples when subjected to adverse curing conditions where supply of additional water for external curing was absent.

  7. CONFORMATIONAL CHARACTERISTICS OF POLY(ACRYLIC ACID) AND POLY(METHACRYLIC ACID)

    Institute of Scientific and Technical Information of China (English)

    HE Ziru; YANG Xiaozhen; ZHAO Delu; XU Mao; HAN Dong; YE Meiling; SHI Lianghe

    1997-01-01

    A full-relaxation optimization of molecule and the Dreiding force field are employed to obtain the geometry parameters and the conformational energy surfaces of meso or racemic dyad of poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA). Three different carbonyl-bond orientations of side-groups resulted in the differences in depth of potential wells in their energetic contours for a meso or a racemic dyad.These discrepancies are interpreted as a result of various fine structures corresponding to grid search conformations as well as thereby different interactions. The analysis on the most stable conformations of PMAA confirmed that the ester groups are nearly perpendicular to the plane defined by the two adjacent skeletal bonds but may possibly change their relative orientations to meet the requirement of lower energy during the conformational state transition. For each polymer, two global energy maps of a meso and a racemic dyad were finally constructed from the superposition of energy data for the three kinds of side-group orientations by the Boltzmann factors. From an ensemble average, the proposed scheme with three rotational isomeric states (RIS) allowed us to access the experimentally unperturbed dimensions of PAA chain via the configurational statistical mechanics. Although the calculation was based on the short-range, local interactions, it was interested to note that the experimental characteristic ratios just fell within the range calculated for atactic chains.

  8. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    Science.gov (United States)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  9. Inhibited growth of Pseudomonas aeruginosa by dextran- and polyacrylic acid-coated ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Wang Q

    2013-08-01

    Full Text Available Qi Wang,1 J Manuel Perez,2 Thomas J Webster1,3 1Bioengineering Program, College of Engineering, Northeastern University, Boston, MA, USA; 2Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA; 3Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA Abstract: Ceria (CeO2 nanoparticles have been widely studied for numerous applications, but only a few recent studies have investigated their potential applications in medicine. Moreover, there have been almost no studies focusing on their possible antibacterial properties, despite the fact that such nanoparticles may reduce reactive oxygen species. In this study, we coated CeO2 nanoparticles with dextran or polyacrylic acid (PAA because of their enhanced biocompatibility properties, minimized toxicity, and reduced clearance by the immune system. For the first time, the coated CeO2 nanoparticles were tested in bacterial assays involving Pseudomonas aeruginosa, one of the most significant bacteria responsible for infecting numerous medical devices. The results showed that CeO2 nanoparticles with either coating significantly inhibited the growth of Pseudomonas aeruginosa, by up to 55.14%, after 24 hours compared with controls (no particles. The inhibition of bacterial growth was concentration dependent. In summary, this study revealed, for the first time, that the characterized dextran- and PAA-coated CeO2 nanoparticles could be potential novel materials for numerous antibacterial applications. Keywords: antibacterial, biomedical applications

  10. Nanocomposites of Polyacrylic Acid Nanogels and Biodegradable Polyhydroxybutyrate for Bone Regeneration and Drug Delivery

    Directory of Open Access Journals (Sweden)

    Mikael Larsson

    2014-01-01

    Full Text Available Biodegradable cell scaffolds and local drug delivery to stimulate cell response are currently receiving much scientific attention. Here we present a nanocomposite that combines biodegradation with controlled release of lithium, which is known to enhance bone growth. Nanogels of lithium neutralized polyacrylic acid were synthesized by microemulsion-templated polymerization and were incorporated into a biodegradable polyhydroxybutyrate (PHB matrix. Nanogel size was characterized using dynamic light scattering, and the nanocomposites were characterized with regard to structure using scanning electron microscopy, mechanical properties using tensile testing, permeability using tritiated water, and lithium release in PBS using a lithium specific electrode. The nanogels were well dispersed in the composites and the mechanical properties were good, with a decrease in elastic modulus being compensated by increased tolerance to strain in the wet state. Approximately half of the lithium was released over about three hours, with the remaining fraction being trapped in the PHB for subsequent slow release during biodegradation. The prepared nanocomposites seem promising for use as dual functional scaffolds for bone regeneration. Here lithium ions were chosen as model drug, but the nanogels could potentially act as carriers for larger and more complex drugs, possibly while still carrying lithium.

  11. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing

    Science.gov (United States)

    Yuan, Xiaomin; Zhu, Bo; Cai, Xun; Liu, Jianjun; Qiao, Kun; Yu, Junwei

    2017-04-01

    The adhesion behavior of epoxy resin to carbon fibers has always been a challenge, on account of the inertness of carbon fibers and the lack of reactive functional groups. In this work, a modified polyacrylate sizing agent was prepared to modify the interface between the carbon fiber and the epoxy matrix. The surface characteristics of carbon fibers were investigated to determine chemical composition, morphology, wettability, interfacial phase analysis and interfacial adhesion. Sized carbon fibers featured improved wettability and a slightly decreased surface roughness due to the coverage of a smooth sizing layer, compared with the unsized ones. Moreover, the content of surface activated carbon atoms increased from 12.65% to 24.70% and the interlaminar shear strength (ILSS) of carbon fiber/epoxy composites raised by 14.2%, indicating a significant improvement of chemical activity and mechanical property. SEM images of the fractured surface of composites further proved that a gradient interfacial structure with increased thicknesses was formed due to the transition role of the sizing. Based on these results, a sizing mechanism consisting of chemical interaction bonding and physical force absorption was proposed, which provides an efficient and feasible method to solve the poor adhesion between carbon fiber and epoxy matrix.

  12. Conjugation, characterization and toxicity of lipophosphoglycan-polyacrylic acid conjugate for vaccination against leishmaniasis.

    Science.gov (United States)

    Topuzogullari, Murat; Cakir Koc, Rabia; Dincer Isoglu, Sevil; Bagirova, Melahat; Akdeste, Zeynep; Elcicek, Serhat; Oztel, Olga N; Yesilkir Baydar, Serap; Canim Ates, Sezen; Allahverdiyev, Adil M

    2013-06-03

    Research on the conjugates of synthetic polyelectrolytes with antigenic molecules, such as proteins, peptides, or carbohydrates, is an attractive area due to their highly immunogenic character in comparison to classical adjuvants. For example, polyacrylic acid (PAA) is a weak polyelectrolyte and has been used in several biomedical applications such as immunological studies, drug delivery, and enzyme immobilization. However, to our knowledge, there are no studies that document immune-stimulant properties of PAA in Leishmania infection. Therefore, we aimed to develop a potential vaccine candidate against leishmaniasis by covalently conjugating PAA with an immunologically vital molecule of lipophosphoglycan (LPG) found in Leishmania parasites. In the study, LPG and PAA were conjugated by a multi-step procedure, and final products were analyzed with GPC and MALDI-TOF MS techniques. In cytotoxicity experiments, LPG-PAA conjugates did not indicate toxic effects on L929 and J774 murine macrophage cells. We assume that LPG-PAA conjugate can be a potential vaccine candidate, and will be immunologically characterized in further studies to prove its potential.

  13. Optical spectroscopy of Nd{sup 3+} ions in poly(acrylic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Lara, F [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, PO Box 55-534, 09340 Mexico, DF (Mexico); C, A Lira [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, PO Box 55-534, 09340 Mexico, DF (Mexico); Ramirez, M O [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Flores, M [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, PO Box 55-534, 09340 Mexico, DF (Mexico); Arroyo, R [Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, PO Box 55-534, 09340 Mexico, DF (Mexico); Caldino, U [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2006-08-30

    Nd{sup 3+} dissolved in solid poly(acrylic acid) was synthesized by polymerization of the monomer partially neutralized with neodymium hydroxide in aqueous solution. The monomer modification and the coordination of ligands to Nd{sup 3+} were confirmed by {sup 1}H NMR spectroscopy. The measured oscillator strengths for transitions from the ground state to the main excited state manifolds compared favourably with calculated electric dipole oscillator strengths. The spontaneous emission rates, the fluorescence branching ratios and the stimulated emission cross sections of the {sup 4}F{sub 3/2} {yields} {sup 4}I{sub 9/2}, {sup 4}F{sub 3/2} {yields} {sup 4}I{sub 11/2} and {sup 4}F{sub 3/2} {yields} {sup 4}I{sub 13/2} transitions, as well as the radiative lifetime and the quantum efficiency of the {sup 4}F{sub 3/2} emitting level, were determined.

  14. Direct Synthesis of Hyperbranched Poly(acrylic acid-co-3-hydroxypropionate

    Directory of Open Access Journals (Sweden)

    Efkan Çatıker

    2015-01-01

    Full Text Available Hyperbranched poly(acrylic acid-co-3-hydroxypropionate (PAcHP was synthesized by base-catalyzed hydrogen transfer polymerization of acrylic acid through one step. The copolymers obtained through solution and bulk polymerization were insoluble in water and all organic solvents tried. Structural and compositional characterizations of hyperbranched PAcHP were performed by using FTIR, solid 13C-NMR, TGA, and titrimetric analysis. Acrylate fraction of the hyperbranched PAcHP obtained via bulk polymerization was determined as 60–65% by comparing TGA curves of hyperbranched PAcHP and pure poly(3-hydroxy propionate (PHP. However, analytical titration of the same sample revealed that acrylic acid units were about 47.3%. The results obtained from TGA and analytical titration were used to evaluate the chemical structure of the copolymer. Hyperbranched PAcHP exhibited hydrogel properties. Swelling behavior of the copolymer was investigated at a wide pH range and ionic strength. The dynamic swelling profiles of hyperbranched PAcHP exhibited a fast swelling behavior in the first hour and achieved the equilibrium state within 12 h in PBS. Depending on the conditions, the copolymers exhibited swelling ratios up to 2100%. As the copolymer has easily biodegradable propionate and versatile functional acrylic acid units, it can be used as not only biodegradable material in medical applications but also raw material in personal care commodities.

  15. Protein absorption and fouling on poly(acrylic acid)-graft-polypropylene microfiltration membrane

    Science.gov (United States)

    Liu, Yanjun; Ma, Huiying; Lv, Chunying; Yang, Jia; Fu, Xueqi

    2009-07-01

    A series of pH-sensitive poly (acrylic acid)-graft-polypropylene hollow fiber microfiltration membranes were prepared by UV-photo-irradiation. Bovine serum albumin (BSA) was chosen as the model protein to investigate its absorption and fouling behaviors on membranes. The results showed that the hydrophilicity of grafted membrane was improved by poly(acrylic acid) chains with parts of membrane pores blocked. The grafted membranes were markedly pH-dependent on the water permeability as pH was altered from 1 to 11. The zeta potential of grafted membranes calculated by streaming potential was negative in most pH range. Electrostatic interaction energy calculated by DLVO theory showed the electric interaction force between grafted membrane and BSA was attractive. With the rise of grafting degree, the electric attractive force between grafted membrane and BSA increased as pH=3 and decreased as pH=8, while it kept basically unchanged as pH=4.7. As a result, most serious fouling was observed as pH=4.7. Grafted membranes had a lower BSA absorption and better antifouling behavior as pH=8, while the opposite result was revealed as pH=3. In conclusion, the absorption and fouling behavior of BSA on membranes was pH-dependent due to the pH-dependence of membrane charge, and the conformation of BSA and grafting chains.

  16. [Enhanced reductive decoloration of methylene blue by polyacrylic acid modified zero-valent iron nanoparticles].

    Science.gov (United States)

    He, Jing; Wang, Xiang-Yu; Wang, Pei; Liu, Kun-Qian

    2015-03-01

    Nano zerovalent iron ( NZVI) technology has attracted tremendous amount of interests for degrading a number of environmental contaminants found both in surface water and underground water. However, these nanoscale particles are prone to aggregate, which may result in the decrease of its reactivity in liquid phase. Iron nanoparticles (Fe NPs) modified with polyacrylic acid (PAA) has enhanced the dispersion of NZVI and reduced its agglomeration. For the first time, PAA modified NPs (PAA-Fe NPs) were used for degradation of methylene blue in water phase. The PAA-Fe NPs prepared were characterized in terms of TEM, SEM, XRD and specific surface area. The results indicated that, the surface area of PAA-Fe NPs was increased, compared with unmodified pristine zero-valent iron NPs, and PAA-Fe NPs were smoother with smaller particle size. With addition of 0.1 g x L(-1) of PAA, the decolorization efficiency of methylene blue by PAA-Fe NPs was 98.84% in 60 min, which was 27.32% higher than that of pristine Fe NPs. Decolorization efficiencies were also affected by initial pH value, initial concentration of methylene blue, dosage of PAA-Fe NPs, and degradation temperature. Kinetic analyses based on the experimental data illustrated that the decolorization reaction of methylene blue fitted well to the pseudo first-order kinetics model.

  17. Bleomycin Loaded Magnetite Nanoparticles Functionalized by Polyacrylic Acid as a New Antitumoral Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Yue Xu

    2013-01-01

    Full Text Available Objective. To prepare, characterize, and analyze the release behavior of bleomycin-loaded magnetite nanoparticles (BLM-MNPs coated with polyacrylic acid (PAA as a new drug delivery system that can be specifically distributed in the tumor site. Methods. BLM-MNPs coated with PAA were prepared using a solvothermal approach. The particles were characterized using scanning electron microscope (SEM, vibrating sample magnetometer (VSM, and Fourier transform infrared spectroscopy (FTIR. The loading and release behaviors of BLM-MNPs were examined by a mathematical formula and in vitro release profile at pH 7.5. Results. The sphere Fe3O4 nanoparticles with the size of approximately 30 nm exhibit a saturation magnetization of 87 emu/g. The noncoordinated carboxylate groups of PAA confer on the good dispersibility in the aqueous solution and lead to a good loading efficiency of BLM reaching 50% or higher. Approximately 98% of immobilized BLM could be released within 24 h, of which 22.4% was released in the first hour and then the remaining was released slowly and quantitatively in the next 23 hours. Conclusion. BLM-MNPs were prepared and characterized successfully. The particles show high saturation magnetization, high drug loading capacity, and favorable release property, which could contribute to the specific delivery and controllable release of BLM, and the BLM-MNPs could be a potential candidate for the development of treating solid tumors.

  18. Rheology and adhesion of poly(acrylic acid)/laponite nanocomposite hydrogels as biocompatible adhesives.

    Science.gov (United States)

    Shen, Muxian; Li, Li; Sun, Yimin; Xu, Jun; Guo, Xuhong; Prud'homme, Robert K

    2014-02-18

    Biocompatible nanocomposite hydrogels (NC gels) consisting of poly(acrylic acid) (PAA) and nanosized clay (Laponite) were successfully synthesized by in situ free-radical polymerization of acrylic acid (AA) in aqueous solutions of Laponite. The obtained NC gels were uniform and transparent. Their viscosity, storage modulus G', and loss modulus G″ increased significantly upon increasing the content of Laponite and the dose of AA, while exhibiting a maximum with increasing the neutralization degree of AA. They showed tunable adhesion by changing the dose of Laponite and monomer as well as the neutralization degree of AA, as determined by 180° peel strength measurement. The maximal adhesion was shown when reaching a balance between cohesion and fluidity. A homemade Johnson-Kendall-Roberts (JKR) instrument was employed to study the surface adhesion behavior of the NC gels. The combination of peel strength, rheology, and JKR measurements offers the opportunity of insight into the mechanism of adhesion of hydrogels. The NC gels with tunable adhesion should be ideal candidates for dental adhesive, wound dressing, and tissue engineering.

  19. Biodegradation of New Polymer Foundry Binders for the Example of the Composition Polyacrylic Acid/Starch

    Directory of Open Access Journals (Sweden)

    Beata Grabowska

    2011-04-01

    Full Text Available The investigations on the biodegradation process pathway of the new polymer binders for the example of water soluble compositionpolyacrylic acid/starch are presented in the hereby paper. Degradation was carried out in water environment and in a soil. Thedetermination of the total oxidation biodegradation in water environment was performed under laboratory conditions in accordance with the static water test system (Zahn-Wellens method, in which the mixture undergoing biodecomposition contained inorganic nutrient,activated sludge and the polymer composition, as the only carbon and energy source. The biodecomposition progress of the polymercomposition sample in water environment was estimated on the basis of the chemical oxygen demand (COD measurements and thedetermination the biodegradation degree, Rt, during the test. These investigations indicated that the composition polyacrylic acid/starchconstitutes the fully biodegradable material in water environment. The biodegradation degree Rt determined in the last 29th day of the test duration achieved 65%, which means that the investigated polymer composition can be considered to be fully biodegradable.During the 6 months biodegradation process of the cross-linked sample of the polymer composition in a garden soil several analysis ofsurface and structural changes, resulting from the sample decomposition, were performed. Those were: thermal analyses (TG-DSC,structural analyses (Raman spectroscopy and microscopic analyses (optical microscopy, AFM.

  20. Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyun Suk; Ko, Yeong Mu; Shim, Jae Won [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, Gwangju (Korea, Republic of); Lim, Yun Kyong; Kook, Joong-Ki [Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Cho, Dong-Lyun [School of Applied Chemical Engineering and Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju (Korea, Republic of); Kim, Byung Hoon, E-mail: kim5055@chosun.ac.kr [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, Gwangju (Korea, Republic of)

    2010-11-01

    Plasma surface modification can be used to improve the surface properties of commercial pure Ti by creating functional groups to produce bioactive materials with different surface topography. In this study, a titanium surface was modified with acrylic acid (AA) using a plasma treatment and immobilized with bioactive arginine-glycine-aspartic acid (RGD) peptide, which may accelerate the tissue integration of bone implants. Both terminals containing the -NH{sub 2} of RGD peptide sequence and -COOH of poly(acrylic acid) (PAA) thin film were combined with a covalent bond in the presence of 1-ethyl-3-3-dimethylaminopropyl carbodiimide (EDC). The chemical structure and morphology of AA film and RGD immobilized surface were investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All chemical analysis showed full coverage of the Ti substrate with the PAA thin film containing COOH groups and the RGD peptide. The MC3T3-E1 cells were cultured on each specimen, and the cell alkaline phosphatase (ALP) activity were examined. The surface-immobilized RGD peptide has a significantly increased the ALP activity of MC3T3-E1 cells. These results suggest that the RGD peptide immobilization on the titanium surface has an effect on osteoblastic differentiation of MC3T3-E1 cells and potential use in osteo-conductive bone implants.

  1. Ultra-Thin Films of Poly(acrylic acid/Silver Nanocomposite Coatings for Antimicrobial Applications

    Directory of Open Access Journals (Sweden)

    Alaa Fahmy

    2016-01-01

    Full Text Available In this work not only colloids of poly(acrylic acid (PAA embedded with silver nanoparticles (Ag-NPs but thin films (10 nm also were deposited using electrospray deposition technique (ESD. A mixture of sodium borohydride (NaBH4 and ascorbic acid (AA were utilized to reduce the silver ions to generate Ag-NPs in the PAA matrix. Moreover, sodium tricitrate was used to stabilize the prepared colloids. The obtained colloids and films were characterized using UV-visible, transmission electron microscopy (TEM. UV-Vis results reveal that an absorption peak at 425 nm was observed in presence of PAA-AgNO3-AA-citrate-NaBH4. This peak is attributed to the well-known surface plasmon resonance of the silver bound in Ag-NPs, while the reduction was rendering and/or inhibiting in absence of the AA and citrate. FTIR spectroscopy was used to study the mechanism of the reaction process of silver nitrate with PAA. TEM images showed the well dispersion of Ag-NPs in the PAA matrix with average particle size of 8 nm. The antimicrobial studies showed that the Ag-NPs embedded in the PAA matrix have proven to have a significant antimicrobial activity against E. coli, B. subtilis, and C. albicans.

  2. Enhanced stability of polyacrylate-coated magnetite nanoparticles in biorelevant media.

    Science.gov (United States)

    Hajdú, Angéla; Szekeres, Márta; Tóth, Ildikó Y; Bauer, Rita A; Mihály, Judith; Zupkó, István; Tombácz, Etelka

    2012-06-01

    Magnetite nanoparticles (MNPs) were prepared by alkaline hydrolysis of Fe(II) and Fe(III) chlorides. Adsorption of polyacrylic acid (PAA) on MNPs was measured at pH=6.5±0.3 and I=0.01 M (NaCl) to find the optimal PAA amount for MNP stabilization under physiological conditions. We detected an H-bond formation between magnetite surface groups and PAA by ATR-FTIR measurements, but bonds of metal ion-carboxylate complexes, generally cited in literature, were not identified at the given pH and ionic strength. The dependence of the electrokinetic potential and the aggregation state on the amount of added PAA at various pHs was measured by electrophoretic mobility and dynamic light-scattering methods. The electrokinetic potential of the naked MNPs was low at near physiological pH, but PAA adsorption overcharged the particles. Highly negatively charged, well-stabilized carboxylated MNPs formed via adsorption of PAA in an amount of approximately ten times of that necessary to compensate the original positive charge of the magnetite. Coagulation kinetics experiments revealed gradual enhancement of salt tolerance at physiological pH from ~0.001 M at no added PAA up to ~0.5 M at 1.12 mmol/g PAA. The PAA-coated MNPs exert no substantial effect on the proliferation of malignant (HeLa) or non-cancerous fibroblast cells (MRC-5) as determined by means of MTT assays.

  3. Structure and properties of mixtures based on long chain polyacrylate and 1-alcohol composites

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Haifeng, E-mail: haifeng.shi@gmail.com; Zhang, Lingjian; Li, Weiwei; Han, Xu; Zhang, Xingxiang

    2014-02-14

    A series of phase change materials (PCMs) based on long chain polyacrylate and 1-alcohol, i.e., poly (stearyl methacrylate) and 1-tetradecanol (PSMA/C14OH) were prepared through the solution-mixing method. Thermal energy storage capacity, thermal stability and morphology of PSMA/C14OH PCMs were characterized by Fourier transform infrared spectroscopy (FTIR), polarized optical microscopy (POM), field emission scanning electron microscopy (FE-SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC results demonstrated that the heat of fusion of PSMA/C14OH PCMs increased from 85.9 to 172.3 J g{sup −1} with the weight fraction of C14OH increasing from 20 to 80 wt%. And, the thermal stability also enhanced with PSMA weight. The spherulite (ca. 250 μm) in PSMA/C14OH composites containing 60 wt% C14OH proved the compatibility between PSMA and C14OH, indicating the cocrystallization behavior of alkyl side groups appeared. The cocrystallization behavior contributes the enhanced thermal stability of PSMA/C14OH PCMs, and it is suitable as the thermal energy storage materials in the future. - Highlights: • Heat storage capability of PSMA/C14OH PCMs increased with C14OH weight. • The spherulites exhibit the weight-dependence upon C14OH. • The thermal stability of PSMA/C14OH PCMs obviously improved.

  4. Bionanoparticles of amphiphilic copolymers polyacrylate bearing cholesterol and ascorbate for drug delivery.

    Science.gov (United States)

    Liu, Yijiang; Wang, Yanzhai; Zhuang, Dequan; Yang, Junjiao; Yang, Jing

    2012-07-01

    In this study, a series of amphiphilic polymers with poly(ascorbyl acrylate) (PAAA) as hydrophilic blocks and polyacrylate bearing side-chain cholesteryl mesogens (PCholDEGA) as hydrophobic blocks were prepared using a combination of four-step reactions consisting of two consecutive reversible addition-fragmentation chain transfer (RAFT), desulfurization, and hydrogenolysis under normal pressure. The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) as well as wide-angle X-ray diffraction (WAXD) studies showed that the copolymers with PCholDEGA as major block had relatively high stability and clear isotropization temperature (T(i)). Small-angle X-ray diffraction (SAXD) investigation exhibited that the copolymers had bilayer smectic A structure. Their self-assembly behavior was monitored by turbidity change using UV-vis spectrometer, and the morphology and size of the nanoparticles via self-assembly were detected using transmission electron microscopy (TEM) and dynamic light scattering (DLS). The entrapment efficiency and loading capacity of these amphiphilic copolymers were investigated using nile red and drug molecule Ibuprofen. These polymeric micelles with PAAA shell extending into the aqueous solution and strong hydrophobic PCholDEGA core have potential abilities to act as promising nanovehicles with high loading and targeting delivery.

  5. Simulated sugar factory wastewater remediation kinetics using algal-bacterial raceway reactor promoted by polyacrylate polyalcohol.

    Science.gov (United States)

    Memon, Abdul Rehman; Andresen, John; Habib, Muddasar; Jaffar, Muhammad

    2014-04-01

    The remediation kinetics of simulated sugar factory wastewater (SFW) using an algal-bacterial culture (ABC) of Chlorella vulgaris in association with Pseudomonas putida in a raceway reactor was found to be enhanced by 89% with the addition of 80ppm of copolymer Polyacrylate polyalcohol (PAPA). This was achieved by efficient suspension of the ABC throughout the water body maintaining optimum pH and dissolved oxygen that led to rapid COD removal and improved algal biomass production. The suspension of the ABC using the co-polymer PAPA maintained a DO of 8-10mgl(-1) compared to 2-3mgl(-1) when not suspended. As a result, the non-suspended ABC only achieved a 50% reduction in COD after 96h compared to a 89% COD removal using 80ppm PAPA suspension. In addition, the algae biomass increased from 0.4gl(-1)d(-1) for the non-suspended ABC to 1.1gl(-1)d(-1) when suspended using 80ppm PAPA.

  6. Antioxidant Hydroxytyrosol-Based Polyacrylate with Antimicrobial and Antiadhesive Activity Versus Staphylococcus Epidermidis.

    Science.gov (United States)

    Crisante, Fernanda; Taresco, Vincenzo; Donelli, Gianfranco; Vuotto, Claudia; Martinelli, Andrea; D'Ilario, Lucio; Pietrelli, Loris; Francolini, Iolanda; Piozzi, Antonella

    2016-01-01

    The accumulation of reactive oxygen species (ROS) in microbial biofilms has been recently recognized to play a role in promoting antibiotic resistance in biofilm-growing bacteria. ROS are also over-produced when a medical device is implanted and they can promote device susceptibility to infection or aseptic loosening. High levels of ROS seem also to be responsible for the establishment of chronic wounds.In this study, a novel antioxidant polyacrylate was synthesized and investigated in terms of antimicrobial and antibiofilm activity. The polymer possesses in side-chain hydroxytyrosol (HTy), that is a polyphenolic compound extracted from olive oil wastewaters.The obtained 60 nm in size polymer nanoparticles showed good scavenging and antibacterial activity versus a strain of Staphylococcus epidermidis. Microbial adherence assays evidenced that the hydroxytyrosol-containing polymer was able to significantly reduce bacterial adhesion compared to the control. These findings open novel perspective for a successful use of this antioxidant polymer for the prevention or treatment of biofilm-based infections as those related to medical devices or chronic wounds.

  7. Evaluations of Mesogen Orientation in Thin Films of Polyacrylate with Cyanobiphenyl Side Chain.

    Science.gov (United States)

    Tanaka, Daisuke; Mizuno, Tasuku; Hara, Mitsuo; Nagano, Shusaku; Saito, Itsuki; Yamamoto, Katsuhiro; Seki, Takahiro

    2016-04-19

    The orientation behavior of mesogens in a polyacrylate with cyanobiphenyl (CB) side chain in thin films was investigated in detail by UV-vis absorption spectroscopy and grazing incidence small-angle X-ray scattering (GI-SAXS) measurements using both high-energy X-rays of Cu Kα line (λ = 0.154 nm) and low-energy synchrotron X-rays (λ = 0.539 nm). By changing the film thickness ranging 7-200 nm, it is concluded that the planar orientation is predominant for thin films with thickness below 10-15 nm. This planar mesogen orientation near the substrate surface coexists with the homeotropically aligned CB mesogens in films thicker than 30 nm. For the thinnest 7 nm film, the planar orientation is unexpectedly lost, which is in consort with a disordering of smectic layer structure. Peculiar orienting characteristics of CB mesogen are suggested, which probably stem from the tendency to form an antiparallel arrangement of mesogens due to the strong dipole moment of the terminal cyano group.

  8. Graphene sheets stacked polyacrylate latex composites for ultra-efficient electromagnetic shielding

    Science.gov (United States)

    Li, Yong; Zhang, Song; Ni, Yuwei

    2016-07-01

    Graphene sheets (GS) are at the forefront of electromagnetic interference (EMI) shielding/attenuation materials science research because of their excellent electrical properties (Wen B et al 2014 Adv. Mater. 26 3484, Zhang Y et al 2015 Adv. Mater. 27 2049). GS/polyacrylate (PA) composites were prepared using a solvent-free latex technology, which favored the build-up of a segregated GS architecture stacked in the polymer matrix. GS were obtained from graphite flakes (GF) via a mechanical delamination approach in water. The microstructure, electrical, dielectric and electromagnetic shielding properties of the GS/PA composites were correlated in this manuscript. A remarkably low percolation threshold of ˜0.11 mass per cent for room-temperature electrical conductivity was obtained in the GS/PA composites owing to the stacked architecture of GS with high aspect ratios. This unique nanostructured GS architecture not only enhanced the electrical conductivity of composites, but also dramatically increased complex permittivity by inducing strong Maxwell-Wagner-Sillars (MWS) polarization at the highly conductive GS/non-conductive PA interfaces. The EMI shielding effectiveness (SE) of these composites was enhanced with increasing GS content, and the composite with 6 wt% GS loading exhibited a high EMI SE of ˜66 dB over a frequency of 8.2-12.4 GHz, resulting from the pronounced conduction loss, dielectric relaxation, and multi-scattering.

  9. Polysulfone and polyacrylate-based zwitterionic coatings for the prevention and easy removal of marine biofouling.

    Science.gov (United States)

    Hibbs, Michael R; Hernandez-Sanchez, Bernadette A; Daniels, Justin; Stafslien, Shane J

    2015-01-01

    A series of polysulfone and polyacrylate-based zwitterionic coatings were prepared on epoxy-primed aluminum substrata and characterized for their antifouling (AF) and fouling-release (FR) properties towards marine bacteria, microalgae and barnacles. The zwitterionic polymer coatings provided minimal resistance against bacterial biofilm retention and microalgal cell attachment, but facilitated good removal of attached microbial biomass by exposure to water-jet apparatus generated hydrodynamic shearing forces. Increasing the ion content of the coatings improved the AF properties, but required a stronger adhesive bond to the epoxy-primed aluminum substratum to prevent coating swelling and dissolution. Grafted poly(sulfobetaine) (gpSBMA), the most promising zwitterionic coating identified from microfouling evaluations, enabled the removal of four out of five barnacles reattached to its surface without incurring damage to their baseplates. This significant result indicated that gpSBMA relied predominately on its surface chemistry for its FR properties since it was very thin (~1-2 µm) relative to commercial coating standards (>200 µm).

  10. Preparation and characterization of aqueous polyurethane oil/polyacrylate latex interpenetrating polymer network

    Science.gov (United States)

    Zhou, M. M.; Ma, L. L.; Du, J.; Cao, F.; Xiao, J. J.

    2015-07-01

    A series of aqueous polyurethane oil (network I)/polyacrylate (network II) latex interpenetrating polymer networks (LIPNs) were synthesized via the technology of latex interpenetrating polymer network combined seed emulsion polymerization process. Fourier transform infrared (FTIR) spectroscopy, laser particle size distributing analyzer and universal tension machine were utilized to characterize the bulk structures and mechanical properties of LIPNs. For used as damping material, the damping performance of LIPNs were analyzed by dynamic mechanical analysis (DMA). It was found that the damping temperature region of LIPN was wider than those of aqueous polyurethane oil, the temperature region with greater tanδ changed with the TPGDA content and hard-/soft-segment mass weight ratio (mMMA/mBA) and the glass transition temperature (Tg) of the network I and network II in LIPN occurred within shift each other, even overlap with increasing mMMA/mBA value. The results show that LIPNs synthesized through the combined process have greater tanδ and wider damping temperature region, which is suitable for the use of damping coatings.

  11. Recovery of nickel from aqueous solutions by complexation-ultrafiltration process with sodium polyacrylate and polyethylenimine.

    Science.gov (United States)

    Shao, Jiahui; Qin, Shu; Davidson, Joshua; Li, Wenxi; He, Yiliang; Zhou, H Susan

    2013-01-15

    The recovery of nickel from aqueous dilute solutions by complexation-ultrafiltration process with sodium polyacrylate (PAAS) and polyethylenimine (PEI) was studied. Experiments were performed as a function of aqueous pH, polymer/Ni(2+) ratio and background electrolyte concentration. At optimum experimental conditions, the nickel removal rate reaches 99.5% using PAAS and 93.0% using PEI as the complexation agent. The nickel removal rate was found to decrease as the adding salt NaCl concentration increases for both complexation agents. A series of experiments implied that the mechanism could be the compressing electric double layer other than the competitive complexation. Diafiltration technique was further performed to regenerate complexation agents and recover nickel. The nickel removal rates were found to be close to those obtained with the original PEI and PAAS. Finally, Langmuir-type binding isotherm equation was employed to evaluate the extent of nickel bound to PAAS and PEI. The overall results from the two-step process of complexation-UF and decomplexation-UF separation showed that it could be a promising method for nickel removal and recovery from aqueous solutions.

  12. Surface hydrophobization by electrostatic deposition of hydrophobically modified poly(acrylates) and their complexes with surfactants

    Science.gov (United States)

    Gîfu, Ioana Cătălina; Maxim, Monica Elisabeta; Iovescu, Alina; Simion, Elena Livia; Aricov, Ludmila; Anastasescu, Mihai; Munteanu, Cornel; Anghel, Dan-Florin

    2016-05-01

    The present study demonstrates the hydrophobic effect of poly(electrolyte) multilayer films when they are alkyl-grafted and complexed or not with surfactants. For this purpose, sodium hydrophobically modified poly(acrylates) (PACnNa, n = 10, 18) or their anionic complexes with alkyltrimethylammonium bromides (CxTAB, x = 10, 12, 14, 18), and the cationic poly(diallyldimethyldiammonium chloride) (PDDAMAC) are assembled by layer-by-layer deposition on a glass substrate. Contact angle (CA) measurements reveal that films constructed with PACnNa-CxTAB/PDADMAC are superior water repellants than those of PACnNa/PDADMAC. For example, the highest CA is obtained for the PAC18Na-C18TAB/PDADMAC. Moreover, it has been observed that the CA increases with the alkyl chain length of PACnNa and of surfactant. The film roughness and thickness have the same trend as wettability. Thinner and less coarse films are obtained by NaCl addition, as witnessed by SEM and AFM.

  13. Poly(acrylic acid)-cysteine for oral vitamin B12 delivery.

    Science.gov (United States)

    Sarti, Federica; Iqbal, Javed; Müller, Christiane; Shahnaz, Gul; Rahmat, Deni; Bernkop-Schnürch, Andreas

    2012-01-01

    The aim of this study was to investigate the potential of poly(acrylic acid)-cysteine (PAA-cys) solution and microparticles to enhance the transport of vitamin B12 (VB 12) across Caco-2 cell monolayer and rat intestinal mucosa. Thiolated PAA was synthesized by covalent attachment of L-cysteine. Microparticles were prepared by spray-drying and characterized regarding their size, morphology, thiol group content, VB 12 payload and release, swelling behavior, mucoadhesion, permeation-enhancing effect, and cytotoxicity. Particles with a mean diameter of 2.452±2.26 μm, a payload of 1.11±0.72%, and 190.2±8.85 μmol of free thiol groups per gram were prepared. Swelling behavior studies revealed that the stability of thiolated particles was improved compared with unmodified ones. Of the total VB 12 loaded, 95±0.12% was released within 3 h from thiolated particles. PAA-cys particles exhibited 2.24-fold higher mucoadhesive properties compared with unmodified particles. Permeation experiments with Caco-2 cells proved that permeability of VB 12 with PAA-cys solution and particles was 3.8- and 3.6-fold higher than control, respectively, and with rat intestinal mucosa it was 4.8- and 4.4-fold higher than control, respectively. Negligible cytotoxicity was assessed. PAA-cys is a promising excipient for oral delivery of VB 12 as a solution and as microparticles.

  14. Preparation and characterization of poly(acrylic acid)-hydroxyethyl cellulose graft copolymer.

    Science.gov (United States)

    Abdel-Halim, E S

    2012-10-01

    Poly(acrylic acid) hydroxyethyl cellulose [poly(AA)-HEC] graft copolymer was prepared by polymerizing acrylic acid (AA) with hydroxyethyl cellulose (HEC) using potassium bromate/thiourea dioxide (KBrO(3)/TUD) as redox initiation system. The polymerization reaction was carried out under a variety of conditions including concentrations of AA, KBrO(3) and TUD, material to liquor ratio and polymerization temperature. The polymerization reaction was monitored by withdrawing samples from the reaction medium and measuring the total conversion. The rheological properties of the poly(AA)-HEC graft copolymer were investigated. The total conversion and rheological properties of the graft copolymer depended on the ratio of KBrO(3) to TUD and on acrylic acid concentration as well as temperature and material to liquor ratio. Optimum conditions of the graft copolymer preparation were 30 mmol KBrO(3) and 30 mmol TUD/100g HEC, 100% AA (based on weight of HEC), duration 2h at temperature 50 °C using a material to liquor ratio of 1:10.

  15. Mechanically stable thermally crosslinked poly(acrylic acid)/reduced graphene oxide aerogels.

    Science.gov (United States)

    Ha, Heonjoo; Shanmuganathan, Kadhiravan; Ellison, Christopher J

    2015-03-25

    Graphene oxide (GO) aerogels, high porosity (>99%) low density (∼3-10 mg cm(-3)) porous materials with GO pore walls, are particularly attractive due to their lightweight, high surface area, and potential use in environmental remediation, superhydrophobic and superoleophilic materials, energy storage, etc. However, pure GO aerogels are generally weak and delicate which complicates their handling and potentially limits their commercial implementation. The focus of this work was to synthesize highly elastic, mechanically stable aerogels that are robust and easy to handle without substantially sacrificing their high porosity or low density. To overcome this challenge, a small amount of readily available and thermally cross-linkable poly(acrylic acid) (PAA) was intermixed with GO to enhance the mechanical integrity of the aerogel without disrupting other desirable characteristic properties. This method is a simple straightforward procedure that does not include multistep or complicated chemical reactions, and it produces aerogels with mass densities of about 4-6 mg cm(-3) and >99.6% porosity that can reversibly support up to 10,000 times their weight with full recovery of their original volume. Finally, pressure sensing capabilities were demonstrated and their oil absorption capacities were measured to be around 120 g oil per g aerogel(-1) which highlights their potential use in practical applications.

  16. A novel poly(acrylic acid-co-acrylamide)/diatomite composite flocculant with outstanding flocculation performance.

    Science.gov (United States)

    Xu, Kun; Liu, Yao; Wang, Yang; Tan, Ying; Liang, Xuecheng; Lu, Cuige; Wang, Haiwei; Liu, Xiusheng; Wang, Pixin

    2015-01-01

    Series of anionic flocculants with outstanding flocculation performance, poly(acrylic acid-co-acrylamide)/diatomite composite flocculants (PAAD) were successfully prepared through aqueous solution copolymerization and applied to flocculate from oil-field fracturing waste-water. The structure of PAAD was characterized by Fourier transform infra-red spectroscopy, (13)C nuclear magnetic resonance and X-ray diffraction tests, and its properties were systematically evaluated by viscometer, thermogravimetry analysis and flocculation measurements. Furthermore, the influences of various reaction parameters on the apparent viscosity of flocculant solution were studied, and the optimum synthesis condition was determined. The novel composite flocculants exhibited outstanding flocculation properties. Specifically, the dosage of composite flocculants that could make the transmittance of treated wastewater exceed 90% was only approximately 12-35 ppm, which was far lower than that of conventional flocculants. Meanwhile, the settling time was lower than 5 s, which was similar to that of conventional flocculants. This was because PAAD flocculants had a higher absorption capacity, and larger chain extending space than conventional linear flocculants, which could refrain from the entanglement of linear polymer chains and significantly improve flocculation capacity.

  17. 低分子量聚丙烯酸钠研究进展%Research Progress of the Polyacrylic Acid Sodium with Low Molecular Weight

    Institute of Scientific and Technical Information of China (English)

    田媛媛; 韦莎

    2012-01-01

    The application of polyacrylic acid depended on the size of the molecular weight.The polyacrylic acid with low molecular weight,good water soluble and larger polarity,can combine to the polyvalent metal ion such as calcium and magnesium ions,and formation soluble anionic.Therefore,using polyacrylic acid with low molecular weight as water stabilizer had significant inhibition effect.The polymerization mechanism,synthesis methods and research status of the polyacrylic acid with low molecular weight were reviewed.In addition,the application prospect of polyacrylic acid was briefly introduced.%聚丙烯酸的用途与其分子量的大小有着密切的关系,而低分子量的聚丙烯酸具有良好的水溶性和较大的极性,能够结合水中的钙、镁等多价离子形成可溶的链状阴离子,因此,用其作水质稳定剂具有显著的防垢效果。本文综述了低分子量聚丙烯酸钠的聚合原理、合成方法及其研究现状,并对其在各领域应用前景作了简要介绍。

  18. Effect of trans-cis photoisomerization on phase equilibria and phase transition of liquid-crystalline azobenzene chromophore and its blends with reactive mesogenic diacrylate.

    Science.gov (United States)

    Kim, Namil; Li, Quan; Kyu, Thein

    2011-03-01

    Photoisomerization-induced phase transition of neat liquid-crystalline azobenzene chromophore (LCAC) and its effect on phase diagrams of its mixtures with reactive mesogenic diacrylate monomer (RM257) have been investigated experimentally and theoretically. Upon irradiation with ultraviolet light, the nematic phase of LCAC transformed to isotropic, while the crystal phase showed corrugated textures on the surface (i.e., ripples). The phase-transition temperatures and corresponding morphologies of the blends have been investigated by means of differential scanning calorimetry and optical microscopy. A theoretical phase diagram of a binary nematic and crystalline system was constructed by self-consistently solving the combined free energies of Flory-Huggins, Maier-Saupe, and phase-field theory. The calculation revealed various coexistence regions such as nematic + liquid (N₁ + L₂), crystal + liquid (Cr₁ + L₂), crystal + nematic (Cr₁ + N₂), and crystal + crystal (Cr₁ + Cr₂) over a broad range of compositions including the single-phase nematic (N₁, N₂) of the corresponding constituents. The calculated liquidus lines were in good accord with the depressed mesophase-isotropic transition points. The present paper demonstrates the effect of trans-cis photoisomerization on the mesophase transitions of neat LCAC and the phase diagram of LCAC-RM257 as well as on the ripple formation (i.e., periodic undulation) on the azobenzene crystals.

  19. Photoinduced dichroism and optical anisotropy in a liquid-crystalline azobenzene side chain polymer caused by anisotropic angular distribution of trans and cis isomers

    Science.gov (United States)

    Blinov, Lev M.; Kozlovsky, Mikhail V.; Ozaki, Masanori; Skarp, Kent; Yoshino, Katsumi

    1998-10-01

    Photochromism has been studied for two comb-like liquid-crystalline copolymers (I) and (II) containing azobenzene chromophores in their side chains. In a smectic glass phase of both copolymers, upon short-time irradiation by UV light, long-living cis isomers are observed. Both copolymers manifest the photoinduced anisotropy, the physical mechanisms of which seem to be quite different. In spin-coated films of polymer (II), the origin of the anisotropy is a strong stable dichroism, which is due to an enrichment and depletion of the chosen angular direction, correspondingly, with trans and cis isomers of the azobenzene chromophores. Polymer (I) manifests no dichroism at all, and its induced optical anisotropy may be accounted for by a rather slow chromophore reorientation. In copolymer (II) a considerable reorientation of the mesogenic groups also occurs as a secondary phenomenon at the stage of the cis isomer formation only. This observation shed more light on the general process of the light-induced molecular reorientation in polymers, liquid crystals, and Langmuir-Blodgett films, which is of great importance for holographic information recording.

  20. Azobenzene mesogens mediated preparation of SnS nanocrystals encapsulated with in-situ N-doped carbon and their enhanced electrochemical performance for lithium ion batteries application

    Science.gov (United States)

    Wang, Meng; Zhou, Yang; Duan, Junfei; Chen, Dongzhong

    2016-09-01

    In this work, azobenzene mesogen-containing tin thiolates have been synthesized, which possess ordered lamellar structures persistent to higher temperature and serve as liquid crystalline precursors. Based on the preorganized tin thiolate precursors, SnS nanocrystals encapsulated with in-situ N-doped carbon layer have been achieved through a simple solventless pyrolysis process with the azobenzene mesogenic thiolate precursor served as Sn, S, N, and C sources simultaneously. Thus prepared nanocomposite materials as anode of lithium ion batteries present a large specific capacity of 604.6 mAh·g-1 at a current density of 100 mA·g-1, keeping a high capacity retention up to 96% after 80 cycles, and display high rate capability due to the synergistic effect of well-dispersed SnS nanocrystals and N-doped carbon layer. Such encouraging results shed a light on the controlled preparation of advanced nanocomposites based on liquid crystalline metallomesogen precursors and may boost their novel intriguing applications. Project supported by the National Natural Science Foundation of China (Grant No. 21574062) and the Huaian High-Technology Research Institute of Nanjing University, China (Grant No. 2011Q1).

  1. Application of Series of Polyacrylic Acid Hydrogel Series%聚丙烯酸系列水凝胶的应用∗

    Institute of Scientific and Technical Information of China (English)

    刘展晴

    2015-01-01

    聚丙烯酸是一种水溶性有机高分子,用它开发出的系列水凝胶已经得到了广泛的应用。本文介绍了聚丙烯酸系列水凝胶在吸附剂、吸水保水剂、制退热贴、药物释放及复合成智能水凝胶等方面的应用。%Polyacrylic acid series hydrogel prepared from a kind of water-soluble organic polymer solvent has got extensive application. The applications of polyacrylic acid series hydrogel in adsorption,water absorption and water retention agent,cooling gel, drug carrier and drug release, composite the polyacrylic acid of intelligent hydrogel, etc. ,were introduced in this paper.

  2. Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive tracks on paper with high conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qijin [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Shen, Wenfeng, E-mail: wfshen@nimte.ac.cn [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Xu, Qingsong [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Tan, Ruiqin [Faculty of Information Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211 (China); Song, Weijie, E-mail: weijiesong@nimte.ac.cn [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China)

    2014-10-15

    Silver nanoparticles with a mean diameter of approximately 30 nm were synthesized by reduction of silver nitrate with triethanolamine in the presence of polyacrylic acid. Silver nanoparticle-based ink was prepared by dispersing silver nanoparticles into a mixture of water and ethylene glycol. The mechanism for the dispersion and aggregation of silver nanoparticles in ink is discussed. The strong electrostatic repulsions of the carboxylate anions of the adsorbed polyacrylic acid molecules disturbed the aggregation of metal particles in solutions with a high pH value (pH > 5). An inkjet printer was used to deposit this silver nanoparticle-based ink to form silver patterns on photo paper. The actual printing qualities of the silver tracks were then analyzed by variation of printing passes, sintering temperature and time. The results showed that sintering temperature and time are associated strongly with the conductivity of the inkjet-printed conductive patterns. The conductivity of printed patterns sintered at 150 °C increased to 2.1 × 10{sup 7} S m{sup −1}, which was approximately one third that of bulk silver. In addition, silver tracks on paper substrate also showed better electrical performance after folding. This study demonstrated that the resulting ink-jet printed patterns can be used as conductive tracks in flexible electronic devices. - Highlights: • An ink from silver nanoparticles coated with polyacrylic acid was prepared. • The ink was used for inkjet-printed tracks at varying printing parameters. • The conductivity of printed tracks sintered at 150 °C increased to 2.1 × 10{sup 7} S/m. • Mechanism for dispersion and aggregation of the nanoparticles in ink is discussed.

  3. Ocular immune responses in steers following intranasal vaccination with recombinant Moraxella bovis cytotoxin adjuvanted with polyacrylic acid.

    Science.gov (United States)

    Angelos, John A; Edman, Judy M; Chigerwe, Munashe

    2014-02-01

    Infectious bovine keratoconjunctivitis (IBK) caused by Moraxella bovis is the most common eye disease of cattle. The pathogenesis of M. bovis requires the expression of pili that enable the organism to attach to the ocular surface and an RTX (repeats in the structural toxin) toxin (cytotoxin or hemolysin), which is cytotoxic to corneal epithelial cells. In this pilot study, ocular mucosal immune responses of steers were measured following intranasal (i.n.) vaccination with a recombinant M. bovis cytotoxin adjuvanted with polyacrylic acid. Beef steers were vaccinated with either 500 μg (n = 3) or 200 μg (n = 3) of recombinant M. bovis cytotoxin plus adjuvant. Control group steers (n = 2) were vaccinated with adjuvant alone, and all steers were given a booster on day 21. Antigen-specific tear IgA and tear IgG, tear cytotoxin-neutralizing antibody responses, and serum cytotoxin-neutralizing antibody responses were determined in samples collected prevaccination and on days 14, 28, 42, and 55. Changes in tear antigen-specific IgA levels from day 0 to days 28, 42, and 55 were significantly different between groups; however, in post hoc comparisons between individual group pairs at the tested time points, the differences were not significant. Our results suggest that i.n. vaccination of cattle with recombinant M. bovis cytotoxin adjuvanted with polyacrylic acid effects changes in ocular antigen-specific IgA concentrations. The use of intranasally administered recombinant M. bovis cytotoxin adjuvanted with polyacrylic acid could provide an alternative to parenteral vaccination of cattle for immunoprophylaxis against IBK.

  4. Ionic strength assay via polyacrylate-ferriferrous oxide magnetic photonic crystals.

    Science.gov (United States)

    Li, Yan-Ran; Sun, Ye; Wang, He-Fang

    2015-05-21

    Convenient reading out and/or determination of ionic strength (IS) is of great significance for both scientific research and real life applications. We presented here a novel method for the rapid and sensitive IS assay based on the electrolyte-induced sensitive wavelength blueshifts of the reflection spectra of polyacrylate capped Fe3O4 magnetic photonic crystals (PA-Fe3O4-MPCs). For HCl, MgSO4 and the common electrolytes corresponding to the salinity of seawater (including NaCl, KCl, MgCl2, CaCl2, Na2SO4 and their mixtures), the PA-Fe3O4-MPCs displayed wavelength blueshifts identical to the total IS of the aqueous solutions, regardless of the kind of above-mentioned electrolytes in the solutions. Besides, the PA-Fe3O4-MPCs exhibited relatively high sensitivity (an average of 294 nm L mmol(-1) in the range of 0.05-0.30 mmol L(-1), and an even higher value of 386 nm L mmol(-1) at 0.05-0.15 mmol L(-1)) and fast response (within 8 s) to the IS of aqueous solutions. The relative standard deviation (RSD) for IS (NaCl, 0.1 mmol L(-1)) was 4.4% (n = 5). The developed method was applied to determine the salinity of seawater samples, and the determined results were validated by the traditional standard chlorinity titration and electric conductimetry method. The recoveries were in the range of 92-104%. The proposed PA-Fe3O4-MPCs based reflectometry method would have great potential for IS and salinity assays.

  5. Transport in Porous Media of Poly(Acrylic Acid) Coated Ferrihydrite Nanoparticles

    Science.gov (United States)

    Jaffe, P. R.; Xiang, A.; Koel, B. E.

    2012-12-01

    Augmentation of soils with iron to enhance biological processes such as uranium reduction via iron reducing bacteria, e.g., Geobacter sp., might be achieved via the injection of iron nanoparticles into the subsurface. The challenge is to make these nanoparticles transportable in the subsurface while not affecting the iron bioavailability. Poorly crystallized 2-line ferrihydrite iron oxide nanoparticles were synthesized and coated with different amounts of poly(acrylic acid) polymers (Na-PAA6K or Na-PAA140K). Analyses were then performed on these particles, including sorption/desorption of the polymer onto the iron nanoparticles, particle size, zeta potential, transport in sand and soil columns, and bioavailabity of the Fe(III) in the absence and presence of the coating to iron reducing organisms. Results showed that at pH values of environmental relevance, the zeta potential of the particles varied from about 3 mV (pH=8.2) for the non-coated particles to about -30 mV for the particles coated with the polymers to their highest sorption capacity. The coated particle diameter was shown to be in the range of 200 nm. Column transport experiments showed that for the highest polymer coating the nanoparticle breakthrough was virtually identical to that of bromide, while significant filtration was observed for particles with an intermediate coating, and complete particle removal via filtration was observed for the non-coated particles. These results held for sand as well as for soil, which had been previously characterized, from a field site at Rifle, CO. Bioavailability experiments showed no difference in the iron reduction rate between the untreated and treated nanoparticles. These results show that it is possible to manufacture iron nanoparticles to enhance biological iron reduction, and that the transport properties of these treated particles is tunable so that a desired retention in the porous medium can be achieved.

  6. An in situ FTIR-ATR study of polyacrylate adsorbed onto hematite at high pH and high ionic strength.

    Science.gov (United States)

    Kirwan, Luke J; Fawell, Phillip D; van Bronswijk, Wilhelm

    2004-05-11

    FTIR-ATR was used to examine in situ the interaction of polyacrylate and hematite at pH 13. Static light scattering and mobility measurements were used to assess solution polyacrylate dimensions and hematite surface charge, respectively. Polyacrylate adsorption occurred only with the addition of electrolyte (e.g., NaCl), and it was found that excess cations, up to approximately 1 M, facilitated adsorption, above which the effect was found to plateau. At pH 13 and at low ionic strength, adsorption of polyacrylate onto hematite is facilitated by cations in solution shielding both the negative acrylate functionality of the polymer and the negative hematite surface. The shielding of the hematite surface continues to increase with increasing salt concentration up to a measured 3 M. Similarly, the shielding of the polymer increased with electrolyte concentration up to approximately 1 M salt, beyond which no further increase in shielding was observed. At this concentration the polymer assumes a finite minimum size in solution that ultimately limits the amount adsorbed. The dimension of the polymer in solution was found to be independent of monovalent cation type. Thus, at high pH and high ionic strength adsorption is determined by the degree of hematite surface charge reduction. The cation-hematite surface interaction was found to be specific, with lithium leading to greater polyacrylate adsorption than sodium, which was followed by cesium. The stronger affinity of lithium for the hematite surface over sodium and cesium is indicative of the inverse lyotropic adsorption series and has been rationalized in the past by the "structure-making-structure-breaking" model. These results provide a useful insight into the likely adsorption mechanism for polyacrylate flocculants at high pH and ionic strength onto residues in the Bayer processing of bauxite.

  7. The Fouling of Zirconium(IV) Hydrous Oxide–Polyacrylate Dynamically Formed Membranes during the Nanofiltration of Lactic Acid Solutions

    Science.gov (United States)

    Polom, Ewa

    2013-01-01

    The results of investigations of flux decline during nanofiltration (NF) of lactic acid solutions using dynamically formed zirconium(IV) hydrous oxide/polyacrylate membranes (Zr(IV)/PAA) under conditions resulting in low and high lactic acid rejection are reported. The experimental permeate flux versus time curves were analyzed in the frame of resistance in a series model with the aim of developing the characteristic of resistances. Analysis of experimental data and results of calculations showed that the reduction of fouling effects in the investigated system could be achieved due to appropriate hydrodynamic process conditions and regular rinsing with deionized water. PMID:24957066

  8. Synthesis, self-assembly and photoinduced surface-relief gratings of a polyacrylate-based Azo polyelectrolyte

    Science.gov (United States)

    He, Yaning; Wang, Haopeng; Tuo, Xinlin; Deng, Wei; Wang, Xiaogong

    2004-06-01

    A polyacrylate-based azo polyelectrolyte was synthesized and characterized by the spectroscopic methods and thermal analysis. Layer-by-layer self-assembly of the azo polyelectrolyte through electrostatic adsorption was explored. By using a dipping solution of the anionic azo polyelectrolyte in anhydrous DMF, together with an aqueous solution of cationic poly(diallyldimethylammonium chloride) (PDAC), high quality multilayer films were obtained through the sequential deposition of the oppositely charged polyelectrolytes. With interfering illumination of Ar + laser beams (488 nm), significant surface-relief gratings formed on the self-assembled multiplayer films were observed.

  9. One-step routes from di- and triblock copolymer precursors to hydrophilic nanoporous poly(acrylic acid)-b-polystyrene

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Jankova Atanasova, Katja; Schulte, Lars;

    2008-01-01

    Nanoporous polystyrene with hydrophilic pores was prepared from di- and triblock copolymer precursors. The precursor material was either a poly(tert-butyl acryl ate)-b-polystyrene (PtBA-b-PS) diblock copolymer synthesized by atom transfer radical polymerization (ATRP) or a polydimethylsiloxane......-b-poly(tertbutyl acrylate)-b-polystyrene (PDMS-b-PtBA-b-PS) triblock copolymer synthesized by a combination of living anionic polymerization and ATRP. In the latter copolymer, PS was the matrix and mechanically stable component, PtBA was converted by acidic deprotection to hydrophilic poly(acrylic acid) (PAA) providing...

  10. The Fouling of Zirconium(IV Hydrous Oxide–Polyacrylate Dynamically Formed Membranes during the Nanofiltration of Lactic Acid Solutions

    Directory of Open Access Journals (Sweden)

    Ewa Polom

    2013-12-01

    Full Text Available The results of investigations of flux decline during nanofiltration (NF of lactic acid solutions using dynamically formed zirconium(IV hydrous oxide/polyacrylate membranes (Zr(IV/PAA under conditions resulting in low and high lactic acid rejection are reported. The experimental permeate flux versus time curves were analyzed in the frame of resistance in a series model with the aim of developing the characteristic of resistances. Analysis of experimental data and results of calculations showed that the reduction of fouling effects in the investigated system could be achieved due to appropriate hydrodynamic process conditions and regular rinsing with deionized water.

  11. STUDY ON MAGNETIC FIELD-INDUCED ORIENTATION OF A CHIRAL SIDE-CHAIN LIQUID CRYSTAL POLYACRYLATE USING INFRARED DICHROISM

    Institute of Scientific and Technical Information of China (English)

    HE Liu; JIN Shunzi; ZHANG Shufan; QI Zongneng; WANG Fosong

    1996-01-01

    Magnetic field-induced orientation of a chiral side chain liquid crystalline polyacrylate (P-11) was studied by using IR dichroism. For the investigated P-11, it has been shown that the magnetic alignment takes place over the entire temperature range between its melting point and clearing point and the orientation level is strongly temperature-dependent, the development with time of the magnetic orientation follows an exponential-type relation,and the smectic phase state influences the thermal relaxation process in the absence of the magnetic field.

  12. Quantifying the association constant and stoichiometry of the complexation between colloidal polyacrylate-coated gold nanoparticles and chymotrypsin.

    Science.gov (United States)

    Hou, Jie; Szaflarski, Diane M; Simon, John D

    2013-04-25

    Qualitative and quantitative insights into the capacity and association constant for the binding of chymotrypsin to polyacrylate-coated gold nanoparticles is determined using fluorescence quenching, optical absorption and circular dichroism spectroscopy, isothermal calorimetry, and gel electrophoresis. The collective data reveal a binding capacity and constant for this particular system of ~7 and ~2 × 10(6) M(-1), respectively. These values vary among the individual techniques, and not all techniques are able to provide quantitative information. The present study demonstrates that accurately quantifying the association between nanoparticles and biological materials requires using multiple approaches to ensure consistency among the binding parameters determined.

  13. The Fouling of Zirconium(IV) Hydrous Oxide-Polyacrylate Dynamically Formed Membranes during the Nanofiltration of Lactic Acid Solutions.

    Science.gov (United States)

    Polom, Ewa

    2013-12-10

    The results of investigations of flux decline during nanofiltration (NF) of lactic acid solutions using dynamically formed zirconium(IV) hydrous oxide/polyacrylate membranes (Zr(IV)/PAA) under conditions resulting in low and high lactic acid rejection are reported. The experimental permeate flux versus time curves were analyzed in the frame of resistance in a series model with the aim of developing the characteristic of resistances. Analysis of experimental data and results of calculations showed that the reduction of fouling effects in the investigated system could be achieved due to appropriate hydrodynamic process conditions and regular rinsing with deionized water.

  14. Preparation of photoresponse azobenzene polymer by ATRP%原子转移自由基聚合法制备偶氮苯聚合物

    Institute of Scientific and Technical Information of China (English)

    刘长玲; 王怀宇; 宋岩

    2016-01-01

    偶氮苯类聚合物具有光响应性,在信息储存、光电子、分子开关等领域得到了很好的应用。采用原子转移自由基聚合法,以三羟甲基丙烷为核制备引发剂,以偶氮苯为单体合成三臂聚偶氮苯星形聚合物。通过红外光谱仪、核磁共振氢谱仪对聚合物的结构进行表征,结果表明已成功地合成出目标产物。通过GPC(凝胶渗透色谱仪)对其相对分子质量及其分布进行测试,表明合成出的聚合物符合“活性-可控”聚合特征。利用紫外-可见分光光度计测定聚偶氮苯的紫外吸收,结果表明具有光照射下的构型反转。%Azobenzene polymers have photoresponsive property and get very good application in fields of information storage, photonics, molecular switch etc. The azobenzene star polymer with three- arm was pre⁃pared by atom transfer radical polymerization (ATRP), using the trimethyolpropane as the initiator of nuclear preparation, and azobenzene as the monomer. The structure of polymers were characterized by the infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance spectrometer (1H- NMR), which showed that the target product was successful y synthesized. The molecular weight and the molecular weight distribution of the polymer was measured by gel permeation chromatograph (GPC), and the results showed that the synthe⁃sized polymer agreed with the "reactive- control able" characteristics. The result of UV spectrophotometer ab⁃sorption of polyazobenzene showed the configuration inversion under light radiation.

  15. Using polyacrylate-coated SPME fibers to quantify sorption of polar and ionic organic contaminants to dissolved organic carbon.

    Science.gov (United States)

    Haftka, Joris J-H; Scherpenisse, Peter; Jonker, Michiel T O; Hermens, Joop L M

    2013-05-07

    A passive sampling method using polyacrylate-coated solid-phase microextraction (SPME) fibers was applied to determine sorption of polar and ionic organic contaminants to dissolved organic carbon (DOC). The tested contaminants included pharmaceuticals, industrial chemicals, hormones, and pesticides and represented neutral, anionic, and cationic structures. Prior to the passive sampler application, sorption of the chemicals to the fibers was characterized. This was needed in order to accurately translate concentrations measured in fibers to freely dissolved aqueous concentrations during the sorption tests with DOC. Sorption isotherms of neutral compounds to the fiber were linear, whereas isotherms of basic chemicals covered a nonlinear and a linear range. Sorption of acidic and basic compounds to the fiber was pH-dependent and was dominated by sorption of the neutral sorbate species. Fiber- and DOC-water partition coefficients of neutral compounds were both linearly related to octanol-water partition coefficients (log Kow). The results of this study show that polyacrylate fibers can be used to quantify sorption to DOC of neutral and ionic contaminants, having multiple functional groups and spanning a wide hydrophobicity range (log Kow = 2.5-7.5).

  16. Preparation and characterization of inorganic-organic trilayer core-shell polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles

    Science.gov (United States)

    Bai, Ruiqin; Qiu, Teng; Han, Feng; He, Lifan; Li, Xiaoyu

    2012-07-01

    The inorganic-organic trilayer core-shell polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles have been successfully prepared via seeded emulsion polymerization of acrylate monomers and octamethylcyclotetrasiloxane (D4) gradually, using functional polymethacryloxypropylsilsesquioxane (PSQ) latex particles with reactive methacryloxypropyl groups synthesized by the hydrolysis and polycondensation of (3-methacryloxypropyl)trimethoxysilane in the presence of mixed emulsifiers as seeds. The FTIR spectra show that acrylate monomers and D4 are effectively involved in the emulsion copolymerization and formed the polydimethylsiloxane-containing hybrid latex particles. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirm that the resultant hybrid latex particles have evident trilayer core-shell structure and a narrow size distribution. XPS analysis also indicates that polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles have been successfully prepared and PDMS is rich in the surface of the hybrid latex film. Additionally, compared with the hybrid latex film without PDMS, the hybrid latex film containing PDMS shows higher hydrophobicity (water contact angle) and lower water absorption.

  17. Preparation and characterization of inorganic-organic trilayer core-shell polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles

    Energy Technology Data Exchange (ETDEWEB)

    Bai Ruiqin [College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composite, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Qiu Teng, E-mail: qiuteng@mail.buct.edu.cn [College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composite, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Han Feng; He Lifan [College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composite, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Li Xiaoyu, E-mail: lixy@mail.buct.edu.cn [College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composite, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China)

    2012-07-15

    The inorganic-organic trilayer core-shell polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles have been successfully prepared via seeded emulsion polymerization of acrylate monomers and octamethylcyclotetrasiloxane (D{sub 4}) gradually, using functional polymethacryloxypropylsilsesquioxane (PSQ) latex particles with reactive methacryloxypropyl groups synthesized by the hydrolysis and polycondensation of (3-methacryloxypropyl)trimethoxysilane in the presence of mixed emulsifiers as seeds. The FTIR spectra show that acrylate monomers and D{sub 4} are effectively involved in the emulsion copolymerization and formed the polydimethylsiloxane-containing hybrid latex particles. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirm that the resultant hybrid latex particles have evident trilayer core-shell structure and a narrow size distribution. XPS analysis also indicates that polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles have been successfully prepared and PDMS is rich in the surface of the hybrid latex film. Additionally, compared with the hybrid latex film without PDMS, the hybrid latex film containing PDMS shows higher hydrophobicity (water contact angle) and lower water absorption.

  18. Maxillary reconstruction using a multi-element free fibula flap based on a three-dimensional polyacrylic resin model.

    Science.gov (United States)

    Jędrzejewski, Piotr; Maciejewski, Adam; Szymczyk, Cezary; Wierzgoń, Janusz

    2012-01-01

    Preoperative preparation of working models of the skull and free bone flaps using the digital print technology and photocured polyacrylic resins may be of a great benefit to the patient, for whom a virtual resection and reconstruction procedure may be planned in detail and performed. The purpose of mid-facial reconstruction using 3D models is to plan a functional mid-facial reconstruction procedure in order to restore supportive function of intraorbital structures and to make placement of dental implants and further prosthetic rehabilitation possible.Maxillary and mid-facial reconstruction using a free fibula flap based on a three-dimensional working model was performed in a patient diagnosed with a squamous cell carcinoma of the left maxillary sinus penetrating to the orbit, the ethmoid complex, and the pterygopalatine fossa. The use of three-dimensional polyacrylic models allowed for detailed preoperative planning and a virtual resection and reconstruction procedure with a highly satisfying functional and cosmetic effect.A procedure based on methods discussed here may be significantly shorter and more precise.

  19. Membrane Made of Cellulose Acetate with Polyacrylic Acid Reinforced with Carbon Nanotubes and Its Applicability for Chromium Removal

    Directory of Open Access Journals (Sweden)

    J. A. Sánchez-Márquez

    2015-01-01

    Full Text Available Membranes made of carbon nanotubes and cellulose acetate with polyacrylic acid were designed in order to study their properties and their applicability for chromium removal. The membranes were prepared by phase inversion method using cellulose acetate and polyacrylic acid. Carbon nanotubes were added to the membrane during their process of synthesis in proportions of 1% by weight. The pores in the material are formed in layers, giving the effect of depth and forming a network. Both the carbon nanotubes and membranes were characterized by IR, Raman, and SEM spectroscopy. In addition, the concentration of acidic and basic sites and the surface charge in the materials were determined. The concentration of acid sites for oxidized nanotubes was 4.0 meq/g. The removal of Cr(VI was studied as a function of contact time and of initial concentration of Cr(VI. The removal of Cr(VI (~90% mainly occurs in a contact time from 32 to 64 h when the initial concentration of Cr(VI is 1 mg/L.

  20. Electrochemical impedance spectroscopy study of a surface confined redox reaction: The reduction of azobenzene on mercury in the absence of diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, Francisco, E-mail: dapena@us.es [Department of Physical Chemistry, University of Seville, c/Profesor Garcia Gonzalez no 2, 41012 Seville (Spain); Rueda, Manuela; Hidalgo, Jose; Martinez, Elisa; Navarro, Inmaculada [Department of Physical Chemistry, University of Seville, c/Profesor Garcia Gonzalez no 2, 41012 Seville (Spain)

    2011-09-30

    The kinetics of azobenzene reduction on mercury electrodes in the absence of diffussional mass transport is studied by electrochemical impedance spectroscopy (EIS) in acetic acid/acetate buffered solutions at different pH values. Cyclic voltammetry experiments confirm the absence of diffusion effects and provide the values of the surface equilibrium potential. The analysis of the impedance frequency spectrums at every potential within the faradaic region conforms well the model and provides the global rate constant of the process, k{sub f}. The potential dependence of k{sub f} suggests the existence of an EE mechanism, with two electron transfers controlling the overall rate. The kinetic parameters of every step are obtained and their pH dependences clarify the role played by the protonation steps.

  1. Polyacrylic acid-coated iron oxide nanoparticles for targeting drug resistance in mycobacteria.

    Science.gov (United States)

    Padwal, Priyanka; Bandyopadhyaya, Rajdip; Mehra, Sarika

    2014-12-23

    The emergence of drug resistance is a major problem faced in current tuberculosis (TB) therapy, representing a global health concern. Mycobacterium is naturally resistant to most drugs due to export of the latter outside bacterial cells by active efflux pumps, resulting in a low intracellular drug concentration. Thus, development of agents that can enhance the effectiveness of drugs used in TB treatment and bypass the efflux mechanism is crucial. In this study, we present a new nanoparticle-based strategy for enhancing the efficacy of existing drugs. To that end, we have developed poly(acrylic acid) (PAA)-coated iron oxide (magnetite) nanoparticles (PAA-MNPs) as efflux inhibitors and used it together with rifampicin (a first line anti-TB drug) on Mycobacterium smegmatis. PAA-MNPs of mean diameter 9 nm interact with bacterial cells via surface attachment and are then internalized by cells. Although PAA-MNP alone does not inhibit cell growth, treatment of cells with a combination of PAA-MNP and rifampicin exhibits a synergistic 4-fold-higher growth inhibition compared to rifampicin alone. This is because the combination of PAA-MNP and rifampicin results in up to a 3-fold-increased accumulation of rifampicin inside the cells. This enhanced intracellular drug concentration has been explained by real-time transport studies on a common efflux pump substrate, ethidium bromide (EtBr). It is seen that PAA-MNP increases the accumulation of EtBr significantly and also minimizes the EtBr efflux in direct proportion to the PAA-MNP concentration. Our results thus illustrate that the addition of PAA-MNP with rifampicin may bypass the innate drug resistance mechanism of M. smegmatis. This generic strategy is also found to be successful for other anti-TB drugs, such as isoniazid and fluoroquinolones (e.g., norfloxacin), only when stabilized, coated nanoparticles (such as PAA-MNP) are used, not PAA or MNP alone. We hence establish coated nanoparticles as a new class of efflux

  2. Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xiaoguang [Lawrence Berkeley National Laboratory, EETD, MS 62-203, One Cyclotron Road, Berkeley, CA 94720 (United States)]. E-mail: xsun@lbl.gov; Hou Jun [Lawrence Berkeley National Laboratory, EETD, MS 62-203, One Cyclotron Road, Berkeley, CA 94720 (United States); Kerr, John B. [Lawrence Berkeley National Laboratory, EETD, MS 62-203, One Cyclotron Road, Berkeley, CA 94720 (United States)]. E-mail: jbkerr@lbl.gov

    2005-01-15

    Comb-shaped single ion conductors have been synthesized by (1) sulfonation of small molecule chloroethyleneglycols, which, after ion exchange to the Li{sup +} salt were then converted to the acrylate by reaction with acryloyl chloride and copolymerized with polyethylene glycol monomethyl ether acrylate (Mn = 454, n = 8) (PAE{sub 8}-co-E{sub 3}SO{sub 3}Li); (2) sulfonation of chloride end groups grafted on to prepolymers of polyacrylate ethers (PAE{sub 8}-g-E{sub n}SO{sub 3}Li, n = 2, 3). The highest conductivity at 25 deg. C of 2.0 x 10{sup -7} S cm{sup -1} was obtained for the PAE{sub 8}-co-E{sub 3}SO{sub 3}Li with a salt concentration of EO/Li = 40. The conductivity of PAE{sub 8}-g-E{sub 3}SO{sub 3}Li is lower than that of PAE{sub 8}-co-E{sub 3}SO{sub 3}Li at similar salt concentrations, which is related to the incomplete sulfonation of the grafted polymer that leads to a lower concentration of Li{sup +}. The addition of 50 wt.% of plasticizer, PC/EMC (1/1, v/v), to PAE{sub 8}-g-E{sub 2}SO{sub 3}Li increases the ambient conductivity by three orders of magnitude, which is due to the increased ion mobility in a micro-liquid environment and an increase concentration of free ions as a result of the higher dielectric constant of the solvent. A symmetrical Li/Li cell with an electrolyte membrane consisting of 75 wt.% PC/EMC (1/1, v/v) was cycled at a current density of 100 {mu}A cm{sup -2} at 85 deg. C. The cycling profile showed no concentration polarization after a break-in period during the first few cycles, which was apparently due to reaction of the solvent at the lithium metal surface that reacted with lithium metal to form a stable SEI layer.

  3. Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Guang Sun; Jan Hou; Kerr, J.B. [Lawrence Berkeley National Lab., CA (United States). EETD

    2005-01-15

    Comb-shaped single ion conductors have been synthesized by (1) sulfonation of small molecule chloroethyleneglycols, which, after ion exchange to the Li{sup +} salt were then converted to the acrylate by reaction with acryloyl chloride and copolymerized with polyethylene glycol monomethyl ether acrylate (Mn = 454, n = 8) (PAE{sub 8}-co-E{sub 3}SO{sub 3}Li); (2) sulfonation of chloride end groups grafted on to prepolymers of polyacrylate ethers (PAE{sub 8}-g-E{sub n}SO{sub 3}Li, n = 2, 3). The highest conductivity at 25 {sup o}C of 2.0 x {sup -7} S cm{sup -1} was obtained for the PAE{sub 8}-co-E{sub 3}SO{sub 3}Li with a salt concentration of EO/Li = 40. The conductivity of PAE{sub 8}-g-E{sub 3}SO{sub 3}Li is lower than that of PAE{sub 8}-co-E{sub 3}SO{sub 3}Li at similar salt concentrations, which is related to the incomplete sulfonation of the grafted polymer that leads to a lower concentration of Li{sup +}. The addition of 50 wt.% of plasticizer, PC/EMC (1/1, v/v), to PAE{sub 8}-g-E{sub 2}SO{sub 3}Li increases the ambient conductivity by three orders of magnitude, which is due to the increased ion mobility in a micro-liquid environment and an increase concentration of free ions as a result of the higher dielectric constant of the solvent. A symmetrical Li/Li cell with an electrolyte membrane consisting of 75 wt.% PC/EMC (1/1, v/v) was cycled at a current density of 100 {mu}A cm{sup -2} at 85 {sup o}C. The cycling profile showed no concentration polarization after a break-in period during the first few cycles, which was apparently due to reaction of the solvent at the lithium metal surface that reacted with lithium metal to form a stable SEI layer. (Author)

  4. Fabrication and characterization of stable superhydrophobic fluorinated-polyacrylate/silica hybrid coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kunquan; Zeng, Xingrong, E-mail: psxrzeng@gmail.com; Li, Hongqiang; Lai, Xuejun

    2014-04-01

    Graphical abstract: - Highlights: • The superhydrophobic PFA/SiO{sub 2} coating was successfully fabricated by spraying. • The synthesized PFA latex showed core–shell structure and good dispersion. • The PFA/SiO{sub 2} coating showed good resistance to acid and base, weather and heat. • The superhydrophobic coating could be fabricated on various substrates. - Abstract: The core–shell fluorinated-polyacrylate (PFA) emulsion was synthesized through emulsion polymerization method and the superhydrophobic PFA/SiO{sub 2} hybrid coating was successfully fabricated on the slide glass by spraying the mixture of PFA emulsion and hydrophobic SiO{sub 2} particles using ethanol as cosolvent. The PFA emulsion was characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), water contact angle (WCA), transmission electron microscopy (TEM), and the effects of SiO{sub 2} content on the wetting behavior and surface morphology of PFA/SiO{sub 2} hybrid coating were investigated. To evaluate the stability of the hybrid coating, the acid and base resistance, weatherability and thermal stability were also studied. Results showed that the obtained PFA latex exhibited a core–shell structure with a particle size of 134.1 nm and a narrow polydispersity of 0.03. With the increase of dodecafluoroheptyl methacrylate (DFMA) content in the latex shell from 0 wt% to 31.8 wt%, the WCA of the PFA film enlarged from 85° to 104°, indicating that the introduction of fluorinated monomer was effective in reducing the surface energy. By adding different amount of SiO{sub 2} particles, the surface morphology and wetting behavior of the PFA/SiO{sub 2} hybrid coatings could be controlled. When the mass ratio of SiO{sub 2} to PFA emulsion was 0.2, the surface roughness (Rq) increased to 173.6 nm and the wetting behavior of the surface became superhydrophobic with a WCA of 153°, resulted from the corporation of low surface energy and the binary nano

  5. Fabrication and characterization of stable superhydrophobic fluorinated-polyacrylate/silica hybrid coating

    Science.gov (United States)

    Li, Kunquan; Zeng, Xingrong; Li, Hongqiang; Lai, Xuejun

    2014-04-01

    The core-shell fluorinated-polyacrylate (PFA) emulsion was synthesized through emulsion polymerization method and the superhydrophobic PFA/SiO2 hybrid coating was successfully fabricated on the slide glass by spraying the mixture of PFA emulsion and hydrophobic SiO2 particles using ethanol as cosolvent. The PFA emulsion was characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), water contact angle (WCA), transmission electron microscopy (TEM), and the effects of SiO2 content on the wetting behavior and surface morphology of PFA/SiO2 hybrid coating were investigated. To evaluate the stability of the hybrid coating, the acid and base resistance, weatherability and thermal stability were also studied. Results showed that the obtained PFA latex exhibited a core-shell structure with a particle size of 134.1 nm and a narrow polydispersity of 0.03. With the increase of dodecafluoroheptyl methacrylate (DFMA) content in the latex shell from 0 wt% to 31.8 wt%, the WCA of the PFA film enlarged from 85° to 104°, indicating that the introduction of fluorinated monomer was effective in reducing the surface energy. By adding different amount of SiO2 particles, the surface morphology and wetting behavior of the PFA/SiO2 hybrid coatings could be controlled. When the mass ratio of SiO2 to PFA emulsion was 0.2, the surface roughness (Rq) increased to 173.6 nm and the wetting behavior of the surface became superhydrophobic with a WCA of 153°, resulted from the corporation of low surface energy and the binary nano/microstructure on the surface. The as-prepared PFA/SiO2 hybrid coating showed good acid and base corrosion resistance, and it could keep superhydrophobicity after being heated at 250 °C for 2 h or exposed to ambient atmosphere for more than 3 months. Additionally, the superhydrophobic PFA/SiO2 hybrid coating could be applied to various substrates through spraying. This was a green and eco-friendly method in fabricating stable

  6. Theoretical study of solvent effects on the ground and low-lying excited free energy surfaces of a push-pull substituted azobenzene.

    Science.gov (United States)

    Corchado, Jose C; Sánchez, M Luz; Fdez Galván, Ignacio; Martín, M Elena; Muñoz-Losa, Aurora; Barata-Morgado, Rute; Aguilar, Manuel A

    2014-10-30

    The ground and low-lying excited free energy surfaces of 4-amino-4'-cyano azobenzene, a molecule that has been proposed as building block for chiroptical switches, are studied in gas phase and a variety of solvents (benzene, chloroform, acetone, and water). Solvent effects on the absorption and emission spectra and on the cis-trans thermal and photo isomerizations are analyzed using two levels of calculation: TD-DFT and CASPT2/CASSCF. The solvent effects are introduced using a polarizable continuum model and a QM/MM method, which permits one to highlight the role played by specific interactions. We found that, in gas phase and in agreement with the results found for other azobenzenes, the thermal cis-trans isomerization follows a rotation-assisted inversion mechanism where the inversion angle must reach values close to 180° but where the rotation angle can take almost any value. On the contrary, in polar solvents the mechanism is controlled by the rotation of the CN═NC angle. The change in the mechanism is mainly related to a better solvation of the nitrogen atoms of the azo group in the rotational transition state. The photoisomerization follows a rotational pathway both in gas phase and in polar and nonpolar solvents. The solvent introduces only small modifications in the nπ* free energy surface (S1), but it has a larger effect on the ππ* surface (S2) that, in polar solvents, gets closer to S1. In fact, the S2 band of the absorption spectrum is red-shifted 0.27 eV for the trans isomer and 0.17 eV for the cis. In the emission spectrum the trend is similar: only S2 is appreciably affected by the solvent, but in this case a blue shift is found.

  7. Probing the extent of the Sr2+ ion condensation to anionic polyacrylate coils: a quantitative anomalous small-angle x-ray scattering study.

    Science.gov (United States)

    Goerigk, G; Huber, K; Schweins, R

    2007-10-21

    The shrinking process of anionic sodium polyacrylate (NaPA) chains in aqueous solution induced by Sr2+ counterions was analyzed by anomalous small-angle x-ray scattering. Scattering experiments were performed close to the precipitation threshold of strontium polyacrylate. The pure-resonant scattering contribution, which is related to the structural distribution of the Sr2+ counterions, was used to analyze the extent of Sr2+ condensation onto the polyacrylate coils. A series of four samples with different ratios [Sr2+][NaPA] (between 0.451 and 0.464) has been investigated. From the quantitative analysis of the resonant invariant, the amount of Sr cations localized in the collapsed phase was calculated with concentrations v between 0.94x10(17) and 2.01x10(17) cm(-3) corresponding to an amount of Sr cations in the collapsed phase between 9% and 23% of the total Sr2+ cations in solution. If compared to the concentration of polyacrylate expressed in moles of monomers [NaPA], a degree of site binding of r=[Sr2+][NaPA] between 0.05 and 0.11 was estimated. These values clearly differ from r=0.25, which was established from former light scattering experiments, indicating that the counterion condensation starts before the phase border is reached and increases rather sharply at the border.

  8. In situ investigation of complex BaSO4 fiber generation in the presence of sodium polyacrylate. 1. Kinetics and solution analysis.

    Science.gov (United States)

    Wang, Tongxin; Cölfen, Helmut

    2006-10-10

    Simple solution analysis of the formation mechanism of complex BaSO(4) fiber bundles in the presence of polyacrylate sodium salt, via a bioinspired approach, is reported. Titration of the polyacrylate solution with Ba(2+) revealed complex formation and the optimum ratio of Ba(2+) to polyacrylate for a slow polymer-controlled mineralization process. This is a much simpler and faster method to determine the appropriate additive/mineral concentration pairs as opposed to more common crystallization experiments in which the additive/mineral concentration is varied. Time-dependent pH measurements were carried out to determine the concentration of solution species from which BaSO(4) supersaturation throughout the fiber formation process can be calculated and the second-order kinetics of the Ba(2+) concentration in solution can be identified. Conductivity measurements, pH measurements, and analytical ultracentrifugation revealed the first formed species to be Ba-polyacrylate complexes. A combination of the solution analysis results and optical microscopic images allows a detailed picture of the complex precipitation and self-organization process, a particle-mediated process involving mesoscopic transformations, to be revealed.

  9. Multilayer silver nanoparticles embedded in graded-index dielectric layers

    Science.gov (United States)

    Shokeen, Poonam; Jain, Amit; Gupta, Vinay; Kapoor, Avinashi

    2017-04-01

    A pulsed laser deposited SiO2/Ag/ZnO/Ag/TiO2 multilayer structure is studied to enhance the light trapping capability of thin-film solar cell. Structural and optical properties of structure are studied with scanning electron microscopy, x-ray diffraction, photoluminescence and UV-visible spectroscopy. Proposed geometry improves the extinction spectra and quenches photoluminescence in comparison to TiO2/Ag and SiO2/Ag/ZnO geometry. Finite-difference time-domain (FDTD) simulations indicate a promising effect of the proposed geometries on thin-film solar cells. Twofold enhancement in total quantum efficiency of an optimized multilayer plasmonic graded-index thin-film solar cell is observed in comparison to the pristine solar cell. Results suggest a more concerted study of multilayer plasmonic nanostructures with graded-index anti-reflection coatings to improve the performance of thin-film photovoltaic devices.

  10. Optical Fiber Sensors Based on Nanoparticle-Embedded Coatings

    Directory of Open Access Journals (Sweden)

    Aitor Urrutia

    2015-01-01

    Full Text Available The use of nanoparticles (NPs in scientific applications has attracted the attention of many researchers in the last few years. The use of NPs can help researchers to tune the physical characteristics of the sensing coating (thickness, roughness, specific area, refractive index, etc. leading to enhanced sensors with response time or sensitivity better than traditional sensing coatings. Additionally, NPs also offer other special properties that depend on their nanometric size, and this is also a source of new sensing applications. This review focuses on the current status of research in the use of NPs within coatings in optical fiber sensing. Most used sensing principles in fiber optics are briefly described and classified into several groups: absorbance-based sensors, interferometric sensors, fluorescence-based sensors, fiber grating sensors, and resonance-based sensors, among others. For each sensor group, specific examples of the utilization of NP-embedded coatings in their sensing structure are reported.

  11. Optoelectronic device with nanoparticle embedded hole injection/transport layer

    Science.gov (United States)

    Wang, Qingwu [Chelmsford, MA; Li, Wenguang [Andover, MA; Jiang, Hua [Methuen, MA

    2012-01-03

    An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

  12. Organic memory device with polyaniline nanoparticles embedded as charging elements

    Science.gov (United States)

    Kim, Yo-Han; Kim, Minkeun; Oh, Sewook; Jung, Hunsang; Kim, Yejin; Yoon, Tae-Sik; Kim, Yong-Sang; Ho Lee, Hyun

    2012-04-01

    Polyaniline nanoparticles (PANI NPs) were synthesized and fabricated as charging elements for organic memory devices. The PANI NPs charging layer was self-assembled by epoxy-amine bonds between 3-glycidylpropyl trimethoxysilane functionalized dielectrics and PANI NPs. A memory window of 5.8 V (ΔVFB) represented by capacitance-voltage hysteresis was obtained for metal-pentacene-insulator-silicon capacitor. In addition, program/erase operations controlled by gate bias (-/+90 V) were demonstrated in the PANI NPs embedded pentacene thin film transistor device with polyvinylalcohol dielectric on flexible polyimide substrate. These results can be extended to development of fully organic-based electronic device.

  13. Laser-generated plasma by carbon nanoparticles embedded into polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L., E-mail: lorenzo.torrisi@unime.it [Dipartimento di Scienze Fisiche MIFT, Università di Messina, V.le F.S. D’Alcontres 31, 98166 S. Agata, Messina (Italy); Ceccio, G. [Dipartimento di Scienze Fisiche MIFT, Università di Messina, V.le F.S. D’Alcontres 31, 98166 S. Agata, Messina (Italy); Cutroneo, M. [Nuclear Physics Institute, AS CR, 25068 Rez (Czech Republic)

    2016-05-15

    Highlights: • Advanced targets are prepared using UHMWPE containing CNT at different concentrations. • The composite has different optical, mechanical, electrical and compositional properties with respect to polyethylene. • Higher ion accelerations with respect to the pure polyethylene are obtained from laser generated plasmas at 10{sup 10} W/cm{sup 2} intensity. • High carbon ion yields with respect to the pure polyethylene are obtained from laser generated plasmas at 10{sup 10} W/cm{sup 2} intensity. • Advanced targets were prepared to be irradiated in TNSA regime using laser at 10{sup 18} W/cm{sup 2} intensity. - Abstract: Carbon nanoparticles have been embedded into polyethylene at different concentrations by using chemical–physical processes. The synthesized material was characterized in terms of physical modifications concerning the mechanical, compositional and optical properties. Obtained flat targets have been irradiated by Nd:YAG laser at intensities of the order of 10{sup 10} W/cm{sup 2} in order to generate non-equilibrium plasma in vacuum. The laser–matter interaction produces charge separation effects with consequent acceleration of protons and carbon ions. Plasma was characterized using time-of-flight measurements of the accelerated ions. Applications of the produced targets in order to generate carbon ion beams from laser-generated plasma are presented and discussed.

  14. Iron nanoparticles embedded in carbon films: structural and optical properties

    Science.gov (United States)

    Mashayekhi, Fatemeh; Shafiekhani, Azizollah; Sebt, Seyed Ali

    2016-06-01

    In the present work amorphous hydrogenated carbon films with sputtered iron nanoparticles (Fe NPs @ a-C:H) were deposited by co-deposition of RF-sputtering and RF-plasma enhanced chemical vapor deposition methods using acetylene gas and iron target on quartz and silicon substrates. Samples were prepared in different initial pressures and during constant deposition time. The crystalline structure of Fe NPs @ a-C:H was studied using X-ray diffraction and selected area electron diffraction patterns. The X-ray photoelectron spectroscopy analysis presents that increasing the initial pressure decreases the atomic ratio of Fe/C and the sp3-hybridized carbon content in prepared samples. The transmission electron microscope image shows the encapsulated Fe NPs in carbon films. The optical properties and localized surface plasmon resonance (LSPR) of samples were studied using UV-visible spectrophotometry, which is shown that increasing of Fe content decreases the intensity of LSPR peak and increases the optical band gap.

  15. Photoluminescence from silicon nanoparticles embedded in ammonium silicon hexafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Kalem, Seref [UEKAE, National Research Institute of Electronics and Cryptology, Gebze 41470 Kocaeli (Turkey); Werner, Peter; Becker, Michael; Zakharov, Nikolai [Department of Experimental Physics, Max-Planck-Institute, Halle(Saale) (Germany); Talalaev, Vadim [ZIK ' SiLi-nano' , Martin-Luther-Universitaet (Halle), Karl-Freiherr-von-Fritsch-Strasse 3 D-06120 Halle (Germany); Arthursson, Oerjan, E-mail: s.kalem@uekae.tubitak.gov.tr [Microtechnology and Nanosciences Department, Chalmers University of Technology, Goeteborg (Sweden)

    2010-10-29

    Silicon (Si) nanoparticles (NPs) were synthesized by transforming a Si wafer surface to ammonium silicon hexafluoride (ASH) or (NH{sub 4}){sub 2}SiF{sub 6} under acid vapor treatment. Si-NPs which were found to be embedded within the polycrystalline (ASH) layer exhibit a strong green-orange photoluminescence (PL). Differential PL measurements revealed a major double component spectrum consisting of a broad band associated with the ASH-Si wafer interfacial porous oxide layer and a high energy band attributable to Si-NPs embedded in the ASH. The origin of the latter emission can be explained in terms of quantum/spatial confinement effects probably mediated by oxygen related defects in or around Si-NPs. Although Si-NPs are derived from the interface they are much smaller in size than those embedded within the interfacial porous oxide layer (SiO{sub x}, x > 1.5). Transmission electron microscopy (TEM) combined with Raman scattering and Fourier transformed infrared (FTIR) analysis confirmed the presence of Si-NP and Si-O bondings pointing to the role of oxygen related defects in a porous/amorphous structure. The presence of oxygen of up to 4.5 at.% in the (NH{sub 4}){sub 2}SiF{sub 6} layer was confirmed by energy dispersive spectroscopy (EDS) analysis.

  16. Cobalt magnetic nanoparticles embedded in carbon matrix: biofunctional validation

    Energy Technology Data Exchange (ETDEWEB)

    Krolow, Matheus Z., E-mail: matheuskrolow@ifsul.edu.br [Universidade Federal de Pelotas, Engenharia de Materiais, Centro de Desenvolvimento Tecnologico (Brazil); Monte, Leonardo G.; Remiao, Mariana H.; Hartleben, Claudia P.; Moreira, Angela N.; Dellagostin, Odir A. [Universidade Federal de Pelotas, Nucleo de Biotecnologia, Centro de Desenvolvimento Tecnologico (Brazil); Piva, Evandro [Universidade Federal de Pelotas, Faculdade de Odontologia (Brazil); Conceicao, Fabricio R. [Universidade Federal de Pelotas, Nucleo de Biotecnologia, Centro de Desenvolvimento Tecnologico (Brazil); Carreno, Neftali L. V. [Universidade Federal de Pelotas, Engenharia de Materiais, Centro de Desenvolvimento Tecnologico (Brazil)

    2012-09-15

    Carbon nanostructures and nanocomposites display versatile allotropic morphologies, physico-chemical properties and have a wide range of applications in mechanics, electronics, biotechnology, structural material, chemical processing, and energy management. In this study we report the synthesis, characterization, and biotechnological application of cobalt magnetic nanoparticles, with diameter approximately 15-40 nm, embedded in carbon structure (Co/C-MN). A single-step chemical process was used in the synthesis of the Co/C-MN. The Co/C-MN has presented superparamagnetic behavior at room temperature an essential property for immunoseparation assays carried out here. To stimulate interactions between proteins and Co/C-MN, this nanocomposite was functionalized with acrylic acid (AA). We have showed the bonding of different proteins onto Co/C-AA surface using immunofluorescence assay. A Co/C-AA coated with monoclonal antibody anti-pathogenic Leptospira spp. was able to capture leptospires, suggesting that it could be useful in immunoseparation assays.

  17. Laser-generated plasma by carbon nanoparticles embedded into polyethylene

    Science.gov (United States)

    Torrisi, L.; Ceccio, G.; Cutroneo, M.

    2016-05-01

    Carbon nanoparticles have been embedded into polyethylene at different concentrations by using chemical-physical processes. The synthesized material was characterized in terms of physical modifications concerning the mechanical, compositional and optical properties. Obtained flat targets have been irradiated by Nd:YAG laser at intensities of the order of 1010 W/cm2 in order to generate non-equilibrium plasma in vacuum. The laser-matter interaction produces charge separation effects with consequent acceleration of protons and carbon ions. Plasma was characterized using time-of-flight measurements of the accelerated ions. Applications of the produced targets in order to generate carbon ion beams from laser-generated plasma are presented and discussed.

  18. Polyacrylate/nanosilica causes pleural and pericardial effusion, and pulmonary fibrosis and granuloma in rats similar to those observed in exposed workers

    Directory of Open Access Journals (Sweden)

    Zhu X

    2016-04-01

    Full Text Available Xiaoli Zhu,1 Wen Cao,2 Bing Chang,3 Linyuan Zhang,3 Peihuan Qiao,3 Xue Li,4 Lifang Si,5 Yingmei Niu,1 Yuguo Song1 1Department of Occupational Medicine and Clinical Toxicology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China; 2Department of Ultrasound, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China; 3Department of Toxicology, National Institute for Occupational Health and Poison Control, China CDC, Beijing, People’s Republic of China; 4Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China; 5Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China Abstract: Nanomaterials offer great benefit as well as potential damage to humans. Workers exposed to polyacrylate coatings have pleural effusion, pericardial effusion, and pulmonary fibrosis and granuloma, which are thought to be related to the high exposure to nanomaterials in the coatings. The study aimed to determine whether polyacrylate/silica nanoparticles cause similar toxicity in rats, as observed in exposed workers. Ninety male Wistar rats were randomly divided into five groups with 18 rats in each group. The groups included the saline control group, another control group of polyacrylate only, and low-, intermediate-, and high-dose groups of polyacrylate/nanosilica with concentrations of 3.125, 6.25, and 12.5 mg/kg. Seventy-five rats for the 1-week study were terminated for scheduled necropsy at 24 hours, 3 days, and 7 days postintratracheal instillation. The remaining 15 rats (three males/group had repeated ultrasound and chest computed tomography examinations in a 2-week study to observe the pleural and pericardial effusion and pulmonary toxicity. We found that polyacrylate/nanosilica resulted in pleural and pericardial effusions, where nanosilica was isolated and detected

  19. 聚丙烯酸钠吸附含铜废水的研究%Study on copper(Ⅱ) adsorption by sodium polyacrylate in wastewater

    Institute of Scientific and Technical Information of China (English)

    杨帆; 高俊发

    2012-01-01

    用聚丙烯酸钠吸附含铜废水,考察了吸附剂用量、时间、温度、pH值对聚丙烯酸钠吸附铜性能的影响.结果表明,对含200 mg/L的高铜废水,吸附条件为温度50℃,聚丙烯酸钠量30 g/L,时间60 min,pH为6时,聚丙烯酸钠对其的吸附率为97.14%,最大吸附容量为8.35 mg/g.聚丙烯酸钠对Cu2的吸附具有Langmuir吸附特征,分子中的羧基与Cu2+发生了配位作用,吸附机理以单分子层化学吸附为主,吸附量受温度影响不大.%The adsorption properties of sodium polyacrylate ( PAAS ) to the copper (Ⅱ) cation in wastewater,the adsorption effect of sodium polyacrylate were studied by adsorbent dosage,time,temperature and pH. The results showed that the adsorbed ratio of the sodium polyacrylate was 97. 14% ,the adsorption capacity was 8.35 mg/g for the wastewater with the high content of copper (Ⅱ) cation 200 mg/L, the reaction temperature was 50℃ , the adsorbent dosage of the sodium polyacrylate were 30 g/L,the time was 60 min for adsorption,and the pH was 6 for the wastewater sample. The adsorption has Langmuir characteristics for the sodium polyacrylate adsorption of copper( Ⅱ) cation. The adsorption mechanism was mainly monomolecular layer chemical adsorption, the temperature has little effect on adsorption capacity.

  20. Poly(acrylic acid)-directed synthesis of colloidally stable single domain magnetite nanoparticles via partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Altan, Cem L. [Department of Chemical Engineering, Yeditepe University, Istanbul 34755 (Turkey); Laboratory of Materials and Interface Chemistry & Soft Matter cryoTEM Research Unit, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands); Gurten, Berna [Department of Chemical Engineering, Yeditepe University, Istanbul 34755 (Turkey); Sadza, Roel [Laboratory of Materials and Interface Chemistry & Soft Matter cryoTEM Research Unit, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands); Yenigul, Elcin [Department of Chemical Engineering, Yeditepe University, Istanbul 34755 (Turkey); Sommerdijk, Nico A.J.M., E-mail: n.sommerdijk@tue.nl [Laboratory of Materials and Interface Chemistry & Soft Matter cryoTEM Research Unit, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands); Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands); Bucak, Seyda, E-mail: seyda@yeditepe.edu.tr [Department of Chemical Engineering, Yeditepe University, Istanbul 34755 (Turkey)

    2016-10-15

    Octahedral, single domain magnetite nanoparticles with average size of ~55 nm were synthesized through oxidative aging of a ferrous hydroxide (Fe(OH){sub 2}) precursor at high pH in water. The synthesis was also carried out in the presence of the hydrophilic polymer poly(acrylic acid). Presence of the polymer changed the particle morphology from octahedral to spherical while average size decreased to 40–50 nm. Although these particles have a tendency to precipitate due to their high magnetic moment, dispersions of these particles were obtained in the presence of this particular polymer which made the particles stable in water for several days making them suitable for various biotechnological applications such as cell separation owing to their low toxicity. - Highlights: • Stable, single domain magnetite nanoparticles are synthesized via partial oxidation. • Particles are readily stabilized in water by a biocompatible polymer. • Steric barrier is essential for the stabilization of large magnetite nanoparticles.

  1. The influence of pH, polyethylene glycol and polyacrylic acid on the stability of stem bromelain

    Directory of Open Access Journals (Sweden)

    Letícia Celia de Lencastre Novaes

    2014-04-01

    Full Text Available Enzyme stability is critical in biotechnology, pharmaceutical and cosmetic industries. Investigations on this subject have drawn attention because of its practical application. Bromelain is a thiol-endopeptidase, obtained from pineapple (Ananas comosus, known for its clinical and therapeutic applications, particularly to selective burn debridement and improvement of antibiotic action and anti-inflammatory activities. To date, the use of bromelain in pharmacological or industrial applications is limited, due to commercial availability, costs, and sensitivity to pH and temperature. Therefore, a better understanding of enzyme stability would be of great interest. The aim of this study was to evaluate bromelain activity and stability in several pH (2.0 to 8.0 and in polyethylene glycol and polyacrylic acid solutions. We observed that bromelain was able to maintain its stability at pH 5.0 for the temperatures studied. PEG solutions increased bromelain stability, but PAA solutions had the opposite effect.

  2. Radiation preparation of drug carriers based polyacrylic acid (PAAc) using poly(vinyl pyrrolidone) (PVP) as a template polymer

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Rehim, H.A. [National Center for Radiation Research and Technology, Poymer, 3-Ahmed El-Zomor, P.O. Box 29, Cairo, Naser City (Egypt)]. E-mail: ha_rehim@hotmail.com; Hegazy, E.A. [National Center for Radiation Research and Technology, Poymer, 3-Ahmed El-Zomor, P.O. Box 29, Cairo, Naser City (Egypt); Khalil, F.H. [National Center for Radiation Research and Technology, Poymer, 3-Ahmed El-Zomor, P.O. Box 29, Cairo, Naser City (Egypt); Hamed, N.A. [National Center for Radiation Research and Technology, Poymer, 3-Ahmed El-Zomor, P.O. Box 29, Cairo, Naser City (Egypt)

    2007-01-15

    The present study deals with the radiation synthesis of stimuli response hydrophilic polymers from polyacrylic acid (PAAc). To maintain the property of PAAc and control the water swellibility for its application as a drug delivery system, radiation polymerization of AAc in the presence of poly(vinyl pyrrolidone) (PVP) as a template polymer was carried out. Characterization of the prepared PAA/PVP inter-polymer complex was investigated by determining gel content, swelling property, hydrogel microstructure and the release rate of caffeine as a model drug. The release rate of caffeine from the PAA/PVP inter-polymer complexes showed pH-dependency, and seemed to be mainly controlled by the dissolution rate of the complex above a pK {sub a} of PAAc. The prepared inter-polymer complex could be used for application as drug carriers.

  3. A Novel Approach for the Desalination of Seawater by Means of Reusable Poly(acrylic acid) Hydrogels and Mechanical Force.

    Science.gov (United States)

    Höpfner, Johannes; Klein, Christopher; Wilhelm, Manfred

    2010-08-01

    Desalination of a sodium chloride solution is achieved by the incorporation of salt depleted water into an acrylic acid based hydrogel and the subsequent deswelling of the gel by mechanical force to gain water with a lower salt content. This is a new approach towards the problem of desalination of seawater that has, to the best of our knowledge, not been presented before. In a proof-of-principle experiment the salt content of a 10 g/L NaCl solution could be reduced by 35% in one cycle. The influence of main chemical parameters, e.g. degree of crosslinking, degree of neutralization and experimental parameters like particle size and salt concentration on the desalination process are examined. Possible optimum conditions for the desalination using a poly(acrylic acid) network are discussed and the construction of a simple apparatus for deswelling by mechanical force is described.

  4. Comparison of the effects of chlorite-oxidized oxyamylose and polyacrylic acid on the multiplication of phytopathogenic viruses.

    Science.gov (United States)

    Kluge, S

    1985-10-01

    Polyacrylic acid (PAA) and chlorite-oxidized oxyamylose (COAM) inhibit the multiplication of tobacco mosaic virus (TMV) in leaf disks by up to 50%. The reduction in TMV content is time-dependent and decreases with longer time intervals between the virus infection and the application of substances. The multiplication of potato virus X (PVX) in leaf disks is not affected by either PAA or COAM. In intact plants PAA produces a strong antiviral effect on both PVX and red clover mottle virus (RCMV). The effect produced by COAM is much less pronounced, although this substance is less toxic and could be used in a higher concentration than PAA. Neither of these compounds has a significant influence on the development of virus-induced necroses in Nicotiana glutinosa, Gomphrena globosa or Phaseolus vulgaris plants when administered one day before or after virus infection.

  5. Surface grafted chitosan gels. Part I. Molecular insight into the formation of chitosan and poly(acrylic acid) multilayers

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    Composite polyelectrolyte multilayers of chitosan and low molecular weight poly(acrylic acid) (PAA) have been assembled by sequential adsorption as a first step toward building a surface anchored chitosan gel. Silane chemistry was used to graft the first chitosan layer to prevent film detachment...... and decomposition. The assembly process is characterized by nonlinear growth behavior, with different adsorption kinetics for chitosan and PAA. In situ analysis of the multilayer by means of surface sensitive total internal reflection Raman (TIRR) spectroscopy, combined with target factor analysis of the spectra...... molecular weight chitosan shows a similar behavior, although to a much lower extent. Our data demonstrate that the charged monomeric units of chitosan are mainly compensated by carboxylate ions from PAA. Furthermore, the morphology and mechanical properties of the multilayers were investigated in situ using...

  6. Poly(acrylic acid)-directed synthesis of colloidally stable single domain magnetite nanoparticles via partial oxidation

    Science.gov (United States)

    Altan, Cem L.; Gurten, Berna; Sadza, Roel; Yenigul, Elcin; Sommerdijk, Nico A. J. M.; Bucak, Seyda

    2016-10-01

    Octahedral, single domain magnetite nanoparticles with average size of ~55 nm were synthesized through oxidative aging of a ferrous hydroxide (Fe(OH)2) precursor at high pH in water. The synthesis was also carried out in the presence of the hydrophilic polymer poly(acrylic acid). Presence of the polymer changed the particle morphology from octahedral to spherical while average size decreased to 40-50 nm. Although these particles have a tendency to precipitate due to their high magnetic moment, dispersions of these particles were obtained in the presence of this particular polymer which made the particles stable in water for several days making them suitable for various biotechnological applications such as cell separation owing to their low toxicity.

  7. Phase Diagrams of the Aqueous Two-Phase Systems of Poly(ethylene glycol/Sodium Polyacrylate/Salts

    Directory of Open Access Journals (Sweden)

    Adalberto Pessoa Junior

    2011-03-01

    Full Text Available Aqueous two-phase systems consisting of polyethylene glycol (PEG, sodium polyacrylate (NaPAA, and a salt have been studied. The effects of the polymer size, salt type (NaCl, Na2SO4, sodium adipate and sodium azelate and salt concentrations on the position of the binodal curve were investigated. The investigated PEG molecules had a molar mass of 2,000 to 8,000 g/mol, while that of NaPAA was 8,000 g/mol. Experimental phase diagrams, and tie lines and calculated phase diagrams, based on Flory-Huggins theory of polymer solutions are presented. Due to strong enthalpic and entropic balancing forces, the hydrophobicity of the added salt has a strong influence on the position of the binodal, which could be reproduced by model calculations.

  8. Antibacterial effects of protruding and recessed shark skin micropatterned surfaces of polyacrylate plate with a shallow groove.

    Science.gov (United States)

    Sakamoto, Akihiko; Terui, Yusuke; Horie, Chihiro; Fukui, Takashi; Masuzawa, Toshiyuki; Sugawara, Shintaro; Shigeta, Kaku; Shigeta, Tatsuo; Igarashi, Kazuei; Kashiwagi, Keiko

    2014-12-01

    Antibacterial effects in terms of biofilm formation and swarming motility were studied using polyacrylate plates having protruding or recessed shark skin micropatterned surfaces with a shallow groove (2 μm pattern width and spacing, 0.4 μm pattern height). It was found that biofilm formation and swarming motility of Pseudomonas aeruginosa were strongly inhibited by the shark skin pattern plates with a shallow (0.4 μm) pattern height. Biofilm formation of Staphylococcus aureus was also strongly inhibited. Live bacteria were located on the pattern rather than in the spacing. When the shape of pattern was a linear ridge instead of shark skin, the antibacterial effects were weaker than seen with the shark skin pattern. The results indicate that the pattern of shark skin is important for decreasing bacterial infection even with a shallow feature height.

  9. Synthesis of polyacrylate/polyethylene glycol interpenetrating network hydrogel and its sorption of heavy-metal ions

    Directory of Open Access Journals (Sweden)

    Qunwei Tang, Xiaoming Sun, Qinghua Li, Jihuai Wu and Jianming Lin

    2009-01-01

    Full Text Available A simple two-step aqueous polymerization method was introduced to synthesize a polyacrylate/polyethylene glycol (PAC/PEG interpenetrating network (IPN hydrogel. On the basis of the effects of the ratio of PAC to PEG, neutralization degree, heavy-metal ion concentration, and temperature on the adsorption behavior of PAC/PEG IPN hydrogel toward Ni2 +, Cr3 + and Cd2 +, the preparation conditions were optimized. In our system, the greatest amount of Ni2 +, Cr3 + and Cd2 + adsorbed were 102.34, 49.38 and 33.41 mg g- 1, respectively. The adsorption abilities of a dried PAC/PEG composite and a swollen PAC/PEG IPN hydrogel were compared. It was found that the efficiency of removing metal ions using the swollen hydrogel was greater than that using the dried composite. The adsorption mechanism and model are also discussed.

  10. Preparation of CO₂/N₂-triggered reversibly coagulatable and redispersible polyacrylate latexes by emulsion polymerization using a polymeric surfactant.

    Science.gov (United States)

    Zhang, Qi; Yu, Guoqiang; Wang, Wen-Jun; Li, Bo-Geng; Zhu, Shiping

    2012-05-29

    We report here a novel approach for making reversibly coagulatable and redispersible polyacrylate latexes by emulsion (co)polymerization of methyl methacrylate (MMA) using a polymeric surfactant, poly(2-(dimethylamino)ethyl methacrylate)(10) -block-poly(methyl methacrylate)(14) . The surfactant was protonated with HCl prior to use. The resulted PMMA latexes were readily coagulated with trace amount of caustic soda. The coagulated latex particles, after washing with deionized water, could be redispersed into fresh water to form stable latexes again by CO(2) bubbling with ultrasonication. The recovered latexes could then be coagulated by N(2) bubbling with gentle heating. These coagulation and redispersion processes were repeatable by the CO(2) /N(2) bubbling.

  11. Synthesis of hollow silver spheres using poly-(styrene-methyl acrylic acid) as templates in the presence of sodium polyacrylate

    Science.gov (United States)

    Wang, Aili; Yin, Hengbo; Ge, Chen; Ren, Min; Liu, Yumin; Jiang, Tingshun

    2010-02-01

    Hollow silver spheres were successfully prepared by reducing AgNO 3 with ascorbic acid and using negatively charged poly-(styrene-methyl acrylic acid) (PSA) spheres as templates in the presence of sodium polyacrylate as a stabilizer. Firstly, silver cations adsorbed on the surface of PSA spheres via electrostatic attraction between the carboxyl groups and silver cations were reduced in situ by ascorbic acid. The silver nanoparticles deposited on the surface of PSA spheres served as seeds for the further growth of silver shells. After that, extra amount of AgNO 3 and ascorbic acid solutions were added to form PSA/Ag composites with thick silver shells. In order to obtain compact silver shells, the as-prepared PSA/Ag composites were heated at 150 °C for 3 h. Then hollow silver spheres were prepared by dissolving PSA templates with tetrahydrofuran.

  12. Synthesis of polyacrylate/polyethylene glycol interpenetrating network hydrogel and its sorption of heavy-metal ions.

    Science.gov (United States)

    Tang, Qunwei; Sun, Xiaoming; Li, Qinghua; Wu, Jihuai; Lin, Jianming

    2009-02-01

    A simple two-step aqueous polymerization method was introduced to synthesize a polyacrylate/polyethylene glycol (PAC/PEG) interpenetrating network (IPN) hydrogel. On the basis of the effects of the ratio of PAC to PEG, neutralization degree, heavy-metal ion concentration, and temperature on the adsorption behavior of PAC/PEG IPN hydrogel toward Ni(2 +), Cr(3 +) and Cd(2 +), the preparation conditions were optimized. In our system, the greatest amount of Ni(2 +), Cr(3 +) and Cd(2 +) adsorbed were 102.34, 49.38 and 33.41 mg g(- 1), respectively. The adsorption abilities of a dried PAC/PEG composite and a swollen PAC/PEG IPN hydrogel were compared. It was found that the efficiency of removing metal ions using the swollen hydrogel was greater than that using the dried composite. The adsorption mechanism and model are also discussed.

  13. A resistive-type sensor based on flexible multi-walled carbon nanotubes and polyacrylic acid composite films

    Science.gov (United States)

    Lee, Jeongah; Cho, Daehwan; Jeong, Youngjin

    2013-09-01

    A humidity sensor film was fabricated by loading high numbers of multi-wall carbon nanotubes (MWCNTs) in a poly(acrylic acid) (PAA) polymer matrix containing poly(4-styrenesulfonic acid) (PSS) to enhance the MWCNT dispersion. Cross-section images demonstrate that the MWCNTs distribute evenly throughout the matrix. The fabrication processes and sensing mechanisms of the film are explained to investigate the flexible properties and humidity-sensing characteristics of the film. The film loaded with 33 wt% MWCNTs is much more flexible than an overhead projector (OHP) film and shows similar electrical resistance to pure CNT Bucky paper. The sensor film composed of 1:2 MWCNTs:PAA is highly sensitive to humidity (0.069/%RH) and displays good linearity (0.99).

  14. Reversible molecular switching at a metal surface: A case study of tetra- tert-butyl-azobenzene on Au(1 1 1)

    Science.gov (United States)

    Wolf, Martin; Tegeder, Petra

    2009-06-01

    Molecular switches represent a fascinating class of functional molecules, whose properties can be reversibly changed between different molecular states by excitation with light or other external stimuli. Using surface science concepts like self assembly to align such molecules in a well-defined geometry at solid surfaces, new functional properties may arise, which are relevant for different fields like, e.g., molecular electronics, sensing or biocompatible interfaces. For a microscopic understanding of molecular switching at surfaces, it is essential to obtain detailed knowledge on the underlying elementary processes, for instance the excitation mechanism in photoinduced switching. Here we present a case study of a specifically designed azobenzene derivative on a metal surface, namely tetra- tert-butyl-azobenzene (TBA) adsorbed on Au(1 1 1), which is so far one of the best studied system for which reversible conformational changes have been demonstrated. TBA/Au(1 1 1) can thus be viewed as model system in order to gain deeper insights into molecular switching processes at metal surfaces. We have studied the photoinduced and thermally activated reversible switching of TBA in direct contact with a Au(1 1 1) surface using two-photon photoemission (2PPE) and high-resolution electron energy loss spectroscopy (HREELS). The trans/cis-isomerization of TBA is accompanied by reversible changes in the geometrical and electronic structure of the molecules, allowing to gain mechanistic and quantitative insight into the switching process. In particular, the cross sections for the photoisomerization, the ratio between the cis- and trans-TBA in the photostationary state, and the activation energy for the thermally induced cis→trans reaction have been determined and are found to be strongly reduced compared to the corresponding quantities in the liquid phase. Furthermore, the mechanism of optical excitation and molecular switching of TBA on Au(1 1 1) has been identified to arise

  15. Influence of He/O{sub 2} atmospheric pressure plasma jet treatment on subsequent wet desizing of polyacrylate on PET fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Li Xuming [Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); College of Textile and Clothing, Shaoxing University, Shaoxing 312000 (China); Lin Jun [Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Qiu Yiping, E-mail: ypqiu@dhu.edu.cn [Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China)

    2012-01-15

    The influence of He/O{sub 2} atmospheric pressure plasma jet (APPJ) treatment on subsequent wet desizing of polyacrylate on PET fabrics was studied in the present paper. Weight loss results indicated that the weight loss increased with an increase of plasma treatment time. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed an increased surface roughness after the plasma treatment. SEM also showed that the fiber surfaces were as clean as unsized fibers after 35 s treatment followed by NaHCO{sub 3} desizing. X-ray photoelectron spectroscopy (XPS) analysis indicated that oxygen-based functional groups increased for the plasma treated polyacrylate sized fabrics. The percent desizing ratio (PDR) results showed that more than 99% PDR was achieved after 65 s plasma treatment followed by a 5 min NaHCO{sub 3} desizing. Compared to conventional wet desizing, indicating that plasma treatment could significantly reduce desizing time.

  16. [Clinical cases about the therapeutic use of debriding dressing hidrodetersive polyacrylate fibers with TLC and foam dressings TLC-NOSF polyurethane in chronic wounds].

    Science.gov (United States)

    Blasco García, Carmen; Segovia Gómez, Teresa; Bermejo Martínez, Mariano; Cuesta Cuesta, Juan José; Alventosa Cortés, Ana María

    2012-10-01

    The treatment of chronic wounds requires the use of highly specific products for different phases of the healing process. This article raises a number of clinical cases with chronic wounds of vascular origin and pressure ulcers. Such cases required a initial debridement because of the large content of fibrin covering the wound bed at this stage was used dressing hidrodetersive polyacrylate fibers with TLC. Once the debridement is continued treatment with a polyurethane foam dressing with TLC-NOSF.

  17. Historical Cohort Study on the Factors Affecting Blood Pressure in Workers of Polyacryl Iran Corporation Using Bayesian Multilevel Modeling with Skew T Distribution

    OpenAIRE

    2013-01-01

    Background Hypertension is considered as a major public health problem in most countries due to its association with ischemic heart disease which causes cerebrovascular disease and death. Objectives The purpose of the present study was to study factors affecting Blood Pressure (BP). Patients and Methods The data were extracted from annual observation of the workers who worked in Polyacryl Iran Corporation (PIC) between 1998 and 2010. In this research, we assessed the effect of Body Mass Index...

  18. Scientific Opinion on safety assessment of the active substance, polyacrylic acid, sodium salt, crosslinked, for use in active food contact materials

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2014-05-01

    Full Text Available This scientific opinion of the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety assessment of the polyacrylic acid, sodium salt, crosslinked, FCM substance No 1015, which is intended to be used as a liquid absorber in the packaging of fresh or frozen foods such as meat, poultry, and seafood as well as fresh fruits and vegetables. Specific migration tests were not performed due to the high absorption of liquids by the substance. The Panel noted that if polyacrylic acid, sodium salt, crosslinked, is used not in direct contact with food placed in a pad under conditions where its absorption capacity is not exceeded, then no migration is to be expected and therefore no exposure from the consumption of the packed food is expected. The Panel also considered that non-crosslinked polymer and the crosslinker do not raise a concern for genotoxicity. The CEF Panel concluded that the use of the substance polyacrylic acid, sodium salt, crosslinked, does not raise a safety concern when used in absorbent pads in the packaging of fresh or frozen meat foods poultry, and seafood as well as fresh fruits and vegetables. The absorbent pads must be used only under conditions in which the liquid absorption capacity is not exceeded and direct contact between the substance and the food is excluded.

  19. Scientific Opinion on safety assessment of the active substance, polyacrylic acid, sodium salt crosslinked, for use in active food contact materials

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2014-07-01

    Full Text Available This scientific opinion of the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety assessment of polyacrylic acid, sodium salt, crosslinked, FCM substance No 1015, which is intended to be used as a liquid absorber in the packaging of fresh or frozen foods such as meat, poultry, and seafood as well as fresh fruits and vegetables. Specific migration tests were not performed due to the high absorption of liquids by the substance. The Panel noted that if polyacrylic acid, sodium salt, crosslinked is used not in direct contact with food and placed in a pad under conditions where its absorption capacity is not exceeded, then no migration is to be expected and therefore no exposure from the consumption of the packed food is expected. The Panel also considered that non-crosslinked polymer and the crosslinkers do not raise a concern for genotoxicity. The CEF Panel concluded that the use of the substance polyacrylic acid, sodium salt, crosslinked, does not raise a safety concern when used in absorbent pads in the packaging of fresh or frozen foods. The absorbent pads must be used only under conditions in which the absorption capacity of the active substance is not exceeded and direct contact with food is excluded.

  20. Scientific Opinion on the safety evaluation of the active substance, polyacrylic acid, sodium salt, crosslinked, for use in active food contact materials

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2013-02-01

    Full Text Available This scientific opinion of CEF Panel deals with the risk assessment of polyacrylic acid, sodium salt crosslinked, FCM substance No 1015, which is intended to be used as liquid absorber in the packaging of fresh or frozen meat, poultry, and fish as well as fresh fruits and vegetables. Specific migration tests were not performed due to the high absorption of liquids by the substance. The Panel noted that if polyacrylic acid, sodium salt, crosslinked is used not in direct contact with food placed in a pad under conditions where its absorption capacity is not exceeded, then no migration is to be expected and therefore no exposure to the substance from the consumption of the packed food is expected. The CEF Panel concluded that the use of the substance polyacrylic acid, sodium salt, crosslinked does not raise a safety concern when used in absorbent pads in the packaging of fresh or frozen meat, poultry, and fish as well as fresh fruits and vegetables. The absorbent pads must be used only under conditions in which the absorption capacity of the active substance is not exceeded and direct contact with food is excluded.

  1. Supramolecular Phase-Selective Gelation by Peptides Bearing Side-Chain Azobenzenes: Effect of Ultrasound and Potential for Dye Removal and Oil Spill Remediation

    Directory of Open Access Journals (Sweden)

    Jürgen Bachl

    2015-05-01

    Full Text Available Phase selective gelation (PSG of organic phases from their non-miscible mixtures with water was achieved using tetrapeptides bearing a side-chain azobenzene moiety. The presence of the chromophore allowed PSG at the same concentration as the minimum gelation concentration (MGC necessary to obtain the gels in pure organic phases. Remarkably, the presence of the water phase during PSG did not impact the thermal, mechanical, and morphological properties of the corresponding organogels. In the case of miscible oil/water mixtures, the entire mixture was gelled, resulting in the formation of quasi-hydrogels. Importantly, PSG could be triggered at room temperature by ultrasound treatment of the mixture or by adding ultrasound-aided concentrated solution of the peptide in an oil-phase to a mixture of the same oil and water. Moreover, the PSG was not affected by the presence of salts or impurities existing in water from natural sources. The process could be scaled-up, and the oil phases (e.g., aromatic solvents, gasoline, diesel fuel recovered almost quantitatively after a simple distillation process, which also allowed the recovery and reuse of the gelator. Finally, these peptidic gelators could be used to quantitatively remove toxic dyes from aqueous solutions.

  2. Supramolecular Phase-Selective Gelation by Peptides Bearing Side-Chain Azobenzenes: Effect of Ultrasound and Potential for Dye Removal and Oil Spill Remediation

    Science.gov (United States)

    Bachl, Jürgen; Oehm, Stefan; Mayr, Judith; Cativiela, Carlos; Marrero-Tellado, José Juan; Díaz Díaz, David

    2015-01-01

    Phase selective gelation (PSG) of organic phases from their non-miscible mixtures with water was achieved using tetrapeptides bearing a side-chain azobenzene moiety. The presence of the chromophore allowed PSG at the same concentration as the minimum gelation concentration (MGC) necessary to obtain the gels in pure organic phases. Remarkably, the presence of the water phase during PSG did not impact the thermal, mechanical, and morphological properties of the corresponding organogels. In the case of miscible oil/water mixtures, the entire mixture was gelled, resulting in the formation of quasi-hydrogels. Importantly, PSG could be triggered at room temperature by ultrasound treatment of the mixture or by adding ultrasound-aided concentrated solution of the peptide in an oil-phase to a mixture of the same oil and water. Moreover, the PSG was not affected by the presence of salts or impurities existing in water from natural sources. The process could be scaled-up, and the oil phases (e.g., aromatic solvents, gasoline, diesel fuel) recovered almost quantitatively after a simple distillation process, which also allowed the recovery and reuse of the gelator. Finally, these peptidic gelators could be used to quantitatively remove toxic dyes from aqueous solutions. PMID:26006247

  3. Supramolecular phase-selective gelation by peptides bearing side-chain azobenzenes: effect of ultrasound and potential for dye removal and oil spill remediation.

    Science.gov (United States)

    Bachl, Jürgen; Oehm, Stefan; Mayr, Judith; Cativiela, Carlos; Marrero-Tellado, José Juan; Díaz, David Díaz

    2015-05-22

    Phase selective gelation (PSG) of organic phases from their non-miscible mixtures with water was achieved using tetrapeptides bearing a side-chain azobenzene moiety. The presence of the chromophore allowed PSG at the same concentration as the minimum gelation concentration (MGC) necessary to obtain the gels in pure organic phases. Remarkably, the presence of the water phase during PSG did not impact the thermal, mechanical, and morphological properties of the corresponding organogels. In the case of miscible oil/water mixtures, the entire mixture was gelled, resulting in the formation of quasi-hydrogels. Importantly, PSG could be triggered at room temperature by ultrasound treatment of the mixture or by adding ultrasound-aided concentrated solution of the peptide in an oil-phase to a mixture of the same oil and water. Moreover, the PSG was not affected by the presence of salts or impurities existing in water from natural sources. The process could be scaled-up, and the oil phases (e.g., aromatic solvents, gasoline, diesel fuel) recovered almost quantitatively after a simple distillation process, which also allowed the recovery and reuse of the gelator. Finally, these peptidic gelators could be used to quantitatively remove toxic dyes from aqueous solutions.

  4. Dark conglomerate phases of azobenzene derived bent-core mesogens - relationships between the molecular structure and mirror symmetry breaking in soft matter.

    Science.gov (United States)

    Alaasar, Mohamed; Prehm, Marko; Brautzsch, Marcel; Tschierske, Carsten

    2014-10-07

    New 4-bromoresorcinol based bent-core molecules with peripheral fluoro substituted azobenzene wings have been synthesized and the liquid crystalline self-assembly was investigated by differential scanning calorimetry (DSC), optical polarizing microscopy (POM), electro-optic studies and X-ray diffraction (XRD). A new type of optically isotropic mesophase composed of chiral domains with opposite handedness (dark conglomerate phases, DC phases) is observed, which for some homologues with medium alkyl chain length is stable down to ambient temperature. It is proposed that these DC phases are formed by helical twisted nano-domains of limited size and composed of the crystallized aromatic cores which are separated by the disordered alkyl chains. This structure is distinct from the previously known soft helical nano-filament phases (HNF phases, B4 phases) formed by extended crystalline nano-filaments and also distinct from the fluid sponge phases composed of deformed fluid layers. Comparison with related bent-core molecules having H, F, Cl, I, CH3 and CN groups in the 4-position at the resorcinol core, either with or without additional peripheral fluorines, provided information about the effects of these substituents on the tendency to form DC phases. Based on these relationships and by comparison with the minimum energy conformations obtained by DFT calculations a hypothesis is provided for the formation of DC phases depending on the molecular structure.

  5. Effects of gomisin A on the promotor action and serum bile acid concentration in hepatocarcinogenesis induced by 3'-methyl-4-dimethylamino-azobenzene.

    Science.gov (United States)

    Miyamoto, K; Hiramatsu, K; Ohtaki, Y; Kanitani, M; Nomura, M; Aburada, M

    1995-10-01

    The effects of gomisin A, a lignan component of Schizandra fruits, on the promotion stage of hepatocarcinogenesis initiated by 3'-methyl-4-dimethylamino-azobenzene (3'-MeDAB) in male Donryu rats were investigated. When different types of tumor promotors, phenobarbital (PB) and deoxycholic acid (DCA), were administered for 5 weeks after initiation by 3'-MeDAB, preneoplastic alterations in the liver, determined by glutathione S-transferase placental form (GST-P), were markedly increased. Gomisin A significantly inhibited the increase in number and size of GST-P positive foci, regardless of the promotor. This lignan inhibited the increase in serum bile acid concentration by administration of DCA, but hardly influenced the serum bile acids in the PB-combined group. These results suggest that the inhibitory effect of gomisin A on the promotive action of DCA is based on improving bile acid metabolism, but regarding the action of PB, the effect could not be elucidated from the metabolism of bile acids.

  6. Enhancement in the critical current density of C-doped MgB2 wire using a polyacrylic acid dopant.

    Science.gov (United States)

    Lee, Seung Muk; Hwang, Soo Min; Lee, Chang Min; Kim, Won; Joo, Jinho; Lim, Jun Hyung; Kim, Chan-Joong; Hong, Gye-Won

    2012-02-01

    C-doped MgB2 wires were fabricated from a polyacrylic acid (PAA) using a conventional in-situ PIT technique. The effects of the PAA content on the lattice parameter, microstructure, critical temperature (Tc) and critical current density (Jc) were examined. With increasing PAA content, the amount of MgO in the sample increased but the crystallinity, a-axis lattice parameter, and Tc of MgB2 wires decreased, indicating that the C that decomposed from PAA during heat treatment had substituted for B. All doped samples exhibited a higher Jc than the undoped sample at high magnetic field, and the Jc(B) property improved with increasing PAA content: for the 7 wt% doped sample, the Jc was approximately 3-times higher than that of the pristine sample (1.28 kA/cm2 vs. 3.43 kA/cm2) at 5 K and 6.6 T. The improved Jc(B) of the doped sample was attributed to the decreased grain size, enlarged lattice distortion and increased C doping level.

  7. Blood-Vessel Mimicking Structures by Stereolithographic Fabrication of Small Porous Tubes Using Cytocompatible Polyacrylate Elastomers, Biofunctionalization and Endothelialization

    Directory of Open Access Journals (Sweden)

    Birgit Huber

    2016-04-01

    Full Text Available Blood vessel reconstruction is still an elusive goal for the development of in vitro models as well as artificial vascular grafts. In this study, we used a novel photo-curable cytocompatible polyacrylate material (PA for freeform generation of synthetic vessels. We applied stereolithography for the fabrication of arbitrary 3D tubular structures with total dimensions in the centimeter range, 300 µm wall thickness, inner diameters of 1 to 2 mm and defined pores with a constant diameter of approximately 100 µm or 200 µm. We established a rinsing protocol to remove remaining cytotoxic substances from the photo-cured PA and applied thio-modified heparin and RGDC-peptides to functionalize the PA surface for enhanced endothelial cell adhesion. A rotating seeding procedure was introduced to ensure homogenous endothelial monolayer formation at the inner luminal tube wall. We showed that endothelial cells stayed viable and adherent and aligned along the medium flow under fluid-flow conditions comparable to native capillaries. The combined technology approach comprising of freeform additive manufacturing (AM, biomimetic design, cytocompatible materials which are applicable to AM, and biofunctionalization of AM constructs has been introduced as BioRap® technology by the authors.

  8. Blood-Vessel Mimicking Structures by Stereolithographic Fabrication of Small Porous Tubes Using Cytocompatible Polyacrylate Elastomers, Biofunctionalization and Endothelialization

    Science.gov (United States)

    Huber, Birgit; Engelhardt, Sascha; Meyer, Wolfdietrich; Krüger, Hartmut; Wenz, Annika; Schönhaar, Veronika; Tovar, Günter E. M.; Kluger, Petra J.; Borchers, Kirsten

    2016-01-01

    Blood vessel reconstruction is still an elusive goal for the development of in vitro models as well as artificial vascular grafts. In this study, we used a novel photo-curable cytocompatible polyacrylate material (PA) for freeform generation of synthetic vessels. We applied stereolithography for the fabrication of arbitrary 3D tubular structures with total dimensions in the centimeter range, 300 µm wall thickness, inner diameters of 1 to 2 mm and defined pores with a constant diameter of approximately 100 µm or 200 µm. We established a rinsing protocol to remove remaining cytotoxic substances from the photo-cured PA and applied thio-modified heparin and RGDC-peptides to functionalize the PA surface for enhanced endothelial cell adhesion. A rotating seeding procedure was introduced to ensure homogenous endothelial monolayer formation at the inner luminal tube wall. We showed that endothelial cells stayed viable and adherent and aligned along the medium flow under fluid-flow conditions comparable to native capillaries. The combined technology approach comprising of freeform additive manufacturing (AM), biomimetic design, cytocompatible materials which are applicable to AM, and biofunctionalization of AM constructs has been introduced as BioRap® technology by the authors. PMID:27104576

  9. Poly(Acrylic acid–Based Hybrid Inorganic–Organic Electrolytes Membrane for Electrical Double Layer Capacitors Application

    Directory of Open Access Journals (Sweden)

    Chiam-Wen Liew

    2016-05-01

    Full Text Available Nanocomposite polymer electrolyte membranes (NCPEMs based on poly(acrylic acid(PAA and titania (TiO2 are prepared by a solution casting technique. The ionic conductivity of NCPEMs increases with the weight ratio of TiO2.The highest ionic conductivity of (8.36 ± 0.01 × 10−4 S·cm−1 is obtained with addition of 6 wt % of TiO2 at ambient temperature. The complexation between PAA, LiTFSI and TiO2 is discussed in Attenuated total reflectance-Fourier Transform Infrared (ATR-FTIR studies. Electrical double layer capacitors (EDLCs are fabricated using the filler-free polymer electrolyte or the most conducting NCPEM and carbon-based electrodes. The electrochemical performances of fabricated EDLCs are studied through cyclic voltammetry (CV and galvanostatic charge-discharge studies. EDLC comprising NCPEM shows the specific capacitance of 28.56 F·g−1 (or equivalent to 29.54 mF·cm−2 with excellent electrochemical stability.

  10. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea.

    Science.gov (United States)

    Zheng, Luo Luo; Vanchinathan, Vijay; Dalal, Roopa; Noolandi, Jaan; Waters, Dale J; Hartmann, Laura; Cochran, Jennifer R; Frank, Curtis W; Yu, Charles Q; Ta, Christopher N

    2015-10-01

    We evaluated the biocompatibility of a poly(ethylene glycol) and poly(acrylic acid) (PEG/PAA) interpenetrating network hydrogel designed for artificial cornea in a rabbit model. PEG/PAA hydrogel measuring 6 mm in diameter was implanted in the corneal stroma of twelve rabbits. Stromal flaps were created with a microkeratome. Randomly, six rabbits were assigned to bear the implant for 2 months, two rabbits for 6 months, two rabbits for 9 months, one rabbit for 12 months, and one rabbit for 16 months. Rabbits were evaluated monthly. After the assigned period, eyes were enucleated, and corneas were processed for histology and immunohistochemistry. There were clear corneas in three of six rabbits that had implantation of hydrogel for 2 months. In the six rabbits with implant for 6 months or longer, the corneas remained clear in four. There was a high rate of epithelial defect and corneal thinning in these six rabbits. One planned 9-month rabbit developed extrusion of implant at 4 months. The cornea remained clear in the 16-month rabbit but histology revealed epithelial in-growth. Intrastromal implantation of PEG/PAA resulted in a high rate of long-term complications.

  11. Improved Release of Celecoxib from High Drug Loading Amorphous Solid Dispersions Formulated with Polyacrylic Acid and Cellulose Derivatives.

    Science.gov (United States)

    Xie, Tian; Taylor, Lynne S

    2016-03-07

    Amorphous solid dispersions (ASDs) have been extensively exploited as a strategy for improving the dissolution performance of poorly water-soluble drugs. However, factors underpinning the observed dissolution profiles are not clearly understood, and the choice of polymeric carriers is largely empirical. In the current study, the dissolution performance of a high drug loading ASD containing the poorly water-soluble, anti-inflammatory agent, celecoxib, was optimized by using binary polymers combinations. Polyacrylic acid (PAA), a highly water-soluble polymer, was used to substantially increase the dissolution rate of the drug, while hydroxypropyl methyl cellulose (HPMC) or HPMC acetate succinate (HPMCAS) were added to stabilize the solid amorphous matrix against crystallization upon hydration, as well as to maintain supersaturation. Quantitative measurements of the impact of the polymers on the solution nucleation and growth rates of celecoxib revealed that, while the cellulose derivatives are effective nucleation inhibitors, it is more difficult to completely prevent crystal growth in solutions containing seed crystals, in particular at high supersaturations. Therefore, it is critical to prevent the formation of crystals in the dissolving matrix during dissolution. By using certain ratios of HPMC and PAA, both rapid release as well as crystallization inhibition could be achieved, even at high drug loadings. Utilizing combinations of polymers may therefore be useful to tailor release profiles while providing optimized crystallization inhibition.

  12. Characterization and Antimicrobial Property of Poly(Acrylic Acid Nanogel Containing Silver Particle Prepared by Electron Beam

    Directory of Open Access Journals (Sweden)

    Jong-Bae Choi

    2013-05-01

    Full Text Available In this study, we developed a one step process to synthesize nanogel containing silver nanoparticles involving electron beam irradiation. Water-soluble silver nitrate powder is dissolved in the distilled water and then poly(acrylic acid (PAAc and hexane are put into this silver nitrate solution. These samples are irradiated by an electron beam to make the PAAc nanogels containing silver nanoparticles (Ag/PAAc nanogels. The nanoparticles were characterized by scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS. In addition, the particle size and zeta-potential were confirmed by a particle size analyzer (PSA. The antibacterial properties of the nanogels were evaluated by paper diffusion test. The Ag/PAAc nanogels had an antibacterial effect against Escherichia coli and Staphylococcus aureus. The nanogels also demonstrated a good healing effect against diabetic ulcer. The size of the Ag/PAAc nanogels decreased with increasing irradiation doses, and the absolute value of the zeta potential increased with increasing irradiation doses. Also, the Ag/PAAc nanogels exhibited good antibacterial activity against both Gram-negative and Gram-positive bacteria. In in vivo wound healing, the Ag/PAAc nanogels have a good healing effect.

  13. Hysteretic memory in pH-response of water contact angle on poly(acrylic acid) brushes.

    Science.gov (United States)

    Yadav, Vivek; Harkin, Adrienne V; Robertson, Megan L; Conrad, Jacinta C

    2016-04-21

    We investigated the pH-dependent response of flat polyacid brushes of varying length and dispersity in the extended brush regime. Our model system consisted of poly(acrylic acid) brushes, which change from hydrophobic and neutral at low pH to hydrophilic and negatively charged at high pH, synthesized on silicon substrates using a grafting-from approach at constant grafting density. We observed three trends in the pH-response: first, the dry brush thickness increased as the pH was increased for brushes above a critical length, and this effect was magnified as the dispersity increased; second, the water contact angle measured at low pH was larger for brushes of greater dispersity; and third, brushes of sufficient dispersity exhibited hysteretic memory behavior in the pH-dependence of the contact angle, in which the contact angle upon increasing and decreasing pH differed. As a consequence, the pKa of the brushes measured upon increasing pH was consistently higher than that measured upon decreasing pH. The observed pH response is consistent with proposed changes in the conformation and charge distribution of the polyelectrolyte brushes that depend on the direction of pH change and the dispersity of the brushes.

  14. Thermoresponsive gelling behavior of concentrated alumina suspensions containing poly(acrylic acid) and PEO-PPO-PEO copolymer.

    Science.gov (United States)

    Kondo, Akira; Xu, Hui; Abe, Hiroya; Naito, Makio

    2012-05-01

    Thermoresponsive gelling behavior of concentrated alumina suspensions with poly(acrylic acid) (PAA) and triblock copolymer (PEO(101)-PPO(56)-PEO(101), Pluronic F127) was investigated as a function of PAA concentration (0.4-1.2 mass%) for ceramic solid free forming. The copolymer species assemble into micelles at temperatures above 15°C, yielding aqueous physical gel. In this study, the concentrated alumina aqueous suspensions (φ=35 vol%) were first prepared using the anionic dispersant of PAA, and then the copolymer species (10 mass%) were dissolved at a cooled temperature at 10°C. The addition of the copolymer species had a negligible influence on the adsorption state of PAA onto the alumina surfaces. The PAA concentration needed for the saturation adsorption on the alumina surfaces was ~0.6 mass%. When the PAA concentration was this value or slightly less, the suspension became gel state at 30°C from low viscous state at 10°C. The thermally induced alumina gel had excellent viscoelastic properties, and thereby the three dimensional periodic ceramic structures were successfully fabricated by a direct colloidal printing method that using the gels as "solid" inks at the room temperature. On the other hand, when it exceeded the saturation adsorption limit, the gelling behavior was not observed, indicating that the non-adsorbing PAA species may partly suppress the micellization of the copolymer on the heating.

  15. Mechanism of poly(acrylic acid) acceleration of antithrombin inhibition of thrombin: implications for the design of novel heparin mimics.

    Science.gov (United States)

    Monien, Bernhard H; Cheang, Kai I; Desai, Umesh R

    2005-08-11

    The bridging mechanism of antithrombin inhibition of thrombin is a dominant mechanism contributing a massive approximately 2500-fold acceleration in the reaction rate and is also a key reason for the clinical usage of heparin. Our recent study of the antithrombin-activating properties of a carboxylic acid-based polymer, poly(acrylic acid) (PAA), demonstrated a surprisingly high acceleration in thrombin inhibition (Monien, B. H.; Desai, U. R. J. Med. Chem. 2005, 48, 1269). To better understand this interesting phenomenon, we have studied the mechanism of PAA-dependent acceleration in antithrombin inhibition of thrombin. Competitive binding studies with low-affinity heparin and a heparin tetrasaccharide suggest that PAA binds antithrombin in both the pentasaccharide- and the extended heparin-binding sites, and these results are corroborated by molecular modeling. The salt-dependence of the K(D) of the PAA-antithrombin interaction shows the formation of five ionic interactions. In contrast, the contribution of nonionic forces is miniscule, resulting in an interaction that is significantly weaker than that observed for heparins. A bell-shaped profile of the observed rate constant for antithrombin inhibition of thrombin as a function of PAA concentration was observed, suggesting that inhibition proceeds through the "bridging" mechanism. The knowledge gained in this mechanistic study highlights important rules for the rational design of orally available heparin mimics.

  16. Interactions between lead-zirconate titanate, polyacrylic acid, and polyvinyl butyral in ethanol and their influence on electrophoretic deposition behavior.

    Science.gov (United States)

    Kuscer, Danjela; Bakarič, Tina; Kozlevčar, Bojan; Kosec, Marija

    2013-02-14

    Electrophoretic deposition (EPD) is an attractive method for the fabrication of a few tens of micrometer-thick piezoelectric layers on complex-shape substrates that are used for manufacturing high-frequency transducers. Niobium-doped lead-zirconate titanate (PZT Nb) particles were stabilized in ethanol using poly(acrylic acid) (PAA). With Fourier-transform infrared spectroscopy (FT-IR), we found that the deprotonated carboxylic group from the PAA is coordinated with the metal in the perovskite PZT Nb structure, resulting in a stable ethanol-based suspension. The hydroxyl group from the polyvinyl butyral added into the suspension to prevent the formation of cracks in the as-deposited layer did not interact with the PAA-covered PZT Nb particles. PVB acts as a free polymer in ethanol-based suspensions. The electrophoretic deposition of micro- and nanometer-sized PZT Nb particles from ethanol-based suspensions onto electroded alumina substrates was attempted in order to obtain uniform, crack-free deposits. The interactions between the PZT Nb particles, the PAA, and the PVB in ethanol will be discussed and related to the properties of the suspensions, the deposition yield and the morphology of the as-deposited PZT Nb thick film.

  17. Blood-Vessel Mimicking Structures by Stereolithographic Fabrication of Small Porous Tubes Using Cytocompatible Polyacrylate Elastomers, Biofunctionalization and Endothelialization.

    Science.gov (United States)

    Huber, Birgit; Engelhardt, Sascha; Meyer, Wolfdietrich; Krüger, Hartmut; Wenz, Annika; Schönhaar, Veronika; Tovar, Günter E M; Kluger, Petra J; Borchers, Kirsten

    2016-04-20

    Blood vessel reconstruction is still an elusive goal for the development of in vitro models as well as artificial vascular grafts. In this study, we used a novel photo-curable cytocompatible polyacrylate material (PA) for freeform generation of synthetic vessels. We applied stereolithography for the fabrication of arbitrary 3D tubular structures with total dimensions in the centimeter range, 300 µm wall thickness, inner diameters of 1 to 2 mm and defined pores with a constant diameter of approximately 100 µm or 200 µm. We established a rinsing protocol to remove remaining cytotoxic substances from the photo-cured PA and applied thio-modified heparin and RGDC-peptides to functionalize the PA surface for enhanced endothelial cell adhesion. A rotating seeding procedure was introduced to ensure homogenous endothelial monolayer formation at the inner luminal tube wall. We showed that endothelial cells stayed viable and adherent and aligned along the medium flow under fluid-flow conditions comparable to native capillaries. The combined technology approach comprising of freeform additive manufacturing (AM), biomimetic design, cytocompatible materials which are applicable to AM, and biofunctionalization of AM constructs has been introduced as BioRap(®) technology by the authors.

  18. Poly(acrylic acid)/polyethylene glycol hygrogel prepared by using gamma-ray irradiation for mucosa adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Young-Chang; Park, Jong-Seok; Shin, Jung-Woong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Gwon, Hui-Jeong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Khil, Myung-Seob [Chonbuk National University, Jeonju (Korea, Republic of); Lee, Deok-Won [Maxillofacial Surgery Dental Hospital, Seoul (Korea, Republic of); Ahn, Sung-Jun [JADAM Co., LTD., Seogwipo (Korea, Republic of)

    2015-01-15

    A buccal delivery system provides a much milder environment for drug delivery compared to an oral delivery which presents a hostile environment for drugs, especially proteins and polypeptides, owing to acid hydrolysis. Local delivery in an oral cavity has particular applications in the treatment of toothaches, periodontal disease, and bacterial infections. Poly(acrylic acid) (PAA)-based hydrogels prepared using a chemical initiator have been attempted for a mucoadhesive system owing to their flexibility and excellent bioadhesion. In this experiment, PAA and polyethylene glycol (PEG) were selected to prepare using a radiation process a bioadhesive hydrogel for adhesion to mucosal surfaces. PAA and PEG were dissolved in purified water to prepare a homogeneous PAA/PEG solution, and the solution was then irradiated using an electron beam at dose up to 70 kGy to make the hydrogels. Their physical properties, such as gel percent, swelling percent, and adhesive strength to mucosal surfaces, were investigated. In this experiment, various amounts of PEG were incorporated into the PAA to enhance the mucoadhesive property of the hydrogels. The effect of the molecular weight of PEG on the mucoadhesion was also examined.

  19. Gold nanorods surface modified with poly(acrylic acid) as a template for the synthesis of metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hotchkiss, Jay W.; Mohr, Benjamin G. R.; Boyes, Stephen G., E-mail: sboyes@mines.ed [Colorado School of Mines, Department of Chemistry and Geochemistry (United States)

    2010-03-15

    Poly(acrylic acid) (PAA) surface-modified gold nanorods, contained in deionized ultra filtered (DIUF) water, served as templates for the formation of gold (Au), palladium (Pd), and platinum (Pt) nanoparticles upon reduction with NaBH{sub 4}. This provided nanoparticles with respective diameters of 7.0 {+-} 0.7, 4.1 {+-} 0.4, and 5.1 {+-} 0.5 nm. Varying amounts of Pt metal salt were used in EG, which acts as both a solvent and a reducing agent, ranging from 0.1, 0.2, and 1.0 mg/mL, to provide control over nanoparticle diameters of 2.0 {+-} 0.5 nm, to 4.0 {+-} 0.5 nm, and 6.2 {+-} 1.9 nm, respectively. Nanoparticle diameter was also controlled in DIUF water by varying the amount of Pt metal salt from 0.1, 0.2, and 1.0 mg/mL, producing Pt particle diameters, respectively, increasing from 2.7 {+-} 0.3 nm to 4.1 {+-} 0.5 nm, and 6.0 {+-} 0.6 nm.

  20. Removal of Cr(VI) and As(V) ions from aqueous solutions by polyacrylate and polystyrene anion exchange resins

    Science.gov (United States)

    Jachuła, Justyna; Hubicki, Zbigniew

    2013-09-01

    The sorption of Cr(VI) and As(V) from the aqueous solutions with the polyacrylate anion exchangers of the strong base functional groups Amberlite IRA 458 and Amberlite IRA 958 was studied. The studies were carried out by the static-batch method. The concentration of Cr(VI) and As(V) ions in the aqueous solution was determined by the UV-VIS spectrophotometer. The influence of several parameters was studied with respect to sorption equilibrium. The phase contact time and the concentration affect the sorption process. The equilibrium state was established already after 15 min of phase contact time. Maximum uptake of Cr(VI) and As(V) occurred at pH 5 and 10, respectively. The determined kinetic parameters imply that the sorption process proceeds according to the equation type of pseudo second-order. Sorption equilibrium data were correlated with the Langmuir and Freundlich isotherms. Removal of As(V) ions on macroporous Amberlite IRA 900 decreased about 12 % in presence of other anions (Cl-, NO3 -, SO4 2-) in the solution. The sorption was temperature dependent.

  1. Novel polyacrylate-based cationic nanoparticles for survivin siRNA delivery combined with mitoxantrone for treatment of breast cancer.

    Science.gov (United States)

    Arami, Sanam; Mahdavi, Majid; Rashidi, Mohammad Reza; Fathi, Marziyeh; Hejazi, Mohammad-Saeid; Samadi, Nasser

    2016-11-01

    As a gene delivery method in breast cancer therapy, knocking down the undesired genes in the cancerous cells would be promising. Inhibitors of Apoptosis Protein (IAP) family genes are some of the genes whose responsibility is inhibition of apoptosis in cells. Silencing these genes seems to be helpful directing the tumor cells to death. siRNA sequence designed against survivin anti-apoptotic gene can play this role if carried to the cytoplasm. Here we prepared a positive charged biocompatible nano-sized particle made up of a Fe3O4 core covered respectively by polyacrylate (PA) and polyethyleneimine (PEI) layer, which could successfully deliver the siRNA into the MCF-7 cells. The particle structure was checked and having less than 50 nm diameter in size, positive charge and, safety towards MCF-7 cells besides being able to form nanoplexes with the siRNA strand helps it entering into the biologic assays part. The siRNA delivery evaluated via flowcytometry. Apoptosis induction was determined by DAPI staining. The efficiency of survivin gene knockdown was evaluated in mRNA and protein levels using Real time PCR and western blotting methods. Overall, the Fe3O4-PA-PEI nanoparticles can deliver siRNA effectively into the cytoplasm of the MCF-7 breast cancer cells and induce apoptosis.

  2. NMR Water Self-Diffusion and Relaxation Studies on Sodium Polyacrylate Solutions and Gels in Physiologic Ionic Solutions.

    Science.gov (United States)

    Bai, Ruiliang; Basser, Peter J; Briber, Robert M; Horkay, Ferenc

    2014-03-15

    Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca(2+) and Na(+). Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na(+) on the mobility of water molecules was practically undetectable. By contrast, addition of Ca(2+) strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced.

  3. ATR-FTIR studies on ion interaction of lithium perchlorate in polyacrylate/poly(ethylene oxide) blends

    Science.gov (United States)

    Sim, L. H.; Gan, S. N.; Chan, C. H.; Yahya, R.

    2010-08-01

    The interaction behaviours between components of polyacrylate (PAc)/poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO 4) were investigated in detail by Attenuated Total Reflectance (ATR)-Fourier Transformed Infrared (FTIR) spectroscopy. Solution cast films of the PAc/PEO and PAc/PEO/LiClO 4 were examined. No obvious shifting of the characteristic ether and ester group stretching modes of PEO and PAc was observed, indicating incompatibility of the binary PAc/PEO blend. The spectroscopic studies on the PAc/PEO/LiClO 4 blends reveal that Li + ions coordinate individually to the polymer components at the ether oxygen of PEO and the C-O of the ester group of PAc. Frequency changes observed on the ν(C-O-C) and ω(CH 2) of PEO confirm the coordination between PEO and Li + ions resulting in crystallinity suppression of PEO. The absence of experimental evidence on the formation of PEO-Li +-PAc complexes suggests that LiClO 4 does not enhance the compatibility of PAc/PEO blend.

  4. Ultrathin-yttrium phosphate-shelled polyacrylate-ferriferrous oxide magnetic microspheres for rapid and selective enrichment of phosphopeptides.

    Science.gov (United States)

    Sun, Ye; Wang, He-Fang

    2013-11-05

    Rapid and selective enrichment of phosphopeptides from complex biological samples is essential and challenging in phosphorylated proteomics. We present the direct growth of the ultrathin YPO4 shell on the surface of polyacrylate capped secondary Fe3O4 microspheres (PA-Fe3O4@YPO4) for the rapid and selective trapping phosphopeptides from complex samples. The prepared PA-Fe3O4@YPO4 could be rapidly harvested in the presence of an applied magnetic field and easily re-dispersed in solutions after removing the external magnet. The ultrathin YPO4 shell on super-hydrophilic PA-Fe3O4 has the advantages of fast adsorption/desorption dynamics and low non-specific adsorption, thus trapping of phosphopeptides from the tryptic digests mixture of β-casein/BSA with molar ratio of 1/300 is achieved in 20s adsorption/desorption time. Two phosphopeptides can still be detected with a signal to noise ratio (S/N) over 3 when the amount of β-casein was as low as 8 fmol.

  5. Synthesis and characterization of self-crosslinking fluorinated polyacrylate soap-free latices with core-shell structure

    Science.gov (United States)

    Xu, Wei; An, Qiufeng; Hao, Lifen; Zhang, Dan; Zhang, Min

    2013-03-01

    Novel self-crosslinking fluorinated polyacrylate soap-free latices (FMBN) with core-shell structure were synthesized by semicontinuous seeded emulsion polymerization method from dodecafluoroheptyl methacrylate (DFMA), methyl methacrylate (MMA), butyl acrylate (BA), and N-methylolamide (NMA) in the presence of a polymerizable emulsifier-ammonium allyloxtmethylate nonylphenol ethoxylates sulfate (DNS-86). Effects of the DNS-86 and DFMA amounts on stability and properties of the FMBN emulsions were studied. Besides, the latices and their film were characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (1H NMR) spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser particle size analyzer, differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), contact angle goniometer, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. FT-IR spectra and 1H NMR spectrum showed that DFMA successfully participated in soap-free emulsion polymerization and monomers formed the fluorinated acrylate copolymer. The resulted latex particles had the core-shell structure. The films formed from the FMBN latices thus had two Tg. Their thermal stability and Tg of the shell phase increased gradually with augment of DFMA amount in polymer. XPS, AFM and hydrophobicity analyses indicated the fluoroalkyl groups had the tendency to enrich at the film-air interface. This enrichment of fluorine at the film-air interface was more evident after the annealing process. Water contact angles of the FMBN film before and after the annealing process could attain 115.5° and 117.5°, individually.

  6. Determination of Ni2+ in Waters with Sodium Polyacrylate as a Binding Phase in Diffusive Gradients in Thin-films

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong; DONG Jia; NIU Yong-xin; SUN Ting

    2011-01-01

    An aqueous solution containing sodium polyacrylate(PAAS) was used in diffusive gradient in thin-films technique(DGT) to measure DGT-labile Ni2+ concentrations.The DGT devices(PAAS DGT) were validated in four types of solutions,including synthetic river water containing metal ions with complexing EDTA or that without complexing EDTA,natural river water(Ling River,Jinzhou,China) spiked with Ni2+,and an industrial wastewater (Jinzhou,China).Results show that only free metal ions were measured by PAAS DGT,recovery=97.36% in the solutions containing only free metal ions,recovery=49.62% in a solution with metal/EDTA molar ratio of 2:1 and recovery=0 in the solutions with metal/EDTA molar ratios of 1:1 and 1:2.These indicated that the complexes of Ni-EDTA were DGT-inert.The DGT performance in spiked river water(recovery=18.24%) and in industrial wastewater(recovery=l2.25%) were investigated,which indicated that the measurement of metals by this DGT device did not include the humic substances complexed fractions of metals.The binding properties of PAAS DGT for Ni2+ were investigated under different conditions of pH value and ionic strength.Conditional stability constants(lgK) of PAAS-Ni complexes were also evaluated.

  7. Use of insoluble polyacrylate polymers to aid phytostabilization of mine soils: effects on plant growth and soil characteristics.

    Science.gov (United States)

    Qu, G; de Varennes, A; Cunha-Queda, C

    2010-01-01

    We evaluated the use of polyacrylate polymers to aid phytostabilization of mine soils. In a pot experiment, perennial ryegrass was grown in a mine soil and in uncontaminated soil. Growth was stimulated in the polymer-amended mine soil compared with an unamended control, and water-extractable levels of soil Cu and Zn decreased after polymer application. In an experiment performed in six 60-cm-diameter cylinders filled with fertilized mine soil, polymers were applied to three cylinders, with the remainder used as unamended control. Total biomass produced by indigenous plant species sown in polymer-amended soil was 1.8 (Spring-Summer) or 2.4 times (Fall-Winter) greater than that of plants from unamended soil. The application of polymers to the mine soil led to the greatest activity of soil enzymes. Soil pH, biomass of Spergularia purpurea and Chaetopogon fasciculatus, and activities of protease and cellulase had large loadings on principal component (PC)1, whereas growth of Briza maxima and the activities of urease, acid phosphatase, and beta-glucosidase had large loadings on PC2. The treatments corresponding to controls were located on the negative side of PC1 and PC2. Amended treatments were on the positive side of PC2 (Spring-Summer) or on the positive side of PC1 (Fall-Winter), demonstrating differential responses of plants and soil parameters in the two growth cycles.

  8. Synthesis and colon-specific drug delivery of a poly(acrylic acid-co-acrylamide)/MBA nanosized hydrogel.

    Science.gov (United States)

    Ray, Debajyoti; Mohapatra, Dillip K; Mohapatra, Ranjit K; Mohanta, Guru P; Sahoo, Prafulla K

    2008-01-01

    Intravenous administration of 5-fluorouracil (5-FU) for colon cancer therapy produces severe systemic side-effects due to its cytotoxic effect on normal cells. The main objective of the present study was to develop novel oral site-specific delivery of 5-FU to the colon with less drug being released in the stomach or small intestine using biodegradable hydrogel, hydrogel nanoparticles and comparing the targeting efficiency of 5-FU to colon from both. Poly(acrylic acid-co-acrylamide) (P(AA-co-Am)) normal hydrogel and hydrogel nanoparticles (HN) were synthesized by free radical polymerization using N,N-methylene-bis-acrylamide (MBA) as cross-linker, potassium persulfate as reaction initiator and 5-FU was loaded. HN were found to be degradable in physiological medium and showed comparatively higher swelling in rat caecal medium (RCM). 5-FU entrapment was increased by increasing Am (wt%) monomer feed. In vitro release of 5-FU from normal hydrogel and HN in pH progressive medium, it was found that a AA/Am ratio of 25:75 showed higher release in RCM. The Higuchi model yielded good adjustment of in vitro release kinetics. A higher amount of 5-FU reached the colon in HN (61 +/- 2.1%) than normal hydrogel (40 +/- 3.6%) by organ biodistribution studies in albino rats.

  9. Biodegradability and mechanical properties of poly(butylene succinate) composites with finely dispersed hydrophilic poly(acrylic acid)

    Science.gov (United States)

    Mizuno, Sawako; Hotta, Atsushi

    2014-03-01

    Biodegradability and mechanical properties of aliphatic poly(butylene succinate) (PBS) films with finely dispersed hydrophilic poly(acrylic acid) (PAA) were investigated. First, 3.5 wt% of PAA was chemically grafted onto the surface of the PBS films (surface-grafted PBS) by photo grafting polymerization, and then the grafted PAA was homogeneously and finely dispersed into PBS by dissolving the surface-grafted PBS into chloroform before mixing and drying to get solid PAA-dispersed PBS. Degradation of these modified PBS was investigated using gel permeation chromatography (GPC) and tensile testing. According to the GPC results, it was found that the PAA-dispersed PBS had intermediate biodegradability with the intermediate water intake, and the reaction constant of PAA-dispersed PBS was in between those of untreated PBS and surface-grafted PBS, in fact 25% higher and 17% lower, respectively. The experimental results presented that the biodegradability of PBS could be well controlled by the dispersion of PAA, possibly leading to the widespread use of PBS for biodegradable polymers.

  10. Cyclodextrin-crosslinked poly(acrylic acid): Synthesis, physicochemical characterization and controlled release of diflunisal and fluconazole from hydrogels.

    Science.gov (United States)

    Kutyła, Marguerite J; Lambert, Lynette K; Davies, Nigel M; McGeary, Ross P; Shaw, P Nicholas; Ross, Benjamin P

    2013-02-28

    The aim of this work was to develop mucoadhesive hydrogels with variable drug delivery properties by crosslinking poly(acrylic acid) (PAA) with cyclodextrins (CDs). CD-PAA polymers with high CD content and good inter-batch reproducibility were synthesized by activating PAA with SOCl2, then reacting PAA chloride with CD in the presence of 4-dimethylaminopyridine at 50°C. Manipulation of the synthesis conditions affected the physicochemical character of the CD-PAA polymers and hydrogels in terms of CD content, the average number of ester bonds to an individual CD, viscosity, and the association and release of model drugs. Inclusion complexation of diflunisal (DIF) and fluconazole (FLZ) with CD-PAA hydrogels was assessed by (19)F NMR spectroscopy and association constants (Kas) for DIF were in the range 220-486M(-1) with βCD-PAA and 1327-6055M(-1) with hydroxypropyl-βCD-PAA. For FLZ the Ka range was 34-171M(-1) with hydroxypropyl-βCD-PAA. The hydrogels were found to release both drugs by means of Fickian diffusion as the predominant mechanism. A slight trend toward negative correlation was found between the Ka and Higuchi kH values for DIF. These results highlight the potential of CD-PAA hydrogels to control the release of model drugs through inclusion complexation.

  11. Cross-linked poly(acrylic acids) microgels and agarose as semi-interpenetrating networks for resveratrol release.

    Science.gov (United States)

    Tunesi, Marta; Prina, Elisabetta; Munarin, Fabiola; Rodilossi, Serena; Albani, Diego; Petrini, Paola; Giordano, Carmen

    2015-01-01

    Carbomers, cross-linked poly(acrylic acid) microgels, have been widely used in pharmaceutical formulations as swollen hydrogels. Agarose, whose thermoreversibility may be exploited for drug loading, forms a gel with a mechanism involving coil-helix transition at about 36 °C. In this work carbomer microgels were combined with agarose networks in a semi-interpenetrating polymer network structure, aiming at obtaining suitable delivery systems for the loading and release of molecules with poor bioavailability but high therapeutic interest, like resveratrol. The rheological properties of the formulations and their in vitro cytocompatibility were studied and optimized acting on the neutralizing agent (triethylamine (N,N-diethylethanamine), triethanolamine (tris(2-hydroxyethyl)amine) and sodium hydroxide) and amount of OH donors (1,2-propanediol and glycerol). As a preparation method, autoclaving was introduced to simultaneously obtain heating and sterilising. Among the different neutralizing agents, NaOH was chosen to avoid the use of amines, considering the final application. Without the addition of alcohols as typical OH donors to induce Carbomer gelification, gels with appropriate rheological properties and stability were produced. For this formulation, the release of resveratrol after 7 days was about 80 % of the loaded mass, suggesting it is an interesting approach to be exploited for the development of innovative resveratrol delivery systems.

  12. Characterization and antimicrobial property of poly(acrylic acid) nanogel containing silver particle prepared by electron beam.

    Science.gov (United States)

    Choi, Jong-Bae; Park, Jong-Seok; Khil, Myung-Seob; Gwon, Hui-Jeong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Nho, Young-Chang

    2013-05-24

    In this study, we developed a one step process to synthesize nanogel containing silver nanoparticles involving electron beam irradiation. Water-soluble silver nitrate powder is dissolved in the distilled water and then poly(acrylic acid) (PAAc) and hexane are put into this silver nitrate solution. These samples are irradiated by an electron beam to make the PAAc nanogels containing silver nanoparticles (Ag/PAAc nanogels). The nanoparticles were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). In addition, the particle size and zeta-potential were confirmed by a particle size analyzer (PSA). The antibacterial properties of the nanogels were evaluated by paper diffusion test. The Ag/PAAc nanogels had an antibacterial effect against Escherichia coli and Staphylococcus aureus. The nanogels also demonstrated a good healing effect against diabetic ulcer. The size of the Ag/PAAc nanogels decreased with increasing irradiation doses, and the absolute value of the zeta potential increased with increasing irradiation doses. Also, the Ag/PAAc nanogels exhibited good antibacterial activity against both Gram-negative and Gram-positive bacteria. In in vivo wound healing, the Ag/PAAc nanogels have a good healing effect.

  13. Poly(acrylic acid)-grafted poly(N-isopropyl acrylamide) networks: preparation, characterization and hydrogel behavior.

    Science.gov (United States)

    Yu, Rentong; Zheng, Sixun

    2011-01-01

    Poly(acrylic acid)-grafted poly(N-isopropylacrylamide) co-polymer networks (PNIPAAm-g-PAA) were prepared via the reversible addition-fragmentation transfer (RAFT) polymerization of N-isopropyl- acrylamide (NIPAAm) with trithiocarbonate-terminated PAA as a macromolecular chain-transfer agent in the presence of N,N-methylenebisacrylamide. The PNIPAAm-g-PAA co-polymer networks were characterized by means of Fourier transform infrared spectroscopy, differential scanning calorimetry and small-angle X-ray scattering. It is found that the PNIPAAm-g-PAA co-polymer networks were microphase-separated, in which the microdomains of PNIPAAm-PAA interpolymer complexes were dispersed into the PNIPAAm matrix. The PNIPAAm-g-PAA hydrogels displayed a dual response to temperature and pH values. The thermoresponsive properties of PNIPAAm-g-PAA networks were investigated. Below the volume phase transition temperatures, the PNIPAAm-g-PAA hydrogels possessed much higher swelling ratios than control PNIPAAm hydrogel. In terms of swelling, deswelling and reswelling tests, it is judged that the PNIPAAm-g-PAA hydrogels displayed faster response to the external temperature changes than control PNIPAAm hydrogel. The improved thermoresponsive properties of hydrogels are ascribed to the formation of PAA-grafted PNIPAAm networks, in which the water-soluble PAA chains behave as the hydrophiphilic tunnels and allow water molecules to go through and, thus, to accelerate the diffusion of water molecules.

  14. Poly(acrylic acid)/polyethylene glycol hygrogel prepared by using gamma-ray irradiation for mucosa adhesion

    Science.gov (United States)

    Nho, Young-Chang; Park, Jong-Seok; Shin, Jung-Woong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Gwon, Hui-Jeong; Khil, Myung-Seob; Lee, Deok-Won; Ahn, Sung-Jun

    2015-01-01

    A buccal delivery system provides a much milder environment for drug delivery compared to an oral delivery which presents a hostile environment for drugs, especially proteins and polypeptides, owing to acid hydrolysis. Local delivery in an oral cavity has particular applications in the treatment of toothaches, periodontal disease, and bacterial infections. Poly(acrylic acid) (PAA)-based hydrogels prepared using a chemical initiator have been attempted for a mucoadhesive system owing to their flexibility and excellent bioadhesion. In this experiment, PAA and polyethylene glycol (PEG) were selected to prepare using a radiation process a bioadhesive hydrogel for adhesion to mucosal surfaces. PAA and PEG were dissolved in purified water to prepare a homogeneous PAA/PEG solution, and the solution was then irradiated using an electron beam at dose up to 70 kGy to make the hydrogels. Their physical properties, such as gel percent, swelling percent, and adhesive strength to mucosal surfaces, were investigated. In this experiment, various amounts of PEG were incorporated into the PAA to enhance the mucoadhesive property of the hydrogels. The effect of the molecular weight of PEG on the mucoadhesion was also examined.

  15. Establishment of the first national reference standard of polyacrylic resin Ⅱ%首批聚丙烯酸树脂Ⅱ国家标准物质的研制与建立

    Institute of Scientific and Technical Information of China (English)

    李樾; 刘艳林; 贺瑞玲; 王峰; 孙会敏

    2013-01-01

    Objective:To develop a national reference standard of polyacrylic resin II. Methods: The structure of polyacrylic resin II was determined by IR,'HNMR and GPC. The methacrylate unit content of polyacrylic resin II was analyzed by acid -base titration. Results: The structure and the composition of the raw material have been i-dentified. Conclusion: The national reference standard of polyacrylic resin II has been established,which can be used for the quality control of polyacrylic resin II and drug related products.%目的:建立药用辅料聚丙烯酸树脂Ⅱ红外光谱鉴别用首批国家标准物质.方法:以红外光谱、核磁共振氢谱及分子量分布等方法确证结构,以容量法对甲基丙烯酸单元进行含量测定.结果:确定了聚丙烯酸树脂Ⅱ原料的结构及组成.结论:建立的聚丙烯酸树脂Ⅱ国家标准物质可满足国内相关产品的研究、检定以及质量控制的要求.

  16. Effect of light on self-assembly of aqueous mixtures of sodium dodecyl sulfate and a cationic, bolaform surfactant containing azobenzene.

    Science.gov (United States)

    Hubbard, F Pierce; Abbott, Nicholas L

    2007-04-24

    We report light and small-angle neutron scattering measurements that characterize microstructures formed in aqueous surfactant solutions (up to 1.0 wt % surfactant) containing mixtures of sodium dodecyl sulfate (SDS) and the light-sensitive bolaform surfactant, bis(trimethylammoniumhexyloxy)azobenzene dibromide (BTHA) as a function of composition, equilibration time, and photostationary state (i.e., solutions rich in cis-BTHA or trans-BTHA). We observed formation of vesicles in both SDS-rich and trans-BTHA-rich regions of the microstructure diagram, with vesicles present over a particularly broad range of compositions for trans-BTHA-rich solutions. Illumination of mixtures of BTHA and SDS with a broadband UV light source leads to formation of photostationary states where the fraction of BTHA present as cis isomer (75-80% cis-BTHA) is largely independent of the mixing ratio of SDS and BTHA. For a relatively limited set of mixing ratios of SDS and BTHA, we observed UV illumination of SDS-rich vesicles to result in the reversible transformation of the vesicles to micellar aggregates and UV illumination of BTHA-rich vesicles to result in irreversible precipitation. Surprisingly, however, for many mixtures of trans-BTHA and SDS that formed solutions containing vesicles, illumination with UV light (which was confirmed to lead to photoisomerization of BTHA) resulted in only a small decrease in the number of vesicles in solution, relatively little change in the sizes of the remaining vesicles, and coexistance of the vesicles with micelles. These observations are consistent with a physical model in which the trans and cis isomers of BTHA present at the photostationary state tend to segregate between the different microstructures coexisting in solution (e.g., vesicles rich in trans-BTHA and SDS coexist with micelles rich in cis-BTHA and SDS). The results presented in this paper provide guidance for the design of light-tunable surfactants systems.

  17. QSPR models for prediction of the soil sorption coefficient (log KOC) values of 209 polychlorinated trans-azobenzenes (PCt-ABs).

    Science.gov (United States)

    Wilczyńska-Piliszek, Agata J; Piliszek, Sławomir; Falandysz, Jerzy

    2012-01-01

    The values of the soil sorption coefficient (K(OC)) have been computed for 209 environmentally relevant trans polychlorinated azobenzenes (PCABs) lacking experimental partitioning data. The quantitative structure-property relationship (QSPR) approach and artificial neural networks (ANN) predictive ability used in models based on geometry optimalization and quantum-chemical structural descriptors, which were computed on the level of density functional theory (DFT) using B3LYP functional and 6-311++G** basis set and of the semi-empirical quantum chemistry method for property parameterization (PM6) of the molecular orbital package (MOPAC). An experimentally available data on physical and chemical properties of PCDD/Fs and PCBs were used as reference data for the QSPR models and ANNs predictions in this study. Both calculation methods gave similar results in term of absolute log K(OC) values, while the PM6 model generated in the MOPAC was a much more efficient compared to the DFT model in GAUSSIAN. The estimated values of log K(OC) varied between 4.93 and 5.62 for mono-, 5.27 and 7.46 for di-, 6.46 and 8.09 for tri-, 6.65 and 9.11 for tetra-, 6.75 and 9.68 for penta-, 6.44 and 10.24 for hexa-, 7.00 and 10.36 for hepta-, 7.09 and 9.82 octa-, 8.94 and 9.71 for nona-Ct-ABs, and 9.26 and 9.34 for deca-Ct-AB. Because of high log K(OC) values PCt-ABs could be classified as compounds with high affinity to the particles of soil, sediments and organic matter.

  18. Poly(amic acid)s and their poly(amide imide) counterparts containing azobenzene moieties: Characterization, imidization kinetics and photochromic properties

    Energy Technology Data Exchange (ETDEWEB)

    Konieczkowska, Jolanta [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland); Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice (Poland); Janeczek, Henryk [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland); Kozanecka-Szmigiel, Anna, E-mail: annak@if.pw.edu.pl [Faculty of Physics, Warsaw University of Technology, 75 Koszykowa Str., 00-662 Warszawa (Poland); Schab-Balcerzak, Ewa, E-mail: eschab-balcerzak@cmpw-pan.edu.pl [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland)

    2016-09-01

    We report on a series of novel photochromic poly(amide imide)s and their poly(amic acid) precursors bearing azobenzene chromophores as the side groups. The chemical structures of the polymers were designed so that they exhibited an enhanced thermal stability combined with a large and stable birefringence photogenerated by light of the wavelengths belonging to a wide spectral range. The polymers possessed rigidly attached azochromophores in the content of either one or two per a repeating unit, which in the latter case differed in their structures. The imidization kinetics of the poly(amic acid)s was investigated by differential scanning calorimetry and the kinetic parameters were estimated using Ozawa and Kissinger methods. Measurements of the selected physical properties of the polymers, such as solubility, supramolecular structure, linear absorption, thermal stability, glass transition and photochromic response were performed and used for determination of the structure-property relations. The measurements of photochromic properties showed a very efficient generation of optical anisotropy upon blue and violet irradiation, for both the poly(amide imide)s containing two different chromophores in the repeating unit and for their precursors. For these poly(amide imide)s and for their precursors an exceptionally slow decrease in the photoinduced optical anisotropy in the dark was also observed. - Highlights: • Three azopoly(amide imide)s were obtained from azopoly(amic acid)s. • Chosen physicochemical properties and photochromic responses were measured. • Desired optical response was found for polymers with two azo-dyes in repeating unit. • Structure-property relations were shown.

  19. Shrinking of anionic polyacrylate coils induced by Ca2+, Sr2+ and Ba2+: a combined light scattering and ASAXS study.

    Science.gov (United States)

    Schweins, R; Goerigk, G; Huber, K

    2006-10-01

    Anionic polyacrylate chains (NaPA) form precipitates if alkaline earth cations are added in stoichiometric amounts. Accordingly, precipitation thresholds were established for three different alkaline earth cations Ca(2+), Sr(2+) and Ba(2+). Close to the precipitation threshold, the NaPA chains significantly decrease in size. This shrinking process was followed by means of combined static and dynamic light scattering. Intermediates were generated by varying the ratio [MCl(2)]/[NaPA] with M denoting the respective alkaline earth cation. All experiments were performed at an inert salt level of 0.01M NaCl. Similar coil-to-sphere transitions could be observed with all three alkaline earth cations Ca(2+), Sr(2+) and Ba(2+). Based on these findings, supplementary conventional and anomalous small-angle X-ray scattering experiments using selected intermediates close to the precipitation threshold of SrPA were performed. The distribution of Sr counterions around the polyacrylate chains in aqueous solution provided the desired scattering contrast. Energy-dependent scattering experiments enabled successful separation of the pure-resonant terms, which solely stem from the counterions. The Sr(2+) scattering roughly reflects the monomer distribution of the polyacrylate chains. Different ratios of the concentrations of [ SrCl(2)]/[NaPA] revealed dramatic changes in the scattering curves. The scattering curve at the lowest ratio indicated an almost coil-like behaviour, while at the higher ratios the scattering curves supported the model of highly contracted polymer chains. Most of X-ray scattering experiments on intermediate states revealed compact structural elements which were significantly smaller than the respective overall size of the NaPA particles.

  20. Polyacrylic acid-coated cerium oxide nanoparticles: An oxidase mimic applied for colorimetric assay to organophosphorus pesticides.

    Science.gov (United States)

    Zhang, Shi-Xiang; Xue, Shi-Fan; Deng, Jingjing; Zhang, Min; Shi, Guoyue; Zhou, Tianshu

    2016-11-15

    It is important and urgent to develop reliable and highly sensitive methods that can provide on-site and rapid detection of extensively used organophosphorus pesticides (OPs) for their neurotoxicity. In this study, we developed a novel colorimetric assay for the detection of OPs based on polyacrylic acid-coated cerium oxide nanoparticles (PAA-CeO2) as an oxidase mimic and OPs as inhibitors to suppress the activity of acetylcholinesterase (AChE). Firstly, highly dispersed PAA-CeO2 was prepared in aqueous solution, which could catalyze the oxidation of TMB to produce a color reaction from colorless to blue. And the enzyme of AChE was used to catalyze the substrate of acetylthiocholine (ATCh) to produce thiocholine (TCh). As a thiol-containing compound with reducibility, TCh can decrease the oxidation of TMB catalyzed by PAA-CeO2. Upon incubated with OPs, the enzymatic activity of AChE was inhibited to produce less TCh, resulting in more TMB catalytically oxidized by PAA-CeO2 to show an increasing blue color. The two representative OPs, dichlorvos and methyl-paraoxon, were tested using our proposed assay. The novel assay showed notable color change in a concentration-dependent manner, and as low as 8.62 ppb dichlorvos and 26.73 ppb methyl-paraoxon can be readily detected. Therefore, taking advantage of such oxidase-like activity of PAA-CeO2, our proposed colorimetric assay can potentially be a screening tool for the precise and rapid evaluation of the neurotoxicity of a wealth of OPs.