WorldWideScience

Sample records for azirines

  1. Synthesis of tripeptides containing heterocyclic α -amino acids by using heterospirocyclic 3-amino-2H-azirines

    OpenAIRE

    Strässler, Christoph; Linden, Anthony; Heimgartner, Heinz

    2018-01-01

    By using the ‘azirine/oxazolone method’, di- and tripeptides containing six-membered heterocyclic 4-amino-4-carboxylic acids with a piperidine, tetrahydropyran or tetrahydrothiopyran ring have been synthesized. It has been shown that the corresponding heterospirocyclic 3-(N-methyl-N-phenylamino)-2H-azirines are suitable synthons for these heterocyclic α-amino acids. As expected, the presence of these α,α-disubstituted α-amino acids stabilizes β-turn conformations in the prepared tripeptides o...

  2. Annulation Reactions of Donor-Acceptor Cyclopropanes with (1-Azidovinyl)benzene and 3-Phenyl-2H-azirine.

    Science.gov (United States)

    Curiel Tejeda, Joanne E; Irwin, Lauren C; Kerr, Michael A

    2016-09-16

    Under the influence of heat and Lewis acid, donor/acceptor cyclopropanes underwent annulation reactions with (1-azidovinyl)benzene and 3-phenyl-2H-azirine to form an unusual azabicyclic scaffold with an imbedded aziridine. The mechanism of reaction is believed to proceed via a vinyl nitrene intermediate.

  3. Fe(II)-Catalyzed Isomerization of 5-Chloroisoxazoles to 2 H-Azirine-2-carbonyl Chlorides as a Key Stage in the Synthesis of Pyrazole-Nitrogen Heterocycle Dyads.

    Science.gov (United States)

    Mikhailov, Kirill I; Galenko, Ekaterina E; Galenko, Alexey V; Novikov, Mikhail S; Ivanov, Alexander Yu; Starova, Galina L; Khlebnikov, Alexander F

    2018-03-16

    2-(1 H-Pyrazol-1-ylcarbonyl)-2 H-azirines were synthesized by in situ trapping of 2 H-azirine-2-carbonyl chlorides, generated by Fe(II)-catalyzed isomerization of 5-chloroisoxazoles, with pyrazoles. According to DFT calculations, the selectivity of nucleophilic substitution at the carbonyl group of 2 H-azirine-2-carbonyl chloride by a pyrazole nucleophile, which is a mixture of two tautomers, is controlled by thermodynamic factors. 2-(1 H-Pyrazol-1-ylcarbonyl)-2 H-azirines are excellent precursors for the preparation of two other pyrazole-nitrogen heterocycle dyads: 5-(1 H-pyrazol-1-yl)oxazoles by photolysis and 1-(1 H-pyrrol-2-ylcarbonyl)-1 H-pyrazoles by a Ni(II)-catalyzed reaction with 1,3-dicarbonyl compounds. 5-(1 H-Pyrazol-1-yl)oxazoles show strong emission in acetonitrile at 360-410 nm with high quantum yields.

  4. [3 + 2]-Cycloadditions of nitrile ylides after photoactivation of vinyl azides under flow conditions

    Directory of Open Access Journals (Sweden)

    Stephan Cludius-Brandt

    2013-08-01

    Full Text Available The photodenitrogenation of vinyl azides to 2H-azirines by using a photoflow reactor is reported and compared with thermal formation of 2H-azirines. Photochemically, the ring of the 2H-azirines was opened to yield the nitrile ylides, which underwent a [3 + 2]-cycloaddition with 1,3-dipolarophiles. When diisopropyl azodicarboxylate serves as the dipolarophile, 1,3,4-triazoles become directly accessible starting from the corresponding vinyl azide.

  5. Ultrafast Infrared and UV-vis Studies of the Photochemistry of Methoxycarbonylphenyl Azides in Solution

    Science.gov (United States)

    Xue, Jiadan; Luk, Hoi Ling; Eswaran, S. V.; Hadad, Christopher M.; Platz, Matthew S.

    2012-01-01

    The photochemistry of 4-methoxycarbonylphenyl azide (2a), 2-methoxycarbonylphenyl azide (3a) and 2-methoxy-6-methoxycarbonylphenyl azide (4a) were studied by ultrafast time-resolved infrared (IR) and UV-vis spectroscopies in solution. Singlet nitrenes and ketenimines were observed and characterized for all three azides. Isoxazole species 3g and 4g are generated after photolysis of 3a and 4a, respectively, in acetonitrile. Triplet nitrene 4e formation correlated with the decay of singlet nitrene 4b. The presence of water does not change the chemistry or kinetics of singlet nitrenes 2b and 3b, but leads to protonation of 4b to produce nitrenium ion 4f. Singlet nitrenes 2b and 3b have lifetimes of 2 ns and 400 ps, respectively, in solution at ambient temperature. The singlet nitrene 4b in acetonitrile has a lifetime of about 800 ps, and reacts with water with a rate constant of 1.9 × 108 L·mol−1·s−1 at room temperature. These results indicate that a methoxycarbonyl group at either the para or ortho positions has little influence on the ISC rate, but that the presence of a 2-methoxy group dramatically accelerates the ISC rate relative to the unsubstituted phenylnitrene. An ortho methoxy group highly stabilizes the corresponding nitrenium ion and favors its formation in aqueous solvents. This substituent has little influence on the ring-expansion rate. These results are consistent with theoretical calculations for the various intermediates and their transition states. Cyclization from the nitrene to the azirine intermediate is favored to proceed towards the electron-deficient ester group; however, the higher energy barrier is the ring-opening process, that is azirine to ketenimine formation, rendering the formation of the ester-ketenimine to be less favorable than the isomeric MeO-ketenimine. PMID:22568477

  6. A novel strategy for the synthesis of thermally stable and apoptosis-inducing 2,3-dihydroazetes.

    Science.gov (United States)

    Smetanin, Ilia A; Novikov, Mikhail S; Agafonova, Anastasiya V; Rostovskii, Nikolai V; Khlebnikov, Alexander F; Kudryavtsev, Igor V; Terpilowski, Maxim A; Serebriakova, Maria K; Trulioff, Andrey S; Goncharov, Nikolay V

    2016-05-11

    A general and concise approach to thermally and hydrolytically stable alkyl 2,3-dihydroazete-2,3-di-/2,2,3-tricarboxylates from alkyl 2-bromoazirine-2-carboxylates or 4-bromo-5-alkoxyisoxazoles is reported. The synthesis involves the formation of 2-azabuta-1,3-diene by the reaction of rhodium carbenoid with isoxazole or azirine followed by cyclization/hydrodebromination cascade. The latter reaction is the first example of the selective hydrodehalogenation of a valence isomer under equilibrium conditions. In vitro cytotoxicity tests on THP-1 cell line revealed that the 2,3-dihydroazetes greatly differ in their ability to induce apoptosis and/or necrosis. To adequately describe and quantitatively assess these properties, the difference between the two areas under the curves of concentration dependency of apoptosis/necrosis induction within the concentration range was used. Trimethyl 4-phenyl-2,3-dihydroazete-2,2,3-tricarboxylate was found to display the maximal apoptotic potential coupled with high cytotoxic and minimal necrotic potential.

  7. The synthesis of (R)- and (S)-[N-methyl-11C]β, β-difluoromethamphetamine for the investigation of the binding mechanism of biogenic amines in vivo

    International Nuclear Information System (INIS)

    Gillings, N.M.; Gee, A.D.; Inoue, O.

    1999-01-01

    In an attempt to elucidate the contribution of the extent of nitrogen protonation on the in vivo binding of methamphetamine in the brain, the enantiomers of [N-methyl- 11 C]β,β-difluoroamphetamine (4) were prepared for use in positron emission tomography (PET) studies. Thus, the enantiomers of β,β-difluoroamphetamine were prepared from trans-β-methylstyrene, via bromination, conversion into the azirine, fluorination and resolution as the tartrate salts. (R)- and (S)-β,β-difluoroamphetamine (3) were then each labelled with carbon-11 (t 1/2 =20.4 min) by N-methylation of the corresponding homochiral β,β-difluoroamphetamine with [ 11 C]methyl iodide. The labelled products were each synthesised, purified and formulated in 35 min, starting from [ 11 C]carbon dioxide in 15-16% decay-corrected radiochemical yield, with a radiochemical purity of >99% and specific radioactivity of 50-150 GBq μmol -1 at end of synthesis

  8. The synthesis of (R)- and (S)-[N-methyl-{sup 11}C]{beta}, {beta}-difluoromethamphetamine for the investigation of the binding mechanism of biogenic amines in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Gillings, N.M.; Gee, A.D. [PET Centre, Aarhus University Hospital, Aarhus C (Denmark); Inoue, O. [School of Allied Health Sciences, Osaka University Medical School, Osaka (Japan)

    1999-04-01

    In an attempt to elucidate the contribution of the extent of nitrogen protonation on the in vivo binding of methamphetamine in the brain, the enantiomers of [N-methyl-{sup 11}C]{beta},{beta}-difluoroamphetamine (4) were prepared for use in positron emission tomography (PET) studies. Thus, the enantiomers of {beta},{beta}-difluoroamphetamine were prepared from trans-{beta}-methylstyrene, via bromination, conversion into the azirine, fluorination and resolution as the tartrate salts. (R)- and (S)-{beta},{beta}-difluoroamphetamine (3) were then each labelled with carbon-11 (t{sub 1/2}=20.4 min) by N-methylation of the corresponding homochiral {beta},{beta}-difluoroamphetamine with [{sup 11}C]methyl iodide. The labelled products were each synthesised, purified and formulated in 35 min, starting from [{sup 11}C]carbon dioxide in 15-16% decay-corrected radiochemical yield, with a radiochemical purity of >99% and specific radioactivity of 50-150 GBq {mu}mol{sup -1} at end of synthesis.

  9. Contrasting C- and O-Atom Reactivities of Neutral Ketone and Enolate Forms of 3-Sulfonyloxyimino-2-methyl-1-phenyl-1-butanones.

    Science.gov (United States)

    Ning, Yingtang; Otani, Yuko; Ohwada, Tomohiko

    2018-01-05

    The mechanisms of intramolecular cyclization of 3-sulfonyloxyimino-2-methyl-1-phenyl-1-butanones (1) under basic (DABCO and t-BuOK) and acidic (AcOH and TFA) conditions were investigated by means of experimental and computational methods. The ketone, enol, and enolate forms of 1 can afford different intramolecular cyclization products (2, 3, 4), depending on the conditions. The results of the reaction of 1 under basic conditions suggest intermediacy of neutral enol (DABCO) and anionic enolate (t-BuOK), while the results under acidic conditions (AcOH and TFA) indicate involvement of neutral ketones, which exhibit reactivities arising from both the oxygen lone-pair electrons (O atom reactivity) and carbon σ-electrons (C atom reactivity). The neutral enol in DABCO afforded 2H-azirine 4. On the other hand, the products (isoxazole 2 and oxazole 3) generated from the ketone form and from the enolate form are the same, but the reaction mechanisms are apparently different. The results demonstrate ambident-like reactivity of neutral ketone in the 3-sulfonyloxyimino-2-methyl-1-phenyl-1-butanone system.

  10. The pyrolysis of isoxazole revisited: a new primary product and the pivotal role of the vinylnitrene. A low-temperature matrix isolation and computational study.

    Science.gov (United States)

    Nunes, Cláudio M; Reva, Igor; Pinho e Melo, Teresa M V D; Fausto, Rui; Šolomek, Tomáš; Bally, Thomas

    2011-11-23

    This paper describes the pyrolysis of parent isoxazole and of its 5-methyl and 3,5-dimethyl derivatives by the high-pressure pulsed pyrolysis method, where activation of the precursor molecules occurs predominantly by collisions with the host gas (Ar in our case), rather than with the walls of the pyrolysis tube, where catalyzed processes may occur. The products were trapped at 15 K in Ar matrices and were characterized by vibrational spectroscopy. Thereby, hitherto unobserved primary products of pyrolysis of isoxazole and of its 5-methyl derivative, 3-hydroxypropenenitrile or 3-hydroxybutenenitrile, respectively, were observed. E-Z photoisomerization could be induced in the above hydroxynitriles. On pyrolysis of isoxazole, ketenimine and CO were observed as decomposition products, but this process did not occur when the 5-methyl derivative was pyrolyzed. Instead, the corresponding ketonitrile was formed. In the case of 3,5-dimethylisoxazole, 2-acetyl-3-methyl-2H-azirine was detected at moderate pyrolysis temperatures, whereas at higher temperatures, 2,5-dimethyloxazole was the only observed rearrangement product (next to products of dissociation). These findings are rationalized on the basis of quantum chemical calculations. Thereby it becomes evident that carbonyl-vinylnitrenes play a pivotal role in the observed rearrangements, a role that had not been recognized in previous theoretical studies because it had been assumed that vinylnitrenes are closed-shell singlet species, whereas they are in fact open-shell singlet biradicaloids. Thus, the primary processes had to be modeled by the multiconfigurational CASSCF method, followed by single-point MR-CISD calculations. The picture that emerges from these calculations is in excellent accord with the experimental findings; that is, they explain why some possible products are observed while others are not.