Parametric characterization and estimation of bi-azimuth dispersion of path components
DEFF Research Database (Denmark)
Yin, Xuefeng; Pedersen, Troels; Czink, Nicolai;
2006-01-01
-Mises-Fisher distributions. The elements in this family maximize the entropy under the constraint that the expectations and correlation matrix of the directions are known. The probability density function (pdf) of the proposed distribution is used to describe the bi-azimuth power spectrum of individual path components....... An estimator of the parameters of the pdf is derived and applied to characterize the spreads in both azimuth of departure and azimuth of arrival, as well as the correlation between both azimuths of individual path components. Preliminary results from an experimental investigation demonstrate the applicability...
Relative azimuth inversion by way of damped maximum correlation estimates
Ringler, A.T.; Edwards, J.D.; Hutt, C.R.; Shelly, F.
2012-01-01
Horizontal seismic data are utilized in a large number of Earth studies. Such work depends on the published orientations of the sensitive axes of seismic sensors relative to true North. These orientations can be estimated using a number of different techniques: SensOrLoc (Sensitivity, Orientation and Location), comparison to synthetics (Ekstrom and Busby, 2008), or by way of magnetic compass. Current methods for finding relative station azimuths are unable to do so with arbitrary precision quickly because of limitations in the algorithms (e.g. grid search methods). Furthermore, in order to determine instrument orientations during station visits, it is critical that any analysis software be easily run on a large number of different computer platforms and the results be obtained quickly while on site. We developed a new technique for estimating relative sensor azimuths by inverting for the orientation with the maximum correlation to a reference instrument, using a non-linear parameter estimation routine. By making use of overlapping windows, we are able to make multiple azimuth estimates, which helps to identify the confidence of our azimuth estimate, even when the signal-to-noise ratio (SNR) is low. Finally, our algorithm has been written as a stand-alone, platform independent, Java software package with a graphical user interface for reading and selecting data segments to be analyzed.
Azimuth DOA Estimation in Y-bend Antenna Array
Sanudin, R.
2016-11-01
In smart antenna system, it is extremely crucial to estimate the direction of incoming signals in order to achieve better reception. Reliability of DOA estimation depends on several factors such as the choice of DOA algorithm, size of antenna array as well as array geometry. Therefore, it is particularly desirable to have a configuration of antenna array that could produce an accurate azimuth estimation. In this work, a new planar array is proposed to address the problem of azimuth estimation. This is achieved by having a flexible element position on the x- y plane that improves the steering vector, hence significantly enhances the accuracy of DOA estimation. Besides, a fair distribution of the antenna elements on the x-y plane also helps to eliminates estimation failure in the azimuth range between 240° and 360°. A comparison study between the proposed array and V-shape array is performed in order to gauge the performance of the proposed array in DOA estimation. Simulation results show that the proposed array has acquired better estimation resolution than V-shape array. On top of that, the proposed array has reduced estimation error in V-shape array. It is concluded that the proposed array has shown potential as an excellent choice of antenna array geometry for smart antenna system.
Estimation of wave directional spreading
Digital Repository Service at National Institute of Oceanography (India)
Deo, M.C.; Gondane, D.S.; SanilKumar, V.
One of the useful measures of waves directional spreading at a given location is the directional spreading parameter. This paper presents a new approach to arrive at its characteristic value using the computational technique of Artificial Neural...
Estimation of directional wave spreading
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Bhat, S.S.; Anand, N.M.; Nayak, B.U.
collected over 2 years. Firstly, the characteristics of observed frequency spectra were studied and compared with general JONSWAP and PM spectrum is compared with theoretical two dimensional spectra suing various spectral spreadings. Study indicates...
Estimation of azimuth and slowness of teleseismic signals recorded by a local seismic network
Institute of Scientific and Technical Information of China (English)
靳平; 潘常周
2002-01-01
A new method that is applicable to local seismic networks to estimate the azimuth and slowness of teleseismic signals is introduced in the paper. The method is based on the correlation between the arrival times and station positions. The analyzed results indicate that the azimuth and slowness of teleseismic signals can be accurately estimated by the method. Average errors for azimuth and slowness measurements obtained by this method using data of Xi(an Digital Telemetry Seismic Network are 2.0o and 0.34 s/(o), respectively. The conclusions drawn from this study indicate that this method may be very useful to interpret teleseismic records of local seismic networks.
Estimating spread of violent behaviour with children
Directory of Open Access Journals (Sweden)
Volkova E.N.
2016-06-01
Full Text Available The article is to problems of violence (physical, psychological, sexual to children in the region of Nyzhniy Novgorod in the Russian Federation. It was used international tool for questionnaire ICAST-C. В исследовании приняли участие 227 children par- ticipated in this study (131 girls, 96 boys in the age of 11 to 18 years old. The results show that 78,4% of children have some experience of violence and abuse. 3/4 — in family, and 2/3 — at school. High level of psychological abuse at home was shown (more than 2/3 , at home it is more often than at school (54% versus 30%. Children suffer from physical abuse at home (49% versus 33% at school. Though they suffer from sexual abuse at school (27%. All kinds of abuse take place among girls as well as among boys. Except physical abuse at school where it is more usual among boys (45%, versus (33% girls. Girls suffer more at home. Teenagers suffer less, than youngsters. Emotional abuse is not spread widely (40% versus 60—75% in other groups. In general they suffer from sexual abuse not often, though it is usually at home (8,5% cases.
Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan
2017-02-20
In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequencydomain and achieves computational complexity reduction.
Masmoudi, Nabil
2014-05-01
Traveltimes are conventionally evaluated by solving the zero-order approximation of the Wentzel, Kramers and Brillouin (WKB) expansion of the wave equation. This high frequency approximation is good enough for most imaging applications and provides us with a traveltime equation called the eikonal equation. The eikonal equation is a non-linear partial differential equation which can be solved by any of the familiar numerical methods. Among the most popular of these methods is the method of characteristics which yields the ray tracing equations and the finite difference approaches. In the first part of the Master Thesis, we use the ray tracing method to solve the eikonal equation to get P-waves traveltimes for orthorhombic models with arbitrary orientation of symmetry planes. We start with a ray tracing procedure specified in curvilinear coordinate system valid for anisotropy of arbitrary symmetry. The coordinate system is constructed so that the coordinate lines are perpendicular to the symmetry planes of an orthorohombic medium. Advantages of this approach are the conservation of orthorhombic symmetry throughout the model and reduction of the number of parameters specifying the model. We combine this procedure with first-order ray tracing and dynamic ray tracing equations for P waves propagating in smooth, inhomogeneous, weakly anisotropic media. The first-order ray tracing and dynamic ray tracing equations are derived from the exact ones by replacing the exact P-wave eigenvalue of the Christoffel matrix by its first-order approximation. In the second part of the Master Thesis, we compute traveltimes using the fast marching method and we develop an approach to estimate the anisotropy parameters. The idea is to relate them analytically to traveltimes which is challenging in inhomogeneous media. Using perturbation theory, we develop traveltime approximations for transversely isotropic media with horizontal symmetry axis (HTI) as explicit functions of the
ADJUSTMENT OF LEVELING NETWORK BY INFORMATION SPREAD ESTIMATION
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In practical parameter estimation,we have always chosen eitherLeast Squares Estimation(LSE) or Robust Estimation.Since the distribution of observations is unknown,to select a correct estimation method is very difficult.It is well known that if observations include gross errors,the result of LSE will be badly containinated.On the other hand,if observations do not include any gross errors,the result of robust estimation is not as good as that of LSE.To solve this problem,Wang (1999) developed an estimation method called Information Spread Estimation (ISE) based on the information spread principle.The ISE is a very good method for estimating one parameter which is very robust.However, most of instances in surveying data processing are multi-parameters' estimation,owing to the inherent restrictions of ISE,it can not be applied to the surveying data processing directly.To apply the good method to the field of surveying data processing widely,the author has done the research deeply.This paper applies ISE successfully to the adjustment of leveling network by using the specialties of leveling.
Analysis of Wave Directional Spreading by Bayesian Parameter Estimation
Institute of Scientific and Technical Information of China (English)
钱桦; 莊士贤; 高家俊
2002-01-01
A spatial array of wave gauges installed on an observatoion platform has been designed and arranged to measure the lo-cal features of winter monsoon directional waves off Taishi coast of Taiwan. A new method, named the Bayesian ParameterEstimation Method( BPEM), is developed and adopted to determine the main direction and the directional spreading parame-ter of directional spectra. The BPEM could be considered as a regression analysis to find the maximum joint probability ofparameters, which best approximates the observed data from the Bayesian viewpoint. The result of the analysis of field wavedata demonstrates the highly dependency of the characteristics of normalized directional spreading on the wave age. The Mit-suyasu type empirical formula of directional spectnun is therefore modified to be representative of monsoon wave field. More-over, it is suggested that Smax could be expressed as a function of wave steepness. The values of Smax decrease with increas-ing steepness. Finally, a local directional spreading model, which is simple to be utilized in engineering practice, is prop-osed.
Shinohara, Yoshinori; Tsuruta, Kenji; Ogura, Akira; Noto, Fumikazu; Komatsu, Hikaru; Otsuki, Kyoichi; Maruyama, Toshisuke
2013-05-01
Understanding radial and azimuthal variation, and tree-to-tree variation, in sap flux density (Fd) as sources of uncertainty is important for estimating transpiration using sap flow techniques. In a Japanese cedar (Cryptomeria japonica D. Don.) forest, Fd was measured at several depths and aspects for 18 trees, using heat dissipation (Granier-type) sensors. We observed considerable azimuthal variation in Fd. The coefficient of variation (CV) calculated from Fd at a depth of 0-20 mm (Fd1) and Fd at a depth of 20-40 mm (Fd2) ranged from 6.7 to 37.6% (mean = 28.3%) and from 19.6 to 62.5% (mean = 34.6%) for the -azimuthal directions. Fd at the north aspect averaged for nine trees, for which azimuthal measurements were made, was -obviously smaller than Fd at the other three aspects (i.e., west, south and east) averaged for the nine trees. Fd1 averaged for the nine trees was significantly larger than Fd2 averaged for the nine trees. The error for stand-scale transpiration (E) estimates caused by ignoring the azimuthal variation was larger than that caused by ignoring the radial variation. The error caused by ignoring tree-to-tree variation was larger than that caused by ignoring both radial and azimuthal variations. Thus, tree-to-tree variation in Fd would be more important than both radial and azimuthal variations in Fd for E estimation. However, Fd for each tree should not be measured at a consistent aspect but should be measured at various aspects to make accurate E estimates and to avoid a risk of error caused by the relationship of Fd to aspect.
Estimation of wave directional spreading in shallow water
Digital Repository Service at National Institute of Oceanography (India)
SanilKumar, V.; Deo, M.C.; Anand, N.M.; Chandramohan, P.
Wave directional spreading in shallow water is described in this paper. Waves were measured for a period of two months using the Datawell directional waverider buoy at 15m water depth on the east coast of India in the Bay of Bengal. The study also...
New estimates of Herschel PACS point spread function
Bocchio, M; Abergel, A
2016-01-01
The knowledge of the point spread function (PSF) of imaging instruments represents a fundamental requirement for astronomical observations. The Herschel PACS PSFs delivered by the instrument control centre are obtained from observations of the Vesta asteroid, providing a characterisation of the central part therefore excluding fainter features. However, in many cases information on both the core and the wings of the PSFs is needed. With this aim, we combine Vesta and Mars dedicated observations and obtain PACS PSFs with an unprecedented dynamic range $(\\sim 10^6)$, at slow and fast scan speeds and for the three photometric bands.
Rotated Walsh-Hadamard Spreading with Robust Channel Estimation for a Coded MC-CDMA System
Directory of Open Access Journals (Sweden)
Raulefs Ronald
2004-01-01
Full Text Available We investigate rotated Walsh-Hadamard spreading matrices for a broadband MC-CDMA system with robust channel estimation in the synchronous downlink. The similarities between rotated spreading and signal space diversity are outlined. In a multiuser MC-CDMA system, possible performance improvements are based on the chosen detector, the channel code, and its Hamming distance. By applying rotated spreading in comparison to a standard Walsh-Hadamard spreading code, a higher throughput can be achieved. As combining the channel code and the spreading code forms a concatenated code, the overall minimum Hamming distance of the concatenated code increases. This asymptotically results in an improvement of the bit error rate for high signal-to-noise ratio. Higher convolutional channel code rates are mostly generated by puncturing good low-rate channel codes. The overall Hamming distance decreases significantly for the punctured channel codes. Higher channel code rates are favorable for MC-CDMA, as MC-CDMA utilizes diversity more efficiently compared to pure OFDMA. The application of rotated spreading in an MC-CDMA system allows exploiting diversity even further. We demonstrate that the rotated spreading gain is still present for a robust pilot-aided channel estimator. In a well-designed system, rotated spreading extends the performance by using a maximum likelihood detector with robust channel estimation at the receiver by about 1 dB.
Institute of Scientific and Technical Information of China (English)
Chang Liang; Wang Fuping; Wang Zanji
2009-01-01
It is a necessary step to estimate the spreading sequence of direct sequence spread spectrum (DSSS) signal for blind despreading and demodulation in non-cooperative communications. Two innovative and effective detection statistics axe proposed to implement the synchronization and spreading sequence estimation procedure. The proposed algorithm also has a low computational complexity with only linear additions and modifications. Theoretical analysis and simulation results show that the algorithm performs quite well in low SNR environment, and is much better than all the existing typical algorithms with a comprehensive consideration both in performance and computational complexity.
Kano, M.; Nagao, H.; Shiomi, K.; Sakai, S.; Nakagawa, S.; Mizusako, S.; Hori, M.; Hirata, N.
2014-12-01
Prediction of structural motions during large earthquakes is important to prevent secondary disasters. To evaluate such strong motion as accurately as possible, it is essential to infer the image of ground motion in the target area based on densely installed seismological networks. In the Tokyo metropolitan area of Japan, the dense seismological array "MeSO-net" was established in 2007, and has approximately 300 stations with several kilometer intervals. Mizusako et al. (2014, AGU) applies lasso, which is a linear regression modeling method using the L1 regularization, to the MeSO-net data during the 2011 off the Pacific coast of Tohoku Earthquake to infer the spatially-high-resolution strong motions in the metropolitan area. Their method succeeds in reproducing the waveforms up to much higher frequency component than previous studies. However, there are two topics to deal with before practical use of their study. The first topic is that real azimuths of MeSO-net seismometers installed after 2009 have not been verified, while those installed in 2007 and 2008 were already verified based on cross correlation with nearby tiltmeters of Hi-net and/or seismometers of F-net (Shiomi et al., 2009). Since azimuths of seismometers obviously affect the data processing, we evaluate the azimuths of seismometers following Shiomi et al. (2009). The second topic is that we cannot directly obtain the ground motion data on surface since MeSO-net seismometers are installed at 20m depth. We have been also developing the method to estimate transfer functions that convert strong motion at 20m depth to that on surface, by utilizing continuous observations obtained both on surface and at 20m depth at two stations, and short-term observations obtained above the boreholes at more than 100 stations. A combination of this vertical transformation method and the horizontal estimation method (Mizusako et al., 2014), enables us to infer an image of ground motions in the whole Tokyo area.
Institute of Scientific and Technical Information of China (English)
REN Lin; YANG Jingsong; ZHENG Gang; WANG Juan
2015-01-01
This paper proposes two simple models, look-up table (LUT) model and empirical model, to directly retrieve significant wave height (Hs) using synthetic aperture radar (SAR) azimuth cutoff (λc). Both models aim at C-band VV, HH, VH, and HV single-polarization SAR images. The LUT model relatesHs toλc, while the empirical model relatesHs to bothλc and SAR range-to-velocity (β). The LUT model coefficients are derived by simulation under different sea states and observation conditions, which depend on incidence angle (θ), wave direction (dw), andβbut are independent of polarization. The empirical model coefficients are obtained by fitting the collocated data, which only depend on polarization. To fit empirical model coefficients and validate the two models, C-band RADARSAT-2 fine quad-polarization (VV+HH+VH+HV) single-look complex (SLC) SAR images and collocated buoy data are collected. RetrievedHs, using Yang model and the two models proposed in this paper from four kinds of polarization SAR data, are compared with buoyHs. Results show that both LUT and empirical models have the capacity of retrievingHs from C-band RADARSAT-2 co-polarization SAR data, while Yang model is not suitable for these kinds of SAR data. Moreover, the empirical model is also valid for cross-polarization SAR data showing clear ocean wave stripes.
Joint mean angle of arrival, angular and Doppler spreads estimation in macrocell environments
Rejeb, Nessrine Ben; Bousnina, Inès; Ben Salah, Mohamed Bassem; Samet, Abdelaziz
2014-12-01
In this paper, we propose a new low-complexity joint estimator of the mean angle of arrival (AoA), the angular spread (AS), and the maximum Doppler spread (DS) for single-input multiple-output (SIMO) wireless channel configurations in a macrocell environment. The non-line-of-sight (NLOS) case is considered. The space-time correlation matrix is used to jointly estimate the three parameters. Closed-form expressions are developed for the desired parameters using the modules and the phases of the cross-correlation coefficients. Simulation results show that our approach offers a better tradeoff between computational complexity and accuracy than the most recent estimators in the literature.
Waggle Dances and Azimuthal Windows
Directory of Open Access Journals (Sweden)
O. Duangphakdee
2011-01-01
Full Text Available Because the waggle dances of honeybees contain celestial components, modifications of the dances occur with changing celestial moves relative to a honeybee nest. Since the direction of a particular resource is static, the dances must alter to compensate for the sun's passage. The position of the sun is seasonal between the Tropics of Cancer and Capricorn so that turns at the end of waggle runs will vary with season and latitude. The bees are confronted with a new difficulty when the sun closely approaches its zenith because only slight errors in the bees' estimation of the relative positions of the sun and zenith generate very large errors. So, the sun compass loses its usefulness when at its zenith. We review experiments and observations on both foraging and absconding in relation to the azimuth. The honeybees' solution for the paradox of the azimuth includes an azimuthal lull, preferences, and time windows.
Fleet size estimation for spreading operation considering road geometry, weather and traffic
Directory of Open Access Journals (Sweden)
Steven I-Jy Chien
2014-02-01
Full Text Available Extreme weather conditions(i.e. snow storm in winter time have caused significant travel disruptions and increased delay and traffic accidents. Snow plowing and salt spreading are the most common counter-measures for making our roads safer for motorists. To assist highway maintenance authorities with better planning and allocation of winter maintenance resources, this study introduces an analytical model to estimate the required number of trucks for spreading operation subjective to pre-specified service time constraints considering road geometry, weather and traffic. The complexity of the research problem lies in dealing with heterogeneous road geometry of road sections, truck capacities, spreading patterns, and traffic speeds under different weather conditions and time periods of an event. The proposed model is applied to two maintenance yards with seven road sections in New Jersey (USA, which demonstrates itself fairly practical to be implemented, considering diverse operational conditions.
Yuan, Xin
2014-01-01
Various compositions of sparsely polarized antenna arrays are proposed in this paper to estimate the direction-of-arrivals (DOAs) and polarizations of multiple coherent sources. These polarized antenna arrays are composed of one of the following five sparsely-spread sub-array geometries: 1) four spatially-spread dipoles with three orthogonal orientations, 2) four spatially-spread loops with three orthogonal orientations, 3) three spatially-spread dipoles and three spatially-spread loops with orthogonal orientations, 4) three collocated dipole-loop pairs with orthogonal orientations, and 5) a collocated dipole-triad and a collocated loop-triad. All the dipoles/loops/pairs/triads in each sub-array can also be sparsely spaced with the inter-antenna spacing far larger than a half-wavelength. Only one dimensional spatial-smoothing is used in the proposed algorithm to derive the two-dimensional DOAs and polarizations of multiple cross-correlated signals. From the simulation results, the sparse array composed of dip...
SU-E-T-146: Beam Energy Spread Estimate Based On Bragg Peak Measurement
Energy Technology Data Exchange (ETDEWEB)
Anferov, V; Derenchuk, V; Moore, R [ProNova Solutions, Knoxville, TN (United States); Schreuder, A [Provision Healthcare Partners, Knoxville, TN (United States)
2015-06-15
Purpose: ProNova is installing and commissioning a two room proton therapy system in Knoxville, TN. Beam energy out of the 230MeV cyclotron was measured on Jan 24, 2015. Cyclotron beam was delivered into a Zebra multi layered IC detector calibrated in terms of penetration range in water. The analysis of the measured Bragg peak determines penetration range in water which can be subsequently converted into proton beam energy. We extended this analysis to obtain an estimate of the beam energy spread out of the cyclotron. Methods: Using Monte Carlo simulations we established the correlation between Bragg peak shape parameters (width at 50% and 80% dose levels, distal falloff) and penetration range for a monoenergetic proton beam. For large uniform field impinging on a small area detector, we observed linear dependence of each Bragg peak parameter on beam penetration range as shown in Figure A. Then we studied how this correlation changes when the shape of Bragg peak is distorted by the beam focusing conditions. As shown in Figure B, small field size or diverging beam cause Bragg peak deformation predominantly in the proximal region. The distal shape of the renormalized Bragg peaks stays nearly constant. This excludes usage of Bragg peak width parameters for energy spread estimates. Results: The measured Bragg peaks had an average distal falloff of 4.86mm, which corresponds to an effective range of 35.5cm for a monoenergetic beam. The 32.7cm measured penetration range is 2.8cm less. Passage of a 230MeV proton beam through a 2.8cm thick slab of water results in a ±0.56MeV energy spread. As a final check, we confirmed agreement between shapes of the measured Bragg peak and one generated by Monte-Carlo code for proton beam with 0.56 MeV energy spread. Conclusion: Proton beam energy spread can be estimated using Bragg peak analysis.
Gitterman, Y.; Kim, S. G.; Hofstetter, R.
2016-04-01
Three underground nuclear explosions, conducted by North Korea in 2006, 2009 and 2013, are analyzed. The last two tests were recorded by the Israel Seismic Network. Pronounced coherent minima (spectral nulls) at 1.2-1.3 Hz were revealed in the spectra of teleseismic P -waves. For a ground-truth explosion with a shallow source depth, this phenomenon can be interpreted in terms of the interference between the down-going P-wave and the pP phase reflected from the Earth's surface. This effect was also observed at ISN stations for a Pakistan nuclear explosion at a different frequency 1.7 Hz and the PNE Rubin-2 in West Siberia at 1 Hz, indicating a source-effect and not a site-effect. Similar spectral minima having essentially the same frequency, as at ISN, were observed in teleseismic P-waves for all the three North Korean explosions recorded at networks and arrays in Kazakhstan (KURK), Norway (NNSN), Australia (ASAR, WRA) and Canada (YKA), covering a broad azimuthal range. Data of 2009 and 2013 tests at WRA and KURK arrays showed harmonic spectral modulation with three multiple minima frequencies, evidencing the clear interference effect. These observations support the above-mentioned interpretation. Based on the null frequency dependency on the near-surface acoustic velocity and the source depth, the depth of the North Korean tests was estimated about 2.0-2.1 km. It was shown that the observed null frequencies and the obtained source depth estimates correspond to P- pP interference phenomena in both cases of a vertical shaft or a horizontal drift in a mountain. This unusual depth estimation needs additional validation based on more stations and verification by other methods.
Estimation Methods of the Point Spread Function Axial Position: A Comparative Computational Study
Directory of Open Access Journals (Sweden)
Javier Eduardo Diaz Zamboni
2017-01-01
Full Text Available The precise knowledge of the point spread function is central for any imaging system characterization. In fluorescence microscopy, point spread function (PSF determination has become a common and obligatory task for each new experimental device, mainly due to its strong dependence on acquisition conditions. During the last decade, algorithms have been developed for the precise calculation of the PSF, which fit model parameters that describe image formation on the microscope to experimental data. In order to contribute to this subject, a comparative study of three parameter estimation methods is reported, namely: I-divergence minimization (MIDIV, maximum likelihood (ML and non-linear least square (LSQR. They were applied to the estimation of the point source position on the optical axis, using a physical model. Methods’ performance was evaluated under different conditions and noise levels using synthetic images and considering success percentage, iteration number, computation time, accuracy and precision. The main results showed that the axial position estimation requires a high SNR to achieve an acceptable success level and higher still to be close to the estimation error lower bound. ML achieved a higher success percentage at lower SNR compared to MIDIV and LSQR with an intrinsic noise source. Only the ML and MIDIV methods achieved the error lower bound, but only with data belonging to the optical axis and high SNR. Extrinsic noise sources worsened the success percentage, but no difference was found between noise sources for the same method for all methods studied.
A new algorithm for epilepsy seizure onset detection and spread estimation from EEG signals
Quintero-Rincón, Antonio; Pereyra, Marcelo; D'Giano, Carlos; Batatia, Hadj; Risk, Marcelo
2016-04-01
Appropriate diagnosis and treatment of epilepsy is a main public health issue. Patients suffering from this disease often exhibit different physical characterizations, which result from the synchronous and excessive discharge of a group of neurons in the cerebral cortex. Extracting this information using EEG signals is an important problem in biomedical signal processing. In this work we propose a new algorithm for seizure onset detection and spread estimation in epilepsy patients. The algorithm is based on a multilevel 1-D wavelet decomposition that captures the physiological brain frequency signals coupled with a generalized gaussian model. Preliminary experiments with signals from 30 epilepsy crisis and 11 subjects, suggest that the proposed methodology is a powerful tool for detecting the onset of epilepsy seizures with his spread across the brain.
Models of Wake-Vortex Spreading Mechanisms and Their Estimated Uncertainties
Rossow, Vernon J.; Hardy, Gordon H.; Meyn, Larry A.
2006-01-01
One of the primary constraints on the capacity of the nation's air transportation system is the landing capacity at its busiest airports. Many airports with nearly-simultaneous operations on closely-spaced parallel runways (i.e., as close as 750 ft (246m)) suffer a severe decrease in runway acceptance rate when weather conditions do not allow full utilization. The objective of a research program at NASA Ames Research Center is to develop the technologies needed for traffic management in the airport environment so that operations now allowed on closely-spaced parallel runways under Visual Meteorological Conditions can also be carried out under Instrument Meteorological Conditions. As part of this overall research objective, the study reported here has developed improved models for the various aerodynamic mechanisms that spread and transport wake vortices. The purpose of the study is to continue the development of relationships that increase the accuracy of estimates for the along-trail separation distances available before the vortex wake of a leading aircraft intrudes into the airspace of a following aircraft. Details of the models used and their uncertainties are presented in the appendices to the paper. Suggestions are made as to the theoretical and experimental research needed to increase the accuracy of and confidence level in the models presented and instrumentation required or more precise estimates of the motion and spread of vortex wakes. The improved wake models indicate that, if the following aircraft is upwind of the leading aircraft, the vortex wakes of the leading aircraft will not intrude into the airspace of the following aircraft for about 7s (based on pessimistic assumptions) for most atmospheric conditions. The wake-spreading models also indicate that longer time intervals before wake intrusion are available when atmospheric turbulence levels are mild or moderate. However, if the estimates for those time intervals are to be reliable, further study
2016-09-01
Azimuth is an interesting hybrid. In part, it's the personal blog of John Carlos Baez, a mathematical physicist at the University of California, Riverside, whose current research focuses mainly on network theory.
Estimating the point spread function of an imaging system using wavefront measurement
Mao, Hongjun; Liang, Yonghui; Huang, Zongfu; Liu, Jin; Jiang, Pengzhi
2016-10-01
An imaging system is constructed by atmosphere turbulence and ground-based telescope when the latter is used to observe a space object. The wavefront measurement produced by adaptive optics system can be used to estimate the point spread function (PSF) of the imaging system since it contains the wavefront aberration information of the light from the object. But the detector noise of the wavefront sensor (WFS) will inevitably bring estimation error. Based on the statistical theory, a method is presented to improve the PSF estimation accuracy by eliminating the noise error from the wavefront measurement. The numerical simulation shows that the estimation error of this method could be lower than 10%. It also indicates that the higher the signal-noise ratio (SNR) of the WFS is, the more frames of the wavefront measurements are used, and the bigger the Fried constant is, the more accurate the estimation will be. The work in this paper can be applied to performance evaluation of imaging system, deconvolution of AO images, as well as photometric analysis of space object.
Estimating DOA and polarization with spatially spread loop and dipole pair array
Institute of Scientific and Technical Information of China (English)
Lanmei Wang; Zhihai Chen; Guibao Wang; Xuan Rao
2015-01-01
The nonuniform L-shaped spatial y spread loop and dipole (SSLD) array whose inter-element spacing is greater than half a wavelength is studied. A joint parameter estimation algo-rithm of direction of arrival (DOA), frequency and polarization is presented for plane-wave signals. The direct sampling and the corresponding delayed sampling data are used to construct the data correlation matrix. On the basis of the subspace theory and the least square method, the frequency and the steering vector of the whole array are obtained. According to the relationship of the array manifold vector between electric dipoles and magnetic loops, the polarization parameters are given. The unambiguous phase estimates are acquired by applying virtual baseline array transfor-mation to the spatial steering vectors, and they are used as coarse references to disambiguate the cyclic phase ambiguities in phase differences between two adjacent array elements on the array, then the high accuracy DOA estimates are obtained. Closed-form solutions for each parameter are obtained. This method has ad-vantages of lower calculation complexity and no parameter match-ing. The experiment results verify the effectiveness and feasibility of the presented algorithm.
Wallinga, Jacco; Teunis, Peter F M; Kretzschmar, Mirjam
2006-01-01
The estimation of transmission parameters has been problematic for diseases that rely predominantly on transmission of pathogens from person to person through small infectious droplets. Age-specific transmission parameters determine how such respiratory agents will spread among different age groups
Rochoux, M. C.; Emery, C.; Ricci, S.; Cuenot, B.; Trouve, A.
2015-08-01
This paper is the second part in a series of two articles, which aims at presenting a data-driven modeling strategy for forecasting wildfire spread scenarios based on the assimilation of the observed fire front location and on the sequential correction of model parameters or model state. This model relies on an estimation of the local rate of fire spread (ROS) as a function of environmental conditions based on Rothermel's semi-empirical formulation, in order to propagate the fire front with an Eulerian front-tracking simulator. In Part I, a data assimilation (DA) system based on an ensemble Kalman filter (EnKF) was implemented to provide a spatially uniform correction of biomass fuel and wind parameters and thereby, produce an improved forecast of the wildfire behavior (addressing uncertainties in the input parameters of the ROS model only). In Part II, the objective of the EnKF algorithm is to sequentially update the two-dimensional coordinates of the markers along the discretized fire front, in order to provide a spatially distributed correction of the fire front location and thereby, a more reliable initial condition for further model time-integration (addressing all sources of uncertainties in the ROS model). The resulting prototype data-driven wildfire spread simulator is first evaluated in a series of verification tests using synthetically generated observations; tests include representative cases with spatially varying biomass properties and temporally varying wind conditions. In order to properly account for uncertainties during the EnKF update step and to accurately represent error correlations along the fireline, it is shown that members of the EnKF ensemble must be generated through variations in estimates of the fire's initial location as well as through variations in the parameters of the ROS model. The performance of the prototype simulator based on state estimation (SE) or parameter estimation (PE) is then evaluated by comparison with data taken from
An estimation of short and long term rates spread: a leading indicator
2006-01-01
The relation between short and long term rates spread and economic growth has been widely argued on the international literature. Evidence from developed countries shows that the term structure of interest rates, frequently, contains relevant information concerning the economic growth dynamics. In many cases, the recession periods on the economy has been preceded by negative spreads, that means the short term interest rates exceed the long term ones (an interest rate reversion). Lately in Chi...
Multiparticle azimuthal correlations
Indian Academy of Sciences (India)
N Borghini; P M Dinh; J-Y Ollitrault
2003-04-01
First observations of elliptic ﬂow in Au–Au collisions at RHIC have been interpreted as evidence that the colliding system reaches thermal equilibrium. We discuss some of the arguments leading to this conclusion and show that a more accurate analysis is needed, which the standard ﬂow analysis may not provide. We then present a new method of ﬂow analysis, based on a systematic study of multiparticle azimuthal correlations. This method allows one to test quantitatively the collective behaviour of the interacting system. It has recently been applied by the STAR Collaboration at RHIC.
Wörner, Martin; Alla, Hocine; Yue, Pengtao
2016-01-01
The Cox-Voinov law on dynamic spreading relates the difference between the cubic values of the apparent contact angle (theta) and the equilibrium contact angle to the instantaneous contact line speed (U). Comparing spreading results with this law requires accurate data of theta and U during the entire process. We consider the case when gravitational forces are negligible and transform the general Cox law in a relationship for the temporal evolution of the spreading radius. For cap-shaped droplets, this enables a comparison of experimental or computational results with Cox theory without the need for instantaneous data of theta and U. The fitting of Cox theory against measured or computed base-radius-over-time curves allows estimating the effective slip length. This is useful for establishing relationships between slip length and parameters in numerical methods for moving contact lines. The procedure is illustrated by numerical simulations for partially wetting droplets employing the coupled level-set volume-o...
Using the Gravity Model to Estimate the Spatial Spread of Vector-Borne Diseases
Directory of Open Access Journals (Sweden)
Jean-Marie Aerts
2012-11-01
Full Text Available The gravity models are commonly used spatial interaction models. They have been widely applied in a large set of domains dealing with interactions amongst spatial entities. The spread of vector-borne diseases is also related to the intensity of interaction between spatial entities, namely, the physical habitat of pathogens’ vectors and/or hosts, and urban areas, thus humans. This study implements the concept behind gravity models in the spatial spread of two vector-borne diseases, nephropathia epidemica and Lyme borreliosis, based on current knowledge on the transmission mechanism of these diseases. Two sources of information on vegetated systems were tested: the CORINE land cover map and MODIS NDVI. The size of vegetated areas near urban centers and a local indicator of occupation-related exposure were found significant predictors of disease risk. Both the land cover map and the space-borne dataset were suited yet not equivalent input sources to locate and measure vegetated areas of importance for disease spread. The overall results point at the compatibility of the gravity model concept and the spatial spread of vector-borne diseases.
Stallinga, S.; Rieger, B.
2012-01-01
We introduce a method for determining the position and orientation of fixed dipole emitters based on a combination of polarimetry and spot shape detection. A key element is an effective Point Spread Function model based on Hermite functions. The model offers a good description of the shape variation
Directory of Open Access Journals (Sweden)
Darren J Kriticos
Full Text Available Biosecurity agencies need robust bioeconomic tools to help inform policy and allocate scarce management resources. They need to estimate the potential for each invasive alien species (IAS to create negative impacts, so that relative and absolute comparisons can be made. Using pine processionary moth (Thaumetopoea pityocampa sensu lato as an example, these needs were met by combining species niche modelling, dispersal modelling, host impact and economic modelling. Within its native range (the Mediterranean Basin and adjacent areas, T. pityocampa causes significant defoliation of pines and serious urticating injuries to humans. Such severe impacts overseas have fuelled concerns about its potential impacts, should it be introduced to New Zealand. A stochastic bioeconomic model was used to estimate the impact of PPM invasion in terms of pine production value lost due to a hypothetical invasion of New Zealand by T. pityocampa. The bioeconomic model combines a semi-mechanistic niche model to develop a climate-related damage function, a climate-related forest growth model, and a stochastic spread model to estimate the present value (PV of an invasion. Simulated invasions indicate that Thaumetopoea pityocampa could reduce New Zealand's merchantable and total pine stem volume production by 30%, reducing forest production by between NZ$1,550 M to NZ$2,560 M if left untreated. Where T. pityocampa is controlled using aerial application of an insecticide, projected losses in PV were reduced, but still significant (NZ$30 M to NZ$2,210 M. The PV estimates were more sensitive to the efficacy of the spray program than the potential rate of spread of the moth. Our novel bioeconomic method provides a refined means of estimating potential impacts of invasive alien species, taking into account climatic effects on asset values, the potential for pest impacts, and pest spread rates.
Kriticos, Darren J; Leriche, Agathe; Palmer, David J; Cook, David C; Brockerhoff, Eckehard G; Stephens, Andréa E A; Watt, Michael S
2013-01-01
Biosecurity agencies need robust bioeconomic tools to help inform policy and allocate scarce management resources. They need to estimate the potential for each invasive alien species (IAS) to create negative impacts, so that relative and absolute comparisons can be made. Using pine processionary moth (Thaumetopoea pityocampa sensu lato) as an example, these needs were met by combining species niche modelling, dispersal modelling, host impact and economic modelling. Within its native range (the Mediterranean Basin and adjacent areas), T. pityocampa causes significant defoliation of pines and serious urticating injuries to humans. Such severe impacts overseas have fuelled concerns about its potential impacts, should it be introduced to New Zealand. A stochastic bioeconomic model was used to estimate the impact of PPM invasion in terms of pine production value lost due to a hypothetical invasion of New Zealand by T. pityocampa. The bioeconomic model combines a semi-mechanistic niche model to develop a climate-related damage function, a climate-related forest growth model, and a stochastic spread model to estimate the present value (PV) of an invasion. Simulated invasions indicate that Thaumetopoea pityocampa could reduce New Zealand's merchantable and total pine stem volume production by 30%, reducing forest production by between NZ$1,550 M to NZ$2,560 M if left untreated. Where T. pityocampa is controlled using aerial application of an insecticide, projected losses in PV were reduced, but still significant (NZ$30 M to NZ$2,210 M). The PV estimates were more sensitive to the efficacy of the spray program than the potential rate of spread of the moth. Our novel bioeconomic method provides a refined means of estimating potential impacts of invasive alien species, taking into account climatic effects on asset values, the potential for pest impacts, and pest spread rates.
Stallinga, Sjoerd; Rieger, Bernd
2012-03-12
We introduce a method for determining the position and orientation of fixed dipole emitters based on a combination of polarimetry and spot shape detection. A key element is an effective Point Spread Function model based on Hermite functions. The model offers a good description of the shape variations with dipole orientation and polarization detection channel, and provides computational advantages over the exact vectorial description of dipole image formation. The realized localization uncertainty is comparable to the free dipole case in which spots are rotationally symmetric and can be well modeled with a Gaussian. This result holds for all dipole orientations, for all practical signal levels, and for defocus values within the depth of focus, implying that the massive localization bias for defocused emitters with tilted dipole axis found with Gaussian spot fitting is eliminated.
Directory of Open Access Journals (Sweden)
A. T. Kazymov
2015-01-01
Full Text Available To estimate the extent of local tumor spread is a main goal in the diagnosis of prostate cancer (PC. The value of this criterion is that its clinical stage plays a key role in choosing a treatment policy. Overestimation of the clinical stage of cancer leads to the fact that specialists refuse radical and its underestimation gives rise to its recurrence. Our trial defined criteria for the diagnostic efficiency of magnetic resonance imaging (MRI in 150 PC patients who had undergone radical prostatectomy. The findings were as follows: the diagnostic sensitivity of the method in determining the spread of the cancer beyond the organ was 76.8 %; its diagnostic specificity and accuracy were 80.2 and 78.7 %, respectively. The positive predictive value in detecting the extra-organ spread of the tumor was equal to 76.8 %; the negative predictive value was 80.2 %. A prognostic classification of a risk for locally advanced PS has been developed using the independent clinical and MRI signs found.
Faris, Allison T.; Seed, Raymond B.; Kayen, Robert E.; Wu, Jiaer
2006-01-01
During the 1906 San Francisco Earthquake, liquefaction-induced lateral spreading and resultant ground displacements damaged bridges, buried utilities, and lifelines, conventional structures, and other developed works. This paper presents an improved engineering tool for the prediction of maximum displacement due to liquefaction-induced lateral spreading. A semi-empirical approach is employed, combining mechanistic understanding and data from laboratory testing with data and lessons from full-scale earthquake field case histories. The principle of strain potential index, based primary on correlation of cyclic simple shear laboratory testing results with in-situ Standard Penetration Test (SPT) results, is used as an index to characterized the deformation potential of soils after they liquefy. A Bayesian probabilistic approach is adopted for development of the final predictive model, in order to take fullest advantage of the data available and to deal with the inherent uncertainties intrinstiic to the back-analyses of field case histories. A case history from the 1906 San Francisco Earthquake is utilized to demonstrate the ability of the resultant semi-empirical model to estimate maximum horizontal displacement due to liquefaction-induced lateral spreading.
Schaeffer, Andrew; Lebedev, Sergei
2015-04-01
We present our new global, azimuthally anisotropic model of the upper mantle, crust, and transition zone. We compare two versions of this new model, the rough SL2013svAr and smooth SL2013svA, which are constrained by a larger, updated waveform fit dataset (>900, 000 vertical component seismogram fits) than that used in the construction of the isotropic model SL2013sv (Schaeffer and Lebedev, 2013). These two anisotropy models are computed using a more precise regularization of anisotropy, which is tuned to honour the both the amplitude and orientation of the anisotropic terms uniformly, including near the poles. Automated, multimode waveform inversion was used to extract structural information from surface and S wave forms, yielding resolving power from the crust down to the transition zone. Our unprecedentedly large waveform dataset, with complementary high-resolution regional array subsets within larger global networks, produces improved resolution of global azimuthal anisotropy patterns. The model also reveals smaller scale patterns of 3D anisotropy variations related to regional lithospheric deformation and mantle flow, in particular in densely sampled regions. In oceanic regions, we examine the strength of azimuthal anisotropy, as a function of depth, spatial position with respect to the spreading ridge, and deviation in fast axis orientation from the current and fossil spreading directions. Furthermore, we explore correlations between anisotropic tomography models and a new reference frame developed such that the net rotation of spreading ridges is minimized (RNR; Becker et al, 2014). In continental regions, azimuthal anisotropy is more complex. Reconciling complementary observations given by shear wave splitting, surface-wave array analysis, and large-scale, global 3D models offers new insights into the mechanisms of continental deformation and the architecture and evolution of the lithosphere. Finally, quantitative comparisons with other recently published
A Neural Network Approach to Blind Estimation of PN Spreading Sequence in DS/SS Signals
Institute of Scientific and Technical Information of China (English)
ZHANG Tian-qi; ZHOU Zheng-zhong
2004-01-01
In this paper, a new approach is proposed to estimate pseudo noise(PN) sequence in the lower SNR DS/SS signals blindly. This method utilizes the characteristics of self-organization, principal components analysis and extraction of unsupervised neural networks adequately, in addition to its higher-speed operation ability, successfully solve the difficult problem about PN sequence blind estimation. The theoretic analysis and experimental results show that this approach can work very well on lower SNR input signals.
Azimuthal Correlation of Collective Motion in Relativistic Heavy Ion Collisions
Institute of Scientific and Technical Information of China (English)
HUO Lei; ZHANG Wei-Ning; CHEN Xiang-Jun; TANG Gui-Xin; ZHANG Jing-Bo
2001-01-01
The out-of-plane squeeze-out effect in relativistic heavy ion collisions is used to estimate the reaction plane by performing a modified transverse momentum analysis. A technique for investigating the azimuthal correlation between the out-of-plane squeeze-out and directed in-plane flow is described. A clear signature of the azimuthal correlation is evidenced in the 600 A MeV Au + Au reaction from the quantum molecular dynamic model calculations.
Guareschi, Simone; Coccia, Cristina; Sánchez-Fernández, David; Carbonell, José Antonio; Velasco, Josefa; Boyero, Luz; Green, Andy J; Millán, Andrés
2013-01-01
Invasions of alien species are considered among the least reversible human impacts, with diversified effects on aquatic ecosystems. Since prevention is the most cost-effective way to avoid biodiversity loss and ecosystem problems, one challenge in ecological research is to understand the limits of the fundamental niche of the species in order to estimate how far invasive species could spread. Trichocorixa verticalis verticalis (Tvv) is a corixid (Hemiptera) originally distributed in North America, but cited as an alien species in three continents. Its impact on native communities is under study, but it is already the dominant species in several saline wetlands and represents a rare example of an aquatic alien insect. This study aims: i) to estimate areas with suitable environmental conditions for Tvv at a global scale, thus identifying potential new zones of invasion; and ii) to test possible changes in this global potential distribution under a climate change scenario. Potential distributions were estimated by applying a multidimensional envelope procedure based on both climatic data, obtained from observed occurrences, and thermal physiological data. Our results suggest Tvv may expand well beyond its current range and find inhabitable conditions in temperate areas along a wide range of latitudes, with an emphasis on coastal areas of Europe, Northern Africa, Argentina, Uruguay, Australia, New Zealand, Myanmar, India, the western boundary between USA and Canada, and areas of the Arabian Peninsula. When considering a future climatic scenario, the suitability area of Tvv showed only limited changes compared with the current potential distribution. These results allow detection of potential contact zones among currently colonized areas and potential areas of invasion. We also identified zones with a high level of suitability that overlap with areas recognized as global hotspots of biodiversity. Finally, we present hypotheses about possible means of spread, focusing on
Directory of Open Access Journals (Sweden)
Simone Guareschi
Full Text Available Invasions of alien species are considered among the least reversible human impacts, with diversified effects on aquatic ecosystems. Since prevention is the most cost-effective way to avoid biodiversity loss and ecosystem problems, one challenge in ecological research is to understand the limits of the fundamental niche of the species in order to estimate how far invasive species could spread. Trichocorixa verticalis verticalis (Tvv is a corixid (Hemiptera originally distributed in North America, but cited as an alien species in three continents. Its impact on native communities is under study, but it is already the dominant species in several saline wetlands and represents a rare example of an aquatic alien insect. This study aims: i to estimate areas with suitable environmental conditions for Tvv at a global scale, thus identifying potential new zones of invasion; and ii to test possible changes in this global potential distribution under a climate change scenario. Potential distributions were estimated by applying a multidimensional envelope procedure based on both climatic data, obtained from observed occurrences, and thermal physiological data. Our results suggest Tvv may expand well beyond its current range and find inhabitable conditions in temperate areas along a wide range of latitudes, with an emphasis on coastal areas of Europe, Northern Africa, Argentina, Uruguay, Australia, New Zealand, Myanmar, India, the western boundary between USA and Canada, and areas of the Arabian Peninsula. When considering a future climatic scenario, the suitability area of Tvv showed only limited changes compared with the current potential distribution. These results allow detection of potential contact zones among currently colonized areas and potential areas of invasion. We also identified zones with a high level of suitability that overlap with areas recognized as global hotspots of biodiversity. Finally, we present hypotheses about possible means of
Three-Particle Azimuthal Correlations
Ulery, J G
2007-01-01
Two-particle azimuthal correlations reveal broadened and softened away-side correlations. Several different physics mechanisms are possible: large angle gluon radiation, deflected jets, and conical flow or Cerenkov radiation. Three-particle correlations are investigated to try to discriminate these mechanisms. We present results on 3-particle azimuthal correlations between a trigger particle of 3
Drilling azimuth gamma embedded design
Directory of Open Access Journals (Sweden)
Zhou Yi Ren
2016-01-01
Full Text Available Embedded drilling azimuth gamma design, the use of radioactive measuring principle embedded gamma measurement while drilling a short section analysis. Monte Carlo method, in response to the density of horizontal well logging numerical simulation of 16 orientation, the orientation of horizontal well analysed, calliper, bed boundary location, space, different formation density, formation thickness, and other factors inclined strata dip the impact by simulating 137Cs sources under different formation conditions of the gamma distribution, to determine the orientation of drilling density tool can detect window size and space, draw depth of the logging methods. The data 360° azimuth imaging, image processing method to obtain graph, display density of the formation, dip and strata thickness and other parameters, the logging methods obtain real-time geo-steering. To establish a theoretical basis for the orientation density logging while drilling method implementation and application of numerical simulation in-depth study of the MWD azimuth and density log response factors of horizontal wells.
Institute of Scientific and Technical Information of China (English)
张帅; 高勇
2013-01-01
The further application of underwater acoustic spread-spectrum communication system is limited by multipath interference, so the choice of spread spectrum sequences with better performances can im-prove the anti-jamming performances of underwater acoustic spread spectrum system. Based on discussion of LS code properties, LS codes is proposed for underwater acoustic spread-spectrum communication ,and the superiority of its application also analyzed in this paper. Simulation on rayleigh channel model of un-derwater acoustic indicates good performances of the spread-spectrum communication based on LS code. With power- spectrum processing and singular value decomposition, the spread spectrum sequence of un-derwater acoustic spread-spectrum signal based on LS code is estimated. The simulation results shows that with this method,the LS code can be estimated correctly in the condition of SNR=-11 dB.%水声多径干扰限制了水声直接扩频通信系统的进一步应用，选取性能更好的扩频序列可以提高水声扩频系统的抗干扰性能。在讨论了LS码特性的基础上，提出了将LS码应用于水声直接扩频通信中，并分析了LS码应用的优势。通过多径瑞利水声信道模型仿真，验证了LS码水声扩频通信的良好性能。利用了二次谱和奇异值分解的方法对LS码水声直扩信号的扩频序列进行了估计。仿真结果表明，该方法在信噪比为-11 dB 时还能准确的估计出LS码。
The azimuthal magnetorotational instability (AMRI)
Ruediger, G; Schultz, M; Hollerbach, R; Stefani, F
2013-01-01
We consider the interaction of differential rotation and toroidal fields that are current-free in the gap between two corotating axially unbounded cylinders. It is shown that nonaxisymmetric perturbations are unstable if the rotation rate and Alfven frequency of the field are of the same order almost independent of the magnetic Prandtl number Pm. For the very steep rotation law \\Omega\\propto R^{-2} (the Rayleigh limit) this Azimuthal MagnetoRotational Instability (AMRI) scales with the ordinary Reynolds number and the Hartmann number, which allows a laboratory experiment with liquid metals like sodium or gallium in a Taylor-Couette container. The growth rate of AMRI scales with \\Omega^2 in the low-conductivity limit and with \\Omega in the high-conductivity limit. For the weakly nonlinear system the numerical values of the kinetic energy and the magnetic energy are derived for magnetic Prandtl numbers between 0.05 and unity. We find that the magnetic energy scales with the magnetic Reynolds number Rm, while th...
Zagmutt, Francisco J; Sempier, Stephen H; Hanson, Terril R
2013-10-01
Emerging diseases (ED) can have devastating effects on agriculture. Consequently, agricultural insurance for ED can develop if basic insurability criteria are met, including the capability to estimate the severity of ED outbreaks with associated uncertainty. The U.S. farm-raised channel catfish (Ictalurus punctatus) industry was used to evaluate the feasibility of using a disease spread simulation modeling framework to estimate the potential losses from new ED for agricultural insurance purposes. Two stochastic models were used to simulate the spread of ED between and within channel catfish ponds in Mississippi (MS) under high, medium, and low disease impact scenarios. The mean (95% prediction interval (PI)) proportion of ponds infected within disease-impacted farms was 7.6% (3.8%, 22.8%), 24.5% (3.8%, 72.0%), and 45.6% (4.0%, 92.3%), and the mean (95% PI) proportion of fish mortalities in ponds affected by the disease was 9.8% (1.4%, 26.7%), 49.2% (4.7%, 60.7%), and 88.3% (85.9%, 90.5%) for the low, medium, and high impact scenarios, respectively. The farm-level mortality losses from an ED were up to 40.3% of the total farm inventory and can be used for insurance premium rate development. Disease spread modeling provides a systematic way to organize the current knowledge on the ED perils and, ultimately, use this information to help develop actuarially sound agricultural insurance policies and premiums. However, the estimates obtained will include a large amount of uncertainty driven by the stochastic nature of disease outbreaks, by the uncertainty in the frequency of future ED occurrences, and by the often sparse data available from past outbreaks.
Institute of Scientific and Technical Information of China (English)
Huajian Yao
2015-01-01
Seismic anisotropy provides important constraints on deformation patterns of Earth's material.Rayleigh wave dispersion data with azimuthal anisotropy can be used to invert for depth-dependent shear wavespeed azimuthal anisotropy,therefore reflecting depth-varying deformation patterns in the crust and upper mantle.In this study,we propose a two-step method that uses the Neighborhood Algorithm (NA) for the point-wise inversion of depth-dependent shear wavespeeds and azimuthal anisotropy from Rayleigh wave azimuthally anisotropic dispersion data.The first step employs the NA to estimate depthdependent Vsv (or the elastic parameter L) as well as their uncertainties from the isotropic part Rayleigh wave dispersion data.In the second step,we first adopt a difference scheme to compute approximate Rayleigh-wave phase velocity sensitivity kernels to azimuthally anisotropic parameters with respect to the velocity model obtained in the first step.Then we perform the NA to estimate the azi.muthally anisotropic parameters Gc/L and Gs/L at depths separately from the corresponding cosine and sine terms of the azimuthally anisotropic dispersion data.Finally,we compute the depth-dependent magnitude and fast polarization azimuth of shear wavespeed azimuthal anisotropy.The use of the global search NA and Bayesian analysis allows for more reliable estimates of depth-dependent shear wavespeeds and azimuthal anisotropy as well as their uncertainties.We illustrate the inversion method using the azimuthally anisotropic dispersion data in SE Tibet,where we find apparent changes of fast axes of shear wavespeed azimuthal anisotropy between the crust and uppermost mantle.
Zhao, Y.; Ducharne, A.; Sultan, B.; Braconnot, P.; Vautard, R.
2015-08-01
The increased exposure of human populations to heat stress is one of the likely consequences of global warming, and it has detrimental effects on health and labor capacity. Here, we consider the evolution of heat stress under climate change using 21 general circulation models (GCMs). Three heat stress indicators, based on both temperature and humidity conditions, are used to investigate present-day model biases and spreads in future climate projections. Present day estimates of heat stress indicators from observational data shows that humid tropical areas tend to experience more frequent heat stress than other regions do, with a total frequency of heat stress 250-300 d yr-1. The most severe heat stress is found in the Sahel and south India. Present-day GCM simulations tend to underestimate heat stress over the tropics due to dry and cold model biases. The model based estimates are in better agreement with observation in mid to high latitudes, but this is due to compensating errors in humidity and temperature. The severity of heat stress is projected to increase by the end of the century under climate change scenario RCP8.5, reaching unprecedented levels in some regions compared with observations. An analysis of the different factors contributing to the total spread of projected heat stress shows that spread is primarily driven by the choice of GCMs rather than the choice of indicators, even when the simulated indicators are bias-corrected. This supports the utility of the multi-model ensemble approach to assess the impacts of climate change on heat stress.
Fan, Chong; Wu, Chaoyun; Li, Grand; Ma, Jun
2017-02-13
To solve the problem on inaccuracy when estimating the point spread function (PSF) of the ideal original image in traditional projection onto convex set (POCS) super-resolution (SR) reconstruction, this paper presents an improved POCS SR algorithm based on PSF estimation of low-resolution (LR) remote sensing images. The proposed algorithm can improve the spatial resolution of the image and benefit agricultural crop visual interpolation. The PSF of the highresolution (HR) image is unknown in reality. Therefore, analysis of the relationship between the PSF of the HR image and the PSF of the LR image is important to estimate the PSF of the HR image by using multiple LR images. In this study, the linear relationship between the PSFs of the HR and LR images can be proven. In addition, the novel slant knife-edge method is employed, which can improve the accuracy of the PSF estimation of LR images. Finally, the proposed method is applied to reconstruct airborne digital sensor 40 (ADS40) three-line array images and the overlapped areas of two adjacent GF-2 images by embedding the estimated PSF of the HR image to the original POCS SR algorithm. Experimental results show that the proposed method yields higher quality of reconstructed images than that produced by the blind SR method and the bicubic interpolation method.
Lupotti, F.A.; Steen, A.F.W. van der; Mastik, F.; Korte, C.L. de
2002-01-01
In recent years, a new method to measure transverse blood flow, based on the decorrelation of the radio frequency (RF) signals has been developed. In this paper, we investigated the influence of nonuniform flow on the velocity estimation. The decorrelation characteristics of transverse blood flow us
Neural network approach to blind-estimation of PN spreading sequence in lower SNR DS/SS signals
Institute of Scientific and Technical Information of China (English)
Zhang Tianqi; Lin Xiaokang; Zhou Zhengzhong
2005-01-01
An approach based on discrete Karhunen-Loeve transformation of the DS/SS signals is proposed to estimate PN sequence in lower S/N ratio DS/SS signals. Characteristics of self-organization and principle components extraction of unsupervised neural networks are exploited adequately. Theoretical analysis and experimental results are provided to show that this approach can work well on the lower S/N ratio input signals.
Origin of azimuthal seismic anisotropy in oceanic plates and mantle
Becker, Thorsten W.; Conrad, Clinton P.; Schaeffer, Andrew J.; Lebedev, Sergei
2014-09-01
Seismic anisotropy is ubiquitous in the Earth's mantle but strongest in its thermo-mechanical boundary layers. Azimuthal anisotropy in the oceanic lithosphere and asthenosphere can be imaged by surface waves and should be particularly straightforward to relate to well-understood plate kinematics and large-scale mantle flow. However, previous studies have come to mixed conclusions as to the depth extent of the applicability of paleo-spreading and mantle flow models of anisotropy, and no simple, globally valid, relationships exist. Here, we show that lattice preferred orientation (LPO) inferred from mantle flow computations produces a plausible global background model for asthenospheric anisotropy underneath oceanic lithosphere. The same is not true for absolute plate motion (APM) models. A ˜200 km thick layer where the flow model LPO matches observations from tomography lies just below the ˜1200 °C isotherm of a half-space cooling model, indicating strong temperature-dependence of the processes that control the development of azimuthal anisotropy. We infer that the depth extent of shear, and hence the thickness of a relatively strong oceanic lithosphere, can be mapped this way. These findings for the background model, and ocean-basin specific deviations from the half-space cooling pattern, are found in all of the three recent and independent tomographic models considered. Further exploration of deviations from the background model may be useful for general studies of oceanic plate formation and dynamics as well as regional-scale tectonic analyses.
Directory of Open Access Journals (Sweden)
S. Yu. Makarov
2015-01-01
Full Text Available The article dwells on a development of new non-invasive measurement methods of optical parameters of biological tissues, which are responsible for the scattering and absorption of monochromatic radiation. It is known from the theory of radiation transfer [1] that for strongly scattering media, to which many biological tissues pertain, such parameters are parameters of diffusion approximation, as well as a scattering coefficient and an anisotropy parameter.Based on statistical modeling the paper examines a spread of non-directional radiation from a Lambert light beam with the natural polarization that illuminates a surface of the biological tissue. Statistical modeling is based on the Monte Carlo method [2]. Thus, to have the correct energy coefficient values of Fresnel reflection and transmission in simulation of such radiation by Monte Carlo method the author uses his finding that is a function of the statistical representation for the incidence of model photons [3]. The paper describes in detail a principle of fixing the power transmitted by the non-directional radiation into biological tissue [3], and the equations of a power balance in this case.Further, the paper describes the diffusion approximation of a radiation transfer theory, often used in simulation of radiation propagation in strongly scattering media and shows its application in case of fixing the power transmitted into the tissue. Thus, to represent an uneven power distribution is used an approximating expression in conditions of fixing a total input power. The paper reveals behavior peculiarities of solution on the surface of the biological tissue inside and outside of the incident beam. It is shown that the solution in the region outside of the incident beam (especially far away from it, essentially, depends neither on the particular power distribution across the surface, being a part of the tissue, nor on the refractive index of the biological tissue. It is determined only by
Azimuthal Spoke Propagation in Hall Effect Thrusters
Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Brown, Daniel L.; Hofer, Richard R.; Polk, James E.
2013-01-01
Spokes are azimuthally propagating perturbations in the plasma discharge of Hall Effect Thrusters (HETs) that travel in the E x B direction and have been observed in many different systems. The propagation of azimuthal spokes are investigated in a 6 kW HET known as the H6 using ultra-fast imaging and azimuthally spaced probes. A spoke surface is a 2-D plot of azimuthal light intensity evolution over time calculated from 87,500 frames/s videos. The spoke velocity has been determined using three methods with similar results: manual fitting of diagonal lines on the spoke surface, linear cross-correlation between azimuthal locations and an approximated dispersion relation. The spoke velocity for three discharge voltages (300, 400 and 450 V) and three anode mass flow rates (14.7, 19.5 and 25.2 mg/s) yielded spoke velocities between 1500 and 2200 m/s across a range of normalized magnetic field settings. The spoke velocity was inversely dependent on magnetic field strength for low B-field settings and asymptoted at B-field higher values. The velocities and frequencies are compared to standard drifts and plasma waves such as E x B drift, electrostatic ion cyclotron, magnetosonic and various drift waves. The empirically approximated dispersion relation yielded a characteristic velocity that matched the ion acoustic speed for 5 eV electrons that exist in the near-anode and near-field plume regions of the discharge channel based on internal measurements. Thruster performance has been linked to operating mode where thrust-to-power is maximized when azimuthal spokes are present so investigating the underlying mechanism of spokes will benefit thruster operation.
Azimuthal anisotropy of jet quenching at LHC
Indian Academy of Sciences (India)
I P Lokhtin; S V Petrushanko; L I Sarycheva; A M Snigirev
2003-05-01
We analyze the azimuthal anisotropy of jet spectra due to energy loss of hard partons in quark–gluon plasma, created initially in nuclear overlap zone in collisions with non-zero impact parameter. The calculations are performed for semi-central Pb–Pb collisions at LHC energy.
Azimuthal Doppler Effect in Optical Vortex Spectroscopy
Aramaki, Mitsutoshi; Yoshimura, Shinji; Toda, Yasunori; Morisaki, Tomohiro; Terasaka, Kenichiro; Tanaka, Masayoshi
2015-11-01
Optical vortices (OV) are a set of solutions of the paraxial Helmholtz equation in the cylindrical coordinates, and its wave front has a spiral shape. Since the Doppler shift is caused by the phase change by the movement in a wave field, the observer in the OV, which has the three-dimensional structured wave front, feels a three-dimensional Doppler effect. Since the multi-dimensional Doppler components are mixed into a single Doppler spectrum, development of a decomposition method is required. We performed a modified saturated absorption spectroscopy to separate the components. The OV and plane wave are used as a probe beam and pump beam, respectively. Although the plane-wave pump laser cancels the z-direction Doppler shift, the azimuthal Doppler shift remains in the saturated dip. The spatial variation of the dip width gives the information of the azimuthal Doppler shift. The some results of optical vortex spectroscopy will be presented.
On the azimuthal asymmetries in DIS
Efremov, E V; Göke, K; Urbano, D
2000-01-01
Using the recent experimental data on the left right asymmetry in fragmentation of transversely polarized quarks and the theoretical calculation of the proton transversity distribution in the effective chiral quark soliton model we explain the azimuthal asymmetries in semi-inclusive hadron production on longitudinal (HERMES) and transversely (SMC) polarized targets with no free parameters. On this basis we state that the proton transversity distribution could be successfully measured in future DIS experiments with longitudinally polarized target.
Azimuthal correlations in photon-photon collisions
Artéaga-Romero, N; Kessler, P; Ong, S; Panella, O
1995-01-01
Using the general helicity formula for \\gamma^* \\gamma^* collisions, we are showing that it should be possible to determine a number of independent ``structure functions'', i.e. linear combinations of elements of the two-photon helicity tensor, through azimuthal correlations in two-body or quasi two-body reactions induced by the photon-photon interaction, provided certain experimental conditions are satisfied. Numerical results of our computations are presented for some particular processes and dynamic models.
Spatial-Frequency Azimuthally Stable Cartography of Biological Polycrystalline Networks
Directory of Open Access Journals (Sweden)
V. A. Ushenko
2013-01-01
Full Text Available A new azimuthally stable polarimetric technique processing microscopic images of optically anisotropic structures of biological tissues histological sections is proposed. It has been used as a generalized model of phase anisotropy definition of biological tissues by using superposition of Mueller matrices of linear birefringence and optical activity. The matrix element M44 has been chosen as the main information parameter, whose value is independent of the rotation angle of both sample and probing beam polarization plane. For the first time, the technique of concerted spatial-frequency filtration has been used in order to separate the manifestation of linear birefringence and optical activity. Thereupon, the method of azimuthally stable spatial-frequency cartography of biological tissues histological sections has been elaborated. As the analyzing tool, complex statistic, correlation, and fractal analysis of coordinate distributions of M44 element has been performed. The possibility of using the biopsy of the uterine wall tissue in order to differentiate benign (fibromyoma and malignant (adenocarcinoma conditions has been estimated.
Azimuth orientation of the dragonfly (Sympetrum)
Hisada, M.
1972-01-01
Evidence is presented of directional orientation by an alighting dragonfly relative to the azimuth of the sun. The effects of wind direction on this orientation are analyzed. It was concluded that wind does not play a major role in orientation but may have some secondary function in helping greater numbers of dragonflies face windward more often than leeward. A search was made to find the principle sensory receptor for orientation. Two possibilities, the large compound eye and the frontal ocelli, were noted; however, no conclusive evidence could be found.
Azimuthal Spoke Propagation in Hall Effect Thrusters
2013-10-01
to bk. The cross-correlation function is17 Rjk = lim T→∞ 1 T ∫ T 0 bj (t) bk (t + τ)dt (2) Signal delays for non -frequency dispersive propagation can...During the neutral replenishment period within the discharge channel, slight perturbations or azimuthal non - uniformities in electron density, electron...electron thermal velocity is the average of an assumed Maxwellian distribution37 vthe = √ 8qTe/(πme) with Te in eV. The region from 0.16 < z/Lchnl
Azimuthal dynamo wave in spherical shell convection
Cole, Elizabeth; Mantere, Maarit J; Brandenburg, Axel
2013-01-01
We report the finding of an azimuthal dynamo wave of a low-order (m=1) mode in direct numerical simulations (DNS) of turbulent convection in spherical shells. Such waves are predicted by mean field dynamo theory and have been obtained previously in mean-field models. Observational results both from photometry and Doppler imaging have revealed persistent drifts of spots for several rapidly rotating stars, but, although an azimuthal dynamo wave has been proposed as a possible mechanism responsible for this behavior, it has been judged as unlikely, as practical evidence for such waves from DNS has been lacking. The large-scale magnetic field in our DNS, which is due to self-consistent dynamo action, is dominated by a retrograde m=1 mode. Its pattern speed is nearly independent of latitude and does not reflect the speed of the differential rotation at any depth. The extrema of magnetic m=1 structures coincide reasonably with the maxima of m=2 structures of the temperature. These results provide direct support for...
Bell, Rebecca; Morgan, Joanna; Warner, Michael
2016-04-01
There are many outstanding plate-tectonic scale questions that require us to know information about sub-surface physical properties, for example ascertaining the geometry and location of magma chambers and estimating the effective stress along plate boundary faults. These important scientific targets are often too deep, impractical and expensive for extensive academic drilling. Full-waveform inversion (FWI) is an advanced seismic imaging technique that has recently become feasible in three dimensions, and has been widely adopted by the oil and gas industry to image reservoir-scale targets at shallow-to-moderate depths. In this presentation we explore the potential for 3-D FWI, when combined with appropriate marine seismic acquisition, to recover high-resolution high-fidelity P-wave velocity models for sub-sedimentary targets within the crystalline crust and uppermost mantle. Using existing geological and geophysical models, we construct P-wave velocity models over three potential sub-sedimentary targets: the Soufrière Hills Volcano on Montserrat and its associated crustal magmatic system, the downgoing oceanic plate beneath the Nankai subduction margin, and the oceanic crust-uppermost mantle beneath the East Pacific Rise mid-ocean ridge. We use these models to generate realistic multi-azimuth 3-D synthetic seismic data, and attempt to invert these data to recover the original models. We explore the resolution and accuracy, sensitivity to noise and acquisition geometry, ability to invert elastic data using acoustic inversion codes, and the trade-off between low frequencies and starting velocity model accuracy. We will show that FWI applied to multi-azimuth, refracted, wide-angle, low-frequency data can resolve features in the deep crust and uppermost mantle on scales that are significantly better than can be achieved by any other geophysical technique, and that these results can be obtained using relatively small numbers (60-90) of ocean-bottom receivers combined
Global variations in azimuthal anisotropy of the Earth's upper mantle and crust
Schaeffer, A. J.; Lebedev, S.
2013-12-01
depth, spatial position with respect to the spreading ridge, and deviation in fast axis orientation from the current and fossil spreading directions. In continental regions, azimuthal anisotropy is more complex. Reconciling complementary observations given by shear wave splitting, surface-wave array analysis, and large-scale, global 3D models offers new insights into the mechanisms of continental deformation and the architecture and evolution of the lithosphere. Reference: Schaeffer, A. J., and S. Lebedev. Global shear-speed structure of the upper mantle and transition zone. Geophys. J. Int., 194, 417-449, 2013.
Wang, Yan; Li, Jingwen; Sun, Bing; Yang, Jian
2016-06-13
Azimuth resolution of airborne stripmap synthetic aperture radar (SAR) is restricted by the azimuth antenna size. Conventionally, a higher azimuth resolution should be achieved by employing alternate modes that steer the beam in azimuth to enlarge the synthetic antenna aperture. However, if a data set of a certain region, consisting of multiple tracks of airborne stripmap SAR data, is available, the azimuth resolution of specific small region of interest (ROI) can be conveniently improved by a novel azimuth super-resolution method as introduced by this paper. The proposed azimuth super-resolution method synthesize the azimuth bandwidth of the data selected from multiple discontinuous tracks and contributes to a magnifier-like function with which the ROI can be further zoomed in with a higher azimuth resolution than that of the original stripmap images. Detailed derivation of the azimuth super-resolution method, including the steps of two-dimensional dechirping, residual video phase (RVP) removal, data stitching and data correction, is provided. The restrictions of the proposed method are also discussed. Lastly, the presented approach is evaluated via both the single- and multi-target computer simulations.
Spontaneous azimuthal breakout and instability at the circular hydraulic jump
Ray, Arnab K; Basu, Abhik; Bhattacharjee, Jayanta K
2015-01-01
We consider a shallow, two-dimensional flow of a liquid in which the radial and the azimuthal dynamics are coupled to each other. The steady and radial background flow of this system creates an axially symmetric circular hydraulic jump. On this background we apply time-dependent perturbations of the matter flow rate and the azimuthal flow velocity, with the latter strongly localized at the hydraulic jump. The perturbed variables depend spatially on both the radial and azimuthal coordinates. Linearization of the perturbations gives a coupled system of wave equations. The characteristic equations extracted from these wave equations show that under a marginally stable condition a spontaneous breaking of axial symmetry occurs at the position of the hydraulic jump. Departure from the marginal stability shows further that a linear instability develops in the azimuthal direction, resulting in an azimuthal transport of liquid at the hydraulic jump. The time for the growth of azimuthal instability is scaled by viscosi...
Gyroscopic Inertial Micro-Balance Azimuth Locator (GIMBAL) Project
National Aeronautics and Space Administration — Research Support Instruments, Inc. (RSI) proposes the Gyroscopic Inertial Micro-Balance Azimuth Locator (GIMBAL) program to use an innovative encapsulated spinning...
Comparison of the reference mark azimuth determination methods
Directory of Open Access Journals (Sweden)
Danijel Šugar
2013-03-01
Full Text Available The knowledge of the azimuth of the reference mark is of crucial importance in the determination of the declination which is defined as the ellipsoidal (geodetic azimuth of the geomagnetic meridian. The accuracy of the azimuth determination has direct impact on the accuracy of the declination. The orientation of the Declination-Inclination Magnetometer is usually carried out by sighting the reference mark in two telescope faces in order to improve the reliability of the observations and eliminate some instrumental errors. In this paper, different coordinate as well as azimuth determination methods using GNSS (Global Navigation Satellite System observation techniques within VPPS (High-Precision Positioning Service and GPPS (Geodetic-Precision Positioning Service services of the CROPOS (CROatian POsitioning System system were explained. The azimuth determination by the observation of the Polaris was exposed and it was subsequently compared with the observation of the Sun using hour-angle and zenith-distance method. The procedure of the calculation of the geodetic azimuth from the astronomic azimuth was explained. The azimuth results obtained by different methods were compared and the recommendations on the minimal distance between repeat station and azimuth mark were given. The results shown in this paper were based on the observations taken on the POKU_SV repeat station.
Angular MET sensor for precise azimuth determination
Zaitsev, Dmitry; Antonov, Alexander; Krishtop, Vladimir
2016-12-01
This paper describes using a MET-based low-noise angular motion sensor to precisely determine azimuth direction in a dynamic-scheme method of measuring Earth's rotation velocity vector. The scheme includes installing a sensor on a rotating platform so that it could scan a space and seek for the position of highest Earth's rotation vector projection on its axis. This method is very efficient provided a low-noise sensor is used. We take a low-cost angular sensor based on MET (molecular electronic transduction) technology. Sensors of this kind were originally developed for the seismic activity monitoring and are well-known for very good noise performance and high sensitivity. This approach, combined with use of special signal processing algorithms, allowed for reaching the accuracy of 0.07° for a measurement time of 200 seconds.
Spread effects - methodology; Spredningseffekter - metodegrunnlag
Energy Technology Data Exchange (ETDEWEB)
NONE
2004-07-01
Diffusion of technology, environmental effects and rebound effects are the principal effects from the funding of renewable energy and energy economising. It is difficult to estimate the impact of the spread effects both prior to the measures are implemented and after the measures are carried out. Statistical methods can be used to estimate the spread effects, but they are insecure and always need to be complemented with qualitative and subjective evaluations. It is more adequate to evaluate potential spread effects from market and market data surveillance for a selection of technologies and parties. Based on this information qualitative indicators for spread effects can be constructed and used both ex ante and ex post (ml)
Extracting the jet azimuthal anisotropy from higher order cumulants
Lokhtin, Igor P; Snigirev, A M
2003-01-01
We analyze the method for calculation of a coefficient of jet azimuthal anisotropy without reconstruction of the nuclear reaction plane considering the higher order correlators between the azimuthal position of jet axis and the angles of particles not incorporated in the jet. The reliability of this technique in the real physical situation under LHC conditions is illustrated.
Overview of recent azimuthal correlation measurements from ALICE
INSPIRE-00290856
2016-01-01
Azimuthal correlations are a powerful tool to probe the properties and the evolution of the collision system. In this proceedings, we will review the recent azimuthal correlation measurements from ALICE at the LHC. The comparison to other experimental measurements and various theoretical calculations will be discussed as well.
Moveout analysis of wide-azimuth data in the presence of lateral velocity variation
Takanashi, Mamoru
2012-05-01
Moveout analysis of wide-azimuth reflection data seldom takes into account lateral velocity variations on the scale of spreadlength. However, velocity lenses (such as channels and reefs) in the overburden can cause significant, laterally varying errors in the moveout parameters and distortions in data interpretation. Here, we present an analytic expression for the normal-moveout (NMO) ellipse in stratified media with lateral velocity variation. The contribution of lateral heterogeneity (LH) is controlled by the second derivatives of the interval vertical traveltime with respect to the horizontal coordinates, along with the depth and thickness of the LH layer. This equation provides a quick estimate of the influence of velocity lenses and can be used to substantially mitigate the lens-induced distortions in the effective and interval NMO ellipses. To account for velocity lenses in nonhyperbolic moveout inversion of wide-azimuth data, we propose a prestack correction algorithm that involves computation of the lens-induced traveltime distortion for each recorded trace. The overburden is assumed to be composed of horizontal layers (one of which contains the lens), but the target interval can be laterally heterogeneous with dipping or curved interfaces. Synthetic tests for horizontally layered models confirm that our algorithm accurately removes lens-related azimuthally varying traveltime shifts and errors in the moveout parameters. The developed methods should increase the robustness of seismic processing of wide-azimuth surveys, especially those acquired for fracture-characterization purposes. © 2012 Society of Exploration Geophysicists.
RADIAL AND AZIMUTHAL OSCILLATIONS OF HALO CORONAL MASS EJECTIONS IN THE SUN
Energy Technology Data Exchange (ETDEWEB)
Lee, Harim; Moon, Y.-J.; Nakariakov, V. M., E-mail: harim@khu.ac.kr, E-mail: moonyj@khu.ac.kr, E-mail: V.Nakariakov@warwick.ac.uk [School of Space Research, Kyung Hee University, Yongin 446-701 (Korea, Republic of)
2015-04-10
We present the first observational detection of radial and azimuthal oscillations in full halo coronal mass ejections (HCMEs). We analyze nine HCMEs well-observed by the Large Angle and Spectrometric Coronagraph (LASCO) from 2011 February to June. Using the LASCO C3 running difference images, we estimated the instantaneous apparent speeds of the HCMEs in different radial directions from the solar disk center. We find that the development of all these HCMEs is accompanied by quasi-periodic variations of the instantaneous radial velocity with the periods ranging from 24 to 48 minutes. The amplitudes of the instant speed variations reach about a half of the projected speeds. The amplitudes are found to anti-correlate with the periods and correlate with the HCME speed, indicating the nonlinear nature of the process. The oscillations have a clear azimuthal structure in the heliocentric polar coordinate system. The oscillations in seven events are found to be associated with distinct azimuthal wave modes with the azimuthal wave number m = 1 for six events and m = 2 for one event. The polarization of the oscillations in these seven HCMEs is broadly consistent with those of their position angles with the mean difference of 43°. The oscillations may be connected with natural oscillations of the plasmoids around a dynamical equilibrium, or self-oscillatory processes, e.g., the periodic shedding of Alfvénic vortices. Our results indicate the need for an advanced theory of oscillatory processes in coronal mass ejections.
Azimuthal Seismic Amplitude Difference Inversion for Fracture Weakness
Chen, Huaizhen; Zhang, Guangzhi; Ji, Yuxin; Yin, Xingyao
2016-08-01
Fracture weakness prediction is an important task in fractured reservoir analysis. We propose a new method to use seismic amplitude differences between azimuths to estimate the normal and tangential fracture weaknesses under the assumption that the anisotropic perturbation of the reflection coefficient is mainly induced by fractures. We first derive an expression of the reflection coefficient in terms of the normal and tangential fracture weaknesses for the case of an interface separating two fractured media. Then we use the linear fitting method to get the relationship between the two fracture weaknesses, and change the variables to precondition the inversion problem. The Bayesian framework, under the hypothesis of a Cauchy distribution prior information and a Gaussian distribution likelihood function, is employed to construct the objective function, and an initial low-frequency constraint is introduced to the objective function to make the inversion more stable. The conjugate gradient algorithm is adopted to solve the inverse problem. Tests on both synthetic and real data demonstrate that the normal and tangential fracture weaknesses can be estimated reasonably in the case of seismic data containing a moderate noise, and our inversion approach appears to be a stable method for predicting the fracture weaknesses.
Azimuthal correlations of particles produced in pp collisions at 400GeV／c
Institute of Scientific and Technical Information of China (English)
王韶舜
1996-01-01
The two particle azimuthal correlations are observed but the azimuthal structure seems to be of stochastic nature.no jet-like structure was observed.And a new method is used to study the azimuthal substructure.
Synthetic aperture radar images with composite azimuth resolution
Energy Technology Data Exchange (ETDEWEB)
Bielek, Timothy P; Bickel, Douglas L
2015-03-31
A synthetic aperture radar (SAR) image is produced by using all phase histories of a set of phase histories to produce a first pixel array having a first azimuth resolution, and using less than all phase histories of the set to produce a second pixel array having a second azimuth resolution that is coarser than the first azimuth resolution. The first and second pixel arrays are combined to produce a third pixel array defining a desired SAR image that shows distinct shadows of moving objects while preserving detail in stationary background clutter.
Description of a Photoelectric Rotating Slit Elevation and Azimuth Sensor.
Brown, H E; Brown, P B; Goodson, D W; Cope, J D
1966-06-01
The Photoelectric Rotating Slit Elevation and Azimuth Sensor (PERSEAS) measures the azimuth and elevation of the line of sight to a target reflecting or emitting radiation in the 0.4- tol.1-micro portion of the spectrum. Angular field of view is 360 degrees in azimuth and 30 degrees in elevation. Eight stationary lenses are used with rotating fiber-optics slits and silicon photodiode detectors to produce electrical pulses which are time related to target angular coordinates. Data rate is one line-of-sight measurement per 2.5 msec. Accuracy is better than 1 mrad.
Fiber-optic gyro location of dome azimuth
Kuehne, John W.
2016-07-01
The 2.1-m Otto Struve Telescope, world's second largest in 1939, today has modern motion control and superb tracking, yet the 19-m-diameter Art Deco dome has resisted many attempts to record its azimuth electronically. Demonstrated in January 2016, a small tactical-grade fiber-optic gyro located anywhere on the rotating structure, aided by a few fiducial points to zero gyro drift, adequately locates the azimuth. The cost of a gyro is practically independent of dome size, offering an economical solution for large domes that cannot be easily encoded with conventional systems. The 100-Hz sampling is capable of revealing anomalies in the rotation rate, valuable for preventive maintenance on any dome. I describe software methods and time series analysis to integrate angular velocity to dome azimuth; transformation of telescope hour angle and declination into required dome azimuth, using a formula that accounts for a cross-axis mount inside an offset dome; and test results.
Collective Flow and Azimuthally Differential Pion Femtoscopy with the ALICE Experiment at the LHC
Loggins, Vera
2014-04-15
Since 2009, the Large Hadron Collider (LHC) at European Organization for Nuclear Research (CERN) has been conducting experiments in $pp$, Pb-Pb, as well as $p$-Pb collisions with the center of mass energy ranging $\\sqrt{{s}_{NN}}=0.9-5.05$~TeV. In this thesis, both, estimates of background correlations in anisotropic flow, $v_1-v_5$, measurements in Pb-Pb collisions at $\\sqrt{{s}_{NN}}=2.76$~TeV, and azimuthally differential pion femtoscopy of Pb-Pb collisions are reported. Two particle azimuthal correlations are statistically the most precise method of measuring anisotropic flow. The main drawback of this method is its sensitivity to the non-flow correlations, which unlike real flow, do not have geometrical origin. Non-flow contribution can be estimated from two particle azimuthal correlations using $pp$ data. Measurements of the non-flow contribution using the uQ method and Scalar Product (SP) method are reported for $pp$ collisions at $\\sqrt{{s}_{NN}}=2.76$~TeV and $\\sqrt{{s}_{NN}}=7$~TeV for the first ...
Azimuth resolution improvement for spaceborne SAR images with quasi-non-overlapped Doppler bandwidth
Institute of Scientific and Technical Information of China (English)
Zheng Bao
2014-01-01
The azimuth resolution improvement problem is solved via a coherent combination of synthetic aperture radar (SAR) ima-ges with the quasi-non-overlapped Doppler bandwidth. Prior to the spectra combination, SAR images should be co-registered, while phase biases induced by topography, atmospheric propagation de-lays and baseline measurement errors should be calibrated. How-ever, the coregistration accuracy suffers from large Doppler decorrelation caused by the quasi-non-overlapped Doppler band-width. Furthermore, the method used to estimate phase biases from interferogram of azimuth pre-filtered SAR image pairs wil fail when there is no overlapped spectrum. The fringe simulation and maximum sharpness optimization are adopted to deal with the problems. Accordingly, a novel algorithm to coherently synthesize SAR images is presented. The experiment with the Terra SAR X-band (TerraSAR-X) satel ite data validates the performance of the presented method.
Jet quenching and high-pt azimuthal asymmetry
Lokhtin, Igor P; Vitev, I
2002-01-01
The azimuthal anisotropy of high-pt particle production in non-central heavy ion collisions is among the most promising observables of partonic energy loss in an azimuthally non-symmetric volume of quark-gluon plasma. We discuss the implications of nuclear geometry for the models of partonic energy loss in the context of recent RHIC data and consequences for observation of jet quenching at the LHC.
Azimuth Phase Coding for Range Ambiguity Suppression in SAR
DEFF Research Database (Denmark)
Dall, Jørgen; Kusk, Anders
2004-01-01
A novel ambiguity suppression technique is proposed. Range ambiguities in synthetic aperture radar (SAR) images are eliminated with an azimuth filter after having applied an azimuth phase modulation to the transmitted pulses and a corresponding demodulation to the received pulses. The technique...... by the antenna elevation dimension. The fundamental antenna area constraint still applies, but the PRF can be chosen with more freedom. In addition to ambiguity suppression, potential applications include nadir return elimination and signal-to-noise ratio improvement....
Konoshonkin, Alexander V.; Kustova, Natalia V.; Nasonov, Sergey V.; Bryukhanov, Ilia D.; Shishko, Viktor A.; Timofeev, Dmitriy N.; Borovoi, Anatoly G.
2016-10-01
Optical properties of the cirrus cloud ice crystals with preferred azimuthal orientation are required for current numerical models of the Earth's radiation balance. Retrieving the orientation distributions function of the crystals from a vertically pointing polarization lidar measuring the full Mueller matrix is a very complicated problem because of lake of information. Lidars with zenith scanning can be used only to retrieve the properties of horizontally oriented particles. The paper shows that if the particles have preferred azimuthal orientation, the polarization lidars with azimuthal scanning should be used. It is also shown that all the elements of the Mueller matrix give no extra information compare to the depolarization ratio. Optical properties of preferred azimuthal oriented hexagonal ice columns with size from 10 to 1000 μm for wavelengths of 0.355, 0.532 and 1.064 μm were collected as a data bank.
Azimuthal correlation functions and the energy of vanishing flow in nucleus-nucleus collisions
Energy Technology Data Exchange (ETDEWEB)
Angelique, J.C.; Bizard, G.; Brou, R.; Cussol, D.; Kerambrun, A.; Patry, J.P.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Buta, A.; Popescu, R. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire]|[Central Inst. of Physics, Bucharest (Romania). Inst. of Physics and Nuclear Engineering; Auger, G.; Cabot, C.; Peghaire, A.; Saint-Laurent, F. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Cassagnou, Y.; Legrain, R. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee; El Masri, Y. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium); Eudes, P.; Lebrun, C. [Nantes Univ., 44 (France). Lab. de Physique Nucleaire; Gonin, M.; Hagel, K.; Wada, R. [Texas A and M Univ., College Station, TX (United States). Cyclotron Inst.; Rosato, E. [Istituto Nazionale di Fisica Nucleare, Naples (Italy); He, Z.Y. [Lanzhou Univ., GS (China). Dept. of Modern Physics; Crema, E. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)]|[Sao Paulo Univ., SP (Brazil). Inst. de Fisica
1994-06-01
A novel method is proposed for studying the evolution of flow phenomena with the incident energy, and for quantitatively estimating the energy of vanishing flow (also called balance energy, E{sub bal}) without reconstructing the reaction plane. We used a method based on the shapes of experimental particle-particle azimuthal correlation functions to determine E{sub bal} for three systems: Ar + Al, Zn + Ti, Zn + Ni. We compare the results with estimations using flow parameter analysis and also with theoretical expectations. (authors). 25 refs.
Topological states in partially-PT-symmetric azimuthal potentials
Kartashov, Yaroslav V; Torner, Lluis
2015-01-01
We introduce partially-parity-time-symmetric (pPT-symmetric) azimuthal potentials composed from individual PT-symmetric cells located on a ring, where two azimuthal directions are nonequivalent in a sense that in such potentials excitations carrying topological dislo-cations exhibit different dynamics for different directions of energy circulation in the initial field distribution. Such non-conservative ratchet-like structures support rich families of stable vortex solitons in cubic nonlinear media, whose properties depend on the sign of the topological charge due to the nonequivalence of azimuthal directions. In contrast, oppositely charged vortex solitons remain equivalent in similar fully PT-symmetric potentials. The vortex solitons in the pPT- and PT-symmetric potentials are shown to feature qualitatively different internal current distributions, which are described by different discrete rotation symmetries of the intensity profiles.
Investigation of a hydrostatic azimuth thrust bearing for a large steerable antenna
Rumbarger, J.; Castelli, V.; Rippel, H.
1972-01-01
The problems inherent in the design and construction of a hydrostatic azimuth thrust bearing for a tracking antenna of very large size were studied. For a load of 48,000,000 lbs., it is concluded that the hydrostatic bearing concept is feasible, provided that a particular multiple pad arrangement, high oil viscosity, and a particular load spreading arrangement are used. Presently available computer programs and techniques are deemed to be adequate for a good portion of the design job but new integrated programs will have to be developed in the area of the computation of the deflections of the supporting bearing structure. Experimental studies might also be indicated to ascertain the life characteristics of grouting under cyclic loading, and the optimization of hydraulic circuits and pipe sizes to insure the long life operation of pumps with high viscosity oil while avoiding cavitation.
Azimuthal dependence of collective expansion for symmetric heavy ion collisions
Stoicea, G; Andronic, A; Herrmann, N; Alard, J P; Basrak, Z; Barret, V; Bastid, N; Caplar, R; Crochet, Philippe; Dupieux, P; Dzelalija, M; Fodor, Z; Hartmann, O; Hildenbrand, K D; Hong, B; Kecskeméti, J; Kim, Y J; Kirejczyk, M; Korolija, M; Kotte, R; Kress, T; Lebedev, A; Leifels, Y; López, X; Merschmeyer, M; Neubert, W; Pelte, D; Ramires, F; Reisdorf, W; Schull, D; Seres, Z; Sikora, B; Sim, K S; Simion, V; Siwek-Wilczynska, K; Smolyankin, V T; Stockmeier, M R; Wisniewski, K; Wohlfarth, D; Yushmanov, I E; Zhilin, A; Danielewicz, P
2004-01-01
Detailed studies of the azimuthal dependence of the mean fragment and flow energies in the Au+Au and Xe+CsI systems are reported as a function of incident energy and centrality. Comparisons between data and model calculations show that the flow energy values along different azimuthal directions could be viewed as snapshots of the fireball expansion with different exposure times. For the same number of participating nucleons more transversally elongated participant shapes from the heavier system produce less collective transverse energy. Good agreement with BUU calculations is obtained for a soft nuclear equation of state.
Image Currents in Azimuthally Inhomogeneous Metallic Beam Pipes
Caspers, Friedhelm; Palumbo, L; Ruggiero, F
2001-01-01
We consider an ultra-relativistic particle travelling on-axis in an infinitely long cylindrical metallic beam pipe with azimuthally varying conductivity. A semi-analytical solution, obtained by applying approximate boundary conditions, predicts an image current distribution on the pipe walls practically independent of the azimuth, at least in the frequency range relevant for future machines such as the LHC. We discuss numerical simulations and bench measurements which confirm the theoretical predictions. Implications for the beam-induced ohmic losses in the copper coated, welded LHC beam screen are also addressed.
The Transversity Function and Double Spin Azimuthal Asymmetry in Semi-Inclusive Pion Leptoproduction
Salvo, E D
2003-01-01
We show that the transverse momentum dependent transversity function coincides with the longitudinal polarization of a quark in a transversely polarized proton. This result suggests an alternative, convenient method for determining transversity, without knowing unusual fragmentation functions. The method consists of measuring the double spin azimuthal asymmetry in semi-inclusive pion leptoproduction by a transversely polarized proton target. The asymmetry, which is twist 3, is estimated to be more than 10% under the most favourable conditions. The experiment we suggest is feasible at facilities like DESY and CERN.
Ray Tracing Results for Elevation Angle Spread of Departure and its Impact on System Performance
DEFF Research Database (Denmark)
Mondal, Bishwarup; Thomas, Timothy; Nguyen, Huan Cong
2014-01-01
Elevation spread of departure angles (ESD) is the key parameter characterizing a 3D fast-fading channel model. 3D channel mod-eling is currently being studied in 3GPP to enable the develop-ment of MIMO techniques exploiting both azimuth and elevation dimensions of the channel. In this paper we us...
Plume spread and atmospheric stability
Energy Technology Data Exchange (ETDEWEB)
Weber, R.O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
The horizontal spread of a plume in atmospheric dispersion can be described by the standard deviation of horizontal direction. The widely used Pasquill-Gifford classes of atmospheric stability have assigned typical values of the standard deviation of horizontal wind direction and of the lapse rate. A measured lapse rate can thus be used to estimate the standard deviation of wind direction. It is examined by means of a large dataset of fast wind measurements how good these estimates are. (author) 1 fig., 2 refs.
Sparse synthetic aperture radar imaging with optimized azimuthal aperture
Institute of Scientific and Technical Information of China (English)
ZENG Cao; WANG MinHang; LIAO GuiSheng; ZHU ShengQi
2012-01-01
To counter the problem of acquiring and processing huge amounts of data for synthetic aperture radar (SAR) using traditional sampling techniques,a method for sparse SAR imaging with an optimized azimuthal aperture is presented.The equivalence of an azimuthal match filter and synthetic array beamforming is shown so that optimization of the azimuthal sparse aperture can be converted to optimization of synthetic array beamforming.The azimuthal sparse aperture,which is composed of a middle aperture and symmetrical bilateral apertures,can be obtained by optimization algorithms (density weighting and simulated annealing algorithms,respectively).Furthermore,sparse imaging of spectrum analysis SAR based on the optimized sparse aperture is achieved by padding zeros at null samplings and using a non-uniform Taylor window. Compared with traditional sampling,this method has the advantages of reducing the amount of sampling and alleviating the computational burden with acceptable image quality.Unlike periodic sparse sampling,the proposed method exhibits no image ghosts.The results obtained from airborne measurements demonstrate the effectiveness and superiority of the proposed method.
Pseudorapidity Dependence of Anisotropic Azimuthal Flow with the ALICE Detector
DEFF Research Database (Denmark)
Hansen, Alexander Colliander
In ultra-relativistic heavy-ion collisions a new state of matter known as the strongly interacting quark-gluon plasma (sQGP) is produced. A key observable in the study of the sQGP is anisotropic azimuthal ow. The anisotropies are described by ow harmonics, vn. In this thesis, bias arising from non...
14 CFR 171.313 - Azimuth performance requirements.
2010-01-01
... degree. From the approach reference datum to the coverage limit, the PFE, PFN and CMN limits, expressed... runway centerline extended, by a factor of 1.2 for the PFE and PFN limits and to ±0.10 degree for the CMN... degree azimuth angles for the PFE, PFN and CMN limits. (iii) With elevation angle from +9 degrees to...
Stationary MHD equilibria describing azimuthal rotations in symmetric plasmas
da Silva, Sidney T.; Viana, Ricardo L.
2016-12-01
We consider the stationary magnetohydrodynamical (MHD) equilibrium equation for an axisymmetric plasma undergoing azimuthal rotations. The case of cylindrical symmetry is treated, and we present two semi-analytical solutions for the stationary MHD equilibrium equations, from which a number of physical properties of the magnetically confined plasma are derived.
Heavy-flavor azimuthal correlations of D mesons
Nahrgang, Marlene; Gossiaux, Pol Bernard; Werner, Klaus
2013-01-01
Observables of heavy-quark azimuthal correlations in heavy-ion collisions are a new and promising tool for the investigation of the in-medium energy loss. We explore the potential of these observables to discriminate the collisional and radiative contributions within a hybrid EPOS+MC@sHQ transport approach.
The azimuthal decorrelation of forward jets in deep inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Sabio Vera, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Schwennsen, F. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2007-08-15
We study the azimuthal angle decorrelation of forward jets in Deep Inelastic Scattering. We make predictions for this observable at HERA describing the high energy limit of the relevant scattering amplitudes with quasi-multi-Regge kinematics together with a collinearly improved evolution kernel for multiparton emissions. (orig.)
Robust improvement of target resolution in azimuth and range
Ruggiano, M.
2011-01-01
This thesis addresses the development of a robust processing technique aimed at resolving and unmasking targets, in range and azimuth, embedded in the received signal of a single and monostatic rotating surveillance radar. The reason for the need of such technique is twofold. Firstly, there are seve
Institute of Scientific and Technical Information of China (English)
高猛; 沈越泓; 袁志钢
2011-01-01
LOFDM ( Lattice Orthogonal Frequency Division Multiplexing) , which is proposed by Strohmer T and Beaver S in 2003 , has higher spectral efficiency and better bit error rate (BER) performance compared with OFDM systems in the time-frequency dispersive channel. To minimize the joint inter-symbol interference (ISI) and inter-carrier interference (ICI) caused by the doubly dispersive channel, LOFDM systems need to adapt the parameters of signals' TFL and shaping-pulse scale to the channel dispersion characteristics in the transmitters. The maximum Doppler spread, or equivalently, the mobile speed, is a measure of the spectral dispersion of mobile fading channel. Accurate estimation of the mobile speed is of importance in LOFDM systems which require the knowledge of the rate of channel variations to achieve its adaptive strategy. In this paper, aiming at the special characteristics of LOFDM signals, a cyclostationarity-based blind maximum Doppler spread estimation algorithm for LOFDM systems over the doubly-dispersion channels is proposed , which avoids the waste of spectral efficiency in the current estimation algorithms. Theory analyses and simulation results demonstrate that the proposed algorithm can obtain the effective estimation for a wide range of Doppler spreads under the condition that the information of the multi-path is unknown and have a good normalized mean square error ( NMSE) performance, while both the capability of anti-noise and the speed of convergence are nice.%Strohmer T与Beaver S于2003年提出了适用于时频散射信道的网格正交频分复用(LOFDM,Lattice Orthogonal Frequency Division Multiplexing)系统,与传统OFDM系统相比该系统具有更高的频带种用率和更好的误码性能.LOFDM系统发送端需要自适应地调整信号的原形脉冲和其时频分布的参数与信道保持匹配,以尽可能地降低符号间干扰和载波间干扰的影响.最大多普勒扩展作为信道时变性的直接反映,是LOFDM系
Takeo, A.; Kawakatsu, H.; Isse, T.; Nishida, K.; Sugioka, H.; Ito, A.; Shiobara, H.; Suetsugu, D.
2016-03-01
We analyzed seismic ambient noise and teleseismic waveforms of nine broadband ocean bottom seismometers deployed at a 60 Ma seafloor in the southeastward of Tahiti island, the South Pacific, by the Tomographic Investigation by seafloor ARray Experiment for the Society hotspot project. We first obtained one-dimensional shear wave velocity model beneath the array from average phase velocities of Rayleigh waves at a broadband period range of 5-200 s. The obtained model shows a large velocity reduction at depths between 40 and 80 km, where the lithosphere-asthenosphere boundary might exist. We then estimated shear wave azimuthal anisotropy at depths of 20-100 km by measuring azimuthal dependence of phase velocities of Rayleigh waves. The obtained model shows peak-to-peak intensity of the azimuthal anisotropy of 2%-4% with the fastest azimuth of NW-SE direction both in the lithosphere and asthenosphere. This result suggests that the ancient flow frozen in the lithosphere is not perpendicular to the strike of the ancient mid-ocean ridge but is roughly parallel to the ancient plate motion at depths of 20-60 km. The fastest azimuths in the current asthenosphere are subparallel to current plate motion at depths of 60-100 km. Additional shear wave splitting analysis revealed possible perturbations of flow in the mantle by the hot spot activities and implied the presence of azimuthal anisotropy in the asthenosphere down to a depth of 190-210 km.
Indian Academy of Sciences (India)
Asfaw Adugna; Patty M. Sweeney; Endashaw Bekele
2013-04-01
Because transgenic sorghum (Sorghum bicolor L.) is being developed for Africa, we investigated the potential for transgenes to spread to conspecific wild/weedy sorghum populations in Ethiopia, which is considered the centre of origin of cultivated sorghum. In the current study, the extent of outcrossing, and uniparental and biparental inbreeding were investigated in seven wild/weedy sorghum populations collected at elevations ranging from 631 to 1709 m. Based on allele frequency data of 1120 progenies and 140 maternal plants from five polymorphic microsatellite markers, outcrossing rates were estimated using standard procedures. The average multilocus outcrossing rate was 0.51, with a range of 0.31–0.65 among populations, and the family outcrossing rate was in the extreme range of 0 to 100%. The highest outcrossing ($t_{m} = 0.65$) was recorded in a weedy population that was intermixed with an improved crop variety in Abuare (Wello region). It was also observed that the inbreeding coefficient of the progenies ($F_{\\text{p}}$) tend to be more than the inbreeding coefficient of both their maternal parents ($F_{\\text{m}}$) and the level of inbreeding expected at equilibrium ($F_{\\text{eq}}$), which is a characteristic of predominantly outbreeding species. Biparental inbreeding was evident in all populations and averaged 0.24 (range = 0.10–0.33). The high outcrossing rates of wild/weedy sorghum populations in Ethiopia indicate a high potential for crop genes (including transgenes) to spread within the wild pool. Therefore, effective risk management strategies may be needed if the introgression of transgenes or other crop genes from improved cultivars into wild or weedy populations is deemed to be undesirable.
L. Norden (Lars)
2014-01-01
textabstractWe investigate how public and private information drives corporate CDS spreads before rating announcements. We find that CDS spreads of firms with higher news intensity move significantly earlier and stronger before rating announcements, which can be explained with public information fro
Directory of Open Access Journals (Sweden)
Sami Ghnimi
2010-07-01
Full Text Available This paper investigates a Modified Uniform Triangular Array (MUTA to support online space-time MIMO-CDMA location based services with full azimuthal coverage via JADE-MUSIC algorithm. A new space-time lifting preprocessing (STLP scheme is introduced as a decorrelating process of coherent signals through the dense/NLOS multipath MIMO channel before applying the JADE-MUSIC estimator. Uniform- H-Array (UHA and Uniform-X-Array (UXA geometries are established for performance comparisons with the proposed MUTA. Computer simulations under environment Matlab are described to illustrate the performance of online joint angle/delay estimation with MUTA-MIMO base station applying JADE-MUSIC in conjunction with STLP scheme in 360 degrees azimuth region.
Keizer, Kees; Lindenberg, Siegwart; Steg, Linda
2008-12-12
Imagine that the neighborhood you are living in is covered with graffiti, litter, and unreturned shopping carts. Would this reality cause you to litter more, trespass, or even steal? A thesis known as the broken windows theory suggests that signs of disorderly and petty criminal behavior trigger more disorderly and petty criminal behavior, thus causing the behavior to spread. This may cause neighborhoods to decay and the quality of life of its inhabitants to deteriorate. For a city government, this may be a vital policy issue. But does disorder really spread in neighborhoods? So far there has not been strong empirical support, and it is not clear what constitutes disorder and what may make it spread. We generated hypotheses about the spread of disorder and tested them in six field experiments. We found that, when people observe that others violated a certain social norm or legitimate rule, they are more likely to violate other norms or rules, which causes disorder to spread.
Binaurality and azimuth tun-ing of neurons in the auditorycortex of the big brown bat
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
By using a combined closed and free-field stimulation system, binaurality and azimuth tuning of the neurons in the auditory cortex of the big brown bat, Eptesicus fuscus, were studied. A variety of azimuth-tuning functions were demonstrated for the binaural neurons. The large majority of EE (contralateral and ipsilateral excitatory) neurons exhibited azimuth selectivity with the best azimuths (BA) at contralateral 30(- 40(, some at ipsilateral 20(-40( and preferred azimuth ranges (PAR, response amplitude ≥75% of maximum) between 8( and 40(. Sound source azimuths strongly modulate spike counts with a mean modulation depth of 83.8% for EE neurons. EI (contralateral excitatory and ipsilateral inhibitory) neurons have simple azimuth tuning with BA located at contralateral 20(-40( and a broad PAR ranged from 30( to 55(. The present results suggest that azimuth-tuning characteristics of binaural neurons in the auditory cortex of the bat are of significance for acoustic behaviour.
Guo, Xiaojiang; Gao, Yesheng; Wang, Kaizhi; Liu, Xingzhao
2016-07-01
A spectrum reconstruction algorithm based on space-time adaptive processing (STAP) can effectively suppress azimuth ambiguity for multichannel synthetic aperture radar (SAR) systems in azimuth. However, the traditional STAP-based reconstruction approach has to estimate the covariance matrix and calculate matrix inversion (MI) for each Doppler frequency bin, which will result in a very large computational load. In addition, the traditional STAP-based approach has to know the exact platform velocity, pulse repetition frequency, and array configuration. Errors involving these parameters will significantly degrade the performance of ambiguity suppression. A modified STAP-based approach to solve these problems is presented. The traditional array steering vectors and corresponding covariance matrices are Doppler-variant in the range-Doppler domain. After preprocessing by a proposed phase compensation method, they would be independent of Doppler bins. Therefore, the modified STAP-based approach needs to estimate the covariance matrix and calculate MI only once. The computation load could be greatly reduced. Moreover, by combining the reconstruction method and a proposed adaptive parameter estimation method, the modified method is able to successfully achieve multichannel SAR signal reconstruction and suppress azimuth ambiguity without knowing the above parameters. Theoretical analysis and experiments showed the simplicity and efficiency of the proposed methods.
Argyros, S A; Tyros, K
2012-01-01
We introduce the higher order spreading models associated to a Banach space $X$. Their definition is based on $\\ff$-sequences $(x_s)_{s\\in\\ff}$ with $\\ff$ a regular thin family and the plegma families. We show that the higher order spreading models of a Banach space $X$ form an increasing transfinite hierarchy $(\\mathcal{SM}_\\xi(X))_{\\xi<\\omega_1}$. Each $\\mathcal{SM}_\\xi (X)$ contains all spreading models generated by $\\ff$-sequences $(x_s)_{s\\in\\ff}$ with order of $\\ff$ equal to $\\xi$. We also provide a study of the fundamental properties of the hierarchy.
Energy Technology Data Exchange (ETDEWEB)
Sobkow, W.; Blaut, A. [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland)
2016-05-15
In this paper, we analyze the theoretically possible scenario beyond the standard model in order to show how the presence of the exotic scalar, tensor, V + A weak interactions in addition to the standard vector-axial (V - A) ones may help to distinguish the Dirac from Majorana neutrinos in the elastic scattering of an (anti)neutrino beam off the unpolarized electrons in the relativistic limit. We assume that the incoming (anti)neutrino beam comes from the polarized muon decay at rest and is the left-right chiral superposition with assigned direction of the transversal spin polarization with respect to the production plane. Our analysis is carried out for the flavour (current) neutrino eigenstates. It means that the transverse neutrino polarization estimates are the same both for the Dirac and Majorana cases. We display that the azimuthal asymmetry in the angular distribution of recoil electrons is generated by the interference terms between the standard and exotic couplings, which are proportional to the transversal (anti)neutrino spin polarization and independent of the neutrino mass. This asymmetry for the Majorana neutrinos is larger than for the Dirac ones. We also indicate the possibility of utilizing the azimuthal asymmetry measurements to search for the new CP-violating phases. Our study is based on the assumption that the possible detector (running for 1 year) has the shape of a flat circular ring, while the intense neutrino source is located in the centre of the ring and polarized perpendicularly to the ring. In addition, the large low-threshold, real-time detector is able to measure with a high resolution both the polar angle and the azimuthal angle of outgoing electron momentum. Our analysis is model-independent and consistent with the current upper limits on the non-standard couplings. (orig.)
The method for analysing jet azimuthal anisotropy in ultrarelativistic heavy ion collisions
Lokhtin, Igor P; Snigirev, A M
2002-01-01
The azimuthal anisotropy of jet spectra due to energy loss of jet partons in azimuthally non-symmetric volume of dense quark-gluon matter is considered for semi-central nuclear interactions at collider energies. We develop the techniques for event-by-event analysing jet azimuthal anisotropy using particle and energy elliptic flow, and suggest the method for calculating coefficient of jet azimuthal anisotropy without reconstruction of nuclear reaction plane.
Photoinduced Magnetic Nanoprobe Excited by Azimuthally Polarized Vector Beam
Guclu, Caner; Capolino, Filippo
2016-01-01
The concept of magnetic nanoprobes (or magnetic nanoantennas) providing a magnetic near-field enhancement and vanishing electric field is presented and investigated, together with their excitation. It is established that a particular type of cylindrical vector beams called azimuthally electric polarized vector beams yield strong longitudinal magnetic field on the beam axis where the electric field is ideally null. These beams with an electric polarization vortex and cylindrical symmetry are important in generating high magnetic to electric field contrast, i.e., large local field admittance, and in allowing selective excitation of magnetic transitions in matter located on the beam axis. We demonstrate that azimuthally polarized vector beam excitation of a photoinduced magnetic nanoprobe made of a magnetically polarizable nano cluster leads to enhanced magnetic near field with resolution beyond diffraction limit. We introduce two figures of merit as magnetic field enhancement and local field admittance normaliz...
Initial state azimuthal anisotropies in small collision systems
Lappi, T
2015-01-01
Strong multiparticle azimuthal correlations have recently been observed in high energy proton-nucleus collisions. While final state collective effects can be responsible for many of the observations, the domain structure in the classical color field of a high energy nucleus also naturally leads to such correlations. We describe recent calculations of the momentum space 2-particle cumulant azimuthal anisotropy coefficients v_n{2}, n=2,3,4 from fundamental representation Wilson line distributions describing the high energy nucleus. We find significant differences between Wilson lines from the MV model and from JIMWLK evolution. We also discuss the relation of this calculation to earlier work on the ridge correlation obtained in the "glasma graph" approximation, and to the "color electric field domain model."
Conformal couplings and "azimuthal matching" of QCD Pomerons
Marchal, N
2000-01-01
Using the asymptotic conformal invariance of perturbative QCD we derive the expression of the coupling of external states to all conformal spin-p components of the forward elastic amplitude. Using the wave-function formalism for structure functions at small x, we derive the perturbative coupling of the virtual photon for p= 1, which is maximal for linear transverse polarization. The non-perturbative coupling to the proton is discussed in terms of ``azimuthal matching'' between the proton color dipoles and the quark- antiquark configurations of the photon. As an application, the recent conjecture of a second QCD Pomeron related to the conformal spin-1 component is shown to rely upon a strong azimuthal matching of the p= 1 component in gamma* -proton scattering.
Azimuthal anisotropies as stringent test for nuclear transport models
Crochet, P.; Rami, F.; Donà, R.; Coffin, J. P.; Fintz, P.; Guillaume, G.; Jundt, F.; Kuhn, C.; Roy, C.; de Schauenburg, B.; Tizniti, L.; Wagner, P.; Alard, J. P.; Andronic, A.; Basrak, Z.; Bastid, N.; Belyaev, I.; Bendarag, A.; Berek, G.; Best, D.; Biegansky, J.; Buta, A.; Čaplar, R.; Cindro, N.; Dupieux, P.; Dželalija, M.; Fan, Z. G.; Fodor, Z.; Fraysse, L.; Freifelder, R. P.; Gobbi, A.; Herrmann, N.; Hildenbrand, K. D.; Hong, B.; Jeong, S. C.; Kecskemeti, J.; Kirejczyk, M.; Koncz, P.; Korolija, M.; Kotte, R.; Lebedev, A.; Leifels, Y.; Manko, V.; Moisa, D.; Mösner, J.; Neubert, W.; Pelte, D.; Petrovici, M.; Pinkenburg, C.; Reisdorf, W.; Ritman, J. L.; Sadchikov, A. G.; Schüll, D.; Seres, Z.; Sikora, B.; Simion, V.; Siwek-Wilczyńska, K.; Sodan, U.; Teh, K. M.; Trzaska, M.; Wang, G. S.; Wessels, J. P.; Wienold, T.; Wisniewski, K.; Wohlfarth, D.; Zhilin, A.; Hartnack, C.; FOPI Collaboration
1997-02-01
Azimuthal distributions of charged particles and intermediate mass fragments emitted in Au+Au collisions at 600 A MeV have been measured using the FOPI facility at GSI-Darmstadt. Data show a strong increase of the in-plane azimuthal anisotropy ratio with the charge of the detected fragment. Intermediate mass fragments are found to exhibit a strong momentum-space alignment with respect of the reaction plane. The experimental results are presented as a function of the polar centre-of-mass angle and over a broad range of impact parameters. They are compared to the predictions of the Isospin Quantum Molecular Dynamics model using three different parametrisations of the equation of state. We show that such highly accurate data provide stringent test for microscopic transport models and can potentially constrain separately the stiffness of the nuclear equation of state and the momentum dependence of the nuclear interaction.
Propagation along azimuthally magnetized ferrite-loaded circular waveguides
Mueller, R. S.; Rosenbaum, F. J.
1977-01-01
The paper describes the modal dispersion characteristics of electromagnetic waves traveling along the azimuthally magnetized ferrite-loaded coaxial transmission line and the ferrite-loaded wire. The modal dispersion curves are used to determine the pass and stop bands of normal propagation. Boundary-value problems were solved with Bolle-Heller functions. The dispersion characteristics of transverse electric modes are presented as plots of the normalized propagation constant vs the normalized frequency.
Theoretical Aspects of Azimuthal and Transverse Spin Asymmetries
Mulders, P J; Boer, D
2001-01-01
We use Lorentz invariance and the QCD equations of motion to study the evolution of functions that appear at leading (zeroth) order in a 1/Q expansion in azimuthal asymmetries. This includes the evolution equation of the Collins fragmentation function. The moments of these functions are matrix elements of known twist two and twist three operators. We present the evolution in the large N_c limit, restricted to the non-singlet case for the chiral-even functions.
THEORETICAL ASPECTS OF AZIMUTHAL AND TRANSVERSE SPIN ASYMMETRIES.
Energy Technology Data Exchange (ETDEWEB)
MULDERS,P.J.; HENNEMAN,A.A.; BOER,D.
2001-04-27
We use Lorentz invariance and the QCD equations of motion to study the evolution of functions that appear at leading (zeroth) order in a l/Q expansion in azimuthal asymmetries. This includes the evolution equation of the Collins fragmentation function. The moments of these functions are matrix elements of known twist two and twist three operators. We present the evolution in the large NC limit, restricted to the non-singlet case for the chiral-even functions.
Theoretical Aspects of Azimuthal and Transverse Spin Asymmetries
Mulders, P. J.; Henneman, A. A.; Boer, D.
2002-10-01
We use Lorentz invariance and the QCD equations of motion to study the evolution of functions that appear at leading (zeroth) order in a 1/Q expansion in azimuthal asymmetries. This includes the evolution equation of the Collins fragmentation function. The moments of these functions are matrix elements of known twist two and twist three operators. We present the evolution in the large Nc limit, restricted to the non-singlet case for the chiral-even functions.
Moving Target Focusing with Normalized Relative Speed in Azimuth-Invarian Bistatic Sar
Vu, Viet Thuy; Sjögren, Thomas; Pettersson, Mats
2013-01-01
Focusing moving targets with Normalized Relative Speed (NRS) for bistatic synthetic aperture radar (SAR) is discussed in this paper. The discussion concentrates on azimuth invariant bistatic geometry. The focusing approach for azimuth-invariant bistatic geometry is derived analytically. The validity of the proposed approach for other bistatic geometry like azimuth-variant is also investigated.
Transverse Spin Azimuthal Asymmetries in SIDIS at COMPASS: Multidimensional Analysis
Parsamyan, Bakur
2016-02-01
COMPASS is a high-energy physics experiment operating at the SPS at CERN. Wide physics program of the experiment comprises study of hadron structure and spectroscopy with high energy muon and hadrons beams. As for the muon-program, one of the important objectives of the COMPASS experiment is the exploration of the transverse spin structure of the nucleon via spin (in)dependent azimuthal asymmetries in single-hadron production in deep inelastic scattering of polarized leptons off transversely polarized target. For this purpose a series of measurements were made in COMPASS, using 160 GeV/c longitudinally polarized muon beam and transversely polarized 6LiD (in 2002, 2003 and 2004) and NH3 (in 2007 and 2010) targets. The experimental results obtained by COMPASS for unpolarized target azimuthal asymmetries, Sivers and Collins effects and other azimuthal observables play an important role in the general understanding of the three-dimensional nature of the nucleon. Giving access to the entire twsit-2 set of transverse momentum dependent parton distribution functions and fragmentation functions COMPASS data triggers constant theoretical interest and is being widely used in phenomenological analyses and global data fits. In this review main focus is given to the very recent results obtained by the COMPASS collaboration from first ever multi-dimensional extraction of transverse spin asymmetries.
Transverse spin azimuthal asymmetries in SIDIS at COMPASS: Multidimensional analysis
Parsamyan, Bakur
2015-01-01
COMPASS is a high-energy physics experiment operating at the SPS at CERN. Wide physics program of the experiment comprises study of hadron structure and spectroscopy with high energy muon and hadrons beams. As for the muon-program, one of the important objectives of the COMPASS experiment is the exploration of the transverse spin structure of the nucleon via spin (in)dependent azimuthal asymmetries in single-hadron production in deep inelastic scattering of polarized leptons off transversely polarized target. For this purpose a series of measurements were made in COMPASS, using 160 GeV/c longitudinally polarized muon beam and transversely polarized 6LiD (in 2002, 2003 and 2004) and NH3 (in 2007 and 2010) targets. The experimental results obtained by COMPASS for unpolarized target azimuthal asymmetries, Sivers and Collins effects and other azimuthal observables play an important role in the general understanding of the three-dimensional nature of the nucleon. Giving access to the entire "twsit-2" set of transv...
Rossby wave Green's functions in an azimuthal wind
Webb, G. M.; Duba, C. T.; Hu, Q.
2016-05-01
Green's functions for Rossby waves in an azimuthal wind are obtained, in which the stream-function $\\psi$ depends on $r$, $\\phi$ and $t$, where $r$ is cylindrical radius and $\\phi$ is the azimuthal angle in the $\\beta$-plane relative to the easterly direction, in which the $x$-axis points east and the $y$-axis points north. The Rossby wave Green's function with no wind is obtained using Fourier transform methods, and is related to the previously known Green's function obtained for this case, which has a different but equivalent form to the Green's function obtained in the present paper. We emphasize the role of the wave eikonal solution, which plays an important role in the form of the solution. The corresponding Green's function for a rotating wind with azimuthal wind velocity ${\\bf u}=\\Omega r{\\bf e}_\\phi$ ($\\Omega=$const.) is also obtained by Fourier methods, in which the advective rotation operator in position space is transformed to a rotation operator in ${\\bf k}$ transform space. The finite Rossby deformation radius is included in the analysis. The physical characteristics of the Green's functions are delineated and applications are discussed. In the limit as $\\Omega\\to 0$, the rotating wind Green's function reduces to the Rossby wave Green function with no wind.
GMT azimuth bogie wheel-rail interface wear study
Teran, Jose; Lindh, Cory; Morgan, Chris; Manuel, Eric; Bigelow, Bruce C.; Burgett, William S.
2016-07-01
Performance of the GMT azimuth drive system is vital for the operation of the telescope and, as such, all components subject to wear at the drive interface merit a high level of scrutiny for achieving a proper balance between capital costs, maintenance costs, and the risk for downtime during planned and unplanned maintenance or replacement procedures. Of particular importance is the interface between the azimuth wheels and rail, as usage frequency is high, the full weight of the enclosure must be transferred through small patches of contact, and replacement of the rail would pose a greater logistical challenge than the replacement of smaller components such as bearings and gearmotors. This study investigates tradeoffs between various wheel-rail and roller-track interfaces, including performance, complexity, and anticipated wear considerations. First, a survey of railway and overhead crane industry literature is performed and general detailing recommendations are made to minimize wear and the risk of rolling contact fatigue. Second, Adams/VI-Rail is used to simulate lifetime wear of four specific configurations under consideration for the GMT azimuth wheel-rail interface; all studied configurations are shown to be viable, and their relative merits are discussed.
Rossby Wave Green's Functions in an Azimuthal Wind
Webb, G M; Hu, Q
2015-01-01
Green's functions for Rossby waves in an azimuthal wind are obtained, in which the stream-function $\\psi$ depends on $r$, $\\phi$ and $t$, where $r$ is cylindrical radius and $\\phi$ is the azimuthal angle in the $\\beta$-plane relative to the easterly direction, in which the $x$-axis points east and the $y$-axis points north. The Rossby wave Green's function with no wind is obtained using Fourier transform methods, and is related to the previously known Green's function obtained for this case, which has a different but equivalent form to the Green's function obtained in the present paper. We emphasize the role of the wave eikonal solution, which plays an important role in the form of the solution. The corresponding Green's function for a rotating wind with azimuthal wind velocity ${\\bf u}=\\Omega r{\\bf e}_\\phi$ ($\\Omega=$const.) is also obtained by Fourier methods, in which the advective rotation operator in position space is transformed to a rotation operator in ${\\bf k}$ transform space. The finite Rossby defo...
Digital Repository Service at National Institute of Oceanography (India)
Krishna, K.S.
along the mid-oceanic ridges, in general, control the internal structure. Geophysical experiments over the global midoceanic ridges have found some explicit relationships between spreading rate, seismic structure, and ridge-axis morphology....
Azimuthal seismic anisotropy in the Earth's upper mantle and the thickness of tectonic plates
Schaeffer, A. J.; Lebedev, S.; Becker, T. W.
2016-11-01
lithosphere, closely matching the 1200 °C half-space cooling isotherm for all oceanic ages. In continental regions, azimuthal anisotropy is characterized by smaller-scale 3-D variations. Quantitative comparisons of the tomographic models with global SKS splitting measurements confirm the basic agreement of the two types of anisotropy analysis; they also offer a new insight into the average rheological thickness of continental lithosphere. In spite of significant recent improvements in the resolution of upper-mantle anisotropic structure, correlations between the anisotropic components of current global tomographic models remain much lower than between the isotropic ones. Our comparisons of the current models show which features are resolved consistently by different models, and therefore provide a means to estimate the robustness of anisotropic patterns and amplitudes. Significantly lower correlations are observed at depths greater than ˜300 km, compared to those shallower, which suggests that global azimuthal anisotropy models are yet to reach consensus on the nature of anisotropy in the transition zone.
Estimating Absolute Site Effects
Energy Technology Data Exchange (ETDEWEB)
Malagnini, L; Mayeda, K M; Akinci, A; Bragato, P L
2004-07-15
The authors use previously determined direct-wave attenuation functions as well as stable, coda-derived source excitation spectra to isolate the absolute S-wave site effect for the horizontal and vertical components of weak ground motion. They used selected stations in the seismic network of the eastern Alps, and find the following: (1) all ''hard rock'' sites exhibited deamplification phenomena due to absorption at frequencies ranging between 0.5 and 12 Hz (the available bandwidth), on both the horizontal and vertical components; (2) ''hard rock'' site transfer functions showed large variability at high-frequency; (3) vertical-motion site transfer functions show strong frequency-dependence, and (4) H/V spectral ratios do not reproduce the characteristics of the true horizontal site transfer functions; (5) traditional, relative site terms obtained by using reference ''rock sites'' can be misleading in inferring the behaviors of true site transfer functions, since most rock sites have non-flat responses due to shallow heterogeneities resulting from varying degrees of weathering. They also use their stable source spectra to estimate total radiated seismic energy and compare against previous results. they find that the earthquakes in this region exhibit non-constant dynamic stress drop scaling which gives further support for a fundamental difference in rupture dynamics between small and large earthquakes. To correct the vertical and horizontal S-wave spectra for attenuation, they used detailed regional attenuation functions derived by Malagnini et al. (2002) who determined frequency-dependent geometrical spreading and Q for the region. These corrections account for the gross path effects (i.e., all distance-dependent effects), although the source and site effects are still present in the distance-corrected spectra. The main goal of this study is to isolate the absolute site effect (as a function of frequency
Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory
Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Cancio, A.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J. C.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gallo, F.; García, B.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Latronico, L.; Lauscher, M.; Lautridou, P.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pepe, I. M.; Pereira, L. A. S.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Rojo, J.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.
2016-04-01
The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (sec θ )max , sensitive to the mass composition of cosmic rays above 3 ×1018 eV . By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understanding of shower modeling that must be resolved before the mass composition can be inferred from (sec θ )max.
Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory
Aab, A; Aglietta, M; Ahn, E J; Samarai, I Al; Albuquerque, I F M; Allekotte, I; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Ambrosio, M; Anastasi, G A; Anchordoqui, L; Andrada, B; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Avila, G; Awal, N; Badescu, A M; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Biteau, J; Blaess, S G; Blanco, A; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Botti, A M; Brack, J; Brancus, I; Bretz, T; Bridgeman, A; Briechle, F L; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Cancio, A; Canfora, F; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Clay, R W; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Coutu, S; Covault, C E; Cronin, J; Dallier, R; D'Amico, S; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; Neto, J R T de Mello; De Mitri, I; de Oliveira, J; de Souza, V; Debatin, J; del Peral, L; Deligny, O; Dhital, N; Di Giulio, C; Di Matteo, A; Castro, M L Díaz; Diogo, F; Dobrigkeit, C; D'Olivo, J C; Dorofeev, A; Anjos, R C dos; Dova, M T; Dundovic, A; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fratu, O; Freire, M M; Fujii, T; Fuster, A; Gallo, F; García, B; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Golup, G; Berisso, M Gómez; Vitale, P F Gómez; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Hasankiadeh, Q; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huege, T; Hulsman, J; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Kuempel, D; Mezek, G Kukec; Kunka, N; Awad, A Kuotb; LaHurd, D; Latronico, L; Lauscher, M; Lautridou, P; Lebrun, P; Legumina, R; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; Casado, A López; Lucero, A; Malacari, M; Mallamaci, M; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martinez, H; Bravo, O Martínez; Meza, J J Masías; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Mockler, D; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Müller, G; Muller, M A; Müller, S; Naranjo, I; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, H; Núñez, L A; Ochilo, L; Oikonomou, F; Olinto, A; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pedreira, F; Pękala, J; Pelayo, R; Peña-Rodriguez, J; Pepe, I M; Pereira, L A S; Perrone, L; Petermann, E; Peters, C; Petrera, S; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rizi, V; de Carvalho, W Rodrigues; Rojo, J Rodriguez; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salazar, H; Saleh, A; Greus, F Salesa; Salina, G; Gomez, J D Sanabria; Sánchez, F; Sanchez-Lucas, P; Santos, E M; Santos, E; Sarazin, F; Sarkar, B; Sarmento, R; Sarmiento-Cano, C; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sonntag, S; Sorokin, J; Squartini, R; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Strafella, F; Stutz, A; Suarez, F; Durán, M Suarez; Sudholz, T; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Timmermans, C; Peixoto, C J Todero; Tomankova, L; Tomé, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Valbuena-Delgado, A; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; Berg, A M van den; van Vliet, A; Varela, E; Cárdenas, B Vargas; Varner, G; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weindl, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yelos, D; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zimmermann, B; Ziolkowski, M; Zong, Z; Zuccarello, F
2016-01-01
The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, $(\\sec \\theta)_\\mathrm{max}$, sensitive to the mass composition of cosmic rays above $3 \\times 10^{18}$ eV. By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understa...
Prino, F; Alexa, C; Arnaldi, R; Atayan, M; Beolè, S; Boldea, V; Bordalo, P; Borges, G; Castanier, C; Castor, J; Chaurand, B; Cheynis, B; Chiavassa, E; Cicalo, C; Comets, M P; Constantinescu, S; Cortese, P; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Fargeix, J; Force, P; Gallio, M; Gerschel, C; Giubellino, P; Golubeva, M B; Grigoryan, A A; Grigoryan, S; Guber, F F; Guichard, A; Gulkanyan, H; Idzik, M; Jouan, D; Karavicheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Lourenço, C; Mac Cormick, M; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Puddu, G; Quintans, C; Ramello, L; Ramos, S; Riccati, L; Santos, H; Saturnini, P; Scomparin, E; Serci, S; Shahoyan, R; Sigaudo, F; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, E; Villatte, L; Willis, N; Wu, T
2009-01-01
The J/$\\psi$ azimuthal distribution relative to the reaction plane has been measured by the NA50 experiment in Pb-Pb collisions at 158 GeV/nucleon. Various physical mechanisms related to charmonium dissociation in the medium created in the heavy ion collision are expected to introduce an anisotropy in the azimuthal distribution of the observed J/$\\psi$ mesons at SPS energies. Hence, the measurement of J/$\\psi$ elliptic anisotropy, quantified by the Fourier coefficient v$_2$ of the J/$\\psi$ azimuthal distribution relative to the reaction plane, is an important tool to constrain theoretical models aimed at explaining the anomalous J/$\\psi$ suppression observed in Pb-Pb collisions. We present the measured J/$\\psi$ yields in different bins of azimuthal angle relative to the reaction plane, as well as the resulting values of the Fourier coefficient v$_{2}$ as a function of the collision centrality and of the J/$\\psi$ transverse momentum. The reaction plane has been estimated from the azimuthal distribution of the ...
Ravenna, Matteo; Lebedev, Sergei
2016-04-01
We develop a Markov Chain Monte Carlo method for joint inversion of Rayleigh- and Love-wave dispersion curves that is able to yield robust radially and azimuthally anisotropic shear velocity profiles, with resolution to depths down to the transition zone. The probabilistic feature of the algorithm is a powerful tool that is able to provide error assessment of the shear velocity models, quantify non-uniqueness and address the issue of data noise estimation by treating it as an unknown parameter in the inversion. In a fixed dimensional Bayesian formulation, we choose to set the number of parameters relatively high, with a more dense parametrization in the uppermost mantle in order to have a good resolution of the Litosphere-Astenosphere Boundary region. We apply the MCMC algorithm to the inversion of surface-wave phase velocities accurately determined in broad period ranges in a few test regions. In the Baikal-Mongolia region we invert Rayleigh- and Love- wave dispersion curves for radially anisotropic structure (Vsv,Vsh) of the crust and upper mantle. In the Tuscany region, where we have phase velocity data with good azimuthal coverage, a different implementation of the algorithm is applied that is able to resolve azimuthal anisotropy; the Rayleigh wave dispersion curves measured at different azimuths have been inverted for the Vsv structure and the depth distribution of the 2-psi azimuthal anisotropy of the region, with good resolution down to asthenospheric depths.
Pure Azimuthal Shear of an Elastic Dielectric Material
Directory of Open Access Journals (Sweden)
Kuldeep Kumar
2010-03-01
Full Text Available The purpose of this research is to examine the effect of polarization for the problem of pure azimuthal shear of an elastic dielectric material. The present problem is investigated in context of finite deformation theory. In this paper, the author studied the effect of polarization on the stresses for Neoprene rubber and compare the results with elastic material (Mooney-Rivlin material graphically. Twisting of a rigid cylinder in an infinite elastic medium is considered as a special case in this research.
Azimuthal Dependence of Pion Interferometry at the AGS
Lisa, M A; Alexander, J M; Anderson, M; Best, D; Brady, F P; Case, T; Caskey, W; Cebra, D; Chance, J L; Chung, P; Cole, B; Crowe, K M; Das, A C; Draper, J E; Gilkes, M L; Gushue, S; Heffner, M; Hirsch, A S; Hjort, E L; Huo, L; Justice, M; Kaplan, M; Keane, D; Kintner, J C; Klay, J L; Krofcheck, D; Lacey, R A; Lauret, J; Liu, H; Liu, Y M; McGrath, R; Milosevich, Z; Odyniec, Grazyna Janina; Olson, D L; Panitkin, S Y; Pinkenburg, C H; Porile, N T; Rai, G; Ritter, H G; Romero, J L; Scharenberg, R P; Schröder, L; Srivastava, B; Stone, N T B; Symons, T J M; Wells, R; Whitfield, J; Wienold, T; Witt, R; Wood, L; Zhang Wei Ning
2000-01-01
Two-pion correlation functions, measured as a function of azimuthal emission angle with respect to the reaction plane, provide novel information on the anisotropic shape and orientation of the pion-emitting zone formed in heavy ion collisions. We present the first experimental determination of this information, for semi-central Au+Au collisions at 2-6 AGeV. The source extension perpendicular to the reaction plane is greater than the extension in the plane, and tilt of the pion source in coordinate space is found to be opposite its tilt in momentum space.
Mieghem, P. van; Omic, J.; Kooij, R.E.
2009-01-01
The influence of the network characteristics on the virus spread is analyzed in a new-the N-intertwined Markov chain-model, whose only approximation lies in the application of mean field theory. The mean field approximation is quantified in detail. The N-intertwined model has been compared with the
Walls, Daniel J.; Haward, Simon J.; Shen, Amy Q.; Fuller, Gerald G.
2016-05-01
Miscible liquids commonly contact one another in natural and technological situations, often in the proximity of a solid substrate. In the scenario where a drop of one liquid finds itself on a solid surface and immersed within a second, miscible liquid, it will spread spontaneously across the surface. We show experimental findings of the spreading of sessile drops in miscible environments that have distinctly different shape evolution and power-law dynamics from sessile drops that spread in immiscible environments, which have been reported previously. We develop a characteristic time to scale radial data of the spreading sessile drops based on a drainage flow due to gravity. This time scale is effective for a homologous subset of the liquids studied. However, it has limitations when applied to significantly chemically different, yet miscible, liquid pairings; we postulate that the surface energies between each liquid and the solid surface becomes important for this other subset of the liquids studied. Initial experiments performed with pendant drops in miscible environments support the drainage flow observed in the sessile drop systems.
ENDOMETRIOSIS WITH LYMPHATIC SPREAD
Directory of Open Access Journals (Sweden)
Narmadha
2014-10-01
Full Text Available Pelvic endometriosis is a common gynaecologic problem. But the histogenesis of endometriosis was not so clear. Various theories have been proposed by Pathologist in the past. Here we present a case of endometriosis of fallopian tube by lymphatic spread which has been proved histopathologically
Anisotropic particle production and azimuthal correlations in high-energy pA collisions
Dumitru, Adrian; Skokov, Vladimir
2015-01-01
We summarize some recent ideas relating to anisotropic particle production in high-energy collisions. Anisotropic gluon distributions lead to anisotropies of the single-particle azimuthal distribution and hence to disconnected contributions to multi-particle cumulants. When these dominate, the four-particle elliptic anisotropy $c_2\\{4\\}$ changes sign. On the other hand, connected diagrams for $m$-particle cumulants are found to quickly saturate with increasing $m$, a ``coherence'' quite unlike conventional ``non-flow'' contributions such as decays. Finally, we perform a first exploratory phenomenological analysis in order to estimate the amplitude ${\\cal A}$ of the $\\cos(2\\varphi)$ anisotropy of the gluon distribution at small $x$, and we provide a qualitative prediction for the elliptic asymmetry from three-particle correlations, $c_2\\{3\\}$.
Non-azimuthal linear polarization in protoplanetary disks
Canovas, H; de Boer, J; Pinte, C; Avenhaus, H; Schreiber, M R
2015-01-01
Several studies discussing imaging polarimetry observations of protoplanetary disks use the so-called radial Stokes parameters Q_phi and U_phi to discuss the results. This approach has the advantage of providing a direct measure of the noise in the polarized images under the assumption that the polarization is azimuthal only, i.e., perpendicular to the direction towards the illuminating source. However, a detailed study of the validity of this assumption is currently missing. We aim to test whether departures from azimuthal polarization can naturally be produced by scattering processes in optically thick protoplanetary disks at near infrared wavelengths. We use the radiative transfer code MCFOST to create a generic model of a transition disk using different grain size distributions and dust masses. From these models we generate synthetic polarized images at 2.2\\mum. We find that even for moderate inclinations (e.g., i = 40degr), multiple scattering alone can produce significant (up to ~4.5% of the Q_phi image...
Method for measurement of azimuth of a borehole while drilling
Energy Technology Data Exchange (ETDEWEB)
DiPersio, R.D.; Cobern, M.E.
1989-03-21
A method is described for determining the azimuth angle of a borehole being drilled by instruments contained downhole in the drillstring, including the steps of: sensing with accelerometer means, during a period of nonrotation of the drillstring, the components of Gx, Gy and Gz of the total gravity field Go at the location of the instrument; sensing with magnetometer means, during a period of nonrotation of the drillstring, the components of Hx, Hy and Hz of the total magnetic field Ho at the location of the instrument; the components Gz and Hz being along the axis of the drillstring, the components Gx and the components and Gy being orthogonal to Gz and the components Hx and Hy being orthogonal to Hz; rotating the magnetometer means with the drillstring and obtaining the parameter Hzr which is the Hz component of the magnetic field at the location of the instrument during rotation of the drillstring; determining Ho from values Hx, Hy and Hz sensed during nonrotation of the drillstring; determining the inclination angle of the drillstring; determining the dip angle of the magnetic field; determining the angle between the direction of the magnetic field and the axis of the drillstring at the location of the instrument from Ho and Hzr; and determining the azimuth angle.
SIDIS transverse spin azimuthal asymmetries at COMPASS: Multidimensional analysis
Parsamyan, Bakur
2015-01-01
Exploration of transverse spin structure of the nucleon via study of the spin (in)dependent azimuthal asymmetries in semi-inclusive deep inelastic scattering (SIDIS) and Drell-Yan (DY) reactions is one of the main aspects of the broad physics program of the COMPASS experiment (CERN, Switzerland). In past decade COMPASS has collected a considerable amount of polarized deuteron and proton SIDIS data while 2014 and 2015 runs were dedicated to the Drell-Yan measurements. Results on SIDIS azimuthal effects provided so far by COMPASS play an important role in general understanding of the three-dimensional nature of the nucleon. Giving access to the entire "twist-2" set of transverse momentum dependent (TMD) parton distribution functions (PDFs) and fragmentation functions (FFs) COMPASS data are being widely used in phenomenological analyses and experimental data fits. Recent unique and first ever x-$Q^{2}$-z-pT multidimensional results for transverse spin asymmetries obtained by COMPASS serve as a direct and unprece...
Transverse spin azimuthal asymmetries in SIDIS at COMPASS: Multidimensional analysis
Parsamyan, Bakur
2015-01-01
One of the important objectives of the COMPASS experiment (CERN, SPS north area) is the exploration of transverse spin structure of nucleon via study of spin (in)dependent azimuthal asymmetries with semi-inclusive deep inelastic scattering (SIDIS) processes and recently also with Drell-Yan (DY) reactions. In the past twelve years series of measurements were made in COMPASS, using 160 GeV/c longitudinally polarized muon beam and polarized $^6LiD$ and $NH_3$ targets. Drell-Yan measurements with high energy (190 GeV/c) pion beam and transversely polarized $NH_3$ target started in 2014 with a pilot-run have been followed by 140 days of data taking in 2015. The experimental results obtained by COMPASS for azimuthal effects in SIDIS play an important role in the general understanding of the three-dimensional nature of the nucleon and are widely used in theoretical analyses and global data fits. In addition, future first ever polarized DY-data from COMPASS compared with SIDIS results will open a new chapter probing ...
PERFORMANCE ANALYSIS OF AZIMUTH ELECTRONIC BEAM STEERING MODE SPACEBORNE SAR
Institute of Scientific and Technical Information of China (English)
Han Xiaodong; Xu Wei; Han Xiaolei
2013-01-01
Pointing angle and pattern of the antenna can be changed swiftly to actualize the azimuth beam scanning by using electronic beam steering,which makes the Synthetic Aperture Radar (SAR)system more flexible and achieve a high resolution or cover a long strip within short time span.When the pointing angle is steered away from boresight,some aberrations may appear on the antenna pattern,e.g.,the grating lobe appears,the main lobe gain decrease,and antenna pattern broadens,e.g.,the aberrations result in the worsening of system performance,and complicate the corresponding performance analysis method.Conventional computation methods of performance parameters do not account for the rapid change of the antenna pattern.It introduces remarkable errors when the scanning angle is large.In this paper,a method of calculating performance parameters is proposed for the beam steering mode,which achieves the parameters by the energy accumulation in time domain.Actually,the proposed method simulates the working process of SAR and obtains accurate performance parameters.Furthermore,we analyze the effects of the grating lobe on the Azimuth Ambiguity to Signal Ratio (AASR),and present the generic Pulse Repetition Frequency (PRF) choosing principle which can also prevent the ambiguous area from weighting by the grating lobe.Finally,the effect of the antenna configuration on the performance parameters is analyzed by a system example.
Hayashida, Misa; Malac, Marek; Bergen, Michael; Egerton, Ray F.; Li, Peng
2014-08-01
Electron tomography is a method whereby a three-dimensional reconstruction of a nanoscale object is obtained from a series of projected images measured in a transmission electron microscope. We developed an electron-diffraction method to measure the tilt and azimuth angles, with Kikuchi lines used to align a series of diffraction patterns obtained with each image of the tilt series. Since it is based on electron diffraction, the method is not affected by sample drift and is not sensitive to sample thickness, whereas tilt angle measurement and alignment using fiducial-marker methods are affected by both sample drift and thickness. The accuracy of the diffraction method benefits reconstructions with a large number of voxels, where both high spatial resolution and a large field of view are desired. The diffraction method allows both the tilt and azimuth angle to be measured, while fiducial marker methods typically treat the tilt and azimuth angle as an unknown parameter. The diffraction method can be also used to estimate the accuracy of the fiducial marker method, and the sample-stage accuracy. A nano-dot fiducial marker measurement differs from a diffraction measurement by no more than ±1°.
Energy Technology Data Exchange (ETDEWEB)
Hayashida, Misa [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Malac, Marek; Egerton, Ray F. [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton T6G 2M9 (Canada); Department of Physics, University of Alberta, Edmonton T6H 2E1 (Canada); Bergen, Michael; Li, Peng [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton T6G 2M9 (Canada)
2014-08-15
Electron tomography is a method whereby a three-dimensional reconstruction of a nanoscale object is obtained from a series of projected images measured in a transmission electron microscope. We developed an electron-diffraction method to measure the tilt and azimuth angles, with Kikuchi lines used to align a series of diffraction patterns obtained with each image of the tilt series. Since it is based on electron diffraction, the method is not affected by sample drift and is not sensitive to sample thickness, whereas tilt angle measurement and alignment using fiducial-marker methods are affected by both sample drift and thickness. The accuracy of the diffraction method benefits reconstructions with a large number of voxels, where both high spatial resolution and a large field of view are desired. The diffraction method allows both the tilt and azimuth angle to be measured, while fiducial marker methods typically treat the tilt and azimuth angle as an unknown parameter. The diffraction method can be also used to estimate the accuracy of the fiducial marker method, and the sample-stage accuracy. A nano-dot fiducial marker measurement differs from a diffraction measurement by no more than ±1°.
Optimizing Hybrid Spreading in Metapopulations
Zhang, Changwang; Cox, Ingemar J; Chain, Benjamin M
2014-01-01
Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by \\textit{local spreading}, where infected nodes can only infect a limited set of direct target nodes and \\textit{global spreading}, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemics, and examine the optimum balance between spreading mechanisms in terms of achieving the maximum outbreak size. In a metapopulation, made up of many weakly connected subpopulations, we show that one can calculate an optimal tradeoff between local and global spreading which will maximise the extent of the epidemic. As an example we analyse the 2008 outbreak of the Internet worm Conficker, which uses hybrid spreading to propagate through the internet. Our results suggests that the worm would have been eve...
Combinatorics of spreads and parallelisms
Johnson, Norman
2010-01-01
Partitions of Vector Spaces Quasi-Subgeometry Partitions Finite Focal-SpreadsGeneralizing André SpreadsThe Going Up Construction for Focal-SpreadsSubgeometry Partitions Subgeometry and Quasi-Subgeometry Partitions Subgeometries from Focal-SpreadsExtended André SubgeometriesKantor's Flag-Transitive DesignsMaximal Additive Partial SpreadsSubplane Covered Nets and Baer Groups Partial Desarguesian t-Parallelisms Direct Products of Affine PlanesJha-Johnson SL(2,
Detection of coalbed fractures with P-wave azimuthal AVO in 3-D seismic exploration
Institute of Scientific and Technical Information of China (English)
LI Guofa; PENG Suping; HE Bingshou; PENG Xiaobo; YUAN Chunfang; HU Chaoyuan
2005-01-01
The detection of fractures is important for production and safety in coal fields. Subsurface fractures result in azimuthal anisotropy of the seismic wave, and the amplitude of reflection wave varies with offset and azimuth.In case of weak anisotropy, the reflection coefficients of P-wave are concisely denoted as the analytic function of fracture parameters. For the purpose of predicting the coalbed fracture distribution through analyzing variation of the reflection amplitudes with offset and azimuth, 3-D seismic data with full-azimuth were acquired in a coal field in Huainan, Anhui Province. The careful analysis and process of seismic data showed that the reflection amplitude of the primary coaibed varied with azimuth in much consistent with the theoretical model. The conclusion was drawn that the coal-bed fracture in this coal field could be predicted through the method of the P-wave azimuthal AVO.
Doerr, Benjamin; Sauerwald, Thomas
2010-01-01
We propose and analyse a quasirandom analogue of the classical push model for disseminating information in networks ("randomized rumor spreading"). In the classical model, in each round each informed vertex chooses a neighbor at random and informs it, if it was not before. It is known that this simple protocol succeeds in spreading a rumor from one vertex to all others within O(log n) rounds on complete graphs, hypercubes, random regular graphs, Erdos-Renyi random graph and Ramanujan graphs with high probability. In the quasirandom model, we assume that each vertex has a (cyclic) list of its neighbors. Once informed, it starts at a random position of the list, but from then on informs its neighbors in the order of the list. Surprisingly, irrespective of the orders of the lists, the above mentioned bounds still hold. In some cases even better bounds than for the classical model can be shown.
Spread spectrum image steganography.
Marvel, L M; Boncelet, C R; Retter, C T
1999-01-01
In this paper, we present a new method of digital steganography, entitled spread spectrum image steganography (SSIS). Steganography, which means "covered writing" in Greek, is the science of communicating in a hidden manner. Following a discussion of steganographic communication theory and review of existing techniques, the new method, SSIS, is introduced. This system hides and recovers a message of substantial length within digital imagery while maintaining the original image size and dynamic range. The hidden message can be recovered using appropriate keys without any knowledge of the original image. Image restoration, error-control coding, and techniques similar to spread spectrum are described, and the performance of the system is illustrated. A message embedded by this method can be in the form of text, imagery, or any other digital signal. Applications for such a data-hiding scheme include in-band captioning, covert communication, image tamperproofing, authentication, embedded control, and revision tracking.
Azimuthal Distributions in Intermediate Energy Heavy-Ion Collisions
Wilson, William Kenneth
The azimuthal distributions of light particles (Z = 1,2) with respect to the entrance channel reaction plane are investigated with a view towards characterizing the modes of collective motion in intermediate energy heavy -ion collisions. A new technique for reaction plane determination from the distribution of light particles produced in a collision is developed and applied to Ar+V data. The data were acquired using the MSU 4pi Array, a new 215 element large solid angle detector system. At a beam energy of 35 MeV/nucleon, light charged particles are found to exhibit an enhanced emission in the reaction plane which increases with the mass of the detected particle. As the beam energy is increased to 100 MeV/nucleon, the anisotropy nearly vanishes, providing clues to the dynamics of these reactions in a transitional energy regime. The observed anisotropy contains signatures of two distinct modes of collective motion: attractive mean field deflection, and rotation of the fused system. A microscopic calculation based on mean-field mediated interactions plus nucleon-nucleon collisions reproduces both forms of collective motion and their associated azimuthal distributions. The calculation also suggests that the anisotropy due to mean -field deflection is established during the initial stages of the collision. The nature of the nuclear mean-field is further explored using data taken by the 4pi Array for peripheral 50 MeV/nucleon C induced reactions on C and Au targets. Although projectile fragments in grazing collisions are positively deflected by the coulomb force, a specific set of protons are found to be simultaneously attractively deflected by the mean-field towards the opposite side of the reaction plane. This direct observation of attractive mean field deflection supports aspects of the interpretation of the Ar+V data. Lastly, the experimental results are summarized and the potential for extracting more information about the dynamics of heavy-ion collisions using
Azimuthal Asymmetries and Vibrational Modes in Bubble Pinch-off
Schmidt, Laura E
2011-01-01
The pressure-driven inertial collapse of a cylindrical void in an inviscid liquid is an integrable, Hamiltonian system that forms a finite-time singularity as the radius of the void collapses to zero. Here it is shown that when the natural cylindrical symmetry of the void is perturbed azimuthally, the perturbation modes neither grow nor decay, but instead cause constant amplitude vibrations about the leading-order symmetric collapse. Though the amplitudes are frozen in time, they grow relative to the mean radius which is collapsing to zero, eventually overtaking the leading-order symmetric implosion. Including weak viscous dissipation destroys the integrability of the underlying symmetric implosion, and the effect on the stability spectrum is that short-wavelength disturbances are now erased as the implosion proceeds. Introducing a weak rotational flow component to the symmetric implosion dynamics causes the vibrating shapes to spin as the mean radius collapses. The above theoretical scenario is compared to a...
Azimuthal correlation and collective behavior in nucleus-nucleus collisions
Energy Technology Data Exchange (ETDEWEB)
Mali, P.; Mukhopadhyay, A., E-mail: amitabha-62@rediffmail.com; Sarkar, S. [University of North Bengal, Department of Physics (India); Singh, G. [SUNY at Fredonia, Department of Computer and Information Science (United States)
2015-03-15
Various flow effects of nuclear and hadronic origin are investigated in nucleus-nucleus collisions. Nuclear emulsion data collected from {sup 84}Kr + Ag/Br interaction at an incident energy of 1.52 GeV per nucleon and from {sup 28}Si + Ag/Br interaction at an incident energy of 14.5 GeV per nucleon are used in the investigation. The transverse momentum distribution and the flow angle analysis show that collective behavior, like a bounce-off effect of the projectile spectators and a sidesplash effect of the target spectators, are present in our event samples. From an azimuthal angle analysis of the data we also see a direct flow of the projectile fragments and of the produced charged particles. On the other hand, for both data samples the target fragments exhibit a reverse flow, while the projectile fragments exhibit an elliptic flow. Relevant flow parameters are measured.
Azimuthal swirl in liquid metal electrodes and batteries
Ashour, Rakan; Kelley, Douglas
2016-11-01
Liquid metal batteries consist of two molten metals with different electronegativity separated by molten salt. In these batteries, critical performance related factors such as the limiting current density are governed by fluid mixing in the positive electrode. In this work we present experimental results of a swirling flow in a layer of molten lead-bismuth alloy driven by electrical current. Using in-situ ultrasound velocimetery, we show that poloidal circulation appears at low current density, whereas azimuthal swirl becomes dominant at higher current density. The presence of thermal gradients produces buoyant forces, which are found to compete with those produced by current injection. Taking the ratio of the characteristic electromagnetic to buoyant flow velocity, we are able to predict the current density at which the flow becomes electromagnetically driven. Scaling arguments are also used to show that swirl is generated through self-interaction between the electrical current in the electrode with its own magnetic field.
A fast algorithm for 3D azimuthally anisotropic velocity scan
Hu, Jingwei
2014-11-11
© 2014 European Association of Geoscientists & Engineers. The conventional velocity scan can be computationally expensive for large-scale seismic data sets, particularly when the presence of anisotropy requires multiparameter scanning. We introduce a fast algorithm for 3D azimuthally anisotropic velocity scan by generalizing the previously proposed 2D butterfly algorithm for hyperbolic Radon transforms. To compute semblance in a two-parameter residual moveout domain, the numerical complexity of our algorithm is roughly O(N3logN) as opposed to O(N5) of the straightforward velocity scan, with N being the representative of the number of points in a particular dimension of either data space or parameter space. Synthetic and field data examples demonstrate the superior efficiency of the proposed algorithm.
Azimuthally polarized cathodoluminescence from InP nanowires
Energy Technology Data Exchange (ETDEWEB)
Brenny, B. J. M.; Osorio, C. I.; Polman, A., E-mail: polman@amolf.nl [Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); Dam, D. van [COBRA Research Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Gómez Rivas, J. [COBRA Research Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); FOM Institute DIFFER, P.O. Box 6336, 5600 HH Eindhoven (Netherlands)
2015-11-16
We determine the angle and polarization dependent emission from 1.75 µm and 2.50 µm long InP nanowires by using cathodoluminescence polarimetry. We excite the vertical wires using a 5 keV electron beam, and find that the 880 nm bandgap emission shows azimuthally polarized rings, with the number of rings depending on the wire height. The data agree well with a model in which spontaneous emission from the wire emitted into the far field interferes with emission reflected off the substrate. From the model, the depth range from which the emission is generated is found to be up to 400 nm below the top surface of the wires, well beyond the extent of the primary electron cloud. This enables a probe of the carrier diffusion length in the InP nanowires.
Rescuing the nonjet (NJ) azimuth quadrupole from the flow narrative
Trainor, Thomas A
2016-01-01
According to the flow narrative commonly applied to high-energy nuclear collisions a cylindrical-quadrupole component of 1D azimuth angular correlations is conventionally denoted by quantity $v_2$ and interpreted to represent elliptic flow. Jet angular correlations may also contribute to $v_2$ data as "nonflow" depending on the method used to calculate $v_2$, but 2D graphical methods are available to insure accurate separation. The nonjet (NJ) quadrupole has various properties inconsistent with a flow interpretation, including the observation that NJ quadrupole centrality variation in A-A collisions has no relation to strongly-varying jet modification ("jet quenching") in those collisions commonly attributed to jet interaction with a flowing dense medium. In this presentation I describe isolation of quadrupole spectra from pt-differential $v_2(p_t)$ data from the RHIC and LHC. I demonstrate that quadrupole spectra have characteristics very different from the single-particle spectra for most hadrons, that quad...
Nonmodal analysis of helical and azimuthal magnetorotational instabilities
Mamatsashvili, G
2016-01-01
The helical and the azimuthal magnetorotational instabilities operate in rotating magnetized flows with relatively steep negative or extremely steep positive shear. The corresponding lower and upper Liu limits of the shear, which determine the threshold of modal growth of these instabilities, are continuously connected when some axial electrical current is allowed to pass through the rotating fluid. We investigate the nonmodal dynamics of these instabilities arising from the nonnormality of shear flow in the local approximation, generalizing the results of the modal approach. It is demonstrated that moderate transient/nonmodal amplification of both types of magnetorotational instability occurs within the Liu limits, where the system is stable according to modal analysis. We show that for the helical magnetorotational instability this magnetohydrodynamic behavior is closely connected with the nonmodal growth of the underlying purely hydrodynamic problem.
Optimal analysis of azimuthal features in the CMB
Osborne, Stephen; Smith, Kendrick
2013-01-01
We present algorithms for searching for azimuthally symmetric features in CMB data. Our algorithms are fully optimal for masked all-sky data with inhomogeneous noise, computationally fast, simple to implement, and make no approximations. We show how to implement the optimal analysis in both Bayesian and frequentist cases. In the Bayesian case, our algorithm for evaluating the posterior likelihood is so fast that we can do a brute-force search over parameter space, rather than using a Monte Carlo Markov chain. Our motivating example is searching for bubble collisions, a pre-inflationary signal which can be generated if multiple tunneling events occur in an eternally inflating spacetime, but our algorithms are general and should be useful in other contexts.
Some properties of the circular waveguide with azimuthally magnetized ferrite
Ivanov, Kamen P.; Georgiev, Georgi N.
1990-05-01
A comprehensive analysis of normal rotationally symmetric TE modes in a circular waveguide, filled with ferrite, magnetized azimuthally to remanence by a coaxial switching conductor of finite radius, is presented. The characteristic equation of the structure, derived in terms of Kummer and Tricomi confluent hypergeometric functions of complex parameter and variable, is solved numerically, using specially compiled tables of wave functions. Families of theoretically calculated nonreciprocal phase characteristics of the gyrotropic waveguide are shown in normalized form for the two latched states of remanent magnetization, a variety of ferrite parameters, and different values of switching conductor to waveguide radius ratio. The influence of structure geometry and parameters of anisotropic ferrite on normalized differential phase shift and cutoff frequency spectrum of the TE01 mode is discussed.
Potential for international spread of wild poliovirus via travelers
Wilder-Smith, Annelies; Leong, Wei-Yee; Lopez, Luis Fernandez; Amaku, Marcos; Quam, Mikkel; Khan, Kamran; MASSAD, Eduardo
2015-01-01
Background: The endgame of polio eradication is hampered by the international spread of poliovirus via travelers. In response to ongoing importations of poliovirus into polio-free countries, on 5 May 2014, WHO's Director-General declared the international spread of wild poliovirus a public health emergency of international concern. Our objective was to develop a mathematical model to estimate the international spread of polio infections. Methods: Our model took into account polio endemicity i...
Improvement of azimuthal homogeneity in permanent-magnet bearing rotors
Hull, J. R.; Rossing, T. D.; Mulcahy, T. M.; Uherka, K. L.
1992-10-01
Permanent magnets that are levitated and rotating over a bulk high-temperature superconductor (HTS) form the basis of many superconducting bearing designs. Experiments have shown that the rotational-loss 'coefficient of friction' for thrust bearings of this type can be as low as 8 x 10(exp -6). While the loss mechanisms of such bearings are not well understood, the azimuthal homogeneity of the rotating permanent magnet is believed to play an important role in determining the loss. One possible loss mechanism is magnetic hysteresis in the HTS, where the energy loss E per cycle is derived from the critical state model and given by E = K (Delta B)(sup 3)/J(sub c) where K is a geometric coefficient, Delta B is the variation in magnetic field at the surface of the HTS experienced during a rotation of the levitated magnet, and J(sub c) is the critical current density of the HTS. It is clear that a small decrease in Delta B (i.e., decreasing the azimuthal inhomogeneity of the rotating magnetic field) could have profound effects on decreasing E and the rotational coefficient of friction. The role of Delta B is also expected to be significant in reducing losses from eddy currents and other mechanisms. Low rotational losses in HTS bearings have been demonstrated only for levitated masses of several grams. For practical bearings, it is important to obtain these low losses with larger levitated masses. There are two main routes toward decreasing Delta B. The first is to improve the alignment of the magnetic particles during fabrication and to maintain close tolerances on grinding angles during manufacture of the permanent magnet. The second, the subject of this paper, is to provide correctional procedures after the magnet is fabricated.
Institute of Scientific and Technical Information of China (English)
Zhang Chun; Fei Shu-Min; Zhou Xing-Peng
2012-01-01
In this paper,we explore the technology of tracking a group of targets with correlated motions in a wireless sensor network.Since a group of targets moves collectively and is restricted within a limited region,it is not worth consuming scarce resources of sensors in computing the trajectory of each single target.Hence,in this paper,the problem is modeled as tracking a geographical continuous region covered by all targets.A tracking algorithm is proposed to estimate the region covered by the target group in each sampling period.Based on the locations of sensors and the azimuthal angle of arrival (AOA) information,the estimated region covering all the group members is obtained.Algorithm analysis provides the fundamental limits to the accuracy of localizing a target group.Simulation results show that the proposed algorithm is superior to the existing hull algorithm due to the reduction in estimation crror,which is between 10％ and 40％ of the hull algorithm,with a similar density of sensors.And when the density of sensors increases,the localization accuracy of the proposed algorithm improves dramatically.
Comparative study on spreading function for directional wave spectra
Digital Repository Service at National Institute of Oceanography (India)
Bhat, S.S.; Anand, N.M.; Nayak, B.U.
-dimensional wave energy S(f) and the directional spreading function D(f, theta). This paper reviews various spreading functions proposed in the past for estimating the directional wave energy and presents their application to the Indian wave condition. It is found...
Hybrid spread spectrum radio system
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2010-02-09
Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.
Fundamentals of spread spectrum modulation
Ziemer, Rodger E
2007-01-01
This lecture covers the fundamentals of spread spectrum modulation, which can be defined as any modulation technique that requires a transmission bandwidth much greater than the modulating signal bandwidth, independently of the bandwidth of the modulating signal. After reviewing basic digital modulation techniques, the principal forms of spread spectrum modulation are described. One of the most important components of a spread spectrum system is the spreading code, and several types and their characteristics are described. The most essential operation required at the receiver in a spread spect
Azimuth space-variant properties of BiSAR with nonequal velocities
Institute of Scientific and Technical Information of China (English)
Yang Yonghong; Pi Yiming
2008-01-01
Bistatic SAR possesses characteristic of the azimuth space-variant when the velocities of transmitter and receiver are not equal.The geometric model of BiSAR with the parallel trajectories and the nonequal platform velocities is presented.Analyzing the motion relationship of transmitter and receiver,the formula of azimuth space-variant is derived in time domain.Via Taylor polynomial expansions,the azimuth space-variant is factorized by four terms: zero-order,first-order,second-order,and third-order term.And,their impacts on impulse response are illuminated.Some characteristics about azimuth space-variant of airborne BiSAR case are exhibited by simulation experiments,arid these simulated results are coincident with the formulae of azimuth space-variant.
Takahashi, Kazunori; Chiba, Aiki; Komuro, Atsushi; Ando, Akira
2016-10-01
The azimuthal plasma current in a magnetic nozzle of a radiofrequency plasma thruster is experimentally identified by measuring the plasma-induced magnetic field. The axial plasma momentum increases over about 20 cm downstream of the thruster exit due to the Lorentz force arising from the azimuthal current. The measured current shows that the azimuthal current is given by the sum of the electron diamagnetic drift and \\mathbf{E}× \\mathbf{B} drift currents, where the latter component decreases with an increase in the magnetic field strength; hence the azimuthal current approaches the electron diamagnetic drift one for the strong magnetic field. The Lorentz force calculated from the measured azimuthal plasma current and the radial magnetic field is smaller than the directly measured force exerted to the magnetic field, which indicates the existence of a non-negligible Lorentz force in the source tube.
Azimuthally Varying Noise Reduction Techniques Applied to Supersonic Jets
Heeb, Nicholas S.
An experimental investigation into the effect of azimuthal variance of chevrons and fluidically enhanced chevrons applied to supersonic jets is presented. Flow field measurements of streamwise and cross-stream particle imaging velocimetry were employed to determine the causes of noise reduction, which was demonstrated through acoustic measurements. Results were obtained in the over- and under- expanded regimes, and at the design condition, though emphasis was placed on the overexpanded regime due to practical application. Surveys of chevron geometry, number, and arrangement were undertaken in an effort to reduce noise and/or incurred performance penalties. Penetration was found to be positively correlated with noise reduction in the overexpanded regime, and negatively correlated in underexpanded operation due to increased effective penetration and high frequency penalty, respectively. The effect of arrangement indicated the beveled configuration achieved optimal abatement in the ideally and underexpanded regimes due to superior BSAN reduction. The symmetric configuration achieved optimal overexpanded noise reduction due to LSS suppression from improved vortex persistence. Increases in chevron number generally improved reduction of all noise components for lower penetration configurations. Higher penetration configurations reached levels of saturation in the four chevron range, with the potential to introduce secondary shock structures and generate additional noise with higher number. Alternation of penetration generated limited benefit, with slight reduction of the high frequency penalty caused by increased shock spacing. The combination of alternating penetration with beveled and clustered configurations achieved comparable noise reduction to the standard counterparts. Analysis of the entire data set indicated initial improvements with projected area that saturated after a given level and either plateaued or degraded with additional increases. Optimal reductions
Ragnarsson, R; Santangelo, C D; Bodenschatz, E; Ragnarsson, Rolf; Ford, J Lewis; Santangelo, Christian D; Bodenschatz, Eberhard
1995-01-01
We report experimental results on the rift formation between two freezing wax plates. The plates were pulled apart with constant velocity, while floating on the melt, in a way akin to the tectonic plates of the earth's crust. At slow spreading rates, a rift, initially perpendicular to the spreading direction, was found to be stable, while above a critical spreading rate a "spiky" rift with fracture zones almost parallel to the spreading direction developed. At yet higher spreading rates a second transition from the spiky rift to a zig-zag pattern occurred. In this regime the rift can be characterized by a single angle which was found to be dependent on the spreading rate. We show that the oblique spreading angles agree with a simple geometrical model. The coarsening of the zig-zag pattern over time and the three-dimensional structure of the solidified crust are also discussed.
Gitterman, Yefim; Kim, So Gu; Hofstetter, Abraham
2014-05-01
Two underground nuclear explosions conducted by North Korea in 2009 and 2013 were recorded by the Israel Seismic Network. Pronounced coherent minima (spectral nulls) at 1.2-1.3 Hz were revealed in the spectra of teleseismic P-waves. For a ground-truth explosion with a shallow source depth (relatively to an earthquake), this phenomenon can be interpreted in terms of the interference between the down-going P-wave and the pP phase reflected from the Earth's surface. A similar effect was observed at ISN stations for the Pakistan nuclear explosion at a different frequency 1.7 Hz indicating a source and not site-effect. Similar spectral minima with about the same frequency were observed in teleseismic P-waves of all three North Korea explosions (including the 2006 test) recorded at network stations and arrays in Kazakhstan (KURK), Norway (NORESS, ARCESS), Australia (Alice Springs, Warramunga) and Canada (Yellowknife), covering a broad azimuthal range. Data of the 2013 test at Warramunga array showed harmonic spectral modulation with several minima, evidencing a clear interference effect. These observations support the above-mentioned interpretation. Based on the null frequency dependency on the near-surface acoustic velocity and the source depth, the depth of the North Korea tests was estimated as ~2 km (different from the value ~1 km reported by USGS for the third test). This unusual depth estimation needs an additional validation based on more stations and verification by other methods.
The minimal habitat size for spreading in a weak competition system with two free boundaries
Wu, Chang-Hong
2015-08-01
In this paper, we focus on the dynamics for a Lotka-Volterra type weak competition system with two free boundaries, where free boundaries which may intersect each other as time evolves are used to describe the spreading of two competing species, respectively. In the weak competition case, the dynamics of this model can be classified into four cases, which forms a spreading-vanishing quartering. The notion of the minimal habitat size for spreading is introduced to determine if species can always spread. Some sufficient conditions for spreading and vanishing are established. Also, when spreading occurs, some rough estimates for spreading speed and the long-time behavior of solutions are established.
Azimuthal Magnetorotational Instability at low and high magnetic Prandtl numbers
Guseva, A; Willis, A P; Avila, M
2016-01-01
The magnetorotational instability (MRI) is considered to be one of the most powerful sources of turbulence in hydrodynamically stable quasi-Keplerian flows, such as those governing accretion disk flows. Although the linear stability of these flows with applied external magnetic field has been studied for decades, the influence of the instability on the outward angular momentum transport, necessary for the accretion of the disk, is still not well known. In this work we model Keplerian rotation with Taylor-Couette flow and imposed azimuthal magnetic field using both linear and nonlinear approaches. We present scalings of instability with Hartmann and Reynolds numbers via linear analysis and direct numerical simulations (DNS) for the two magnetic Prandtl numbers of $1.4 \\cdot 10^{-6}$ and $1$. Inside of the instability domains modes with different axial wavenumbers dominate, resulting in sub-domains of instabilities, which appear different for each $Pm$. The DNS show the emergence of 1- and 2-frequency spatio-te...
Two-jet astrosphere model: effect of azimuthal magnetic field
Golikov, E A; Alexashov, D B; Belov, N A
2016-01-01
Opher et al. (2015), Drake et al. (2015) have shown that the heliospheric magnetic field results in formation of two-jet structure of the solar wind flow in the inner heliosheath, i.e. in the subsonic region between the heliospheric termination shock and the heliopause. In this scenario the heliopause has a tube-like topology as compared with a sheet-like topology in the most models of the global heliosphere (e.g. Izmodenov and Alexashov, 2015). In this paper we explore the two-jet scenario for a simplified astrosphere in which 1) the star is at rest with respect to the circumstellar medium, 2) radial magnetic field is neglected as compared with azimuthal component, 3) the stellar wind outflow is assumed to be hypersonic (both the Mach number and the Alfv\\'enic Mach number are much greater than unity at the inflow boundary). We have shown that the problem can be formulated in dimensionless form, in which the solution depends only on one dimensionless parameter epsilon that is reciprocal of the Alfv\\'enic Mach...
Precision continuous high-strength Azimuth track for large telescopes
Antebi, Joseph; Kan, Frank W.
2003-01-01
A novel track joint was developed for the azimuth track of the 50-m diameter Large Millimeter Telescope (LMT) now under construction in Mexico at an elevation of 4,600 m. The track, which is 430 mm wide by 230 mm deep, must be flat to within +/- 0.3 mm, and the material hardness at least 290 Brinell. This design uses a partial penetration narrow gap groove weld on the top surface of the track and a splice plate welded to the underside of the track. Pre-camber of the joint compensates for weld shrinkage which is small because of the use of the narrow gap groove weld. The residual deviations from flatness are reduced to the required tolerance by adjusting anchor bolts using an optimization procedure. The feasibility of the design with respect to fabrication, strength, fatigue, and alignment was demonstrated by detailed finite element analyses, trial welding and alignment of full scale joints, and testing of the mechanical properties of the joint and adjacent metal.
Azimuthal Metallicity Structure in the Milky Way Disk
Balser, Dana S; Anderson, L D; Bania, T M
2015-01-01
Elemental abundance patterns in the Galactic disk constrain theories of the formation and evolution of the Milky Way. HII region abundances are the result of billions of years of chemical evolution. We made radio recombination line and continuum measurements of 21 HII regions located between Galactic azimuth Az = 90-130 degree, a previously unexplored region. We derive the plasma electron temperatures using the line-to-continuum ratios and use them as proxies for the nebular [O/H] abundances, because in thermal equilibrium the abundance of the coolants (O, N, and other heavy elements) in the ionized gas sets the electron temperature, with high abundances producing low temperatures. Combining these data with our previous work produces a sample of 90 HII regions with high quality electron temperature determinations. We derive kinematic distances in a self-consistent way for the entire sample. The radial gradient in [O/H] is -0.082 +/- 0.014 dex/kpc for Az = 90-130 degree, about a factor of two higher than the a...
Forward Modeling of Azimuthal Anisotropy to the Reflected P Wave of Coal Seam
Institute of Scientific and Technical Information of China (English)
ZHANG Jun-gong; DONG Shou-hua; YUE Jian-hua
2006-01-01
Under the condition of weak anisotropy, the relation of P-wave anisotropy in direction to fractures of coal seams was researched in order to forecast the density and the direction of the fractures. Although the approximate solution by Rüger is suitable for thick reservoirs, it has some limitations for the composite reflected wave from both roofs and floors of coal seams, as well as multiple reflections. So first, the phase velocity and group velocity as well as their travel time were calculated about the reflected P-wave of the coal seam. Then, the anisotropic coefficients of both roofs and floors were calculated by Rüger formulae and last, the section versus azimuth in fixed offset can be gotten by convolution. In addition, the relation of amplitude of the composite reflected wave to azimuth angle was discussed. The forward modelling results of the coal azimuth anisotropy show these: 1) the coal seam is the strong reflecting layer, but the change of the reflectivity caused by the azimuth anisotropy is smaller; 2) if the azimuth angle is parallel to the crack strike, the reflectivity reaches up to the maximum absolute value, however, if the azimuth angle is perpendicular to the crack strike, the absolute value of the reflection coefficient is minimum; and 3)the reflection coefficient is the cosine function of the azimuth angle and the period is π.
Azimuthal dependence of the Garton-Tomkins orbit in crossed magnetic and electric fields
Bleasdale, C.; Lewis, R. A.; Bruno-Alfonso, A.
2016-08-01
Work on classical closed orbits in the diamagnetic Kepler problem is predominately focused on the chaos observed in the polar launch angle as opposed to the azimuthal launch angle. This is due to atomic systems, along with widely studied external-field geometries (parallel magnetic and electric fields or pure magnetic field), being uniform in azimuthal angle, rendering the azimuthal angle unimportant. In the case of crossed magnetic and electric fields, this is no longer the case, and closed orbits do present an azimuthal launch angle dependence. In atomic systems, due to their spherical symmetry, the electric-field orientation in the plane perpendicular to the magnetic field does not affect the spectrum of orbits. However, in shallow n -type donors in anisotropic semiconductors such as silicon, the orientation of the external fields with respect to conduction-band valleys will be important. In this work we examine the Garton-Tomkins orbit in crossed magnetic and electric fields, and analyze how it and its harmonics' azimuthal dependencies behave through variation of the scaled field or scaled energy. At low scaled fields, harmonics have either twofold or fourfold azimuthal dependencies determined by the rotational symmetry of the individual harmonics. As the scaled field or scaled energy is increased, several harmonics undergo significant bifurcations, resulting in large azimuthal angular regions of essentially closed orbits, which will lead to strong resonances in experimental work.
Two-jet astrosphere model: effect of azimuthal magnetic field
Golikov, E. A.; Izmodenov, V. V.; Alexashov, D. B.; Belov, N. A.
2017-01-01
Opher et al., Drake, Swisdak and Opher have shown that the heliospheric magnetic field results in formation of two-jet structure of the solar wind flow in the inner heliosheath, i.e. in the subsonic region between the heliospheric termination shock (TS) and the heliopause. In this scenario, the heliopause has a tube-like topology as compared with a sheet-like topology in the most models of the global heliosphere. In this paper, we explore the two-jet scenario for a simplified astrosphere in which (1) the star is at rest with respect to the circumstellar medium, (2) radial magnetic field is neglected as compared with azimuthal component and (3) the stellar wind outflow is assumed to be hypersonic (both the Mach number and the Alfvénic Mach number are much greater than unity at the inflow boundary). We have shown that the problem can be formulated in dimensionless form, in which the solution depends only on one dimensionless parameter ε that is reciprocal of the Alfvénic Mach number at the inflow boundary. This parameter is proportional to stellar magnetic field. We present the numerical solution of the problem for various values of ε. Three first integrals of the governing ideal magnetohydrodynamic equations are presented, and we make use of them in order to get the plasma distribution in the jets. Simple relations between distances to the TS, astropause and the size of the jet are established. These relations allow us to determine the stellar magnetic field from the geometrical pattern of the jet-like astrosphere.
Characterization of the New GBT Azimuth Track and Pointing Model
Hunter, T. R.; Constantikes, K. T.; Ghigo, F.; Brandt, J.; Grider, R.
2008-01-01
Following the completion of the mechanical aspect of the azimuth track refurbishment project (described in the October 2007 Newsletter), it was necessary to character- ize the performance of the new track and implement a new pointing model prior to the resumption of scheduled operations. The Precision Telescope Control System (PTCS) team was responsible for this effort, which required significant planning and development beginning a year ago in January 2007. Although there was high confidence that the refurbishment would yield a flatter and more resilient track, the possibility of remaining low-level features spurred the team to develop a robust technique for measuring track features prior to the April 30 shutdown. To characterize the track, the centerpiece instrument is a pair of two-axis gas-damped capacitive-readout inclinometers mounted on the ends of the elevation axle. With the new track, both the large scale (tens of degrees) and small scale structure has been greatly reduced, with an rms of 0.94 arcseconds (equivalent to 5.7 thousandths of an inch at the track radius). A repeated measurement of the new track over the timescale of a week has shown the remaining features to be stable, but it will be monitored occasionally during the coming year. The nighttime blind pointing performance now shows a standard deviation of 3.4" in cross-elevation, 3.7" in elevation, and 2.0 mm in focus. These rms values are improved by about 1" in elevation and 1 mm in focus over the previous model when compared under the same conditions in fall 2006 and spring 2007.
Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber.
Tuniz, Alessandro; Jain, Chhavi; Weidlich, Stefan; Schmidt, Markus A
2016-02-01
We show broadband azimuthal polarization state conversion using an entirely connectorized step-index fiber with a central gold nanowire. This device provides broadband polarization discrimination of the low-loss TE01 fiber mode with respect to all other modes, and converts light into the azimuthal polarization state, resulting in a high beam quality and an azimuthal conversion efficiency of 37%. The device is monolithically integrated into fiber circuitry, representing a new platform for plasmonics and fiber optics and enabling important applications in super-resolution microscopy, laser tweezing, and plasmonic superfocussing.
Endo, Masamori; Araya, Naohiro; Kurokawa, Yuki; Uno, Kazuyuki
2016-09-01
We developed an azimuthally polarized pulse-periodic CO2 laser for high-performance drilling applications. We discovered an anomalous enhancement in the drilling rate with the azimuthally polarized beam compared to that with radially or randomly polarized beams. We drilled 0.45 mm-thick carbon fiber reinforced plastic (CFRP) using a focusing lens with a focal length of 50 mm and a numerical aperture (NA) of 0.09. The conditions other than polarization states were identical for all the experiments. The azimuthally polarized beam exhibited a drilling rate more than 10 times greater on average than those of the other two polarizations.
Heliostat tilt and azimuth angle charts and the heliostat orientation protractor
Energy Technology Data Exchange (ETDEWEB)
Elsayed, M.M.; Al-Rabghi, O.M. (Thermal Energy Dept., King Abdulaziz Univ., Jeddah 21413 (SA))
1992-02-01
This paper reports that using cartesian heliostat field coordinates analytical expressions were derived for the heliostat tilt angle s, and heliostat azimuth angle {gamma} (clockwise from south). These expressions are dependent on the field cartesian coordinates of the center of the heliostat and the solar zenith and azimuth angles (clockwise from south), {theta}{sub z} and {Psi}, respectively. Here, cylindrical coordinates are conveniently used to derive the expressions for the heliostat angles s and {gamma}. The expression of {gamma}is used to construct the so-called heliostat orientation protractor. The protractor is a useful tool to determine the instantaneous heliostat azimuth angle as will be illustrated.
Transformation of vector beams with radial and azimuthal polarizations in biaxial crystals
Turpin, Alex; Lizana, Angel; Torres-Ruiz, Fabián; Estévez, Irene; Moreno, Ignacio; Campos, Juan; Mompart, Jordi
2015-01-01
We present both experimentally and theoretically the transformation of radially and azimuthally polarized vector beams when they propagate through a biaxial crystal and are transformed by the conical refraction phenomenon. We show that, at the focal plane, the transverse pattern is formed by a ring-like light structure with an azimuthal node, being this node found at diametrically opposite points of the ring for radial/azimuthal polarizations. We also prove that the state of polarization of the transformed beams is conical refraction-like, i.e. that every two diametrically opposite points of the light ring are linearly orthogonally polarized.
Exploiting azimuthal variance of scatterers for multiple-look SAR recognition
Bhanu, Bir; Jones, Grinnell, III
2002-08-01
The focus of this paper is optimizing the recognition of vehicles in Synthetic Aperture Radar (SAR) imagery using multiple SAR recognizers at different look angles. The variance of SAR scattering center locations with target azimuth leads to recognition system results at different azimuths that are independent, even for small azimuth deltas. Extensive experimental recognition results are presented in terms of receiver operating characteristic (ROC) curves to show the effects of multiple look angles on recognition performance for MSTAR vehicle targets with configuration variants, articulation, and occlusion.
Anders, K.; Hämmerle, M.; Miernik, G.; Drews, T.; Escalona, A.; Townsend, C.; Höfle, B.
2016-06-01
Terrestrial laser scanning constitutes a powerful method in spatial information data acquisition and allows for geological outcrops to be captured with high resolution and accuracy. A crucial aspect for numerous geologic applications is the extraction of rock surface orientations from the data. This paper focuses on the detection of planes in rock surface data by applying a segmentation algorithm directly to a 3D point cloud. Its performance is assessed considering (1) reduced spatial resolution of data and (2) smoothing in the course of data pre-processing. The methodology is tested on simulations of progressively reduced spatial resolution defined by varying point cloud density. Smoothing of the point cloud data is implemented by modifying the neighborhood criteria during normals estima-tion. The considerable alteration of resulting planes emphasizes the influence of smoothing on the plane detection prior to the actual segmentation. Therefore, the parameter needs to be set in accordance with individual purposes and respective scales of studies. Fur-thermore, it is concluded that the quality of segmentation results does not decline even when the data volume is significantly reduced down to 10%. The azimuth and dip values of individual segments are determined for planes fit to the points belonging to one segment. Based on these results, azimuth and dip as well as strike character of the surface planes in the outcrop are assessed. Thereby, this paper contributes to a fully automatic and straightforward workflow for a comprehensive geometric description of outcrops in 3D.
Drop spreading with random viscosity
Xu, Feng
2016-01-01
We examine theoretically the spreading of a viscous liquid drop over a thin film of uniform thickness, assuming the liquid's viscosity is regulated by the concentration of a solute that is carried passively by the spreading flow. The solute is assumed to be initially heterogeneous, having a spatial distribution with prescribed statistical features. To examine how this variability influences the drop's motion, we investigate spreading in a planar geometry using lubrication theory, combining numerical simulations with asymptotic analysis. We assume diffusion is sufficient to suppress solute concentration gradients across but not along the film. The solute field beneath the bulk of the drop is stretched by the spreading flow, such that the initial solute concentration immediately behind the drop's effective contact lines has a long-lived influence on the spreading rate. Over long periods, solute swept up from the precursor film accumulates in a short region behind the contact line, allowing patches of elevated v...
Sinking, wedging, spreading - viscous spreading on a layer of fluid
Bergemann, Nico; Juel, Anne; Heil, Matthias
2016-11-01
We study the axisymmetric spreading of a sessile drop on a pre-existing layer of the same fluid in a regime where the drop is sufficiently large so that the spreading is driven by gravity while capillary and inertial effects are negligible. Experiments performed with 5 ml drops and layer thicknesses in the range 0.1 mm drop evolves as R tn , where the spreading exponent n increases with the layer thickness h. Numerical simulations, based on the axisymmetric free-surface Navier-Stokes equations, reveal three distinct spreading regimes depending on the layer thickness. For thick layers the drop sinks into the layer, accompanied by significant flow in the layer. By contrast, for thin layers the layer ahead of the propagating front is at rest and the spreading behaviour resembles that of a gravity-driven drop spreading on a dry substrate. In the intermediate regime the spreading is characterised by an advancing wedge, which is sustained by fluid flow from the drop into the layer.
Dijet Azimuthal Decorrelations in pp Collisions at $\\sqrt{s}$ = 7 TeV
Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Haensel, Stephan; Hartl, Christian; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kasieczka, Gregor; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Benucci, Leonardo; Cerny, Karel; De Wolf, Eddi A.; Janssen, Xavier; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Beauceron, Stephanie; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Joris; Maes, Michael; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Hreus, Tomas; Marage, Pierre Edouard; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wickens, John; Adler, Volker; Costantini, Silvia; Grunewald, Martin; Klein, Benjamin; Marinov, Andrey; Mccartin, Joseph; Ryckbosch, Dirk; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Caudron, Julien; Ceard, Ludivine; De Favereau De Jeneret, Jerome; Delaere, Christophe; Demin, Pavel; Favart, Denis; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Ovyn, Severine; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; De Jesus Damiao, Dilson; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Carvalho, Wagner; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Sznajder, Andre; De Almeida Dias, Flavia; Ferreira Dias, Marco Andre; Tomei, Thiago; De Moraes Gregores, Eduardo; Da Cunha Marinho, Franciole; Novaes, Sergio F.; Padula, Sandra; Darmenov, Nikolay; Dimitrov, Lubomir; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vankov, Ivan; Dyulendarova, Milena; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Marinova, Evelina; Mateev, Matey; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xu, Ming; Yang, Min; Zang, Jingjing; Zhang, Zhen; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Zhang, Linlin; Zhu, Bo; Zou, Wei; Cabrera, Andrés; Gomez Moreno, Bernardo; Ocampo Rios, Alberto Andres; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Lelas, Karlo; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A.; Rykaczewski, Hans; Assran, Yasser; Mahmoud, Mohammed; Hektor, Andi; Kadastik, Mario; Kannike, Kristjan; Müntel, Mait; Raidal, Martti; Rebane, Liis; Azzolini, Virginia; Eerola, Paula; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Klem, Jukka; Kortelainen, Matti J.; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Gentit, François-Xavier; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Verrecchia, Patrice; Baffioni, Stephanie; Beaudette, Florian; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Thiebaux, Christophe; Wyslouch, Bolek; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Besson, Auguste; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Greder, Sebastien; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Mikami, Yoshinari; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chanon, Nicolas; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Falkiewicz, Anna; Fay, Jean; Gascon, Susan; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Xiao, Hong; Megrelidze, Luka; Roinishvili, Vladimir; Lomidze, David; Anagnostou, Georgios; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Mohr, Niklas; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Weber, Martin; Wittmer, Bruno; Ata, Metin; Bender, Walter; Erdmann, Martin; Frangenheim, Jens; Hebbeker, Thomas; Hinzmann, Andreas; Hoepfner, Kerstin; Hof, Carsten; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Magass, Carsten; Masetti, Gianni; Merschmeyer, Markus; Meyer, Arnd; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Bontenackels, Michael; Davids, Martina; Duda, Markus; Flügge, Günter; Geenen, Heiko; Giffels, Manuel; Haj Ahmad, Wael; Heydhausen, Dirk; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Thomas, Maarten; Tornier, Daiske; Zoeller, Marc Henning; Aldaya Martin, Maria; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Borras, Kerstin; Cakir, Altan; Campbell, Alan; Castro, Elena; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katkov, Igor; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Mankel, Rainer; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Olzem, Jan; Parenti, Andrea; Raspereza, Alexei; Raval, Amita; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Stein, Matthias; Tomaszewska, Justyna; Volyanskyy, Dmytro; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Gebbert, Ulla; Kaschube, Kolja; Kaussen, Gordon; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Naumann-Emme, Sebastian; Nowak, Friederike; Pietsch, Niklas; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schröder, Matthias; Schum, Torben; Schwandt, Joern; Srivastava, Ajay Kumar; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Wolf, Roger; Barth, Christian; Bauer, Julia; Buege, Volker; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Feindt, Michael; Gruschke, Jasmin; Hackstein, Christoph; Hartmann, Frank; Heindl, Stefan Michael; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Kuhr, Thomas; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Piparo, Danilo; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Renz, Manuel; Saout, Christophe; Scheurer, Armin; Schieferdecker, Philipp; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Wagner-Kuhr, Jeannine; Zeise, Manuel; Zhukov, Valery; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Petrakou, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A.; Aranyi, Attila; Bencze, Gyorgy; Boldizsar, Laszlo; Debreczeni, Gergely; Hajdu, Csaba; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Laszlo, Andras; Sikler, Ferenc; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Veszpremi, Viktor; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Anil; Singh, Jas Bir; Singh, Supreet Pal; Ahuja, Sudha; Bhattacharya, Satyaki; Choudhary, Brajesh C.; Gupta, Pooja; Jain, Sandhya; Jain, Shilpi; Kumar, Ashok; Shivpuri, Ram Krishen; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kataria, Sushil Kumar; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Devdatta; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Saha, Anirban; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Mondal, Naba Kumar; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Dimitrov, Anton; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pierro, Giuseppe Antonio; Pompili, Alexis; Pugliese, Gabriella; Romano, Francesco; Roselli, Giuseppe; Selvaggi, Giovanna; Silvestris, Lucia; Trentadue, Raffaello; Tupputi, Salvatore; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Giunta, Marina; Marcellini, Stefano; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Genta, Chiara; Gonzi, Sandro; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Ghezzi, Alessio; Malberti, Martina; Malvezzi, Sandra; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Tancini, Valentina; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cimmino, Anna; De Cosa, Annapaola; De Gruttola, Michele; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Merola, Mario; Noli, Pasquale; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; De Mattia, Marco; Dorigo, Tommaso; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gonella, Franco; Gresele, Ambra; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Mazzucato, Mirco; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Triossi, Andrea; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Baesso, Paolo; Berzano, Umberto; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Viviani, Claudio; Biasini, Maurizio; Bilei, Gian Mario; Caponeri, Benedetta; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Santocchia, Attilio; Servoli, Leonello; Taroni, Silvia; Valdata, Marisa; Volpe, Roberta; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Palmonari, Francesco; Sarkar, Subir; Segneri, Gabriele; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Franci, Daniele; Grassi, Marco; Longo, Egidio; Organtini, Giovanni; Palma, Alessandro; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Marone, Matteo; Maselli, Silvia; Migliore, Ernesto; Mila, Giorgia; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Trocino, Daniele; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Montanino, Damiana; Penzo, Aldo; Heo, Seong Gu; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Park, Hyangkyu; Son, Dohhee; Son, Dong-Chul; Kim, Jaeho; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Ji Hyun; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Rhee, Han-Bum; Seo, Eunsung; Shin, Seungsu; Sim, Kwang Souk; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Martisiute, Dalia; Petrov, Pavel; Sabonis, Tomas; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Lopez-Fernandez, Ricardo; Sanchez-Hernandez, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A.; Allfrey, Philip; Krofcheck, David; Butler, Philip H.; Doesburg, Robert; Silverwood, Hamish; Ahmad, Muhammad; Ahmed, Ijaz; Asghar, Muhammad Irfan; Hoorani, Hafeez R.; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Sá Martins, Pedro; Musella, Pasquale; Nayak, Aruna; Ribeiro, Pedro Quinaz; Seixas, Joao; Silva, Pedro; Varela, Joao; Wöhri, Hermine Katharina; Belotelov, Ivan; Bunin, Pavel; Finger, Miroslav; Finger Jr., Michael; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Bondar, Nikolai; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Gavrilov, Vladimir; Kaftanov, Vitali; Kossov, Mikhail; Krokhotin, Andrey; Lychkovskaya, Natalia; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Rusakov, Sergey V.; Vinogradov, Alexey; Azhgirey, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Slabospitsky, Sergey; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cepeda, Maria; Cerrada, Marcos; Colino, Nicanor; De La Cruz, Begona; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M.; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chamizo Llatas, Maria; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bell, Alan James; Benedetti, Daniele; Bernet, Colin; Bialas, Wojciech; Bloch, Philippe; Bocci, Andrea; Bolognesi, Sara; Breuker, Horst; Brona, Grzegorz; Bunkowski, Karol; Camporesi, Tiziano; Cano, Eric; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Curé, Benoît; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Duarte Ramos, Fernando; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Gaddi, Andrea; Gennai, Simone; Georgiou, Georgios; Gerwig, Hubert; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Glege, Frank; Gomez-Reino Garrido, Robert; Gouzevitch, Maxime; Govoni, Pietro; Gowdy, Stephen; Guiducci, Luigi; Hansen, Magnus; Harvey, John; Hegeman, Jeroen; Hegner, Benedikt; Henderson, Conor; Hesketh, Gavin; Hoffmann, Hans Falk; Honma, Alan; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Lecoq, Paul; Lourenco, Carlos; Macpherson, Alick; Maki, Tuula; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Polese, Giovanni; Racz, Attila; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sharma, Archana; Siegrist, Patrice; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Spiropulu, Maria; Stöckli, Fabian; Stoye, Markus; Tropea, Paola; Tsirou, Andromachi; Tsyganov, Andrey; Veres, Gabor Istvan; Vichoudis, Paschalis; Voutilainen, Mikko; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Starodumov, Andrei; Bortignon, Pierluigi; Caminada, Lea; Chen, Zhiling; Cittolin, Sergio; Dissertori, Günther; Dittmar, Michael; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hervé, Alain; Hintz, Wieland; Lecomte, Pierre; Lustermann, Werner; Marchica, Carmelo; Martinez Ruiz del Arbol, Pablo; Meridiani, Paolo; Milenovic, Predrag; Moortgat, Filip; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Punz, Thomas; Rizzi, Andrea; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Stieger, Benjamin; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Matthias; Wehrli, Lukas; Weng, Joanna; Aguiló, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Regenfus, Christian; Robmann, Peter; Schmidt, Alexander; Snoek, Hella; Chang, Yuan-Hann; Chen, Kuan-Hsin; Chen, Wan-Ting; Dutta, Suchandra; Go, Apollo; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Ming-Hsiung; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Wu, Jing-Han; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Kayis Topaksu, Aysel; Nart, Alisah; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Tali, Bayram; Topakli, Huseyin; Uzun, Dilber; Vergili, Latife Nukhet; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Demir, Durmus; Gülmez, Erhan; Halu, Arda; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Levchuk, Leonid; Bell, Peter; Bostock, Francis; Brooke, James John; Cheng, Teh Lee; Clement, Emyr; Cussans, David; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Hansen, Maria; Hartley, Dominic; Heath, Greg P.; Heath, Helen F.; Huckvale, Benedickt; Jackson, James; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M.; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J.; Ward, Simon; Basso, Lorenzo; Bell, Ken W.; Belyaev, Alexander; Brew, Christopher; Brown, Robert M.; Camanzi, Barbara; Cockerill, David J.A.; Coughlan, John A.; Harder, Kristian; Harper, Sam; Kennedy, Bruce W.; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R.; Womersley, William John; Worm, Steven; Bainbridge, Robert; Ball, Gordon; Ballin, Jamie; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Davies, Gavin; Della Negra, Michel; Fulcher, Jonathan; Futyan, David; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardrope, David; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R.; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Martin, William; Reid, Ivan; Teodorescu, Liliana; Hatakeyama, Kenichi; Bose, Tulika; Carrera Jarrin, Edgar; Clough, Andrew; Fantasia, Cory; Heister, Arno; St. John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Avetisyan, Aram; Bhattacharya, Saptaparna; Chou, John Paul; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Speer, Thomas; Tsang, Ka Vang; Borgia, Maria Assunta; Breedon, Richard; Calderon De La Barca Sanchez, Manuel; Cebra, Daniel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Friis, Evan; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Liu, Haidong; Maruyama, Sho; Miceli, Tia; Nikolic, Milan; Pellett, Dave; Robles, Jorge; Salur, Sevil; Schwarz, Thomas; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Veelken, Christian; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Deisher, Amanda; Duris, Joseph; Erhan, Samim; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Babb, John; Clare, Robert; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Kao, Shih-Chuan; Liu, Feng; Liu, Hongliang; Luthra, Arun; Nguyen, Harold; Pasztor, Gabriella; Satpathy, Asish; Shen, Benjamin C.; Stringer, Robert; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G.; Cerati, Giuseppe Benedetto; Dusinberre, Elizabeth; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Mangano, Boris; Muelmenstaedt, Johannes; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pi, Haifeng; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tu, Yanjun; Vartak, Adish; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; Vlimant, Jean-Roch; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Gataullin, Marat; Kcira, Dorian; Litvine, Vladimir; Ma, Yousi; Mott, Alexander; Newman, Harvey B.; Rogan, Christopher; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Terentyev, Nikolay; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Dinardo, Mauro Emanuele; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T.; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Chatterjee, Avishek; Das, Souvik; Eggert, Nicholas; Fields, Laura Johanna; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Kuznetsov, Valentin; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Puigh, Darren; Riley, Daniel; Ryd, Anders; Shi, Xin; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Biselli, Angela; Cirino, Guy; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Bakken, Jon Alan; Banerjee, Sunanda; Bauerdick, Lothar A.T.; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C.; Bloch, Ingo; Borcherding, Frederick; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Demarteau, Marcel; Eartly, David P.; Elvira, Victor Daniel; Esen, Selda; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Green, Dan; Gunthoti, Kranti; Gutsche, Oliver; Hahn, Alan; Hanlon, Jim; Harris, Robert M.; Hirschauer, James; Hooberman, Benjamin; James, Eric; Jensen, Hans; Johnson, Marvin; Joshi, Umesh; Khatiwada, Rakshya; Kilminster, Benjamin; Klima, Boaz; Kousouris, Konstantinos; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Limon, Peter; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; McCauley, Thomas; Miao, Ting; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Popescu, Sorina; Pordes, Ruth; Prokofyev, Oleg; Saoulidou, Niki; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J.; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D.; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Goldberg, Sean; Kim, Bockjoo; Klimenko, Sergey; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Matchev, Konstantin; Mitselmakher, Guenakh; Muniz, Lana; Pakhotin, Yuriy; Prescott, Craig; Remington, Ronald; Schmitt, Michael; Scurlock, Bobby; Sellers, Paul; Skhirtladze, Nikoloz; Wang, Dayong; Yelton, John; Zakaria, Mohammed; Ceron, Cristobal; Gaultney, Vanessa; Kramer, Laird; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bandurin, Dmitry; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F.; Prosper, Harrison; Quertenmont, Loic; Sekmen, Sezen; Veeraraghavan, Venkatesh; Baarmand, Marc M.; Dorney, Brian; Guragain, Samir; Hohlmann, Marcus; Kalakhety, Himali; Ralich, Robert; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Garcia-Solis, Edmundo Javier; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silvestre, Catherine; Smoron, Agata; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Cankocak, Kerem; Clarida, Warren; Duru, Firdevs; Lae, Chung Khim; McCliment, Edward; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bonato, Alessio; Eskew, Christopher; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Tran, Nhan Viet; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Murray, Michael; Noonan, Daniel; Radicci, Valeria; Sanders, Stephen; Wood, Jeffrey Scott; Zhukova, Victoria; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Wan, Zongru; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Eno, Sarah Catherine; Ferencek, Dinko; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G.; Kirn, Malina; Lu, Ying; Mignerey, Alice; Rossato, Kenneth; Rumerio, Paolo; Santanastasio, Francesco; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C.; Twedt, Elizabeth; Alver, Burak; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Everaerts, Pieter; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Harris, Philip; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Loizides, Constantinos; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Sumorok, Konstanty; Sung, Kevin; Wenger, Edward Allen; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cole, Perrie; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Dudero, Phillip Russell; Franzoni, Giovanni; Haupt, Jason; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Cremaldi, Lucien Marcus; Godang, Romulus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R.; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kelly, Tony; Kravchenko, Ilya; Lazo-Flores, Jose; Lundstedt, Carl; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R.; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Boeriu, Oana; Chasco, Matthew; Reucroft, Steve; Swain, John; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Kolberg, Ted; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Warchol, Jadwiga; Wayne, Mitchell; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Gu, Jianhui; Hill, Christopher; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Rodenburg, Marissa; Williams, Grayson; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hunt, Adam; Jones, John; Laird, Edward; Lopes Pegna, David; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E.; Bolla, Gino; Borrello, Laura; Bortoletto, Daniela; Everett, Adam; Garfinkel, Arthur F.; Gecse, Zoltan; Gutay, Laszlo; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Laasanen, Alvin T.; Leonardo, Nuno; Liu, Chang; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Jindal, Pratima; Parashar, Neeti; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank J.M.; Liu, Jinghua H.; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Flacher, Henning; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Orbaker, Douglas; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Yan, Ming; Atramentov, Oleksiy; Barker, Anthony; Duggan, Daniel; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Patel, Rishi; Richards, Alan; Rose, Keith; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Asaadi, Jonathan; Eusebi, Ricardo; Gilmore, Jason; Gurrola, Alfredo; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Nguyen, Chi Nhan; Osipenkov, Ilya; Pivarski, James; Safonov, Alexei; Sengupta, Sinjini; Tatarinov, Aysen; Toback, David; Weinberger, Michael; Akchurin, Nural; Bardak, Cemile; Damgov, Jordan; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Mane, Poonam; Roh, Youn; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Yazgan, Efe; Appelt, Eric; Brownson, Eric; Engh, Daniel; Florez, Carlos; Gabella, William; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Buehler, Marc; Conetti, Sergio; Cox, Bradley; Francis, Brian; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Lamichhane, Pramod; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Bellinger, James Nugent; Carlsmith, Duncan; Dasu, Sridhara; Efron, Jonathan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Reeder, Don; Ross, Ian; Savin, Alexander; Smith, Wesley H.; Swanson, Joshua; Weinberg, Marc
2011-01-01
Measurements of dijet azimuthal decorrelations in pp collisions at sqrt(s) = 7 TeV using the CMS detector at the CERN LHC are presented. The analysis is based on an inclusive dijet event sample corresponding to an integrated luminosity of 2.9 inverse picobarns. The results are compared to predictions from perturbative QCD calculations and various Monte Carlo event generators. The dijet azimuthal distributions are found to be sensitive to initial-state gluon radiation.
Study of the azimuthal asymmetry of jets in neutral current deep inelastic scattering at HERA
Chekanov, S; Magill, S; Musgrave, B; Repond, J; Yoshida, R; Mattingly, M C K; Antonioli, P; Bari, G; Basile, M; Bellagamba, L; Boscherini, D; Bruni, A; Bruni, G; Cara Romeo, G; Cifarelli, L; Cindolo, F; Contin, A; Corradi, M; De Pasquale, S; Giusti, P; Iacobucci, G; Margotti, A; Nania, R; Palmonari, F; Pesci, A; Sartorelli, G; Zichichi, A; Aghuzumtsyan, G; Bartsch, D; Brock, I; Goers, S; Hartmann, H; Hilger, E; Irrgang, P; Jakob, H P; Kappes, A; Katz, U F; Kind, O; Paul, E; Rautenberg, J; Renner, R; Schnurbusch, H; Stifutkin, A; Tandler, J; Voss, K C; Wang, M; Weber, A; Bailey, D S; Brook, N H; Cole, J E; Foster, B; Heath, G P; Heath, H F; Robins, S; Rodrigues, E; Scott, J; Tapper, R J; Wing, M; Capua, M; Mastroberardino, A; Schioppa, M; Susinno, G; Kim, J Y; Kim, Y K; Lee, J H; Lim, I T; Pac, M Y; Caldwell, A; Helbich, M; Liu, X; Mellado, B; Ning, Y; Paganis, S; Ren, Z; Schmidke, W B; Sciulli, F; Chwastowski, J; Eskreys, Andrzej; Figiel, J; Olkiewicz, K; Stopa, P; Zawiejski, L; Adamczyk, L; Bold, T; Grabowska-Bold, I; Kisielewska, D; Kowal, A M; Kowal, M; Kowalski, T; Przybycien, M B; Suszycki, L; Szuba, D; Szuba, J; Kotanski, A; Slominski, W; Bauerdick, L A T; Behrens, U; Bloch, I; Borras, K; Chiochia, V; Dannheim, D; Derrick, M; Drews, G; Fourletova, J; Fox-Murphy, A; Fricke, U; Geiser, A; Göbel, F; Göttlicher, P; Gutsche, O; Haas, T; Hain, W; Hartner, G F; Hillert, S; Kötz, U; Kowalski, H; Kramberger, G; Labes, H; Lelas, D; Löhr, B; Mankel, R; Melzer-Pellmann, I A; Moritz, M; Notz, D; Petrucci, M C; Polini, A; Raval, A; Schneekloth, U; Selonke, F; Wessoleck, H; Wichmann, R; Wolf, G; Youngman, C; Zeuner, W; Lopez-Duran Viani, A; Meyer, A; Schlenstedt, S; Barbagli, G; Gallo, E; Genta, C; Pelfer, P G; Bamberger, A; Benen, A; Coppola, N; Bell, M; Bussey, P J; Doyle, A T; Glasman, C; Hanlon, S; Lee, S W; Lupi, A; McCance, G J; Saxon, D H; Skillicorn, I O; Gialas, I; Bodmann, B; Carli, T; Holm, U; Klimek, K; Krumnack, N; Lohrmann, E; Milite, M; Salehi, H; Stonjek, S; Wick, K; Ziegler, A; Collins-Tooth, C; Foudas, C; Goncalo, R; Long, K R; Metlica, F; Tapper, A D; Cloth, P; Filges, D; Kuze, M; Nagano, K; Tokushuku, K; Yamada, S; Yamazaki, Y; Barakbaev, A N; Boos, E G; Pokrovskiy, N S; Zhautykov, B O; Lim, H; Son, D; Barreiro, F; González, O; Labarga, L; Del Peso, J; Redondo, I; Tassi, E; Terron, J; Vázquez, M; Barbi, M; Bertolin, A; Corriveau, F; Ochs, A; Padhi, S; Stairs, D G; Saint-Laurent, M G; Tsurugai, T; Antonov, A; Danilov, P; Dolgoshein, B A; Gladkov, D; Sosnovtsev, V V; Suchkov, S; Dementiev, R K; Ermolov, P F; Golubkov, Yu A; Katkov, I I; Khein, L A; Korzhavina, I A; Kuzmin, V A; Levchenko, B B; Lukina, O Yu; Proskuryakov, A S; Shcheglova, L M; Vlasov, N N; Zotkin, S A; Bokel, C; Engelen, J; Grijpink, S; Koffeman, E; Kooijman, P; Maddox, E; Pellegrino, A; Schagen, S; Tiecke, H G; Tuning, N; Velthuis, J J; Wiggers, L; De Wolf, E; Brümmer, N; Bylsma, B; Durkin, L S; Ling, T Y; Boogert, S; Cooper-Sarkar, A M; Devenish, R C E; Ferrando, J; Grzelak, G; Matsushita, T; Rigby, M; Ruske, O; Sutton, M R; Walczak, R; Brugnera, R; Carlin, R; Dal Corso, F; Dusini, S; Garfagnini, A; Limentani, S; Longhin, A; Parenti, A; Posocco, M; Stanco, L; Turcato, M; Heaphy, E A; Oh, B Y; Saull, P R B; Whitmore, J J; Iga, Y; D'Agostini, G; Marini, G; Nigro, A; Cormack, C; Hart, J C; McCubbin, N A; Heusch, C; Park, I H; Pavel, N; Abramowicz, H; Gabareen, A; Kananov, S; Kreisel, A; Levy, A; Abe, T; Fusayasu, T; Kagawa, S; Kohno, T; Tawara, T; Yamashita, T; Hamatsu, R; Hirose, T; Inuzuka, M; Kitamura, S; Matsuzawa, K; Nishimura, T; Arneodo, M; Ferrero, M I; Monaco, V; Ruspa, M; Sacchi, R; Solano, A; Galea, R; Koop, T; Levman, G M; Martin, J F; Mirea, A; Sabetfakhri, A; Butterworth, J M; Gwenlan, C; Hall-Wilton, R; Jones, T W; Lightwood, M S; Loizides, J H; West, B J; Ciborowski, J; Ciesielski, R; Nowak, R J; Pawlak, J M; Smalska, B; Sztuk, J; Tymieniecka, T; Ukleja, A; Ukleja, J; Zarnecki, A F; Adamus, M; Plucinsky, P P; Eisenberg, Y; Gladilin, L K; Hochman, D; Karshon, U; Kcira, D; Lammers, S; Li, L; Reeder, D D; Savin, A A; Smith, W H; Deshpande, Abhay A; Dhawan, S; Hughes, V W; Straub, P B; Bhadra, S; Catterall, C D; Fourletov, S; Menary, S; Soares, M; Standage, J
2003-01-01
The azimuthal distribution of jets produced in the Breit frame in high-Q**2 deep inelastic e+p scattering has been studied with the ZEUS detector at HERA using an integrated luminosity of 38.6 pb-1. The measured azimuthal distribution shows a structure that is well described by next-to-leading-order QCD predictions over the Q**2 range considered, Q**2>125 GeV**2.
Dijet azimuthal decorrelations in pp collisions at √s=7 TeV.
Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hartl, C; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Teischinger, F; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Benucci, L; Cerny, K; De Wolf, E A; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Beauceron, S; Blekman, F; Blyweert, S; D'Hondt, J; Devroede, O; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, J; Maes, M; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Marage, P E; Thomas, L; Vander Velde, C; Vanlaer, P; Wickens, J; Adler, V; Costantini, S; Grunewald, M; Klein, B; Marinov, A; Mccartin, J; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; De Favereau De Jeneret, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; De Jesus Damiao, D; Pol, M E; Souza, M H G; Carvalho, W; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Dias, F A; Dias, M A F; Fernandez Perez Tomei, T R; Gregores, E M; Marinho, F; Novaes, S F; Padula, Sandra S; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vankov, I; Dyulendarova, M; Hadjiiska, R; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Wang, J; Wang, J; Wang, X; Wang, Z; Xu, M; Yang, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Mao, Y; Qian, S J; Teng, H; Zhang, L; Zhu, B; Zou, W; Cabrera, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Assran, Y; Mahmoud, M A; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Azzolini, V; Eerola, P; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Verrecchia, P; Baffioni, S; Beaudette, F; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dahms, T; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Wyslouch, B; Zabi, A; Agram, J-L; Andrea, J; Besson, A; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Falkiewicz, A; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Xiao, H; Megrelidze, L; Roinishvili, V; Lomidze, D; Anagnostou, G; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Ata, M; Bender, W; Erdmann, M; Frangenheim, J; Hebbeker, T; Hinzmann, A; Hoepfner, K; Hof, C; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Magass, C; Masetti, G; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Heydhausen, D; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Thomas, M; Tornier, D; Zoeller, M H; Aldaya Martin, M
2011-03-25
Measurements of dijet azimuthal decorrelations in pp collisions at √s=7 TeV using the CMS detector at the CERN LHC are presented. The analysis is based on an inclusive dijet event sample corresponding to an integrated luminosity of 2.9 pb⁻¹. The results are compared to predictions from perturbative QCD calculations and various Monte Carlo event generators. The dijet azimuthal distributions are found to be sensitive to initial-state gluon radiation.
Dijet Azimuthal Decorrelations in pp Collisions at sqrt(s) = 7 TeV
Energy Technology Data Exchange (ETDEWEB)
Khachatryan, Vardan [Yerevan Physics Inst. (Armenia); et al.
2011-03-01
Measurements of dijet azimuthal decorrelations in pp collisions at sqrt(s) = 7 TeV using the CMS detector at the CERN LHC are presented. The analysis is based on an inclusive dijet event sample corresponding to an integrated luminosity of 2.9 inverse picobarns. The results are compared to predictions from perturbative QCD calculations and various Monte Carlo event generators. The dijet azimuthal distributions are found to be sensitive to initial-state gluon radiation.
Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex
DEFF Research Database (Denmark)
Dreier, Jens P; Major, Sebastian; Pannek, Heinz-Wolfgang
2012-01-01
Spreading depolarization of cells in cerebral grey matter is characterized by massive ion translocation, neuronal swelling and large changes in direct current-coupled voltage recording. The near-complete sustained depolarization above the inactivation threshold for action potential generating...
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
According to records of the Bible Society in China, more than 300 million copies of the Bible in Chinese have been published and distributed since 1823. The spread of the Bible in China has gone through five stages.
Cui, Ai-Xiang; Zhou, Tao
2012-01-01
Background: Controlling global epidemics in the real world and accelerating information propagation in the artificial world are of great significance, which have activated an upsurge in the studies on networked spreading dynamics. Lots of efforts have been made to understand the impacts of macroscopic statistics (e.g., degree distribution and average distance) and mesoscopic structures (e.g., communities and rich clubs) on spreading processes while the microscopic elements are less concerned. In particular, roles of ties are not yet clear to the academic community. Methodology/Principle Findings: Every edges is stamped by its strength that is defined solely based on the local topology. According to a weighted susceptible-infected-susceptible model, the steady-state infected density and spreading speed are respectively optimized by adjusting the relationship between edge's strength and spreading ability. Experiments on six real networks show that the infected density is increased when strong ties are favored i...
Epidemic spreading in complex networks
Institute of Scientific and Technical Information of China (English)
Jie ZHOU; Zong-hua LIU
2008-01-01
The study of epidemic spreading in complex networks is currently a hot topic and a large body of results have been achieved.In this paper,we briefly review our contributions to this field,which includes the underlying mechanism of rumor propagation,the epidemic spreading in community networks,the influence of varying topology,and the influence of mobility of agents.Also,some future directions are pointed out.
Mao, Xinhua; Zhu, Zhaoda
2012-01-01
Synthetic aperture radar (SAR) images are often blurred by phase perturbations induced by uncompensated sensor motion and /or unknown propagation effects caused by turbulent media. To get refocused images, autofocus proves to be useful post-processing technique applied to estimate and compensate the unknown phase errors. However, a severe drawback of the conventional autofocus algorithms is that they are only capable of removing one-dimensional azimuth phase errors (APE). As the resolution becomes finer, residual range cell migration (RCM), which makes the defocus inherently two-dimensional, becomes a new challenge. In this paper, correction of APE and residual RCM are presented in the framework of polar format algorithm (PFA). First, an insight into the underlying mathematical mechanism of polar reformatting is presented. Then based on this new formulation, the effect of polar reformatting on the uncompensated APE and residual RCM is investigated in detail. By using the derived analytical relationship betwee...
Azimuthal asymmetries in hard exclusive meson muoproduction off transversely polarized protons
Energy Technology Data Exchange (ETDEWEB)
Wolbeek, Johannes ter
2015-04-15
outcome is used to apply weights to the missing energy distribution from Monte Carlo. The E{sub miss} distribution delivers the parametrization of the shape from semi-inclusive background which is used as input for a two component fit to the data. From the fit results, the amount of signal and background in dependence on the missing energy can be estimated. Therefore for a certain event the probabilities for being either exclusive or semi-inclusive produced can be assigned. For the asymmetry extraction an extended unbinned maximum likelihood fit, is used. With this method the eight azimuthal asymmetries from hard exclusive ω meson production plus eight additional asymmetries of the same azimuthal angle modulation from semi-inclusive background events are calculated simultaneously. Therefore every event from the signal region is assigned with the probabilities obtained with the fit to the missing energy distribution. To decrease the uncertainty of the background asymmetries, which increases the precision for the eight signal asymmetries, semi-inclusive events from the high E{sub miss} region are considered additionally. This analysis suffers from low statistics, which is reflected in relatively large statistical and systematical uncertainties. Due to the modulation dependence of the dilution factors, there are strong variations of the precision for different modulations. Therefore in case of the three double spin asymmetries, the statistical uncertainties are of the order of 0.5. Hence the precision of these measurements is not sufficient to make a final conclusion. In contrast, the five single spin asymmetries can be extracted in two bins of Q{sup 2}, x{sub Bj} and p{sub T}{sup 2} respectively. Averaged over the entire kinematic range most of the asymmetries are compatible with zero. For the sin(φ{sub S}) modulation a value of A{sup sin} {sup φ{sup S}{sub UT}}=0.097±0.059±0.028 is obtained. This confirms the outcome of the analysis on hard exclusive ρ{sup 0
Azimuthal asymmetries in hard exclusive meson muoproduction off transversely polarized protons
Energy Technology Data Exchange (ETDEWEB)
Wolbeek, Johannes ter
2015-04-15
outcome is used to apply weights to the missing energy distribution from Monte Carlo. The E{sub miss} distribution delivers the parametrization of the shape from semi-inclusive background which is used as input for a two component fit to the data. From the fit results, the amount of signal and background in dependence on the missing energy can be estimated. Therefore for a certain event the probabilities for being either exclusive or semi-inclusive produced can be assigned. For the asymmetry extraction an extended unbinned maximum likelihood fit, is used. With this method the eight azimuthal asymmetries from hard exclusive ω meson production plus eight additional asymmetries of the same azimuthal angle modulation from semi-inclusive background events are calculated simultaneously. Therefore every event from the signal region is assigned with the probabilities obtained with the fit to the missing energy distribution. To decrease the uncertainty of the background asymmetries, which increases the precision for the eight signal asymmetries, semi-inclusive events from the high E{sub miss} region are considered additionally. This analysis suffers from low statistics, which is reflected in relatively large statistical and systematical uncertainties. Due to the modulation dependence of the dilution factors, there are strong variations of the precision for different modulations. Therefore in case of the three double spin asymmetries, the statistical uncertainties are of the order of 0.5. Hence the precision of these measurements is not sufficient to make a final conclusion. In contrast, the five single spin asymmetries can be extracted in two bins of Q{sup 2}, x{sub Bj} and p{sub T}{sup 2} respectively. Averaged over the entire kinematic range most of the asymmetries are compatible with zero. For the sin(φ{sub S}) modulation a value of A{sup sin} {sup φ{sup S}{sub UT}}=0.097±0.059±0.028 is obtained. This confirms the outcome of the analysis on hard exclusive ρ{sup 0
Did vaccination slow the spread of bluetongue in France?
Directory of Open Access Journals (Sweden)
Maryline Pioz
Full Text Available Vaccination is one of the most efficient ways to control the spread of infectious diseases. Simulations are now widely used to assess how vaccination can limit disease spread as well as mitigate morbidity or mortality in susceptible populations. However, field studies investigating how much vaccines decrease the velocity of epizootic wave-fronts during outbreaks are rare. This study aimed at investigating the effect of vaccination on the propagation of bluetongue, a vector-borne disease of ruminants. We used data from the 2008 bluetongue virus serotype 1 (BTV-1 epizootic of southwest France. As the virus was newly introduced in this area, natural immunity of livestock was absent. This allowed determination of the role of vaccination in changing the velocity of bluetongue spread while accounting for environmental factors that possibly influenced it. The average estimated velocity across the country despite restriction on animal movements was 5.4 km/day, which is very similar to the velocity of spread of the bluetongue virus serotype 8 epizootic in France also estimated in a context of restrictions on animal movements. Vaccination significantly reduced the propagation velocity of BTV-1. In comparison to municipalities with no vaccine coverage, the velocity of BTV-1 spread decreased by 1.7 km/day in municipalities with immunized animals. For the first time, the effect of vaccination has been quantified using data from a real epizootic whilst accounting for environmental factors known to modify the velocity of bluetongue spread. Our findings emphasize the importance of vaccination in limiting disease spread across natural landscape. Finally, environmental factors, specifically those related to vector abundance and activity, were found to be good predictors of the velocity of BTV-1 spread, indicating that these variables need to be adequately accounted for when evaluating the role of vaccination on bluetongue spread.
Did vaccination slow the spread of bluetongue in France?
Pioz, Maryline; Guis, Hélène; Pleydell, David; Gay, Emilie; Calavas, Didier; Durand, Benoît; Ducrot, Christian; Lancelot, Renaud
2014-01-01
Vaccination is one of the most efficient ways to control the spread of infectious diseases. Simulations are now widely used to assess how vaccination can limit disease spread as well as mitigate morbidity or mortality in susceptible populations. However, field studies investigating how much vaccines decrease the velocity of epizootic wave-fronts during outbreaks are rare. This study aimed at investigating the effect of vaccination on the propagation of bluetongue, a vector-borne disease of ruminants. We used data from the 2008 bluetongue virus serotype 1 (BTV-1) epizootic of southwest France. As the virus was newly introduced in this area, natural immunity of livestock was absent. This allowed determination of the role of vaccination in changing the velocity of bluetongue spread while accounting for environmental factors that possibly influenced it. The average estimated velocity across the country despite restriction on animal movements was 5.4 km/day, which is very similar to the velocity of spread of the bluetongue virus serotype 8 epizootic in France also estimated in a context of restrictions on animal movements. Vaccination significantly reduced the propagation velocity of BTV-1. In comparison to municipalities with no vaccine coverage, the velocity of BTV-1 spread decreased by 1.7 km/day in municipalities with immunized animals. For the first time, the effect of vaccination has been quantified using data from a real epizootic whilst accounting for environmental factors known to modify the velocity of bluetongue spread. Our findings emphasize the importance of vaccination in limiting disease spread across natural landscape. Finally, environmental factors, specifically those related to vector abundance and activity, were found to be good predictors of the velocity of BTV-1 spread, indicating that these variables need to be adequately accounted for when evaluating the role of vaccination on bluetongue spread.
Forecasting Fractures in Coal Seams by Using Azimuthal Anisotropy from P-Wave Seismic Data
Institute of Scientific and Technical Information of China (English)
DONG Shou-hua; YUE Jian-hua; ZHANG Fen-xuan
2007-01-01
If the thickness of coal seams and the lithology of both roofs and floors of coal seams have not changed at all or only a little, then it is thought that the elastic anisotropy of coal seams depends mainly on fractures and obeys the horizontally symmetric model of an azimuth anisotropy. For a fixed offset, the amplitude A of the reflection P-wave and the cosine of 2 (ψ) has an approximately linear relation, ( (ψ) is the source-detector azimuth with respect to the fracture strike. Based on this relationship, many things can be done, such as the extraction of macro bins, the correction of residual normal moveout, the formation of azimuth gather, the transformation and normalization of azimuth gathers and the extraction of reflection wave amplitudes of coal seams. The least squares method was used to inverse theoretically the direction and density of fractures of coal seams. The result is in good agreement with the regional geological structure, indicating that the azimuth anisotropic analysis of the P-wave is feasible in evaluating the density and direction of fractures in coal seams.
Tracing Outflows and Accretion: A Bimodal Azimuthal Dependence of MgII Absorption
Kacprzak, G G; Nielsen, N M
2012-01-01
We report a bimodality in the azimuthal angle distribution of gas around galaxies as traced by MgII absorption: Halo gas prefers to exist near the projected galaxy major and minor axes. The bimodality is demonstrated by computing the mean azimuthal angle probability distribution function using 88 spectroscopically confirmed MgII absorption-selected galaxies [W_r(2796)> 0.1A] and 35 spectroscopically confirmed non-absorbing galaxies [W_r(2796)<0.1A] imaged with HST and SDSS. The azimuthal angle distribution for non-absorbers is flat, indicating no azimuthal preference for gas characterized by W_r(2796)<0.1A. We find that blue star-forming galaxies clearly drive the bimodality. We compute an azimuthal angle dependent MgII absorption covering fraction and find that it is enhanced by as much as 20-30% along the major and minor axes. The equivalent width distribution for gas along the major axis is likely skewed toward weaker MgII absorption than for gas along the projected minor axis. These combined results...
Research on an azimuth serf-alignment scheme of inertial platform%惯性平台方位自对准方案研究
Institute of Scientific and Technical Information of China (English)
张长虹
2012-01-01
An azimuth self-alignment scheme of inertial platform is described, which is divided into two stages of coarse alignment and fine alignment. The coarse alignment adopts a one-position computation compass, which can quickly distinguish error angles between azimuth axis of platform and true north, and can control plalform＇ s coor- dinate system approximately to north-seeking azimuth system by means of loop locking. The fine alignment adopts a two-position open-loop drift testing, which can exactly estimate drift parameters of platform in east axis as well as drift parameters of gyroscope, and can further estimate azimuth angle errors of platform by the computation compass so as to carry out precise azimuth alignment of the inertial platform. Theory deduction and error analysis are done for the above scheme and a self-aligument scheme flowchart is given.%提出了一种惯性平台方位自对准方案，该方案分粗对准和精对准两个阶段。粗对准采用单位置计算罗经法，快速识别平台方位轴与真北方向的误差角，并通过锁定回路控制平台坐标系近似为指北方位系统；精对准采用双位置开路测漂方法，进一步精确估计平台东向轴漂移参数和陀螺仪漂移参数，进而采用计算罗经法计算出平台方位误差角，以实现惯性平台方位的精确对准。本文对上述方案进行了理论推导和误差分析，并给出了自对准方案工作流程。
Sereno, M; Debiossac, M; Kalashnyk, N; Roncin, P
2016-01-01
A procedure to measure the residual tilt angle $\\tau$ between a flat surface and the azimuthal rotation axis of the sample holder is described. When the incidence angle $\\theta$ and readout of the azimuthal angle $\\phi$ are controlled by motors, an active compensation mechanism can be implemented to reduce the effect of the tilt angle during azimuthal motion. After this correction, the effective angle of incidence is kept fixed, and only the small residual oscillation of the scattering plane remains.
Focusing Azimuth-Invariant Bistatic Synthetic Aperture Radar Data Based on a Polynomial Model
Institute of Scientific and Technical Information of China (English)
ZHONG Hua; LIU Xing-zhao; WANG Jun-feng
2009-01-01
In this paper, a focusing approach is presented to widen the use of efficient monostatic imaging algorithms for azimuth-invariant bistatic synthetic aperture radar (SAR) data. The bistatic range history is modeled by a polynomial of azimuth time. Using this model, an analytic form of the signal spectrum in the 2D frequency domain is derived, and a simple single-valued relation between the transmitter and receive ranges is established. In this way, a lot of monostatic image formation algorithms can be extended for the bistatic SAR data, and a bistatic chirp scaling algorithm is developed as an application of the new approach. This algorithm can be used to process the azimuth-invariant bistatic configuration where the transmitter and receiver platforms are moving on parallel tracks with the same velocity. In addition, some simulation results are given to demonstrate the validity of the proposed approach.
Magnetorotational turbulence in Taylor--Couette flow with imposed azimuthal magnetic field
Guseva, A; Hollerbach, R; Avila, M
2015-01-01
The magnetorotational instability (MRI) is thought to be a powerful source of turbulence and momentum transport in astrophysical accretion discs, but obtaining observational evidence of its operation is challenging. Recently, laboratory experiments of Taylor--Couette flow with externally imposed axial and azimuthal magnetic fields have revealed the kinematic and dynamic properties of the MRI close to the instability onset. While good agreement was found with linear stability analyses, little is known about the transition to turbulence and transport properties of the MRI. We here report on a numerical investigation of the MRI with an imposed azimuthal magnetic field. We show that the laminar Couette flow becomes unstable to a wave rotating in the azimuthal direction and standing in the axial direction via a supercritical Hopf bifurcation. Subsequently, the flow features a catastrophic transition to spatio-temporal defects which is mediated by a subcritical subharmonic Hopf bifurcation. Our results are in agree...
Suppressing azimuth ambiguity in spaceborne SAR images based on compressed sensing
Institute of Scientific and Technical Information of China (English)
YU Ze; LIU Min
2012-01-01
In spaceborne synthetic aperture radar,undersampling at the rate of the pulse repetition frequency causes azimuth ambiguity,which induces ghost into the images.This paper introduces compressed sensing for azimuth ambiguity suppression and presents two novel methods from the perspectives of system design and image formation,known as azimuth random sampling and ambiguity separation,respectively.The first method makes the imaging results for the ambiguity zones as disperse as possible while ensuring that the imaging results for the main scene are affected as little as possible.The second method separates the ambiguity signals from the echoes and achieves imaging results without the ambiguity effect.Simulation results show that the two methods can reduce the ambiguity levels by about 16 dB and 99.37％,respectively.
Manipulation of Magnetization States of Permalloy Nanorings by an External Azimuthal Field
Yang, Tianyu; Pradhan, Nihar; Goldman, Abby; Kemei, Moureen; Licht, Abbey; Li, Yihan; Tuominen, Mark; Aidala, Katherine
2011-03-01
This experimental research investigates a new method of manipulating the magnetic states of ferromagnetic nanorings using a circular magnetic field directed along the ring circumference. This type of azimuthal field can naturally select a vortex magnetization of desired chirality. The understanding of the magnetization switching behavior in an azimuthal field could lead to new designs of practical magnetic data storage devices. Symmetric and asymmetric nanorings made of permalloy are fabricated by a standard technique using electron-beam lithography and e-beam evaporation. Azimuthal fields are generated by passing current through an atomic force microscope tip, which is positioned at the center of the ring. The magnetic field direction and magnitude are controlled by the current. We demonstrate control over switching from an onion state to a vortex state, and also between two vortex states, using magnetic force microscopy to image the resulting magnetic states. This work was supported by NSF grants DMR-0907201 CMMI-0531171.
Charge-dependent azimuthal correlations from AuAu to UU collisions
Energy Technology Data Exchange (ETDEWEB)
Bloczynski, John [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); Huang, Xu-Guang, E-mail: huangxuguang@fudan.edu.cn [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); Physics Department and Center for Field Theory and Particle Physics, Fudan University, Shanghai 200433 (China); Zhang, Xilin [Institute of Nuclear and Particle Physics and Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States); Liao, Jinfeng [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)
2015-07-15
We study the charge-dependent azimuthal correlations in relativistic heavy ion collisions, as motivated by the search for the Chiral Magnetic Effect (CME) and the investigation of related background contributions. In particular we aim to understand how these correlations induced by various proposed effects evolve from collisions with AuAu system to that with UU system. To do that, we quantify the generation of magnetic field in UU collisions at RHIC energy and its azimuthal correlation with the matter geometry using event-by-event simulations. Taking the experimental data for charge-dependent azimuthal correlations from AuAu collisions and extrapolating to UU with reasonable assumptions, we examine the resulting correlations to be expected in UU collisions and compare them with recent STAR measurements. Based on such analysis we discuss the viability for explaining the data with a combination of the CME-like and flow-induced contributions.
Institute of Scientific and Technical Information of China (English)
ZHAO Jun; GUAN Yingzi; QI Naiming
2006-01-01
The dynamic balance quality of a rotating object is an important factor to maintain the stability and accuracy for motion. The azimuth of the principal axis of inertia is a major sign of dynamic balance. A usual method is measuring moment of inertia matrix relative to some base coordinates on a rotary inertia machine so as to calculate the azimuth of principal axis of inertia. By using the measured unbalance results on the two trimmed planes on a vertical hard bearing double-plane dynamic balancing machine, the dimension and direction of couple unbalance can be found. An azimuth angle formula for the principal axis of inertia is derived and is solved by using unbalance quantities. The experiments indicate that method based on dynamic balancing measurement is proved rational and effective and has a fine precision.
Transverse azimuthal dephasing of vortex spin wave in a hot atomic gas
Shi, Shuai; Zhang, Wei; Zhou, Zhi-Yuan; Dong, Ming-Xin; Liu, Shi-Long; Shi, Bao-Sen; Guo, Guang-Can
2016-01-01
Optical fields with orbital angular momentum (OAM) interact with medium have many remarkable properties with its unique azimuthal phase, showing many potential applications in high capacity information processing, high precision measurement etc. The dephasing mechanics of optical fields with OAM in an interface between light and matter plays a vital role in many areas of physics. In this work, we study the transverse azimuthal dephasing of OAM spin wave in a hot atomic gas via OAM storage. The transverse azimuthal phase difference between the control and probe beams is mapped onto the spin wave, which essentially results in dephasing of atomic spin wave. The dephasing of OAM spin wave can be controlled by the parameters of OAM topological charge and beam waist. Our results are helpful for studying OAM light interaction with matter, maybe hold a promise in OAM-based quantum information processing.
Methods and applications of 3-D wave equation common-azimuth prestack migration
Institute of Scientific and Technical Information of China (English)
CHENG Jiubing; WANG Huazhong; GENG Jianhua; MA Zaitian
2007-01-01
To tackle the difficulties of a 3-D full volum eprestack migration based on the double-square-root (DSR) one-way wave equation in practical applications, the common-azimuth migration approach is first discussed using dual-domain wave propagators under the theoretical frame of crossline common-offset migration. Through coor-dinate transforming, a common-azimuth prestack tau migra-tion technology that recursively continues the source and receiver wavefields and picks up the migrated results in the two-way vertical traveltime (tau) direction is developed.The migrations of synthetic data sets of SEG/EAGE salt model prove that our common-azimuth migration approaches are effective in both depth and tau domains. Two real data examples show the advantages of wave-theory based prestack migration methods in accuracy and imaging resolution over the conventional Kirchhoff integral methods.
Initial Distribution Spread: A density forecasting approach
Machete, Reason L
2012-01-01
Ensemble forecasting of nonlinear systems involves the use of a model to run forward a discrete ensemble (or set) of initial states. Data assimilation techniques tend to focus on estimating the true state of the system, even though model error limits the value of such efforts. This paper argues for choosing the initial ensemble in order to optimise forecasting performance rather than estimate the true state of the system. Density forecasting and choosing the initial ensemble are treated as one problem. Forecasting performance can be quantified by some scoring rule. In the case of the logarithmic scoring rule, theoretical arguments and empirical results are presented. It turns out that, if the underlying noise dominates model error, we can diagnose the noise spread.
Spreading dynamics in complex networks
Pei, Sen
2013-01-01
Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from the epidemic control, innovation diffusion, viral marketing, social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community -- LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in LiveJournal social network, only a small fraction of them involve in spreading. For the spreading processes in Li...
9 CFR 319.762 - Ham spread, tongue spread, and similar products.
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Ham spread, tongue spread, and similar products. 319.762 Section 319.762 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Salads and Meat Spreads § 319.762 Ham spread, tongue spread, and similar products. “Ham Spread,”...
Break up of the azimuthal symmetry of higher order fiber modes
DEFF Research Database (Denmark)
Israelsen, Stine Møller; Rishøj, Lars Søgaard; Rottwitt, Karsten
2014-01-01
We investigate Bessel-like modes guided in a double cladding fiber where the outer cladding is an aircladding. For very high order LP0 X-modes, the azimuthal symmetry is broken and the mode is no longer linearly polarized. This is observed experimentally and confirmed numerically. The effect...... mode. The free space properties of modes suffering from break up of azimuthal symmetry are also investigated experimentally by measuring the free space propagation of a LP016-mode excited in the double cladding fiber. © 2014 Optical Society of America....
Energy Technology Data Exchange (ETDEWEB)
Kobayashi, T., E-mail: kobayashi.tatsuya@LHD.nifs.ac.jp [National Institute for Fusion Science, Toki 509-5292 (Japan); Inagaki, S.; Sasaki, M.; Nagashima, Y.; Kasuya, N.; Fujisawa, A.; Itoh, S.-I. [Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan); Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Kosuga, Y. [Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan); Institute for Advanced Study, Kyushu University, Fukuoka 812-8581 (Japan); Arakawa, H. [Teikyo University, 6-22 Misakimachi, Omuta 836-8505 (Japan); Yamada, T. [Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Faculty of Arts and Science, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan); Miwa, Y. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga 816-8580 (Japan); Itoh, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan)
2015-11-15
Fluctuation component in the turbulence regime is found to be azimuthally localized at a phase of the global coherent modes in a linear magnetized plasma PANTA. Spatial distribution of squared bicoherence is given in the azimuthal cross section as an indicator of nonlinear energy transfer function from the global coherent mode to the turbulence. Squared bicoherence is strong at a phase where the turbulence amplitude is large. As a result of the turbulence localization, time evolution of radial particle flux becomes bursty. Statistical features such as skewness and kurtosis are strongly modified by the localized turbulence component, although contribution to mean particle flux profile is small.
Dijet azimuthal decorrelations for $\\Delta \\phi_{\\rm dijet} < 2\\pi/3$ in perturbative QCD
Wobisch, M
2015-01-01
We point out an inconsistency in perturbative QCD predictions previously used for dijet azimuthal decorrelations for azimuthal angles of $\\Delta\\phi_{\\rm dijet} < 2\\pi/3$ between the two jets. We show how the inconsistency arises and how the calculations can be modified to provide more accurate results that exhibit a smaller scale dependence and give a better description of the data than the inconsistent results. We also explain how the quality of the predictions strongly depends on a perceivedly minor detail in the definition of the dijet phase space and give recommendations for future measurements.
Azimuthal correlations of hadrons and fragments in nucleus-nucleus collisions
Institute of Scientific and Technical Information of China (English)
LI Hui-Ling
2011-01-01
Two-particle (two-fragment) azimuthal correlation functions are studied by using a simple formula which describes uniformly azimuthal distributions of final-state charged particles and nuclear fragments.This formula is obtained in the framework of a multi-source thermal model (or multi-source ideal gas model).The calculated results are compared and found to be in agreement with the experimental data of charged hadrons and nuclear fragments in nucleus-nucleus collisions at intermediate and high energies.
Estudio de las maniobras de un remolcador con sistema azimuth stern drive
Suasi Carayol, Pedro Jose
2015-01-01
En el presente Trabajo de Fin de Grado, se pretende explicar los conceptos básicos del sistema Azimuth Stern Drive desde el punto de vista de maniobras. Con el fin de contextualizar al lector, se hace un breve resumen del inicio del sistema Azimuth Stern Drive y un análisis sobre los elementos técnicos que forman este sistema de propulsión tan utilizado hoy en día en Remolcadores de todo el Mundo. El cuerpo del trabajo, explica las diferentes posibilidades de movimiento que tiene un Remolcado...
Shaping the focal field of radially/azimuthally polarized phase vortex with Zernike polynomials
Wei, Lei
2016-01-01
The focal field properties of radially/azimuthally polarized Zernike polynomials are studied. A method to design the pupil field in order to shape the focal field of radially or azimuthally polarized phase vortex is introduced. With this method, we are able to obtain a pupil field to achieve a longitudinally polarized hollow spot with a depth of focus up to $12\\lambda$ and $0.14\\lambda$ lateral resolution for a optical system with numerical aperture 0.99; A pupil field to generate 8 circularly polarized focal spots along the optical axis is also obtained with this method.
Institute of Scientific and Technical Information of China (English)
袁兆凯; 隋天宇; 李宇; 黄海宁
2012-01-01
The Doppler effect is inherent in communication systems which makes the carrier synchronization critical to the whole system. In underwater communication environment, the Doppler effect is more severe due to the limited sound speed. In this paper, the Doppler effect of underwater channel is analyzed by formulas on a software-defined radio communication system. Then an effective algorithm is developed which can estimate and compensate the frequency shift. The simulation results show that this algorithm works out within the speed of 15 m/s, when the signal to noise ratio is above -22 dB. The sea experimental results show that the system can successfully achieve the carry wave synchronization with the speed to be 6 knots.%通信系统普遍受多普勒效应影响,因而载波同步成为通信中的一项关键技术.在水声通信中,由于声速有限,信道中的多普勒效应的影响更为明显.该文在一个基于软件无线电机制的水声扩频通信系统中,对水声信道的多普勒效应进行分析和建模,并在此基础上提出了一种有效的水声扩频多普勒估计与补偿算法.仿真实验表明,算法能够在-22 dB的情况下有效地对15 m/s以内产生的多普勒频移进行估计与补偿.算法经过海试测试,在6节速度及加速减速过程中,系统均能够成功地完成载波同步.
DEFF Research Database (Denmark)
Fatum, Rasmus; Pedersen, Jesper; Sørensen, Peter Norman
exert a significant influence on the exchange rate spread, but in opposite directions: intervention purchases of the smaller currency, on average, reduce the spread while intervention sales, on average, increase the spread. We also show that intervention only affects the exchange rate spread when...... testable hypotheses regarding how unannounced intervention purchases and intervention sales influence the market asymmetrically. To test these hypotheses we estimate weighted least squares (WLS) time-series models of the intraday bid-ask spread. Our main result is that intervention purchases and sales both...
Spreading dynamics in complex networks
Pei, Sen; Makse, Hernán A.
2013-12-01
Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality.
Worldwide spreading of economic crisis
Garas, Antonios; Rozenblat, Celine; Tomassini, Marco; Havlin, Shlomo
2010-01-01
We model the spreading of a crisis by constructing a global economic network and applying the Susceptible-Infected-Recovered (SIR) epidemic model with a variable probability of infection. The probability of infection depends on the strength of economic relations between the pair of countries, and the strength of the target country. It is expected that a crisis which originates in a large country, such as the USA, has the potential to spread globally, like the recent crisis. Surprisingly we show that also countries with much lower GDP, such as Belgium, are able to initiate a global crisis. Using the {\\it k}-shell decomposition method to quantify the spreading power (of a node), we obtain a measure of ``centrality'' as a spreader of each country in the economic network. We thus rank the different countries according to the shell they belong to, and find the 12 most central countries. These countries are the most likely to spread a crisis globally. Of these 12 only six are large economies, while the other six ar...
DEFF Research Database (Denmark)
Forsyth, C.; Fazakerley, A. N.; Rae, I. J.
2014-01-01
perigee passes of the Cluster 1 and 4 spacecraft during a substorm on 15 January 2010, in conjunction with ground-based observations, to examine the spatial structuring and temporal variability of the SCW. At this time, the spacecraft traveled east-west azimuthally above the auroral region. We show...
Azimuthal angular correlations of D mesons and charged particles with the ALICE detector at the LHC
Bjelogrlic, S.
2016-01-01
The thesis presents the results of the analysis of azimuthal angular correlations of D mesons and charged particles with the ALICE detector, in pp and p-Pb collisions at center-of mass energies of 7 and 5.02 TeV respectively. The measurements have been performed differentially as function of the tra
Wide-azimuth angle gathers for anisotropic wave-equation migration
Sava, Paul C.
2012-10-15
Extended common-image-point gathers (CIP) constructed by wide-azimuth TI wave-equation migration contain all the necessary information for angle decomposition as a function of the reflection and azimuth angles at selected locations in the subsurface. The aperture and azimuth angles are derived from the extended images using analytic relations between the space- and time-lag extensions using information which is already available at the time of migration, i.e. the anisotropic model parameters. CIPs are cheap to compute because they can be distributed in the image at the most relevant positions, as indicated by the geologic structure. If the reflector dip is known at the CIP locations, then the computational cost can be reduced by evaluating only two components of the space-lag vector. The transformation from extended images to angle gathers is a planar Radon transform which depends on the local medium parameters. This transformation allows us to separate all illumination directions for a given experiment, or between different experiments. We do not need to decompose the reconstructed wavefields or to choose the most energetic directions for decomposition. Applications of the method include illumination studies in complex areas where ray-based methods fail, and assuming that the subsurface illumination is sufficiently dense, the study of amplitude variation with aperture and azimuth angles. © 2012 European Association of Geoscientists & Engineers.
A fast forward algorithm for real-time geosteering of azimuthal gamma-ray logging.
Qin, Zhen; Pan, Heping; Wang, Zhonghao; Wang, Bintao; Huang, Ke; Liu, Shaohua; Li, Gang; Amara Konaté, Ahmed; Fang, Sinan
2017-05-01
Geosteering is an effective method to increase the reservoir drilling rate in horizontal wells. Based on the features of an azimuthal gamma-ray logging tool and strata spatial location, a fast forward calculation method of azimuthal gamma-ray logging is deduced by using the natural gamma ray distribution equation in formation. The response characteristics of azimuthal gamma-ray logging while drilling in the layered formation models with different thickness and position are simulated and summarized by using the method. The result indicates that the method calculates quickly, and when the tool nears a boundary, the method can be used to identify the boundary and determine the distance from the logging tool to the boundary in time. Additionally, the formation parameters of the algorithm in the field can be determined after a simple method is proposed based on the information of an offset well. Therefore, the forward method can be used for geosteering in the field. A field example validates that the forward method can be used to determine the distance from the azimuthal gamma-ray logging tool to the boundary for geosteering in real-time.
Azimuthal correlations in Pb--Pb and pp collisions measured with the ALICE detector
DEFF Research Database (Denmark)
Zhou, You; Collaboration, for the ALICE
2012-01-01
We present results from the measurements of azimuthal correlations of charged particles in $\\sqrt{s_{_{NN}}}$ = 2.76 TeV Pb--Pb collisions and $\\sqrt{s_{_{NN}}}$ = 7 TeV pp collisions. In addition, the comparison of the experimental measurements in pp collisions with those from Pythia and Phojet...
Inclusive jet cross-sections and dijet azimuthal decorrelations with D0
Energy Technology Data Exchange (ETDEWEB)
Strohmer, Raimund; /Munich U.
2006-01-01
We present a preliminary measurement of the inclusive jet cross-sections based on an integrated luminosity of 378 pb{sup -1} acquired with the D0 detector between 2002 and 2004 at a center of mass energy of {radical}s = 1.96 TeV and a measurement of azimuthal dijet decorrelations based on an integrated luminosity of 150 pb{sup -1}. The cross section measurements are based on an iterative cone algorithm with a cone size of R = 0.7. They are performed in two rapidity bins between 0.0 and 0.8. The measurements are in good agreement with next to leading order calculations. The azimuthal angle between the two leading jets is sensitive to higher order QCD effects. The measurement of dijet azimuthal decorrelations therefore probes these effects without explicitly reconstructing more than two jets. Except for large azimuthal angles where soft effects are important the measurements are well described by the next to leading order perturbation theory.
Principles of azimuthal correlation measurement of J/psi with charged hadrons
Maire, Antonin
2012-01-01
Schematic illustration of measurement variables in the azimuthal J/psi-hadron correlation measurement. The z-axis perpendicular to the x-y-plane corresponds to the beam axis in the experiment. The reconstructed e+e- pairs are only identifiable as J/psi mesons on a statistical basis.
Energy Technology Data Exchange (ETDEWEB)
Buta, A. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire]|[Institute of Atomic Physics, Bucharest (Romania); Angelique, J.C.; Bizard, G.; Brou, R.; Cussol, D. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Auger, G.; Cabot, C. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Cassagnou, Y. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee; Crema, E. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire]|[Sao Paulo Univ., SP (Brazil). Inst. de Fisica; El Masri, Y. [Louvain Univ., Louvain-la-Neuve (Belgium). Unite de Physique Nucleaire; and others
1996-09-01
Measuring the in-plane flow parameter appears to be a promising method to gain information on the equation of state of nuclear matter. A new method, based on particle-particle azimuthal correlations is proposed. This method does not require the knowledge of the reaction plane. The collisions Zn+Ni and Ar+Al are presented as an example. (K.A.).
Chen, Yukuan; Zhang, Haijiang; Miao, Yuanyuan; Zhang, Yinsheng; Liu, Qiang
2017-03-01
We have developed a new seismic tomography method, back azimuth constrained double-difference (DD) seismic tomography, which is suitable for downhole microseismic monitoring of hydraulic fracturing. The new method simultaneously locates microseismic events and determines three-dimensional (3D) Vp and Vs models for the fracturing zone using differential arrival times from pairs of events and event back azimuths in addition to absolute arrival times. Compared to the existing DD location and tomography method, our method incorporates back azimuth information to better constrain microseismic event locations in the case of poor spatial station coverage such as the linear downhole seismic array generally used for microseismic monitoring. By incorporating the relative arrival time and back azimuth information of events, the extended DD method can provide better relative event locations, and thus can better characterize the fracture distribution. In addition to microseismic locations, seismic velocity anomalies determined around the fracturing zone may also provide valuable information for fracture development. Due to the existence of fractures and fluids, the seismic velocity is expected to be lower in the fractured zone compared to the surrounding regions. Therefore the area of low seismic velocity anomaly may be used as a proxy for the stimulated reservoir volume. We have applied the new method to a downhole microseismic dataset from shale gas hydraulic fracturing. The microseismic events are more accurately relocated than the conventional grid search location method, and they are generally associated with low velocity anomalies.
Wide-azimuth angle-domain imaging for anisotropic reverse-time migration
Sava, Paul C.
2011-01-01
Extended common-image-point gathers (CIP) constructed by wide-azimuth TI wave-equation migration contain all the necessary information for angle decomposition as a function of the reflection and azimuth angles at selected locations in the subsurface. The reflection and azimuth angles are derived from the extended images using analytic relations between the space-lag and time-lag extensions. This post-imaging decomposition requires only information which is already available at the time of migration, i.e. the model parameters and the tilt angles of the TI medium. The transformation amounts to a linear Radon transform applied to the CIPs obtained after the application of the extended imaging condition. If information about the reflector dip is available at the CIP locations, then only two components of the space-lag vectors are required, thus reducing computational cost and increasing the affordability of the method. This efficient angle decomposition method is suitable for wide-azimuth imaging in anisotropic media with arbitrary orientation of the symmetry plane. © 2011 Society of Exploration Geophysicists.
Epidemic spreading by objective traveling
Tang, Ming; Liu, Zonghua; Li, Baowen
2009-07-01
A fundamental feature of agent traveling in social networks is that traveling is usually not a random walk but with a specific destination and goes through the shortest path from starting to destination. A serious consequence of the objective traveling is that it may result in a fast epidemic spreading, such as SARS etc. In this letter we present a reaction-traveling model to study how the objective traveling influences the epidemic spreading. We consider a random scale-free meta-population network with sub-population at each node. Through a SIS model we theoretically prove that near the threshold of epidemic outbreak, the objective traveling can significantly enhance the final infected population and the infected fraction at a node is proportional to its betweenness for the traveling agents and approximately proportional to its degree for the non-traveling agents. Numerical simulations have confirmed the theoretical predictions.
Spreading lengths of Hermite polynomials
Sánchez-Moreno, P; Manzano, D; Yáñez, R; 10.1016/j.cam.2009.09.043
2009-01-01
The Renyi, Shannon and Fisher spreading lengths of the classical or hypergeometric orthogonal polynomials, which are quantifiers of their distribution all over the orthogonality interval, are defined and investigated. These information-theoretic measures of the associated Rakhmanov probability density, which are direct measures of the polynomial spreading in the sense of having the same units as the variable, share interesting properties: invariance under translations and reflections, linear scaling and vanishing in the limit that the variable tends towards a given definite value. The expressions of the Renyi and Fisher lengths for the Hermite polynomials are computed in terms of the polynomial degree. The combinatorial multivariable Bell polynomials, which are shown to characterize the finite power of an arbitrary polynomial, play a relevant role for the computation of these information-theoretic lengths. Indeed these polynomials allow us to design an error-free computing approach for the entropic moments (w...
Quality Improvement of Cheese Spread
2008-02-25
Annatto (2% bixin) 3.5 mL Use as needed to conform color Vitamin A 0.14 0.003 Not less than 800 retinol units Added to comply with product...for samples with citrates (CIT) and altered levels of phosphates (LP) (Table 7). Although the citrates and phosphates have similar ionic components...Effect of vitamins The guidelines for cheese spread fortification include the addition of retinol (vitamin A), thiamine (vitamin B1), pyridoxine
Equatorial Spread F Fossil Plumes
2010-11-01
Satyanarayana , P., and Ossakow, S. L.: The morphology of a multi-bubble system in the ionosphere, J. Geophys. Res., 88, 5528–5536, 1983. de La Beaujardiere...Haerendel, G.: Theory of equatorial spread F , preprint, Max Planck Inst. Extraterr. Phys., Munich, Germany, 1974. Haerendel, G., Eccles, J. V ., and...weather issues, J. Atmos. Terr. Phys., 58, 1527–1574, 1996. Sekar, R., Chakrabarty, D., Sarkhel, S., Patra, A. K., Devasia, C. V ., and Kelley, M. C
Technique of green mulch spreading
Schäfer, Winfried; Väisänen, Jaana; Pihala, Marjo
2001-01-01
Finland’s policy of subsidising the conversion to organic production precipitated the rapid growth of organic farming in the 1990’s. As a consequence, many stockless farms encountered the problems of nitrogen deficit, poor grain quality, and weed control. Since the spreading of green mulch on cash crops is very common especially in tropical agriculture, organic fertilisers like green mulch may be an alternative that would compensate for the prohibition on the use of mineral N-fertilisers. How...
Drop Spreading with Random Viscosity
Xu, Feng; Jensen, Oliver
2016-11-01
Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.
Spread of entanglement and causality
Casini, Horacio; Mezei, Márk
2015-01-01
We investigate causality constraints on the time evolution of entanglement entropy after a global quench in relativistic theories. We first provide a general proof that the so-called tsunami velocity is bounded by the speed of light. We then generalize the free particle streaming model of arXiv:cond-mat/0503393 to general dimensions and to an arbitrary entanglement pattern of the initial state. In more than two spacetime dimensions the spread of entanglement in these models is highly sensitive to the initial entanglement pattern, but we are able to prove an upper bound on the normalized rate of growth of entanglement entropy, and hence the tsunami velocity. The bound is smaller than what one gets for quenches in holographic theories, which highlights the importance of interactions in the spread of entanglement in many-body systems. We propose an interacting model which we believe provides an upper bound on the spread of entanglement for interacting relativistic theories. In two spacetime dimensions with multi...
Epidemic Spread in Human Networks
Sahneh, Faryad Darabi
2011-01-01
One of the popular dynamics on complex networks is the epidemic spreading. An epidemic model describes how infections spread throughout a network. Among the compartmental models used to describe epidemics, the Susceptible-Infected-Susceptible (SIS) model has been widely used. In the SIS model, each node can be susceptible, become infected with a given infection rate, and become again susceptible with a given curing rate. In this paper, we add a new compartment to the classic SIS model to account for human response to epidemic spread. Each individual can be infected, susceptible, or alert. Susceptible individuals can become alert with an alerting rate if infected individuals exist in their neighborhood. An individual in the alert state is less probable to become infected than an individual in the susceptible state; due to a newly adopted cautious behavior. The problem is formulated as a continuous-time Markov process on a general static graph and then modeled into a set of ordinary differential equations using...
Spread of entanglement and causality
Casini, Horacio; Liu, Hong; Mezei, Márk
2016-07-01
We investigate causality constraints on the time evolution of entanglement entropy after a global quench in relativistic theories. We first provide a general proof that the so-called tsunami velocity is bounded by the speed of light. We then generalize the free particle streaming model of [1] to general dimensions and to an arbitrary entanglement pattern of the initial state. In more than two spacetime dimensions the spread of entanglement in these models is highly sensitive to the initial entanglement pattern, but we are able to prove an upper bound on the normalized rate of growth of entanglement entropy, and hence the tsunami velocity. The bound is smaller than what one gets for quenches in holographic theories, which highlights the importance of interactions in the spread of entanglement in many-body systems. We propose an interacting model which we believe provides an upper bound on the spread of entanglement for interacting relativistic theories. In two spacetime dimensions with multiple intervals, this model and its variations are able to reproduce intricate results exhibited by holographic theories for a significant part of the parameter space. For higher dimensions, the model bounds the tsunami velocity at the speed of light. Finally, we construct a geometric model for entanglement propagation based on a tensor network construction for global quenches.
Directory of Open Access Journals (Sweden)
Huapeng Yu
2015-02-01
Full Text Available The Kalman filter (KF has always been used to improve north-finding performance under practical conditions. By analyzing the characteristics of the azimuth rotational inertial measurement unit (ARIMU on a stationary base, a linear state equality constraint for the conventional KF used in the fine north-finding filtering phase is derived. Then, a constrained KF using the state equality constraint is proposed and studied in depth. Estimation behaviors of the concerned navigation errors when implementing the conventional KF scheme and the constrained KF scheme during stationary north-finding are investigated analytically by the stochastic observability approach, which can provide explicit formulations of the navigation errors with influencing variables. Finally, multiple practical experimental tests at a fixed position are done on a postulate system to compare the stationary north-finding performance of the two filtering schemes. In conclusion, this study has successfully extended the utilization of the stochastic observability approach for analytic descriptions of estimation behaviors of the concerned navigation errors, and the constrained KF scheme has demonstrated its superiority over the conventional KF scheme for ARIMU stationary north-finding both theoretically and practically.
Yu, Huapeng; Zhu, Hai; Gao, Dayuan; Yu, Meng; Wu, Wenqi
2015-02-13
The Kalman filter (KF) has always been used to improve north-finding performance under practical conditions. By analyzing the characteristics of the azimuth rotational inertial measurement unit (ARIMU) on a stationary base, a linear state equality constraint for the conventional KF used in the fine north-finding filtering phase is derived. Then, a constrained KF using the state equality constraint is proposed and studied in depth. Estimation behaviors of the concerned navigation errors when implementing the conventional KF scheme and the constrained KF scheme during stationary north-finding are investigated analytically by the stochastic observability approach, which can provide explicit formulations of the navigation errors with influencing variables. Finally, multiple practical experimental tests at a fixed position are done on a postulate system to compare the stationary north-finding performance of the two filtering schemes. In conclusion, this study has successfully extended the utilization of the stochastic observability approach for analytic descriptions of estimation behaviors of the concerned navigation errors, and the constrained KF scheme has demonstrated its superiority over the conventional KF scheme for ARIMU stationary north-finding both theoretically and practically.
Reverse preferential spread in complex networks
Toyoizumi, Hiroshi; Tani, Seiichi; Miyoshi, Naoto; Okamoto, Yoshio
2012-08-01
Large-degree nodes may have a larger influence on the network, but they can be bottlenecks for spreading information since spreading attempts tend to concentrate on these nodes and become redundant. We discuss that the reverse preferential spread (distributing information inversely proportional to the degree of the receiving node) has an advantage over other spread mechanisms. In large uncorrelated networks, we show that the mean number of nodes that receive information under the reverse preferential spread is an upper bound among any other weight-based spread mechanisms, and this upper bound is indeed a logistic growth independent of the degree distribution.
Geodynamic environments of ultra-slow spreading
Kokhan, Andrey; Dubinin, Evgeny
2015-04-01
Ultra-slow spreading is clearly distinguished as an outstanding type of crustal accretion by recent studies. Spreading ridges with ultra-slow velocities of extension are studied rather well. But ultra-slow spreading is characteristic feature of not only spreading ridges, it can be observed also on convergent and transform plate boundaries. Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on divergent plate boundaries: 1. On spreading ridges with ultra-slow spreading, both modern (f.e. Gakkel, South-West Indian, Aden spreading center) and ceased (Labrador spreading center, Aegir ridge); 2. During transition from continental rifting to early stages of oceanic spreading (all spreading ridges during incipient stages of their formation); 3. During incipient stages of formation of spreading ridges on oceanic crust as a result of ridge jumps and reorganization of plate boundaries (f.e. Mathematicians rise and East Pacific rise); 4. During propagation of spreading ridge into the continental crust under influence of hotspot (Aden spreading center and Afar triple junction), under presence of strike-slip faults preceding propagation (possibly, rift zone of California Bay). Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on transform plate boundaries: 1. In transit zones between two "typical" spreading ridges (f.e. Knipovich ridge); 2. In semi strike-slip/extension zones on the oceanic crust (f.e. American-Antarctic ridge); 3. In the zones of local extension in regional strike-slip areas in pull-apart basins along transform boundaries (Cayman trough, pull-apart basins of the southern border of Scotia plate). Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on convergent plate boundaries: 1. During back-arc rifting on the stage of transition into back-arc spreading (central
Institute of Scientific and Technical Information of China (English)
Che Xiao-Hua; Qiao Wen-Xiao; Ju Xiao-Dong; Wang Rui-Jia
2016-01-01
We developed a novel cement evaluation logging tool, named the azimuthally acoustic bond tool (AABT), which uses a phased-arc array transmitter with azimuthal detection capability. We combined numerical simulations andfi eld tests to verify the AABT tool. The numerical simulation results showed that the radiation direction of the subarray corresponding to the maximum amplitude of the first arrival matches the azimuth of the channeling when it is behind the casing. With larger channeling size in the circumferential direction, the amplitude difference of the casing wave at different azimuths becomes more evident. The test results showed that the AABT can accurately locate the casing collars and evaluate the cement bond quality with azimuthal resolution at the casing–cement interface, and can visualize the size, depth, and azimuth of channeling. In the case of good casing–cement bonding, the AABT can further evaluate the cement bond quality at the cement–formation interface with azimuthal resolution by using the amplitude map and the velocity of the formation wave.
Spreading widths of doorway states
Energy Technology Data Exchange (ETDEWEB)
De Pace, A., E-mail: depace@to.infn.i [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, via P. Giuria 1, I-10125 Torino (Italy); Molinari, A. [Dipartimento di Fisica Teorica dell' Universita di Torino, via P. Giuria 1, I-10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Torino, via P. Giuria 1, I-10125 Torino (Italy); Weidenmueller, H.A. [Max-Planck-Institut fuer Kernphysik, D-69029 Heidelberg (Germany)
2011-01-01
As a function of energy E, the average doorway strength function S(E)-bar of a doorway state is commonly assumed to be Lorentzian in shape and characterized by two parameters, the peak energy E{sub 0} and the spreading width {Gamma}{sup {down_arrow}}. The simple picture is modified when the density of background states that couple to the doorway state changes significantly in an energy interval of size {Gamma}{sup {down_arrow}}. For that case we derive an approximate analytical expression for S(E)-bar. We test our result successfully against numerical simulations. Our result may have important implications for shell-model calculations.
Liquid Spreading under Nanoscale Confinement
Checco, Antonio
2009-03-01
Dynamic atomic force microscopy in the noncontact regime is used to study the morphology of a nonvolatile liquid (squalane) as it spreads along wettable nanostripes embedded in a nonwettable surface. Results show that the liquid profile depends on the amount of lateral confinement imposed by the nanostripes, and it is truncated at the microscopic contact line in good qualitative agreement with classical mesoscale hydrodynamics. However, the width of the contact line is found to be significantly larger than expected theoretically. This behavior may originate from small chemical inhomogeneity of the patterned stripes as well as from thermal fluctuations of the contact line.
Lexical Ambiguity: Making a Case against Spread
Kaplan, Jennifer J.; Rogness, Neal T.; Fisher, Diane G.
2012-01-01
We argue for decreasing the use of the word "spread" when describing the statistical idea of dispersion or variability in introductory statistics courses. In addition, we argue for increasing the use of the word "variability" as a replacement for "spread."
Directional spread parameter at intermediate water depth
Digital Repository Service at National Institute of Oceanography (India)
SanilKumar, V.; Deo, M.C.; Anand, N.M.; AshokKumar, K.
The characteristics of directional spread parameters at intermediate water depth are investigated based on a cosine power '2s' directional spreading model. This is based on wave measurements carried out using a Datawell directional waverider buoy...
Migration Helps Spread Bird Flu Worldwide
... page: https://medlineplus.gov/news/fullstory_161473.html Migration Helps Spread Bird Flu Worldwide Scientists recommend keeping ... birds can spread bird flu worldwide and monitoring migration routes could provide early warning of outbreaks, researchers ...
基于CKF的SINS大方位失准角初始对准%Initial alignment of large azimuth misalignment angle in SINS based on CKF
Institute of Scientific and Technical Information of China (English)
孙枫; 唐李军
2012-01-01
The error equation of large azimuth misalignment angle in SINS is nonlinear. To improve the accuracy of the initial alignment in nonlinear model, a new nonlinear filtering method named cubature Kalman filter (CKF) is applied in the initial alignment of SINS. Therefore, an initial alignment nonlinear model under large azimuth misalignment angle is established, and the CKF filter theory based on the spherical-radial cubature criteria is analyzed; then the nonlinear model is simulated with CKF. Simulation results show that the CKF can nicely deal with the nonlinear problems in initial alignment and improve the precision of initial alignment; and the azimuth misalignment angle error can converge to -33.13', which is close to the theoretical estimation precision -32.40' and is better than the-84.14' of EKF.%大方位失准角捷联惯导系统(strapdown inertial narigation system,SINS)误差方程是非线性的,为改善非线性模型下初始对准的精度,提出将一种新的非线性滤波方法(cubature Kalman filter,CKF)应用于捷联惯导系统初始对准中.为此建立了大方位失准角下初始对准非线性模型,分析了基于spherical-radial cubature准则的CKF滤波原理,对非线性模型进行了CKF滤波仿真.仿真结果表明CKF能够很好地处理初始对准中的非线性问题,提高初始对准精度,方位失准角误差能够收敛到- 33.13′,接近理论估计精度-32.40′,优于EKF的-84.14′.
Transverse spin azimuthal asymmetries at COMPASS: SIDIS Multi-D analysis & Drell-Yan
Parsamyan, Bakur
2015-01-01
COMPASS is a high-energy physics experiment operating on the M2 beam line at the SPS at CERN. Using high energy muon and hadron beams the experiment covers broad range of physics aspects in the field of the hadron structure and spectroscopy. One of the important objectives of the COMPASS experiment is the exploration of transverse spin structure of the nucleon via study of spin (in)dependent azimuthal asymmetries with semi-inclusive deep inelastic scattering (SIDIS) processes and starting from 2014 also with Drell-Yan (DY) reactions. Experimental results obtained by COMPASS for azimuthal effects in SIDIS play an important role in the general understanding of the three-dimensional nature of the nucleon. Giving access to the entire "twist-2" set of transverse momentum dependent (TMD) parton distribution functions (PDFs) and fragmentation functions (FFs) COMPASS data trigger constant theoretical interest and are being widely used in phenomenological analyses and global data fits. In particular, recent unique x-$...
Measurement of azimuthal asymmetries in neutral current deep inelastic scattering at HERA
Energy Technology Data Exchange (ETDEWEB)
Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)
2006-08-15
The distribution of the azimuthal angle of charged and neutral hadrons relative to the lepton plane has been studied for neutral current deep inelastic ep scattering using an integrated luminosity of 45 pb{sup -1} taken with the ZEUS detector at HERA. The measurements were made in the hadronic centre-of-mass system. The analysis exploits the energy-flow method, which allows the measurement to be made over a larger range of pseudorapidity compared to previous results. The dependence of the moments of the azimuthal distributions on the pseudorapidity and minimum transverse energy of the final-state hadrons are presented. Although the predictions from next-to-leading-order QCD describe the data better than do the Monte Carlo models incorporating leading-logarithm parton showers, they still fail to describe the magnitude of the asymmetries. This suggests that higher-order calculations may be necessary to describe these data. (Orig.)
Multi-Regge kinematics and azimuthal angle observables for inclusive four-jet production
Energy Technology Data Exchange (ETDEWEB)
Caporale, F.; Chachamis, G.; Sabio Vera, A. [UAM/CSIC, Madrid (Spain). Inst. de Fisica Teorica; Univ. Autonoma de Madrid (Spain); Celiberto, F.G. [UAM/CSIC, Madrid (Spain). Inst. de Fisica Teorica; Univ. Autonoma de Madrid (Spain); Calabria Univ., Cosenza (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Cosenza (Italy). Gruppo Collegato di Cosenza
2016-03-15
We evaluate differential cross sections for production of four jets in multi-Regge kinematics at a hadron collider. The main focus lies on the azimuthal angle dependences. As in previous studies, the ratios of correlation functions of products of cosines of azimuthal angle differences among the tagged jets offer us the cleanest quantities to compare with the experimental data. The calculations are based on the jet production from a single BFKL ladder with a convolution of three BFKL Green functions where we always have two forward/backward jets tagged in the final state. We also demand the tagging of two further jets in more central regions of the detectors with a relative separation in rapidity from each other, plus the inclusive production of an arbitrary number of mini-jets. We show that dependences on the transverse momenta and rapidity of the two central jets can be a distinct signal of the onset of BFKL dynamics. (orig.)
Dijet azimuthal decorrelations at the LHC in the parton Reggeization approach
Energy Technology Data Exchange (ETDEWEB)
Nefedov, M.A. [Samarskij Gosudarstvennyj Univ., Samara (Russian Federation); Saleev, V.A.; Shipilova, A.V. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Samarskij Gosudarstvennyj Univ., Samara (Russian Federation)
2013-04-15
We study inclusive dijet azimuthal decorrelations in proton-proton collisions at the CERN LHC invoking the hypothesis of parton Reggeization in t-channel exchanges at high energies. In the parton Reggeization approach, the main contribution to the azimuthal angle difference between the two most energetic jets is due to the Reggeon-Reggeon-Particle-Particle scattering, when the fusion of two Reggeized gluons into a pair of Yang-Mills gluons dominates. Using a high-energy factorization scheme with the Kimber-Martin-Ryskin unintegrated parton distribution functions and the Fadin-Lipatov effective vertices we obtain good agreement of our calculations with recent measurements by the ATLAS and CMS Collaborations at the CERN LHC.
Measurement of azimuthal asymmetries in neutral current deep inelastic scattering at HERA
Chekanov, S; Magill, S; Miglioranzi, S; Musgrave, B; Nicholass, D; Repond, J; Yoshida, R; Mattingly, M C K; Pavel, N; Yagues-Molina, A G; Antonelli, S; Antonioli, P; Bari, G; Basile, M; Bellagamba, L; Bindi, M; Boscherini, D; Bruni, A; Bruni, G; Cifarelli, L; Cindolo, F; Contin, A; Corradi, M; De Pasquale, S; Iacobucci, G; Margotti, A; Nania, R; Polini, A; Rinaldi, L; Sartorelli, G; Zichichi, A; Aghuzumtsyan, G; Bartsch, D; Brock, I; Goers, S; Hartmann, H; Hilger, E; Jakob, H P; Jüngst, M; Kind, O M; Paul, E; Rautenberg, J; Renner, R; Samson, U; Schonberg, V; Wang, M; Wlasenko, M; Brook, N H; Heath, G P; Morris, J D; Namsoo, T; Capua, M; Fazio, S; Mastroberardino, A; Schioppa, M; Susinno, G; Tassi, E; Kim, J Y; Ma, K J; Ibrahim, Z A; Kamaluddin, B; Wan-Abdullah, W A T; Ning, Y; Ren, Z; Sciulli, F; Chwastowski, J; Eskreys, Andrzej; Figiel, J; Galas, A; Gil, M; Olkiewicz, K; Stopa, P; Zaw, I; Adamczyk, L; Bold, T; Grabowska-Bold, I; Kisielewska, D; Lukasik, J; Przybycien, M B; Suszycki, L; Kotanski, A; Slominski, W; Adler, V; Behrens, U; Bloch, I; Bonato, A; Borras, K; Coppola, N; Fourletova, J; Geiser, A; Gladkov, D; Göttlicher, P; Gregor, I; Gutsche, O; Haas, T; Hain, W; Horn, C; Kahle, B; Kötz, U; Kowalski, H; Lim, H; Lobodzinska, E; Löhr, B; Mankel, R; Melzer--, I A; Pellmann; Montanari, A; Nguyen, C N; Notz, D; Nuncio-Quiroz, A E; Santamarta, R; Schneekloth, U; Spiridonov, A A; Stadie, H; Stösslein, U; Szuba, D; Szuba, J; Theedt, T; Watt, G; Wolf, G; Wrona, K; Youngman, C; Zeuner, W; Schlenstedt, S; Barbagli, G; Gallo, E; Pelfer, P G; Bamberger, A; Dobur, D; Karstens, F; Vlasov, N N; Bussey, P J; Doyle, A T; Dunne, W; Ferrando, J; Saxon, D H; Skillicorn, I O; Gialas, I; Gosau, T; Holm, U; Klanner, Robert; Lohrmann, E; Salehi, H; Schleper, P; Schörner-Sadenius, T; Sztuk, J; Wichmann, K; Wick, K; Foudas, C; Fry, C; Long, K R; Tapper, A D; Kataoka, M; Matsumoto, T; Nagano, K; Tokushuku, K; Yamada, S; Yamazaki, Y; Barakbaev, A N; Boos, E G; Dossanov, A; Pokrovskiy, N S; Zhautykov, B O; Son, D; De Favereau, J; Piotrzkowski, K; Barreiro, F; Glasman, C; Jiménez, M; Labarga, L; Del Peso, J; Ron, E; Terron, J; Zambrana, M; Corriveau, F; Liu, C; Walsh, R; Zhou, C; Tsurugai, T; Antonov, A; Dolgoshein, B A; Rubinsky, I; Sosnovtsev, V; Stifutkin, A; Suchkov, S; Dementiev, R K; Ermolov, P F; Gladilin, L K; Katkov, I I; Khein, L A; Korzhavina, I A; Kuzmin, V A; Levchenko, B B; Lukina, O Yu; Proskuryakov, A S; Shcheglova, L M; Zotkin, D S; Zotkin, S A; Abt, I; Büttner, C; Caldwell, A; Kollar, D; Schmidke, W B; Sutiak, J; Grigorescu, G; Keramidas, A; Koffeman, E; Kooijman, P; Pellegrino, A; Tiecke, H G; Vázquez, M; Wiggers, L; Brümmer, N; Bylsma, B; Durkin, L S; Lee, A; Ling, T Y; Allfrey, P D; Bell, M A; Cooper-Sarkar, A M; Cottrell, A; Devenish, R C E; Foster, B; Gwenlan, C; Korcsak-Gorzo, K; Patel, S; Roberfroid, V; Robertson, A; Straub, P B; Uribe-Estrada, C; Walczak, R; Bellan, P M; Bertolin, A; Brugnera, R; Carlin, R; Ciesielski, R; Dal Corso, F; Dusini, S; Garfagnini, A; Limentani, S; Longhin, A; Stanco, L; Turcato, M; Oh, B Y; Raval, A; Ukleja, J; Whitmore, J J; Iga, Y; D'Agostini, G; Marini, G; Nigro, A; Cole, J E; Hart, J C; Abramowicz, H; Gabareen, A; Ingbir, R; Kananov, S; Levy, A; Kuze, M; Hori, R; Kagawa, S; Shimizu, S; Tawara, T; Hamatsu, R; Kaji, H; Kitamura, S; Ota, O; Ri, Y D; Ferrero, M I; Monaco, V; Sacchi, R; Solano, A; Arneodo, M; Ruspa, M; Fourletov, S; Martin, J F; Boutle, S K; Butterworth, J M; Hall-Wilton, R; Jones, T W; Loizides, J H; Sutton, M R; Targett-Adams, C; Wing, M; Brzozowska, B; Ciborowski, J; Grzelak, G; Kulinski, P; Luzniak, P; Malka, J; Nowak, R J; Pawlak, J M; Tymieniecka, T; Ukleja, A; Adamus, M; Plucinsky, P P; Eisenberg, Y; Giller, I; Hochman, D; Karshon, U; Rosin, M; Brownson, E; Danielson, T; Everett, A; Kcira, D; Reeder, D D; Ryan, P; Savin, A A; Smith, W H; Wolfe, H; Bhadra, S; Catterall, C D; Cui, Y; Hartner, G; Menary, S; Noor, U; Soares, M; Standage, J; Whyte, J
2006-01-01
The distribution of the azimuthal angle of charged and neutral hadrons relative to the lepton plane has been studied for neutral current deep inelastic $ep$ scattering using an integrated luminosity of 45 pb-1 taken with the ZEUS detector at HERA. The measurements were made in the hadronic centre-of-mass system. The analysis exploits the energy-flow method, which allows the measurement to be made over a larger range of pseudorapidity compared to previous results. The dependence of the moments of the azimuthal distributions on the pseudorapidity and minimum transverse energy of the final-state hadrons are presented. Although the predictions from next-to-leading-order QCD describe the data better than do the Monte Carlo models incorporating leading-logarithm parton showers, they still fail to describe the magnitude of the asymmetries. This suggests that higher-order calculations may be necessary to describe these data.
Alekseev, M G; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Austregesilo, A; Badełek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Bravar, A; Bressan, A; Brona, G; Burtin, E; Bussa, M P; Chaberny, D; Chiosso, M; Chung, S U; Cicuttin, A; Colantoni, M; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Denisov, O Yu; Dhara, L; Diaz, V; Donskov, S V; Doshita, N; Duic, V; Dünnweber, W; Efremov, A; El Alaoui, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M Jr; Fischer, H; Franco, C; Friedrich, J M; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmüller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Haas, F; von Harrach, D; Hasegawa, T; Heinsius, F H; Herrmann, F; Heß, C; Hinterberger, F; Horikawa, N; Höppner, Ch; d’Hose, N; Ilgner, C; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jasinski, P; Jegou, G; Joosten, R; Kabuß, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Königsmann, K; Konopka, R; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kowalik, K; Krämer, M; Kral, A; Kroumchtein, Z V; Kuhn, R; Kunne, F; Kurek, K; Lauser, L; Le Goff, J M; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Maggiora, A; Maggiora, M; Magnon, A; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Meyer, W; Michigami, T; Mikhailov, Yu V; Moinester, M A; Mutter, A; Nagaytsev, A; Nagel, T; Nassalski, J; Negrini, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Pawlukiewicz-Kaminska, B; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pontecorvo, G; Pretz, J; Quintans, C; Rajotte, J F; Ramos, S; Rapatsky, V; Reicherz, G; Richter, A; Robinet, F; Rocco, E; Rondio, E; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Santos, H; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schlüter, T; Schmitt, L; Schopferer, S; Schröder, W; Shevchenko, O Yu; Siebert, H W; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Sulej, R; Takekawa, S; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Uhl, S; Uman, I; Virius, M; Vlassov, N V; Vossen, A; Weitzel, Q; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhao, J; Zhuravlev, N; Zvyagin, A
2010-01-01
Azimuthal asymmetries in semi-inclusive production of positive (h^+) and negative hadrons (h^-) have been measured by scattering 160 GeV muons off longitudinally polarised deuterons at CERN. The asymmetries were decomposed in several terms according to their expected modulation in the azimuthal angle phi of the outgoing hadron. Each term receives contributions from one or several spin and transverse-momentum-dependent parton distribution and fragmentation functions. The amplitudes of all phi-modulation terms of the hadron asymmetries integrated over the kinematic variables are found to be consistent with zero within statistical errors, while the constant terms are nonzero and equal for h^+ and h^- within the statistical errors. The dependencies of the phi-modulated terms versus the Bjorken momentum fraction x, the hadron fractional momentum z, and the hadron transverse momentum p_h^T were studied. The x dependence of the constant terms for both positive and negative hadrons is in agreement with the longitudin...
Savin, I A
2010-01-01
Search for azimuthal asymmetries in semi-inclusive production of charged hadrons by 160 GeV muons on the longitudinally polarized deuterium target, has been performed using the 2002- 2004 COMPASS data. The observed asymmetries integrated over the kinematical variables do not depend on the azimuthal angle of produced hadrons and are consistent with the ratio $g_1^d(x)/f_1^d(x)$. The asymmetries are parameterized taking into account possible contributions from different parton distribution functions and parton fragmentation functions depending on the transverse spin of quarks.They can be modulated (either/or/and) with $\\sin(\\phi), \\sin(2\\phi), \\sin(3\\phi)$ and $\\cos(\\phi)$. The $x$-, $z$- and $p_h^T$-dependencies of these amplitudes are studied.
Directory of Open Access Journals (Sweden)
C. Adolph
2014-09-01
Full Text Available Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS longitudinally polarised muon beam at 160 GeV/c and a 6LiD target. The amplitudes of the three azimuthal modulations cosϕh, cos2ϕh and sinϕh were obtained binning the data separately in each of the relevant kinematic variables x, z or pTh and binning in a three-dimensional grid of these three variables. The amplitudes of the cosϕh and cos2ϕh modulations show strong kinematic dependencies both for positive and negative hadrons.
Adolph, C.; Alekseev, M.G.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bertini, R.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Buchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger jr, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J.M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Grube, B.; Guskov, A.; Guthorl, T.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F.H.; Herrmann, F.; Hinterberger, F.; Hoppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joerg, P.; Joosten, R.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.; Kral, Z.; Kramer, M.; Kroumchtein, Z.V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G.K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nunes, A.S.; Orlov, I.; Olshevsky, A.G.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesek, M.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Reicherz, G.; Rocco, E.; Rodionov, V.; Rondio, E.; Rychter, A.; Rossiyskaya, N.S.; Ryabchikov, D.I.; Samoylenko, V.D.; Sandacz, A.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schluter, T.; Schmidt, A.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Schott, M.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabeleski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vondra, J.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.
2014-01-01
Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS muon beam at $160$ GeV/c and a $^6$LiD target. The amplitudes of the three azimuthal modulations $\\cos\\phi_h$, $\\cos2\\phi_h$ and $\\sin\\phi_h$ were obtained binning the data separately in each of the relevant kinematic variables $x$, $z$ or $p_T^{\\,h}$ and binning in a three-dimensional grid of these three variables. The amplitudes of the $\\cos \\phi_h$ and $\\cos 2\\phi_h$ modulations show strong kinematic dependencies both for positive and negative hadrons.
Multi-Regge kinematics and azimuthal angle observables for inclusive four-jet production
Caporale, F; Chachamis, G; Vera, A Sabio
2015-01-01
We evaluate differential cross sections for production of four jets in multi-Regge kinematics at a hadron collider. The main focus lies on azimuthal angle dependences. As in previous studies, the ratios of correlation functions of products of cosines of azimuthal angle differences among the tagged jets offer us the cleanest quantities to compare with experimental data. The calculations are based on the jet production from a single BFKL ladder with a convolution of three BFKL Green functions where we always have two forward/backward jets tagged in the final state. We also demand the tagging of two further jets in more central regions of the detectors with a relative separation in rapidity from each other, plus the inclusive production of an arbitrary number of mini-jets. We show that dependences on the transverse momenta and rapidity of the two central jets can be a distinct signal of the onset of BFKL dynamics.
Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations
Energy Technology Data Exchange (ETDEWEB)
Riley, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hansen, Clifford W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-12-30
Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam onto the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.
Ugarte, Daniel; Ducati, Caterina
2016-05-01
We have theoretically studied how the azimuthal phase structure of an electron vortex beam excites surface plasmons on metal particles of different geometries as observed in electron energy loss spectroscopy (EELS). We have developed a semiclassical approximation combining a ring-shaped beam and the dielectric formalism. Our results indicate that for the case of total orbital angular momentum transfer, we can manipulate surface plasmon multipole excitation and even attain an enhancement factor of several orders of magnitude. Since electron vortex beams interact with particles mostly through effects due to azimuthal symmetry, i.e., in the plane perpendicular to the electron beam, anisotropy information (longitudinal and transversal) of the sample may be derived in EELS studies by comparing nonvortex and vortex beam measurements.
Modelling and mapping spread in pest risk analysis: a generic approach
Kehlenbeck, H.; Robinet, C.; Werf, van der W.; Kriticos, D.; Reynaud, P.; Baker, R.
2012-01-01
Assessing the likelihood and magnitude of spread is one of the cornerstones of pest risk analysis (PRA), and is usually based on qualitative expert judgment. This paper proposes a suite of simple ecological models to support risk assessors who also wish to estimate the rate and extent of spread, e.g
Combinatorial search of superconductivity in Fe-B composition spreads
Directory of Open Access Journals (Sweden)
Kui Jin
2013-10-01
Full Text Available We have fabricated Fe-B thin film composition spreads in search of possible superconducting phases following a theoretical prediction by Kolmogorov [Phys. Rev. Lett. 105, 217003 (2010]. Co-sputtering was used to deposit spreads covering a large compositional region of the Fe-B binary phase diagram. A trace of superconducting phase was found in the nanocrystalline part of the spread, where the film undergoes a metal to insulator transition as a function of composition in a region with the average composition of FeB2. The resistance drop occurs at 4 K, and a diamagnetic signal has also been detected at the same temperature. From the field-dependent resistive transition behavior, we estimate the upper critical field to be approximately 2 T.
Odd Azimuthal Anisotropy of the Glasma for pA Scattering
McLerran, Larry
2016-01-01
In this paper we analytically extract the odd azimuthal anisotropy in the Classical Yang Mills equations for the Glasma for pA collisions. We compute the first non-trivial term in the expansion of the proton sources of color charge. The computation is valid in the limit of a large nucleus when the produced particle momenta are larger than the saturation momentum of the proton.
A possible role of sunrise/sunset azimuth in the planning of ancient Chinese towns
Sparavigna, Amelia Carolina
2013-01-01
In the planning of some Chinese towns we can see an evident orientation with the cardinal north-south direction. However, other features reveal a possible orientation with the sunrise/sunset azimuth on solstices too, as in the case of Shangdu (Xanadu), the summer capital of Kublai Khan. Here we discuss some other examples of a possible solar orientation in the planning of ancient towns. We will analyze the plans of Xi'an, Khanbalik and Dali.
Return of the Volcano: PHENIX Azimuthal Correlations 62.4 GeV Au+Au
McCumber, M; Cumber, Michael Mc; Frantz, Justin
2005-01-01
As in previous analyses at sqrt(s_NN) 200 GeV, correlations in azimuthal angles between inclusive charge particles at intermediate transverse momentum (p_T = 1.0-4.0) GeV/c are studied at sqrt(s_NN) 62.4 GeV. The jet correlations reveal similar modification as in 200 GeV. Specifically large modification, including the "volcano" or "cone" structure, persists in the awayside correlation.
Event plane resolution correction for azimuthal anisotropy in wide centrality bins
Masui, Hiroshi; Schmah, Alexander; Poskanzer, A. M.
2016-10-01
We provide a method to correct the observed azimuthal anisotropy in heavy-ion collisions for the event plane resolution in a wide centrality bin. This new procedure is especially useful for rare particles, such as Ω baryons and J / ψ mesons, which are difficult to measure in small intervals of centrality. Based on a Monte Carlo calculation with simulated v2 and multiplicity, we show that some of the commonly used methods have a bias of up to 15%.
Distance and Azimuthal Dependence of Ground‐Motion Variability for Unilateral Strike‐Slip Ruptures
Vyas, Jagdish Chandra
2016-06-21
We investigate near‐field ground‐motion variability by computing the seismic wavefield for five kinematic unilateral‐rupture models of the 1992 Mw 7.3 Landers earthquake, eight simplified unilateral‐rupture models based on the Landers event, and a large Mw 7.8 ShakeOut scenario. We include the geometrical fault complexity and consider different 1D velocity–density profiles for the Landers simulations and a 3D heterogeneous Earth structure for the ShakeOut scenario. For the Landers earthquake, the computed waveforms are validated using strong‐motion recordings. We analyze the simulated ground‐motion data set in terms of distance and azimuth dependence of peak ground velocity (PGV). Our simulations reveal that intraevent ground‐motion variability Graphic is higher in close distances to the fault (<20 km) and decreases with increasing distance following a power law. This finding is in stark contrast to constant sigma‐values used in empirical ground‐motion prediction equations. The physical explanation of a large near‐field Graphic is the presence of strong directivity and rupture complexity. High values of Graphic occur in the rupture‐propagation direction, but small values occur in the direction perpendicular to it. We observe that the power‐law decay of Graphic is primarily controlled by slip heterogeneity. In addition, Graphic, as function of azimuth, is sensitive to variations in both rupture speed and slip heterogeneity. The azimuth dependence of the ground‐motion mean μln(PGV) is well described by a Cauchy–Lorentz function that provides a novel empirical quantification to model the spatial dependency of ground motion. Online Material: Figures of slip distributions, residuals to ground‐motion prediction equations (GMPEs), distance and azimuthal dependence, and directivity predictor of ground‐motion variability for different source models.
Asymmetric azimuthal distribution of hadrons inside a jet from hadron-hadron collisions.
Yuan, Feng
2008-01-25
We study the azimuthal asymmetric distribution of hadrons inside a high energy jet in the single-transverse polarized nucleon-nucleon scattering, coming from the Collins effect multiplied by the quark transversity distribution. We argue that the Collins function in this process is the same as that in the semi-inclusive deep inelastic scattering. The experimental study of this process will provide us with important information on the quark transversity distribution and test the universality of the fragmentation functions.
Energy Technology Data Exchange (ETDEWEB)
Beattie, S.G. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)
1995-02-01
A series of small scale explosive tests were performed during the spring of 1994 at a perlite mine located near Socorro, NM. The tests were designed to investigate the azimuthal or directional relationship between small scale geologic structures such as joints and the propagation of explosively induced ground motion. Three shots were initiated within a single borehole located at ground zero (gz) at depths varying from the deepest at 83 m (272 ft) to the shallowest at 10 m (32 ft). The intermediate shot was initiated at a depth of 63 m (208 ft). An array of three component velocity and acceleration transducers were placed in two concentric rings entirely surrounding the single shot hole at 150 and 300 azimuths as measured from ground zero. Data from the transducers was then used to determine the average propagation velocity of the blast vibration through the rock mass at the various azimuths. The rock mass was mapped to determine the prominent joint orientations (strike and dip) and the average propagation velocities were correlated with this geologic information. The data from these experiments shows that there is a correlation between the orientation of prominent joints and the average velocity of ground motion. It is theorized that this relationship is due to the relative path the ground wave follows when encountering a joint or structure within the rock mass. The more prominent structures allow the wave to follow along their strike thereby forming a sort of channel or path of least resistance and in turn increasing the propagation velocity. Secondary joints or structures may act in concert with more prominent features to form a network of channels along which the wave moves more freely than it may travel against the structure. The amplitudes of the ground motion was also shown to vary azimuthally with the direction of the most prominent structures.
Adolph, C; Akhunzyanov, R; Alexeev, M G; Alexeev, G D; Amoroso, A; Andrieux, V; Anfimov, N V; Anosov, V; Augsten, K; Augustyniak, W; Austregesilo, A; Azevedo, C D R; Badełek, B; Balestra, F; Ball, M; Barth, J; Beck, R; Bedfer, Y; Bernhard, J; Bicker, K; Bielert, E R; Birsa, R; Bodlak, M; Bordalo, P; Bradamante, F; Braun, C; Bressan, A; Buchele, M; Chang, W-C; Chatterjee, C; Chiosso, M; Choi, I; Chung, S-U; Cicuttin, A; Crespo, M L; Curiel, Q; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Dreisbach, Ch; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Finger, M; Finger jr, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Fuchey, E; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Giarra, J; Giordano, F; Gnesi, I; Gorzellik, M; Grabmuller, S; Grasso, A; Grosse Perdekamp, M; Grube, B; Grussenmeyer, T; Guskov, A; Haas, F; Hahne, D; Hamar, G; von Harrach, D; Heinsius, F H; Heitz, R; Herrmann, F; Horikawa, N; d’Hose, N; Hsieh, C-Y; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jary, V; Joosten, R; Jorg, P; Kabuß, E; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O M; Kramer, M; Kremser, P; Krinner, F; Kroumchtein, Z V; Kulinich, Y; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levillain, M; Levorato, S; Lian, Y-S; Lichtenstadt, J; Longo, R; Maggiora, A; Magnon, A; Makins, N; Makke, N; Mallot, G K; Marianski, B; Martin, A; Marzec, J; Matousek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G V; Meyer, M; Meyer, W; Mikhailov, Yu V; Mikhasenko, M; Mitrofanov, E; Mitrofanov, N; Miyachi, Y; Nagaytsev, A; Nerling, F; Neyret, D; Novy, J; Nowak, W-D; Nukazuka, G; Nunes, A S; Olshevsky, A G; Orlov, I; Ostrick, M; Panzieri, D; Parsamyan, B; Paul, S; Peng, J-C; Pereira, F; Pesek, M; Peshekhonov, D V; Pierre, N; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Regali, C; Reicherz, G; Riedl, C; Roskot, M; Rossiyskaya, N S; Ryabchikov, D I; Rybnikov, A; Rychter, A; Salac, R; Samoylenko, V D; Sandacz, A; Santos, C; Sarkar, S; Savin, I A; Sawada, T; Sbrizzai, G; Schiavon, P; Schmidt, K; Schmieden, H; Schonning, K; Seder, E; Selyunin, A; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Smolik, J; Srnka, A; Steffen, D; Stolarski, M; Subrt, O; Sulc, M; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Takekawa, S; Tasevsky, M; Tessaro, S; Tessarotto, F; Thibaud, F; Thiel, A; Tosello, F; Tskhay, V; Uhl, S; Veloso, J; Virius, M; Vondra, J; Wallner, S; Weisrock, T; Wilfert, M; ter Wolbeek, J; Zaremba, K; Zavada, P; Zavertyaev, M; Zemlyanichkina, E; Zhuravlev, N; Ziembicki, M; Zink, A
2016-01-01
Single hadron azimuthal asymmetries in the cross sections of positive and negative hadron production in muon semi-inclusive deep inelastic scattering off longitudinally polarised deuterons are determined using the 2006 COMPASS data and also all deuteron COMPASS data. For each hadron charge, the dependence of the azimuthal asymmetry on the hadron azimuthal angle $\\phi$ is obtained by means of a five-parameter fitting function that besides a $\\phi$-independent term includes four modulations predicted by theory: $\\sin\\phi$, $\\sin 2 \\phi$, $\\sin 3\\phi$ and $\\cos\\phi$. The amplitudes of the five terms have been first extracted for the data integrated over all kinematic variables. In further fits, the $\\phi$-dependence is determined as a function of one of three kinematic variables (Bjorken-$x$, fractional energy of virtual photon taken by the outgoing hadron and hadron transverse momentum), while disregarding the other two. Except the $\\phi$-independent term, all the modulation amplitudes are very small, and no cl...
Triple- and Quadruple-Gluon Azimuthal Correlations from Glasma and Higher-Dimensional Ridges
Ozonder, Sener
2014-01-01
We calculate the triple- and quadruple-gluon inclusive distributions with arbitrary rapidity and azimuthal angle dependences in the gluon saturation regime by using glasma diagrams. Also, we predict higher-dimensional ridges in triple- and quadruple-hadron correlations for p-p and p-Pb collisions at LHC, which have yet to be measured. In p-p and p-Pb collisions at the top LHC energies, gluon saturation is expected to occur since smaller Bjorken-$x$ values are being probed. Glasma diagrams, which are enhanced at small-$x$, include the gluon saturation effects, and they are used for calculating the long-range rapidity correlations ("ridges") and $v_n$ moments of the azimuthal distribution of detected hadrons. The glasma description reproduces the systematics of the data on both p-p and p-Pb ridges. As an alternative, relativistic hydrodynamics has also been applied to these small systems quite successfully. With the triple- and quadruple-gluon azimuthal correlations, this work aims to set the stage by going bey...
Overview of ALICE results on azimuthal correlations using neutral- and heavy-flavor triggers
Pochybova, Sona; ALICE Collaboration
2017-02-01
The ALICE detector is dedicated to studying the properties of hot and dense matter created in heavy-ion collisions. Among the probes used to investigate these properties are high-momentum particles, which originate in hard-scatterings occurring before the fireball creation. The fragments of hard scatterings interact with the hot and dense matter and via this interaction their spectra and azimuthal distributions are modified. This is probed by the measurement of the nuclear modification factor, where the p T spectra obtained in Pb–Pb collisions are compared to a pp baseline. A strong suppression of charged hadrons as well as neutral- and heavy-flavor mesons was observed at p T > 4 GeV/c. Azimuthal correlations, using high-momentum (p T > 4 GeV/c) hadrons as triggers, can provide further insight into how the presence of the medium modifies the final kinematic distributions of the particles. Comparison with theoretical models can be used to test their predictions about the properties of the medium. We give an overview of ALICE azimuthal-correlation measurements of neutral- and heavy-flavor mesons with charged hadrons in pp collisions at \\sqrt s = 7{{ TeV}} and Pb–Pb collisions at \\sqrt {{s{{NN}}}} = 2.76{{ TeV}}. We also present a measurement of the π 0 correlation with jets in pp collisions at \\sqrt s = 7{{ TeV}}.
A Mode Detection Method Using the Azimuthal Directivity of a Turbofan Model
Thomas, R. H.; Farassat, F.; Clark, L. R.; Gerhold, C. H.; Kelly, J. J.; Becker, L. E.
1999-01-01
The azimuthal, far field directivity of a scale fan model was measured in high resolution. The model is a 12 inch diameter rotor with 16 blades followed by 40 stator vanes. The tests were conducted at the nominal 100% speed corresponding to a tip speed of 905 ft/sec. Measurement of the radiated sound field, forward of the fan, was made in an anechoic chamber with an inflow control device and a baffle separating the aft and forward radiated interaction noise. The acoustic field was surveyed with a circular hoop array of 16 microphones which was moved to 14 axial stations. At each axial station the hoop was rotated in half-degree increments to take 736 points in the azimuthal angle. In addition to sound pressure level, the phase angle relative to a reference microphone was measured at each point. The sound pressure level is shown to vary in patterns by 10-15 dB especially for the fundamental tone but also for the first and second harmonic. A far field mode detection method has been developed and used with the data which determines the modes generated by the fan and which then interact to form the azimuthal directivity.
Institute of Scientific and Technical Information of China (English)
Zhou Xuan; Zhang Zhi-Dong; Ye Wen-Jiang; Xuan Li
2012-01-01
Zhang Y Jet al.[Zhang Y J,Zhang Z D,Zhu L Z and Xuan L 2011 Liquid Cryst.38 355] investigated the effects of finite polar anchoring on the azimuthal anchoring energy at a grooved interface,in which polar anchoring was isotropic in the local tangent plane of the surface.In this paper,we investigate the effects of both isotropic and anisotropic polar anchoring on the surface anchoring energy in the frame of Fukuda et al.'s theory.The results show that anisotropic polar anchoring strengthens the azimuthal anchoring of grooved surfaces.In the one-elastic-constant approximation (K11 =K22 =K33 =K),the surface-groove-induced azimuthal anchoring energy is entirely consistent with the result of Faetti,and it reduces to the original result of Berreman with an increase in polar anchoring.Moreover,the contribution of the surface-like elastic term to the Rapini-Papoular anchoring energy is zero.
Study of Jet Transverse Momentum and Jet Rapidity Dependence on Dijet Azimuthal Decorrelations
Energy Technology Data Exchange (ETDEWEB)
Chakravarthula, Kiran [Louisiana Tech Univ., Ruston, LA (United States)
2012-01-01
In a collision experiment involving highly energetic particles such as hadrons, processes at high momentum transfers can provide information useful for many studies involving Quantum Chromodynamics (QCD). One way of analyzing these interactions is through angular distributions. In hadron-hadron collisions, the angular distribution between the two leading jets with the largest transverse momentum (p_{T} ) is affected by the production of additional jets. While soft radiation causes small differences in the azimuthal angular distribution of the two leading jets produced in a collision event, additional hard jets produced in the event have more pronounced influence on the distribution of the two leading jets produced in the collision. Thus, the dijet azimuthal angular distribution can serve as a variable that can be used to study the transition from soft to hard QCD processes in a collision event. This dissertation presents a triple-differential study involving the azimuthal angular distribution and the jet transverse momenta, and jet rapidities of the first two leading jets. The data used for this research are obtained from proton-antiproton (p$\\bar{p}$) collisions occurring at a center of mass energy of 1.96TeV, using the DØ detector in Run II of the Tevatron Collider at the Fermi National Accelerator Laboratory (FNAL) in Illinois, USA. Comparisons are made to perturbative QCD (_{p}QCD) predictions at next-to-leading order (NLO).
The spreading of misinformation online.
Del Vicario, Michela; Bessi, Alessandro; Zollo, Fabiana; Petroni, Fabio; Scala, Antonio; Caldarelli, Guido; Stanley, H Eugene; Quattrociocchi, Walter
2016-01-19
The wide availability of user-provided content in online social media facilitates the aggregation of people around common interests, worldviews, and narratives. However, the World Wide Web (WWW) also allows for the rapid dissemination of unsubstantiated rumors and conspiracy theories that often elicit rapid, large, but naive social responses such as the recent case of Jade Helm 15--where a simple military exercise turned out to be perceived as the beginning of a new civil war in the United States. In this work, we address the determinants governing misinformation spreading through a thorough quantitative analysis. In particular, we focus on how Facebook users consume information related to two distinct narratives: scientific and conspiracy news. We find that, although consumers of scientific and conspiracy stories present similar consumption patterns with respect to content, cascade dynamics differ. Selective exposure to content is the primary driver of content diffusion and generates the formation of homogeneous clusters, i.e., "echo chambers." Indeed, homogeneity appears to be the primary driver for the diffusion of contents and each echo chamber has its own cascade dynamics. Finally, we introduce a data-driven percolation model mimicking rumor spreading and we show that homogeneity and polarization are the main determinants for predicting cascades' size.
Angular spreading measurements using MeV ion microscopes
Energy Technology Data Exchange (ETDEWEB)
Whitlow, Harry J., E-mail: harry.whitlow@he-arc.ch [Institut des Microtechnologies Appliquées, Haute Ecole Arc Ingénierie, Eplatures-Gris 17, CH-2300 La Chaux-de-Fonds (Switzerland); Department of Physics, P.O. Box 35 (YFL), FI-40014 University of Jyväskylä (Finland); Ren, Minqin; Chen, Xiao; Osipowicz, Thomas; Kan, Jeroen A. van; Watt, Frank [Centre for Ion Beam Applications, National University of Singapore (Singapore)
2013-07-01
The sharpness of MeV ion microscope images is governed by small-angle scattering and associated lateral spreading of the ion beam in the sample. We have investigated measurement of the half-angle of the angular spreading distribution by characterising the image blurring in direct-Scanning Transmission Ion Microscopy (direct-STIM). In these tests Mylar™ foils of 0.5–6 μm were used to induce angular spreading. Images were taken of an electron microscope grid using 2 MeV protons with, and without, the foils in the beam path. The blurring was measured by fitting the width of a circular Gaussian point spread function to the images with and without the foil in position. The results show the half-angle width of the spreading has a square root dependence on foil thickness that lies intermediate between SRIM predictions and the theoretical estimates (Bird and Williams fits to the Sigmund and Winterbon data and Amsel et al.)
Asymptotic Spreading Fastened by Inter-Specific Coupled Nonlinearities: a Cooperative System
Lin, Guo
2010-01-01
This paper is concerned with the asymptotic spreading of a Lotka-Volterra cooperative system. Utilizing the theory developed by Berestycki et al. [Asymptotic spreading in heterogeneous diffusive excitable media, J. Funct. Anal. \\textbf{255} (2008), 2146-2189] for nonautonomous scalar equations, the lower bounds of spreading speeds of unknown functions formulated by a coupled system are estimated. Our results imply that the asymptotic spreading of one species can be significantly fastened by introducing a mutual species, which indicates the role of cooperation described by the coupled nonlinearities.
Gotsman, E
2016-01-01
In this paper, we found within the framework of perturbative QCD, that in deuteron-deuteron scattering the Bose-Einstein correlations due to two parton showers production, induce azimuthal angle correlations, with three correlation lengths: the size of the deuteron ($R_D$), the proton radius ($R_N$), and the size of the BFKL Pomeron which, is closely related to the saturation momentum ($R_c \\sim 1/Q_s$). These correlations are independent of the values of rapidities of the produced gluons (long range rapidity correlations), for large rapidities ($\\bas |y_1 - y_2| \\geq 1$), and have no symmetry with respect to $\\phi \\to \\pi - \\phi$ ($ \\vec{p}_{T1} \\to - \\vec{p}_{T1}$). Therefore, they give rise to $v_n$ for all values of $n$, not only even values. The contributions with the correlation length $R_D$ and $R_N$ crucially depend on the non-perturbative contributions, and to obtain estimates of their values, requiries a lot of modeling, while the correlations with $R_c \\sim 1/Q_s$ have a perturbative QCD origin, an...
Azimuthally differential pion femtoscopy in Pb–Pb collisions at sqrt(sNN) = 2.76 TeV
ALICE, CERN; The ALICE collaboration
2017-01-01
We present the first azimuthally differential measurements of the pion source size relative to the sec- ond harmonic event plane in Pb–Pb collisions at a center-of-mass energy per nucleon-nucleon pair of sqrt(sNN) = 2.76 TeV. The measurements have been performed in the centrality range 0–50% and for pion pair transverse momenta 0.2 < k T < 0.7 GeV/c. We find that the R side and R out radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate out of phase, similar to what was observed at the Relativistic Heavy Ion Col- lider (RHIC). The final-state source eccentricity, estimated via R side oscillations, is found to be sig- nificantly smaller than the initial-state source eccentricity, but remains positive – indicating that even after a stronger expansion in the in-plane direction, the pion source at the freeze-out is still elongated in the out-of-plane direction. The 3+1D hydrodynamic calculations are in qualitative agreeme...
Qorbani, Ehsan; Zigone, Dimitri; Kolinsky, Petr; Fuchs, Florian; Bokelmann, Götz; AlpArray-EASI Working Group
2016-04-01
The eastern part of the Alpine chain is considered as an area of complex tectonics and lithospheric structure. Having a relatively dense network of stations in this region provides an opportunity to study the crustal and lithospheric velocity structure using ambient-noise correlations methods. We used continuous data recorded during 2014 at 50 permanent stations located in Austria, Germany, northern Italy, and Slovenia, along with data from 8 temporary stations of the Eastern Alpine Seismic Investigation (EASI) profile. Cross correlation of ambient noise are performed in order to estimate the Green's functions of surface waves propagating between station pairs. Dispersion curves of Rayleigh and Love waves are constructed between 2 and 30 seconds and are then inverted to obtain group velocity maps at different frequency (depth) levels. We present here a new crustal-lithospheric velocity model for the Southern and Eastern Alps, which reveals clear spatial velocity variation and contrasts, associated with major faults, deformed and damaged zones. In this study, we also assess the azimuthal anisotropy from the group velocity measurements. The new finding together with the previous results from SKS splitting and receiver function provides 3D images of anisotropy at scales ranging from crust to upper mantle. This allows us to discuss the strain field and deformation pattern within both shallow and lithospheric-asthenospheric depth, in relation with the most prominent tectonic processes in the region, such as eastward extrusion of the ALCAPA block (Eastern Alps, Western Carpathian, and Pannonian Basin).
Rumor spreading in gaming social networks
Zhang, Yichao; Guan, Jihong; Zhou, Shuigeng
2011-01-01
So far, the focus on rumor spreading are mainly on some simple backgrounds, in other words, only taking consideration of the overall topological influences on its dynamical behavior. However, in the prospect of the individuality, personal strategies in the social networks play a more non-trivial role in the real social networks. To fill this gap, we will investigate the rumor spreading in gaming social networks. Our analysis is supported by the results of numerical simulations. We observe that the original rumor is still the most well known edition in case that the content is modified by the defectors. However, the portion decays with the stimulus generally. For the case that defectors keep silence in the spreading process, the scale of spreading decays with stimulus generally, suggesting the rumor can hardly spread in a community of defectors. This highlights the key role that stimulus plays in rumor spreading and the necessity to study information spreading in competitive circumstances.
Bank Lending, Housing and Spreads
DEFF Research Database (Denmark)
Aslam, Aqib; Santoro, Emiliano
of private borrowing between collaterally-constrained 'impatient' households and unconstrained 'patient' households, such as those put forward by Kiyotaki and Moore (1997) and Iacoviello (2005), is counteracted by the banking attenuator effect, given an endogenous steady state spread between loan and savings......The framework presented in this paper takes its cue from recent financial events and attempts to develop a tractable framework for policy analysis of macro-linkages, in particular a first attempt at the integration of an independent profit-maximising banking sector that lends to and borrows from...... agents in the economy, and through which changes in the monetary policy rate by the central bank are transmitted. The inter-linkages between housing and the role of the banking sector in the transmission of monetary policy is emphasized. Two competing effects are highlighted: (i) a financial accelerator...
Interpolating point spread function anisotropy
Gentile, M; Meylan, G
2012-01-01
Planned wide-field weak lensing surveys are expected to reduce the statistical errors on the shear field to unprecedented levels. In contrast, systematic errors like those induced by the convolution with the point spread function (PSF) will not benefit from that scaling effect and will require very accurate modeling and correction. While numerous methods have been devised to carry out the PSF correction itself, modeling of the PSF shape and its spatial variations across the instrument field of view has, so far, attracted much less attention. This step is nevertheless crucial because the PSF is only known at star positions while the correction has to be performed at any position on the sky. A reliable interpolation scheme is therefore mandatory and a popular approach has been to use low-order bivariate polynomials. In the present paper, we evaluate four other classical spatial interpolation methods based on splines (B-splines), inverse distance weighting (IDW), radial basis functions (RBF) and ordinary Kriging...
Random Information Spread in Networks
Lapus, Raymond; Tittmann, Peter
2010-01-01
Let G=(V,E) be an undirected loopless graph with possible parallel edges and s and t be two vertices of G. Assume that vertex s is labelled at the initial time step and that every labelled vertex copies its labelling to neighbouring vertices along edges with one labelled endpoint independently with probability p in one time step. In this paper, we establish the equivalence between the expected s-t first arrival time of the above spread process and the notion of the stochastic shortest s-t path. Moreover, we give a short discussion of analytical results on special graphs including the complete graph and s-t series-parallel graphs. Finally, we propose some lower bounds for the expected s-t first arrival time.
Bank Lending, Housing and Spreads
DEFF Research Database (Denmark)
Aslam, Aqib; Santoro, Emiliano
The framework presented in this paper takes its cue from recent financial events and attempts to develop a tractable framework for policy analysis of macro-linkages, in particular a first attempt at the integration of an independent profit-maximising banking sector that lends to and borrows from...... agents in the economy, and through which changes in the monetary policy rate by the central bank are transmitted. The inter-linkages between housing and the role of the banking sector in the transmission of monetary policy is emphasized. Two competing effects are highlighted: (i) a financial accelerator...... channel, due to the presence of collateralized borrowers, and (ii) a banking attenuator effect, which crucially arises from the spread in interest rates caused by the introduction of monopolistically competitive financial intermediaries. We show how the classical amplification mechanism explored in models...
Yin, Pengqi
2016-09-01
Recent measurements of azimuthal anisotropy, v_n, in collision systems such as p,d,3He +Au suggest that a quark gluon plasma (QGP) may be formed in these small systems, which would be an unexpected discovery. However, this QGP lives for a shorter time than in larger A +A systems and it is not clear how the azimuthal anisotropy signals develop. Varying the collision energy in d +Au collisions can help to answer this question. However, non-flow effects are more dominant in small systems and must be accounted for in order to draw conclusions. We will show theoretical calculations of v_2 and v_3 in d +Au using different models at several collision energies, and we will present a method based on reference fitting to estimate the non-flow component in actual measurements so that they might be better compared to the theory. (Based on work published in) Division of Nuclear Physics of the U.S. Department of Energy under Grant No. DE-FG02-00ER41152.
Directory of Open Access Journals (Sweden)
Huaizong Shao
2013-03-01
Full Text Available High-altitude platforms (HAP or near-space vehicle offers several advantages over current low earth orbit (LEO satellite and airplane, because HAP is not constrained by orbital mechanics and fuel consumption. These advantages provide potential for some specific remote sensing applications that require persistent monitoring or fast-revisiting frequency. This paper investigates the azimuth-variant signal processing in HAP-borne bistatic synthetic aperture radar (BiSAR with spaceborne or airborne transmitter for high-resolution remote sensing. The system configuration, azimuth-variant Doppler characteristics and two-dimensional echo spectrum are analyzed. Conceptual system simulation results are also provided. Since the azimuth-variant BiSAR geometry brings a challenge for developing high precision data processing algorithms, we propose an image formation algorithm using equivalent velocity and nonlinear chirp scaling (NCS to address the azimuth-variant signal processing problem. The proposed algorithm is verified by numerical simulation results.
National Oceanic and Atmospheric Administration, Department of Commerce — This georeferenced image represents 5 meter resolution bathymetry (sun illuminated with azimuth 225 and incline 45) of the north shore of St. Croix, US Virgin...
McLeman, James A; Bingham, Robert
2012-01-01
The precise process by which dark filamentary clouds collapse to form stars is a subject of intense debate. In this paper we consider a cylindrical distribution of plasma with both axial and azimuthal magnetic field and examine the resulting gravitational stability. The azimuthal magnetic field is created from an electric current in the plasma and is found to be dictated by Ampere's law. We model this system by using the magnetohydrodynamic (MHD) equation to derive a new virial theorem. We can reduce it to the virial theorem due to Chandrasekhar and Fermi (1953) if we remove the azimuthal magnetic field, as this will represent the case which they have considered. This new virial theorem gives us a fresh insight into the stability of the system. We also derive from this new virial theorem the case where there is only an azimuthal magnetic field. Our generalised stability condition allows for a possible electric current within realistic astronomical values.
Tang, Yu; Qin, Bao; Yan, Yun; Xing, Mengdao
2016-02-20
For the trade-off between the high azimuth resolution and the wide-range swath in the single-input single-output synthetic aperture ladar (SAL) system, the range swath of the SAL system is restricted to a narrow range, this paper proposes a multiple-input multiple-output (MIMO) synthetic aperture ladar system. The MIMO system adopts a low pulse repetition frequency (PRF) to avoid a range ambiguity for the wide-range swath and in azimuth adopts the multi-channel method to achieve azimuth high resolution from the unambiguous azimuth wide-spectrum signal, processed through adaptive digital beam-forming technology. Simulations and analytical results are presented.
1997-03-01
Weather probability Velt - ~ Meocyclone , Maccyclons Tomnadic: Vortex Signaiture, I Tomadic Vortm Signm, Mean Rsdlal Velocity IVelocity Azimuth Display...suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Infection Spreading and Source Identification: A Hide and Seek Game
Luo, Wuqiong; Tay, Wee Peng; Leng, Mei
2016-08-01
The goal of an infection source node (e.g., a rumor or computer virus source) in a network is to spread its infection to as many nodes as possible, while remaining hidden from the network administrator. On the other hand, the network administrator aims to identify the source node based on knowledge of which nodes have been infected. We model the infection spreading and source identification problem as a strategic game, where the infection source and the network administrator are the two players. As the Jordan center estimator is a minimax source estimator that has been shown to be robust in recent works, we assume that the network administrator utilizes a source estimation strategy that can probe any nodes within a given radius of the Jordan center. Given any estimation strategy, we design a best-response infection strategy for the source. Given any infection strategy, we design a best-response estimation strategy for the network administrator. We derive conditions under which a Nash equilibrium of the strategic game exists. Simulations in both synthetic and real-world networks demonstrate that our proposed infection strategy infects more nodes while maintaining the same safety margin between the true source node and the Jordan center source estimator.
Time augmented bond percolation mapping of spreading dynamics on networks
Antulov-Fantulin, Nino; Tolic, Dijana
2016-01-01
In this paper, we propose a mapping of spreading dynamics to weighted networks, where weights represent interaction time delays on edges. With this mapping, we are able to estimate both the process evolution in time and the final outcome of a process. In a limit of process time, we establish the connection of our mapping with the bond percolation and thus we name it time augmented bond percolation mapping. We concentrate on the stochastic formulation of the generalized Susceptible Infected Re...
Flame Spread and Extinction Over a Thick Solid Fuel in Low-Velocity Opposed and Concurrent Flows
Zhu, Feng; Lu, Zhanbin; Wang, Shuangfeng
2016-05-01
Flame spread and extinction phenomena over a thick PMMA in purely opposed and concurrent flows are investigated by conducting systematical experiments in a narrow channel apparatus. The present tests focus on low-velocity flow regime and hence complement experimental data previously reported for high and moderate velocity regimes. In the flow velocity range tested, the opposed flame is found to spread much faster than the concurrent flame at a given flow velocity. The measured spread rates for opposed and concurrent flames can be correlated by corresponding theoretical models of flame spread, indicating that existing models capture the main mechanisms controlling the flame spread. In low-velocity gas flows, however, the experimental results are observed to deviate from theoretical predictions. This may be attributed to the neglect of radiative heat loss in the theoretical models, whereas radiation becomes important for low-intensity flame spread. Flammability limits using oxygen concentration and flow velocity as coordinates are presented for both opposed and concurrent flame spread configurations. It is found that concurrent spread has a wider flammable range than opposed case. Beyond the flammability boundary of opposed spread, there is an additional flammable area for concurrent spread, where the spreading flame is sustainable in concurrent mode only. The lowest oxygen concentration allowing concurrent flame spread in forced flow is estimated to be approximately 14 % O2, substantially below that for opposed spread (18.5 % O2).
Impacts of suppressing guide on information spreading
Xu, Jinghong; Zhang, Lin; Ma, Baojun; Wu, Ye
2016-02-01
It is quite common that guides are introduced to suppress the information spreading in modern society for different purposes. In this paper, an agent-based model is established to quantitatively analyze the impacts of suppressing guides on information spreading. We find that the spreading threshold depends on the attractiveness of the information and the topology of the social network with no suppressing guides at all. Usually, one would expect that the existence of suppressing guides in the spreading procedure may result in less diffusion of information within the overall network. However, we find that sometimes the opposite is true: the manipulating nodes of suppressing guides may lead to more extensive information spreading when there are audiences with the reversal mind. These results can provide valuable theoretical references to public opinion guidance on various information, e.g., rumor or news spreading.
Impacts of suppressing guide on information spreading
Xu, Jinghong; Ma, Baojun; Wu, Ye
2015-01-01
It is quite common that guides are introduced to suppress the information spreading in modern society for different purposes. In this paper, an agent-based model is established to quantitatively analyze the impacts of suppressing guides on information spreading. We find that the spreading threshold depends on the attractiveness of the information and the topology of the social network with no suppressing guides at all. Usually, one would expect that the existence of suppressing guides in the spreading procedure may result in less diffusion of information within the overall network. However, we find that sometimes the opposite is true: the manipulating nodes of suppressing guides may lead to more extensive information spreading when there are audiences with the reversal mind. These results can provide valuable theoretical references to public opinion guidance on various information, e.g., rumor or news spreading.
Information Spreading in Dynamic Graphs
Clementi, Andrea; Trevisan, Luca
2011-01-01
We present a general approach to study the flooding time (a measure of how fast information spreads) in dynamic graphs (graphs whose topology changes with time according to a random process). We consider arbitrary converging Markovian dynamic graph process, that is, processes in which the topology of the graph at time $t$ depends only on its topology at time $t-1$ and which have a unique stationary distribution. The most well studied models of dynamic graphs are all Markovian and converging. Under general conditions, we bound the flooding time in terms of the mixing time of the dynamic graph process. We recover, as special cases of our result, bounds on the flooding time for the \\emph{random trip} model and the \\emph{random path} models; previous analysis techniques provided bounds only in restricted settings for such models. Our result also provides the first bound for the \\emph{random waypoint} model (which is tight for certain ranges of parameters) whose analysis had been an important open question.
Dynamical model for virus spread
Camelo-Neto, G
1995-01-01
The steady state properties of the mean density population of infected cells in a viral spread is simulated by a general forest fire like cellular automaton model with two distinct populations of cells ( permissive and resistant ones) and studied in the framework of the mean field approximation. Stochastic dynamical ingredients are introduced in this model to mimic cells regeneration (with probability {\\it p}) and to consider infection processes by other means than contiguity (with probability {\\it f}). Simulations are carried on a L \\times L square lattice considering the eight first neighbors. The mean density population of infected cells (D_i) is measured as function of the regeneration probability {\\it p}, and analyzed for small values of the ratio {\\it f/p } and for distinct degrees of the cell resistance. The results obtained by a mean field like approach recovers the simulations results. The role of the resistant parameter R (R \\geq 2) on the steady state properties is investigated and discussed in com...
Drops spreading on flexible fibers
Somszor, Katarzyna; Boulogne, François; Sauret, Alban; Dressaire, Emilie; Stone, Howard
2015-11-01
Fibrous media are encountered in many engineered systems such as textile, paper and insulating materials. In most of these materials, fibers are randomly oriented and form a complex network in which drops of wetting liquid tend to accumulate at the nodes of the network. Here we investigate the role of the fiber flexibility on the spreading of a small volume of liquid on a pair of crossed flexible fibers. A drop of silicone oil is dispensed at the point of contact of the fibers and we characterize the liquid morphologies as we vary the volume of liquid, the angle between the fibers, and the length and bending modulus of the fibers. Drop morphologies previously reported for rigid fibers, i.e. a drop, a column and a mixed morphology, are also observed on flexible fibers with modified domains of existence. Moreover, at small inclination angles of the fibers, a new behavior is observed: the fibers bend and collapse. Depending on the volume, the liquid can adopt a column or a mixed morphology on the collapsed fibers. We rationalize our observations with a model based on energetic considerations. Our study suggests that the fiber flexibility adds a rich variety of behaviors that can be crucial for industrial applications.
A general method for identifying node spreading influence via the adjacent matrix and spreading rate
Lin, Jian-Hong; Guo, Qiang
2014-01-01
With great theoretical and practical significance, identifying the node spreading influence of complex network is one of the most promising domains. So far, various topology-based centrality measures have been proposed to identify the node spreading influence in a network. However, the node spreading influence is a result of the interplay between the network topology structure and spreading dynamics. In this paper, we build up the systematic method by combining the network structure and spreading dynamics to identify the node spreading influence. By combining the adjacent matrix $A$ and spreading parameter $\\beta$, we theoretical give the node spreading influence with the eigenvector of the largest eigenvalue. Comparing with the Susceptible-Infected-Recovered (SIR) model epidemic results for four real networks, our method could identify the node spreading influence more accurately than the ones generated by the degree, K-shell and eigenvector centrality. This work may provide a systematic method for identifyi...
Pathak, Naveen; Zhidkov, Alexei; Nakanii, Nobuhiko; Masuda, Shinichi; Hosokai, Tomonao; Kodama, Ryosuke
2016-03-01
Propagation of relativistically intense azimuthally or radially polarized laser pulses (RPP) is demonstrated, via 3D particle-in-cell simulations, to be unstable in uniform underdense plasma. Strong breaking of the pulse symmetry occurs for RPP with power exceeding the critical one for self-focusing in transversely uniform plasma with an increment, Γ, close to the well-known Rayleigh-Taylor-like instability depending on the acceleration, α, and the modulated density gradient length, L, as Γ≈(α/L) 1 /2 . In deeper plasma channels, the instability vanishes. Electron self-injection in the pulse wake and resulting acceleration is explored.
Pathak, Naveen; Nakanii, Nobuhiko; Masuda, Shinichi; Hosokai, Tomonao; Kodama, R
2015-01-01
Propagation of relativistically intense azimuthally or radially polarized laser pulses (RPP) in underdense plasmas is demonstrated to be unstable, via 3D particle-in-cell simulation and disregarding the Kerr non-linearity. Strong pulse filamentation occurs for RPP in transversely uniform plasma with an increment, $\\Gamma$, close to the well-known one depending on acceleration, $\\alpha$, and modulated density gradient length, $L$, as $\\Gamma \\approx (\\alpha/L)^{1/2}$. In deep plasma channels the instability vanishes. Electron self-injection and acceleration by the resulting laser pulse wake is explored.
Tennakoon, S G K; Hegseth, J J; Riecke, H; Tennakoon, Sarath G. K.; Hegseth, John. J.; Riecke, Hermann
1996-01-01
The effect of temporal modulation on traveling waves in the flows in two distinct systems of rotating cylinders, both with broken azimuthal symmetry, has been investigated. It is shown that by modulating the control parameter at twice the critical frequency one can excite phase-locked standing waves and standing-wave-like states which are not allowed when the system is rotationally symmetric. We also show how previous theoretical results can be extended to handle patterns such as these, that are periodic in two spatial direction.
Azimuthal anisotropy and correlations in the hard scattering regime at RHIC
Adler, C; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Caines, H; Calderón de la Barca-Sanchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Deng, W S; Derevshchikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Filimonov, K; Finch, E; Fisyak, Yu; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F J M; Ghazikhanian, V; Grachov, O; Grigoriev, V; Guedon, M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Ivanshin, Yu I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Krämer, M; Kravtsov, P; Krüger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R K; Kuznetsov, A A; Lakehal-Ayat, L; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Leontiev, V M; Le Vine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Lo Curto, G; Long, H; Longacre, R S; López-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnik, Yu M; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moore, C F; Morozov, V; De Moura, M M; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, Grazyna Janina; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Yu A; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevozchikov, V; Peryt, W; Petrov, V; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E V; Prindle, D; Pruneau, C A; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D M; Reid, J G; Renault, G; Retière, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schröder, L S; Schüttauf, A; Schweda, K; Seger, J; Seliverstov, D M; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimansky, S S; Shvetcov, V S; Skoro, G P; Smirnov, N; Snellings, R; Sørensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M N; Stringfellow, B C; Struck, C; Suaide, A A P; Sugarbaker, E R; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thomas, J H; Thompson, M; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; Van der Molen, A M; Vasilevski, I M; Vasilev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevsky, Yu V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zubarev, A N
2003-01-01
Azimuthal anisotropy ($v_2$) and two-particle angular correlations of high $p_T$ charged hadrons have been measured in Au+Au collisions at $\\sqrt{s_{NN}}$=130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high $p_T$ partons. The monotonic rise of $v_2(p_T)$ for $p_T3$ GeV/c a saturation of $v_2$ is observed which persists up to $p_T=6$ GeV/c.
Azimuthal anisotropy and correlations in the hard scattering regime at RHIC.
Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Caines, H; Calderón De La Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Deng, W S; Derevschikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Filimonov, K; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grachov, O; Grigoriev, V; Guedon, M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Ivanshin, Yu I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lakehal-Ayat, L; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moore, C F; Morozov, V; De Moura, M M; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schüttauf, A; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Shvetcov, V S; Skoro, G; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto De Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thomas, J H; Thompson, M; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Buren, G Van; VanderMolen, A M; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zubarev, A N
2003-01-24
Azimuthal anisotropy (v(2)) and two-particle angular correlations of high p(T) charged hadrons have been measured in Au+Au collisions at sqrt[s(NN)]=130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high p(T) partons. The monotonic rise of v(2)(p(T)) for p(T)3 GeV/c, a saturation of v(2) is observed which persists up to p(T)=6 GeV/c.
Flavor-dependent azimuthal modulations in unpolarized SIDIS cross section at HERMES
Giordano, Francesca
2010-01-01
The $\\cos\\phi_h$ and $\\cos2\\phi_h$ azimuthal modulations of the unpolarized hadron Semi-Inclusive Deep Inelastic Scattering cross section are sensitive to the quark intrinsic transverse momentum and transverse spin. These modulations have been measured at HERMES in a fully differential way by means of a 4-dimensional unfolding procedure to correct for instrumental effects. Results have been extracted for hydrogen and deuterium targets and separately for positively and negatively charged pions and kaons, to access flavor-dependent information about the nucleon internal transverse degrees of freedom.
Multiplicity dependence of two-particle azimuthal correlations in pp collisions at the LHC
Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agocs, Andras Gabor; Agostinelli, Andrea; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahmed, Ijaz; Ahn, Sang Un; Ahn, Sul-Ah; Aimo, Ilaria; Ajaz, Muhammad; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Arend, Andreas; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Asryan, Andzhey; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Boccioli, Marco; Bock, Friederike Bock; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bornschein, Joerg; Bossu, Francesco; Botje, Michiel; Botta, Elena; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carlin Filho, Nelson; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Castillo Hernandez, Juan Francisco; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio; Colella, Domenico; Collu, Alberto; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Connors, Megan Elizabeth; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crescio, Elisabetta; Crochet, Philippe; Cruz Alaniz, Emilia; Cruz Albino, Rigoberto; Cuautle, Eleazar; Cunqueiro, Leticia; Czopowicz, Tobiasz Roman; Dainese, Andrea; Dang, Ruina; Danu, Andrea; Das, Indranil; Das, Supriya; Das, Debasish; Das, Kushal; Dash, Sadhana; Dash, Ajay Kumar; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; Delagrange, Hugues; Deloff, Andrzej; De Marco, Nora; Denes, Ervin; De Pasquale, Salvatore; Deppman, Airton; D'Erasmo, Ginevra; de Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Di Bari, Domenico; Dietel, Thomas; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Elia, Domenico; Elwood, Brian Gerard; Emschermann, David Philip; Engel, Heiko; Erazmus, Barbara; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanuel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Gheata, Mihaela; Gheata, Andrei George; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Goerlich, Lidia; Gomez, Ramon; Gonzalez Ferreiro, Elena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Gros, Philippe; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Han, Byounghee; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Harton, Austin; Hatzifotiadou, Despoina; Hayashi, Shinichi; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hippolyte, Boris; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hutter, Dirk; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Pier Giorgio; Innocenti, Gian Michele; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Andrey; Ivanov, Vladimir; Ivanov, Marian; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kaidalov, Alexei; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Ketzer, Bernhard Franz; Khan, Kamal Hussain; Khan, Palash; Khan, Shuaib Ahmad; Khan, Mohisin Mohammed; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Jonghyun; Kim, Jin Sook; Kim, Taesoo; Kim, Mimae; Kim, Minwoo; Kim, Dong Jo; Kim, Se Yong; Kim, Beomkyu; Kim, Do Won; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kliemant, Michael; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kohler, Markus; Kollegger, Thorsten; Kolojvari, Anatoly; Kompaniets, Mikhail; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucera, Vit; Kucheriaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paul; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Vasily; Kushpil, Svetlana; Kvaerno, Henning; Kweon, Min Jung; Kwon, Youngil; Ladron de Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; La Pointe, Sarah Louise; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; La Rocca, Paola; Lea, Ramona; Lechman, Mateusz; Lee, Sung Chul; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon, Hermes; Leoncino, Marco; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Loenne, Per-Ivar; Loggins, Vera; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luzzi, Cinzia; Ma, Rongrong; Ma, Ke; Madagodahettige-Don, Dilan Minthaka; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Mangotra, Lalit Kumar; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel; Mazumder, Rakesh; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nasar, Mahmoud; Nattrass, Christine; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Ochirov, Alexander; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Ostrowski, Piotr Krystian; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozawa, Kyoichiro; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Paul, Biswarup; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piyarathna, Danthasinghe; Planinic, Mirko; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pocheptsov, Timur; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polak, Karel; Polichtchouk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauch, Wolfgang; Rauf, Aamer Wali; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick; Reicher, Martijn; Reidt, Felix; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, Angelo; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rogochaya, Elena; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Santoro, Romualdo; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Selyuzhenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Satish; Sharma, Natasha; Sharma, Rohni; Shigaki, Kenta; Shtejer, Katherin; Sibiriak, Yury; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Song, Myunggeun; Song, Jihye; Soos, Csaba; Soramel, Francesca; Spacek, Michal; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Ter-Minasyan, Astkhik; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Tlusty, David; Toia, Alberica; Torii, Hisayuki; Toscano, Luca; Trubnikov, Victor; Truesdale, David Christopher; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Vande Vyvre, Pierre; Van Hoorne, Jacobus Willem; van Leeuwen, Marco; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Yury; Vinogradov, Leonid; Vinogradov, Alexander; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Volkl, Martin Andreas; Voloshin, Sergey; Voloshin, Kirill; Volpe, Giacomo; von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Vladimir; Wagner, Boris; Wagner, Jan; Wang, Mengliang; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Watanabe, Daisuke; Weber, Michael; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wielanek, Daniel; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Winn; Xiang, Changzhou; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Shiming; Yang, Ping; Yano, Satoshi; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Fan; Zhang, Yonghong; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Hongsheng; Zhu, Xiangrong; Zhu, Jianlin; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym
2013-01-01
We present the measurements of particle pair yields per trigger particle obtained from di-hadron azimuthal correlations in pp collisions at $\\sqrt{s}$=0.9, 2.76, and 7 TeV recorded with the ALICE detector. The yields are studied as a function of the charged particle multiplicity. Taken together with the single particle yields the pair yields provide information about parton fragmentation at low transverse momenta, as well as on the contribution of multiple parton interactions to particle production. Data are compared to calculations using Pythia6, Pythia8, and Phojet event generators.
A novel method for quantitative geosteering using azimuthal gamma-ray logging.
Yuan, Chao; Zhou, Cancan; Zhang, Feng; Hu, Song; Li, Chaoliu
2015-02-01
A novel method for quantitative geosteering by using azimuthal gamma-ray logging is proposed. Real-time up and bottom gamma-ray logs when a logging tool travels through a boundary surface with different relative dip angles are simulated with the Monte Carlo method. Study results show that response points of up and bottom gamma-ray logs when the logging tool moves towards a highly radioactive formation can be used to predict the relative dip angle, and then the distance from the drilling bit to the boundary surface is calculated.
The beam-charge azimuthal asymmetry and deeply virtual Compton scattering
Energy Technology Data Exchange (ETDEWEB)
Airpetian, A. [Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Akopov, N.; Akopov, Z. [Yerevan Physics Institute, Yerevan (AM)] (and others)
2006-05-15
The first observation of an azimuthal cross--section asymmetry with respect to the charge of the incoming lepton beam is reported from a study of hard exclusive electroproduction of real photons. The data have been accumulated by the HERMES experiment at DESY, in which the HERA 27.6 GeV electron or positron beam scattered off an unpolarized hydrogen gas target. The observed asymmetry is attributed to the interference between the Bethe--Heitler process and the Deeply Virtual Compton Scattering (DVCS) process. The interference term is sensitive to DVCS amplitudes, which provide the most direct access to Generalized Parton Distributions. (Orig.)
Measurement of Dijet Azimuthal Decorrelations in pp Collisions at √s = 7 TeV
Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Akesson, Torsten Paul; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Aleppo, Mario; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amoros, Gabriel; Amram, Nir; Anastopoulos, Christos; Andeen, Timothy; Anders, Christoph Falk; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonelli, Stefano; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Asman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Baltasar Dos Santos Pedrosa, Fernando; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Galtieri, Angela Barbaro; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barr, Alan; Barreiro, Fernando; Barreiro Guimaraes da Costa, Joao; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Giovanni; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jurg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Boser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bona, Marcella; Bondarenko, Valery; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Booth, Peter; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boulahouache, Chaouki; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, Andre; Brambilla, Elena; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Brett, Nicolas; Bright-Thomas, Paul; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brubaker, Erik; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Buscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Buis, Ernst-Jan; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, Francois; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byatt, Tom; Cabrera Urban, Susana; Caccia, Massimo; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camard, Arnaud; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Cammin, Jochen; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Garrido, Maria Del Mar Capeans; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carpentieri, Carmen; Montoya, German D.Carrillo; Carter, Antony; Carter, Janet; Carvalho, Joao; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavallari, Alvise; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Cazzato, Antonio; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chen, Hucheng; Chen, Li; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chevallier, Florent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Ciubancan, Mihai; Clark, Allan G.; Clark, Philip; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H.; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Coluccia, Rita; Comune, Gianluca; Conde Muino, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, Maria Jose; Costanzo, Davide; Costin, Tudor; Cote, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crepe-Renaudin, Sabine; Cuenca Almenar, Cristobal; Donszelmann, Tulay Cuhadar; Cuneo, Stefano; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Rocha Gesualdi Mello, Aline; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dahlhoff, Andrea; Dai, Tiesheng; Dallapiccola, Carlo; Dallison, Steve; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dankers, Reinier; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Dauvergne, Jean-Pierre; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Merlin; Davison, Adam; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; De Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; de la Taille, Christophe; De Lotto, Barbara; De Mora, Lee; De Nooij, Lucie; De Oliveira Branco, Miguel; De Pedis, Daniele; de Saintignon, Paul; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; de Vivie De Regie, Jean-Baptiste; Dean, Simon; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Deile, Mario; del Papa, Carlo; del Peso, Jose; del Prete, Tarcisio; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietl, Hans; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Yagci, Kamile Dindar; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djilkibaev, Rashid; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, Andre; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Dogan, Ozgen Berkol; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jurgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Drohan, Janice; Dubbert, Jorg; Dubbs, Tim; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Duhrssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Dzahini, Daniel; Duren, Michael; Ebenstein, William; Ebke, Johannes; Eckert, Simon; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Efthymiopoulos, Ilias; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Ely, Robert; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Facius, Katrine; Fakhrutdinov, Rinat; Falciano, Speranza; Falou, Alain; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fasching, Damon; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Ivan; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernandes, Bruno; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipcic, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Fisher, Steve; Flammer, Joachim; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fohlisch, Florian; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallas, Manuel; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, K.K.; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; Garcia, Carmen; Navarro, Jose Enrique Garcia; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniel Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Helene; Gentile, Simonetta; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghez, Philippe; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gieraltowski, Gerry; Gilbert, Laura; Gilchriese, Murdock; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giusti, Paolo; Gjelsten, Borge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Gopfert, Thomas; Goeringer, Christian; Gossling, Claus; Gottfert, Tobias; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Goncalo, Ricardo; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; Gonzalez de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorisek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gouanere, Michel; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grabski, Varlen; Grafstrom, Per; Grah, Christian; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenfield, Debbie; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregor, Ingrid-Maria; Grenier, Philippe; Griesmayer, Erich; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grognuz, Joel; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Gruwe, Magali; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, Christian Johan; Hansen, John Renner; Hansen, Jorgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heldmann, Michael; Heller, Mathieu; Hellman, Sten; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frederic; Hensel, Carsten; Henss, Tobias; Hernandez Jimenez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Hidvegi, Attila; Higon-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmes, Alan; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Horton, Katherine; Hostachy, Jean-Yves; Hott, Thomas; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Idzik, Marek; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Imbault, Didier; Imhaeuser, Martin; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ionescu, Gelu; Irles Quiles, Adrian; Ishii, Koji; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Isobe, Tadaaki; Issever, Cigdem; Istin, Serhat; Itoh, Yuki; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jarlskog, Goran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jez, Pavel; Jezequel, Stephane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Ju, Xiangyang; Juranek, Vojtech; Jussel, Patrick; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Kazi, Sandor Istvan; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kennedy, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kersevan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Ketterer, Christian; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kilvington, Graham; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kiyamura, Hironori; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith B F G; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Koblitz, Birger; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Koneke, Karsten; Konig, Adriaan; Koenig, Sebastian; Konig, Stefan; Kopke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamaki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasel, Olaf; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Kruger, Hans; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuykendall, William; Kuze, Masahiro; Kuzhir, Polina; Kvasnicka, Ondrej; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramon; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lapin, Vladimir; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Lau, Wing; Laurelli, Paolo; Lavorato, Antonia; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Lazzaro, Alfio; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Leahu, Marius; Lebedev, Alexander; Lebel, Celine; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lellouch, Jeremie; Leltchouk, Mikhail; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Leveque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewandowska, Marta; Lewis, George; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Sterzo, Francesco Lo; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Jiansen; Lu, Liang; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dorthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Bjorn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lupi, Anna; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Macek, Bostjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mattig, Peter; Mattig, Stefan; Magalhaes Martins, Paulo Jorge; Magnoni, Luca; Magradze, Erekle; Magrath, Caroline; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amelia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandic, Igor; Mandrysch, Rocco; Maneira, Jose; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchesotti, Marco; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin Dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Mass, Martin; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Kee, Shawn Patrick Mc; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meinhardt, Jens; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meuser, Stefan; Meyer, Carsten; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W.Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Mijovic, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikulec, Bettina; Mikuz, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A.; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjornmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Monig, Klaus; Moser, Nicolas; Mohapatra, Soumya; Mohn, Bjarte; Mohr, Wolfgang; Mohrdieck-Mock, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Moneta, Lorenzo; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morais, Antonio; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morita, Youhei; Morley, Anthony Keith; Mornacchi, Giuseppe; Morone, Maria-Christina; Morozov, Sergey; Morris, John; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Muller, Thomas; Muenstermann, Daniel; Muijs, Sandra; Muir, Alex; Munwes, Yonathan; Murakami, Koichi; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Nesterov, Stanislav; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nomoto, Hiroshi; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozicka, Miroslav; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohska, Tokio Kenneth; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, Antonio; Onyisi, Peter; Oram, Christopher; Ordonez, Gustavo; Oreglia, Mark; Orellana, Frederik; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Ortega, Eduardo; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Oyarzun, Alejandro; Oye, Ola; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pages, Andres Pacheco; Padilla Aranda, Cristobal; Paganis, Efstathios; Paige, Frank; Pajchel, Katarina; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Paoloni, Alessandro; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pasztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Cavalcanti, Tiago Perez; Perez Codina, Estel; Perez Garcia-Estan, Maria Teresa; Perez Reale, Valeria; Peric, Ivan; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Peshekhonov, Vladimir; Peters, Onne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Pickford, Andrew; Piec, Sebastian Marcin; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, Joao Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Plano, Will; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommes, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Bueso, Xavier Portell; Porter, Robert; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Lawrence; Price, Michael John; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rajek, Silke; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rensch, Bertram; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieke, Stefan; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Rodriguez Garcia, Yohany; Roe, Adam; Roe, Shaun; Rohne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Romero Maltrana, Diego; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rossi, Lucio; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rottlander, Iris; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Gerald; Ruhr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rulikowska-Zarebska, Elzbieta; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, Jose; Salvachua Ferrando, Belen; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Bjorn Hallvard; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandhu, Pawan; Sandoval, Tanya; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, Joao; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Savva, Panagiota; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schafer, Uli; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmidt, Michael; Schmieden, Kristof; Schmitt, Christian; Schmitz, Martin; Schoning, Andre; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, Jose; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Christian; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silva, Jose; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjolin, Jorgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloan, Terrence; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sorbi, Massimo; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spano, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiriti, Eleuterio; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St. Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockmanns, Tobias; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Strohmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Soh, Dart-yin; Su, Dong; Subramania, Siva; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sanchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Tennenbaum-Katan, Yaniv-David; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Tevlin, Christopher; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothee; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tic, Tomas; Tikhomirov, Vladimir; Tikhonov, Yury; Timmermans, Charles; Tipton, Paul; Viegas, Florbela De Jes Tique Aires; Tisserant, Sylvain; Tobias, Jurgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokar, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonazzo, Alessandra; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torro Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Traynor, Daniel; Trefzger, Thomas; Treis, Johannes; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trivedi, Arjun; Trocme, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Typaldos, Dimitrios; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valderanis, Chrysostomos; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Ferrer, Juan Antonio Valls; Van der Graaf, Harry; van der Kraaij, Erik; van der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; Van Eijk, Bob; van Eldik, Niels; Van Gemmeren, Peter; van Kesteren, Zdenko; Van Vulpen, Ivo; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Viret, Sebastien; Virzi, Joseph; Vitale, Antonio; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vovenko, Anatoly; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Anh, Tuan Vu; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Jike; Wang, Jin; Wang, Joshua C.; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yamada, Miho; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zema, Pasquale Federico; Zemla, Andrzej; Zendler, Carolin; Zenin, Anton; Zenin, Oleg; Zenis, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi Della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zilka, Branislav; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Zivkovic, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz
2011-01-01
Azimuthal decorrelations between the two central jets with the largest transverse momenta are sensitive to the dynamics of events with multiple jets. We present a measurement of the normalized diﬀerential cross section based on the full dataset (L dt = 36 pb−1) acquired by the ATLAS detector during the 2010 √s = 7 TeV proton-proton run of the LHC. The measured distributions include jets with transverse momenta up to 1.3 TeV, probing perturbative QCD in a high energy regime.
Xi, Zheng; Adam, A J L; Urbach, H P
2015-01-01
We propose an approach to actively tune the scattering pattern of a Mie-type spherical antenna. The scheme is based on separate control over the induced electric dipole and induced magnetic dipole using two coherent focused beams of radial polarization and azimuthal polarization. By carefully tuning the amplitude and phase relation of the two beams, a broadband unidirectional scattering can be achieved, even at the wavelength where the antenna scatters most efficiently. By moving the focus of one beam, a drastic switch of the unidirectional scattering can be observed. Such scheme enables the design of ultra-compact optical switches and directional couplers based on nanoantennas.
The Beam-Charge Azimuthal Asymmetry and Deeply Virtual Compton Scattering
Airapetian, A; Akopov, Z; Amarian, M; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Balin, D; Beckmann, M; Belostotskii, S; Bianchi, N; Blok, H P; Böttcher, Helmut B; Borisov, A; Borysenko, A; Bouwhuis, M; Brüll, A; Bryzgalov, V; Capiluppi, M; Capitani, G P; Chen, T; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Devitsin, E; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Funel, A; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Gaskell, D; Gavrilov, G; Karibian, V; Grebenyuk, O; Gregor, I M; Hadjidakis, C; Hafidi, K; Hartig, M; Hasch, D; Hesselink, W H A; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Hristova, I; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Kinney, E; Kiselev, A; Kobayashi, T; Kopytin, M; Korotkov, V; Kozlov, V; Krauss, B; Krivokhizhin, V G; Lagamba, L; Lapikas, L; Laziev, A; Lenisa, P; Liebing, P; Linden-Levy, L A; Lorenzon, W; Lü, H; Lü, J; Lu, S; Ma, B Q; Maiheu, B; Makins, N C R; Mao, Y; Marianski, B; Marukyan, H; Masoli, F; Mexner, V; Meyners, N; Michler, T; Miklukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Murray, M; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Negodaev, M; Nowak, Wolf-Dieter; Oganessyan, K; Ohsuga, H; Osborne, A; Pickert, N; Potterveld, D H; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Savin, I; Schäfer, A; Schnell, G; Schüler, K P; Seele, J; Seidl, R; Seitz, B; Shanidze, R; Shearer, C; Shibata, T A; Shutov, V; Sinram, K; Sommer, W; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Tait, P; Tanaka, H; Taroian, S P; Tchuiko, B; Terkulov, A R; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Van Haarlem, Y; Vikhrov, V; Vincter, M G; Vogel, C; Volmer, J; Wang, S; Wendland, J; Ye, Y; Ye, Z; Yen, S; Zihlmann, B
2007-01-01
The first observation of an azimuthal cross--section asymmetry with respect to the charge of the incoming lepton beam is reported from a study of hard exclusive electroproduction of real photons. The data have been accumulated by the HERMES experiment at DESY, in which the HERA 27.6 GeV electron or positron beam scattered off an unpolarized hydrogen gas target. The observed asymmetry is attributed to the interference between the Bethe--Heitler process and the Deeply Virtual Compton Scattering (DVCS) process. The interference term is sensitive to DVCS amplitudes, which provide the most direct access to Generalized Parton Distributions.
The effect of minijet on hadron spectra and azimuthal anisotropy in heavy-ion collisions
Zhu, Lilin
2016-01-01
Here I review the transverse momentum distributions of identified hadrons produced in Au-Au collisions at RHIC and Pb-Pb collisions at LHC in the framework of recombination model. Minijets play an important role in generating shower partons in the intermediate $p_T$ region. At LHC, the resultant soft shower partons are even found to dominate over the thermal partons in the non-strange sector. The azimuthal anisotropy of the produced hadrons could also be explained as the consequence of the effects of minijets. Harmonic analysis of the $\\phi$ dependence leads to $v_n(p_T, b)$ that can be well produced without reference to flow.
Azimuthal asymmetries in high-energy collisions of protons with holographic shockwaves
Noronha, Jorge
2014-01-01
Large azimuthal quadrupole and octupole asymmetries have recently been found in p+Pb collisions at the LHC. We argue that these might arise from a projectile dipole scattering off randomly shaped intrinsic fluctuations in the target with a size on the order of the dipole. Generic energy-momentum fluctuations generate comparable asymmetries for all multipole moments $v_n$. The holographic description of this process involves the calculation of a light-like Wilson loop in the background of a non-uniform holographic shockwave in the presence of a Neveu-Schwarz 2-form.
What Drives the POLONIA Spread in Poland?
Yinqiu Lu
2012-01-01
Since the start of the 2008 - 09 financial crisis, the Polish Overnight Index Average (POLONIA) has persistently been below the policy rate, suggesting a limited influence of the NBPâ€™s open market operations on the short-term interbank rate. In this regard, this paper analyzes the behavior of the POLONIA spread and explore several potential factors that could influence the spread. An empirical analysis confirms that the negative POLONIA spread is related to a few factors, which include the ...
Information spreading and development of cultural centers
Dybiec, Bartlomiej; Sneppen, Kim
2012-01-01
The historical interplay between societies are governed by many factors, including in particular spreading of languages, religion and other symbolic traits. Cultural development, in turn, is coupled to emergence and maintenance of information spreading. Strong centralized cultures exist thanks to attention from their members, which faithfulness in turn relies on supply of information. Here, we discuss a culture evolution model on a planar geometry that takes into account aspects of the feedback between information spreading and its maintenance. Features of model are highlighted by comparing it to cultural spreading in ancient and medieval Europe, where it in particular suggests that long lived centers should be located in geographically remote regions.
Credit Spreads Across the Business Cycle
DEFF Research Database (Denmark)
Nielsen, Mads Stenbo
This paper studies how corporate bond spreads vary with the business cycle. I show that both level and slope of empirical credit spread curves are correlated with the state of the economy, and I link this to variation in idiosyncratic jump risk. I develop a structural credit risk model that accou......This paper studies how corporate bond spreads vary with the business cycle. I show that both level and slope of empirical credit spread curves are correlated with the state of the economy, and I link this to variation in idiosyncratic jump risk. I develop a structural credit risk model...... to firm fundamentals....
Facing Two Rapidly Spreading Internet Worms
IT Department
2009-01-01
The Internet is currently facing a growing number of computer infections due to two rapidly spreading worms. The "Conficker" and "Downadup" worms have infected an estimated 1.1 million PCs in a 24-hour period, bringing the total number of infected computers to 3.5 million [1]. Via a single USB stick, these worms were also responsible for the infection of about 40 laptops at the last EGEE conference in Istanbul. In order to reduce the impact of these worms on CERN Windows computers, the Computer Security Team has suggested several preventive measures described here. Disabling the Windows AutoRun and AutoPlay Features The Computer Security Team and the IT/IS group have decided to disable the "AutoRun" and "AutoPlay" functionality on all centrally-managed Windows computers at CERN. When inserting CDs, DVDs or USB sticks into a PC, "AutoRun" and "AutoPlay" are responsible for automatically playing music or films stored on these media, or ...
On the spreading of impacting drops
Wildeman, Sander; Sun, Chao; Lohse, Detlef
2016-01-01
The energy budget and dissipation mechanisms during droplet impact on solid surfaces are studied numerically and theoretically. We find that for high impact velocities and negligible surface friction, about one half of the initial kinetic energy is transformed into surface energy, independent of the impact parameters and the detailed energy loss mechanism(s). We argue that this seemingly universal rule is related to the deformation mode of the droplet and is reminiscent of pipe flow undergoing a sudden expansion, for which the head loss can be calculated by multiplying the kinetic energy of the incoming flow by a geometrical factor. For impacts on a no-slip surface also dissipation in the shear boundary layer at the solid surface is important. In this case the head loss acts as a lower bound on the total dissipation for small viscosities. This new view on the impact problem allows for simple analytical estimates of the maximum spreading diameter of impacting drops as a function of the impact parameters and th...
Direction of arrival estimation of coherent sources based on arbitrary plane arrays
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
A method of direction of arrival (DOA) estimation of coherent sources is proposed, which is based on arbitrary plane arrays. After constructing the mathematical model of coherent sources, virtual array transformation and MUSIC algorithm are used to realize the azimuth estimation of coherent sources, which improved the DOA estimation performance greatly. According to the computer simulation, its validity is confirmed.
Fire spread simulation of a full scale cable tunnel
Energy Technology Data Exchange (ETDEWEB)
Huhtanen, R. [VTT Energy, Espoo (Finland)
1999-11-01
A fire simulation of a full scale tunnel was performed by using the commercial code EFFLUENT as the simulation platform. Estimation was made for fire spread on the stacked cable trays, possibility of fire spread to the cable trays on the opposite wall of the tunnel, detection time of smoke detectors in the smouldering phase and response of sprinkler heads in the flaming phase. According to the simulation, the rise of temperature in the smouldering phase is minimal, only of the order 1 deg C. The estimates of optical density of smoke show that normal smoke detectors should give an alarm within 2-4 minutes from the beginning of the smouldering phase, depending on the distance to the detector (in this case it was assumed that the thermal source connected to the smoke source was 50 W). The flow conditions at smoke detectors may be challenging, because the velocity magnitude is rather low at this phase. At 4 minutes the maximum velocity at the detectors is 0.12 m/s. During the flaming phase (beginning from 11 minutes) fire spreads on the stacked cable trays in an expected way, although the ignition criterion seems to perform poorly when ignition of new objects is considered. The Upper cable trays are forced to ignite by boundary condition definitions according to the experience found from ti full scale experiment and an earlier simulation. After 30 minutes the hot layer in the room becomes so hot that it speeds up the fire spread and the rate of heat release of burning objects. Further, the hot layer ignites the cable trays on the opposite wall of the tunnel after 45 minutes. It is estimated that the sprinkler heads would be activated at 20-22 minutes near the fire source and at 24-28 minutes little further from the fire source when fast sprinkler heads are used. The slow heads are activated between 26-32 minutes. (orig.)
Term structure of sovereign spreads: a contingent claim model
Directory of Open Access Journals (Sweden)
Katia Rocha
2007-12-01
Full Text Available This paper proposes a simple structural model to estimate the termstructure and the implied default probability of a selected group of emerging countries, which account for 54% of the JPMorgan EMBIG index on average for the period 2000-2005. The real exchange rate dynamic, modeled as a pure diffusion process, is assumed to trigger default. The calibrated model generates sovereign spread curves consistent to market data. The results suggest that the market is systematically overpricing spreads for Brazil in 100 basis points, whereas for Mexico, Russia and Turkey the model is able to reproduce the market behavior.Este trabalho propõe um modelo estrutural para estimar a estrutura a termo e a probabilidade implícita de default de países emergentes que representam, em média, 54% do índice EMBIG do JPMorgan no período de 2000-2005. A taxa de câmbio real, modelada como um processo de difusão simples, é considerada como indicativa de default. O modelo calibrado gera a estrutura a termo dos spreads consistente com dados de mercado, indicando que o mercado sistematicamente sobre-estima os spreads para o Brasil em 100 pontos base na média, enquanto para México, Rússia e Turquia reproduz o comportamento do mercado.
Directory of Open Access Journals (Sweden)
Blanco Muñoz, Miguel A.
2004-03-01
Full Text Available Chemical hydrogenation of unsaturated fatty acids is a commonly applied reaction to food industries. The process may imply the movement of double bonds in their positions on the fatty acid carbon chain, producing positional and geometrical isomers ( trans fatty acids. Through hydrogenation, unsaturated oils are converted to margarines and vegetable shortenings. The presence of trans fatty acids in foods is undesirable, as trans fatty acids raise the plasma levels of total and low-density lipoproteins (LDL, while decrease the plasma level of high-density lipoproteins (HDL, among other effects. The use of olive oil to prepare fat spread opens new insights into the commercial development of healthy novel foods with a positive image in terms of consumer appeal.La hidrogenación química de los ácidos grasos insaturados es una reacción que se utiliza con frecuencia en la industria alimentaria. El proceso implica el movimiento de los dobles enlaces en la cadena hidrocarbonada de los ácidos grasos, y la aparición de isómeros posicionales y geométricos (ácidos grasos trans . La ingesta inadecuada de alimentos que pueden contener cantidades significativas de ácidos grasos trans se asocia con el aumento en sangre de colesterol total y LDL, y la disminución de HDL, entre otros efectos. Por lo tanto, el uso de aceite de oliva en la preparación de grasas para untar constituye un importante avance en el desarrollo comercial de nuevos alimentos saludables con una imagen positiva para el consumidor.
The Speed of Invasion: Rates of Spread for Thirteen Exotic Forest Insects and Diseases
Directory of Open Access Journals (Sweden)
Alexander M. Evans
2016-05-01
Full Text Available Invasive, exotic insects and diseases have a devastating effect on North American forests. The rate of spread, or range expansion, is one of the main determinants of an invasive organism’s impact, and can play a major role in structuring management response options. To better understand how exotic organisms have spread through our forests, this study employs a consistent, rigorous analytical framework to analyze a comprehensive geospatial database for the spread of seven exotic insects and six diseases. This study includes new data for six insects and two diseases in combination with five invasive species previously analyzed using the same technique. The quantile regression analysis of over 3000 records of infestation over the preceding century show that the rate of spread of invasive forest insects and diseases ranges from 4.2 km·year−1 to 57.0 km·year−1. The slowest disease spread was white pine blister rust (Cronartium ribicola at 7.4 km·year−1 while the most rapid disease spread was chestnut blight (Cryphonectria parasitica at 31.3 km·year−1. The slowest insect spread was balsam woolly adelgid (Adelges piceae (4.2 km·year−1 while the fastest was emerald ash borer (Agrilus planipennis at 57.0 km·year−1. Species that can fly long distances or are vectored by flying insects have spread faster than those that are passively dispersed. This analysis highlights the difficulty of estimating spread rates from studies of individual dispersal or flight distances, but the estimated spread rates in this study are generally in line with previous estimates.
Fast 2D DOA Estimation Algorithm by an Array Manifold Matching Method with Parallel Linear Arrays.
Yang, Lisheng; Liu, Sheng; Li, Dong; Jiang, Qingping; Cao, Hailin
2016-02-23
In this paper, the problem of two-dimensional (2D) direction-of-arrival (DOA) estimation with parallel linear arrays is addressed. Two array manifold matching (AMM) approaches, in this work, are developed for the incoherent and coherent signals, respectively. The proposed AMM methods estimate the azimuth angle only with the assumption that the elevation angles are known or estimated. The proposed methods are time efficient since they do not require eigenvalue decomposition (EVD) or peak searching. In addition, the complexity analysis shows the proposed AMM approaches have lower computational complexity than many current state-of-the-art algorithms. The estimated azimuth angles produced by the AMM approaches are automatically paired with the elevation angles. More importantly, for estimating the azimuth angles of coherent signals, the aperture loss issue is avoided since a decorrelation procedure is not required for the proposed AMM method. Numerical studies demonstrate the effectiveness of the proposed approaches.
Bauerheim, M.; Nicoud, F.; Poinsot, T.
2016-02-01
Longitudinal low-frequency thermoacoustic unstable modes in combustion chambers have been intensively studied experimentally, numerically, and theoretically, leading to significant progress in both understanding and controlling these acoustic modes. However, modern annular gas turbines may also exhibit azimuthal modes, which are much less studied and feature specific mode structures and dynamic behaviors, leading to more complex situations. Moreover, dealing with 10-20 burners mounted in the same chamber limits the use of high fidelity simulations or annular experiments to investigate these modes because of their complexity and costs. Consequently, for such circumferential acoustic modes, theoretical tools have been developed to uncover underlying phenomena controlling their stability, nature, and dynamics. This review presents recent progress in this field. First, Galerkin and network models are described with their pros and cons in both the temporal and frequency framework. Then, key features of such acoustic modes are unveiled, focusing on their specificities such as symmetry breaking, non-linear modal coupling, forcing by turbulence. Finally, recent works on uncertainty quantifications, guided by theoretical studies and applied to annular combustors, are presented. The objective is to provide a global view of theoretical research on azimuthal modes to highlight their complexities and potential.
Non-Abelian Bremsstrahlung and Azimuthal Asymmetries in High Energy p+A Reactions
Gyulassy, M; Vitev, I; Biro, T
2014-01-01
We apply the GLV reaction operator solution to the Vitev-Gunion-Bertsch (VGB) boundary conditions to compute the all-order in nuclear opacity non-abelian gluon bremsstrahlung of event-by-event fluctuating beam jets in nuclear collisions. We evaluate analytically azimuthal Fourier moments of single gluon, $v_n^M\\{1\\}$, and even number $2\\ell$ gluon, $v_n^M\\{2\\ell\\}$ inclusive distributions in high energy p+A reactions as a function of harmonic $n$, %independent target recoil cluster number, $M$, and gluon number, $2\\ell$, at RHIC and LHC. Multiple resolved clusters of recoiling target beam jets together with the projectile beam jet form Color Scintillation Antenna (CSA) arrays that lead to characteristic boost non-invariant trapezoidal rapidity distributions in asymmetric $B+A$ nuclear collisions. The scaling of intrinsically azimuthally anisotropic and long range in $\\eta$ nature of the non-abelian \\br leads to $v_n$ moments that are similar to results from hydrodynamic models, but due entirely to non-abelian...
Directory of Open Access Journals (Sweden)
D. Y. Klimushkin
Full Text Available The structure of monochromatic MHD-waves with large azimuthal wave number m≫1 in a two-dimensional model of the magnetosphere has been investigated. A joint action of the field line curvature, finite plasma pressure, and transversal equilibrium current leads to the phenomenon that waves, standing along the field lines, are travelling across the magnetic shells. The wave propagation region, the transparency region, is bounded by the poloidal magnetic surface on one side and by the resonance surface on the other. In their meaning these surfaces correspond to the usual and singular turning points in the WKB-approximation, respectively. The wave is excited near the poloidal surface and propagates toward the resonance surface where it is totally absorbed due to the ionospheric dissipation. There are two transparency regions in a finite-beta magnetosphere, one of them corresponds to the Alfvén mode and the other to the slow magnetosound mode.
Key words. Magnetosphere · Azimuthally small-scale waves · MHD waves
Two- and Multi-particle Azimuthal Correlations in Small Collision Systems with the ATLAS Detector
Trzupek, Adam; The ATLAS collaboration
2017-01-01
The recent ATLAS results on two- and multi-particle azimuthal correlations of charged particles are presented for $\\sqrt{s}$=~5.02 TeV and 13 TeV $pp$, $\\sqrt{s_\\mathrm{NN}}$= 5.02 TeV $p$+Pb and $\\sqrt{s_\\mathrm{NN}}$= 2.76 TeV low-multiplicity Pb+Pb collisions. To remove the "non-flow" contribution from the correlations, that arises predominantly from hard-scattering processes, a template fitting procedure is used in the two-particle correlations (2PC) measurements, while for multi-particle correlations the cumulant method is applied. The correlations are expressed in the form of Fourier harmonics $\\mathrm{v}_n (n=2,3,4)$ measuring the global azimuthal anisotropy. The measurements presented hereafter confirm the evidence for collective phenomena in $p$+Pb and low-multiplicity Pb+Pb collisions. For $pp$ collisions the results on four-particle cumulants do not demonstrate a similar collective behaviour.
Azimuthal anisotropy of Rayleigh waves beneath the Tibetan Plateau and adjacent areas
Institute of Scientific and Technical Information of China (English)
2008-01-01
The crustal and upper mantle azimuthal anisotropy of the Tibetan Plateau and adjacent areas was studied by Rayleigh wave tomography. We collected sufficient broadband digital seismograms trav-ersing the Tibetan Plateau and adjacent areas from available stations, including especially some data from the temporary stations newly deployed in Yunnan, eastern Tibet, and western Sichuan. They made an adequate path coverage in most regions to achieve a reasonable resolution for the inversion. The model resolution tests show that the anisotropic features of scope greater than 400 km and strength greater than 2% are reliable. The azimuthal anisotropy pattern inside the Tibetan Plateau was similar to the characteristic of tectonic partition. The crustal anisotropy strength is greater than 2% in most re-gions of East Tibet, and the anisotropy shows clockwise rotation surrounding the eastern Himalayan syntaxis. Vertically, the anisotropy direction indicates a coherent pattern within the upper crust, lower crust, and lithosphere mantle of the Tibetan Plateau, which also is consistent with GPS velocity field and SKS fast polarization directions. The result supports that the crust-mantle deformation beneath the Tibetan Plateau is vertically coherent. The anisotropy strength of crust and lithospheric upper mantle in Yunnan outside the Tibetan Plateau is lower than 2%, so SKS splitting from core-mantle boundary to station should largely be attributed to the anisotropy of asthenosphere.
Azimuthal anisotropy of Rayleigh waves beneath the Tibetan Plateau and adjacent areas
Institute of Scientific and Technical Information of China (English)
SU Wei; WANG ChunYong; HUANG ZhongXian
2008-01-01
The crustal and upper mantle azimuthal anisotropy of the Tibetan Plateau and adjacent areas was studied by Rayleigh wave tomography. We collected sufficient broadband digital seismograms traversing the Tibetan Plateau and adjacent areas from available stations, including especially some data from the temporary stations newly deployed in Yunnan, eastern Tibet, and western Sichuan. They made an adequate path coverage in most regions to achieve a reasonable resolution for the inversion. The model resolution tests show that the anisotropic features of scope greater than 400 km and strength greater than 2% are reliable. The azimuthal anisotropy pattern inside the Tibetan Plateau was similar to the characteristic of tectonic partition. The crustal anisotropy strength is greater than 2% in most regions of East Tibet, and the anisotropy shows clockwise rotation surrounding the eastern Himalayan syntaxis. Vertically, the anisotropy direction indicates a coherent pattern within the upper crust, lower crust, and lithosphere mantle of the Tibetan Plateau, which also is consistent with GPS velocity field and SKS fast polarization directions. The result supports that the crust-mantle deformation beneath the Tibetan Plateau is vertically coherent. The anisotropy strength of crust and lithospheric upper mantle in Yunnan outside the Tibetan Plateau is lower than 2%, so SKS splitting from core-mantle boundary to station should largely be attributed to the anisotropy of asthenosphere.
Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au +Au Collisions at RHIC
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, X.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, X.; Li, Y.; Li, W.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, R.; Ma, G. L.; Ma, Y. G.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Z.; Sun, X. M.; Sun, Y.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, G.; Wang, J. S.; Wang, H.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Xu, H.; Xu, Z.; Xu, J.; Yang, S.; Yang, Y.; Yang, Y.; Yang, C.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Y.; Zhang, J.; Zhang, J.; Zhang, S.; Zhang, S.; Zhang, Z.; Zhang, J. B.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration
2016-03-01
We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au +Au collisions for energies ranging from √{sN N }=7.7 to 200 GeV. The third harmonic v32{2 }=⟨cos 3 (ϕ1-ϕ2)⟩ , where ϕ1-ϕ2 is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs Δ η =η1-η2 . Nonzero v32{2 } is directly related to the previously observed large-Δ η narrow-Δ ϕ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity quark gluon plasma phase. For sufficiently central collisions, v32{2 } persist down to an energy of 7.7 GeV, suggesting that quark gluon plasma may be created even in these low energy collisions. In peripheral collisions at these low energies, however, v32{2 } is consistent with zero. When scaled by the pseudorapidity density of charged-particle multiplicity per participating nucleon pair, v32{2 } for central collisions shows a minimum near √{sN N }=20 GeV .
Direct laser acceleration of electrons in a strong azimuthal magnetic field
Wang, Tao; Toncian, Toma; Stark, David; Arefiev, Alexey
2016-10-01
Recently published particle-in-cell simulations indicate that a high-intensity laser irradiating an over-critical plasma can induce relativistic transparency and drive a Megatesla magnetic field while propagating into the plasma. At the same time, the quasi-static electric field in this regime is an order of magnitude weaker than the quasi-static magnetic field as a result of ion mobility and the fact that electrons are irradiated by a high intensity laser pulse. We have examined analytically and numerically direct laser acceleration of electrons in such an azimuthal magnetic field. We have considered a general case of a laser beam propagating with a superluminal phase velocity and compared the results to those for a luminal case. Our key finding is that the maximum gamma-factor that can be attained by electrons has a pronounced threshold, with a significant enhancement of the electron energy taking place above the threshold. The threshold is a function of the azimuthal magnetic field and of the initial transverse electron momentum. This work was supported by the National Science Foundation under Grant No. 1632777.
First measurement of transverse-spin-dependent azimuthal asymmetries in the Drell-Yan process
Aghasyan, M.; The COMPASS collaboration; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anfimov, N.V.; Anosov, V.; Antoshkin, A.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badełek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bodlak, M.; Bordalo, P.; Bradamante, F.; Bressan, A.; Büchele, M.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S.-U.; Cicuttin, A.; Crespo, M.L.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Dreisbach, Ch.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Faessler, M.; Ferrero, A.; Finger, M.; jr.,M.Finger; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giarra, J.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Hahne, D.; Hamar, G.; von Harrach, D.; Heinsius, F.H.; Heitz, R.; Herrmann, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Kerbizi, A.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.M.; Kral, Z.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Kveton, A.; Lednev, A.A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.V.; Meyer, M.; Meyer, W.; Mikhailov, Yu.V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D.V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Rogacheva, N.S.; Roskot, M.; Ryabchikov, D.I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Srnka, A.; Steffen, D.; Stolarski, M.; Subrt, O.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thiel, A.; Tomsa, J.; Tosello, F.; Tskhay, V.; Uhl, S.; Vauth, A.; Veloso, J.; Virius, M.; Vondra, J.; Wallner, S.; Weisrock, T.; Wilfert, M.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.
2017-01-01
The first measurement of transverse-spin-dependent azimuthal asymmetries in the pion-induced Drell-Yan (DY) process is reported. We use the CERN SPS 190 GeV/$c$, $\\pi^{-}$ beam and a transversely polarized ammonia target. Three azimuthal asymmetries giving access to different transverse-momentum-dependent (TMD) parton distribution functions (PDFs) are extracted using dimuon events with invariant mass between 4.3 GeV/$c^2$ and 8.5 GeV/$c^2$. The observed sign of the Sivers asymmetry is found to be consistent with the fundamental prediction of Quantum Chromodynamics (QCD) that the Sivers TMD PDFs extracted from DY have a sign opposite to the one extracted from semi-inclusive deep-inelastic scattering (SIDIS) data. We present two other asymmetries originating from the pion Boer-Mulders TMD PDFs convoluted with either the nucleon transversity or pretzelosity TMD PDFs. These DY results are obtained at a hard scale comparable to that of a recent COMPASS SIDIS measurement and hence allow unique tests of fundamental ...
Measurement of dijet azimuthal decorrelation in pp collisions at $\\sqrt{s}$ = 8 TeV
Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Perniè, Luca; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; Ceard, Ludivine; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Perrini, Lucia; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hamer, Matthias; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Leggat, Duncan; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; El-khateeb, Esraa; Elkafrawy, Tamer; Mohamed, Amr; Salama, Elsayed; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Peltola, Timo; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Filipovic, Nicolas; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Bagaturia, Iuri; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schulte, Jan-Frederik; Verlage, Tobias; Weber, Hendrik; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behnke, Olaf; Behrens, Ulf; Borras, Kerstin; Burgmeier, Armin; Campbell, Alan; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Seitz, Claudia; Spannagel, Simon; Stefaniuk, Nazar; Trippkewitz, Karim Damun; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Gonzalez, Daniel; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Nowatschin, Dominik; Ott, Jochen; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Rathjens, Denis; Sander, Christian; Scharf, Christian; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Fink, Simon; Frensch, Felix; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hazi, Andras; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutta, Suchandra; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Jain, Sandhya; Kole, Gouranga; Kumar, Sanjeev; Mahakud, Bibhuprasad; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sarkar, Tanmay; Sur, Nairit; Sutar, Bajrang; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Kapoor, Anshul; Kothekar, Kunal; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Passaseo, Marina; Pazzini, Jacopo; Pegoraro, Matteo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zanetti, Marco; Zotto, Pierluigi; Zucchetta, Alberto; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Zanetti, Anna; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Sakharov, Alexandre; Son, Dong-Chul; Brochero Cifuentes, Javier Andres; Kim, Hyunsoo; Kim, Tae Jeong; Song, Sanghyeon; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Hong, Byung-Sik; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Chadeeva, Marina; Chistov, Ruslan; Danilov, Mikhail; Rusinov, Vladimir; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Palencia Cortezon, Enrique; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; De Castro Manzano, Pablo; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Berruti, Gaia Maria; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Castello, Roberto; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Kortelainen, Matti J; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Nemallapudi, Mythra Varun; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Piparo, Danilo; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lecomte, Pierre; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Takahashi, Maiko; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Gecit, Fehime Hayal; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozcan, Merve; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Zorbilmez, Caglar; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Vardarlı, Fuat Ilkehan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Futyan, David; Hall, Geoffrey; Iles, Gregory; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Alimena, Juliette; Berry, Edmund; Cutts, David; Ferapontov, Alexey; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Jesus, Orduna; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Paneva, Mirena Ivova; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Derdzinski, Mark; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Incandela, Joe; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; Suarez, Indara; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Nauenberg, Uriel; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Sun, Werner; Tan, Shao Min; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Wittich, Peter; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Gleyzer, Sergei V; Konigsberg, Jacobo; Korytov, Andrey; Kotov, Khristian; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Rank, Douglas; Rossin, Roberto; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bein, Samuel; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Weinberg, Marc; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Kalakhety, Himali; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Turner, Paul; Varelas, Nikos; Wu, Zhenbin; Zakaria, Mohammed; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Osherson, Marc; Roskes, Jeffrey; Cocoros, Alice; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Benvenuti, Alberto; Dahmes, Bryan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bartek, Rachel; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Knowlton, Dan; Kravchenko, Ilya; Meier, Frank; Monroy, Jose; Ratnikov, Fedor; Siado, Joaquin Emilo; Snow, Gregory R; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Bhattacharya, Saptaparna; Hahn, Kristan Allan; Kubik, Andrew; Low, Jia Fu; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Tully, Christopher; Zuranski, Andrzej; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Jung, Kurt; Kumar, Ajay; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Petrillo, Gianluca; Tan, Ping; Verzetti, Mauro; Chou, John Paul; Contreras-Campana, Emmanuel; Ferencek, Dinko; Gershtein, Yuri; Halkiadakis, Eva; Heindl, Maximilian; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Lath, Amitabh; Nash, Kevin; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Krutelyov, Vyacheslav; Mueller, Ryan; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Wood, John; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Sarangi, Tapas; Savin, Alexander; Sharma, Archana; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Verwilligen, Piet; Woods, Nathaniel
2016-01-01
A measurement of the decorrelation of azimuthal angles between the two jets with the largest transverse momenta is presented for seven regions of leading jet transverse momentum up to 2.2 TeV. The analysis is based on the proton-proton collision data collected with the CMS experiment at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb$^{-1}$. The dijet azimuthal decorrelation is caused by the radiation of additional jets and probes the dynamics of multijet production. The results are compared to fixed-order predictions of perturbative quantum chromodynamics (QCD), and to simulations using Monte Carlo event generators that include parton showers, hadronization, and multiparton interactions. Event generators with only two outgoing high transverse momentum partons fail to describe the measurement, even when supplemented with next-to-leading-order QCD corrections and parton showers. Much better agreement is achieved when at least three outgoing partons are complemented through...
Measurement of dijet azimuthal decorrelation in pp collisions at √{s}=8 TeV
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Zeid, S. Abu; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-conde, A.; Seva, T.; Velde, C. Vander; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Rios, A. A. Ocampo; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Teles, P. Rebello; Chagas, E. Belchior Batista Das; Carvalho, W.; Chinellato, J.; Custódio, A.; Costa, E. M. Da; Damiao, D. De Jesus; Martins, C. De Oliveira; De Souza, S. Fonseca; Guativa, L. M. Huertas; Malbouisson, H.; Figueiredo, D. Matos; Herrera, C. Mora; Mundim, L.; Nogima, H.; Silva, W. L. Prado Da; Santoro, A.; Sznajder, A.; Manganote, E. J. Tonelli; Pereira, A. Vilela; Ahuja, S.; Bernardes, C. A.; Santos, A. De Souza; Dogra, S.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Abad, D. Romero; Vargas, J. C. Ruiz; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Leggat, D.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Sierra, L. F. Chaparro; Florez, C.; Gomez, J. P.; Moreno, B. Gomez; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Cipriano, P. M. Ribeiro; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El-khateeb, E.; Elkafrawy, T.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Filipovic, N.; de Cassagnac, R. Granier; Jo, M.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Bihan, A.-C. Le; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; Mamouni, H. El; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Toriashvili, T.; Bagaturia, I.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Martin, M. Aldaya; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Borras, K.; Burgmeier, A.; Campbell, A.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Scharf, C.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Jain, Sa.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Vetere, M. Lo; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Solestizi, L. Alunni; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Licata, C. La; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Cifuentes, J. A. Brochero; Kim, H.; Kim, T. J.; Song, S.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Linares, E. Casimiro; Castilla-Valdez, H.; Cruz-Burelo, E. De La; Cruz, I. Heredia-De La; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Moreno, S. Carrillo; Valencia, F. Vazquez; Pedraza, I.; Ibarguen, H. A. Salazar; Pineda, A. Morelos; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Silva, C. Beirão Da Cruz; Di Francesco, A.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Hollar, J.; Leonardo, N.; Iglesias, L. Lloret; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Chadeeva, M.; Chistov, R.; Danilov, M.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Llatas, M. Chamizo; Colino, N.; Cruz, B. De La; Delgado Peris, A.; Del Valle, A. Escalante; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; De Martino, E. Navarro; Yzquierdo, A. Pérez-Calero; Pelayo, J. Puerta; Olmeda, A. Quintario; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; De Saa, J. R. Castiñeiras; Manzano, P. De Castro; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Virto, A. Lopez; Marco, J.; Marco, R.; Rivero, C. Martinez; Matorras, F.; Gomez, J. Piedra; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Cortabitarte, R. Vilar; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Arbol, P. Martinez Ruiz del; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Moya, M. Miñano; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Gecit, F. H.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozcan, M.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Nasr-storey, S. Seif El; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Hall, G.; Iles, G.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; De La Barca Sanchez, M. Calderon; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Della Porta, G. Zevi; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; De Sá, R. Lopes; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P.; Majumder, D.; Malek, M.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; De Lima, R. Teixeira; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Kumar, A.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Petrillo, G.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Ferencek, D.; Gershtein, Y.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Woods, N.; CMS Collaboration
2016-10-01
A measurement of the decorrelation of azimuthal angles between the two jets with the largest transverse momenta is presented for seven regions of leading jet transverse momentum up to 2.2 TeV. The analysis is based on the proton-proton collision data collected with the CMS experiment at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 {fb}^{-1}. The dijet azimuthal decorrelation is caused by the radiation of additional jets and probes the dynamics of multijet production. The results are compared to fixed-order predictions of perturbative quantum chromodynamics (QCD), and to simulations using Monte Carlo event generators that include parton showers, hadronization, and multiparton interactions. Event generators with only two outgoing high transverse momentum partons fail to describe the measurement, even when supplemented with next-to-leading-order QCD corrections and parton showers. Much better agreement is achieved when at least three outgoing partons are complemented through either next-to-leading-order predictions or parton showers. This observation emphasizes the need to improve predictions for multijet production.
Energy Technology Data Exchange (ETDEWEB)
Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Akopov, N. [Yerevan Physical Institute, Yerevan (Armenia); Akopov, Z. [DESY Hamburg (DE)] (and others)
2010-08-15
Azimuthal asymmetries in exclusive electroproduction of a real photon from a longitudinally polarized deuterium target are measured with respect to target polarization alone and with respect to target polarization combined with beam helicity and/or beam charge. The asymmetries appear in the distribution of the real photons in the azimuthal angle {phi} around the virtual photon direction, relative to the lepton scattering plane. The asymmetries arise from the deeply virtual Compton scattering process and its interference with the Bethe-Heitler process. The results for the beam-charge and beam-helicity asymmetries from a tensor polarized deuterium target with vanishing vector polarization are shown to be compatible with those from an unpolarized deuterium target, which is expected for incoherent scattering dominant at larger momentum transfer. Furthermore, the results for the single target-spin asymmetry and for the double-spin asymmetry are found to be compatible with the corresponding asymmetries previously measured on a hydrogen target. For coherent scattering on the deuteron at small momentum transfer to the target, these findings imply that the tensor contribution to the cross section is small. Furthermore, the tensor asymmetry is found to be compatible with zero. (orig.)
Overview of ALICE results on azimuthal correlations using neutral- and heavy-meson triggers
Pochybova, Sona
2015-01-01
The ALICE detector is dedicated to studying the properties of hot and dense matter created in heavy-ion collisions. Among the probes used to investigate these properties are high-momentum particles, which originate in hard-scatterings occurring before the fireball creation. The fragments of hard scatterings interact with the hot and dense matter and via this interaction their spectra and azimuthal distributions are modified. This is probed by the measurement of the nuclear modification factor, where the $p_{\\mathrm{T}}$ spectra obtained in Pb-Pb collisions are compared to a pp baseline. A strong suppression of charged hadrons as well as neutral- and heavy-flavor mesons was observed at $p_{\\mathrm{T}} > 4$ GeV/$c$. Azimuthal correlations, using high-momentum ($p_{\\mathrm{T}} > 4$ GeV/$c$) hadrons as triggers, can provide further insight into how the presence of the medium modifies the final kinematic distributions of the particles. Comparison with theoretical models can be used to test their predictions about ...
The Azimuthal Dependence of Outflows and Accretion Detected Using OVI Absorption
Kacprzak, Glenn G; Churchill, Christopher W; Nielsen, Nikole M; Charlton, Jane C
2015-01-01
We report a bimodality in the azimuthal angle ($\\Phi$) distribution of gas around galaxies traced by OVI absorption. We present the mean $\\Phi$ probability distribution function of 29 HST-imaged OVI absorbing (EW>0.1A) and 24~non-absorbing (EW<0.1A) isolated galaxies (0.08
H∞ controller design for a 4-meter direct-drive azimuth axis
Chen, Li-Yan; Zhang, Zhen-Chao; Song, Xiao-Li; Wang, Da-Xing
2015-11-01
To pursue a higher imaging resolution for exploring more details in the information conveyed by the Universe, the next generation of optical telescopes based on a direct drive widely employ the extremely large aperture structure, which also introduces more disturbances and uncertain factors to the control system. Facing this new challenge, the PID control method in main-axis control systems of traditional astronomical telescopes cannot suffice for the requirement of the tracking precision and disturbance sensitivity in angular velocity. To overcome this shortcoming, we establish a dynamic model and propose an H∞ controller for a 4-meter azimuth direct drive control system that consists of a revolving platform (azimuth axis), a three-phase torque motor, a motor drive, an encoder, a data acquisition card and a small computers. Simulations are carried out to analyze the model and guide the real experiments. Experimental results show that the proposed H∞ controller reduces the tracking error by a maximum of 80.69% (average 57.8%) and the disturbance sensitivity by a maximum of 82.3% (average 50.96%) compared with the traditional tuned PI controller; furthermore, the order of the model describing the proposed controller can be reduced to three, thus its feasibility in real systems is guaranteed.
Measurement of dijet azimuthal decorrelation in pp collisions at $\\sqrt{s}$ = 8 TeV
Energy Technology Data Exchange (ETDEWEB)
Khachatryan, Vardan; et al.
2016-02-13
A measurement of the decorrelation of azimuthal angles between the two jets with the largest transverse momenta is presented for seven regions of leading jet transverse momentum up to 2.2 TeV. The analysis is based on the proton-proton collision data collected with the CMS experiment at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb$^{-1}$. The dijet azimuthal decorrelation is caused by the radiation of additional jets and probes the dynamics of multijet production. The results are compared to fixed-order predictions of perturbative quantum chromodynamics (QCD), and to simulations using Monte Carlo event generators that include parton showers, hadronization, and multiparton interactions. Event generators with only two outgoing high transverse momentum partons fail to describe the measurement, even when supplemented with next-to-leading-order QCD corrections and parton showers. Much better agreement is achieved when at least three outgoing partons are complemented through either next-to-leading-order predictions or parton showers. This observation emphasizes the need to improve predictions for multijet production.
Azimuthally Resolved X-Ray Spectroscopy to the Edge of the Perseus Cluster
Urban, O; Werner, N; Allen, S W; Ehlert, S; Zhuravleva, I; Morris, R G; Fabian, A C; Mantz, A; Nulsen, P E J; Sanders, J S; Takei, Y
2013-01-01
We present the results from extensive, new observations of the Perseus Cluster of galaxies, obtained as a Suzaku Key Project. The 85 pointings analyzed span eight azimuthal directions out to 2 degrees = 2.6 Mpc, to and beyond the virial radius r_200 ~ 1.8 Mpc, offering the most detailed X-ray observation of the intracluster medium (ICM) at large radii in any cluster to date. The azimuthally averaged density profile for r>0.4r_200 is relatively flat, with a best-fit power-law index of 1.69+/-0.13 significantly smaller than expected from numerical simulations. The entropy profile in the outskirts lies systematically below the power-law behavior expected from large-scale structure formation models which include only the heating associated with gravitational collapse. The pressure profile beyond ~0.6r_200 shows an excess with respect to the best-fit model describing the SZ measurements for a sample of clusters observed with Planck. The inconsistency between the expected and measured density, entropy, and pressure...
Measurement of dijet azimuthal decorrelation in pp collisions at √(s) = 8 TeV
Energy Technology Data Exchange (ETDEWEB)
Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A. [Yerevan Physics Institute, Yerevan (Armenia); and others
2016-10-15
A measurement of the decorrelation of azimuthal angles between the two jets with the largest transverse momenta is presented for seven regions of leading jet transverse momentum up to 2.2 TeV. The analysis is based on the proton-proton collision data collected with the CMS experiment at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb{sup -1}. The dijet azimuthal decorrelation is caused by the radiation of additional jets and probes the dynamics of multijet production. The results are compared to fixed-order predictions of perturbative quantum chromodynamics (QCD), and to simulations using Monte Carlo event generators that include parton showers, hadronization, and multiparton interactions. Event generators with only two outgoing high transverse momentum partons fail to describe the measurement, even when supplemented with next-to-leading-order QCD corrections and parton showers. Much better agreement is achieved when at least three outgoing partons are complemented through either next-to-leading-order predictions or parton showers. This observation emphasizes the need to improve predictions for multijet production. (orig.)
Age, spreading rates, and spreading asymmetry of the world's ocean crust
National Oceanic and Atmospheric Administration, Department of Commerce — The authors present four companion digital models of the age, age uncertainty, spreading rates and spreading asymmetries of the world's ocean basins as geographic...
Spreading to localized targets in complex networks
Sun, Ye; Ma, Long; Zeng, An; Wang, Wen-Xu
2016-12-01
As an important type of dynamics on complex networks, spreading is widely used to model many real processes such as the epidemic contagion and information propagation. One of the most significant research questions in spreading is to rank the spreading ability of nodes in the network. To this end, substantial effort has been made and a variety of effective methods have been proposed. These methods usually define the spreading ability of a node as the number of finally infected nodes given that the spreading is initialized from the node. However, in many real cases such as advertising and news propagation, the spreading only aims to cover a specific group of nodes. Therefore, it is necessary to study the spreading ability of nodes towards localized targets in complex networks. In this paper, we propose a reversed local path algorithm for this problem. Simulation results show that our method outperforms the existing methods in identifying the influential nodes with respect to these localized targets. Moreover, the influential spreaders identified by our method can effectively avoid infecting the non-target nodes in the spreading process.
The Imaging of Large Nerve Perineural Spread.
Gandhi, Mitesh; Sommerville, Jennifer
2016-04-01
We present a review of the imaging findings of large nerve perineural spread within the skull base. The MRI techniques and reasons for performing different sequences are discussed. A series of imaging examples illustrates the appearance of perineural tumor spread with an emphasis on the zonal staging system.
Modelling unidirectional liquid spreading on slanted microposts
DEFF Research Database (Denmark)
Cavalli, Andrea; Blow, Matthew L.; Yeomans, Julia M.
2013-01-01
A lattice Boltzmann algorithm is used to simulate the slow spreading of drops on a surface patterned with slanted micro-posts. Gibb's pinning of the interface on the sides or top of the posts leads to unidirectional spreading over a wide range of contact angles and inclination angles of the posts...
Directory of Open Access Journals (Sweden)
Ting-Jung Chen
Full Text Available Cytoskeleton plays important roles in intracellular force equilibrium and extracellular force transmission from/to attaching substrate through focal adhesions (FAs. Numerical simulations of intracellular force distribution to describe dynamic cell behaviors are still limited. The tensegrity structure comprises tension-supporting cables and compression-supporting struts that represent the actin filament and microtubule respectively, and has many features consistent with living cells. To simulate the dynamics of intracellular force distribution and total stored energy during cell spreading, the present study employed different complexities of the tensegrity structures by using octahedron tensegrity (OT and cuboctahedron tensegrity (COT. The spreading was simulated by assigning specific connection nodes for radial displacement and attachment to substrate to form FAs. The traction force on each FA was estimated by summarizing the force carried in sounding cytoskeletal elements. The OT structure consisted of 24 cables and 6 struts and had limitations soon after the beginning of spreading by declining energy stored in struts indicating the abolishment of compression in microtubules. The COT structure, double the amount of cables and struts than the OT structure, provided sufficient spreading area and expressed similar features with documented cell behaviors. The traction force pointed inward on peripheral FAs in the spread out COT structure. The complex structure in COT provided further investigation of various FA number during different spreading stages. Before the middle phase of spreading (half of maximum spreading area, cell attachment with 8 FAs obtained minimized cytoskeletal energy. The maximum number of 12 FAs in the COT structure was required to achieve further spreading. The stored energy in actin filaments increased as cells spread out, while the energy stored in microtubules increased at initial spreading, peaked in middle phase, and then
Interpolating point spread function anisotropy
Gentile, M.; Courbin, F.; Meylan, G.
2013-01-01
Planned wide-field weak lensing surveys are expected to reduce the statistical errors on the shear field to unprecedented levels. In contrast, systematic errors like those induced by the convolution with the point spread function (PSF) will not benefit from that scaling effect and will require very accurate modeling and correction. While numerous methods have been devised to carry out the PSF correction itself, modeling of the PSF shape and its spatial variations across the instrument field of view has, so far, attracted much less attention. This step is nevertheless crucial because the PSF is only known at star positions while the correction has to be performed at any position on the sky. A reliable interpolation scheme is therefore mandatory and a popular approach has been to use low-order bivariate polynomials. In the present paper, we evaluate four other classical spatial interpolation methods based on splines (B-splines), inverse distance weighting (IDW), radial basis functions (RBF) and ordinary Kriging (OK). These methods are tested on the Star-challenge part of the GRavitational lEnsing Accuracy Testing 2010 (GREAT10) simulated data and are compared with the classical polynomial fitting (Polyfit). In all our methods we model the PSF using a single Moffat profile and we interpolate the fitted parameters at a set of required positions. This allowed us to win the Star-challenge of GREAT10, with the B-splines method. However, we also test all our interpolation methods independently of the way the PSF is modeled, by interpolating the GREAT10 star fields themselves (i.e., the PSF parameters are known exactly at star positions). We find in that case RBF to be the clear winner, closely followed by the other local methods, IDW and OK. The global methods, Polyfit and B-splines, are largely behind, especially in fields with (ground-based) turbulent PSFs. In fields with non-turbulent PSFs, all interpolators reach a variance on PSF systematics σ2sys better than the 1
Information spreading on dynamic social networks
Liu, Chuang
2012-01-01
Nowadays, information spreading on social networks has triggered an explosive attention in various disciplines. Most of previous related works in this area mainly focus on discussing the effects of spreading probability or immunization strategy on static networks. However, in real systems, the peer-to-peer network structure changes constantly according to frequently social activities of users. In order to capture this dynamical property and study its impact on information spreading, in this Letter, a link rewiring strategy based on the Fermi function is introduced. In the present model, the informed individuals tend to break old links and reconnect to ones with more uninformed neighbors. Simulation results on the susceptible-infected (\\textit{SI}) model with non-redundancy contacts indicate that the information spread more faster and broader with the rewiring strategy. Extensive analyses of the information cascading show that the spreading process of the initial steps plays a very important role, that is to s...
Spreading Modes on Copper and Steel Surfaces
Directory of Open Access Journals (Sweden)
Feoktistov Dmitry
2016-01-01
Full Text Available This work presents the experimental results of the studying the effect of surface roughness, microstructure and liquid flow rate on the dynamic contact angle during spreading of distilled nondeaerated water drop on a solid horizontal substrate. Copper and steel substrates with different roughness have been investigated. Three spreading modes were conventionally indicated. It was found that the spreading of drops on substrates made of different materials occurs in similar modes. However, the duration of each mode for substrates made of copper and steel are different. Spreading of a liquid above the asperities of a surface micro relief was observed to be dominant for large volumetric flow rates of drops (0.01 ml/s. Liquid was spreading inside the grooves of a rough substrate at low rates (0.005 ml/s.
Enhanced droplet spreading due to thermal fluctuations
Energy Technology Data Exchange (ETDEWEB)
Willis, A M; Freund, J B, E-mail: jbfreund@illinois.ed [Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States)
2009-11-18
The lubrication equation that governs the dynamics of thin liquid films can be augmented to account for stochastic stresses associated with the thermal fluctuations of the fluid. It has been suggested that under certain conditions the spreading rate of a liquid drop on a surface will be increased by these stochastic stresses. Here, an atomistic simulation of a spreading drop is designed to examine such a regime and provide a quantitative assessment of the stochastic lubrication equation for spreading. It is found that the atomistic drop does indeed spread faster than the standard lubrication equations would suggest and that the stochastic lubrication equation of Gruen et al (2006 J. Stat. Phys. 122 1261-91) predicts the spread rate.
Directory of Open Access Journals (Sweden)
E. J. Bunce
Full Text Available We calculate the azimuthal magnetic fields expected to be present in Saturn’s magnetosphere associated with two physical effects, and compare them with the fields observed during the flybys of the two Voyager spacecraft. The first effect is associated with the magnetosphere-ionosphere coupling currents which result from the sub-corotation of the magnetospheric plasma. This is calculated from empirical models of the plasma flow and magnetic field based on Voyager data, with the effective Pedersen conductivity of Saturn’s ionosphere being treated as an essentially free parameter. This mechanism results in a ‘lagging’ field configuration at all local times. The second effect is due to the day-night asymmetric confinement of the magnetosphere by the solar wind (i.e. the magnetopause and tail current system, which we have estimated empirically by scaling a model of the Earth’s magnetosphere to Saturn. This effect produces ‘leading’ fields in the dusk magnetosphere, and ‘lagging’ fields at dawn. Our results show that the azimuthal fields observed in the inner regions can be reasonably well accounted for by plasma sub-corotation, given a value of the effective ionospheric Pedersen conductivity of ~ 1–2 mho. This statement applies to field lines mapping to the equator within ~ 8 R_{S} (1 R_{S} is taken to be 60 330 km of the planet on the dayside inbound passes, where the plasma distribution is dominated by a thin equatorial heavy-ion plasma sheet, and to field lines mapping to the equator within ~ 15 R_{S} on the dawn side outbound passes. The contributions of the magnetopause-tail currents are estimated to be much smaller than the observed fields in these regions. If, however, we assume that the azimuthal fields observed in these regions are not due to sub-corotation but to some other process, then the above effective conductivities define an upper limit, such that values above ~ 2 mho can definitely be
Modelling power-law spread of infectious diseases
Meyer, Sebastian
2013-01-01
Short-time human travel behaviour can be well described by a power law with respect to distance. We incorporate this information in space-time models for infectious disease surveillance data to better capture the dynamics of disease spread. Two previously established model classes are extended, which both decompose disease risk additively into endemic and epidemic components: a space-time point process model for individual point-referenced data, and a multivariate time series model for aggregated count data. In both frameworks, the power-law spread is embedded into the epidemic component and its decay parameter is estimated simultaneously with all other unknown parameters using (penalised) likelihood inference. The performance of the new approach is investigated by a re-analysis of individual cases of invasive meningococcal disease in Germany (2002-2008), and count data on influenza in 140 administrative districts of Southern Germany (2001-2008). In both applications, the power-law formulations substantially ...
Mathematical analysis of dynamic spread of Pine Wilt disease.
Dimitrijevic, D D; Bacic, J
2013-01-01
Since its detection in Portugal in 1999, the pinewood nematode Bursaphelenchus xylophilus (Steiner and Buhrer), a causal agent of Pine Wilt Disease, represents a threat to European forestry. Significant amount of money has been spent on its monitoring and eradication. This paper presents mathematical analysis of spread of pine wilt disease using a set of partial differential equations with space (longitude and latitude) and time as parameters of estimated spread of disease. This methodology can be used to evaluate risk of various assumed entry points of disease and make defense plans in advance. In case of an already existing outbreak, it can be used to draw optimal line of defense and plan removal of trees. Optimization constraints are economic loss of removal of susceptible trees as well as budgetary constraints of workforce cost.
Crouch, Ashley D
2015-01-01
We continue the investigation of how to use the divergence-free condition to resolve the azimuthal ambiguity present in vector magnetogram data. In previous articles, by Crouch, Barnes, and Leka (Solar Physics, 260, 271, 2009) and Crouch (Solar Physics, 282, 107, 2013), all methods used an expression for the divergence of the magnetic field that involves differentiation of quantities that depend on the choice of azimuthal angle. As a result, all heights used to approximate line-of-sight derivatives should generally be disambiguated simultaneously. In this article, we investigate a set of methods that use an expression for the divergence that involves differentiation of quantities that do not depend on the choice of azimuthal angle. This results in an expression for the divergence that can be used to disambiguate each height independently. We test two methods using synthetic and find that the two-step, hybrid method, adapted to disambiguate each height independently, generally produces reasonable results. More...
Nejad, S M Moosavi
2015-01-01
In our previous work, we studied the polar distribution of the scaled energy of bottom-flavored hadrons from polarized top quark decays $t(\\uparrow)\\rightarrow W^++b(\\rightarrow X_b)$, using two different helicity coordinate systems. Basically, the energy distributions are governed by the unpolarized, polar and azimuthal rate functions which are related to the density matrix elements of the decay $t(\\uparrow)\\rightarrow W^++b$. Here we present, for the first time, the analytical expressions for the ${\\cal O}(\\alpha_s)$ radiative corrections to the differential azimuthal decay rates of the partonic process $t(\\uparrow)\\rightarrow b+W^+(+g)$ in two helicity systems, which are needed to study the azimuthal distribution of the energy spectrum of the B-hadron produced in polarized top quark decays. Our predictions of the hadron energy distributions enable us to deepen our knowledge of the hadronization process and to determine the polarization states of top quarks.
Forward-rapidity azimuthal and radial flow of identified particles for s=200 GeV Au+Au collisions
Brahms Collaboration; Sanders, S. J.; BRAHMS Collaboration
2009-11-01
A strong azimuthal flow signature at RHIC suggests rapid system equilibration leading to an almost perfect fluid state. The longitudinal extent of the flow behavior depends on how this state is formed and can be studied by measuring the pseudorapidity and transverse momentum dependence of the second Fourier component (ν(p)) of the azimuthal angular distribution. We report on a measurement of identified-particle ν as a function of p(0.5-2.0 GeV/c), centrality (0-25%, 25-50%), and pseudorapidity (0⩽ηBRAHMS spectrometers are used for particle identification (π, K, p) and momentum determination and the BRAHMS global detectors are used to determine the corresponding reaction-plane angles. The results are discussed in terms of the pseudorapidity dependence of constituent quark scaling and in terms of models that develop the complete (azimuthal and radial) hydrodynamic aspects of the forward dynamics at RHIC.
,
2011-01-01
X-ray polarimetry has the potential to make key-contributions to our understanding of galactic compact objects like binary black hole systems and neutron stars, and extragalactic objects like active galactic nuclei, blazars, and neutron stars. Furthermore, several particle astrophysics topics can be addressed including uniquely sensitive tests of Lorentz invariance. In the energy range from 10-20 keV to several MeV, Compton polarimeters achieve the best performance. In this paper we evaluate the benefit that comes from using the azimuthal and polar angles of the Compton scattered photons in the analysis, rather than using the azimuthal scattering angles alone. We study the case of an ideal Compton polarimeter and show that a Maximum Likelihood analysis which uses the two scattering angles lowers the Minimum Detectable Polarization (MDP) by ~20% compared to a standard analysis based on the azimuthal scattering angles alone. The accuracies with which the polarization fraction and the polarization direction can ...
Institute of Scientific and Technical Information of China (English)
Golden Gadzirayi Nyambuya
2010-01-01
This paper is part of a series on the Azimuthally Symmetric Theory of Gravitation(ASTG).This theory is built on Laplace-Poisson's well known equation and it has been shown that the ASTG is capable of explaining,from a purely classical physics standpoint,the precession of the perihelion of solar planets as a consequence of the azimuthal symmetry emerging from the spin of the Sun.This symmetry has and must have an influence on the emergent gravitational field.We show herein that the emergent equations from the ASTG,under some critical conditions determined by the spin,do possess repulsive gravitational fields in the polar regions of the gravitating body in question.This places the ASTG on an interesting pedestal to infer the origins of outflows as a repulsive gravitational phenomenon.Outflows are a ubiquitous phenomenon found in star forming systems and their true origin is a question yet to be settled.Given the current thinking on their origin,the direction that the present paper takes is nothing short of an asymptotic break from conventional wisdom; at the very least,it is a complete paradigm shift because gravitation is not at all associated with this process,but rather it is thought to be an all-attractive force that only tries to squash matter together onto a single point.Additionally,we show that the emergent Azimuthally Symmetric Gravitational Field from the ASTG strongly suggests a solution to the supposed Radiation Problem that is thought to be faced by massive stars in their process of formation.That is,at～8-10 M⊙,radiation from the nascent star is expected to halt the accretion of matter.We show that in-falling material will fall onto the equatorial disk and from there,this material will be channeled onto the forming star via the equatorial plane,thus accretion of mass continues well past the value of～8-10 M⊙,albeit via the disk.Along the equatorial plane,the net force(with the radiation force included)on any material there-on right up to the
The axial topographic high at intermediate and fast spreading ridges
Carbotte, Suzanne M.; MacDonald, Ken C.
1994-12-01
An axial topographic high is commonly observed at both fast spreading ridges and some segments of intermediate spreading ridges. At fast rates the axial high is primarily created by the buoyancy of hot rock and magma beneath the rise. As newly formed crust is transported off axis, little vestige of an axial high is observed on the ridge flanks. In contrast, at intermediate rates, a significant component of the positive topography may be a volcanic construction, preserved on the ridge flanks as abyssal hills, which are slit axial volcanoes. We suggest this difference in the nature of the axial high reflects a lithosphere strong enough to support construction of a volcanic crestal ridge at intermediate spreading rates, but only rarely at fast rates. Relict overlap ridges, found within the discordant zones left by overlapping spreading centers, is one class of ridge-flank topography which appears to have a significant volcanic constructional component even at fast spreading ridges. Unlike topography away from these discontinuities, the relief and shape of overlapping spreading centers is preserved as relict ridge tips are rafted onto the ridge flanks. Reduced magma supply at these discontinuities may give rise to an axial lithosphere strong enough to support volcanic construction of overlap ridges. Low axial lithospheric strength may also account for the lack of normal faults within the innermost 1-2 km of fast, and some intermediate, spreading ridges. With a thin/weak brittle layer at the ridge crest, tensile failure will predominate and few normal faults will form. Depths to the axial magma chamber reflector observed in multi-channel seismic data limit the thickness of the brittel layer on axis to less than 1-2 km for much of the East Pacific Rise (EPR). This depth is comparable to depths over which tensile failure within the oceanic crust will predominate, estimated from the Griffith criteria for fracture initiation (approx. 0.5-1.5 km). As the brittle layer
Vagus nerve stimulation inhibits cortical spreading depression.
Chen, Shih-Pin; Ay, Ilknur; de Morais, Andreia Lopes; Qin, Tao; Zheng, Yi; Sadeghian, Homa; Oka, Fumiaki; Simon, Bruce; Eikermann-Haerter, Katharina; Ayata, Cenk
2016-04-01
Vagus nerve stimulation has recently been reported to improve symptoms of migraine. Cortical spreading depression is the electrophysiological event underlying migraine aura and is a trigger for headache. We tested whether vagus nerve stimulation inhibits cortical spreading depression to explain its antimigraine effect. Unilateral vagus nerve stimulation was delivered either noninvasively through the skin or directly by electrodes placed around the nerve. Systemic physiology was monitored throughout the study. Both noninvasive transcutaneous and invasive direct vagus nerve stimulations significantly suppressed spreading depression susceptibility in the occipital cortex in rats. The electrical stimulation threshold to evoke a spreading depression was elevated by more than 2-fold, the frequency of spreading depressions during continuous topical 1 M KCl was reduced by ∼40%, and propagation speed of spreading depression was reduced by ∼15%. This effect developed within 30 minutes after vagus nerve stimulation and persisted for more than 3 hours. Noninvasive transcutaneous vagus nerve stimulation was as efficacious as direct invasive vagus nerve stimulation, and the efficacy did not differ between the ipsilateral and contralateral hemispheres. Our findings provide a potential mechanism by which vagus nerve stimulation may be efficacious in migraine and suggest that susceptibility to spreading depression is a suitable platform to optimize its efficacy.
Spread polynomials, rotations and the butterfly effect
Goh, Shuxiang
2009-01-01
The spread between two lines in rational trigonometry replaces the concept of angle, allowing the complete specification of many geometrical and dynamical situations which have traditionally been viewed approximately. This paper investigates the case of powers of a rational spread rotation, and in particular, a curious periodicity in the prime power decomposition of the associated values of the spread polynomials, which are the analogs in rational trigonometry of the Chebyshev polynomials of the first kind. Rational trigonometry over finite fields plays a role, together with non-Euclidean geometries.
Stochastic dynamic model of SARS spreading
Institute of Scientific and Technical Information of China (English)
SHI Yaolin
2003-01-01
Based upon the simulation of the stochastic process of infection, onset and spreading of each SARS patient, a system dynamic model of SRAS spreading is constructed. Data from Vietnam is taken as an example for Monte Carlo test. The preliminary results indicate that the time-dependent infection rate is the most important control factor for SARS spreading. The model can be applied to prediction of the course with fluctuations of the epidemics, if the previous history of the epidemics and the future infection rate under control measures are known.
Azimuthal asymmetry of neutral pion emission in Au+Au reactions at 1 GeV/nucleon
Energy Technology Data Exchange (ETDEWEB)
Venema, L.B.; Braak, H.; Loehner, H.; Raschke, A.E.; Siemssen, R.H.; Sumbera, M.; Wilschut, H.W.; Berg, F.; Kuehn, W.; Metag, V.; Notheisen, M.; Novotny, R.; Pfeiffer, M.; Ritman, J.; Schwalb, O.; Gobbi, A.; Hildenbrand, K.D.; Hlavac, S.; Holzmann, R.; Simon, R.S.; Sodan, U.; Teh, K.; Wessels, J.P.; Herrmann, N.; Wienold, T.; Kotte, R.; Moesner, J.; Neubert, W.; Wohlfarth, D.; Ostendorf, R.; Schutz, Y.; Brummund, N.; Santo, R. (Kernfysisch Versneller Instituut, Groningen (Netherlands) II. Physikalisches Institut, Universitaet Giessen, Giessen (Germany) Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany) II. Physikalisches Institut, Universitaet Heidelberg, Heidelberg (Germany) Forschungszentrum Rossendorf, Dresden (Germany) GANIL, Caen (France) Institut fuer Kernphysik, Universitaet Muenster, Muenster (Germany))
1993-08-09
The azimuthal angle distributions of neutral pions at midrapidity from Au+Au reactions at 1 GeV/nucleon incident energy have been measured. An enhanced emission of [pi][sup 0]'s perpendicular to the reaction plane is observed. The azimuthal asymmetry is dependent on the [pi][sup 0] momentum: the [pi][sup 0] spectrum perpendicular to the reaction plane is harder than in the reaction plane. The strength of the observed asymmetry appears to be more pronounced for [pi][sup 0] than for charged particles and neutrons.
Directory of Open Access Journals (Sweden)
Goran Tomac
2015-12-01
Full Text Available The paper describes the Croatian web page Online ephemerides with its applications for calculating and visualising the equation of time and the analemma, converting zone time (zone or civil time into true solar time (the time shown by sundials and calculating the time of sunrise and sunset and the corresponding azimuths. The calculated values for the equation of time, ephemeris transit and the true solar time of ±4 seconds, sunrise and sunset times of ±30 seconds and the azimuth of ±30” must meet the accuracy needed by both amateur and professional astronomers. The web applications described are also adapted for smart phones.
On a correlation among azimuthal velocities and the flyby anomaly sign
Acedo, L
2016-01-01
Data of six flybys, those of Galileo I, Galileo II, NEAR, Cassini, Rosetta and Messenger were reported by Anderson et al \\citep{Anderson}. Four of them: Galileo I, NEAR, Rosetta and Messenger gain Newtonian energy during the flyby transfer, while Galileo II and Cassini lose energy. This is, in both cases, a surprising anomaly since Newtonian forces derive from a potential and they are, therefore, conservative. We show here that the gravitational field of a rotating planet as derived from a new model introduces a non conservative force that gives a partial, but in our opinion satisfactory, explanation of these anomalies and suggests a correlation between the sign of the anomaly and the sign of the azimuthal velocity at perigee.
Measurement of the azimuthal ordering of charged hadrons with the ATLAS detector
Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Hernandez, Carlos Medina; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imbault, Didier; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz
2012-01-01
This paper presents a measurement of the ordering of charged hadrons in the azimuthal angle relative to the beam axis in high-energy proton-proton collisions at the Large Hadron Collider (LHC). A spectral analysis of correlations between longitudinal and transverse components of the momentum of the charged hadrons, driven by the search for phenomena related to the structure of the QCD field, is performed. Data were recorded with the ATLAS detector at centre-of-mass energies of $\\sqrt{s}$ = 900 GeV and $\\sqrt{s}$ = 7 TeV. The correlations measured in a phase space region dominated by low-pT particles are not well described by conventional models of hadron production. The measured spectra show features consistent with the fragmentation of a QCD string represented by a helix-like ordered gluon chain.
Measurement of the suppression and azimuthal anisotropy of heavy flavor muons
Cole, Brian; The ATLAS collaboration
2017-01-01
Results are presented for measurements of single muon suppression and azimuthal anisotropy in $\\sqrt{s_{NN}} = 2.76$ TeV Pb+Pb collisions and for hadron-muon correlations in $\\sqrt{s_{NN}} = 8.16$ TeV p+Pb collisions. Also shown are some results for di-hadron correlations in the p+Pb data which are needed to measure the single-muon $v_2$. Presented results include $R_{AA}$ and $v_{2}$ as a function of centrality and $p_{T}$ in the Pb+Pb data and hadron and muon $v_2$ as a function of charged particle multiplicity and $p_{T}$ in the p+Pb data.
Crouch, A.; Barnes, G.
2008-01-01
We demonstrate that the azimuthal ambiguity that is present in solar vector magnetogram data can be resolved with line-of-sight and horizontal heliographic derivative information by using the divergence-free property of magnetic fields without additional assumptions. We discuss the specific derivative information that is sufficient to resolve the ambiguity away from disk center, with particular emphasis on the line-of-sight derivative of the various components of the magnetic field. Conversely, we also show cases where ambiguity resolution fails because sufficient line-of-sight derivative information is not available. For example, knowledge of only the line-of-sight derivative of the line-of-sight component of the field is not sufficient to resolve the ambiguity away from disk center.
Azimuthal Anisotropy in U +U and Au +Au Collisions at RHIC
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, H. Z.; Huang, B.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, W.; Li, Y.; Li, C.; Li, Z. M.; Li, X.; Li, X.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, L.; Ma, R.; Ma, Y. G.; Ma, G. L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X.; Sun, X. M.; Sun, Z.; Sun, Y.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbaek, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, Y.; Wang, H.; Wang, J. S.; Wang, Y.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, Y. F.; Xu, N.; Xu, Z.; Xu, Q. H.; Xu, H.; Yang, Y.; Yang, Y.; Yang, C.; Yang, S.; Yang, Q.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, J. B.; Zhang, J.; Zhang, Z.; Zhang, S.; Zhang, Y.; Zhang, J. L.; Zhao, F.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration
2015-11-01
Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, v2{2 } and v2{4 }, for charged hadrons from U +U collisions at √{sNN }=193 GeV and Au +Au collisions at √{sNN}=200 GeV . Nearly fully overlapping collisions are selected based on the energy deposited by spectators in zero degree calorimeters (ZDCs). Within this sample, the observed dependence of v2{2 } on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U +U collisions. We also show that v2 vs multiplicity can be better described by models, such as gluon saturation or quark participant models, that eliminate the dependence of the multiplicity on the number of binary nucleon-nucleon collisions.
Azimuth and Elevation Dynamic Tracking of UAVs via 3-Axial ULA and Particle Filtering
Directory of Open Access Journals (Sweden)
Andrea Papaiz
2016-01-01
Full Text Available Unmanned Aerial Vehicles (UAVs localization has become crucial in recent years, mainly for navigation or self-positioning and for UAV based security monitoring and surveillance. In this paper, azimuth and elevation radio positioning of UAVs are considered. The localization is based on multiple differential phase-of-arrival measures exploiting a 3-Axial Uniform Linear Array of antennas. An ad hoc particle filtering algorithm is applied to improve the positioning performance using a dynamic motion model. A novel adaptive algorithm, namely, Particles Swarm Adaptive Scattering (PSAS, is proposed to increment the algorithm stability and precision. To assess performance a Confined Area Random Aerial Trajectory Emulator (CARATE algorithm has been developed to generate actual paths of flying UAVs. The algorithm performance is compared with the baseline method and with the average trajectory Cramér Rao lower bound to show the effectiveness of the proposed algorithm.
Dihadron Production at LHC: BFKL Predictions for Cross Sections and Azimuthal Correlations
Celiberto, Francesco G; Murdaca, Beatrice; Papa, Alessandro
2016-01-01
A study of the inclusive production of a pair of hadrons (a "dihadron" system), having high transverse momenta and separated by a large interval of rapidity, is presented. This process has much in common with the widely discussed Mueller--Navelet jet production and can be also used to access the BFKL dynamics at proton colliders. Large contributions enhanced by logarithms of energy can be resummed in perturbation theory within the BFKL formalism in the next-to-leading logarithmic accuracy. The experimental study of dihadron production would provide with an additional clear channel to test the BFKL dynamics. The first theoretical predictions for cross sections and azimuthal angle correlations of the two hadrons produced with LHC kinematics are presented.
Azimuthally fluctuating magnetic field and its impacts on observables in heavy-ion collisions
Energy Technology Data Exchange (ETDEWEB)
Bloczynski, John [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); Huang, Xu-Guang, E-mail: xuhuang@indiana.edu [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); Zhang, Xilin [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); Liao, Jinfeng [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)
2013-01-29
The heavy-ion collisions can produce extremely strong transient magnetic and electric fields. We study the azimuthal fluctuation of these fields and their correlations with the also fluctuating matter geometry (characterized by the participant plane harmonics) using event-by-event simulations. A sizable suppression of the angular correlations between the magnetic field and the 2nd and 4th harmonic participant planes is found in very central and very peripheral collisions, while the magnitudes of these correlations peak around impact parameter b{approx}8-10 fm for RHIC collisions. This can lead to notable impacts on a number of observables related to various magnetic field induced effects, and our finding suggests that the optimal event class for measuring them should be that corresponding to b{approx}8-10 fm.
Chen, Yifan
2010-01-01
A novel channel representation for a two-hop decentralized wireless relay network (DWRN) is proposed, where the relays operate in a completely distributive fashion. The modeling paradigm applies an analogous approach to the description method for a double-directional multipath propagation channel, and takes into account the finite system spatial resolution and the extended relay listening/transmitting time. Specifically, the double-directional information azimuth spectrum (IAS) is formulated to provide a compact representation of information flows in a DWRN. The proposed channel representation is then analyzed from a geometrically-based statistical modeling perspective. Finally, we look into the problem of relay network tomography (RNT), which solves an inverse problem to infer the internal structure of a DWRN by using the instantaneous doubledirectional IAS recorded at multiple measuring nodes exterior to the relay region.
Ring and jet study on the azimuthal substructure of pions at CERN SPS energy
Indian Academy of Sciences (India)
Prabir Kumar Haldar; Sanjib Kumar Manna; Prosenjit Saha; Dipak Ghosh
2013-04-01
We have presented an investigation on the ring- and jet-like azimuthal angle sub-structures in the emission of secondary charged hadrons coming from 32S–Ag/Br interactions at 200 A GeV/c. Nuclear photographic emulsion technique has been employed to collect the experimental data. The presence of such substructures, their average behaviour, their size, and their position of occurrence have been examined. The experimental results have also been compared with the results simulated by Monte-Carlo method. The analysis strongly indicates the presence of ring- and jet-like structures in the experimental distributions of particles beyond statistical noise. The experimental results are in good agreement with I M Dremin idea, that the phenomenon is similar to the emission of Cherenkov electromagnetic radiation.
Hydromagnetic convection in a rotating annulus with an azimuthal magnetic field
Energy Technology Data Exchange (ETDEWEB)
Kurt, E.; Busse, F.H.; Pesch, W. [University of Bayreuth, Institute of Physics, Bayreuth (Germany)
2004-11-01
The problem of convection induced by radial buoyancy in an electrically conducting fluid contained by a rotating cylindrical annulus (angular frequency, {omega}) in the presence of a homogeneous magnetic field (B) in the azimuthal direction is considered. The small gap approximation is used together with rigid cylindrical boundaries. The onset of convection occurs in the form of axial, axisymmetric or oblique rolls. The angle {psi} between the roll axis and the axis of rotation depends of the ratio between the Chandrasekhar number, Q{proportional_to}B{sup 2}, and the Coriolis number, {tau}{proportional_to}{omega}. Fully three-dimensional numerical simulations as well as Galerkin representations for roll patterns including the subsequent stability analysis are used in the theoretical investigation. At finite amplitudes, secondary transitions to 3D-hexarolls and to spatio-temporal chaos are found. Overlapping regions of pattern stability exist such that the asymptotically realized state may depend on the initial conditions. (orig.)
The first moment of azimuthal anisotropy in nuclear collisions from AGS to LHC energies
Singha, Subhash; Keane, Declan
2016-01-01
We review topics related to the first moment of azimuthal anisotropy ($v_1$), commonly known as directed flow, focusing on both charged particles and identified particles from heavy-ion collisions. Beam energies from the highest available, at the CERN LHC, down to projectile kinetic energies per nucleon of a few GeV per nucleon, as studied in experiments at the Brookhaven AGS, fall within our scope. We focus on experimental measurements and on theoretical work where direct comparisons with experiment have been emphasized. The physics addressed or potentially addressed by this review topic includes the study of Quark Gluon Plasma, and more generally, investigation of the Quantum Chromodynamics phase diagram and the equation of state describing the accessible phases.
Beam-Spin Asymmetries in the Azimuthal Distribution of Pion Electroproduction
Airapetian, A; Amarian, M; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, H; Avakian, R; Avetisian, A; Avetisyan, E; Bacchetta, A; Bailey, P; Belostotskii, S; Bianchi, N; Blok, H P; Böttcher, H; Borisov, A; Borysenko, A; Brüll, A; Bryzgalov, V; Capiluppi, M; Capitani, G P; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Devitsin, E; Diefenthaler, M; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Funel, A; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Gavrilov, G; Karibian, V; Giordano, F; Grebenyuk, O; Gregor, I M; Guler, H; Hadjidakis, C; Hafidi, K; Hartig, M; Hasch, D; Hasegawa, T; Hesselink, W H A; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Hristova, I; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Keri, T; Kinney, E; Kiselev, A; Kobayashi, T; Kopytin, M; Korotkov, V; Kozlov, V; Krauss, B; Kravchenko, P; Krivokhizhin, V G; Lagamba, L; Lapikas, L; Lenisa, P; Liebing, P; Linden-Levy, L A; Lorenzon, W; Lü, J; Lu, S; Ma, B Q; Maiheu, B; Makins, N C R; Mao, Y; Marianski, B; Marukyan, H; Masoli, F; Mexner, V; Meyners, N; Michler, T; Miklukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Murray, M; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Negodaev, M; Nowak, W D; Oganessyan, K; Ohsuga, H; Osborne, A; Perez-Benito, R; Pickert, N; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Savin, I; Schäfer, A; Schnell, G; Schüler, K P; Seele, J; Seidl, R; Seitz, B; Shearer, C; Shibata, T A; Shutov, V; Sinram, K; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Streit, J; Tait, P; Tanaka, H; Taroian, S P; Tchuiko, B; Terkulov, A R; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Van Haarlem, Y; Vikhrov, V; Vogel, C; Wang, S; Ye, Y; Ye, Z; Yen, S; Zihlmann, B; Zupranski, P
2007-01-01
A measurement of the beam-spin asymmetry in the azimuthal distribution of pions produced in semi-inclusive deep-inelastic scattering off protons is presented. The measurement was performed using the {HERMES} spectrometer with a hydrogen gas target and the longitudinally polarized 27.6 GeV positron beam of HERA. The sinusoidal amplitude of the dependence of the asymmetry on the angle $\\phi$ of the hadron production plane around the virtual photon direction relative to the lepton scattering plane was measured for $\\pi^+,\\pi^-$ and $\\pi^0$ mesons. The dependence of this amplitude on the Bjorken scaling variable and on the pion fractional energy and transverse momentum is presented. The results are compared to theoretical model calculations.
Impedance studies of 2D azimuthally symmetric devices of finite length
Biancacci, N; Métral, E; Salvant, B; Migliorati, M; Palumbo, L
2014-01-01
In particle accelerators, the beam quality can be strongly affected by the interaction with self-induced electromagnetic fields excited by the beam in the passage through the elements of the accelerator. The beam coupling impedance quantifies this interaction and allows predicting the stability of the dynamics of high intensity, high brilliance beams. The coupling impedance can be evaluated with finite element methods or using analytical approaches, such as field matching or mode matching. In this paper we present an application of the mode matching technique for an azimuthally uniform structure of finite length: a cylindrical cavity loaded with a toroidal slab of lossy dielectric, connected with cylindrical beam pipes. In order to take into account the finite length of the structure, with respect to the infinite length approximation, we decompose the fields in the cavity into a set of orthonormal modes. We obtain a complete set of equations using the magnetic field matching and the nonuniform convergence of ...
The azimuth-dependent offset-midpoint traveltime pyramid in 3D HTI media
Hao, Qi
2013-09-22
Analytical representation of offset-midpoint traveltime equation is very important for pre-stack Kirchhoff migration and velocity inversion in anisotropic media. For VTI media, the offset-midpoint traveltime resembles the shape of Cheop\\'s pyramid. In this study, we extend the offset-midpoint traveltime pyramid to the case of 3D HTI media. We employ the stationary phase method to derive the analytical representation of traveltime equation, and then use Shanks transformation to improve the accuracy of horizontal and vertical slownesses. The traveltime pyramid is derived in both the depth- and time-domain. Numerical examples indicate that the azimuthal characteristics of both the traveltime pyramid and the migration isochrones are very obvious in HTI media due to the effect of anisotropy.
Quantitative description of the azimuthal dependence of the exchange bias effect
Energy Technology Data Exchange (ETDEWEB)
Radu, Florin; Westphalen, Andreas; Theis-Broehl, Katharina; Zabel, Hartmut [Institut fuer Experimentalphysik/Festkoerperphysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)
2006-01-25
While the principal features of the exchange bias between a ferromagnet and an antiferromagnet are believed to be understood, a quantitative description is still lacking. We show that interface spin disorder is the main reason for the discrepancy of model calculations versus experimental results. Taking into account spin disorder at the interface between the ferromagnet and the antiferromagnet by modifying the well known Meiklejohn and Bean model, an almost perfect agreement can be reached. As an example this is demonstrated for the CoFe/IrMn exchange biased bilayer by analysing the azimuthal dependence of magnetic hysteresis loops from MOKE measurements. Both exchange bias and coercive fields for the complete 360{sup 0} angular range are reproduced by our model. (letter to the editor)
Azimuthal anisotropy in Au+Au collisions at sqrtsNN = 200 GeV
Adams, J; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhasin, A; Bhati, A K; Bhatia, V S; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca-Sanchez, M; Carroll, J; Castillo, J; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; De Moura, M M; Derevshchikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta-Majumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Yu; Foley, K J; Fomenko, K; Fu, J; Gagliardi, C A; Gans, J; Ganti, M S; Gaudichet, L; Geurts, F J M; Ghazikhanian, V; Ghosh, P; González, J E; Grachov, O; Grebenyuk, O; Grosnick, D P; Guertin, S M; Guo, Y; Sen-Gupta, A; Gutíerrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Huang, H Z; Huang Sheng Li; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Krämer, M; Kravtsov, P; Kravtsov, V I; Krüger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunz, C L; Kutuev, R K; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lehocka, S; Le Vine, M J; Li, C; Li, Q; Li, Y; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; López-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnik, Yu M; Meschanin, A; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnár, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, Grazyna Janina; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Yu A; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, Thomas; Perevozchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M V; Potrebenikova, E V; Potukuchi, B V K S; Prindle, D; Pruneau, C A; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D M; Reid, J G; Renault, G; Retière, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schröder, L S; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimansky, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Skoro, G P; Smirnov, N; Snellings, R; Sood, G; Sørensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M N; Stringfellow, B C; Suaide, A A P; Sugarbaker, E R; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T J; Thein, D; Thomas, J H; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Urkinbaev, A R; Van Buren, G; Van, M; Leeuwen; Van der Molen, A M; Varma, R; Vasilevski, I M; Vasilev, A N; Vernet, R; Vigdor, S E; Viyogi, V P; Vokal, S; Voloshin, S A; Vznuzdaev, M; Waggoner, W T; Wang, F; Wang, G; Wang, G; Wang, X L; Wang, Y; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Wells, R; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevsky, Yu V; Zhang, H; Zhang, W M; Zhang, Z P; Zolnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N
2004-01-01
The results from the STAR Collaboration on directed flow ($v_1$), elliptic flow ($v_2$), and the fourth harmonic ($v_4$) in the anisotropic azimuthal distribution of particles from Au+Au collisions at $\\sqrtsNN = 200$ GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a Blast Wave model. For $v_2$, scaling with the number of constituent quarks and parton coalescence is discussed. For $v_4$, scaling with $v_2^2$ and quark coalescence predictions for higher harmonic flow is discussed. The different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data.
Study of Effect of Ion Source Energy Spread on RFQ Beam Dynamics at REX-ISOLDE
Fraser, M A
2013-01-01
With an upgrade to the Electron Beam Ion Source (EBIS) at REX under consideration a study was launched in order to understand the effect of an increased energy spread from the ion source on the beam dynamics of the RFQ. Due to the increased electron beam potential needed to achieve the upgrade’s charge breeding specification it is expected that the energy spread of the beam will increase from today’s estimated value of approximately +-0.1%. It is shown through beam dynamics simulations that the energy spread can be increased to +-1% without significant degradation of the beam quality output by the RFQ.
Non-Abelian bremsstrahlung and azimuthal asymmetries in high energy p+A reactions
Gyulassy, M.; Levai, P.; Vitev, I.; Biró, T. S.
2014-09-01
We apply the GLV reaction operator solution to the Vitev-Gunion-Bertsch (VGB) boundary conditions to compute to all orders in nuclear opacity the non-Abelian gluon bremsstrahlung of event-by-event fluctuating beam jets in nuclear collisions. We evaluate analytically azimuthal Fourier moments of single gluon, vnM{1}, and even numbered 2ℓ gluon distribution, vnM{2ℓ}, inclusive distributions in high-energy p +A reactions as a function of harmonic n, target recoil cluster number, M, and gluon number, 2ℓ, at the RHIC and LHC. Multiple resolved clusters of recoiling target beam jets together with the projectile beam jet form color scintillation antenna (CSA) arrays that lead to characteristic boost-noninvariant trapezoidal rapidity distributions in asymmetric B+A nuclear collisions. The scaling of the intrinsically azimuthally anisotropic and long range in η nature of the non-Abelian bremsstrahlung leads to vn moments that are similar to results from hydrodynamic models, but due entirely to non-Abelian wave interference phenomena sourced by the fluctuating CSA. Our analytic nonflow solutions are similar to recent numerical saturation model predictions but differ by predicting a simple power-law hierarchy of both even and odd vn without invoking kT factorization. A test of the CSA mechanism is the predicted nearly linear η rapidity dependence of the vn(kT,η). Non-Abelian beam jet bremsstrahlung may, thus, provide a simple analytic solution to the beam energy scan puzzle of the near √s independence of vn(pT) moments observed down to 10 AGeV, where large-x valence-quark beam jets dominate inelastic dynamics. Recoil bremsstrahlung from multiple independent CSA clusters could also provide a partial explanation for the unexpected similarity of vn in p(D)+A and noncentral A+A at the same dN/dη multiplicity as observed at the RHIC and LHC.
Chasing Shadows: Rotation of the Azimuthal Asymmetry in the TW Hya Disk
Debes, John H.; Poteet, Charles A.; Jang-Condell, Hannah; Gaspar, Andras; Hines, Dean; Kastner, Joel H.; Pueyo, Laurent; Rapson, Valerie; Roberge, Aki; Schneider, Glenn; Weinberger, Alycia J.
2017-02-01
We have obtained new images of the protoplanetary disk orbiting TW Hya in visible, total intensity light with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST), using the newly commissioned BAR5 occulter. These HST/STIS observations achieved an inner working angle of ∼0.″2, or 11.7 au, probing the system at angular radii coincident with recent images of the disk obtained by ALMA and in polarized intensity near-infrared light. By comparing our new STIS images to those taken with STIS in 2000 and with NICMOS in 1998, 2004, and 2005, we demonstrate that TW Hya’s azimuthal surface brightness asymmetry moves coherently in position angle. Between 50 au and 141 au we measure a constant angular velocity in the azimuthal brightness asymmetry of 22.°7 yr‑1 in a counterclockwise direction, equivalent to a period of 15.9 yr assuming circular motion. Both the (short) inferred period and lack of radial dependence of the moving shadow pattern are inconsistent with Keplerian rotation at these disk radii. We hypothesize that the asymmetry arises from the fact that the disk interior to 1 au is inclined and precessing owing to a planetary companion, thus partially shadowing the outer disk. Further monitoring of this and other shadows on protoplanetary disks potentially opens a new avenue for indirectly observing the sites of planet formation. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
Ramanantoanina, Andriamihaja; Hui, Cang
2016-05-01
Habitat heterogeneity can have profound effects on the spreading dynamics of invasive species. Using integro-difference equations, we investigate the spreading dynamics in a one-dimensional heterogeneous landscape comprising alternating favourable and unfavourable habitat patches or randomly generated habitat patches with given spatial autocorrelation. We assume that population growth and dispersal (including emigration probability and dispersal distance) are dependent on habitat quality. We derived an approximation of the rate of spread in such heterogeneous landscapes, suggesting the sensitivity of spread to the periodic length of the alternating favourable and unfavourable patches, as well as their spatial autocorrelation. A dispersal-limited population tends to spread faster in landscapes with shorter periodic length. The spreading dynamics in a heterogeneous landscape was found to be not only dependent on the availability of favourable habitats, but also the dispersal strategy. Estimates of time lag before detection and the condition for boom-and-bust spreading dynamics were explained. Furthermore, rates of spread in heterogeneous landscapes and corresponding homogeneous landscapes were compared, using weighted sums of vital rates.
Emergence of Blind Areas in Information Spreading
Zhang, Zi-Ke; Han, Xiao-Pu; Liu, Chuang
2013-01-01
Recently, contagion-based (disease, information, etc.) spreading on social networks has been extensively studied. In this paper, other than traditional full interaction, we propose a partial interaction based spreading model, considering that the informed individuals would transmit information to only a certain fraction of their neighbors due to the transmission ability in real-world social networks. Simulation results on three representative networks (BA, ER, WS) indicate that the spreading efficiency is highly correlated with the network heterogeneity. In addition, a special phenomenon, namely \\emph{Information Blind Areas} where the network is separated by several information-unreachable clusters, will emerge from the spreading process. Furthermore, we also find that the size distribution of such information blind areas obeys power-law-like distribution, which has very similar exponent with that of site percolation. Detailed analyses show that the critical value is decreasing along with the network heterog...
Spreading paths in partially observed social networks
Onnela, Jukka-Pekka
2011-01-01
Understanding how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading path lengths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using a static, structurally realistic social network as a platform for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Alt...
Reactive spreading: Adsorption, ridging and compound formation
Energy Technology Data Exchange (ETDEWEB)
Saiz, E.; Cannon, R.M.; Tomsia, A.P.
2000-09-11
Reactive spreading, in which a chemically active element is added to promote wetting of noble metals on nonmetallic materials, is evaluated. Theories for the energetics and kinetics of the necessary steps involved in spreading are outlined and compared to the steps in compound formation that typically accompany reactive wetting. These include: fluid flow, active metal adsorption, including nonequilibrium effects, and triple line ridging. All of these can be faster than compound nucleation under certain conditions. Analysis and assessment of recently reported experiments on metal/ceramic systems lead to a focus on those conditions under which spreading proceeds ahead of the actual formation of a new phase at the interface. This scenario may be more typical than believed, and perhaps the most effective situation leading to enhanced spreading. A rationale for the pervasive variability and hysteresis observed during high temperature wetting also emerges.
Spreading of charged micro-droplets
Directory of Open Access Journals (Sweden)
Joseph Iaia
2013-09-01
Full Text Available We consider the spreading of a charged microdroplet on a flat dielectric surface whose spreading is driven by surface tension and electrostatic repulsion. This leads to a third order nonlinear partial differential equation that gives the evolution of the height profile. Assuming the droplets are circular we are able to prove existence of solutions with infinite contact angle and in many cases we are able to prove nonexistence of solutions with finite contact angle.
Mapping the Spread of Mounted Warfare
Directory of Open Access Journals (Sweden)
Peter Turchin
2016-12-01
Full Text Available Military technology is one of the most important factors affecting the evolution of complex societies. In particular, mounted warfare, the use of horse-riders in military operations, revolutionized war as it spread to different parts of Eurasia and Africa during the Ancient and Medieval eras, and to the Americas during the Early Modern period. Here we use a variety of sources to map this spread.
Gossip spread in social network Models
Johansson, Tobias
2017-04-01
Gossip almost inevitably arises in real social networks. In this article we investigate the relationship between the number of friends of a person and limits on how far gossip about that person can spread in the network. How far gossip travels in a network depends on two sets of factors: (a) factors determining gossip transmission from one person to the next and (b) factors determining network topology. For a simple model where gossip is spread among people who know the victim it is known that a standard scale-free network model produces a non-monotonic relationship between number of friends and expected relative spread of gossip, a pattern that is also observed in real networks (Lind et al., 2007). Here, we study gossip spread in two social network models (Toivonen et al., 2006; Vázquez, 2003) by exploring the parameter space of both models and fitting them to a real Facebook data set. Both models can produce the non-monotonic relationship of real networks more accurately than a standard scale-free model while also exhibiting more realistic variability in gossip spread. Of the two models, the one given in Vázquez (2003) best captures both the expected values and variability of gossip spread.
A Reinvestigation of the Possible Metallicity Spread in NGC 3201
Covey, Kevin R.; Wallerstein, George; Gonzalez, Guillermo; Vanture, Andrew D.; Suntzeff, Nicholas B.
2003-07-01
We have conducted a reanalysis of the metallicity of six red giants within NGC 3201 on the basis of a new homogeneous set of spectra with resolution ~30,000. Iron line strengths and the MOOG software suite were used to derive metallicities based on spectroscopically and photometrically estimated values of Teff and logg. We cannot confirm the presence of a significant spread in metallicity within the cluster greater than about 0.3 dex nor any significant correlation between metallicity and temperature, as first suggested by Gonzalez & Wallerstein. We call attention to the possibility that differences in boundary temperature for stars of the same Teff may lead to apparent differences in metallicity.
Localization of underwater moving sound source based on time delay estimation using hydrophone array
Rahman, S. A.; Arifianto, D.; Dhanardono, T.; Wirawan
2016-11-01
Signal and noise of an underwater moving sound source is used to track the azimuth of a target. Uniform linear array with four hydrophones is used to detect azimuth of target by obtain the time delay information to get azimuth information. Success rate of time delay estimation influenced by characteristics of sound propagation like reflection, reverberation, etc. Experiment in real environment was done to analyze performance of the cross correlation (CC) and generalized cross correlation with the phase transform (PHAT) weighting to estimate time delay between two signal. The simulation done by convolute two signal that has been given time delay and impulse response of the medium test. Then the time delay of two signal estimated by CC and PHAT algorithm in Matlab in the various SNR. Then the algorithm tested in a pool to detect stationary and moving position of sound source. Result of the simulation and experiment in real environment shown that PHAT better than CC. The best azimuth tracking achieved by using PHAT algorithm with error of 0 - 9.48 degree in stationary position. In moving sound experiments, tracking the bearing and azimuth of the mini vessel (sound source) can be done by time delay estimation using PHAT.
Directory of Open Access Journals (Sweden)
Umar Iqbal
2010-01-01
Full Text Available Present land vehicle navigation relies mostly on the Global Positioning System (GPS that may be interrupted or deteriorated in urban areas. In order to obtain continuous positioning services in all environments, GPS can be integrated with inertial sensors and vehicle odometer using Kalman filtering (KF. For car navigation, low-cost positioning solutions based on MEMS-based inertial sensors are utilized. To further reduce the cost, a reduced inertial sensor system (RISS consisting of only one gyroscope and speed measurement (obtained from the car odometer is integrated with GPS. The MEMS-based gyroscope measurement deteriorates over time due to different errors like the bias drift. These errors may lead to large azimuth errors and mitigating the azimuth errors requires robust modeling of both linear and nonlinear effects. Therefore, this paper presents a solution based on Parallel Cascade Identification (PCI module that models the azimuth errors and is augmented to KF. The proposed augmented KF-PCI method can handle both linear and nonlinear system errors as the linear parts of the errors are modeled inside the KF and the nonlinear and residual parts of the azimuth errors are modeled by PCI. The performance of this method is examined using road test experiments in a land vehicle.
Guo-Liang Ma; Adam Bzdak
2014-01-01
We show that the incoherent elastic scattering of partons, as present in a multi-phase transport model (AMPT), with a modest parton-parton cross-section of $\\sigma=1.5 - 3$ mb, naturally explains the long-range two-particle azimuthal correlation as observed in proton-proton and proton-nucleus collisions at the Large Hadron Collider.
Nordsiek, F.; Huisman, S.G.; Veen, van der R.C.A.; Sun, C.; Lohse, D.; Lathrop, D.P.
2015-01-01
We present azimuthal velocity profiles measured in a Taylor–Couette apparatus, which has been used as a model of stellar and planetary accretion disks. The apparatus has a cylinder radius ratio of ${\\it\\eta}=0.716$η=0.716, an aspect ratio of ${\\it\\Gamma}=11.74$Γ=11.74, and the plates closing the cyl