WorldWideScience

Sample records for azeotrope

  1. Separation processes, I: Azeotropic rectification

    Directory of Open Access Journals (Sweden)

    Milojević Svetomir

    2005-01-01

    Full Text Available In a series of two articles, the problems of azeotrope separation (part I and the design of separation units (part II were analyzed. The basic definition and equations of vapour-liquid equilibria for ideal and non-ideal systems, the importance of the activity coefficient calculation necessary for the analysis of non-ideal equilibrium systems, as well as theoretical aspects of azeotrope rectification and the determination of the optimal third component (modifier or azeotrope agent are presented in the first part.

  2. Static multiplicities in heterogeneous azeotropic distillation sequences

    DEFF Research Database (Denmark)

    Esbjerg, Klavs; Andersen, Torben Ravn; Jørgensen, Sten Bay

    1998-01-01

    In this paper the results of a bifurcation analysis on heterogeneous azeotropic distillation sequences are given. Two sequences suitable for ethanol dehydration are compared: The 'direct' and the 'indirect' sequence. It is shown, that the two sequences, despite their similarities, exhibit very...... different static behavior. The method of Petlyuk and Avet'yan (1971), Bekiaris et al. (1993), which assumes infinite reflux and infinite number of stages, is extended to and applied on heterogeneous azeotropic distillation sequences. The predictions are substantiated through simulations. The static sequence...

  3. A RARE CASE OF AZEOTROPIC COPOLYMERIZATION

    NARCIS (Netherlands)

    JONGSMA, T; KIMKES, P; CHALLA, G

    1991-01-01

    Copolymerizations with both reactivity ratios equal to one are rare. Therefore, we report here on the radical copolymerization of styrene and p-tert-butoxy-carbonyl-oxy-styrene in toluene with AIBN as initiator. We found it to be an azeotropic copolymerization for all compositions, i.e. f1 = F1 and

  4. Ionic liquids in separations of azeotropic systems – A review

    International Nuclear Information System (INIS)

    Pereiro, A.B.; Araújo, J.M.M.; Esperança, J.M.S.S.; Marrucho, I.M.; Rebelo, L.P.N.

    2012-01-01

    Highlights: ► This paper provides a review of methods using ionic liquids as azeotrope breakers. ► Azeotrope breaking potential of ILs was compared to that of conventional solvents. ► The influence of ILs structure on the azeotrope breaking capacity was accomplished. ► Guidelines to select the most suitable ILs as azeotrope breakers were established. - Abstract: Efforts to make existing separation methods more efficient and eco-friendly may get a boost from the use of a relatively new class of compounds known as ionic liquids (ILs). The separation of azeotropic mixtures has conventionally been one of the most challenging tasks in industrial processes due to the fact that their separation by simple distillation is basically impossible. This paper provides a critical review of methods using ILs as azeotrope breakers. Three separation processes were addressed: liquid–liquid extraction, extractive distillation, and supported liquid membranes. We examine the azeotrope breaking potential of ILs and compare their performance to that of conventional solvents. A systematic analysis of the influence of the structure of ILs on their azeotrope breaking capacity contributes to the establishment of guidelines for selecting the most suitable ILs for the separation of specific azeotropic mixtures.

  5. On the Responses of Azeotropes to Pressure Variations

    DEFF Research Database (Denmark)

    Abildskov, Jens; O’Connell, John P.

    2014-01-01

    Systems with azeotropes cannot be separated by simple distillation since the vapor and liquid compositions are the same. Variation of the applied pressure can shift the azeotropic composition out of the range of purification of a single column or may allow pressure swing operation of two columns....... Because of the sensitivity of column size to accurate estimates of the relative volatility, it is important to use reliable phase equilibrium thermodynamics when exploring the possibility of varying pressure to avoid an azeotrope. Based on an analysis of the pressure sensitivity of azeotropic compositions...

  6. Simultaneous Design of Ionic Liquids and Azeotropic Separation Processes

    DEFF Research Database (Denmark)

    Roughton, Brock C.; White, John; Camarda, Kyle V.

    2011-01-01

    A methodology for the design of azeotrope separation processes using ionic liquids as entrainers is outlined. A Hildebrand solubility parameter group contribution model has been developed to screen for or design an ionic liquid entrainer that is soluble with the azeotropic components. Using the b...... % [BMPy][BF4] added. The driving force concept is used to design an extractive distillation process that minimizes energy inputs. The methodology given can be expanded to the use of ionic liquids as entrainers in any azeotropic system of interest.......A methodology for the design of azeotrope separation processes using ionic liquids as entrainers is outlined. A Hildebrand solubility parameter group contribution model has been developed to screen for or design an ionic liquid entrainer that is soluble with the azeotropic components. Using...

  7. Separation of organic azeotropic mixtures by pervaporation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W.

    1991-12-01

    Distillation is a commonly used separation technique in the petroleum refining and chemical processing industries. However, there are a number of potential separations involving azetropic and close-boiling organic mixtures that cannot be separated efficiently by distillation. Pervaporation is a membrane-based process that uses selective permeation through membranes to separate liquid mixtures. Because the separation process is not affected by the relative volatility of the mixture components being separated, pervaporation can be used to separate azetropes and close-boiling mixtures. Our results showed that pervaporation membranes can be used to separate azeotropic mixtures efficiently, a result that is not achievable with simple distillation. The membranes were 5--10 times more permeable to one of the components of the mixture, concentrating it in the permeate stream. For example, the membrane was 10 times more permeable to ethanol than methyl ethyl ketone, producing 60% ethanol permeate from an azeotropic mixture of ethanol and methyl ethyl ketone containing 18% ethanol. For the ethyl acetate/water mixture, the membranes showed a very high selectivity to water (> 300) and the permeate was 50--100 times enriched in water relative to the feed. The membranes had permeate fluxes on the order of 0.1--1 kg/m{sup 2}{center dot}h in the operating range of 55--70{degrees}C. Higher fluxes were obtained by increasing the operating temperature.

  8. Azeotrope in LiF-HfF4 system

    International Nuclear Information System (INIS)

    Sorokin, I.D.; Korenev, Yu.M.; Sidorov, L.N.

    1975-01-01

    The gaseous phase of the system LiF-HfF 4 is investigated by means of isothermal evaporation. Using experimental data, p-X diagrams are constructed for 1125, 1075, 1025, 975 and 925 K. It is shown that the azeotrope with minimum total pressure observed at 1125 K degenerates upon lowering of the temperature and entry into the heterogeneous region. At 975 K the azeotrope corresponds to the point of inflexion from the horizontal tangent on the total pressure curve. At lower temperatures azeotropic distillation is absent from the system. (author)

  9. The Influence of Distillation Conditions on the Azeotropic Composition

    Science.gov (United States)

    Wisniak, Jaime

    1998-11-01

    The thermodynamic conditions that determine the presence of an azeotrope in a binary solution are developed and analyzed together with the criteria that define if the azeotrope has a maximum or minimum boiling point at constant pressure. It is shown that using simple models for describing vapor-liquid equilibria and vapor pressure data of the pure components it is possible to determine rather accurately how the azeotropic point will shift if the distillation is carried out at a different pressure or temperature. Examples are given on the use of the proposed method; these can be used as classroom material.

  10. Responses of azeotropes and relative volatilities to pressure variations

    DEFF Research Database (Denmark)

    Abildskov, Jens; O’Connell, John P.

    2015-01-01

    Mixtures with azeotropes cannot be separated by simple distillation since the vapor and liquid compositions are the same. One option to overcome this limitation is to vary the applied pressure to shift the azeotropic composition out of the range of a single column or use pressure-swing operation...... of two columns. Because operating costs are highly sensitive to the pressure dependence of azeotropic compositions, reliable and accurate phase equilibrium thermodynamic property information is needed to computationally explore pressure variation for such processes. An analysis of property modeling has...... been done for the pressure sensitivity of azeotropic composition, and examples are given of modeling strategies for binary and ternary mixtures. A quantitative criterion for the need to consider nonideality effects in both modeling and parameter regression has been established, based on similarity...

  11. Ionic-Liquid Based Separation of Azeotropic Mixtures

    DEFF Research Database (Denmark)

    Kulajanpeng, Kusuma; Suriyapraphadilok, Uthaiporn; Gani, Rafiqul

    2014-01-01

    methodology for the screening of ionic liquids (ILs) as entrainers for ILs-based separation processes in binary aqueous azeotropic systems (e.g., water + ethanol and water + isopropanol) is presented. Ionic liquids as entrainers were first screened based on a combination of criteria such as stabi......methodology for the screening of ionic liquids (ILs) as entrainers for ILs-based separation processes in binary aqueous azeotropic systems (e.g., water + ethanol and water + isopropanol) is presented. Ionic liquids as entrainers were first screened based on a combination of criteria...... [C1MIM][DMP]. For the final evaluation, the best candidates for aqueous systems were used as entrainers, and then the vapor-liquid equilibrium (VLE) of the ternary systems containing ILs was predicted by the Non Random Two Liquids (NRTL) model to confirm the breaking of the azeotrope. Based...... on minimum concentration of the ILs required to break the given azeotrope, the best ILs as entrainers for water + ethanol and water + isopropanol azeotropic mixtures were [C1MIM][DMP] and [C2MIM][N(CN)2], respectively....

  12. Desolventizing of soybean oil/azeotrope mixtures using ceramic membranes.

    Science.gov (United States)

    de Melo, Jonas R M; Tiggeman, Lidia; Rezzadori, Katia; Steffens, Juliana; Palliga, Marshall; Oliveira, J Vladimir; Di Luccio, Marco; Tres, Marcus V

    2017-08-01

    This work investigates the use of ceramic membranes with different molecular weight cut-offs (MWCOs: 5, 10 and 20 kDa) to desolventize azeotropic solvent mixtures (ethanol/n-hexane and isopropyl alcohol/n-hexane) from soybean oil/azeotrope micelles. Results show that a decrease in the MWCO of a membrane and an increase in the solvent mass ratio in the mixture resulted in a significant reduction in the permeate flux. The 20 kDa membrane presented the highest permeate flux, 80 and 60 kg/m 2 h for the soybean oil/n-hexane/isopropyl alcohol and soybean oil/n-hexane/ethanol azeotropes, respectively, for an oil to solvent ratio of 1:3 (w/w). The highest oil retention was found using the n-hexane/isopropyl alcohol azeotrope, around 25% in the membrane with the lowest MWCO, that is, 5 kDa. It is shown that the azeotropic mixtures provided intermediate characteristics compared to the original pure solvent behavior.

  13. Separation of azeotropic mixtures : tools for analysis and studies on batch distillation operation

    OpenAIRE

    Hilmen, Eva-Katrine

    2000-01-01

    Separation of azeotropic mixtures is a topic of great practical and industrial interest. Most liquid mixtures of organic components form nonideal systems. The presence of some specific groups, particularly polar groups (oxygen, nitrogen, chlorine and fluorine), often results in the formation of azeotropes. Azeotropic mixtures may often be effectively separated by distillation by adding a liquid material (entrainer) to the system. For the development of separation processes for azeotropic ...

  14. THERMODYNAMIC TOPOLOGICAL ANALYSIS OF EXTRACTIVE DISTILLATION OF MAXIMUM BOILING AZEOTROPES

    Directory of Open Access Journals (Sweden)

    W. F. Shen

    2015-12-01

    Full Text Available Abstract This paper provides a feasibility study of azeotropic mixture separation based on a topological analysis combining thermodynamic knowledge of residue curve maps, univolatility and unidistribution curves, and extractive profiles. Thermodynamic topological features related to process operations for typical ternary diagram classes 1.0-2 are, for the first time, discussed. Separating acetone/chloroform is presented as an illustrative example; different entrainers are investigated: several heavy ones, a light one, and water, covering the Serafimov classes 1.0-2, 1.0-1a and 3.1-4, respectively. The general feasibility criterion that was previously established for ternary mixtures including only one azeotrope (1.0-1a or 1.0-2 is now, for the first time, extended to that including three azeotropes (class 3.1–4.

  15. Separation of Azeotropic Mixture Acetone + Hexane by Using Polydimethylsiloxane Membrane.

    Czech Academy of Sciences Publication Activity Database

    Randová, A.; Bartovská, L.; Kačírková, Marie; Ledesma, Oscar Iván Hernández; Červenková Šťastná, Lucie; Izák, Pavel; Žitková, Andrea; Friess, K.

    2016-01-01

    Roč. 170, OCT 1 (2016), s. 256-263 ISSN 1383-5866 R&D Projects: GA MŠk(CZ) LD14094 Institutional support: RVO:67985858 Keywords : azeotropic mixture * PDMS membrane * pervaporation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  16. Azeotropic binary solvent mixtures for preparation of organic single crystals

    NARCIS (Netherlands)

    Li, X.; Kjellander, B.K.C.; Anthony, J.E.; Bastiaansen, C.W.M.; Broer, D.J.; Gelinck, G.H.

    2009-01-01

    Here, a new approach is introduced to prepare large single crystals of π-conjugated organic molecules from solution. Utilizing the concept of azeotropism, single crystals of tri-isopropylsilylethynyl pentacene (TIPS-PEN) with dimensions up to millimeters are facilely self-assembled from homogeneous

  17. Azeotropic binary solvent mixtures for preparation of organic single crystals

    NARCIS (Netherlands)

    Li, X.; Kjellander, B.K.C.; Anthony, J.E.; Bastiaansen, C.W.M.; Broer, D.J.; Gelinck, G.H.

    2009-01-01

    Here, a new approach is introduced to prepare large single crystals of p-conjugated organic molecules from solution. Utilizing the concept of azeotropism, single crystals of tri-isopropylsilylethynyl pentacene (TIPS-PEN) with dimensions up to millimeters are facilely self-assembled from homogeneous

  18. Tissue free water tritium separation from foodstuffs by azeotropic distillation

    International Nuclear Information System (INIS)

    Constantin, F.; Ciubotaru, A.; Popa, D.

    1998-01-01

    In this paper the tritium separation from tissue free water in foodstuffs by azeotropic distillation is described. Tritium in tissue water is assayed by liquid scintillation counting using well-established quenched correction method. The mean value of the tritium concentration in tissue water from foodstuffs is about 6-12 Bq/l very similar to the tritium mean concentration measured in the surface waters of the area where the samples have been collected (about 12 Bq/l. Therefore, the tritium content in the water fraction of the food samples can be considered in equilibrium with the local environmental water sources. The azeotropic distillation it is an accessible separation method which does not need a sophisticated and expansive distillation apparatus. It is a fast method of separation tissue free water from foodstuffs being very important in the surveillance activity of the environmental within nuclear electric plant. It is suitable for processing a small quantity of samples and for a production type facility when a large number of samples must be processed because the solvent can be purified and reused. The azeotropic distillation has some limits being used to separate water from samples with high content of water (85-90%) and simple a simple chemical structures as: vegetables, fruits, cereal, soil, vegetation. According to the results obtained, the organic substituents of milk, wine, meat (casein, lactose, milk fat, alcohol, esters) may enhance the chemisorption of tritium on through exchange organic hydrogen as -OH, -SH, -NH, -COOH with tritium. Also, the tissue water separation by azeotropic distillation is not complete and can not guarantee the absence of the vaporization isotope effect of the HTO/H 2 O system., However, the azeotropic distillation is the preferred method of the water extraction from food samples, which makes it useful for the tritium transfer from soil to foodstuffs. (authors)

  19. Tissue free water tritium separation from foodstuffs by azeotropic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, F; Ciubotaru, A; Popa, D [Inspectorate of Public Health of Bucharest (Romania)

    1999-12-31

    In this paper the tritium separation from tissue free water in foodstuffs by azeotropic distillation is described. Tritium in tissue water is assayed by liquid scintillation counting using well-established quenched correction method. The mean value of the tritium concentration in tissue water from foodstuffs is about 6-12 Bq/l very similar to the tritium mean concentration measured in the surface waters of the area where the samples have been collected (about 12 Bq/l. Therefore, the tritium content in the water fraction of the food samples can be considered in equilibrium with the local environmental water sources. The azeotropic distillation it is an accessible separation method which does not need a sophisticated and expansive distillation apparatus. It is a fast method of separation tissue free water from foodstuffs being very important in the surveillance activity of the environmental within nuclear electric plant. It is suitable for processing a small quantity of samples and for a production type facility when a large number of samples must be processed because the solvent can be purified and reused. The azeotropic distillation has some limits being used to separate water from samples with high content of water (85-90%) and simple a simple chemical structures as: vegetables, fruits, cereal, soil, vegetation. According to the results obtained, the organic substituents of milk, wine, meat (casein, lactose, milk fat, alcohol, esters) may enhance the chemisorption of tritium on through exchange organic hydrogen as -OH, -SH, -NH, -COOH with tritium. Also, the tissue water separation by azeotropic distillation is not complete and can not guarantee the absence of the vaporization isotope effect of the HTO/H{sub 2}O system., However, the azeotropic distillation is the preferred method of the water extraction from food samples, which makes it useful for the tritium transfer from soil to foodstuffs. (authors) 2 tabs.

  20. Analytical determination of distillation boundaries for ternary azeotropic systems

    OpenAIRE

    Marcilla Gomis, Antonio; Reyes Labarta, Juan Antonio; Velasco, Raúl; Serrano Cayuelas, María Dolores; Olaya López, María del Mar

    2009-01-01

    A new straight forward algorithm to calculate distillation boundaries in ternary azeotropic systems has been developed. The proposed method allows, using cubic splines, the calculation of distillation trajectories and the calculation of that corresponding to the searched distillation boundaries. The algorithm is applied to 4 ternary liquid-vapour systems to test its validity. Vicepresidency of Research (University of Alicante) and Generalitat Valenciana (GV/2007/125)

  1. Application of the QSPR approach to the boiling points of azeotropes.

    Science.gov (United States)

    Katritzky, Alan R; Stoyanova-Slavova, Iva B; Tämm, Kaido; Tamm, Tarmo; Karelson, Mati

    2011-04-21

    CODESSA Pro derivative descriptors were calculated for a data set of 426 azeotropic mixtures by the centroid approximation and the weighted-contribution-factor approximation. The two approximations produced almost identical four-descriptor QSPR models relating the structural characteristic of the individual components of azeotropes to the azeotropic boiling points. These models were supported by internal and external validations. The descriptors contributing to the QSPR models are directly related to the three components of the enthalpy (heat) of vaporization.

  2. Separation of Process Wastewater with Extractive Heterogeneous-Azeotropic Distillation

    Directory of Open Access Journals (Sweden)

    Tóth András József

    2016-10-01

    Full Text Available The application of vapour-liquid equilibria-based separation alternatives can be extraordinarily complicated for the treatment of process wastewaters containing heterogeneous-azeotropic. Despite dissimilar successfully tested methods for separation, there is possibility to get better distillation method by enabling the separation of more and more specific process wastewater. Extractive heterogeneous-azeotropic distillation (EHAD is a new advance in treatment of fine chemical wastewater showing special features to cope with the treatment of highly non-ideal mixtures. This method combines the worth of heterogeneous-azeotropic and extractive distillations in one apparatus without addition of any extra materials. The study of the separations of ternary component process wastewater from the fine chemical industry shows both in the modelled and experimental results that EHAD can be successfully applied. The measured and modelled compositions at extreme purities, that is, close to 0% or 100%, can be different because of the inaccuracies of the modelling. This highlights the paramount importance of the experiments if special extra-fine chemicals with almost no impurities, e.g. of pharmacopoeial quality are to be produced by special distillation technique. This study expands the application of EHAD technique, this new field is the separation of process wastewaters.

  3. Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes

    DEFF Research Database (Denmark)

    Roughton, Brock C.; Christian, Brianna; White, John

    2012-01-01

    A methodology and tool set for the simultaneous design of ionic liquid entrainers and azeotropic separation processes is presented. By adjusting the cation, anion, and alkyl chain length on the cation, the properties of the ionic liquid can be adjusted to design an entrainer for a given azeotropic...... mixture. Several group contribution property models available in literature have been used along with a newly developed group contribution solubility parameter model and UNIFAC model for ionic liquids (UNIFAC-IL). For a given azeotropic mixture, an ionic liquid is designed using a computer-aided molecular...... design (CAMD) method and the UNIFAC-IL model is used to screen design candidates based on minimum ionic liquid concentration needed to break the azeotrope. Once the ionic liquid has been designed, the extractive distillation column for the azeotropic mixture is designed using the driving force method...

  4. Simultaneous Design of Ionic Liquids and Azeotropic Separation for Systems Containing Water

    DEFF Research Database (Denmark)

    Roughton, Brock; Camarda, Kyle V.; Gani, Rafiqul

    Separation of azeotropic mixtures is a very common but challenging task, covering a wide range of industrial sectors and issues. For example, most down-stream separation problems following a synthesis step of pharmaceutical and/or biochemical processes, involve the separation of azeotropes. Also......, many separation tasks in the petrochemical and chemical industries involve separation of azeotropic mixtures. A common issue with the design and operation of these separation tasks is whether or not to use solvents? And, if solvents are to be used, what kind of solvent should be used and what would....... Since a large number of azeotropes encountered include water as one of the compounds, the use of ionic liquids in solvent-based separation of water in azeotropic systems has been investigated. Along with the design of the ionic liquid being used to entrain water, the extractive distillation process has...

  5. Separation of organic azeotropic mixtures by pervaporation. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W.

    1991-12-01

    Distillation is a commonly used separation technique in the petroleum refining and chemical processing industries. However, there are a number of potential separations involving azetropic and close-boiling organic mixtures that cannot be separated efficiently by distillation. Pervaporation is a membrane-based process that uses selective permeation through membranes to separate liquid mixtures. Because the separation process is not affected by the relative volatility of the mixture components being separated, pervaporation can be used to separate azetropes and close-boiling mixtures. Our results showed that pervaporation membranes can be used to separate azeotropic mixtures efficiently, a result that is not achievable with simple distillation. The membranes were 5--10 times more permeable to one of the components of the mixture, concentrating it in the permeate stream. For example, the membrane was 10 times more permeable to ethanol than methyl ethyl ketone, producing 60% ethanol permeate from an azeotropic mixture of ethanol and methyl ethyl ketone containing 18% ethanol. For the ethyl acetate/water mixture, the membranes showed a very high selectivity to water (> 300) and the permeate was 50--100 times enriched in water relative to the feed. The membranes had permeate fluxes on the order of 0.1--1 kg/m{sup 2}{center_dot}h in the operating range of 55--70{degrees}C. Higher fluxes were obtained by increasing the operating temperature.

  6. Separating Iso-Propanol-Toluene mixture by azeotropic distillation

    Science.gov (United States)

    Iqbal, Asma; Ahmad, Syed Akhlaq

    2018-05-01

    The separation of Iso-Propanol-Toluene azeotropic mixture using Acetone as an entrainer has been simulated on Aspen Plus software package using rigorous methods. Calculations of the vapor-liquid equilibrium for the binary system are done using UNIQUAC-RK model which gives a good agreement with the experimental data reported in literature. The effects of the Reflux ratio (RR), distillate-to-feed molar ratio (D/F), feed stage, solvent feed stage, Total no. of stages and solvent feed temperature on the product purities and recoveries are studied to obtain their optimum values that give the maximum purity and recovery of products. The configuration consists of 20 theoretical stages with an equimolar feed of binary mixture. The desired separation of binary mixture has been achieved at the feed stage and an entrainer feeding stage of 15 and 12 respectively with the reflux ratios of 2.5 and 4.0, and D/F ratio of 0.75 and 0.54 respectively in the two columns. The simulation results thus obtained are useful to setup the optimal column configuration of the azeotropic distillation process.

  7. Hetero-azeotropic distillation: combining fungal dehydration and lipid extraction.

    Science.gov (United States)

    Tough, A J; Isabella, B L; Beattie, J E; Herbert, R A

    2000-01-01

    A low-cost single-stage laboratory process combining fungal dehydration and lipid extraction was compared with a traditional two-stage method employing freeze-drying and subsequent mechanical disruption in the presence of solvent. The ability of a number of organic solvents to form hetero-azeotropes with water was exploited. Chloroform, cyclohexane and hexane were assessed in their abilities to both dry and extract lipid from the oleaginous phycomycete Mortierella alpina (ATCC 32222). Drying rate and lipid extraction were maximised under conditions that prevented fungal agglomeration. The total processing time was limited by the rate of dehydration rather than by the rate of lipid extraction. In all cases azeotropic distillation facilitated a greater rate of dehydration than was possible with freeze-drying. A consequent reduction in overall processing time was observed. Uniquely, both the solvent used and the mode of mixing employed controlled the morphology of the aggregates formed during distillation. In combination with mild mixing chloroform discouraged agglomeration whereas cyclohexane and hexane promoted aggregation. Successful lipid extraction was dependent on the use of dry biomass rather than on the application of heat to effect distillation. Neither the application of heat nor the solvent employed had any significant effect on the lipid composition of the extracted oil.

  8. Application of the Firefly and Luus-Jaakola algorithms in the calculation of a double reactive azeotrope

    Science.gov (United States)

    Mendes Platt, Gustavo; Pinheiro Domingos, Roberto; Oliveira de Andrade, Matheus

    2014-01-01

    The calculation of reactive azeotropes is an important task in the preliminary design and simulation of reactive distillation columns. Classically, homogeneous nonreactive azeotropes are vapor-liquid coexistence conditions where phase compositions are equal. For homogeneous reactive azeotropes, simultaneous phase and chemical equilibria occur concomitantly with equality of compositions (in the Ung-Doherty transformed space). The modeling of reactive azeotrope calculation is represented by a nonlinear algebraic system with phase equilibrium, chemical equilibrium and azeotropy equations. This nonlinear system can exhibit more than one solution, corresponding to a double reactive azeotrope. In a previous paper (Platt et al 2013 J. Phys.: Conf. Ser. 410 012020), we investigated some numerical aspects of the calculation of reactive azeotropes in the isobutene + methanol + methyl-tert-butyl-ether (with two reactive azeotropes) system using two metaheuristics: the Luus-Jaakola adaptive random search and the Firefly algorithm. Here, we use a hybrid structure (stochastic + deterministic) in order to produce accurate results for both azeotropes. After identifying the neighborhood of the reactive azeotrope, the nonlinear algebraic system is solved using Newton's method. The results indicate that using metaheuristics and some techniques devoted to the calculation of multiple minima allows both azeotropic coordinates in this reactive system to be obtains. In this sense, we provide a comprehensive analysis of a useful framework devoted to solving nonlinear systems, particularly in phase equilibrium problems.

  9. Application of the Firefly and Luus–Jaakola algorithms in the calculation of a double reactive azeotrope

    International Nuclear Information System (INIS)

    Platt, Gustavo Mendes; Domingos, Roberto Pinheiro; Andrade, Matheus Oliveira de

    2014-01-01

    The calculation of reactive azeotropes is an important task in the preliminary design and simulation of reactive distillation columns. Classically, homogeneous nonreactive azeotropes are vapor–liquid coexistence conditions where phase compositions are equal. For homogeneous reactive azeotropes, simultaneous phase and chemical equilibria occur concomitantly with equality of compositions (in the Ung–Doherty transformed space). The modeling of reactive azeotrope calculation is represented by a nonlinear algebraic system with phase equilibrium, chemical equilibrium and azeotropy equations. This nonlinear system can exhibit more than one solution, corresponding to a double reactive azeotrope. In a previous paper (Platt et al 2013 J. Phys.: Conf. Ser. 410 012020), we investigated some numerical aspects of the calculation of reactive azeotropes in the isobutene + methanol + methyl-tert-butyl-ether (with two reactive azeotropes) system using two metaheuristics: the Luus–Jaakola adaptive random search and the Firefly algorithm. Here, we use a hybrid structure (stochastic + deterministic) in order to produce accurate results for both azeotropes. After identifying the neighborhood of the reactive azeotrope, the nonlinear algebraic system is solved using Newton's method. The results indicate that using metaheuristics and some techniques devoted to the calculation of multiple minima allows both azeotropic coordinates in this reactive system to be obtains. In this sense, we provide a comprehensive analysis of a useful framework devoted to solving nonlinear systems, particularly in phase equilibrium problems. (paper)

  10. Reducing energy consumption and CO{sub 2} emissions in thermally coupled azeotropic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L.Y.; Chang, X.W.; Zhang, Y.M.; Li, J.; Li, Q.S. [Department of Chemical Engineering, China University of Petroleum, Qingdao, Shandong Province (China)

    2010-03-15

    The design and optimization procedures of a heterogeneous thermally coupled azeotropic distillation sequence with a side stripper (TCADS-SS) for the purification of isopropanol has been investigated. The proposed procedures can detect the optimal values of the design variables and thereby guarantee the minimum energy consumption, which is related to the minimum CO{sub 2} emissions and the lowest total annual cost (TAC). The procedures are applied to the study of the separation of azeotropic mixtures using the two distillation sequences. In the TCADS-SS, the top end of the side stripper has both liquid and vapor exchange with the main column, which eliminates a condenser in contrast with the conventional heterogeneous azeotropic distillation sequence (CHADS). The results show that not only reductions in energy consumption and CO{sub 2} emissions but also higher thermodynamic efficiency can be obtained for the TCADS-SS. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. A PROCESS FOR SEPARATING AZEOTROPIC MIXTURES BY EXTRACTIVE AND CONVECTIVE DISTILLATION

    Science.gov (United States)

    Frazer, J.W.

    1961-12-19

    A method is described for separating an azeotrope of carbon tetrachloride and 1,1,2,2-tetrafluorodinitroethane boiling at 60 deg C. The ndethod comnprises, specifically, feeding azeotrope vapors admixed with a non- reactive gas into an extractive distillation column heated to a temperature preferably somewhat above the boiling point of the constant boiling mixture. A solvent, di-n-butylphthalate, is metered into the column above the gas inlet and permitted to flow downward, earrying with it the higher bomling fraction, while the constituent having the lower boiling point passes out of the top of the column with the non-reactive gas and is collected in a nitrogen cold trap. Other solvents which alter the vapor pressure relationship may be substituted. The method is generally applicable to azeotropic mixtures. A number of specific mixtures whicb may be separated are disclosed. (AEC)

  12. Heat transfer degradation during condensation of non-azeotropic mixtures

    Science.gov (United States)

    Azzolin, M.; Berto, A.; Bortolin, S.; Del, D., Col

    2017-11-01

    International organizations call for a reduction of the HFCs production and utilizations in the next years. Binary or ternary blends of hydroflourocarbons (HFCs) and hydrofluoroolefins (HFOs) are emerging as possible substitutes for high Global Warming Potential (GWP) fluids currently employed in some refrigeration and air-conditioning applications. In some cases, these mixtures are non-azeotropic and thus, during phase-change at constant pressure, they present a temperature glide that, for some blends, can be higher than 10 K. Such temperature variation during phase change could lead to a better matching between the refrigerant and the water temperature profiles in a condenser, thus reducing the exergy losses associated with the heat transfer process. Nevertheless, the additional mass transfer resistance which occurs during the phase change of zeotropic mixtures leads to a heat transfer degradation. Therefore, the design of a condenser working with a zeotropic mixture poses the problem of how to extend the correlations developed for pure fluids to the case of condensation of mixtures. Experimental data taken are very helpful in the assessment of design procedures. In the present paper, heat transfer coefficients have been measured during condensation of zeotropic mixtures of HFC and HFO fluids. Tests have been carried out in the test rig available at the Two Phase Heat Transfer Lab of University of Padova. During the condensation tests, the heat is subtracted from the mixture by using cold water and the heat transfer coefficient is obtained from the measurement of the heat flux on the water side, the direct measurements of the wall temperature and saturation temperature. Tests have been performed at 40°C mean saturation temperature. The present experimental database is used to assess predictive correlations for condensation of mixtures, providing valuable information on the applicability of available models.

  13. Enzymatic synthesis of sorbitan esters using a low-boiling-point azeotrope as a reaction solvent.

    Science.gov (United States)

    Sarney, D B; Barnard, M J; Virto, M; Vulfson, E N

    1997-05-20

    Sorbitan esters were prepared by controlled dehydration of sorbitol followed by lipase-catalyzed esterification of the resulting "sorbitan." The reaction was carried out in azeotropic mixtures of tert-butanol/n-hexane. A partial phase diagram to determine the temperature required for the distillation of the azeotrope at a given ratio of the solvents was constructed. The effect of varying concentrations of the two solvents on the rate of esterification and the monoester/diester ratio of the final product was investigated in detail. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 351-356, 1997.

  14. Use of azeotropic distillation for isotopic analysis of deuterium in soil water and saturate saline solution

    International Nuclear Information System (INIS)

    Santos, Antonio Vieira dos.

    1995-05-01

    The azeotropic distillation technique was adapted to extract soil water and saturate saline solution, which is similar to the sea water for the Isotopic Determination of Deuterium (D). A soil test was used to determine the precision and the nature of the methodology to extract soil water for stable isotopic analysis, using the azeotropic distillation and comparing with traditional methodology of heating under vacuum. This methodology has been very useful for several kinds of soil or saturate saline solution. The apparatus does not have a memory effect, and the chemical reagents do not affect the isotopic composition of soil water. (author). 43 refs., 10 figs., 12 tabs

  15. Behavior of the Thermodynamic Properties of Binary Mixtures near the Critical Azeotrope

    Directory of Open Access Journals (Sweden)

    Azzedine Abbaci

    2003-12-01

    Full Text Available Abstract: In this work we investigate the critical line of binary azeotropic mixtures of acetone-n-pentane. We pinpoint the abnormal behavior of the critical density line as a function of the mole fraction of one of the component and show its influence on other thermodynamic properties such as the volume, the enthalpy and the entropy.

  16. Nucleate boiling at the forced flow of binary non-azeotropic mixtures in horizontal tubes

    Directory of Open Access Journals (Sweden)

    Mezentseva N.N.

    2015-01-01

    Full Text Available Analysis of experimental values of heat transfer coefficients obtained through investigation of nucleate boiling of the two-component non-azeotropic mixtures inside the horizontal smooth tubes by various authors is presented. In the zone of nucleate boiling, the experimental data are in good agreement with the calculation dependence.

  17. Azeotropic distillation assisted fabrication of silver nanocages and their catalytic property for reduction of 4-nitrophenol.

    Science.gov (United States)

    Min, Jianzhong; Wang, Fei; Cai, Yunliang; Liang, Shuai; Zhang, Zhenwei; Jiang, Xingmao

    2015-01-14

    Monodisperse silver nanocages (AgNCs) with specific interiors were successfully synthesized by an azeotropic distillation (AD) assisted method and exhibited excellent catalytic activities for reduction of 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) due to the unique hollow morphology and small thickness of the silver shell.

  18. Systematic bias in the measurement of water in oils by tubular oven evaporation and azeotropic distillation.

    Science.gov (United States)

    Margolis, S A; Mele, T

    2001-10-15

    Water in oil has been measured by tubular oven evaporation and by azeotropic distillation into a coulometric moisture analyzer. The results of these measurements were compared to the results obtained by volumetric titration of water in oil. The volumetric measurements were consistently higher than the measurements made by tubular oven evaporation or azeotropic distillation. A mass balance study was performed by volumetric Karl Fischer titration of the water in the oil that remained in the tubular oven and in the distillation apparatus. This study indicated that measurable amounts of water were not removed after exhaustive evaporation or distillation. The sum of the water removed by distillation from toluene and that remaining in the distillation chamber was equal to the amount of water measured in the oil by the volumetric method. The data are consistent with the existence of an oil-water azeotrope that does not release water upon evaporation at 160 degrees C or upon dissolution in toluene and distillation of the water-toluene azeotrope. These results were obtained for oils varying in viscosity from 8 to 850 m2/s, and the amount of water remaining associated with the oil appears to be dependent upon the composition of the oil and the method of analysis.

  19. Desolventizing of Jatropha curcas oil from azeotropes of solvents using ceramic membranes.

    Science.gov (United States)

    Carniel, Naira; Zabot, Giovani L; Paliga, Marshall; Mignoni, Marcelo L; Mazutti, Marcio A; Priamo, Wagner L; Oliveira, J V; Di Luccio, Marco; Tres, Marcus V

    2017-12-01

    The separation of Jatropha curcas oil from azeotropes of ethyl alcohol-n-hexane and isopropyl alcohol-n-hexane using ceramic membranes with different cutoffs (5, 10 and 20 kDa) is presented. The mass ratios of oil:azeotropes (O:S) studied were 1:3 for feeding pressures of 0.1, 0.2 and 0.3 MPa, and 1:1 for the feeding pressure of 0.1 MPa. Isopropyl alcohol was the best solvent for the membranes conditioning to permeate n-hexane (240 kg/m 2  h). In the separation of J. curcas oil and azeotropes of solvents, both membranes showed oil retention and total flux decreases with time. Overall, the lowest decrease in the retentions was reached in the 5 kDa membrane, while the lowest decrease in the total flux was reached in the 20 kDa. In the separation of oil and ethyl alcohol-n-hexane azeotrope, the best retention at 60 min of the process was equal to 17.3 wt% in the 20 kDa membrane at 0.3 MPa and O:S ratio equalled to 1:3. In this condition, the total permeate flux was 17.5 kg/m 2  h. Different retentions and permeabilities are provided when changing the O:S ratio, the feeding pressure and the molecular weight cutoff of membranes.

  20. Conceptual design of heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer

    OpenAIRE

    Paritta Prayoonyong

    2014-01-01

    The synthesis of a heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer is presented. The residue curve map of the ethanol/water/1-butanol mixture is computationally generated using non-random twoliquid thermodynamic model. It is found that 1-butanol leads to a residue curve map topological structure different from that generated by typical entrainers used in ethanol dehydration. Synthesis...

  1. Simulation of N-Propanol Dehydration Process Via Heterogeneous Azeotropic Distillation Using the NRTL Equation

    Directory of Open Access Journals (Sweden)

    Wyczesany Andrzej

    2017-03-01

    Full Text Available Numerical values of the NRTL equation parameters for calculation of the vapour - liquid - liquid equilibria (VLLE at atmospheric pressures have been presented for 5 ternary mixtures. These values were fitted to the experimental VLLE and vapour - liquid equilibrium (VLE data to describe simultaneously, as accurately as possible, the VLE and the liquid - liquid equilibria (LLE. The coefficients of this model called further NRTL-VLL were used for simulations of n-propanol dehydration via heterogeneous azeotropic distillation. The calculations performed by a ChemCAD simulator were done for 4 mixtures using hydrocarbons, ether and ester as an entrainer. In majority simulations the top streams of the azeotropic column had composition and temperature similar to the corresponding experimental values of ternary azeotropes. The agreement between the concentrations of both liquid phases formed in a decanter and the experimental values of the LLE was good for all four simulations. The energy requirements were the most advantageous for the simulation with di-npropyl ether (DNPE and isooctane. Simulations were performed also for one mixture using the NRTL equation coefficients taken from the ChemCAD database. In that case the compositions of the liquid organic phases leaving the decanter differed significantly from the experimental LLE data.

  2. Azeotropic behaviour of (benzene + cyclohexane + chlorobenzene) ternary mixture using chlorobenzene as entrainer at 101.3 kPa

    International Nuclear Information System (INIS)

    Silva, L.M.C.; Mattedi, S.; Gonzalez-Olmos, R.; Iglesias, M.

    2006-01-01

    In this paper, the azeotropic behaviour of the (benzene + cyclohexane + chlorobenzene) ternary mixture was experimentally investigated with the aim of enhancing the knowledge for the feasible use of chlorobenzene as an entrainer for the azeotropic distillation of the binary azeotrope. Such a study has not been reported in the literature to the best of the authors' knowledge. (Vapour + liquid) equilibria data for (benzene + cyclohexane + chlorobenzene) at 101.3 kPa were obtained with a Othmer-type ebulliometer. Data were tested and considered thermodynamically consistent. The experimental results showed that this ternary mixture is completely miscible and exhibits an unique binary homogeneous azeotrope, an unstable node at the conditions studied, and the propitious topological characteristics (residual curve map and relative volatility) to be separated. Satisfactory results were obtained for the correlation of equilibrium compositions with the UNIQUAC activity coefficients model and also for prediction with the UNIFAC method. In both cases, low root mean square deviations of the vapour mole fraction and temperature were calculated. The capability of chlorobenzene as a modified distillation agent at atmospheric condition is discussed in terms of the thermodynamic topological analysis. A conceptual distillation scheme with reversed volatility is proposed to separate the azeotropic mixture. In order to reduce the operational cost requirements of the sequence of columns proposed, the range for optimal reflux and the ratio for feed flow conditions were studied

  3. Azeotropic behaviour of (benzene + cyclohexane + chlorobenzene) ternary mixture using chlorobenzene as entrainer at 101.3 kPa

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L.M.C. [Departamento de Engenharia Quimica, Escola Politecnica, Universidade Federal da Bahia, 40210 Salvador de Bahia (Brazil); Mattedi, S. [Departamento de Engenharia Quimica, Escola Politecnica, Universidade Federal da Bahia, 40210 Salvador de Bahia (Brazil); Gonzalez-Olmos, R. [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Avinguda Paisos Catalans 26, Campus Sescelades, 43007 Tarragona (Spain); Iglesias, M. [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Avinguda Paisos Catalans 26, Campus Sescelades, 43007 Tarragona (Spain)]. E-mail: miguelangel.iglesias@urv.net

    2006-12-15

    In this paper, the azeotropic behaviour of the (benzene + cyclohexane + chlorobenzene) ternary mixture was experimentally investigated with the aim of enhancing the knowledge for the feasible use of chlorobenzene as an entrainer for the azeotropic distillation of the binary azeotrope. Such a study has not been reported in the literature to the best of the authors' knowledge. (Vapour + liquid) equilibria data for (benzene + cyclohexane + chlorobenzene) at 101.3 kPa were obtained with a Othmer-type ebulliometer. Data were tested and considered thermodynamically consistent. The experimental results showed that this ternary mixture is completely miscible and exhibits an unique binary homogeneous azeotrope, an unstable node at the conditions studied, and the propitious topological characteristics (residual curve map and relative volatility) to be separated. Satisfactory results were obtained for the correlation of equilibrium compositions with the UNIQUAC activity coefficients model and also for prediction with the UNIFAC method. In both cases, low root mean square deviations of the vapour mole fraction and temperature were calculated. The capability of chlorobenzene as a modified distillation agent at atmospheric condition is discussed in terms of the thermodynamic topological analysis. A conceptual distillation scheme with reversed volatility is proposed to separate the azeotropic mixture. In order to reduce the operational cost requirements of the sequence of columns proposed, the range for optimal reflux and the ratio for feed flow conditions were studied.

  4. Non azeotrope mixing refrigerating fluids condensation outside of an horizontal tubes stack; Condensation de melanges non azeotropes de fluides frigorigenes a l'exterieur d'un faisceau de tubes horizontaux

    Energy Technology Data Exchange (ETDEWEB)

    Signe, J.Ch.

    1999-04-16

    The development of non-azeotrope mixing, as regular refrigerating fluids substitute, calls in question the experience for the design of refrigerating and cooling machinery. Studies to better understand these fluids behaviour are necessary. The aim of this thesis is the knowledge enlargement on the pure fluids and non azeotrope mixing condensation, outside of a tubes stack, and to simulate the heat transfers. The tubes stack is a condenser, type TEMA X often used in refrigerating machinery. The binary mixing HFC 134a-HFC23, allows a large sliding scale. (A.L.B.)

  5. Use of the azeotropic distillation technique in the synthesis of zirconium post ceramics

    International Nuclear Information System (INIS)

    Ussui, V.; Lazar, D.R.R.; Menezes, F.; Menezes, C.A.B.; Paschoal, J.O.A.

    1996-01-01

    The azeotropic distillation technique has been used for treatment of coprecipitated zirconium and yttrium hydroxides, in order to synthesize weak agglomerated powders. Experiments were performed by preparing suspensions of this precipitate with organic solvents as toluene, isopropanol, butanol and ethanol, which were submitted to the distillation, to remove all the liquid phase. The obtained powders after drying and calcination, have been characterized by granulometric distribution and specific surface area determination. The densities of the ceramic bodies, obtained by pressing and sintering at 1500 deg C during 1 hour, have also been evaluated. (author)

  6. Activity measurement of tritium in biological samples by azeotropic distillation liquid scintillation counter

    International Nuclear Information System (INIS)

    Wu Zongmei; Zheng Xiaomin

    1994-01-01

    The authors introduced a method of extracting tissue free water tritium (TFWT) in biological samples by azeotropic distillation with toluene and of measuring its activity by liquid scintillation counter. Measured TFWT recovery ratios of pine needles (fresh), green vegetables, radish, milk, meat, rice are 0.90, 0.95, 0.95, 0.85, 0.53 and 0.90; and the activities of TFWT are 1.8, 3.2, 1.8, 4.0, 3.3 and 2.7 Bq/L, respectively

  7. Adsorbate shape selectivity: Separation of the HF/134a azeotrope over carbogenic molecular sieve

    Energy Technology Data Exchange (ETDEWEB)

    Hong, A.; Mariwala, R.K.; Kane, M.S.; Foley, H.C. [Univ. of Delaware, Nework, DE (United States)

    1995-03-01

    Experimental evidence is provided for adsorptive shape selectivity in the separation of the azeotrope between HF and 1,1,1,2-tetrafluoroethane (134a) over pyrolyzed poly(furfuryl alcohol)-derived carbogenic molecular sieve (PPFA-CMS). The separation can be accomplished over coconut charcoal or Carbosieve G on the basis of the differences in the extent of equilibrium adsorption of HF and 134a. On these adsorbents 134a is more strongly bound than HF, thus it elutes much more slowly from the bed. The heat of adsorption for 134a in the vicinity of 200 C on Carbosieve G is {approximately}8.8 kcal/mol. In contrast, when the same azeotropic mixture is separated over PPFA-CMS prepared at 500 C, 134a is not adsorbed. As a result 134a elutes from the bed first, followed by HF. The reversal is brought about by the narrower pore size and pore size distribution of the PPFA-CMS versus that for Carbosieve G. Thus the separation over PPFA-CMS is an example of adsorbate shape selectivity and represents a limiting case of kinetic separation.

  8. Influence of Magnetic Field on the Rectification Process of Binary Heterogeneous Azeotrope

    Institute of Scientific and Technical Information of China (English)

    JIA Shaoyi; WU Songhai; LI Zhen; JIA Liang

    2005-01-01

    To improve separate effect of binary heterogeneous azeotrope in the magnetic field with different magnetic induction intensity, the influence of magnetic field on the rectification process of binary heterogeneous azeotrope was investigated with 1-butanol-water system. The results show that the composition of liquid-liquid phase equilibrium of 1-butanol-water system has definitely changed, the composition of 1-butanol in light phase (1-butanol layer) increases by 1.17%-1.63% and the composition of water in heavy phase (water layer) increases by 1.21%-1.58% under the influence of magnetic field. By separation of magnetization, the composition of 1-butanol increases by 0.8%-1.2% and the recovery ratio of 1-butanol increases by 1.6%-2.5%. Magnetic field has positive effect, however, the magnetized effect is not in proportion to magnetic induction intensity and has an optimum condition, in the range of 0.25 T-0.3 T.

  9. Efficient water removal in lipase-catalyzed esterifications using a low-boiling-point azeotrope.

    Science.gov (United States)

    Yan, Youchun; Bornscheuer, Uwe T; Schmid, Rolf D

    2002-04-05

    High conversions in lipase-catalyzed syntheses of esters from free acyl donors and an alcohol requires efficient removal of water preferentially at temperatures compatible to enzyme activity. Using a lipase B from Candida antarctica (CAL-B)-mediated synthesis of sugar fatty-acid esters, we show that a mixture of ethyl methylketone (EMK) and hexane (best ratio: 4:1, vo/vo) allows efficient removal of water generated during esterification. Azeotropic distillation of the solvent mixture (composition: 26% EMK, 55% hexane, 19% water) takes place at 59 degrees C, which closely matches the optimum temperature reported for CAL-B. Water is then removed from the azeotrope by membrane vapor permeation. In case of glucose stearate, 93% yield was achieved after 48 h using an equimolar ratio of glucose and stearic acid. CAL-B could be reused for seven reaction cycles, with 86% residual activity after 14 d total reaction time at 59 degrees C. A decrease in fatty-acid chain length as well as increasing temperatures (75 degrees C) resulted in lower conversions. In addition, immobilization of CAL-B on a magnetic polypropylene carrier (EP 100) facilitated separation of the biocatalyst. Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 31--34, 2002; DOI 10.1002/bit.10084

  10. An Analytical Method to Measure Free-Water Tritium in Foods using Azeotropic Distillation.

    Science.gov (United States)

    Soga, Keisuke; Kamei, Toshiyuki; Hachisuka, Akiko; Nishimaki-Mogami, Tomoko

    2016-01-01

    A series of accidents at the Fukushima Dai-ichi Nuclear Power Plant has raised concerns about the discharge of contaminated water containing tritium ((3)H) from the nuclear power plant into the environment and into foods. In this study, we explored convenient analytical methods to measure free-water (3)H in foods using a liquid scintillation counting and azeotropic distillation method. The detection limit was 10 Bq/L, corresponding to about 0.01% of 1 mSv/year. The (3)H recoveries were 85-90% in fruits, vegetables, meats and fishes, 75-85% in rice and cereal crops, and less than 50% in sweets containing little water. We found that, in the case of sweets, adding water to the sample before the azeotropic distillation increased the recovery and precision. Then, the recoveries reached more than 75% and RSD was less than 10% in all food categories (13 kinds). Considering its sensitivity, precision and simplicity, this method is practical and useful for (3)H analysis in various foods, and should be suitable for the safety assessment of foods. In addition, we examined the level of (3)H in foods on the Japanese market. No (3)H radioactivity was detected in any of 42 analyzed foods.

  11. Activation of aqueous hydrogen peroxide for non-catalyzed dihydroperoxidation of ketones by azeotropic removal of water.

    Science.gov (United States)

    Starkl Renar, K; Pečar, S; Iskra, J

    2015-09-28

    Cyclic and acyclic ketones were selectively converted to gem-dihydroperoxides in 72-99% yield with 30% aq. hydrogen peroxide by azeotropic distillation of water from the reaction mixture without any catalyst. The reactions were more selective than with 100% H2O2 and due to neutral conditions also less stable products could be obtained.

  12. Condensation of pure and near-azeotropic refrigerants in microfin tubes: A new computational procedure

    Energy Technology Data Exchange (ETDEWEB)

    Cavallini, A; Del Col, D; Mancin, S; Rossetto, L [Dipartimento di Fisica Tecnica, University of Padova, Via Venezia 1, Padova 35131 (Italy)

    2009-01-15

    Microfin tubes are widely used in air cooled and water cooled heat exchangers for heat pump and refrigeration applications during condensation or evaporation of refrigerants. In order to design heat exchangers and to optimize heat transfer surfaces, accurate procedures for computing pressure drops and heat transfer coefficients are necessary. This paper presents a new simple model for the prediction of the heat transfer coefficient to be applied to condensation in horizontal microfin tubes of halogenated and natural refrigerants, pure fluids or nearly azeotropic mixtures. The updated model accounts for refrigerant physical properties, two-phase flow patterns in microfin tubes and geometrical characteristics of the tubes. It is validated against a data bank of 3115 experimental heat transfer coefficients measured in different independent laboratories all over the world including diverse inside tube geometries and different condensing refrigerants among which R22, R134a, R123, R410A and CO{sub 2}. (author)

  13. Pervaporative dehydration characteristics of an ethanol/water azeotrope through various chitosan membranes.

    Science.gov (United States)

    Uragami, Tadashi; Saito, Tomoyuki; Miyata, Takashi

    2015-04-20

    The permeation and separation characteristics of an ethanol/water azeotrope through chitosan membranes of different molecular weights and degrees of deacetylation during pervaporation were investigated. The normalized permeation rate decreased with increasing molecular weight up to 90 kDa, but at over 90 kDa, the rate increased. On the other hand, the water/ethanol selectivity increased with increasing molecular weight up to 90 kDa but decreased at over 90 kDa. With increasing degree of deacetylation, the water/ethanol permselectivity increased significantly, but the normalized permeation rate decreased. The characteristics of chitosan membranes are discussed based on their chemical and physical structures such as the contact angle, density, degree of swelling, and glass transition temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Heating Performance Analysis of a Geothermal Heat Pump Working with Different Zeotropic and Azeotropic Mixtures

    Directory of Open Access Journals (Sweden)

    Robert Bedoić

    2018-06-01

    Full Text Available The aim of the paper is to examine the possibility of application of the spreadsheet calculator and Reference Fluid Thermodynamic and Transport Properties database to a thermodynamic process. The heating process of a real soil-to-water heat pump, including heat transfer in the borehole heat exchanger has been analysed. How the changes of condensing temperature, at constant evaporating temperature, influence the following: heating capacity, compressor effective power, heat supplied to evaporator, compression discharge temperature and coefficient of performance, are investigated. Also, the energy characteristics of a heat pump using different refrigerants for the same heating capacity and the same temperature regime are compared. The following refrigerants are considered: two zeotropic mixtures, R407C and R409A, a mixture with some zeotropic characteristics, R410A, and an azeotropic mixture, R507A.

  15. Fractional treatment of spent scintillation cocktail with low level tritium by azeotropic distillation

    International Nuclear Information System (INIS)

    Nishikawa, Masabumi; Kotoh, Kenji; Koga, Keisuke; Katase, Akira

    1982-01-01

    Among various waste from RI laboratories, one of the most troublesome wastes is the spent liquid scintillation cocktail, because there are no good disposal way but to store in each laboratories. The fractionation of tritiated water, solvent and alkyl detergent from the spent scintillation cocktail by the azeotropic distillation method is examined in this study, and it has been concluded that this method is applicable, It is also found in this study that removal of tritiated water from distilled solvent can be conducted by using adsorption tower with Molecular sieve 3A. Treatment of the spent scintillation cocktail within 3 months after use is recomended because no isotope exchange reaction with solvent or detergent is observed within 3 months after use in this study. No isotope effects are observed in the zeotropic distillation process. (author)

  16. Optimization study of pressure-swing distillation for the separation process of a maximum-boiling azeotropic system of water-ethylenediamine

    Energy Technology Data Exchange (ETDEWEB)

    Fulgueras, Alyssa Marie; Poudel, Jeeban; Kim, Dong Sun; Cho, Jungho [Kongju National University, Cheonan (Korea, Republic of)

    2016-01-15

    The separation of ethylenediamine (EDA) from aqueous solution is a challenging problem because its mixture forms an azeotrope. Pressure-swing distillation (PSD) as a method of separating azeotropic mixture were investigated. For a maximum-boiling azeotropic system, pressure change does not greatly affect the azeotropic composition of the system. However, the feasibility of using PSD was still analyzed through process simulation. Experimental vapor liquid equilibrium data of water-EDA system was studied to predict the suitability of thermodynamic model to be applied. This study performed an optimization of design parameters for each distillation column. Different combinations of operating pressures for the low- and high-pressure columns were used for each PSD simulation case. After the most efficient operating pressures were identified, two column configurations, low-high (LP+HP) and high-low (HP+ LP) pressure column configuration, were further compared. Heat integration was applied to PSD system to reduce low and high temperature utility consumption.

  17. Optimization study of pressure-swing distillation for the separation process of a maximum-boiling azeotropic system of water-ethylenediamine

    International Nuclear Information System (INIS)

    Fulgueras, Alyssa Marie; Poudel, Jeeban; Kim, Dong Sun; Cho, Jungho

    2016-01-01

    The separation of ethylenediamine (EDA) from aqueous solution is a challenging problem because its mixture forms an azeotrope. Pressure-swing distillation (PSD) as a method of separating azeotropic mixture were investigated. For a maximum-boiling azeotropic system, pressure change does not greatly affect the azeotropic composition of the system. However, the feasibility of using PSD was still analyzed through process simulation. Experimental vapor liquid equilibrium data of water-EDA system was studied to predict the suitability of thermodynamic model to be applied. This study performed an optimization of design parameters for each distillation column. Different combinations of operating pressures for the low- and high-pressure columns were used for each PSD simulation case. After the most efficient operating pressures were identified, two column configurations, low-high (LP+HP) and high-low (HP+ LP) pressure column configuration, were further compared. Heat integration was applied to PSD system to reduce low and high temperature utility consumption.

  18. Ethanol dehydration via azeotropic distillation with gasoline fractions as entrainers: A pilot-scale study of the manufacture of an ethanol–hydrocarbon fuel blend

    OpenAIRE

    Gomis Yagües, Vicente; Pedraza Berenguer, Ricardo; Saquete Ferrándiz, María Dolores; Font, Alicia; Garcia-Cano, Jorge

    2015-01-01

    We establish experimentally and through simulations the economic and technical viability of dehydrating ethanol by means of azeotropic distillation, using a hydrocarbon as entrainer. The purpose of this is to manufacture a ready-to-use ethanol–hydrocarbon fuel blend. In order to demonstrate the feasibility of this proposition, we have tested an azeotropic water–ethanol feed mixture, using a hydrocarbon as entrainer, in a semi pilot-plant scale distillation column. Four different hydrocarbons ...

  19. Adsorption of binary gas mixtures in heterogeneous carbon predicted by density functional theory: on the formation of adsorption azeotropes.

    Science.gov (United States)

    Ritter, James A; Pan, Huanhua; Balbuena, Perla B

    2010-09-07

    Classical density functional theory (DFT) was used to predict the adsorption of nine different binary gas mixtures in a heterogeneous BPL activated carbon with a known pore size distribution (PSD) and in single, homogeneous, slit-shaped carbon pores of different sizes. By comparing the heterogeneous results with those obtained from the ideal adsorbed solution theory and with those obtained in the homogeneous carbon, it was determined that adsorption nonideality and adsorption azeotropes are caused by the coupled effects of differences in the molecular size of the components in a gas mixture and only slight differences in the pore sizes of a heterogeneous adsorbent. For many binary gas mixtures, selectivity was found to be a strong function of pore size. As the width of a homogeneous pore increases slightly, the selectivity for two different sized adsorbates may change from being greater than unity to less than unity. This change in selectivity can be accompanied by the formation of an adsorption azeotrope when this same binary mixture is adsorbed in a heterogeneous adsorbent with a PSD, like in BPL activated carbon. These results also showed that the selectivity exhibited by a heterogeneous adsorbent can be dominated by a small number of pores that are very selective toward one of the components in the gas mixture, leading to adsorption azeotrope formation in extreme cases.

  20. Dehydration of an ethanol/water azeotrope through alginate-DNA membranes cross-linked with metal ions by pervaporation.

    Science.gov (United States)

    Uragami, Tadashi; Banno, Masashi; Miyata, Takashi

    2015-12-10

    To obtain high dehydration membranes for an ethanol/water azeotrope, dried blend membranes prepared from mixtures of sodium alginate (Alg-Na) and sodium deoxyribonucleate (DNA-Na) were cross-linked by immersing in a methanol solution of CaCl2 or MaCl2. In the dehydration of an ethanol/water azeotropic mixture by pervaporation, the effects of immersion time in methanol solution of CaCl2 or MaCl2 on the permeation rate and water/ethanol selectivity through Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes were investigated. Alg-DNA/Mg(2+) cross-linked membrane immersed for 12h in methanol solution of MaCl2 exhibited the highest water/ethanol selectivity. This results from depressed swelling of the membranes by formation of a cross-linked structure. However, excess immersion in solution containing cross-linker led to an increase in the hydrophobicity of cross-linked membrane. Therefore, the water/ethanol selectivity of Alg-DNA/Mg(2+) cross-linked membranes with an excess immersion in cross-linking solution was lowered. The relationship between the structure of Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes and their permeation and separation characteristics during pervaporation of an ethanol/water azeotropic mixture is discussed in detail. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A novel application of reactive absorption to break the CO2–ethane azeotrope with low energy requirement

    International Nuclear Information System (INIS)

    Tavan, Yadollah; Hosseini, Seyyed Hossein

    2013-01-01

    Highlights: • Investigation of RA for the CO 2 –ethane azeotropic process using Hysys simulator. • Optimization of operating parameters to minimize energy demand in the proposed RA process. • Superior performance of the RA process compared to the conventional process. • Enhance in NGL production from 795 to 1120 mole/s compared to the conventional process. - Abstract: Azeotropic separation of ethane and CO 2 using reactive absorption (RA) is studied by Hysys process software. A new configuration of a RA process is proposed using diethanolamine (DEA) to break the azeotrope. Impacts of amine flow rate, amine inlet temperature and feed–inlet location are investigated to achieve an optimum condition of the process in terms of energy demand. The simulation results show that optimum values of amine flow rate, amine temperature and feed–inlet location are 1900 mole/s, 30 °C and 20th stage, respectively. It is found that the process including RA leads to a significant reduction in operating costs, compared to the conventional extractive process

  2. Conceptual design of heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer

    Directory of Open Access Journals (Sweden)

    Paritta Prayoonyong

    2014-12-01

    Full Text Available The synthesis of a heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer is presented. The residue curve map of the ethanol/water/1-butanol mixture is computationally generated using non-random twoliquid thermodynamic model. It is found that 1-butanol leads to a residue curve map topological structure different from that generated by typical entrainers used in ethanol dehydration. Synthesised by residue curve map analysis, the distillation flowsheet for ethanol dehydration by 1-butanol comprises a double-feed column integrated with an overhead decanter and a simple column. The double-feed column is used to recover water as the top product, whereas the simple column is used for recovering ethanol and 1-butanol. The separation feasibility and the economically near-optimal designs of distillation columns in the flowsheet are evaluated and identified by using the boundary value design method. The distillation flowsheet using 1-butanol is compared with the conventional process using benzene as entrainer. Based on their total annualised costs, the ethanol dehydration process using 1-butanol is less economically attractive than the process using benzene. However, 1-butanol is less toxic than benzene.

  3. Experimental investigation of moderately high temperature water source heat pump with non-azeotropic refrigerant mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shengjun; Wang, Huaixin; Guo, Tao [Department of Thermal Energy and Refrigeration Engineering, School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China)

    2010-05-15

    Experimental investigations were carried out on non-azeotropic refrigerant mixtures, named M1A (mass fraction of 20%R152a and 80%R245fa), M1B (mass fraction of 37% R152a and 63%R245fa) and M1C (mass fraction of 50%R152a and 50%R245fa), based on a water-to-water heat pump system in the condensing temperature range of 70-90 C with a cycle temperature lift of 45 C. Performance of R245fa was tested for comparison. Unfair factors in experimental comparative evaluation research with the same apparatus were identified and corrected. Experimental cycle performance of the mixtures were tested and compared with improved experimental assessment methodology. The results show that all of the mixtures deliver higher discharge temperature, higher heating capacity, higher COP and higher {epsilon}{sub h,c} than R245fa. M1B presents the most excellent cycle performance and is recommended as working fluid for moderate/high temperature heat pump. (author)

  4. Experimental evaluation of a non-azeotropic working fluid for geothermal heat pump system

    International Nuclear Information System (INIS)

    Zhao, L.

    2004-01-01

    Geothermal energy resources are found in many countries. A reasonable and efficient utilization of these resources has been a worldwide concern. The application of geothermal heat pump systems (GHPS) can help increase the efficiency of using geothermal energy and reduce the thermal pollution to the earth surface. However, this is only possible with a proper working fluid. In this paper, a non-azeotropic working fluid (R290/R600a/R123) is presented for a GHPS where geothermal water at 40-45 deg. C and heating network water at 70-80 deg. C serve as the low and high temperature heat sources. Experimental results show that the coefficient of performance (COP) of a GHPS using the working fluid is above 3.5 with the condensation temperature above 80 deg. C and the condensation pressure below 18 bar, while the temperature of the geothermal water is reduced from 40-46 deg. C to 31-36 deg. C

  5. Determination of styrene migration from food-contact polymers into margarine, using azeotropic distillation and headspace gas chromatography.

    Science.gov (United States)

    Varner, S L; Breder, C V; Fazio, T

    1983-09-01

    Migration studies were conducted to determine the quantity of styrene that migrates from polymers into fatty foods, specifically margarine. Azeotropic distillation was used to isolate styrene from the margarine. Headspace gas chromatography with a Chromosorb 104 column and a flame ionization detector was used for quantitation. The quantitation limit for the method was about 25 ppb (wt/wt) styrene in margarine. On the average, greater than 90% of the styrene was recovered. Several commercial margarines were examined. The method and results of the migration studies are presented. There was no detectable migration of styrene into margarine.

  6. Dehydration of an ethanol/water azeotrope by novel organic-inorganic hybrid membranes based on quaternized chitosan and tetraethoxysilane.

    Science.gov (United States)

    Uragami, Tadashi; Katayama, Takuya; Miyata, Takashi; Tamura, Hiroshi; Shiraiwa, Tadashi; Higuchi, Akon

    2004-01-01

    To control swelling of quaternized chitosan (q-Chito) membranes, mixtures of q-Chito as an organic component and tetraethoxysilane (TEOS) as an inorganic component were prepared using the sol-gel reaction, and novel q-Chito/TEOS hybrid membranes were formed. In the separation of an ethanol/water azeotrope by pervaporation, the effect of TEOS content on the water/ethanol selectivity of q-Chito/TEOS hybrid membranes was investigated. Hybrid membranes containing up to 45 mol % TEOS exhibited higher water/ethanol selectivity than the q-Chito membrane. This resulted from depressed swelling of the membranes by formation of a cross-linked structure. However, introduction of excess TEOS led to greater swelling of the hybrid membranes. Therefore, the water/ethanol selectivity of the hybrid membranes containing more than 45 mol % TEOS was lower than that of the q-Chito membrane. The relationship between the structure of q-Chito/TEOS hybrid membranes and their permeation and separation characteristics during pervaporation of an ethanol/water azeotrope is discussed in detail.

  7. Study on Exploration of Azeotropic Point of Pb-Sb Alloys by Vacuum Distillation and Ab Initio Molecular Dynamic Simulation

    Science.gov (United States)

    Song, Bingyi; Jiang, Wenlong; Yang, Bin; Chen, Xiumin; Xu, Baoqiang; Kong, Lingxin; Liu, Dachun; Dai, Yongnian

    2016-10-01

    The possibility of the separation of Pb-Sb alloys by vacuum distillation was investigated theoretically. The results show that Pb and Sb can be separated by vacuum distillation. However, the experimental results show that vacuum distillation technique does not provide clear separation. According to the literature, Pb-Sb alloys belong to azeotropic compounds under some certain temperature; the experiment and computer simulation were carried out based on the exceptional condition so as to analyze the reason from the experiment and microstructure of Pb-Sb alloys perspective. The separation of Pb-Sb alloys by vacuum distillation was experimentally carried out to probe the azeotropic point. Also, the functions, such as partial radial distributions functions, the structure factor, mean square displacement, and the density of state, were calculated by ab-initio molecular dynamics for the representation of the structure and properties of Pb-Sb alloys with different composition of Sb. The experimental results indicate that there exists common volatilization for Pb-Sb alloys when Sb content is 16.5 wt pct. On the other hand, the calculation results show that there is an intense interaction between Pb and Sb when Sb content is 22 wt pct, which supports the experimental results although Sb content is slightly deviation.

  8. SIMULATION OF NON-AZEOTROPIC REFRIGERANT MIXTURES FOR USE IN A DUAL-CIRCUIT REFRIGERATOR/FREEZER WITH COUNTERCURRENT HEAT EXCHANGES

    Science.gov (United States)

    The paper discusses a refrigerator/freezer (RF) system that has two complete and independent refrigeration cycles for the two compartments. It uses a non-azeotropic refrigerant mixture (NARM) in each cycle and countercurrent heat exchangers throughout. This RF is housed in a stan...

  9. A Comparison of delO18 Composition of Water Extracted from Suction Lysimeters, Centrifugation, and Azeotropic Distillation

    Science.gov (United States)

    Figueroa, A.; Tindall, J. A.; Friedel, M. J.

    2005-12-01

    Concentration of delO18 in water samples extracted by suction lysimeters is compared to samples obtained by methods of centrifugation and azeotropic distillation. Intact soil cores (30 cm diameter by 40 cm height) were extracted from two different sites. Site 1 was rapid infiltration basin number 50, near Altamonte Springs in Seminole County, Florida on properties belonging to the Walt Disney World Resort Complex. Site 2 was the Missouri Management System Evaluation Area (MSEA) near Centralia in Boone County, Missouri. The delO18 water was analyzed on a mass spectrophotometer. Potassium Bromide (KBr) was also used as a tracer and analyzed by ion chromatography. A portion of the data obtained was modeled using CXTFIT. Water collected by centrifugation and azeotropic distillation data were about 2-5% more negative than that collected by suction lysimeter values from the Florida (sandy) soil and about 5-7 % more negative from the Missouri (well structured clay) soil. Results indicate that the majority of soil water in well structured soil is strongly bound to soil grain surfaces and is not easily sampled by suction lysimeters. Also, it is plausible that evaporation caused some delO18 enrichment in the suction lysimeters. Suction lysimeters preferentially sampled water held at lower matric potentials, which may not represent total soil water. In cases where a sufficient volume of water has passed through the soil profile and displaced all previous pore water, suction lysimeters will however collect a representative sample of all the water at that depth interval. It is suggested that for stable isotope studies monitoring precipitation and soil water, suction lysimeters be installed at shallow depths (10 cm). Samples should also be coordinated with precipitation events. The CXTFIT program worked well for Florida soils (a more homogeneous sand), but gave poor performance for Missouri soils (well structured clays) except for deeper depths where clay structure was less

  10. Ethanol dehydration via azeotropic distillation with gasoline fraction mixtures as entrainers: A pilot-scale study with industrially produced bioethanol and naphta

    OpenAIRE

    Gomis Yagües, Vicente; Pedraza Berenguer, Ricardo; Saquete Ferrándiz, María Dolores; Font, Alicia; Garcia-Cano, Jorge

    2015-01-01

    Various hydrocarbons (n-hexane, cyclohexane, toluene, isooctane) and mixtures of them (binary, ternary or quaternary), as well as two different types of industrially produced naphtha (one obtained by direct distillation and the other from a catalytic cracking process), have been tested as candidate entrainers to dehydrate ethanol. The tests were carried out in an azeotropic distillation column on a semi pilot plant. The results show that it is possible to dehydrate bioethanol using naphtha as...

  11. Efficiency of methods for Karl Fischer determination of water in oils based on oven evaporation and azeotropic distillation.

    Science.gov (United States)

    Larsson, William; Jalbert, Jocelyn; Gilbert, Roland; Cedergren, Anders

    2003-03-15

    The efficiency of azeotropic distillation and oven evaporation techniques for trace determination of water in oils has recently been questioned by the National Institute of Standards and Technology (NIST), on the basis of measurements of the residual water found after the extraction step. The results were obtained by volumetric Karl Fischer (KF) titration in a medium containing a large excess of chloroform (> or = 65%), a proposed prerequisite to ensure complete release of water from the oil matrix. In this work, the extent of this residual water was studied by means of a direct zero-current potentiometric technique using a KF medium containing more than 80% chloroform, which is well above the concentration recommended by NIST. A procedure is described that makes it possible to correct the results for dilution errors as well as for chemical interference effects caused by the oil matrix. The corrected values were found to be in the range of 0.6-1.5 ppm, which should be compared with the 12-34 ppm (uncorrected values) reported by NIST for the same oils. From this, it is concluded that the volumetric KF method used by NIST gives results that are much too high.

  12. Azeotropic mixture used for development and validation of Lornoxicam in bulk and its tablet dosage form by spectrophotometric method

    Directory of Open Access Journals (Sweden)

    Prajesh Prajapati

    2012-08-01

    Full Text Available A novel, safe, economic and sensitive method of spectrophotometric estimation has been developed using Azeoptropic mixture (water:methanol: 60:40, v/v for the quantitative determination of Lornoxicam, a practically water-insoluble drug. Hence, Lornoxicam stock solution was prepared in Azeoptropic mixture. Lornoxicam showed maximum absorbance at 383 nm. Beer's law was obeyed in the concentration range 4–24 μg/mL with regression coefficient of 0.999. The method was validated in terms of linearity (R2=0.999, precision (CV for intra-day and inter-day was 0.28–0.68 and 0.12–0.92, respectively, accuracy (98.03–100.59% w/w and specificity. This method is simple, precise, accurate, sensitive and reproducible and can be used for the routine quality control testing of the marketed formulations. Keywords: Analgesic, Chlortenoxicam, Lornoxicam, Oxicam, Spectrophotometric, Azeotropic mixture

  13. Dehydration of an azeotrope of ethanol/water by sodium carboxymethylcellulose membranes cross-linked with organic or inorganic cross-linker

    Directory of Open Access Journals (Sweden)

    2010-11-01

    Full Text Available To control the swelling of sodium carboxymethylcellulose (CMCNa membranes, mixtures of CMCNa and glutaraldehyde (GA and mixtures of CMCNa as an organic component and tetraethoxysilane (TEOS as an inorganic component were prepared, and CMCNa/GA cross-linked membranes and CMCNa/TEOS hybrid membranes were formed. In the separation of an ethanol/water azeotrope by pervaporation (PV, the effects of the GA or TEOS content on the water/ethanol selectivity and permeability of these CMCNa/GA cross-linked and CMCNa/TEOS hybrid membranes were investigated. Cross-linked and hybrid membranes containing up to 10 wt% GA or 10 wt% TEOS exhibited higher water/ethanol selectivity than CMCNa membrane without any cross-linker. This resulted from both increased density and depressed swelling of the membranes by the formation of a cross-linked structure. The relationship between the structure of the CMCNa/GA cross-linked membranes and CMCNa/TEOS hybrid membranes and their permeation and separation characteristics for an ethanol/water azeotrope during PV is discussed in detail.

  14. (Vapour + liquid) equilibrium data for the azeotropic {1,1-difluoroethane (R152a) + 1,1,2,2-Tetrafluoroethane (R134)} system at various temperatures from (258.150 to 288.150) K

    International Nuclear Information System (INIS)

    Guo, Hao; Gong, Maoqiong; Dong, Xueqiang; Wu, Jianfeng

    2012-01-01

    Highlights: ► VLE data for the {R152a + R134} system were measured. ► The experiment is based on the static–analytic method. ► The VLE data were correlated using the PR–HV–NRTL model. ► A negative azeotropic behaviour was found. - Abstract: (Vapour + liquid) equilibrium (VLE) data for the {1,1-difluoroethane (R152a) + 1,1,2,2-Tetrafluoroethane (R134)} system were measured at T = (258.150 to 288.150) K. The experiment is based on a static–analytic method. Experimental data were correlated with the Peng–Robinson equation of state (PR EoS) and the Huron–Vidal (HV) mixing rule involving the NRTL activity coefficient model. The results show good agreement with experimental results for the binary system at each temperature. It was found that the system has a negative azeotropic behaviour within the temperature range measured here.

  15. Study of a non-ideal liquid mixture in the hydrodynamic regime. Rayleigh-Brillouin spectra, sound propagation and damping in the CH3CN-CCl4 system at the azeotropic composition

    International Nuclear Information System (INIS)

    Sassi, Paola; D'Elia, Valerio; Cataliotti, Rosario Sergio

    2003-01-01

    The hydrodynamic behaviour in the GHz frequency region has been analzsed for the non-ideal CH 3 CN-CCl 4 liquid mixture around the azeotropic composition. Rayleigh-Brillouin spectra have been measured as a function of temperature and composition, at fixed value of transferred wave vector in the 90 deg. scattering geometry, and also at different scattering angles to study dispersion with frequency of the spectral observables. These measurements have been complemented by those of refractive index, density and viscosity at the same temperatures and mole fraction values. Very interesting behaviour of the classic Brillouin spectral observables, such as the hypersonic propagation speeds and the acoustic absorption coefficients, has been revealed near the azeotropic composition of the mixture at the investigated temperatures, namely 15 deg. C, 25 deg. C, 40 deg. C and 60 deg. C. These effects have been interpreted at the light of the Mountain and Deutch theory of binary solutions and the forecast behaviour of the intermolecular forces around the azeotropic point composition of these very different molecular liquids

  16. Utilisation de mélanges non-azéotropiques dans les cycles thermodynamiques à compression Use of Non-Azeotropic Mixtures in Thermodynamic Compression Cycles

    Directory of Open Access Journals (Sweden)

    Ambrosino J. L.

    2006-11-01

    Full Text Available L'utilisation de mélanges non-azéotropiques comme fluides frigorigènes présente différents avantages en ce qui concerne le fonctionnement des installations de réfrigération / conditionnement / chauffage mettant en oeuvre des cycles thermodynamiques à compression avec changement de phase. En outre, de tels mélanges représentent une alternative intéressante aux corps purs actuellement recherchés pour résoudre les problèmes d'environnement liés à la destruction de la couche d'ozone. Cet article analyse les connaissances acquises concernant la mise en oeuvre d'une telle solution. The use of non-azeotropic mixtures as refrigerants has various advantages concerning the operating of refrigeration / air-conditioning / heating installations implementing thermodynamic compression cycles with a phase change. Likewise, such mixtures represent an interesting alternative to pure components which are now being looked to as a solution to environmental problems linked to the destruction of the ozone layer. This article analyzes what is known about the implementation of such a solution.

  17. Trials to improve the colour of colour fixed cottonseed oil using sodium oleate and sodium stearate in the absence and presence of azeotropic extract of cottonseed meal

    Directory of Open Access Journals (Sweden)

    Yousef, Elham A. A.

    1998-04-01

    Full Text Available The effectiveness of two additives, namely, laboratory prepared sodium oleate and sodium stearate to improve the colour of colour fixed cottonseed oil was studied. Also the presence of the azeotropic extract of cottonseed meal together with 5% Na oleate or 10%Na stearate was taken In consideration. Improvement in the colour index of most treated refined and bleached oil samples is observed. This is confirmed with the reduction of gossypol contents of the refined and bleached treated oil samples compared with the untreated oil sample.

    Se estudió la eficacia de dos aditivos, a saber, oleato sódico y estearato sódico preparados en laboratorio para mejorar el color del aceite de semilla de algodón con color fijado. También se tuvo en consideración la presencia de extracto azeotrópico de harina de semilla de algodón junto con oleato sódico al 50% o estearato sódico al 10%. Se observó la mejora en el índice de color de la mayoría de las muestras de aceite decolorado y refinado tratado. Esto está confirmado con la reducción de los contenidos en gosipol de las muestras de aceites refinados y decolorados tratados comparado con la muestra de aceite no tratado.

  18. Energy optimization and comparative study of pre- and post-fractionator extractive dividing wall column for the CO2–ethane azeotropic process

    International Nuclear Information System (INIS)

    Tavan, Yadollah; Riazi, Seiied Hadi; Nozohouri, Mostafa

    2014-01-01

    Graphical abstract: - Highlights: • Two arrangements is proposed for extractive DWC based on pre- and post- fractionator. • Operating parameters are optimized to minimize energy demand. • The pre-fractionator design showed the best performance in comparison to others. - Abstract: Two possible extractive dividing-wall column (DWC) arrangements are explored to find the potential benefits derived from thermally coupled distillations in separation of a mixture including the CO 2 –ethane azeotrope with a low boiling point. It is shown that the process including pre-fractionator in the DWC design in its optimized state leads to 51.6% reduction in total duties in comparison with the conventional process. Furthermore, a comparison between conventional extractive distillation columns and the new DWC process is made in terms of cost estimation, CO 2 removal efficiency and CO 2 emission reduction. Remarkable, the results clearly show that DWC process is interesting/feasible and the novel proposed DWC alternative reduces the steam requirements by 41% and the equipment costs by 31%

  19. Separation based adsorption of ethanol-water mixture in azeotropic solution by single-walled carbon, boron-nitride and silicon-carbide nanotubes.

    Science.gov (United States)

    Taheri, Siavash; Lakmehsari, Muhammad Shadman; Soltanabadi, Azim

    2017-08-01

    The separation of the azeotropic ethanol-water mixture (95.57wt% ethanol) over a wide range of pressures (100-100000kPa) was studied on armchair SWCNTs, SWSiCNTs and SWBNNTs with different diameters at 351.30K using GCMC simulations. The GCMC results demonstrated that ethanol and water molecules form a monolayer single-file, chain together in the center of (6,6) SWCNT, while a spiral ring of ethanol and water is formed in the center of (8,8), (10,10) and (12,12) SWCNTs. It was found that in SWCNTs, the adsorption of ethanol reduces the function of pressure, while water adsorption increases its function. Water selectivity rises as a function of pressure. Also, in SWBNNTs, the adsorption of water increases as a function of pressure, while ethanol adsorption is almost constant. However, in the case of SWSiCNTs, ethanol and water adsorptions are very similar to those of SWBNNTs, whereas the adsorptivities of SWSiCNTs are more than those of SWBNNTs. Our findings regarding adsorption and slope of adsorption indicate that higher pressures are favorable for separating water and ethanol by SWCNTs, while SWBNNTs and SWSiCNTs are demonstrate higher ethanol adsorptivities in lower pressures. Also, MD simulations have been performed to study the microscopic structure and diffusion of binary mixtures of water and ethanol within SWCNTs, SWSiCNTs and SWBNNTs. The MD simulations imply that the oxygen atoms are highly well-organized around themselves. Also, the MD results illustrate a similar tendency for oxygen of water (OW) and oxygen of ethanol (OE) to the wall of the nanotubes in all the pressures. In addition, from the MD results, self-diffusion of water and ethanol in all nanotubes were calculated and discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Measured and Predicted Vapor Liquid Equilibrium of Ethanol-Gasoline Fuels with Insight on the Influence of Azeotrope Interactions on Aromatic Species Enrichment and Particulate Matter Formation in Spark Ignition Engines

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burke, Stephen [Colorado State University; Rhoads, Robert [University of Colorado; Windom, Bret [Colorado State University

    2018-04-03

    A relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from direct injection spark ignition (DISI) vehicles. The fundamental cause of this observation is not well understood. One potential explanation is that increased evaporative cooling as a result of ethanol's high HOV may slow evaporation and prevent sufficient reactant mixing resulting in the combustion of localized fuel rich regions within the cylinder. In addition, it is well known that ethanol when blended in gasoline forms positive azeotropes which can alter the liquid/vapor composition during the vaporization process. In fact, it was shown recently through a numerical study that these interactions can retain the aromatic species within the liquid phase impeding the in-cylinder mixing of these compounds, which would accentuate PM formation upon combustion. To better understand the role of the azeotrope interactions on the vapor/liquid composition evolution of the fuel, distillations were performed using the Advanced Distillation Curve apparatus on carefully selected samples consisting of gasoline blended with ethanol and heavy aromatic and oxygenated compounds with varying vapor pressures, including cumene, p-cymene, 4-tertbutyl toluene, anisole, and 4-methyl anisole. Samples collected during the distillation indicate an enrichment of the heavy aromatic or oxygenated additive with an increase in initial ethanol concentration from E0 to E30. A recently developed distillation and droplet evaporation model is used to explore the influence of dilution effects versus azeotrope interactions on the aromatic species enrichment. The results suggest that HOV-cooling effects as well as aromatic species enrichment behaviors should be considered in future development of predictive indices to forecast the PM potential of fuels containing oxygenated compounds with comparatively high HOV.

  1. Prediction of performance of a jet cooling system operating with pure refrigerants or non-azeotropic mixtures. Influence de la nature des fluides, purs ou en melanges non-azeotropiques, sur les performances d'une machine de climatisation a ejecto-compresseur

    Energy Technology Data Exchange (ETDEWEB)

    Dorantes, R; Lallemand, A [Centre National de la Recherche Scientifique (CNRS), 69 Villeurbanne (France). Centre de Thermique

    1995-01-01

    This paper investigates a simple model of an ejector-compression refrigeration cycle and its applications to air conditioning. The efficiency using either classical refrigerants (R11, R22, R114), other pure refrigerants (R123, R133a, R134a, R141b, R142b, R152a, RC318) or non-azeotropic mixtures is presented. The results suggest that, for different temperatures of the heat source and the heat sink, the entrainment ratio and the system efficiency depend mainly on the fluid type and the mixture composition. An exergetic analysis shows that the major part of the exergy destruction takes place in the ejector, but that the boiler and condenser exergetic losses are significant. (author)

  2. Pressure swing distillation of azeotropic mixture – A simulation study

    Directory of Open Access Journals (Sweden)

    Asma Iqbal

    2016-09-01

    Full Text Available The aim of this work is to simulate a pressure-swing distillation column for the separation and purification of ethanol from the ethanol–water binary system. The choice for this system is due to the importance of the ethanol–water separation. A steady-state equilibrium-stage model based on normalised MESH equations is used to simulate pressure-swing distillation column applied for the production of ethanol. All the work has been carried out using Aspen Plus simulator, version 13.2. Among the activity coefficient models available, the WILSON-RK model with binary parameters predicted by the Aspen Plus simulator is shown to be the most accurate to correlate the experimental vapor-/liquid equilibrium (VLE data available for the ethanol–water system. The simulation has been satisfactorily carried out for a mixture of 20 mol% ethanol in water at 1 atm pressure and 90 °C with a molar flow rate of 100 kmol/h. The adjusting parameters include D/F ratio and reflux ratio of the two columns to get water purity of 99.5 mol% from the bottom of the Low Pressure Column (LPC and the ethanol purity of 99.7 mol% from the bottom of High Pressure Column (HPC.

  3. Improvement of Batch Distillation Separation of Azeotropic Mixtures

    OpenAIRE

    Hegely, Laszlo

    2013-01-01

    La distillation est le procédé de séparation le plus répandu dans l'industrie chimique. Pour la séparation des mélanges azéotropiques, une méthode spéciale de distillation doit être appliquée. Le but de mon travail était d'améliorer la séparation des mélanges azéotropiques par distillation discontinue (DD). Un nouvel algorithme a été présenté pour la détermination de la séquence des produits de DD pour des mélanges multicomposants azéotropiques. Contrairement aux méthodes publiées précédemmen...

  4. Automated Generation of Phase Diagrams for Binary Systems with Azeotropic Behavior

    DEFF Research Database (Denmark)

    Cismondi, Martin; Michelsen, Michael Locht; Zabaloy, Marcelo S.

    2008-01-01

    In this work, we propose a computational strategy and methods for the automated calculation of complete loci of homogeneous azeotropy of binary mixtures and the related Pxy and Txy diagrams for models of the equation-of-state (EOS) type. The strategy consists of first finding the system...

  5. The Role of Hydrogen Bonds Of The Azeotropic Hydrous Ethanol Fuel Composition To The Exhaust Emissions

    Science.gov (United States)

    Made Suarta, I.; Nyoman Gede Baliarta, I.; Sopan Rahtika, I. P. G.; Wijaya Sunu, Putu

    2018-01-01

    In this study observed the role of hydrogen bonding to the composition of exhaust emissions which is produced hydrous ethanol fuel (95.5% v). Testing is done by using single cylinder four stroke motor engine. The composition of exhaust gas emissions is tested using exhaust gas analyzer on lean and stoichiometry mixer. The exhaust emissions produced by anhydrous ethanol were also tested. The composition of emissions produced by that two fuels is compared. The results showed CO emissions levels produced by hydrous ethanol are slightly higher than anhydrous ethanol in stoichiometric mixtures. But the composition of CO hydrous ethanol emissions is lower in the lean mix. If lean the mixer the different in the composition of emissions is increasing. On hydrous ethanol emission CO2 content little bit lower on the stoichiometric mixer and higher on the lean mixture. Exhaust emissions of ethanol fuel also produce O2. O2 hydrous ethanol emissions is higher than anhydrous ethanol fuel.

  6. Separation of azeotropic mixtures of alcohols and water with FricDiff

    NARCIS (Netherlands)

    Breure, B.; Peters, E.A.J.F.; Kerkhof, P.J.A.M.

    2008-01-01

    FricDiff is an energy efficient separation process based on a difference in transport velocities of the components of a gas or vapor mixture when they diffuse through a sweep gas ('enhancer'). The separation process takes place inside the pores of a non-selective macro-porous barrier. In this paper

  7. Heating Performance Analysis of a Geothermal Heat Pump Working with Different Zeotropic and Azeotropic Mixtures

    OpenAIRE

    Robert Bedoić; Veljko Filipan

    2018-01-01

    The aim of the paper is to examine the possibility of application of the spreadsheet calculator and Reference Fluid Thermodynamic and Transport Properties database to a thermodynamic process. The heating process of a real soil-to-water heat pump, including heat transfer in the borehole heat exchanger has been analysed. How the changes of condensing temperature, at constant evaporating temperature, influence the following: heating capacity, compressor effective power, heat supplied to evaporat...

  8. The forms of azeotropic rule for multidimensional diagrams of equilibrium distillation

    Science.gov (United States)

    Pisarenko, Yu. A.; Usol'tseva, O. O.; Cardona, C. A.; Gerard, O. T.

    2013-09-01

    Linear independent forms of the azeotropy rule applicable to diagrams of distillation (reaction distillation) and their fragments are established and presented as simple polyhedra of arbitrary dimensions.

  9. Validating the Equilibrium Stage Model for an Azeotropic System in a Laboratorial Distillation Column

    Science.gov (United States)

    Duarte, B. P. M.; Coelho Pinheiro, M. N.; Silva, D. C. M.; Moura, M. J.

    2006-01-01

    The experiment described is an excellent opportunity to apply theoretical concepts of distillation, thermodynamics of mixtures and process simulation at laboratory scale, and simultaneously enhance the ability of students to operate, control and monitor complex units.

  10. Development of Azeotropic Blends to Replace TCE and nPB in Vapor Degreasing Operations

    Science.gov (United States)

    2016-12-21

    York, NY August 4, 2014, pp 1–3. (7) Abbott, S.; Hansen, C. M.; Yamamoto, H. Hansen Solubility Parameters in Practice Complete with eBook , Software...OPERATING PROCEDURE SOLVENT COMPARISON FOR GREASE Page 5 of 7 Note: Do not allow the residue to get cooked to the vials or pans! 2.11. Allow...Pour the dirty solvent from the degreaser into properly labeled containers for solvent- recovery distillation. 3.7. Close the valve on the bath

  11. CÁLCULO E INTERPRETACIÓN DE LAS TRAYECTORIAS DE PUNTOS DE COMPOSICIÓN CONSTANTE (PINCH EN COLUMNAS SIMPLES DE DESTILACIÓN PARA MEZCLAS AZEOTRÓPICAS HOMOGÉNEAS CÁLCULO E INTERPRETAÇÃO DAS TRAJETÓRIAS DE PONTOS DE COMPOSIÇÃO CONSTANTE (PINCH EM COLUNAS SIMPLES DE DESTILAÇÃO PARA MISTURAS AZEOTRÓPICAS HOMOGÊNEAS CALCULATION AND INTERPRETATION OF THE PINCH POINTS TRAJECTORIES IN SIMPLE DISTILLATION COLUMNS FOR HOMOGENEOUS AZEOTROPIC MIXTURES

    Directory of Open Access Journals (Sweden)

    César Augusto Sánchez

    2011-12-01

    Full Text Available Se presenta un método de continuación del tipo predictor-corrector para trazar completamente los ramales de puntos de pinch asociados con los productos o seudoproductos de una columna de destilación azeotrópica homogénea. El método trata fácilmente con los puntos de retorno permitiendo la localización de los puntos pinch del tipo tangente. El concepto se fundamenta en las ideas de Fidkowski, Malone y Doherty, pero incluye algunas novedades, como la estrategia de iniciación de los cálculos, la forma de obtener el vector tangente y el grupo de ecuaciones sobre el cual se aplica la técnica. Se ilustran tres ejemplos con las soluciones de acetona + cloroformo + benceno, acetona + cloroformo + metanol y ácido acético + amilalcohol + amilacetato, enfatizando en casos que muestran mejores posibilidades de separación en la condición de reflujo finito que en la operación con reflujo total.Apresenta-se um método de continuação do tipo preditor-corretor para traçar completamente os ramos de pontos de pinch associados com os produtos ou pseudoprodutos de uma coluna de destilação azeotrópica homogénea. O método trata facilmente com os pontos de retorno permitindo a localização dos pontos pinch do tipo tangente. O conceito fundamenta-se nas ideias de Fidkowski, Malone e Doherty, mas inclui algumas novidades, como a estratégia de iniciação dos cálculos, a forma de obter o vetor tangente e o grupo de equações sobre o qual se aplica a técnica. Ilustram-se três exemplos com as soluções de acetona + clorofórmio + benzeno, acetona + clorofórmio + metanol e ácido acético + amilálcool+ amilacetato, enfatizando em casos que mostram melhores possibilidades de separação na condição de refluxo finito que na operação com refluxo total.A continuation method of the kind predictor-corrector is presented for completely tracking of the pinch points branches related to the products or pseudoproducts of a homogeneous azeotropic

  12. HERRAMIENTAS GEOMÉTRICAS PARA EL DISEÑO BÁSICO DE COLUMNAS DE DESTILACIÓN CON MEZCLAS AZEOTRÓPICAS HETEROGÉNEAS TERNARIAS: I. CÁLCULO DEL REFLUJO MÍNIMO FERRAMENTAS GEOMÉTRICAS PARA O DESENHO BÁSICO DE COLUNAS DE DESTILACÃO COM MISTURAS AZEOTRÓPICAS HETEROGÊNEAS TERNARIAS: I. CÁLCULO DO REFLUXO MÍNIMO GEOMETRICAL TOOLS FOR THE BASIC DESIGN OF DISTILLATION COLUMNS WITH TERNARY HETEROGENEOUS AZEOTROPIC MIXTURES: I. MINIMUM REFLUX CALCULATION

    Directory of Open Access Journals (Sweden)

    César Augusto Sánchez

    2012-12-01

    Full Text Available En este trabajo se presentan herramientas numéricas útiles para calcular el reflujo mínimo en torres infinitas. Como eje de los argumentos se consideran dos elementos geométricos: los ramales de puntos pinch (RPP y la estructura determinada por la binodal y la línea de vapor. El interés principal consiste en la integración de estos elementos con las fronteras de destilación a reflujo total, con el fin de explorar el problema del diseño conceptual. Se demuestra la utilidad de estos elementos resolviendo el problema del reflujo mínimo (PRM para tres ejemplos que involucran las deshidrataciones de mezclas acuosas de ácido acético utilizando n-amilacetato y de etanol utilizando benceno. Se evidencia que la estructura de las líneas de destilación a reflujo mínimo para las separaciones agudas satisface las regularidades observadas en los sistemas homogéneos.Neste trabalho apresentam-se ferramentas numéricas úteis para calcular o refluxo mínimo em torres infinitas. Como eixo dos argumentos se consideram dois elementos geométricos: os ramais de pontos pinch (RPP e a estrutura determinada pela binodal e a linha de vapor. O interesse principal consiste na integração destes elementos com as fronteiras de destilação a refluxo total com o fim de explorar o problema do desenho conceitual. Demonstra-se a utilidade destes elementos resolvendo o problema do refluxo mínimo (PRM para três exemplos que envolvem as desidratações de misturas aquosas de ácido acético utilizando n-amilacetato e de etanol utilizando benzeno. Evidencia-se que a estrutura das linhas de destilação a refluxo mínimo para as separações agudas satisfaz as regularidades observadas nos sistemas homogêneos.Useful numerical tools to calculate the minimum reflux for infinite towers with heterogeneous azeotropic ternary mixtures are presented. For this, two geometrical elements are involved: the pinch point branches (PPB and the structure defined by the binodal

  13. Technical-economic viability of ethanol dehydration by azeotropic distillation with gasoline to obtain an ethanol + gasoline mixture

    OpenAIRE

    Gomis Yagües, Vicente; Saquete Ferrándiz, María Dolores; Font Escamilla, Alicia; Pedraza Berenguer, Ricardo

    2008-01-01

    Poster enviado a Expoquimia 2008, Salón Internacional de la Química, Barcelona, 20 al 24 de Octubre de 2008. Over the past few decades, developed countries have focused their attention on the curbing of greenhouse gas (GHG) emissions. Transport is responsible for a high percentage of GHG emissions, and for this reason, it is necessary to use alternative fuels that would not contribute in increasing these emissions. Biofuels such as bioethanol have therefore been suggested as a potential al...

  14. Azeotropic Preparation of a "C"-Phenyl "N"-Aryl Imine: An Introductory Undergraduate Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Silverberg, Lee J.; Coyle, David J.; Cannon, Kevin C.; Mathers, Robert T.; Richards, Jeffrey A.; Tierney, John

    2016-01-01

    Imines are important in biological chemistry and as intermediates in organic synthesis. An experiment for introductory undergraduate organic chemistry is presented in which benzaldehyde was condensed with "p"-methoxyaniline in toluene to give 4-methoxy-"N"-(phenylmethylene)benzenamine. Water was removed by azeotropic…

  15. Experimental Study of p-rho-T Relationship of Compressed Liquid Phase for Octafluoropropane and Two near Azeotropic Ternary HFC/HC Mixtures

    Czech Academy of Sciences Publication Activity Database

    Klomfar, Jaroslav; Součková, Monika; Pátek, Jaroslav

    2012-01-01

    Roč. 57, č. 5 (2012), s. 1627-1634 ISSN 0021-9568 R&D Projects: GA ČR GA101/09/0010 Institutional research plan: CEZ:AV0Z20760514 Keywords : octafluoropropane * R413a * R417a Subject RIV: BJ - Thermodynamics Impact factor: 2.004, year: 2012 http://pubs.acs.org/doi/abs/10.1021/je300148f

  16. Performance computation of window air conditioner with very low GWP near azeotropic refrigerant mixtures as a drop in Substitutes to R22

    Directory of Open Access Journals (Sweden)

    Vali Shaik Sharmas

    2018-01-01

    Full Text Available The principal objective of the present study is to compute the thermodynamic performance of window air conditioner based on standard vapour compression refrigeration cycle using R22, R407C and nineteen refrigerant mixtures. In this work nineteen R290/R1270 blends at different compositions are developed. A MATLAB code is developed to compute the thermodynamic performance parameters of all the studied refrigerants at condensing and evaporating temperatures of 54.4°C and 7.2°C respectively. The performance parameters are cooling effect, compressor work, COP, compressor discharge temperature, power per ton of refrigeration and volumetric cooling capacity respectively. Analytical results revealed that COP of new binary mixture R290/R1270 (90/10 by mass % is 2.82% higher among R22, R407C and nineteen studied refrigerants. Energy required by the compressor per ton of refrigeration for R290/R1270 (90/10 by mass % is 2.73% lower among R22, R407C and nineteen studied fluids. The discharge temperature of the compressor for all the nineteen investigated blends are reduced by 6.0-8.9oC compared to R22. Overall thermodynamic performance of window air conditioner with R290/R1270 (90/10 by mass % is better than R22 with significant savings in energy consumption and hence it is an energy efficient ecofriendly refrigerant mixture as a drop in substitute to R22.

  17. Theoretical and experimental study of integrated membrane / distillation processes for industrial applications

    NARCIS (Netherlands)

    Perez, P.

    2007-01-01

    In industrial practice the separation of an azeotropic mixture usually involves adding a third component to the distillation process to break the azeotrope. The major disadvantages of this so called azeotropic and extractive distillation are the relatively high capital and high energy costs and the

  18. On-site study of HCFC-22 substitution for HFC non-azeotropic blends (R417A, R422D) on a water chiller of a centralized HVAC system

    Energy Technology Data Exchange (ETDEWEB)

    Torrella, E.; Larumbe, J.A. [Polytechnic University of Valencia, Dep. of Applied Thermodynamics, Camino de Vera 14, E-46022 Valencia (Spain); Cabello, R.; Sanchez, D.; Llopis, R. [Jaume I University, Dep. of Mechanical Engineering and Construction, Campus de Riu Sec s/n, E-12071 Castellon (Spain)

    2010-09-15

    The European Regulation no 2037/2000 has banned manufacturing HCFC refrigerants from January 1st 2010, although its use is allowed up to 2015 if the fluids come from a recycling process. This situation creates the need for developing new working fluids to replace the HCFC in the refrigeration plants now in operation. Among all the HCFCs the R22 is the most widely used in a wide range of applications, especially in air conditioning. This work presents an on-site experimental study of the R22 replacement by two possible substitutes, the HFC-417A and the HFC-422D, in a water chiller in which the energy performance was evaluated. This chiller is part of the centralized HVAC system of a lecture room building at the Jaume I University of Castellon, Spain. This communication compares and analyses main operation parameters of the chiller when operating with each refrigerant in real conditions. (author)

  19. Measuring Vapor Pressure with an Isoteniscope: A Hands-on Introduction to Thermodynamic Concepts

    Science.gov (United States)

    Chen, Wenqian; Haslam, Andrew J.; Macey, Andrew; Shah, Umang V.; Brechtelsbauer, Clemens

    2016-01-01

    Characterization of the vapor pressure of a volatile liquid or azeotropic mixture, and its fluid phase diagram, can be achieved with an isoteniscope and an industrial grade digital pressure sensor using the experimental method reported in this study. We describe vapor-pressure measurements of acetone and n-hexane and their azeotrope, and how the…

  20. Volume reduction and encapsulation process for water containing low level radioactive waste

    International Nuclear Information System (INIS)

    Miller, G.P.; Fox, D.W.; Weech, M.E.

    1982-01-01

    In encapsulating solutions or slurries of radio-active waste within polymeric material for disposal, the water is removed therefrom by adding a water insoluble liquid forming a low boiling azeotrope and evaporating the azeotrope, and then a polymerisable composition is dispersed throughout the dewatered waste and allowed to set. (author)

  1. Entrainer selection for the synthesis of fatty acid esters by entrainer-based reactive distillation

    NARCIS (Netherlands)

    Jong, de M.C.; Zondervan, E.; Dimian, A.C.; Haan, de A.B.

    2010-01-01

    In this research it is demonstrated that, due to the similarities between Entrainer-based Reactive Distillation and azeotropic distillation, the same selection rules can be applied to select a suitable entrainer. From a list of suitable entrainers for the azeotropic distillation of isopropanol and

  2. Systematic screening methodology and energy efficient design of ionic liquid-based separation processes

    DEFF Research Database (Denmark)

    Kulajanpeng, Kusuma; Suriyapraphadilok, Uthaiporn; Gani, Rafiqul

    2016-01-01

    in size of the target solute was investigated using the same separation process and IL entrainer to obtain the same product purity. The proposed methodology has been evaluated through a case study of binary alcoholic aqueous azeotropic separation: water+ethanol and water+isopropanol.......A systematic methodology for the screening of ionic liquids (ILs) as entrainers and for the design of ILs-based separation processes in various homogeneous binary azeotropic mixtures has been developed. The methodology focuses on the homogeneous binary aqueous azeotropic systems (for example, water...

  3. Preparation of Water-Selective Polybutadiene Membranes and Their Use in Drying Alcohols by Pervaporation and Vapor Permeation Technologies

    Science.gov (United States)

    Separating azeotrope-forming solvent-water mixtures by conventional distillation poses technical, economic, and environmental challenges. Membrane technology using water-permselective membranes provides an efficient alternative for water removal from solvents. We present here a n...

  4. Vielversprechende Loesungsmittel. Ionisch Fluessigkeiten als alternative Loesungsmittel bei der Extraction von petrochemikalien

    NARCIS (Netherlands)

    Haan, de A.B.; Meindersma, G.W.

    2010-01-01

    Die Trennung aromatischer von aliphatischen Kohlenwasserstoffverbindungen stellt insofern eine Herausforderung dar, als diese Kohlenwasserstoffe nah beieinander liegende Siedepunkte aufweisen und verschiedene Kombinationen azeotroper Gemische bilden [1]. Die herkömmlichen Verfahren zur Trennung

  5. Pervaporative Dehydration of Bioethanol using Silica and PVA Membranes: Analysis of Permeation Performances and Effect of Volatile Organic Impurities

    OpenAIRE

    Moussa, M.; Athès, V.; Imbert, Y.; Souchon, I.; Vitrac, O.; Lameloise, M.L.

    2012-01-01

    Hydrophilic membrane pervaporation is largely described as a promising alternative to molecular sieves and azeotropic distillation, the ordinary techniques for ethanol dehydration(6,7). Pervaporation is considered as more flexible, cleaner and less energy consuming technology. (...)

  6. Economical feasibility of zeolite membranes for industrial scale separations of aromatic hydrocarbons

    NARCIS (Netherlands)

    Meindersma, G.W.; de Haan, A.B.

    2002-01-01

    Naphtha cracker feedstocks contain 10–25 wt% aromatic hydrocarbons, which are not converted into the desired products ethylene and propylene. The conventional processes for the separation of aromatic and aliphatic hydrocarbons are extraction, extractive distillation and azeotropic distillation.

  7. REGSOLexpert: Entrainer Selection Tool for waste solvent recovery by batch distillation processes

    OpenAIRE

    Rodriguez-Donis, Ivonne; Gerbaud, Vincent; Baudouin, Olivier; Joulia, Xavier

    2009-01-01

    A general procedure to systematize the search of several alternatives enabling the separation of non-ideal binary mixtures such as pressure-swing distillation, azeotropic and extractive distillation is presented. The use of heterogeneous entrainers is specially highlighted.

  8. From batch to continuous extractive distillation using thermodynamic insight: class 1.0-2 case B

    OpenAIRE

    Shen, Weifeng; Benyounes, Hassiba; Gerbaud, Vincent

    2011-01-01

    A systematic feasibility analysis is presented for the separation azeotropic mixtures by batch and continuous extractive distillation. Based on batch feasibility knowledge, batch and continuous separation feasibility is studied under reflux ratio and entrainer flow-rate for the ternary system chloroform-vinyl acetate-butyl acetate, which belongs to the class 1.0-2 separating maximum boiling temperature azeotropes using a heavy entrainer. How information on feasibility of batch mode could be e...

  9. VLE and VLLE data for the system water-ethanol-1,4-dimethylbenzene

    OpenAIRE

    Gomis Yagües, Vicente; Pequenín Martínez, Ana; Asensi Steegmann, Juan Carlos

    2008-01-01

    Poster enviado a Expoquimia 2008, Salón Internacional de la Química, Barcelona, 20 al 24 de Octubre de 2008. Bioethanol can be used directly as an additive to gasoline. During its manufacture, it must be dehydrated to obtain pure ethanol. Commercially, this is done by ternary azeotropic distillation. Instead of obtaining absolute ethanol, it is possible to achieve a mixture of ethanol without water plus a hydrocarbon by means of heterogeneous azeotropic distillation, utilizing less energy....

  10. Heterogeneous batch distillation processes for waste solvent recovery in pharmaceutical industry

    OpenAIRE

    Rodriguez-Donis, Ivonne; Gerbaud, Vincent; Arias-Barreto, Alien; Joulia, Xavier

    2009-01-01

    A summary about our experiences in the introduction of heterogeneous entrainers in azeotropic and extractive batch distillation is presented in this work. Essential advantages of the application of heterogeneous entrainers are showed by rigorous simulation and experimental verification in a bench batch distillation column for separating several azeotropic mixtures such as acetonitrile – water, n hexane – ethyl acetate and chloroform – methanol, commonly found in pharmaceutical industry.

  11. Glycerol transesterification with ethyl acetate to synthesize acetins using ethyl acetate as reactant and entrainer

    Directory of Open Access Journals (Sweden)

    Amin Shafiei

    2017-03-01

    Full Text Available Transesterification of glycerol with ethyl acetate was performed over acidic catalysts in the batch and semi-batch systems. Ethyl acetate was used as reactant and entrainer to remove the produced ethanol during the reaction, through azeotrope formation. Since the azeotrope of ethyl acetate and ethanol forms at 70 oC, all the experiments were performed at this temperature. Para-toluene sulfonic acid, sulfuric acid, and Amberlyst 36 were used as catalyst. The effect of process parameters including ethyl acetate to glycerol molar ratio (6-12, reaction time (3-9 h, and the catalyst to glycerol weight (2.5-9.0%, on the conversion and products selectivities were investigated. Under reflux conditions, 100% glycerol conversion was obtained with 45%, 44%, and 11% selectivity to monoacetin, diacetin, and triacetin, respectively. Azeotropic reactive distillation led to 100% conversion of glycerol with selectivities of 3%, 48% and 49% for monoacetin, diacetin, and triacetin. During the azeotropic reactive distillation, it was possible to remove ethanol to shift the equilibrium towards diacetin and triacetin. Therefore, the total selectivity to diacetin and triacetin was increased from 55% to 97% through azeotropic distillation.

  12. Novel approach to predict the azeotropy at any pressure using classification by subgroups

    Directory of Open Access Journals (Sweden)

    Taehyung Kim

    2012-11-01

    Full Text Available Distillation is one of the dominating separation processes, but there are some problems as inseparable mixtures areformed in some cases. This phenomenon is called as azeotropy. It is essential to understand azeotropy in any distillationprocesses since azeotropes, i.e. inseparable mixtures, cannot be separated by ordinary distillation. In this study, to constructa model which predicts the azeotropic formation at any pressure, a novel approach using support vector machine (SVM ispresented. The SVM method is used to classify data in the two classes, that is, azeotropes and non-azeotropes. 13 variables,including pressure, were used as explanatory variables in this model. From the result of the SVM models which were constructed with data measured at 1 atm and data measured at all pressures, the 1 atm model showed a higher prediction performance to the data measured at 1 atm than the all pressure model. Thus, for improving the performance of the all pressuremodel, we focused on intermolecular forces of solvents. The SVM models were constructed with only data of the solventshaving same subgroups. The accuracy of the model increased and it is expected that this proposed method will be used topredict azeotropic formation at any pressure with high accuracy.

  13. Liquid-vapor equilibrium in LaCl3-LuCl3 and PrCl3-NdCl3 systems

    International Nuclear Information System (INIS)

    Nisel'son, L.A.; Lyzlov, Yu.N.; Solov'ev, S.I.

    1978-01-01

    The liquid-vapour equilibrium in the systems LaCl 3 -LuCl 3 and PrCl 3 -NdCl 3 was studied by the boiling-point method. It was established that the system LaCl 3 -LuCl 3 is near-ideal. In the PrCl 3 -NdCl 3 system, a considerable positive deviation from the ideal with the formation of an azeotrope was detected. The azeotrope has a ''smeared-out'' minimum, which falls on a mixture containing approximately 65 mol.% neodymium trichloride. The boiling point of this mixture at a pressure of 1 mm Hg is approximately 975 deg C. The relative volatility coefficients in both systems were studied by the Raleigh distillation method. The presence of the azeotrope in the system PrCl 3 -NdCl 3 is confirmed by the nature of the dependence of the relative volatility coefficient on the composition of the mixture

  14. Isothermal phase equilibria for the (HFC-32 + HFC-134a) mixed-gas hydrate system

    International Nuclear Information System (INIS)

    Miyauchi, Hiroshi; Yasuda, Kenjiro; Matsumoto, Yuuki; Hashimoto, Shunsuke; Sugahara, Takeshi; Ohgaki, Kazunari

    2012-01-01

    Highlights: ► Structural phase transition results in the heterogeneous azeotropic-like behaviour. ► HFC-134a molecules, in spite of an s-II former, occupy the large cages of s-I. ► Negative azeotropic-like behaviour becomes more remarkable at higher temperatures. - Abstract: Isothermal phase equilibria (pressure-composition relations in hydrate, gas, and aqueous phases) in the {difluoromethane (HFC-32) + 1,1,1,2-tetrafluoroethane (HFC-134a)} mixed-gas hydrate system were measured at the temperatures 274.15 K, 279.15 K, and 283.15 K. The heterogeneous azeotropic-like behaviour derived from the structural phase transition of (HFC-32 + HFC-134a) mixed-gas hydrates appears over the whole temperature range of the present study. In addition to the heterogeneous azeotropic-like behaviour, the isothermal phase equilibrium curves of the (HFC-32 + HFC-134a) mixed-gas hydrate system exhibit the negative homogeneous azeotropic-like behaviour at temperatures 279.15 K and 283.15 K. The negative azeotropic-like behaviour, which becomes more remarkable at higher temperatures, results in the lower equilibrium pressure of (HFC-32 + HFC-134a) mixed-gas hydrates than those of both simple HFC-32 and HFC-134a hydrates. Although the HFC-134a molecule forms the simple structure-II hydrate at the temperatures, the present findings reveal that HFC-134a molecules occupy a part of the large cages of the structure-I mixed-gas hydrate.

  15. Classification of refrigerants; Classification des fluides frigorigenes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This document was made from the US standard ANSI/ASHRAE 34 published in 2001 and entitled 'designation and safety classification of refrigerants'. This classification allows to clearly organize in an international way the overall refrigerants used in the world thanks to a codification of the refrigerants in correspondence with their chemical composition. This note explains this codification: prefix, suffixes (hydrocarbons and derived fluids, azeotropic and non-azeotropic mixtures, various organic compounds, non-organic compounds), safety classification (toxicity, flammability, case of mixtures). (J.S.)

  16. Method for volume reduction and encapsulation of water-bearing, low-level radioactive wastes

    International Nuclear Information System (INIS)

    1982-01-01

    The invention relates to the processing of water-bearing wastes, especially those containing radioactive materials from nuclear power plants like light-water moderated and cooled reactors. The invention provides a method to reduce the volume of wastes like contaminated coolants and to dispose them safely. According to the invention, azeotropic drying is applied to remove the water. Distilation temperatures are chosen to be lower than the lowest boiling point of the mixture components. In the preferred version, a polymerizing monomer is used to obtain the azeotropic mixture. In doing so, encapsulation is possible by combination with a co-reactive polymer that envelopes the waste material. (G.J.P.)

  17. Liquid-vapor phase transition upon pressure decrease in the lead-bismuth system

    Science.gov (United States)

    Volodin, V. N.

    2009-11-01

    The liquid-vapor phase transitions boundaries were calculated on the basis of the values of vapor pressure of the components in the lead-bismuth system during the stepwise pressure decrease by one order of magnitude from 105 down to 1 Pa. The emergence of azeotropic liquid under pressure lower than 19.3 kPa was ascertained. The emergence of azeotropic mixture near the lead edge of the phase diagram was concluded to be the reason for technological difficulties in the distillation separation of the system into the components in a vacuum.

  18. Effect of drying technique on quality of UO2 sintered spheres

    International Nuclear Information System (INIS)

    Benadik, A.; Becvar, J.; Jakesova, L.

    1978-01-01

    A comparison was made of the appearance and quality of UO 2 sintered spheres prepared from gel particles by drying in the air saturated with gaseous products of thermal decomposition at 225 degC, and by azeotropic distillation. The quality of the end product was controlled by the gel particle size and drying technique. Coarser particles (0.95 mm in diameter) were of inhomogeneous structure and after drying by azeotropic distillation had a lower specific density. Particles 0.82 and 0.75 mm in diameter had a specific density >= 98.2% of theoretical value and a homogeneous structure. (author)

  19. Study on separation of methanol-butyl methylether-1-chlorobutane system

    International Nuclear Information System (INIS)

    Zhang Weijiang; Cao Tianhong

    2006-01-01

    The separation of mixture plays an important role in chemical, petrochemical, medical biochemical industries and environmental protection engineering. Liquid mixture with azeotropic phenomenon cannot be separated by conventional distillation as well as extractive distillation. But the combination of extraction and distillation can be effective for them. This paper includes many experiments with the ternary mixture of methanol butyl methyl ether and 1-chlorobytane, which shows that the system is not ternary azeotrope and can be separated by the combination of extraction and rectification using water as extractive solvent. (authors)

  20. LOW-COST ZEOLITE MEMBRANE MODULES FOR SOLVENT DEHYDRATION - PHASE I

    Science.gov (United States)

    A number of very high-volume liquid chemicals form azeotropes with water and can be dehydrated to required purity levels only through the use of entrainers or drying agents. The handling and disposal of these additional chemicals present significant environmental risk...

  1. Glycerol-based deep eutectic solvents as extractants for the separation of MEK and ethanol via liquid-liquid extraction

    NARCIS (Netherlands)

    Rodriguez, N.R.; Ferré Güell, J.; Kroon, M.C.

    2016-01-01

    Four different glycerol-based deep eutectic solvents (DESs) were tested as extracting agents for the separation of the azeotropic mixture {methyl ethyl ketone + ethanol} via liquid-liquid extraction. The selected DESs for this work were: glycerol/choline chloride with molar ratios (4:1) and (2:1),

  2. Experiments of HI decomposition in Iodine-sulfur process

    International Nuclear Information System (INIS)

    Yoon, Ho Joon

    2006-02-01

    We performed an experimental study on the HI concentration and decomposition in Iodine-Sulfur process for thermochemical hydrogen production, which is the most expensive and energy consuming stage. For breaking azeotropic restrain, a partial condensing type, perforated plate type, and packed bed distillation column are employed. A Liebig-type condenser was used for a partial condensing distillation test. The perforated plate distillation column has 40 mm diameter and 5 stages with 8 holes per a plate. The packed bed distillation column has 40 mm diameter and was filled with 5 mm glass beads. While no distillation methods are able to change azeotropic conditions at atmospheric pressure, HI decomposition took place in a reboiler at 480 .deg. C. The vapor-liquid equilibrium curve was obtained from the experiment with binary mixtures (HI/H 2 O) at atmospheric pressure. Almost pure H 2 O was evaporated at the lower temperature than 125 .deg. C, and above that temperature binary mixtures (HI/H 2 O) were evaporated until the leftover solution became HI acid of 0.157mol, which was an azeotropic concentration of HI. With a consideration of heat loss, enthalpy of vaporization at azeotropic condition was estimated as 1131 kJ/kg

  3. Production of ethanol from refinery waste gases. Phase 2, technology development, annual report

    Energy Technology Data Exchange (ETDEWEB)

    Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C.; Gaddy, J.L.

    1995-07-01

    Oil refineries discharge large volumes of H{sub 2}, CO, and CO{sub 2} from cracking, coking, and hydrotreating operations. This program seeks to develop a biological process for converting these waste gases into ethanol, which can be blended with gasoline to reduce emissions. Production of ethanol from all 194 US refineries would save 450 billion BTU annually, would reduce crude oil imports by 110 million barrels/year and emissions by 19 million tons/year. Phase II efforts has yielded at least 3 cultures (Clostridium ljungdahlii, Isolate O-52, Isolate C-01) which are able to produce commercially viable concentrations of ethanol from CO, CO{sub 2}, and H{sub 2} in petroleum waste gas. Single continuous stirred tank reactor studies have shown that 15-20 g/L of ethanol can be produced, with less than 5 g/L acetic acid byproduct. Culture and reactor optimization in Phase III should yield even higher ethanol concentrations and minimal acetic acid. Product recovery studies showed that ethanol is best recovered in a multi-step process involving solvent extraction/distillation to azeotrope/azeotropic distillation or pervaporation, or direct distillation to the azeotrope/azeotropic distillation or pervaporation. Projections show that the ethanol facility for a typical refinery would require an investment of about $30 million, which would be returned in less than 2 years.

  4. Volume reduction and encapsulation process for water containing low-level radioactive waste

    International Nuclear Information System (INIS)

    Fox, D.W.; Miller, G.P.; Weech, M.E.

    1984-01-01

    Solutions or slurries of waste material in water are dewatered and encapsulated within a polymer for disposal, comprising the operations of removing water therefrom with azeotropic mixture evaporation and encasing the dewatered waste residue in an organic polymer. The method and system disclosed are especially useful for the safe disposal of radioactive waste

  5. Synthesis of α- and β-D-glucopyranuronate 1-phosphate and α-D-glucopyranuronate 1-fluoride: intermediates in the synthesis of D-glucuronic acid from starch

    NARCIS (Netherlands)

    Heeres, André; Van Doren, Henk A.; Gotlieb, Kees F.; Bleeker, Ido P.

    1997-01-01

    The title uronates were prepared by 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) catalysed sodium hypochlorite oxidation of α- and β-D-glucopyranosylphosphate (α-/β-Glc-1-P) and α-D-glucopyranosyl fluoride (α-Glc-1-F). Quantitative recovery of the TEMPO catalyst was achieved by azeotropic

  6. Extractive distillation with ionic liquids as solvents : selection and conceptual process design

    NARCIS (Netherlands)

    Gutierrez Hernandez, J.P.

    2013-01-01

    Extractive distillation technology is widely used in the chemical and petrochemical industries for separating azeotropic, close-boiling and low relative volatility mixtures. It uses an additional solvent in order to interact with the components of different chemical structure within the mixture. The

  7. Separation of alcohols from organic liquid mixtures by pervaporation

    NARCIS (Netherlands)

    Park, Hyun-Chae

    1993-01-01

    In the chemical industry, distillation is generally the preferred technique to separate a liquid mixture. However some liquid mixtures such as azeotropic mixtures, close-boiling hydrocarbons, and various isomers are difficult to separate by simple distillation. For the separation of these mixtures

  8. Application of numerical modelling to scaling-up of electrically induced extraction from an organic mixture using an ionic liquid

    Directory of Open Access Journals (Sweden)

    Kamiński Kamil

    2016-03-01

    Full Text Available Liquid-liquid extraction provides an environmentally friendly process as an alternative to azeotropic distillation, pervaporation and reverse osmosis because these techniques require the use of large amounts of energy, may involve volatile organic compounds, and operation at high pressure.

  9. Design of environmentally benign processes

    DEFF Research Database (Denmark)

    Hostrup, Martin; Harper, Peter Mathias; Gani, Rafiqul

    1999-01-01

    because of environmental constraints are particularly suited for solution with the hybrid method. Application of the hybrid method is highlighted through two illustrative examples. The first example involves the determination of an optimal flowsheet for the removal of a chemical species from an azeotropic...

  10. Synthesis and gas permeability of block copolymers composed of poly(styrene-co-acrylonitrile) and polystyrene blocks

    Czech Academy of Sciences Publication Activity Database

    Lokaj, Jan; Brožová, Libuše; Holler, Petr; Pientka, Zbyněk

    2002-01-01

    Roč. 67, č. 2 (2002), s. 267-278 ISSN 0010-0765 R&D Projects: GA ČR GA203/99/0572 Institutional research plan: CEZ:AV0Z4050913 Keywords : azeotropic styrene-acrylonitrile copolymers * block copolymers * nitroxide-mediated copolymerization Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.848, year: 2002

  11. Method for recovering or recirculating stable nitroxide radicals

    NARCIS (Netherlands)

    Heeres, Andre; Van Doren, Hendrik Arend; Bleeker, Ido Pieter; Gotlieb, Kornelis Fester.

    1996-01-01

    The invention relates fo a method for recovering stable nitroxide radicals, wherein at least a part of a reaction mixt. consisting of a soln. or suspension, or a filtrate or supernatant of a suspension, in which stable nitroxide radicals are present in non-solid form, is subjected to an azeotropic

  12. Impact of swelling characteristics on the permselective properties of multi-layer composite membranes for water removal from alcohols.

    Science.gov (United States)

    The removal of water from organic solvents and biofuels, including lower alcohols (i.e., methanol, ethanol, propanol, and butanol), is necessary for the production, blending, and reuse of those organic compounds. Water forms an azeotrope with many hydrophilic solvents, complicati...

  13. Univolatility curves in ternary mixtures: geometry and numerical computation

    DEFF Research Database (Denmark)

    Shcherbakova, Nataliya; Rodriguez-Donis, Ivonne; Abildskov, Jens

    2017-01-01

    We propose a new non-iterative numerical algorithm allowing computation of all univolatility curves in homogeneous ternary mixtures independently of the presence of the azeotropes. The key point is the concept of generalized univolatility curves in the 3D state space, which allows the main comput...

  14. Method for reduction in volume and encapsulation of water-containing weakly radioactive waste

    International Nuclear Information System (INIS)

    Fox, D.W.; Miller, G.P.; Weech, M.E.

    1982-01-01

    Solutions and slurries of waste material in water are dehydrated and enclosed in a polymerizate for final storage. The water is removed as an azeotropic mixture and the dehydrated waste residue is then enclosed in an organic polymerizate. The method and system disclosed in this patent claim are particularly suitable for safe removal of radioactive waste. (orig.) [de

  15. Large-scale enzymatic production of natural flavour esters in organic solvent with continuous water removal.

    Science.gov (United States)

    Gubicza, L; Kabiri-Badr, A; Keoves, E; Belafi-Bako, K

    2001-11-30

    A new, large-scale process was developed for the enzymatic production of low molecular weight flavour esters in organic solvent. Solutions for the elimination of substrate and product inhibitions are presented. The excess water produced during the process was continuously removed by hetero-azeotropic distillation and esters were produced at yields of over 90%.

  16. Measurement of tritium in tissue free water of pine needles

    International Nuclear Information System (INIS)

    Zheng Xiaomin; Wu Zongmei

    1993-01-01

    Tissue Free Water (TFW) of pine needles is separated out through azeotropic distillation of pine needles and toluene. Recovery ratio of TFW is 90%. Tritium activity in the needles is 1.8 Bq/L(H 2 O), which is of the same level with tritiated water vapour (HTO) in atmosphere during the corresponding period

  17. Water, Water, Everywhere.

    Science.gov (United States)

    Selinger, Ben

    1979-01-01

    Water is a major component in many consumer products. Azeotropic distillation of products such as detergents and foodstuffs to form a two-phase distillate is a simple experimental method to determine the percentage of water in the product. (Author/GA)

  18. Measurement of plant and soil water isotope composition by direct equilibration methods

    Science.gov (United States)

    Scrimgeour, C. M.

    1995-11-01

    Water contained in plant and soil samples can be analysed for 2H and 18O content by direct equilibration while contained within the sample matrix. Methods for this are described and compared with the commonly used azeotropic distillation of samples before isotope analysis. For δ18O, direct equilibration with CO 2 gives results in good agreement with azeotropic distillation, i.e. within 0.5%o at natural abundance. Direct equilibration is a practical method for individual twig samples containing less than 0.5 ml of water, and offers significant operator time savings compared with azeotropic distillation. Batches of up to 100 samples can be prepared in less time than required for a single azeotropic distillation, and analysis by automated continuous-flow isotope ratio mass spectrometry after equilibration for 3 days again requires a minimum of operator time. Complete equilibration of plant water with H 2 for δ2H measurement occurs only after the plant material has been heated to 100°C under vacuum. The method described here is barely precise enough for natural abundance measurements ( δ 2H ± 15‰ ) but is well suited to field tracer studies with deuterium oxide.

  19. Studies of the chemical behavior of carrier-free 68Ge. Pt. 2

    International Nuclear Information System (INIS)

    Mirzadeh, S.; Kahn, M.

    1986-01-01

    A determination of the 68 Ge distribution constant from the distillation of the azeotropic HCl was made. A simple correlation between the distribution constants of the 68 Ge and HCl was observed which can be expressed as D'sub(Ge)=k[D'sub(HCl)]sup(n). (orig.)

  20. Experiments of HI decomposition in Iodine-sulfur process

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ho Joon

    2006-02-15

    We performed an experimental study on the HI concentration and decomposition in Iodine-Sulfur process for thermochemical hydrogen production, which is the most expensive and energy consuming stage. For breaking azeotropic restrain, a partial condensing type, perforated plate type, and packed bed distillation column are employed. A Liebig-type condenser was used for a partial condensing distillation test. The perforated plate distillation column has 40 mm diameter and 5 stages with 8 holes per a plate. The packed bed distillation column has 40 mm diameter and was filled with 5 mm glass beads. While no distillation methods are able to change azeotropic conditions at atmospheric pressure, HI decomposition took place in a reboiler at 480 .deg. C. The vapor-liquid equilibrium curve was obtained from the experiment with binary mixtures (HI/H{sub 2}O) at atmospheric pressure. Almost pure H{sub 2}O was evaporated at the lower temperature than 125 .deg. C, and above that temperature binary mixtures (HI/H{sub 2}O) were evaporated until the leftover solution became HI acid of 0.157mol, which was an azeotropic concentration of HI. With a consideration of heat loss, enthalpy of vaporization at azeotropic condition was estimated as 1131 kJ/kg.

  1. Energy Efficient Bioethanol Purification by Heat Pump Assisted Extractive Distillation

    NARCIS (Netherlands)

    Kiss, Anton A.; Luo, Hao; Bildea, Costin Sorin

    2015-01-01

    The purification of bioethanol fuel requires an energy demanding separation process to concentrate the diluted streams obtained in the fermentation stage and to overcome the azeotropic behaviour of ethanol-water mixture. The classic separation sequence consists of three distillation columns that

  2. Convenient large-scale synthesis of D-glucaro-1,4:6,3-dilactone.

    Science.gov (United States)

    Gehret, Troy C; Frobese, A Stephen; Zerbe, James S; Chenault, H Keith

    2009-11-06

    Calcium D-glucarate was converted into D-glucaro-1,4:6,3-dilactone on 32-g, 1-kg, and 22-kg scale, using azeotropic distillation with methyl isobutyl ketone to drive the dehydration. The crystalline product was > or = 99.5% pure by GC and NMR, and overall yield was as high as 72%.

  3. Novel heat-pump-assisted extractive distillation for bioethanol purification

    NARCIS (Netherlands)

    Luo, Hao; Bildea, Costin Sorin; Kiss, Anton A.

    2015-01-01

    The purification of bioethanol fuel involves an energy-intensive separation process to concentrate the diluted streams obtained in the fermentation stage and to overcome the azeotropic behavior of the ethanol-water mixture. The conventional separation sequence employs three distillation columns that

  4. Fixation of carbon dioxide into dimethyl carbonate over ...

    Science.gov (United States)

    A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide. The developed catalyst activates carbon dioxide and delivers over 16% yield of DMC without the use of any dehydrating agent or requirement for azeotropic distillation. Prepared for submission to Nature Scientific reports.

  5. Untitled

    African Journals Online (AJOL)

    11]. Isopropanol in the azeotrope was also estimated [16]. RESULTS AND DISCUSSION. On refluxing titanium (IV) isopropoxide with acetamide benzamide and nicotinamide in the molar ratio of 1:1,1:2,1:3 and 1:4 the mixed imido-alkoxy.

  6. Alcohol-free alkoxide process for containing nuclear waste

    Science.gov (United States)

    Pope, James M.; Lahoda, Edward J.

    1984-01-01

    Disclosed is a method of containing nuclear waste. A composition is first prepared of about 25 to about 80%, calculated as SiO.sub.2, of a partially hydrolyzed silicon compound, up to about 30%, calculated as metal oxide, of a partially hydrolyzed aluminum or calcium compound, about 5 to about 20%, calculated as metal oxide, of a partially hydrolyzed boron or calcium compound, about 3 to about 25%, calculated as metal oxide, of a partially hydrolyzed sodium, potassium or lithium compound, an alcohol in a weight ratio to hydrolyzed alkoxide of about 1.5 to about 3% and sufficient water to remove at least 99% of the alcohol as an azeotrope. The azeotrope is boiled off and up to about 40%, based on solids in the product, of the nuclear waste, is mixed into the composition. The mixture is evaporated to about 25 to about 45% solids and is melted and cooled.

  7. Optimization of fuel ethanol recovery systems using molecular sieves

    International Nuclear Information System (INIS)

    Scheller, W.A.

    1989-01-01

    The use of molecular sieves for the dehydration of rectified fuel ethanol requires only about 58% of the energy required by azeotropic distillation, the usual commercial process. Recently molecular sieve prices have become low enough that their use can be economically competitive with azeotropic distillation. This paper contains results of mass and energy balances to determine the water content of the rectified ethanol (6.15 weight percent) that will result in the minimum energy requirement for producing anhydrous ethanol with the molecular sieve process and byproduct distillers soluble syrup from fermented corn mash containing 7.23 weight percent ethanol. In this paper results of economic evaluations to determine the water content of the rectified ethanol (7.58 weight percent) which results in a minimum investment and operating cost are presented

  8. Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Chiali-Baba Ahmed, Nouria [LATA2M, Laboratoire de Thermodynamique Appliquee et Modelisation Moleculaire, University AbouBekr Belkaid of Tlemcen, Post Office Box 119, Tlemcen 13000 (Algeria); Negadi, Latifa, E-mail: latifanegadi@yahoo.fr [LATA2M, Laboratoire de Thermodynamique Appliquee et Modelisation Moleculaire, University AbouBekr Belkaid of Tlemcen, Post Office Box 119, Tlemcen 13000 (Algeria); Mokbel, Ilham [LSA, Laboratoire des Sciences Analytiques, CNRS-UMR 5280, Universite Claude Bernard - Lyon I, 43, Bd du 11 Novembre 1918, Villeurbanne Cedex 69622 (France); Kaci, Ahmed Ait [Laboratoire de Thermodynamique et Modelisation Moleculaire, Universite des Sciences et de la Technologie Houari Boumediene, Post Office Box 32, El Alia 16111, Bab Ezzouar (Algeria); Jose, Jacques [LSA, Laboratoire des Sciences Analytiques, CNRS-UMR 5280, Universite Claude Bernard - Lyon I, 43, Bd du 11 Novembre 1918, Villeurbanne Cedex 69622 (France)

    2012-01-15

    Highlights: > Vapour pressures of sec-butylamine or cyclohexylamine and their aqueous solutions. > The investigated temperatures are 273 K and 363 K. > The (cyclohexylamine + water) mixture shows positive azeotropic behaviour. > The (sec-butylamine + water) or (cyclohexylamine + water) exhibit positive G{sup E}. - Abstract: The vapour pressures of (sec-butylamine + water), (cyclohexylamine + water) binary mixtures, and of pure sec-butylamine and cyclohexylamine components were measured by means of two static devices at temperatures between 293 (or 273) K and 363 K. The data were correlated with the Antoine equation. From these data, excess Gibbs functions (G{sup E}) were calculated for several constant temperatures and fitted to a fourth-order Redlich-Kister equation using the Barker's method. The (cyclohexylamine + water) system shows positive azeotropic behaviour for all investigated temperatures. The two binary mixtures exhibit positive deviations in G{sup E} for all investigated temperatures over the whole composition range.

  9. A Fluorine-18 Radiolabeling Method Enabled by Rhenium(I) Complexation Circumvents the Requirement of Anhydrous Conditions.

    Science.gov (United States)

    Klenner, Mitchell A; Pascali, Giancarlo; Zhang, Bo; Sia, Tiffany R; Spare, Lawson K; Krause-Heuer, Anwen M; Aldrich-Wright, Janice R; Greguric, Ivan; Guastella, Adam J; Massi, Massimiliano; Fraser, Benjamin H

    2017-05-11

    Azeotropic distillation is typically required to achieve fluorine-18 radiolabeling during the production of positron emission tomography (PET) imaging agents. However, this time-consuming process also limits fluorine-18 incorporation, due to radioactive decay of the isotope and its adsorption to the drying vessel. In addressing these limitations, the fluorine-18 radiolabeling of one model rhenium(I) complex is reported here, which is significantly improved under conditions that do not require azeotropic drying. This work could open a route towards the investigation of a simplified metal-mediated late-stage radiofluorination method, which would expand upon the accessibility of new PET and PET-optical probes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Quaternary isobaric (vapor + liquid + liquid) equilibrium and (vapor + liquid) equilibrium for the system (water + ethanol + cyclohexane + heptane) at 101.3 kPa

    International Nuclear Information System (INIS)

    Pequenin, Ana; Asensi, Juan Carlos; Gomis, Vicente

    2011-01-01

    Highlights: → Water-ethanol-cyclohexane-heptane and water-cyclohexane-heptane isobaric VLLE. → Isobaric experimental data were determined at 101.3 kPa. → A dynamic recirculating still with an ultrasonic homogenizer was used. → The quaternary system does not present quaternary azeotropes. - Abstract: Experimental isobaric (vapor + liquid + liquid) and (vapor + liquid) equilibrium data for the ternary system {water (1) + cyclohexane (2) + heptane (3)} and the quaternary system {water (1) + ethanol (2) + cyclohexane (3) + heptane (4)} were measured at 101.3 kPa. An all-glass, dynamic recirculating still equipped with an ultrasonic homogenizer was used to determine the VLLE. The results obtained show that the system does not present quaternary azeotropes. The point-by-point method by Wisniak for testing the thermodynamic consistency of isobaric measurements was used to test the equilibrium data.

  11. Preparation of nano-sized α-Al2O3 from oil shale ash

    International Nuclear Information System (INIS)

    An, Baichao; Wang, Wenying; Ji, Guijuan; Gan, Shucai; Gao, Guimei; Xu, Jijing; Li, Guanghuan

    2010-01-01

    Oil shale ash (OSA), the residue of oil shale semi-coke roasting, was used as a raw material to synthesize nano-sized α-Al 2 O 3 . Ultrasonic oscillation pretreatment followed by azeotropic distillation was employed for reducing the particle size of α-Al 2 O 3 . The structural characterization at molecular and nanometer scales was performed using X-ray diffraction (XRD), transmission electron microscopy (TEM), respectively. The interaction between alumina and n-butanol was characterized by Fourier transform infrared spectroscopy (FT-IR). The results revealed that the crystalline phase of alumina nanoparticles was regular and the well dispersed alumina nanoparticles had a diameter of 50-80 nm. In addition, the significant factors including injection rate of carbon oxide (CO 2 ), ultrasonic oscillations, azeotropic distillation and surfactant were investigated with respect to their effects on the size of the alumina particles.

  12. Preparation of nano-sized {alpha}-Al{sub 2}O{sub 3} from oil shale ash

    Energy Technology Data Exchange (ETDEWEB)

    An, Baichao; Wang, Wenying; Ji, Guijuan; Gan, Shucai; Gao, Guimei; Xu, Jijing; Li, Guanghuan [College of Chemistry, Jilin University, Changchun 130026 (China)

    2010-01-15

    Oil shale ash (OSA), the residue of oil shale semi-coke roasting, was used as a raw material to synthesize nano-sized {alpha}-Al{sub 2}O{sub 3}. Ultrasonic oscillation pretreatment followed by azeotropic distillation was employed for reducing the particle size of {alpha}-Al{sub 2}O{sub 3}. The structural characterization at molecular and nanometer scales was performed using X-ray diffraction (XRD), transmission electron microscopy (TEM), respectively. The interaction between alumina and n-butanol was characterized by Fourier transform infrared spectroscopy (FT-IR). The results revealed that the crystalline phase of alumina nanoparticles was regular and the well dispersed alumina nanoparticles had a diameter of 50-80 nm. In addition, the significant factors including injection rate of carbon oxide (CO{sub 2}), ultrasonic oscillations, azeotropic distillation and surfactant were investigated with respect to their effects on the size of the alumina particles. (author)

  13. Isobaric vapour-liquid-liquid equilibrium and vapour-liquid equilibrium for the system water + ethanol + iso-octane at 101.3 kPa

    OpenAIRE

    Ruiz Beviá, Francisco; Gomis Yagües, Vicente; Asensi Steegmann, Juan Carlos; Font Escamilla, Alicia

    2002-01-01

    Poster enviado a Equifase 2002, VI Iberoamerican Conference on Phase Equilibria for Process Design, Foz de Iguazú (Brazil), October 12th to 16th, 2002. Many studies have been carried out in the heterogeneous azeotropic distillation field either by experiment or by simulation. The development of all these studies requires the use of sets of isobaric vapour–liquid–liquid equilibrium (VLLE) data. However, the number of ternary systems with experimental VLLE data is very limited, since it is d...

  14. Study of the liquid vapor equilibrium in the bromine-hydrobromic acid-water system

    Science.gov (United States)

    Benizri, R.; Lessart, P.; Courvoisier, P.

    1984-01-01

    A glass ebullioscope was built and at atmospheric pressure, liquid-vapor equilibria relative to the Br2-HBr-H2O system, in the concentration range of interest for evaluation of the Mark 13 cycle was studied. Measurements were performed for the brome-azeotrope (HBr-H2O) pseudo-binary system and for the ternary system at temperatures lower than 125 C and in the bromine concentration range up to 13% wt.

  15. (Vapour + liquid) equilibria of the {1,1-difluoroethane (HFC-152a) + n-butane (HC-600)} system

    International Nuclear Information System (INIS)

    Im, Jihoon; Lee, Gangwon; Lee, Yong-Jin; Kim, Hwayong

    2007-01-01

    Binary (vapour + liquid) equilibrium data were obtained for the {1,1-difluoroethane (HFC-152a) + n-butane (HC-600)} system at temperatures from 313.15 K to 363.15 K. These experiments were carried out with a circulating-type apparatus with on-line gas chromatography. The experimental data were correlated well by Peng-Robinson equation of state using the Wong-Sandler mixing rules. This system shows positive azeotropic phase behaviour

  16. HIDiC - Design, Sensitivity and Graphical Representation

    DEFF Research Database (Denmark)

    Meyer, K.; Ianniciello, L.; Nielsen, J. E.

    2014-01-01

    We have explored the applicability of recent design methods based on H-xy diagrams for the HIDiC [i,ii] also for non-ideal and azeotropic systems. When applied together with sensitivity analysis and verification through rigorous simulations based on a newly developed and detailed HIDiC model......, these concepts widen the scope of HIDiC design of a larger range of industrially relevant separations....

  17. Recent Membrane Development for Pervaporation Processes

    KAUST Repository

    Ong, Yee Kang; Shi, Gui Min; Le, Ngoc Lieu; Tang, Yu Pan; Zuo, Jian; Nunes, Suzana Pereira; Chung, Neal Tai-Shung

    2016-01-01

    Pervaporation has been regarded as a promising separation technology in separating azeotropic mixtures, solutions with similar boiling points, thermally sensitive compounds, organic–organic mixtures as well as in removing dilute organics from aqueous solutions. As the pervaporation membrane is one of the crucial factors in determining the overall efficiency of the separation process, this article reviews the research and development (R&D) of polymeric pervaporation membranes from the perspective of membrane fabrication procedures and materials.

  18. Recent Membrane Development for Pervaporation Processes

    KAUST Repository

    Ong, Yee Kang

    2016-03-11

    Pervaporation has been regarded as a promising separation technology in separating azeotropic mixtures, solutions with similar boiling points, thermally sensitive compounds, organic–organic mixtures as well as in removing dilute organics from aqueous solutions. As the pervaporation membrane is one of the crucial factors in determining the overall efficiency of the separation process, this article reviews the research and development (R&D) of polymeric pervaporation membranes from the perspective of membrane fabrication procedures and materials.

  19. Desactivation of tritium waters by rectification methods

    International Nuclear Information System (INIS)

    Egorov, A.I.; Tyunis, V.M.

    2002-01-01

    Results of experiments into the basic rectification processes dedicated to tritium separation from reactor, technological and waste waters are presented. Coefficients of separation for rectification of water (1.028), ammonia (1.05), azeotrope H 2 O - HTO - HNO 3 (1.098) and D 2 O - DTO - DNO 3 (1.039) are performed. Operating schemes of tritium separating units are reviewed [ru

  20. ETHANOL DEHYDRATION IN PACKED DISTILLATION COLUMN USING GLYCEROL AS ENTRAINER: EXPERIMENTS AND HETP EVALUATION

    OpenAIRE

    Souza,W. L. R.; Silva,C. S.; Meleiro,L. A. C.; Mendes,M. F.

    2016-01-01

    Abstract The ethanol-water separation is very important because ethanol is widely applied in the chemical industry and its use as a fuel can reduce the pollution emitted to the air. However, anhydrous ethanol production using conventional distillation is impossible, at atmospheric pressure, due to the presence of an azeotrope. In the present work, experimental tests were carried out in order to evaluate the use of glycerol as an entrainer, in substitution of ethylene glycol in an extractive d...

  1. Producing fuel alcohol by extractive distillation: Simulating the process with glycerol

    OpenAIRE

    Ana María Uyazán; Iván Dario Gil; Jaime Aguilar; Gerardo Rodríguez Niño; Luis A Caicedo Mesa

    2006-01-01

    Downstream separation processes in biotechnology form part of the stages having most impact on a product’s final cost. The tendency throughout the world today is to replace fossil fuels with those having a renewable origin such as ethanol; this, in turn, produces a demand for the same and the need for optimising fermentation, treating vinazas and dehydration processes. The present work approaches the problem of dehydration through simulating azeotropic ethanol extractive distillation using gl...

  2. Simulation of ethanol extractive distillation with mixed glycols as separating agent

    OpenAIRE

    Gil, I. D.; García, L. C.; Rodríguez, G.

    2014-01-01

    Extractive distillation is an alternative for ethanol dehydration processes that has been shown to be more effective than azeotropic distillation and, in close proximity, to be very competitive against the process that uses adsorption with molecular sieves. Glycols have been shown to be the most effective solvents in extractive distillation, mainly ethylene glycol and glycerol. In this work, an extractive distillation column was simulated with the Aspen Plus software platform, using the RadFr...

  3. Separation of ethanol and water by extractive distillation with salt and solvent as entrainer: process simulation

    OpenAIRE

    Gil, I. D.; Uyazán, A. M.; Aguilar, J. L.; Rodríguez, G.; Caicedo, L. A.

    2008-01-01

    The aim of this work is to simulate and analyze an extractive distillation process for azeotropic ethanol dehydration with ethylene glycol and calcium chloride mixture as entrainer. The work was developed with Aspen Plus® simulator version 11.1. Calculation of the activity coefficients employed to describe vapor liquid equilibrium of ethanol - water - ethylene glycol - calcium chloride system was done with the NRTL-E equation and they were validated with experimental data. The dehydration pro...

  4. Hydrogen production based on magnetic fusion

    International Nuclear Information System (INIS)

    Krikorian, O.H.

    1981-01-01

    Aspects of the work that are reported are (1) a brief summary of the status of TMR blanket design studies as an energy source for thermochemical cycles, (2) a joule-boosted decomposer concept for SO 3 decomposition, and (3) some of the details of the thermodynamics of boiling of the H 2 SO 4 azeotrope and the enthalpy of the resulting vapor as a function of temperature

  5. Exergetic and Economic Assessment of Distillation Hybrid Configurations for Bioethanol Refining

    OpenAIRE

    Suleiman, Bilyaminu; Olawale, Adegboyega Surajudeen; Mohammed, Saidu Waziri

    2014-01-01

    Thermo-economics analysis was used to identify the most economic distillation hybrid configuration to dehydrate bioethanol mash (12 wt%) to fuel grade (99.5 wt%) based on economic objective of minimization of operating cost in this work. Three different hybrids of THIDC with azeotropic and, extractive distillation units were assessed using similar feed and product specifications of 1200 kmol/h (12 % by weight ethanol) and 55 kmol/h (99.5 % by weight ethanol) respectively . The six hybrid conf...

  6. Purification Simulation With Vapor Permeation and Distillation-Adsorption In Bioethanol Plant

    OpenAIRE

    Misri Gozan; Mia Sari Setiawan; Kenny Lischer

    2017-01-01

    High purity of Bioethanol is required in biofuel mixing with gasoline (EXX). In bioethanol production line, the azeotropic property of ethanol-water becomes the barrier for purification process. This study examined two bioethanol separation processes by support of simulation tools, Superpro Designer 9.0 software. Ethanol purity and a low costeconomical process were the major considerations. Purification method of vapor permeation membrane technology was compared with distillation-adsorption m...

  7. Sensitivity of Process Design due to Uncertainties in Property Estimates

    DEFF Research Database (Denmark)

    Hukkerikar, Amol; Jones, Mark Nicholas; Sarup, Bent

    2012-01-01

    The objective of this paper is to present a systematic methodology for performing analysis of sensitivity of process design due to uncertainties in property estimates. The methodology provides the following results: a) list of properties with critical importance on design; b) acceptable levels of...... in chemical processes. Among others vapour pressure accuracy for azeotropic mixtures is critical and needs to be measured or estimated with a ±0.25% accuracy to satisfy acceptable safety levels in design....

  8. An integrated computer aided system for integrated design of chemical processes

    DEFF Research Database (Denmark)

    Gani, Rafiqul; Hytoft, Glen; Jaksland, Cecilia

    1997-01-01

    In this paper, an Integrated Computer Aided System (ICAS), which is particularly suitable for solving problems related to integrated design of chemical processes; is presented. ICAS features include a model generator (generation of problem specific models including model simplification and model ...... form the basis for the toolboxes. The available features of ICAS are highlighted through a case study involving the separation of binary azeotropic mixtures. (C) 1997 Elsevier Science Ltd....

  9. Flow boiling heat transfer coefficients at cryogenic temperatures for multi-component refrigerant mixtures of nitrogen-hydrocarbons

    Science.gov (United States)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-01

    The recuperative heat exchanger governs the overall performance of the mixed refrigerant Joule-Thomson cryocooler. In these heat exchangers, the non-azeotropic refrigerant mixture of nitrogen-hydrocarbons undergoes boiling and condensation simultaneously at cryogenic temperature. Hence, the design of such heat exchanger is crucial. However, due to lack of empirical correlations to predict two-phase heat transfer coefficients of multi-component mixtures at low temperature, the design of such heat exchanger is difficult.

  10. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    Science.gov (United States)

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1996-05-07

    The present invention is a tetrahydrofurfuryl alcohol and limonene or terpineol cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  11. Limonene and tetrahydrofurfurly alcohol cleaning agent

    Science.gov (United States)

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  12. Characteristics of nanosized zirconia prepared by plasma and chemical technique

    International Nuclear Information System (INIS)

    Kuznetsova, L.; Grabis, J.; Heidemane, G.

    2003-01-01

    The studied preparation method of zirconia using the plasma technique, azeotropic distillation and glycine routes ensure obtaining of nano sized powders with close average particle size but different crystallite size and phase composition. The sinterability of nano sized zirconia particles prepared by plasma technique or wet-chemical methods is similar and depends on the green density of pressed powders, improvement of with can be achieved by using of granulated precursors. (authors)

  13. A complete remote-control system for reliable preparation of [18F]altanserin.

    Science.gov (United States)

    Tan, P Z; Baldwin, R M; Soufer, R; Garg, P K; Charney, D S; Innis, R B

    1999-05-01

    A complete remote control system was constructed for production of the PET 5-HT2A ligand [18F]altanserin by nitro-for-fluoro exchange. Comparing with published methods, the key features include (1) conducting azeotropic distillation and nucleophilic displacement in an open vessel heated by a commercial microwave oven; (2) purifying the product by a single HPLC procedure and (3) removing HPLC solvent by solid phase extraction. The preparation took 114 min with 23% yield and high quality.

  14. HIGH FIELD 13C NMR SPECTROSCOPIC ANALYSIS OF THE ...

    African Journals Online (AJOL)

    a

    water through azeotropic distillation. The extracted oil was purified. 2 g of extracted oil was percolated through a silica gel (15 g) column with a mixture of petroleum ether (b.p. 40-60 0C) and diethyl ether (95:5, v/v, 150 mL). The eluate was evaporated under reduced pressure to 5 mL portion and this portion further.

  15. Determination of tritium in wine yeast samples

    International Nuclear Information System (INIS)

    Cotarlea, Monica-Ionela; Paunescu Niculina; Galeriu, D; Mocanu, N.; Margineanu, R.; Marin, G.

    1998-01-01

    Analytical procedures were developed to determine tritium in wine and wine yeast samples. The content of organic compounds affecting the LSC measurement is reduced by fractioning distillation for wine samples and azeotropic distillation/fractional distillation for wine yeast samples. Finally, the water samples were normally distilled with K MO 4 . The established procedures were successfully applied for wine and wine samples from Murfatlar harvests of the years 1995 and 1996. (authors)

  16. Nitric acid recycling and copper nitrate recovery from effluent.

    Science.gov (United States)

    Jô, L F; Marcus, R; Marcelin, O

    2014-01-01

    The recycling of nitric acid and copper nitrate contained in an industrial effluent was studied. The experiments conducted on such a medium showed that the presence of copper nitrate significantly improves nitric acid-water separation during distillation in an azeotropic medium. At the temperature of the azeotrope, however, this metal salt starts to precipitate, making the medium pasty, thus inhibiting the nitric acid extraction process. The optimisation of parameters such as column efficiency and adding water to the boiler at the azeotrope temperature are recommended in this protocol in order to collect the various components while avoiding the formation of by-products: NOx compounds. Thus, the absence of column, along with the addition of a small volume of water at a temperature of 118 °C, significantly increases the yield, allowing 94 % nitric acid to be recovered at the end of the process, along with the residual copper nitrate. The resulting distillate, however, is sufficiently dilute to not be used as is. Rectification is required to obtain concentrated nitric acid at 15 mol·l(-1), along with a weakly acidic distillate from the distillation front. This latter is quenched using potassium hydroxide and is used as a fertiliser solution for horticulture or sheltered market gardening. This process thus allows complete recycling of all the medium's components, including that of the distillate resulting from the nitric acid rectification operation.

  17. Vapor-liquid equilibrium of ethanol/ethyl acetate mixture in ultrasonic intensified environment

    Energy Technology Data Exchange (ETDEWEB)

    Mahdi, Taha; Ahmad, Arshad; Ripin, Adnan Nasef; Mohamed, Mahmoud [Universiti Teknologi Malaysia, Johor Bahru (Malaysia)

    2014-05-15

    A vapor-liquid equilibrium (VLE) study was conducted on ethanol/ethylacetate mixture as a preliminary step towards developing an ultrasonic-assisted distillation process for separating azeotropic mixtures. The influence of ultrasonic intensity and frequency on the vapor-liquid equilibrium (VLE) of the mixture was examined using a combination of four ultrasonic intensities in range of 100-400W/cm{sup 2} and three frequencies ranging from 25-68 kHz. The sonication was found to have significant impacts on the VLE of the system as it alters both the relative volatility and azeotrope point, with preference to lower frequency operation. A maximum relative volatility of 2.32 was obtained at an intensity of 300 W/cm{sup 2} and a frequency of 25 kHz coupled with complete elimination of ethanol-ethyl acetate azeotrope. Results from this work were also congruent with some experimental and theoretical works presented in the literature. These findings set a good beginning towards the development of an ultrasonic assisted distillation that is currently in progress.

  18. Heat integrated ethanol dehydration flowsheets

    Energy Technology Data Exchange (ETDEWEB)

    Hutahaean, L.S.; Shen, W.H.; Brunt, V. Van [Univ. of South Carolina, Columbia, SC (United States)

    1995-04-01

    zA theoretical evaluation of heat-integrated heterogeneous-azeotropic ethanol-water distillation flowsheets is presented. Simulations of two column flowsheets using several different hydrocarbon entrainers reveal a region of potential heat integration and substantial reduction in operating energy. In this paper, methods for comparing hydrocarbon entrainers are shown. Two aspects of entrainers are related to operating and capital costs. The binary azeotropic composition of the entrainer-ethanol mixture is related to the energy requirements of the flowsheet. A temperature difference in the azeotrophic column is related to the size of the column and overall process staging requirements. Although the hydrophobicity of an entrainer is essential for specification of staging in the dehydration column, no substantial increase in operating energy results from an entrainer that has a higher water content. Likewise, liquid-liquid equilibria between several entrainer-ethanol-water mixtures have no substantial effect on either staging or operation. Rather, increasing the alcohol content of the entrainer-ethanol azeotrope limits its recovery in the dehydration column, and increases the recycle and reflux streams. These effects both contribute to increasing the separation energy requirements and reducing the region of potential heat integration. A cost comparison with a multieffect extractive distillation flowsheet reveals that the costs are comparable; however, the extractive distillation flowsheet is more cost effective as operating costs increase.

  19. A safer and flexible method for the oxygen functionalization of carbon nanotubes by nitric acid vapors

    Energy Technology Data Exchange (ETDEWEB)

    Santangelo, Saveria, E-mail: saveria.santangelo@unirc.it [Dipartimento di Ingegneria Civile, dell’Energia, dell’Ambiente e dei Materiali (DICEAM), Università “Mediterranea”, 89122 Reggio Calabria (Italy); Piperopoulos, Elpida [Dipartimento di Ingegneria Eletronica, Chimica ed Ingegneria Industriale (DIECII), Università di Messina, 98166 Messina (Italy); Fazio, Enza [Dipartimento di Fisica e di Scienze della Terra (DFST), Università di Messina, 98166 Messina (Italy); Faggio, Giuliana [Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile (DIIES), Università “Mediterranea”, 89122 Reggio Calabria (Italy); Ansari, Shabana [Dipartimento di Ingegneria Eletronica, Chimica ed Ingegneria Industriale (DIECII), Università di Messina, 98166 Messina (Italy); Lanza, Maurizio [Istituto per i Processi Chimico Fisici (IPCF) del CNR, 98158 Messina (Italy); Neri, Fortunato [Dipartimento di Fisica e di Scienze della Terra (DFST), Università di Messina, 98166 Messina (Italy); Messina, Giacomo [Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile (DIIES), Università “Mediterranea”, 89122 Reggio Calabria (Italy); Milone, Candida [Dipartimento di Ingegneria Eletronica, Chimica ed Ingegneria Industriale (DIECII), Università di Messina, 98166 Messina (Italy)

    2014-06-01

    The functionalization by nitric acid vapors at azeotropic concentration has been recently proposed to eliminate drawbacks of the widely utilized liquid phase functionalization method. This work suggests to exploit the so-called “salt effect” to improve the vapor phase oxidation method in terms of safety and flexibility. Increasing the relative volatility of acid, the addition of Mg(NO{sub 3}){sub 2} salt to the HNO{sub 3} + H{sub 2}O solution allows (i) obtaining vapors with HNO{sub 3} at the azeotropic concentration from a more diluted liquid solution (i.e. operating under safer conditions), and (ii) varying the concentration of HNO{sub 3} in the vapor phase even above the azeotropic concentration limit (with improved process flexibility). High-resolution transmission electron microscopy, thermo-gravimetry, Raman spectroscopy and X-ray photoemission spectroscopy systematic analyses are carried out on pristine and oxidized nanotubes in order to assess their functionalization degree, surface chemistry and structural evolution. The most relevant finding of this preliminary study is that the nanotube functionalization extent increases linearly with the HNO{sub 3} vapor concentration.

  20. A safer and flexible method for the oxygen functionalization of carbon nanotubes by nitric acid vapors

    International Nuclear Information System (INIS)

    Santangelo, Saveria; Piperopoulos, Elpida; Fazio, Enza; Faggio, Giuliana; Ansari, Shabana; Lanza, Maurizio; Neri, Fortunato; Messina, Giacomo; Milone, Candida

    2014-01-01

    The functionalization by nitric acid vapors at azeotropic concentration has been recently proposed to eliminate drawbacks of the widely utilized liquid phase functionalization method. This work suggests to exploit the so-called “salt effect” to improve the vapor phase oxidation method in terms of safety and flexibility. Increasing the relative volatility of acid, the addition of Mg(NO 3 ) 2 salt to the HNO 3 + H 2 O solution allows (i) obtaining vapors with HNO 3 at the azeotropic concentration from a more diluted liquid solution (i.e. operating under safer conditions), and (ii) varying the concentration of HNO 3 in the vapor phase even above the azeotropic concentration limit (with improved process flexibility). High-resolution transmission electron microscopy, thermo-gravimetry, Raman spectroscopy and X-ray photoemission spectroscopy systematic analyses are carried out on pristine and oxidized nanotubes in order to assess their functionalization degree, surface chemistry and structural evolution. The most relevant finding of this preliminary study is that the nanotube functionalization extent increases linearly with the HNO 3 vapor concentration.

  1. Adding rectifying/stripping section type heat integration to a pressure-swing distillation (PSD) process

    International Nuclear Information System (INIS)

    Huang Kejin; Shan Lan; Zhu Qunxiong; Qian Jixin

    2008-01-01

    This paper studies the economical effect of considering rectifying/stripping section type heat integration in a pressure-swing distillation (PSD) process separating a binary homogeneous pressure-sensitive azeotrope. The schemes for arranging heat integration between the rectifying section and the stripping section of the high- and low-pressure distillation columns, respectively, are derived and an effective procedure is devised for the conceptual process design of the heat-integrated PSD processes. In terms of the separation of a binary azeotropic mixture of acetonitrile and water, intensive comparisons are made between the conventional and heat-integrated PSD processes. It is demonstrated that breaking a pressure-sensitive azeotropic mixture can be made more economical than the current practice with the conventional PSD process. For boosting further the thermodynamic efficiency of a PSD process, it is strongly suggested to consider simultaneously the condenser/reboiler type heat integration with the rectifying/stripping section type heat integration in process synthesis and design

  2. Ionic liquids as entrainers for water + ethanol, water + 2-propanol, and water + THF systems: A quantum chemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vijay Kumar [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam (India); Banerjee, Tamal, E-mail: tamalb@iitg.ernet.i [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam (India)

    2010-07-15

    Ionic liquids (ILs) are used as entrainers in azeotropic systems such as water + ethanol, water + 2-propanol, and water + tetrahydrofuran (THF). Ionic liquids consisting of a cation and an anion has limitless combinations, thereby making experimentation expensive and time taking. For the prediction of the liquid phase nonidealities resulting from molecular interactions, 'COnductor-like Screening MOdel for Real Solvents' (COSMO-RS) approach is used in this work for the screening of potential ionic liquids. Initially benchmarking has been done on 12 reported isobaric IL based ternary systems with an absolute average deviation of 4.63% in vapor phase mole fraction and 1.07% in temperature. After successful benchmarking, ternary vapor + liquid equilibria for the azeotropic mixture of (a) ethanol + water, (b) 2-propanol + water, and (c) THF + water with combinations involving 10 cations (imidazolium, pyridinium, quinolium) and 24 anions were predicted. The VLE prediction, which gave the relative volatility, showed that the imidazolium based ionic liquid were the best entrainer for the separation of the three systems at their azeotropic point. ILs with [MMIM] cation in combination with acetate [OAc], chloride [Cl], and bromide [Br] anion gave the highest relative volatility.

  3. The investigation of YAlO{sub 3}-NdAlO{sub 3} system, synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Szysiak, A., E-mail: agnieszka.szysiak@itme.edu.pl [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Klimm, D.; Ganschow, S. [Leibniz Institute for Crystal Growth, Max-Born Str. 2, 12489 Berlin (Germany); Mirkowska, M.; Diduszko, R.; Lipinska, L. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Kwasniewski, A. [Leibniz Institute for Crystal Growth, Max-Born Str. 2, 12489 Berlin (Germany); Pajaczkowska, A. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland)

    2011-09-01

    Highlights: {center_dot} The system YAlO{sub 3}-NdAlO{sub 3} is pseudo-binary. {center_dot} Both end members show high mutual solubility >25% in the solid phase. {center_dot} A solid solution Y{sub 0.8}Nd{sub 0.2} melts azeotropic ca. 20{sup o} below pure YAP. {center_dot} All YAP-rich solid solutions have the 2-phase region between solidus and liquidus. - Abstract: The pseudo-binary phase diagram of the YAlO{sub 3} (YAP)-NdAlO{sub 3} (NAP) system was determined by differential thermal analysis (DTA) and X-ray powder diffraction (XRD) measurements. High purity nanocrystalline powders and small single crystals of Y{sub 1-x}Nd{sub x}AlO{sub 3} (0 {<=} x {<=} 1) have been produced successfully by modified sol-gel (Pechini) and micro-pulling-down methods, respectively. Both end members show high mutual solubility >25% in the solid phase, with a miscibility gap for intermediate compositions. A solid solution with x {approx} 0.2 melts azeotropic ca. 20{sup o} below pure YAP. Such crystals can be grown from the melt without segregation. The narrow solid/liquid region near the azeotrope point could be measured with a 'cycling' DTA measurement technique.

  4. Vapor-liquid equilibrium of ethanol/ethyl acetate mixture in ultrasonic intensified environment

    International Nuclear Information System (INIS)

    Mahdi, Taha; Ahmad, Arshad; Ripin, Adnan Nasef; Mohamed, Mahmoud

    2014-01-01

    A vapor-liquid equilibrium (VLE) study was conducted on ethanol/ethylacetate mixture as a preliminary step towards developing an ultrasonic-assisted distillation process for separating azeotropic mixtures. The influence of ultrasonic intensity and frequency on the vapor-liquid equilibrium (VLE) of the mixture was examined using a combination of four ultrasonic intensities in range of 100-400W/cm 2 and three frequencies ranging from 25-68 kHz. The sonication was found to have significant impacts on the VLE of the system as it alters both the relative volatility and azeotrope point, with preference to lower frequency operation. A maximum relative volatility of 2.32 was obtained at an intensity of 300 W/cm 2 and a frequency of 25 kHz coupled with complete elimination of ethanol-ethyl acetate azeotrope. Results from this work were also congruent with some experimental and theoretical works presented in the literature. These findings set a good beginning towards the development of an ultrasonic assisted distillation that is currently in progress

  5. Mathematical modeling of a single stage ultrasonically assisted distillation process.

    Science.gov (United States)

    Mahdi, Taha; Ahmad, Arshad; Ripin, Adnan; Abdullah, Tuan Amran Tuan; Nasef, Mohamed M; Ali, Mohamad W

    2015-05-01

    The ability of sonication phenomena in facilitating separation of azeotropic mixtures presents a promising approach for the development of more intensified and efficient distillation systems than conventional ones. To expedite the much-needed development, a mathematical model of the system based on conservation principles, vapor-liquid equilibrium and sonochemistry was developed in this study. The model that was founded on a single stage vapor-liquid equilibrium system and enhanced with ultrasonic waves was coded using MATLAB simulator and validated with experimental data for ethanol-ethyl acetate mixture. The effects of both ultrasonic frequency and intensity on the relative volatility and azeotropic point were examined, and the optimal conditions were obtained using genetic algorithm. The experimental data validated the model with a reasonable accuracy. The results of this study revealed that the azeotropic point of the mixture can be totally eliminated with the right combination of sonication parameters and this can be utilized in facilitating design efforts towards establishing a workable ultrasonically intensified distillation system. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Synthesis and textural evolution of alumina particles with mesoporous structures

    International Nuclear Information System (INIS)

    Liu Xun; Peng Tianyou; Yao Jinchun; Lv Hongjin; Huang Cheng

    2010-01-01

    Alumina particles with mesostructures were synthesized through a chemical precipitation method by using different inorganic aluminum salts followed by a heterogeneous azeotropic distillation and calcination process. The obtained mesoporous γ-alumina particles were systematically characterized by the X-ray diffraction, transmission electron microscopy and nitrogen adsorption-desorption measurement. Effects of the aluminum salt counter anion, pH value and the azeotropic distillation process on the structural or textural evolution of alumina particles were investigated. It is found that Cl - in the reaction solution can restrain the textural evolution of the resultant precipitates into two-dimensional crystallized pseudoboehmite lamellae during the heterogeneous azeotropic distillation, and then transformed into γ-Al 2 O 3 particles with mesostructures after further calcination at 1173 K, whereas coexisting SO 4 2- can promote above morphology evolution and then transformed into γ-Al 2 O 3 nanofibers after calcination at 1173 K. Moreover nearly all materials retain relatively high specific surface areas larger than 100 m 2 g -1 even after calcinations at 1173 K. - Graphical abstract: Co-existing Cl - is beneficial for the formation of γ-alumina nanoparticles with mesostructures during the precipitation process. Interparticle and intraparticle mesopores can be derived from acidic solution and near neutral solution, respectively.

  7. Adding rectifying/stripping section type heat integration to a pressure-swing distillation (PSD) process

    Energy Technology Data Exchange (ETDEWEB)

    Huang Kejin [School of Information Science and Technology, Beijing University of Chemical Technology, Chaoyang-qu, Beijing-shi, Beijing 100029 (China)], E-mail: huangkj@mail.buct.edu.cn; Shan Lan; Zhu Qunxiong [School of Information Science and Technology, Beijing University of Chemical Technology, Chaoyang-qu, Beijing-shi, Beijing 100029 (China); Qian Jixin [School of Information Science and Technology, Zhejiang University, Xihu-qu, Hangzhou-shi, Zhejiang 300027 (China)

    2008-06-15

    This paper studies the economical effect of considering rectifying/stripping section type heat integration in a pressure-swing distillation (PSD) process separating a binary homogeneous pressure-sensitive azeotrope. The schemes for arranging heat integration between the rectifying section and the stripping section of the high- and low-pressure distillation columns, respectively, are derived and an effective procedure is devised for the conceptual process design of the heat-integrated PSD processes. In terms of the separation of a binary azeotropic mixture of acetonitrile and water, intensive comparisons are made between the conventional and heat-integrated PSD processes. It is demonstrated that breaking a pressure-sensitive azeotropic mixture can be made more economical than the current practice with the conventional PSD process. For boosting further the thermodynamic efficiency of a PSD process, it is strongly suggested to consider simultaneously the condenser/reboiler type heat integration with the rectifying/stripping section type heat integration in process synthesis and design.

  8. Synthesis and textural evolution of alumina particles with mesoporous structures

    Science.gov (United States)

    Liu, Xun; Peng, Tianyou; Yao, Jinchun; Lv, Hongjin; Huang, Cheng

    2010-06-01

    Alumina particles with mesostructures were synthesized through a chemical precipitation method by using different inorganic aluminum salts followed by a heterogeneous azeotropic distillation and calcination process. The obtained mesoporous γ-alumina particles were systematically characterized by the X-ray diffraction, transmission electron microscopy and nitrogen adsorption-desorption measurement. Effects of the aluminum salt counter anion, pH value and the azeotropic distillation process on the structural or textural evolution of alumina particles were investigated. It is found that Cl - in the reaction solution can restrain the textural evolution of the resultant precipitates into two-dimensional crystallized pseudoboehmite lamellae during the heterogeneous azeotropic distillation, and then transformed into γ-Al 2O 3 particles with mesostructures after further calcination at 1173 K, whereas coexisting SO 42- can promote above morphology evolution and then transformed into γ-Al 2O 3 nanofibers after calcination at 1173 K. Moreover nearly all materials retain relatively high specific surface areas larger than 100 m 2 g -1 even after calcinations at 1173 K.

  9. Isobaric (vapor + liquid) equilibria for the ternary system of (ethanol + water + 1,3-propanediol) and three constituent binary systems at P = 101.3 kPa

    International Nuclear Information System (INIS)

    Lai, Hung-Sheng; Lin, Yi-Feng; Tu, Chein-Hsiun

    2014-01-01

    Highlights: • We report VLE data at 101.3 kPa for mixtures of ethanol, water, and 1,3-propanediol. • The VLE data were correlated by the Wilson, NRTL, and UNIQUAC models. • The ternary VLE data were predicted from binary VLE data using the three models. • The VLE effect of 1,3-propanediol on the azeotropic ethanol + water mixture was studied. • The azeotropic point of ethanol + water disappears at 30 wt% of 1,3-propanediol. -- Abstract: Isobaric (vapor + liquid) equilibrium (VLE) at P = 101.3 kPa have been measured for the ternary system of (ethanol + water + 1,3-propanediol) and for the corresponding binary systems of (ethanol + water), (ethanol + 1,3-propanediol), and (water + 1,3-propnaediol) using a Hunsmann-type equilibrium still with circulation of both vapor and liquid phases. The ternary mixtures were prepared by mixing ethanol and pure water with three concentrations (10, 30, and 50) wt% of 1,3-propanediol in the overall liquid mixtures in order to study the effect of 1,3-propanediol on the VLE of (ethanol + water). The equilibrium compositions of mixtures were analyzed by gas–liquid chromatography. The relative volatilities of ethanol with respect to water were also determined. The results of the investigation indicate the disappearance of the binary azeotrope between ethanol and water when the concentration of 1,3-propanediol is up to 30 wt%. The liquid activity coefficients were calculated using the modified Raoult’s law. The thermodynamic consistency of the VLE data was performed for the three binary systems using Van Ness direct test. The new binary and ternary VLE data were successfully correlated using the Wilson, NRTL, and UNIQUAC models, for which the binary interaction parameters are reported

  10. The potential of head-space gas chromatography for VLE measurements

    International Nuclear Information System (INIS)

    Luis, Patricia; Wouters, Christine; Sweygers, Nick; Creemers, Claude; Van der Bruggen, Bart

    2012-01-01

    Highlights: ► HS-GC is a potential technique to obtain VLE data in a high throughput scenario. ► We applied HS-GC and evaluate the main issues to consider. ► Four azeotropic mixtures of industrial interest are studied. ► The thermodynamic analysis of VLE shows the strong non-ideality of the mixtures. - Abstract: Head-space gas chromatography (HS-GC) is thought to allow the performance of (vapour + liquid) equilibrium (VLE) measurements in a fast and automated way. However, two decades after the first applications of HS-GC for this purpose, the potential of this technique is not fully developed yet. Measurements of isothermal VLE and activity coefficients of mixtures can be obtained in a high throughput scenario. However, several considerations have to be taken into account before starting the analysis, such as the equilibration time or the minimum sample volume and the GC response factors. These aspects can strongly influence on the validity of the results and should therefore be determined for each mixture. In this paper, four azeotropic mixtures of interest in the pharmaceutical and chemical industry, i.e., (ethylacetate + water), which forms a heterogeneous azeotrope, (ethylacetate + isooctane), (acetonitrile + toluene) and the ternary mixture (acetonitrile + toluene + tetrahydrofuran), are considered to show the potential of HS-GC for VLE measurements. The thermodynamic analysis of VLE data leads to activity coefficients for the mixtures at (35, 50, and 70) °C. In addition, the experimental data are compared with thermodynamic models and data from the literature, when available.

  11. VLE measurements using a static cell vapor phase manual sampling method accompanied with an empirical data consistency test

    International Nuclear Information System (INIS)

    Freitag, Joerg; Kosuge, Hitoshi; Schmelzer, Juergen P.; Kato, Satoru

    2015-01-01

    Highlights: • We use a new, simple static cell vapor phase manual sampling method (SCVMS) for VLE (x, y, T) measurement. • The method is applied to non-azeotropic, asymmetric and two-liquid phase forming azeotropic binaries. • The method is approved by a data consistency test, i.e., a plot of the polarity exclusion factor vs. pressure. • The consistency test reveals that with the new SCVMS method accurate VLE near ambient temperature can be measured. • Moreover, the consistency test approves that the effect of air in the SCVMS system is negligible. - Abstract: A new static cell vapor phase manual sampling (SCVMS) method is used for the simple measurement of constant temperature x, y (vapor + liquid) equilibria (VLE). The method was applied to the VLE measurements of the (methanol + water) binary at T/K = (283.2, 298.2, 308.2 and 322.9), asymmetric (acetone + 1-butanol) binary at T/K = (283.2, 295.2, 308.2 and 324.2) and two-liquid phase forming azeotropic (water + 1-butanol) binary at T/K = (283.2 and 298.2). The accuracy of the experimental data was approved by a data consistency test, that is, an empirical plot of the polarity exclusion factor, β, vs. the system pressure, P. The SCVMS data are accurate, because the VLE data converge to the same lnβ vs. lnP straight line determined from conventional distillation-still method and a headspace gas chromatography method

  12. The buffering-out effect and phase separation in aqueous solutions of EPPS buffer with 1-propanol, 2-propanol, or 2-methyl-2-propanol at T = 298.15 K

    International Nuclear Information System (INIS)

    Taha, Mohamed; Teng, Han-Lan; Lee, Ming-Jer

    2012-01-01

    Highlights: ► Buffering-out is a new liquid–liquid phase separation containing biological buffer. ► EPPS buffer-induced phase separation of aqueous solutions of aliphatic alcohols. ► Phase diagrams of EPPS + water + 1-propanol/2-propanol/2-methyl-2-propanol are studied. ► EPPS breaks the 1-propanol + water and 2-methyl-2-propanol + water azeotropes. ► The (liquid + liquid) equilibria can be well correlated by the NRTL model. - Abstract: Buffering-out is a new liquid–liquid phase separation phenomenon observed in mixtures containing a buffer as a mass separating agent. The (liquid + liquid) equilibrium (LLE) and (solid + liquid + liquid) equilibrium (SLLE) data were measured for the ternary systems {3-[4-(2-hydroxyethyl)piperazin-1-yl]propanesulfonic acid (EPPS) buffer + 1-propanol, 2-propanol, or 2-methyl-2-propanol + water} at T = 298.15 K under atmospheric pressure. The phase boundary data were fitted to an empirical equation relating to the concentrations of organic solvent and buffer. The effective excluded volume (EEV) values of EPPS were obtained from the phase boundary data. The phase-separation abilities of the investigated aliphatic alcohols were discussed. The reliability of the experimental tie-lines was satisfactorily confirmed by the Othmer–Tobias correlation. The experimental tie-lines data for the ternary systems have been correlated using the NRTL activity coefficient model. The separation of these aliphatic alcohols from their azeotropic aqueous mixtures is of particular interest to industrial process. The addition of the EPPS as an auxiliary agent breaks the (1-propanol + water) and (2-methyl-2-propanol + water) azeotropes. The possibility of using the new phase separation systems in the extraction process is demonstrated by using different dyestuffs.

  13. Method of fungal mycelium treatment for metal retention by agglomeration

    International Nuclear Information System (INIS)

    Votapek, V.; Marval, E.; Stamberg, K.; Jilek, R.

    1980-01-01

    The mycelium of microorganisms in the native or the dry state is introduced by stirring into the dispersion medium of nonpolar organic solvents (toluene, xylene, chlorobenzene) forming an azeotropic mixture with water. The biomass agglomerates into granules by gradual addition of the solutions of polymerizable or polycondensable reinforcing components. The resulting granules are solidified by polymerization or polycondensation in the presence of a catalyst, eg., ferric chloride, ammonium chloride, and by heating to a temperature of 105 to 145 degC with simultaneous distillation of water. The reaction mixture is maintained at the said temperature for 0.25 to 4 hours. (J.P.)

  14. Low-Temperature Miscibility of Ethanol-Gasoline-Water Blends in Flex Fuel Applications

    DEFF Research Database (Denmark)

    Johansen, T.; Schramm, Jesper

    2009-01-01

    The miscibility of blends of gasoline and hydrous ethanol was investigated experimentally at - 25 degrees C and - 2 degrees C. Furthermore, the maximum water content was found for ethanol in flex fuel blends. The results strongly indicate that blends containing ethanol with a water content above...... that of the ethanol/water azeotrope (4.4% water by mass) can be used as Flex Fuel blends together with gasoline at ambient temperatures of 25 degrees C and 2 degrees C, without phase separation occurring. Additionally, it was shown that the ethanol purity requirement of ethanol-rich flex fuel blends falls...... with increasing ethanol content in the gasoline-rich flex fuel blend....

  15. Isobaric (vapour + liquid + liquid) equilibrium data for (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) systems at 100 kPa

    International Nuclear Information System (INIS)

    Lladosa, Estela; Monton, Juan B.; Burguet, MaCruz; Torre, Javier de la

    2008-01-01

    Isobaric (vapour + liquid + liquid) equilibria were measured for the (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) system at 100 kPa. The apparatus used for the determination of (vapour + liquid + liquid) equilibrium data was an all-glass dynamic recirculating still with an ultrasonic homogenizer couple to the boiling flask. The experimental data demonstrated the existence of a heterogeneous ternary azeotrope for both ternary systems. The (vapour + liquid + liquid) equilibria data were found to be thermodynamically consistent for both systems. The experimental data were compared with the estimation using UNIQUAC and NRTL models and the prediction of UNIFAC model

  16. Obtaining uranium and/or vanadium values from solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vojkovic, M

    1982-04-22

    A process for the recovery of at least one of uranium and vanadium from an aqueous liquor is claimed. It comprises: (a) treating the liquor with a low molecular weight completely water-miscible solvent selected from the group consisting of methanol, iso-propyl alcohol or acetone to form at least two phases; (b) separating the phases; (c) recovering the solvent from the first phase as the azeotropic solvent/water mixture by simple, non-fractional distillation and recycling the mixture to step (a); and (d) recovering metal values from a second one of the phases.

  17. Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects.

    Science.gov (United States)

    Roy, Sagar; Singha, Nayan Ranjan

    2017-09-08

    Pervaporation (PV) has been considered as one of the most active and promising areas in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive biomaterials, water or organics from its mixtures that are indispensable constituents for various important chemical and bio-separations. In the PV process, the membrane plays the most pivotal role and is of paramount importance in governing the overall efficiency. This article evaluates and collaborates the current research towards the development of next generation nanomaterials (NMs) and embedded polymeric membranes with regard to its synthesis, fabrication and application strategies, challenges and future prospects.

  18. Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects

    Directory of Open Access Journals (Sweden)

    Sagar Roy

    2017-09-01

    Full Text Available Pervaporation (PV has been considered as one of the most active and promising areas in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive biomaterials, water or organics from its mixtures that are indispensable constituents for various important chemical and bio-separations. In the PV process, the membrane plays the most pivotal role and is of paramount importance in governing the overall efficiency. This article evaluates and collaborates the current research towards the development of next generation nanomaterials (NMs and embedded polymeric membranes with regard to its synthesis, fabrication and application strategies, challenges and future prospects.

  19. Application of the cubic-plus-association (CPA) equation of state to cross-associating systems

    DEFF Research Database (Denmark)

    Folas, Georgios; Gabrielsen, Jostein; Michelsen, Michael Locht

    2005-01-01

    -independent interaction parameter provides very adequate VLE correlations over extended temperature and pressure ranges, yielding also a very satisfactory description of the azeotropic behavior. LLE of heavy alcohol-water systems is best described with the CR-1 combining rule and a single interaction parameter....... Satisfactory predictions of multicomponent, multiphase equilibria of water-alcohol-alkane systems at various conditions are achieved using solely one interaction parameter per binary. A study of the dominant binary systems for the prediction of the multicomponent systems demonstrates that both the binary...

  20. Economic and process optimization of ethanol production by extractive fermentation

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This report demonstrates by computer simulation the economic advantages of extractive fermentation on an industrial scale compared to the best alternative technology currently available. The simulations were based on a plant capacity of 100 x 10 6 L/y of azeotropic ethanol. The simulation results were verified with a fully integrated, computer controlled extractive fermentation process demonstration unit based around a 7 L fermentor operated with a synthetic glucose medium and using Saccharomyces cerevisiae. The system was also operated with natural substrates (blackstrap molasses and grain hydrolyzate). Preliminary tests with the organism Zymomonas mobilis were also carried out under extractive fermentation conditions.

  1. 49 CFR 173.313 - UN Portable Tank Table for Liquefied Compressed Gases.

    Science.gov (United States)

    2010-10-01

    ... Refrigerant gas R 21 7.0 Allowed Normal 1.23 7.0 7.0 7.0 1030 1,1-Difluoroethane or Refrigerant gas R 152a 16....1 Allowed Normal 1.07 20.8 18.6 16.6 2517 1-Chloro-1,1-difluoroethane or Refrigerant gas R 142b 8.9 Allowed Normal 0.99 7.8 7.0 7.0 2602 Dichlorodifluoromethane and difluoroethane azeotropic mixture with...

  2. Calculation of solubility of salts in binary aqueous solutions

    International Nuclear Information System (INIS)

    Kolker, A.R.

    1990-01-01

    The possibility of theoretical calculation of solubility of some salts of the MX-type, where M - Na, K, Cs; X - F-I, as well as CsNO 3 and others forming no crystal hydrates in the solid phase, and the azeotropic composition in the water-HNO 3 system is studied. The calculational results of solubility are shown to depend very much on the values accepted for the standard free energies of component formation, melting heats and crystallization and on the difference in heat capacity of the melt and the solid phase

  3. Steam direct re compression and energy recovery in ethanol-water distillation; Recompressao direta de vapor e recuperacao de energia na destilacao do sistema etanol-agua

    Energy Technology Data Exchange (ETDEWEB)

    Ravagnani, T M.K.; Pereira, J A.F.R. [Universidade Estadual de Campinas, SP (Brazil). Dept. de Engenharia Quimica

    1985-12-31

    Steam re compression has been presented as the most promising and economical substitute for conventional distillation. The present work describes and analyze the application of the direct vapour re compression technique to ethanol-water distillation columns, when the azeotrope is the top product. Results shows that energy savings up to 80% can be obtained. The study takes in account the effects of the column operation conditions, addition of inert gas in the re compression circuit and compressor efficiency (assumed to be polytropic). Analysis of the results permits to obtain the optimum conditions for the use of the direct steam re compression in the ethanol-water distillation. (author). 5 figs., 7 refs

  4. 非共沸混合冷媒R22+R114の水平な内面溝付き管内における凝縮および蒸発熱伝達

    OpenAIRE

    小山, 繁; 宮良, 明男; 高松, 洋; 米本, 和生; 藤井, 哲

    1987-01-01

    Experimental results of the condensation and evaporation of non-azeotropic refrigerant mixtures of R22 and R114 inside a horizontal tube with internal spiral grooves are presented. The test condenser and evaporator, which are of the same shape, are tube-in-tube counter flow type heat exchangers. The inner tube is made of copper with a geometry as follows: outer diameter 9.52mm, mean wall thickness 0.60mm, mean inner diameter 8.32mm, groove depth 0.15mm, number of grooves 60, lead angle of gro...

  5. Additives in crude oil. A new attempt to prevent boilover; Additive im Rohoel. Ein neuer Ansatz zur Vermeidung eines Boilover

    Energy Technology Data Exchange (ETDEWEB)

    Gosewinkel, Martin; Dworschak, Rene [INBUREX Consulting GmbH, Hamm (Germany)

    2011-03-15

    Boilover of tanks is a rare cause of serious fires in crude oil storage. The greatest danger is the spill of burning material from the tank. In the research project presented here, a method to prevent boilover and/or reduce its effects was to be developed. One approach is the addition of additives that modify the hetero-azeotropic boiling characteristics of crude oil components in case of fire. Even minimum concentrations of the additive will delay the time until boilover and also reduce its intensity.

  6. Vapour pressures and vapour-liquid equilibria of propyl acetate and isobutyl acetate with ethanol or 2-propanol at 0.15 MPa. Binary systems

    Directory of Open Access Journals (Sweden)

    Susial Pedro

    2012-01-01

    Full Text Available Vapour pressures of propyl acetate, isobutyl acetate and 2-propanol from 0.004 to 1.6 MPa absolute pressure and VLE data for the binary systems propyl acetate+ethanol, propyl acetate+2-propanol, isobutyl acetate+ethanol and isobutyl acetate+2-propanol at 0.15 MPa have been determined. The experimental VLE data were verified with the test of van Ness and the Fredenslund criterion. The propyl acetate+ethanol or +2-propanol binary systems have an azeotropic point at 0.15 MPa. The different versions of the UNIFAC and ASOG group contribution models were applied.

  7. Phase diagrams of (vapour + liquid) equilibrium for binary mixtures of α,α,α-trifluorotoluene with ethanol, or benzene, or chloroform at pressure 101.4 kPa

    International Nuclear Information System (INIS)

    Atik, Zadjia

    2008-01-01

    (Vapour + liquid) equilibrium (VLE) of binary mixtures of (ethanol + α,α,α-trifluorotoluene), (benzene + α,α,α-trifluorotoluene), and (chloroform + α,α,α-trifluorotoluene) have been investigated at the pressure 101.4 kPa using the dynamic-ebulliometry method over the whole composition range. The correlated VLE phase diagrams were adequately described by means of NRTL and UNIQUAC thermodynamic models. Fair attractive energies in the first two systems are capable to yield azeotropes, while moderate repulsive energies in the later system make it zeotrope

  8. Modular radwaste volume reduction and solidification systems

    International Nuclear Information System (INIS)

    Miller, E.L.

    1986-01-01

    This paper describes both the modular transportable and the modular mobile liquid radwaste volume reduction and solidification units based on a General Electric Company developed and patented process called AZTECH (a trademark of GE). An AZTECH system removes all water by azeotropic distillation and encapsulates the remaining solids in a polyester compound. The resulting monolith is suitable for either long term above ground storage or shallow land burial. Pilot and demonstration plant testing has confirmed the design parameters. The three processing modules are covered together with data which resulted in Nuclear Regulatory Commission approval on Dec. 30, 1985

  9. Improving the yield of 2-[18F]fluoro-2-deoxyglucose using a microwave cavity.

    Science.gov (United States)

    Taylor, M D; Roberts, A D; Nickles, R J

    1996-07-01

    We have investigated the use of a microwave cavity (Labwell AB, Sweden) to improve the radiochemical yield of 2-[18F]fluoro-2-deoxyglucose (2-[18F]FDG). After characterizing the heating properties of the cavity, three steps of the Hamacher 2-[18F]FDG synthesis which require heating--azeotropic distillation of the target water, nucleophilic substitution, and hydrolysis of the product--were investigated separately. The average radiochemical yield of 2-[18F]FDG for the microwave synthesis, using the phase transfer reagent tetrabutylammonium bicarbonate, was 62 +/- 4% (72 +/- 5%, decay corrected, synthesis time = 31 min).

  10. Extraction of selected heavy metals using modified clays.

    Science.gov (United States)

    Krikorian, Nadine; Martin, Dean F

    2005-01-01

    In the present study, attapulgite, kaolinite, and montmorillonite KSF were modified using azeotropic distillation to condense 2-mercaptoethanol with the clay material. The resulting product was used as a coordinating agent to remove selected metal ions, e.g., copper(II), cadmium(II), silver(I), nickel(II), and lead(II) ions from standard aqueous solutions. Batch systems were used, and samples were shaken for two hours, and following filtration, metal content of the filtrate was measured by atomic absorption spectrometry. Without adjusting the pH, better than 90% of the metal ions could be removed.

  11. Intense pyrification of volatile inorganic halides

    International Nuclear Information System (INIS)

    Nesel'son, L.A.; Tret'yakov, K.V.; Cherenkov, A.V.; Solov'ev, V.F.

    1992-01-01

    It is found that the studies systems form the fusibility curves of eutectic type with the limited regions of separation in the middle part of composition. The liquid-vapour equilibrium of the WF 6 -Nb(Ta)F 5 systems is characterized by strong positive deviation from the ideal case but without formation of azeotropes. The values of coefficients for relative volatility of the dilute solutions of niobium and tantalum pentafluorides in tungsten hexafluoride are found. The values of these coefficients are sufficiently large to provide the efficient purification from niobium and tantalum by the method of fractional distillation

  12. Identification of a biomarker for propetamphos and development of a biological monitoring assay.

    Science.gov (United States)

    K Jones G Wang S J Garfitt J Cocker

    1999-01-01

    This paper describes the identification of a human metabolite of propetamphos ((E-O-2-isopropylcarbonyl-1-methylvinyl-O-methylethylphosphoramidothioate), formed by the hydrolytic cleavage of the enol-vinyl-phosphate bond, and the development of an analytical method suitable for biological monitoring of propetamphos exposure. The metabolite has been detected in the urine of exposed workers but not in that of control subjects. The analytical method involves azeotropic distillation of the urine with acetonitrile, followed by derivatization with pentafluorobenzyl bromide and analysis using gas chromatography with flame photometric detection.

  13. Measurement of tissue free water tritium in biological samples by liquid scintillation counter

    International Nuclear Information System (INIS)

    Wu Zongmei; Zheng Xiaomin

    1993-01-01

    The authors introduced a method of extracting tissue free water tritium (TFWT) by the azeotropic distribution with toluene and of measuring the activity of the TFWT in biological samples by liquid scintillation counter. The TFWT recovery ratio of pine needles (fresh), green vegetables, radish, rice, pork (muscle) and milk is 0.90, 0.95, 0.96, 0.90, 0.52 and 0.85, and TFWT activity is 1.8, 3.2, 1.8, 2.7, 3.3 and 4.0 Bq/L-H 2 O, respectively

  14. Tentative reference method for measurement of tritium in environmental waters. Environmental monitoring series

    International Nuclear Information System (INIS)

    1975-12-01

    A tentative reference method for the measurement of tritium in potable and nonpotable environmental water is described. Water samples are treated with sodium hydroxide and potassium permanganate and then a water fraction is separated from interferences by distillation. Two distillation procedures are described, a simple aqueous distillation for samples from potable water sources, and an aqueous-azeotropic-benzene distillation for nonpotable water sources. Alliquots of a designated distillate fraction are measured for tritium activity by liquid scintillation detection. Distillation recovery and counting efficiency factors are determined with tritium standards. Results are reported in picocuries per milliliter

  15. The performance of a residential heat pump operating with a nonazeotropic binary refrigerant mixture

    Science.gov (United States)

    Didion, D.; Mulroy, W.

    Results of laboratory measurement of the performance change of a substantially unmodified residential heat pump designed for 222 when charged with a non azeotropic, binary mixture of R1381 and R152a is presented. Results are presented for various sizes of fixed expansion devices. The effect of gliding temperature in the saturation zone was found to be small. The effect of compositions shift by flash distillation in the accumulator was found to measurably improve low temperature heating performance. It was further observed that some system modification (such as the addition of a receiver) could have further enhanced this low temperature heating performance improvement.

  16. Production of a radioactive 18F ion beam for nuclear reaction studies

    Science.gov (United States)

    Roberts, A. D.; Nickles, R. J.; Paul, M.; Rehm, K. E.; Jiang, C. L.; Blumenthal, D. J.; Gehring, J.; Henderson, D.; Nolen, J.; Pardo, R. C.; Schiffer, J. P.; Segel, R. E.

    1995-12-01

    A two-stage method for generating a radioactive 18F ion beam has been developed. 18F is produced with a medical cyclotron by 11 MeV proton activation of [ 18O]water, then chemically processed off-line for use in a tandem accelerator ion source. Azeotropic distillation reduces the 18O component by 10 5, with a resulting 18O to 18F beam ratio of about 10 3. The average 18F - beam intensity per synthesis is 1 ppA over 120 min from a cesium vapor, sputter negative ion source (SNICS), with a peak intensity of 4.5 ppA.

  17. Purifying, concentrating and anhydriding bio-ethanol: Alternative process schemes and innovative separation methods

    International Nuclear Information System (INIS)

    Guerreri, G.; Lovati, A.

    1992-01-01

    Starting with the conventional process scheme for bio-ethanol production, this paper illustrates how the anhydriding section, which incorporates an azeotropic distillation process, can be conveniently substituted with a plate and frame pervaporation process which makes use of optimum heat exchange with the stripping section. This technical feasibility study, which proves the superior energy efficiency of the pervaporation scheme as compared with the conventional scheme, is followed by a cost benefit analysis which evidences the economic benefits also to be had with pervaporation

  18. Improving the yield of 2-[18F]fluoro-2-deoxyglucose using a microwave cavity

    International Nuclear Information System (INIS)

    Taylor, M.D.; Roberts, A.D.; Nickles, R.J.

    1996-01-01

    We have investigated the use of a microwave cavity (Labwell AB, Sweden) to improve the radiochemical yield of 2-[ 18 F]fluoro-2-deoxyglucose (2-[ 18 F]FDG). After characterizing the heating properties of the cavity, three steps of the Hamacher 2-[ 18 F]FDG synthesis which require heating--azeotropic distillation of the target water, nucleophilic substitution, and hydrolysis of the product--were investigated separately. The average radiochemical yield of 2-[ 18 F]FDG for the microwave synthesis, using the phase transfer reagent tetrabutylammonium bicarbonate, was 62 ± 4% (72 ± 5%, decay corrected, synthesis time = 31 min)

  19. Dehydration of ammonium polyuranate gel microspheres

    International Nuclear Information System (INIS)

    Benadik, A.; Klimova, A.; Bohuslav, V.; Padevet, A.

    1976-01-01

    The dehydration was studied (i) in a controlled atmosphere in a horizontal tube furnace, (ii) in the air at a temperature of 220 degC, (iii) in azeotropic distillation, (iv) by the effect of vapours of an organic solvent immiscible with water. Methods (iii) and (iv) have proved to be the most favourable because in their application the differences were minimal in the partial pressures of volatile components of the gaseous phase and on the surface of particles as well as temperature gradients along the cross sections. (M.K.)

  20. The investigation on the vapour liquid phase equilibrium of (ammonia + 1,1,1,2-tetrafluoroethane) system over the temperatures ranging from (243.150 to 283.150) K

    International Nuclear Information System (INIS)

    Zhao, Yanxing; Dong, Xueqiang; Zhong, Quan; Gong, Maoqiong; Shen, Jun

    2017-01-01

    Highlights: • The vapour liquid equilibrium for ammonia + 1,1,1,2-tetrafluoroethane system was studied. • Measurements were based on vapour phase single recirculation method. • A positive azeotropic behaviour was exhibited at the experimental temperature range. - Abstract: To blend ammonia with some hydrofluorocarbons may give these mixed refrigerants lower flammability and global warming potential. In this paper, the isothermal vapour liquid equilibrium (VLE) of (ammonia + 1,1,1,2-tetrafluoroethane) system at temperatures ranging from (243.150 to 283.150) K are presented. Two models were employed to regress the experimental VLE results, namely the Peng–Robinson (PR) equation of state with the simple van der waals (VDW) mixing rule; the Peng–Robinson equation of state combined non-random two-liquid (NRTL) activity coefficient model with the modified Huron-Vidal one-order (MHV1) mixing rule. The maximum average absolute relative deviation of pressure (AARDp) and average absolute deviation of the vapour phase mole fraction (AADy) for PR-VDW are 0.56% and 0.010, respectively, while the maximum AARDp and AADy for PR-MHV1-NRTL are 0.27% and 0.014, respectively. Positive azeotropic behaviour was exhibited at each temperature investigated.

  1. Oxygen isotope analysis of plant water without extraction procedure

    International Nuclear Information System (INIS)

    Gan, K.S.; Wong, S.C.; Farquhar, G.D.; Yong, J.W.H.

    2001-01-01

    Isotopic analyses of plant water (mainly xylem, phloem and leaf water) are gaming importance as the isotopic signals reflect plant-environment interactions, affect the oxygen isotopic composition of atmospheric O 2 and CO 2 and are eventually incorporated into plant organic matter. Conventionally, such isotopic measurements require a time-consuming process of isolating the plant water by azeotropic distillation or vacuum extraction, which would not complement the speed of isotope analysis provided by continuous-flow IRMS (Isotope-Ratio Mass Spectrometry), especially when large data sets are needed for statistical calculations in biological studies. Further, a substantial amount of plant material is needed for water extraction and leaf samples would invariably include unenriched water from the fine veins. To measure sub-microlitre amount of leaf mesophyll water, a new approach is undertaken where a small disc of fresh leaf is cut using a specially designed leaf punch, and pyrolysed directly in an IRMS. By comparing with results from pyrolysis of the dry matter of the same leaf, the 18 O content of leaf water can be determined without extraction from fresh leaves. This method is validated using a range of cellulose-water mixtures to simulate the constituents of fresh leaf. Cotton leaf water δ 18 O obtained from both methods of fresh leaf pyrolysis and azeotropic distillation will be compared. The pyrolysis technique provides a robust approach to measure the isotopic content of water or any volatile present in a homogeneous solution or solid hydrous substance

  2. Substitution of carcinogenic solvent dichloromethane for the extraction of volatile compounds in a fat-free model food system.

    Science.gov (United States)

    Cayot, Nathalie; Lafarge, Céline; Bou-Maroun, Elias; Cayot, Philippe

    2016-07-22

    Dichloromethane is known as a very efficient solvent, but, as other halogenated solvents, is recognized as a hazardous product (CMR substance). The objective of the present work is to propose substitution solvent for the extraction of volatile compounds. The most important physico-chemical parameters in the choice of an appropriate extraction solvent of volatile compounds are reviewed. Various solvents are selected on this basis and on their hazard characteristics. The selected solvents, safer than dichloromethane, are compared using the extraction efficiency of volatile compounds from a model food product able to interact with volatile compounds. Volatile compounds with different hydrophobicity are used. High extraction yields were positively correlated with high boiling points and high Log Kow values of volatile compounds. Mixtures of solvents such as azeotrope propan-2-one/cyclopentane, azeotrope ethyl acetate/ethanol, and mixture ethyl acetate/ethanol (3:1, v/v) gave higher extraction yields than those obtained with dichloromethane. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Measurements of isothermal (vapor + liquid) phase equilibrium for {trifluoroiodomethane (R13I1) + 1,1-difluoroethane (R152a)} from T = (258.150 to 283.150) K

    International Nuclear Information System (INIS)

    Gong, Maoqiong; Cheng, Kuiwei; Dong, Xueqiang; Guo, Hao; Zhao, Yanxing; Wu, Jianfeng

    2015-01-01

    Highlights: • VLE data for (R13I1 + R152a) system were measured at four temperatures. • Experiments were based on the vapor-recirculation method. • VLE data were correlated using PR−VdWs and PR−HV−NRTL models. • Azeotropic behavior can be found. - Abstract: In this paper, isothermal (vapor + liquid) equilibrium (VLE) values for {trifluoroiodomethane (R13I1) + 1,1-difluoroethane (R152a)} at T = (258.150 to 283.150) K are presented. The experimental apparatus was based on a vapor-recirculation method. The VLE measurements were regressed by the Peng–Robinson equation of state with two models, the Van der Waals mixing rules and the Huron–Vidal mixing rules using the NRTL activity coefficient model. The newly measured VLE values satisfied the thermodynamic consistency test. The results have led to that the two models selected are both suitable for the description of the binary system. Azeotropic behavior can be found for the system measured

  4. ETHANOL DEHYDRATION IN PACKED DISTILLATION COLUMN USING GLYCEROL AS ENTRAINER: EXPERIMENTS AND HETP EVALUATION

    Directory of Open Access Journals (Sweden)

    W. L. R. Souza

    Full Text Available Abstract The ethanol-water separation is very important because ethanol is widely applied in the chemical industry and its use as a fuel can reduce the pollution emitted to the air. However, anhydrous ethanol production using conventional distillation is impossible, at atmospheric pressure, due to the presence of an azeotrope. In the present work, experimental tests were carried out in order to evaluate the use of glycerol as an entrainer, in substitution of ethylene glycol in an extractive distillation. The use of glycerol is motivated by the biodiesel production units, due to the fact that it is the main byproduct and a new market is necessary to consume its overproduction. The experiments were carried out in a distillation column packed with Raschig rings, varying the glycerol/feed (ethanol and water ratio, S/F, from 0.5 to 0.9. The samples were analyzed using a digital densimeter. The results showed that glycerol was effective to promote ethanol dehydration and the presence of an azeotrope was not observed using a solvent to feed ratio (S/F equal to 0.9. Some empirical correlations were investigated to evaluate the HETP (Height Equivalent to a Theoretical Plate, and the results provided a useful tool for designing a packed bed column for ethanol-water separation.

  5. The Role of Molecule Clustering by Hydrogen Bond in Hydrous Ethanol on Laminar Burning Velocity

    Directory of Open Access Journals (Sweden)

    I Made Suarta

    2016-01-01

    Full Text Available The role of hydrogen bond molecule clustering in laminar burning velocities was observed. The water in hydrous ethanol can change the interaction between water-ethanol molecules. A certain amount of water can become oxygenated which increases the burning velocity. The hydrogen bond interaction pattern of ethanol and water molecules was modeled. Based on the molecular model, azeotropic behavior emerges from ethanol-water hydrogen bond, which is at a 95.1%v composition. The interaction with water molecule causes the ethanol molecule to be clustered with centered oxygenated compound. So, it supplies extra oxygen and provides intermolecular empty spaces that are easily infiltrated by the air. In the azeotropic composition, the molecular bond chain is the shortest, so hypothetically the burning velocity is anticipated to increase. The laminar burning velocity of ethanol fuel was tested in a cylindrical explosion bomb in lean, stoichiometric, and rich mixtures. The experimental result showed that the maximum burning velocity occurred at hydrous ethanol of 95.5%v composition. This discrepancy is the result of the addition of energy from 7.7% free ethanol molecules that are not clustered. At the rich mixture, the burning velocity of this composition is higher than that of anhydrous ethanol.

  6. Isothermal phase (vapour + liquid) equilibrium data for binary mixtures of propene (R1270) with either 1,1,2,3,3,3-hexafluoro-1-propene (R1216) or 2,2,3-trifluoro-3-(trifluoromethyl)oxirane in the temperature range of (279 to 318) K

    International Nuclear Information System (INIS)

    Subramoney, Shalendra Clinton; Nelson, Wayne Michael; Courtial, Xavier; Naidoo, Paramespri; Coquelet, Christophe; Richon, Dominique; Ramjugernath, Deresh

    2015-01-01

    Highlights: • Phase equilibrium data for propene and hexafluoropropylene. • Phase equilibrium data for propene and hexafluoropropylene oxide. • Systems exhibit pressure-maximum azeotropes. • Data well correlated by Peng–Robinson equation of state with the Wong–Sandler mixing rule. - Abstract: Isothermal (vapour + liquid) equilibrium data (P–x–y) are presented for the 1-propene 1,1,2,3,3,3-hexafluoro-1-propene and the 1-propene + 2,2,3-trifluoro-3-(trifluoromethyl)oxirane binary systems. Both binary systems were studied at five temperatures, ranging from (279.36 to 318.09) K, at pressures up to 2 MPa. The experimental (vapour + liquid) equilibrium data were measured using an apparatus based on the “(static + analytic)” method incorporating a single movable Rapid On-Line Sampler-Injector to sample the liquid and vapour phases at equilibrium. The expanded uncertainties are approximated on average as T = 0.07 K, 0.008 MPa, and 0.007 and 0.009 for the temperature, pressure, and the liquid and vapour mole fractions, respectively. A homogenous maximum-pressure azeotrope was observed for both binary systems at all temperatures studied. The experimental data were correlated with the Peng–Robinson equation of state using the Mathias–Copeman alpha function, paired with the Wong–Sandler mixing rule and the Non-Random Two Liquid activity coefficient model. The model provided satisfactory representation of the phase equilibrium data measured

  7. Local heat transfer measurement and thermo-fluid characterization of a pulsating heat pipe

    International Nuclear Information System (INIS)

    Mameli, Mauro; Marengo, Marco; Khandekar, Sameer

    2014-01-01

    A compact Closed Loop Pulsating Heat Pipe (CLPHP), filled with ethanol (65% v/v), made of four transparent glass tubes forming the adiabatic section and connected with copper U-turns in the evaporator and condenser sections respectively, is designed in order to perform comprehensive thermal-hydraulic performance investigation. Local heat transfer coefficient is estimated by measurement of tube wall and internal fluid temperatures in the evaporator section. Simultaneously, fluid pressure oscillations are recorded together with the corresponding flow patterns. The thermal performances are measured for different heat input levels and global orientation of the device with respect to gravity. One exploratory test is also done with azeotropic mixture of ethanol and water. Results show that a stable device operation is achieved (i.e. evaporator wall temperatures can reach a pseudo-steady-state) only when a circulating flow mode is established superimposed on local pulsating flow. The heat transfer performance strongly depends on the heat input level and the inclination angle, which, in turn, also affect the ensuing flow pattern. The spectral analysis of the pressure signal reveals that even during the stable performance regimes, characteristic fluid oscillation frequencies are not uniquely recognizable. Equivalent thermal conductivities of the order of 10-15 times that of pure copper are achieved. Due to small number of turns horizontal mode operation is not feasible. Preliminary results indicate that filling azeotropic mixture of ethanol and water as working fluid does not alter the thermal performance as compared to pure ethanol case. (authors)

  8. Experimental studies of an optimal operating condition for the Bunsen process in the I-S thermochemical cycle

    International Nuclear Information System (INIS)

    Yoon, Ho Joon; No, Hee Cheon; Kim, Young Soo; Jin, Hyung Gon; Lee, Jeong Ik; Lee, Byung Jin

    2009-01-01

    Conventional I-S cycles have critical limitations in material integrity and thermal efficiency. The HIx and sulfuric acids in high temperature and pressure cause serious material corrosions. They also carry too much water and iodine over the entire processes. To try to find a solution to these problems, KAIST proposed an optimal operating condition of Bunsen section through a parametric study of existing experimental data, and, based on it, devised a new flowsheet. When the contents of water and I 2 in the feed are controlled within the optimal band, HI concentration in HIx phase becomes strongly over-azeotropic. By simple flashing of the over-azeotropic HI solution, highly enriched HI vapor can be obtained, which leads to improved energy efficiency of the cycle. Since the cycle is operable under low pressures, the corrosivity of the operating condition can also be alleviated. In order to validate the previous experimental data and enhance the feasibility of the newly proposed flowsheet, KAIST is performing experiments. Procedure and results of early stage of experiments are introduced in this paper. (author)

  9. Conceptual analysis of single-feed heterogeneous distillation columns

    Directory of Open Access Journals (Sweden)

    Carlos Arturo Martinez Riascos

    2015-05-01

    Full Text Available Separation in heterogeneous distillation columns is attained by interaction of two liquid and one vapor phases, interaction of three phases involves complexities due to the determination of vapor-liquid-liquid equilibrium and hence, in the design of separation units. Nevertheless, the liquid-liquid equilibrium allows developing separations that may be unfeasible by vapor-liquid equilibrium. In this way, heterogeneous azeotropic distillation is a useful operation for the separation of azeotropic and close-boiling mixtures. In this work, a new methodology for evaluating the feasibility of this process is developed. This methodology is an extension of that proposed by Castillo et al. (1998 for homogeneous systems. Operation leaves for heterogeneous systems are calculated using the concept of pinch point curves in order to establish the process feasibility. Heterogeneous columns with external decanter are considered as the only heterogeneous stage (OHED: only heterogeneous external decanter. The initialization process for the column calculation requires the selection of the distillate composition using thermodynamic criteria in order to guarantee homogeneous phases within the column. A system with industrial and academic relevance was considered as case study: water-acetic acid-amyl acetate. Results show that the developed shortcut method allows evaluating process feasibility and estimating design parameters, without the use of trial and error procedures implemented, with the aid of simulation tools.

  10. Modeling of non-additive mixture properties using the Online CHEmical database and Modeling environment (OCHEM

    Directory of Open Access Journals (Sweden)

    Oprisiu Ioana

    2013-01-01

    Full Text Available Abstract The Online Chemical Modeling Environment (OCHEM, http://ochem.eu is a web-based platform that provides tools for automation of typical steps necessary to create a predictive QSAR/QSPR model. The platform consists of two major subsystems: a database of experimental measurements and a modeling framework. So far, OCHEM has been limited to the processing of individual compounds. In this work, we extended OCHEM with a new ability to store and model properties of binary non-additive mixtures. The developed system is publicly accessible, meaning that any user on the Web can store new data for binary mixtures and develop models to predict their non-additive properties. The database already contains almost 10,000 data points for the density, bubble point, and azeotropic behavior of binary mixtures. For these data, we developed models for both qualitative (azeotrope/zeotrope and quantitative endpoints (density and bubble points using different learning methods and specially developed descriptors for mixtures. The prediction performance of the models was similar to or more accurate than results reported in previous studies. Thus, we have developed and made publicly available a powerful system for modeling mixtures of chemical compounds on the Web.

  11. A thermodynamic analysis of a transcritical cycle with refrigerant mixture R32/R290 for a small heat pump water heater

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jianlin; Xu, Zong; Tian, Gaolei [Department of Refrigeration and Cryogenic Engineering, School of Energy and Power Engineering, Xi' an Jiaotong University, West Xianning Road, No. 28, Xianning West Road, Xi' an Shaanxi 710049 (China)

    2010-12-15

    In this study, a thermodynamic analysis on the performance of a transcritical cycle using azeotropic refrigerant mixtures of R32/R290 with mass fraction of 70/30 has been performed. The main purpose of this study is to theoretically verify the possibility of applying the chosen refrigerant mixture in small heat pumps for high temperature water heating applications. Performance evaluation has been carried out for a simple azeotropic mixture R32/R290 transcritical cycle by varying evaporator temperature, outlet temperature of gas cooler and compressor discharge pressure. Furthermore, the effects of an internal heat exchanger on the transcritical R32/R290 cycle have been presented at different operating conditions. The results show that high heating coefficient of performance (COP{sub h}) and volumetric heating capacity can be achieved by using this transcritical cycle. It is desirable to apply the chosen refrigerant mixture R32/R290 in small heat pump water heater for high temperature water heating applications, which may produce hot water with temperature up to 90 C. (author)

  12. Simulation of ethanol extractive distillation with mixed glycols as separating agent

    Directory of Open Access Journals (Sweden)

    I. D. Gil

    2014-03-01

    Full Text Available Extractive distillation is an alternative for ethanol dehydration processes that has been shown to be more effective than azeotropic distillation and, in close proximity, to be very competitive against the process that uses adsorption with molecular sieves. Glycols have been shown to be the most effective solvents in extractive distillation, mainly ethylene glycol and glycerol. In this work, an extractive distillation column was simulated with the Aspen Plus software platform, using the RadFrac module for distillation columns, to investigate the effect on the separation of the ethylene glycol-glycerol mixture composition, the separating agent feed stages, the separating agent split stream feed, and the azeotropic feed temperature. The NRTL model was used to calculate the phase equilibrium of these strongly polar mixtures. A rigorous simulation of the extractive distillation column finally established was also performed, including a secondary recovery column for the mixture of solvents and a recycle loop, to simulate an industrially relevant situation. This simulation allowed establishing the complete parameters to dehydrate ethanol: the optimal stage for separating agent feed is stage 4; the most adequate composition for the glycols mixture is 60 mol% ethylene glycol and 40 mol% glycerol. Finally, energetically efficient operating conditions for each one of the columns were established through a preliminary pinch analysis.

  13. Synthesis of tetraalkyl thiuram disulfides using different oxidants in recycling solvent mixture

    Directory of Open Access Journals (Sweden)

    Milosavljević Milutin M.

    2012-01-01

    Full Text Available A new optimized laboratory synthesis of tetraalkyl thiuram disulfides, starting from dialkyl amines and carbon disulfide in presence of three oxidants (hydrogen peroxide, potassium peroxodisulfate and sodium hypochlorite and appropriate reaction medium: two mixtures of isopropyl alcohol - water used in two consecutive syntheses, was presented in this work. First synthesis was performed in a recycled azeotropic mixture of isopropyl alcohol - water 87.7% - 12.3%, and second in a filtrate obtained after first synthesis, which was a mixture of isopropyl alcohol - water 70.4% - 29.6%. After the second synthesis and filtration, recycled azeotropic mixture isopropyl alcohol - water 87.7% - 12.3% was regenerated from the filtrate by rectification. Considering this, the technology for beneficial use of recycling isopropyl alcohol - water mixture as reaction medium for tetraalkyl thiuram disulfides synthesis was developed. Such concept contributes to extraordinary economical benefit of implemented optimal laboratory synthesis at semi-industrial level. High yields of tetraalkyl thiuram disulfides syntheses were obtained at both laboratory and semiindustrial level. Structure and purity of synthesized compounds were confirmed by elemental analysis, as well as FTIR, 1H and 13C NMR, and MS spectral data.

  14. Anhydrous ethanol: A renewable source of energy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Santosh; Singh, Neetu; Prasad, Ram [Department of Chemical Engineering, H. B. Technological Institute, Kanpur 208002 (India)

    2010-09-15

    Anhydrous ethanol is one of the biofuels produced today and it is a subset of renewable energy. It is considered to be an excellent alternative clean-burning fuel to gasoline. Anhydrous ethanol is commercially produced by either catalytic hydration of ethylene or fermentation of biomass. Any biological material that has sugar, starch or cellulose can be used as biomass for producing anhydrous ethanol. Since ethanol-water solution forms a minimum-boiling azeotrope of composition of 89.4 mol% ethanol and 10.6 mol% water at 78.2 C and standard atmospheric pressure, the dilute ethanol-water solutions produced by fermentation process can be continuously rectified to give at best solutions containing 89.4 mol% ethanol at standard atmospheric pressure. Therefore, special process for removal of the remaining water is required for manufacture of anhydrous ethanol. Various processes for producing anhydrous ethanol have been used/suggested. These include: (i) chemical dehydration process, (ii) dehydration by vacuum distillation process, (iii) azeotropic distillation process, (iv) extractive distillation processes, (v) membrane processes, (vi) adsorption processes and (vii) diffusion distillation process. These processes of manufacturing anhydrous ethanol have been improved continuously due to the increasingly strict requirements for quantity and quality of this product. The literature available on these processes is reviewed. These processes are also compared on the basis of energy requirements. (author)

  15. Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 1-(2-methoxyethyl)-1-methylpiperidinium bis(trifluoromethylsulfonyl)-amide

    International Nuclear Information System (INIS)

    Marciniak, Andrzej; Wlazło, Michał

    2012-01-01

    Highlights: The and KL for 61 solutes in the ionic liquid [COC2mPIP][NTf2] were determined by IGC at different temperatures. ► The partial molar excess Gibbs energies, enthalpies and entropies at infinite dilution were calculated. ► The selectivities for selected compounds which form azeotropic mixtures were calculated and compared to other ILs. ► LFER system constants as a function of temperature for [COC2mPIP][NTf2] were calculated. - Abstract: The activity coefficients at infinite dilution, γ ∞ and gas–liquid partition coefficients, K L for 61 solutes: alkanes, alkenes, alkynes, cycloalkanes, aromatic hydrocarbons, alcohols, thiophene, ethers, ketones, esters, 1-nitropropane, butanal, acetonitrile, and water in the ionic liquid 1-(2-methoxyethyl)-1-methylpiperidinium bis(trifluoromethylsulfonyl)-amide were determined by inverse gas chromatography at the temperatures from (318.15 to 368.15) K. The partial molar excess Gibbs free energies ΔG 1 E,∞ , enthalpies ΔH 1 E,∞ and entropies ΔS 1 E,∞ at infinite dilution were calculated from the experimental γ ∞ values obtained over the temperature range. The selectivities for selected compounds, which form azeotropic mixtures, were calculated from the γ ∞ and compared to the literature values for other ionic liquids based on bis(trifluoromethylsulfonyl)-amide anion.

  16. Feasibility and parametric study of tetrahydrofuran dehydration using reactive distillation with low energy requirement

    International Nuclear Information System (INIS)

    Tavan, Yadollah

    2014-01-01

    A new configuration of a RD (reactive distillation) process is investigated to break the THF (tetrahydrofuran)/water azeotrope using Hysys process software. The main module is a column system containing the reaction of EO (ethylene oxide) with water, in which top and bottom streams are the desired products, THF and EG (ethylene glycol), respectively. This contribution explores feasibility of using the reaction in the RD column and also describes the influence of reflux ratio, reaction trays, operating pressure and feed–inlet locations of the RD column in simulation environment. The results show that high purities of EG and THF are simultaneously obtained by this novel technique leading to more profits of the RD process. The optimal design of the RD process is obtained by minimizing the energy demand and the optimum number of reactive trays is found to be 10. Furthermore, minimum energy demand is observed when the column operates at atmospheric pressure with reflux ratio of 1.25. Particularly, it is found that the optimal reboiler duty per unit THF produced is reduced from 32 to 3.7% for the new process as compared to the conventional one, while both schemes predict similar outputs. - Highlights: • A reactive distillation column is proposed to produce pure tetrahydrofuran. • The tetrahydrofuran-water azeotrope is broken using reactive distillation column. • High energy saving (88%) is found for the reactive distillation process

  17. Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

    International Nuclear Information System (INIS)

    Orchillés, A. Vicent; Miguel, Pablo J.; González-Alfaro, Vicenta; Llopis, Francisco J.; Vercher, Ernesto; Martínez-Andreu, Antoni

    2017-01-01

    Highlights: • VLE of binary and ternary systems of 2-propanol, water and [emim][DCA] at 100 kPa. • The e-NRTL model fits the VLE data of 2-propanol + water + [emim][DCA] system. • [emim][DCA] breaks the 2-propanol + water azeotrope at an IL mole fraction >0.085. - Abstract: Isobaric vapor–liquid equilibria for the binary systems 2-propanol + water, 2-propanol + 1-ethyl-3-methylimidazolium dicyanamide ([emim][DCA]), and water + [emim][DCA] as well as the vapor–liquid equilibria for the 2-propanol + water + [emim][DCA] ternary system have been obtained at 100 kPa using a recirculating still. The electrolyte nonrandom two-liquid (e-NRTL) model was used for fitting successfully the experimental data. The effect of [emim][DCA] on the 2-propanol + water system has been compared with that produced by other ionic liquids reported in the literature. From the results, [emim][DCA] appears as a good entrainer for the extractive distillation of this solvent mixture, causing the azeotrope to disappear at 100 kPa when the ionic liquid mole fraction is greater than 0.085.

  18. Features of non-congruent phase transition in modified Coulomb model of the binary ionic mixture

    International Nuclear Information System (INIS)

    Stroev, N E; Iosilevskiy, I L

    2016-01-01

    Non-congruent gas-liquid phase transition (NCPT) have been studied previously in modified Coulomb model of a binary ionic mixture C(+6) + O(+8) on a uniformly compressible ideal electronic background /BIM(∼)/. The features of NCPT in improved version of the BIM(∼) model for the same mixture on background of non-ideal electronic Fermi-gas and comparison it with the previous calculations are the subject of present study. Analytical fits for Coulomb corrections to equation of state of electronic and ionic subsystems were used in present calculations within the Gibbs-Guggenheim conditions of non-congruent phase equilibrium. Parameters of critical point-line were calculated on the entire range of proportions of mixed ions 0 < X < 1. Strong “distillation” effect was found for NCPT in the present BIM(∼) model. Just similar distillation was obtained in the variant of NCPT in dense nuslear matter. The absence of azeotropic compositions was revealed in studied variants of BIM(∼) in contrast to an explicit existence of the azeotropic compositions for the NCPT in chemically reacting plasmas and in astrophysical applications. (paper)

  19. Features of non-congruent phase transition in modified Coulomb model of the binary ionic mixture

    Science.gov (United States)

    Stroev, N. E.; Iosilevskiy, I. L.

    2016-11-01

    Non-congruent gas-liquid phase transition (NCPT) have been studied previously in modified Coulomb model of a binary ionic mixture C(+6) + O(+8) on a uniformly compressible ideal electronic background /BIM(∼)/. The features of NCPT in improved version of the BIM(∼) model for the same mixture on background of non-ideal electronic Fermi-gas and comparison it with the previous calculations are the subject of present study. Analytical fits for Coulomb corrections to equation of state of electronic and ionic subsystems were used in present calculations within the Gibbs-Guggenheim conditions of non-congruent phase equilibrium. Parameters of critical point-line were calculated on the entire range of proportions of mixed ions 0 distillation” effect was found for NCPT in the present BIM(∼) model. Just similar distillation was obtained in the variant of NCPT in dense nuslear matter. The absence of azeotropic compositions was revealed in studied variants of BIM(∼) in contrast to an explicit existence of the azeotropic compositions for the NCPT in chemically reacting plasmas and in astrophysical applications.

  20. Plant-wide control of coupled distillation columns with partial condensers

    International Nuclear Information System (INIS)

    Ebrahimzadeh, Edris; Baxter, Larry L.

    2016-01-01

    Highlights: • Extractive distillation system for CO_2–ethane azeotrope separation. • Control of distillation column systems that have interconnected partial condenser and total condenser columns. • Single-end temperature control of distillation columns. • Aspen Dynamics tools applied for rigorous steady-state and dynamic simulations. - Abstract: Conventional distillation control processes use vapor distillate flowrate to control column pressure and condenser heat removal to control the reflux drum level. These intuitive control systems work well for isolated columns or columns with total condensers. However, these controls are not effective when columns with partial condensers occur in series. The pressure and reflux drum level interact in such systems in ways that defeat conventional control systems, rendering them unable to maintain product purities in the presence of large feed flowrate and composition disturbances. This investigation documents a plant-wide control structure that can address this issue by controlling pressure through reflux heat removal rate and reflux drum level by reflux flow rate. This control system demonstrates its capability to handle large disturbances in throughput and feed composition through a series of Aspen simulations. This alternative system is no more complicated than the conventional system and should work on distillation columns of nearly all designs, not just the coupled partial condenser designs for which it is essential. Common natural gas processing provides a specific example of this alternative control system. Natural gas commonly includes high concentrations of CO_2 that must be removed prior to pipeline or LNG distribution. The existence of a minimum-boiling temperature azeotrope between ethane, virtually always present in natural gas, and carbon dioxide complicates the separation of CO_2 from the hydrocarbons. This separation commonly employs extractive distillation with high-molecular-weight hydrocarbons. Our

  1. A green process for recovery of 1-propanol/2-propanol from their aqueous solutions: Experimental and MD simulation studies

    International Nuclear Information System (INIS)

    Gupta, Bhupender S.; Taha, Mohamed; Lee, Ming-Jer

    2017-01-01

    Highlights: • A green conceptual design for separating propanols from their aqueous solutions is proposed. • TRIS is biocompatible and non-volatile and can be used as an auxiliary agent for the separation. • Isobaric VLE data for 1-propanol/2-propanol + water + TRIS were measured at 101.3 kPa. • The azeotropic compositions are significantly shifted in the presence of TRIS. • Intermolecular interactions were studied with fluorescence, COSMO-RS, and MD simulation. - Abstract: In the present study, we have found that a common and relatively inexpensive biological buffer tris(hydroxymethyl)aminomethane (TRIS) is potentially applicable to shift the azeotrope compositions of aqueous solutions of 1-propanol and 2-propanol. By taking the advantage of our findings, we are proposing a green process for the recovery of these organics from their respective aqueous solutions. In order to confirm the effect of TRIS buffer on vapor–liquid equilibrium behavior of the aqueous propanol systems, we measured the isobaric vapor–liquid equilibrium (VLE) data at 101.3 kPa for the 1-proponol + water + TRIS and 2-propanol + water + TRIS systems over the azeotropic range with various concentrations of TRIS (0.02, 0.04, 0.08, and 0.12 in mole fraction). The binary interaction parameters were obtained for TRIS with water, TRIS with 1-propanol, and TRIS with 2-propanol by correlating the new VLE data with the NRTL model. The isobaric VLE properties for the investigated propanol + water mixtures in the presence of various concentrations of TRIS were also predicted with the conductor-like screening model COSMO-RS. Based on the predicted excess molar enthalpies (H E m ) from the COSMO-RS, the interactions between all constituent pairs of molecules were estimated. To explore the mechanism of TRIS-based separation of 1-propanol/2-propanol from their aqueous solutions, the interactions between different pairs of molecules were also investigated by using fluorescence analysis and

  2. Determination of the analytical performance of a headspace capillary gas chromatographic technique and karl Fischer coulometric titration by system calibration using oil samples containing known amounts of moisture.

    Science.gov (United States)

    Jalbert, J; Gilbert, R; Tétreault, P

    1999-08-01

    Over the past few years, concerns have been raised in the literature about the accuracy of the Karl Fischer (KF) method for assessing moisture in transformer mineral oils. To better understand this issue, the performance of a static headspace capillary gas chromatographic (HS-CGC) technique was compared to that of KF coulometric titration by analyzing moisture in samples containing known amounts of water and various samples obtained from the National Institute of Standards and Technology (NIST). Two modes of adding samples into the KF vessel were used:  direct injection and indirect injection via an azeotropic distillation of the moisture with toluene. Under the conditions used for direct injection, the oil matrix was totally dissolved in the anolyte, which allowed the moisture to be titrated in a single-phase solution rather than in a suspension. The results have shown that when HS-CGC and combined azeotropic distillation/KF titration are calibrated with moisture-in-oil standards, a linear relation is observed over 0-60 ppm H(2)O with a correlation coefficient better than 0.9994 (95% confidence), with the regression line crossing through zero. A similar relation can also be observed when calibration is achieved by direct KF addition of standards prepared with octanol-1, but in this case an intercept of 4-5 ppm is noted. The amount of moisture determined by curve interpolation in NIST reference materials by the three calibrated systems ranges from 13.0 to 14.8 ppm for RM 8506 and 42.5 to 46.4 ppm for RM 8507, and in any case, the results were as high as those reported in the literature with volumetric KF titration. However, titration of various dehydrated oil and solvent samples showed that direct KF titration is affected by a small bias when samples contain very little moisture. The source of error after correction for the large sample volume used for the determination (8 mL) is about 6 ppm for Voltesso naphthenic oil and 4 ppm for toluene, revealing a matrix

  3. Design and control of an alternative distillation sequence for bioethanol purification

    DEFF Research Database (Denmark)

    Errico, Massimiliano; Ramírez-Márquez, César; Torres Ortega, Carlo Edgar

    2015-01-01

    BACKGROUND: Bioethanol is a green fuel considered to be a sustainable alternative to petro-derived gasoline. The transport sector contributes significantly to carbon dioxide emission and consequently has a negative impact on the air quality and is responsible for the increase of the greenhouse...... separation is presented. The steady state performance and the dynamic beavior are analyzed compared with the classical configuration reported in the literature. RESULTS: Ethanol-water azeotropic separation represents a challenge for bioethanol purification. Usually a three column sequence is used to obtain...... fuel grade bioethanol by extractive distillation. In order to reduce bioethanol purification cost a two column separation sequence is proposed. This configuration shows a 10% saving in capital costs together with higher ethanol recovery and better control properties compared with the classical three...

  4. Bioethanol Production from Empty Fruit Bunch using Direct Fermentation by an Actinomycete Streptosporangium roseum

    Science.gov (United States)

    Nik Him, N. R.; Huda, T.

    2018-05-01

    Study on the production of bioethanol using palm oil empty fruit bunch (EFB) has been performed using actinomycete Streptosporangium roseum. Positive result of bioethanol production was recorded using Iodoform test followed by confirmation with GC-FID using a polar capillary column (PEG-type, 10m x 0.53, with autosampler) and n-propanol as internal standard. The first and second round distillation has produced azeotrope (85-15% ethanol-water) and the third round has concentrated the ethanol to 96.1%. Therefore, the process was accomplished by using molecular sieves that selectively absorbed the final excess water. Direct fermentation using Streptosporangium roseum has shown to be a very potential way to catalyst for the synthesis of bioethanol from EFB.

  5. Heat transfer correlations for evaporation of refrigerant mixtures flowing inside horizontal microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoyan [School of Energy Engineering, Xi' an University of Science and Technology, 58 Yanta Street, Xi' an, Shaanxi 710054 (China); School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China); Yuan, Xiuling [School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China)

    2008-11-15

    Based on the experimental results of R417A flowing inside horizontal microfin tubes, the present work deals with the development of prediction methods for evaporation heat transfer of refrigerant mixtures in microfin tube. The microfin model by Thome et al. is modified by adjusting the convective heat transfer term, and the other microfin model is developed by introducing the enhancement factor into the modified-Kattan model. The comparison of the calculations by several microfin models and the experimental results reveals that the new microfin models developed at the present study are in much better agreement with the experimental results with the reducing average deviation by 30-50% than the models by Thome et al. and Cavallini et al., and are recommended for the prediction of evaporation heat transfer coefficients for non-azeotropic refrigerant mixtures inside microfin tubes. (author)

  6. Heat transfer correlations for evaporation of refrigerant mixtures flowing inside horizontal microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoyan, Zhang [School of Energy Engineering, Xi' an University of Science and Technology, 58 Yanta Street, Xi' an, Shaanxi 710054 (China); School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China)], E-mail: gqzxy@sohu.com; Xiuling, Yuan [School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China)

    2008-11-15

    Based on the experimental results of R417A flowing inside horizontal microfin tubes, the present work deals with the development of prediction methods for evaporation heat transfer of refrigerant mixtures in microfin tube. The microfin model by Thome et al. is modified by adjusting the convective heat transfer term, and the other microfin model is developed by introducing the enhancement factor into the modified-Kattan model. The comparison of the calculations by several microfin models and the experimental results reveals that the new microfin models developed at the present study are in much better agreement with the experimental results with the reducing average deviation by 30-50% than the models by Thome et al. and Cavallini et al., and are recommended for the prediction of evaporation heat transfer coefficients for non-azeotropic refrigerant mixtures inside microfin tubes.

  7. Heat transfer correlations for evaporation of refrigerant mixtures flowing inside horizontal microfin tubes

    International Nuclear Information System (INIS)

    Zhang Xiaoyan; Yuan Xiuling

    2008-01-01

    Based on the experimental results of R417A flowing inside horizontal microfin tubes, the present work deals with the development of prediction methods for evaporation heat transfer of refrigerant mixtures in microfin tube. The microfin model by Thome et al. is modified by adjusting the convective heat transfer term, and the other microfin model is developed by introducing the enhancement factor into the modified-Kattan model. The comparison of the calculations by several microfin models and the experimental results reveals that the new microfin models developed at the present study are in much better agreement with the experimental results with the reducing average deviation by 30-50% than the models by Thome et al. and Cavallini et al., and are recommended for the prediction of evaporation heat transfer coefficients for non-azeotropic refrigerant mixtures inside microfin tubes

  8. Ethanol Dehydration by Evaporation and Diffusion in an Inert Gas Layer

    Energy Technology Data Exchange (ETDEWEB)

    In-Sick, Chung; Kyu-Min, Song [Korea Advanced Institute of Science and Technology, Taejeon (Korea, Republic of); Won-Hi, Hong; Ho-Nam, Chang [Korea Advanced Institute of Science and Technology, Taejeon (Korea, Republic of)

    1994-08-01

    Ethanol dehydration of azeotropic mixture was performed by using diffusion distillation apparatus consisting of a wetted-wall column with two concentric tubes. Ethanol-water mixtures evaporated below the boiling point was separated during the diffusion through the gap filled with an inert gas. As the temperature difference between evaporation part and condensation part was increased, the total flux increased but the selectivity decreased. The effect of the annular width on the selectivity was not significant but the total flux was decreased with decreases in the annular width. Inert gas has an effect on the diffusivity of evaporated gas components. The total flux in case of helium as inert gas was larger than that in case of air but the selectivity in case of using helium was lower. (author). 14 refs. 1 tab. 12 figs.

  9. Isobaric (vapour + liquid) equilibria for the (1-pentanol + propionic acid) binary mixture at (53.3 and 91.3) kPa

    International Nuclear Information System (INIS)

    Mohsen-Nia, M.; Memarzadeh, M.R.

    2010-01-01

    Isobaric (vapour + liquid) equilibrium measurements have been reported for the binary mixture of (1-pentanol + propionic acid) at (53.3 and 91.3) kPa. Liquid phase activity coefficients were calculated from the equilibrium data. The thermodynamic consistency of the experimental results was checked using the area test and direct test methods. According to these criteria, the measured (vapour + liquid) equilibrium results were found to be consistent thermodynamically. The obtained results showed a maximum boiling temperature azeotrope at both pressures studied. The measured equilibrium results were satisfactorily correlated by the models of Wilson, UNIQUAC, and NRTL activity coefficients. The results obtained indicate that the performance of the NRTL model is superior to the Wilson and UNIQUAC models for correlating the measured isobaric (vapour + liquid) equilibrium data.

  10. The radiochemistry of [{sup 18} F]-FDG: the first experience in Mexico; La radioquimica del [{sup 18} F]-FDG: la primera experiencia en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez D, F A [Unidad PET-Ciclotron, Facultad de Medicina, UNAM, Av. Universidad 3000, Ciudad Universitaria, Coyoacan, 04500 Mexico, D. F. (Mexico)

    2004-07-01

    The present work describes the more used method for the synthesis of 2 - [{sup 18} F] - fluorine-2-deoxy-D-glucose that is the more used radiopharmaceutical in the nuclear medicine in the cancer diagnostic. The process consists on two chemical reactions: i) [{sup 18} F{sup -}] - nucleophilic radio fluorination and i i) a hydrolysis catalyzed by acid. The first reaction incorporates to the [{sup 18} F]- fluorine labelled inside the organic precursor 1,3,4,6-tetra- O -acetil-2- O-trifluoromethanesulfonyl- {beta}-D-mannopyranose (triflate of mannose). The mechanism of this reaction is a bimolecular nucleophilic substitution (SN{sub 2}) with the ion [{sup 18} F{sup -}] - fluoride; in the second reaction, the hydrolysis of those protective acetyl groups generate the hydroxyl groups free of the [{sup 18} F]-FDG. The process includes an azeotropic distillation and several purification steps. (Author)

  11. Enhancement of impact strength of poly (methyl methacrylate) with surface fine-tuned nano-silica

    International Nuclear Information System (INIS)

    Wen, Bin; Dong, Yixiao; Wu, Lili; Long, Chao; Zhang, Chaocan

    2015-01-01

    Highly dispersible nanoparticles in organic solvent always receive wide interests due to their compatibility with polymer materials. This paper reported a kind of isopropanol alcohol silica dispersion which obtained using a method of azeotropic distillation. The isopropanol alcohol dispersed silica (IPADS) were treated with coupling agents to fine-tune their surface properties. Polymethyl methacrylate (PMMA) was then used as a research object to test the compatibility between IPADS and polymer. UV-vis spectra indicate that IPADS would reach its high compatibility with PMMA if coupling with trimethoxypropylsilane (PTMS). Followed experiments on PMMA proved that the high compatibility can prominently enhance the impact strength about 30%. The results may provide reference both for nano-silica modification and better understanding of nano-enhanced materials. (paper)

  12. Static analysis of the thermochemical hydrogen production IS process for assessment of the operation parameters and the chemical properties

    International Nuclear Information System (INIS)

    Kasahara, Seiji; Onuki, Kaoru; Nomura, Mikihiro; Nakao, Shin-ichi

    2006-01-01

    A sensitivity analysis of the operation parameters and the chemical properties in the thermochemical hydrogen production IS process (iodine-sulfur process) was carried out for a static flow sheet. These parameters were evaluated by hydrogen production thermal efficiency, the mass flow rate or heat exchange based on the heat/mass balance. The most important parameters were the concentration of HI after electro-electrodialysis (EED) and the apparent transport number of protons of the cation exchange membrane in the EED cell. HI concentration operation should be operated carefully because the parameters for optimum thermal efficiency and for the optimum flow rate and heat exchange were different. For the chemical properties, composition at the inlet of the HI decomposition procedure and HI x pseudo-azeotropic composition had great effects. The HI concentration after the EED should be optimized for each composition. The order of priority for the assessment of the operation parameters and chemical properties was determined by the evaluation. (author)

  13. Density, viscosity, isothermal (vapour + liquid) equilibrium, excess molar volume, viscosity deviation, and their correlations for chloroform + methyl isobutyl ketone binary system

    International Nuclear Information System (INIS)

    Clara, Rene A.; Gomez Marigliano, Ana C.; Solimo, Horacio N.

    2007-01-01

    Density and viscosity measurements for pure chloroform and methyl isobutyl ketone at T = (283.15, 293.15, 303.15, and 313.15) K as well as for the binary system {x 1 chloroform + (1 - x 1 ) methyl isobutyl ketone} at the same temperatures were made over the whole concentration range. The experimental results were fitted to empirical equations, which permit the calculation of these properties over the whole concentration and temperature ranges studied. Data of the binary mixture were further used to calculate the excess molar volume and viscosity deviation. The (vapour + liquid) equilibrium (VLE) at T = 303.15 K for this binary system was also measured in order to calculate the activity coefficients and the excess molar Gibbs energy. This binary system shows no azeotrope and negative deviations from ideal behaviour. The excess or deviation properties were fitted to the Redlich-Kister polynomial relation to obtain their coefficients and standard deviations

  14. Profitability increase of alcohol distilleries by the rational use of sub-products

    Energy Technology Data Exchange (ETDEWEB)

    Haandel, Adrianus C. van; Catunda, Paula F.C. [Paraiba Univ., Joao Pessoa, PB (Brazil). Dept. de Engenharia Civil

    1993-12-31

    Industrial alcohol production in Brazil is based on fermentation of sugar cane juice. After concentration and distillation, azeotropic alcohol is obtained along with four side streams. The profitability of alcohol distilleries could be improved by a more rational use of side stream products. An alternative for improved energy production is to abandon alcohol fermentation and apply anaerobic digestion directly to vegetal energy source. In that case the useful energy production is much higher and can be obtained using much simpler equipment. More importantly, the source for energy production would no longer be restricted to sugar cane, but other crops, notably those produced in the drier hinterland of Northeast Brazil could also de used for this purpose. 3 figs., 1 tab.

  15. Consistent thermodynamic properties of lipids systems

    DEFF Research Database (Denmark)

    Cunico, Larissa; Ceriani, Roberta; Sarup, Bent

    different pressures, with azeotrope behavior observed. Available thermodynamic consistency tests for TPx data were applied before performing parameter regressions for Wilson, NRTL, UNIQUAC and original UNIFAC models. The relevance of enlarging experimental databank of lipids systems data in order to improve......Physical and thermodynamic properties of pure components and their mixtures are the basic requirement for process design, simulation, and optimization. In the case of lipids, our previous works[1-3] have indicated a lack of experimental data for pure components and also for their mixtures...... the performance of predictive thermodynamic models was confirmed in this work by analyzing the calculated values of original UNIFAC model. For solid-liquid equilibrium (SLE) data, new consistency tests have been developed [2]. Some of the developed tests were based in the quality tests proposed for VLE data...

  16. Design and Control of Glycerol-tert-Butyl Alcohol Etherification Process

    Directory of Open Access Journals (Sweden)

    Elena Vlad

    2012-01-01

    Full Text Available Design, economics, and plantwide control of a glycerol-tert-butyl alcohol (TBA etherification plant are presented. The reaction takes place in liquid phase, in a plug flow reactor, using Amberlyst 15 as a catalyst. The products' separation is achieved by two distillation columns where high-purity ethers are obtained and a section involving extractive distillation with 1,4-butanediol as solvent, which separates TBA from the TBA/water azeotrope. Details of design performed in AspenPlus and an economic evaluation of the process are given. Three plantwide control structures are examined using a mass balance model of the plant. The preferred control structure fixes the fresh glycerol flow rate and the ratio glycerol + monoether : TBA at reactor-inlet. The stability and robustness in the operation are checked by rigorous dynamic simulation in AspenDynamics.

  17. Ethanol fermentation from molasses at high temperature by thermotolerant yeast Kluyveromyces sp. IIPE453 and energy assessment for recovery.

    Science.gov (United States)

    Dasgupta, Diptarka; Ghosh, Prasenjit; Ghosh, Debashish; Suman, Sunil Kumar; Khan, Rashmi; Agrawal, Deepti; Adhikari, Dilip K

    2014-10-01

    High temperature ethanol fermentation from sugarcane molasses B using thermophilic Crabtree-positive yeast Kluyveromyces sp. IIPE453 was carried out in batch bioreactor system. Strain was found to have a maximum specific ethanol productivity of 0.688 g/g/h with 92 % theoretical ethanol yield. Aeration and initial sugar concentration were tuning parameters to regulate metabolic pathways of the strain for either cell mass or higher ethanol production during growth with an optimum sugar to cell ratio 33:1 requisite for fermentation. An assessment of ethanol recovery from fermentation broth via simulation study illustrated that distillation-based conventional recovery was significantly better in terms of energy efficiency and overall mass recovery in comparison to coupled solvent extraction-azeotropic distillation technique for the same.

  18. Production of ethanol from excess ethylene

    DEFF Research Database (Denmark)

    Kadhim, Adam S.; Carlsen, Kim B.; Bisgaard, Thomas

    2012-01-01

    will focus on the synthetic method, which employs direct hydration of ethylene. A conceptual process design of an ethyl alcohol producing plant is performed in a MSc-level course on Process Design at the Department of Chemical and Biochemical Engineering at DTU. In the designed process, 190 proof ethyl...... alcohol (azeotropic mixture) is produced from excess ethylene containing propylene and methane as impurities. The design work is based on a systematic approach consisting of 12 tasks performed in a specified hierarchy. According to this 12-tasks design procedure, information about the product and process...... of the designed process. The resulting design utilizes 75 million kg/year ethylene feed in order to obtain an ethyl alcohol production of 90.5 million kg/year. The total capital investment has been estimated to 43 million USD and the total product cost without depreciation estimated to 58.5 million USD...

  19. A separation process for hydrogen fluoride from its mixtures with 1,1,1-trifluoro-2-chloroethane

    Energy Technology Data Exchange (ETDEWEB)

    Galland, J.M.; Perdriau, R.; Rouzies, D.

    1994-03-11

    When decanting the mixture of hydrogen fluoride (HF) and 1,1,1-trifluoro-2-chloroethane (F133a) at a temperature between -40 deg C and -10 deg C, a lower organic phase, poor in HF, and a superior phase, rich in HF, are obtained (the reaction may be activated with trichlorethylen); the superior phase can be directly recycled in the fluorination reactor or distilled in order to separate the HF-F133a azeotrope (the head), which is sent back to the decanter, and a quasi-pure HF (the ends). The lower phase distillation produces HF-F133a (head) and a mixture of F133a and trichlorethylen (ends); this mixture is then distilled and pure F133a is separated from trichlorethylen. 9 p., 2 fig.

  20. The radiochemistry of [18 F]-FDG: the first experience in Mexico

    International Nuclear Information System (INIS)

    Lopez D, F.A.

    2004-01-01

    The present work describes the more used method for the synthesis of 2 - [ 18 F] - fluorine-2-deoxy-D-glucose that is the more used radiopharmaceutical in the nuclear medicine in the cancer diagnostic. The process consists on two chemical reactions: i) [ 18 F - ] - nucleophilic radio fluorination and i i) a hydrolysis catalyzed by acid. The first reaction incorporates to the [ 18 F]- fluorine labelled inside the organic precursor 1,3,4,6-tetra- O -acetil-2- O-trifluoromethanesulfonyl- β-D-mannopyranose (triflate of mannose). The mechanism of this reaction is a bimolecular nucleophilic substitution (SN 2 ) with the ion [ 18 F - ] - fluoride; in the second reaction, the hydrolysis of those protective acetyl groups generate the hydroxyl groups free of the [ 18 F]-FDG. The process includes an azeotropic distillation and several purification steps. (Author)

  1. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1992-11-09

    The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R- 717 (ammonia), ethers, and others as well as azeotropic and zeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents on compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. A computerized version is available that includes retrieval software.

  2. Extractive distillation of nitric acid using the two-pot concept

    International Nuclear Information System (INIS)

    Counce, R.M.; Groenier, W.S.; Holland, W.D.; Jubin, R.T.; North, E.D.; Thompson, L.E. Jr.; Hebble, T.L.

    1982-12-01

    Experiments have confirmed the validity of a novel design for a nitric acid concentration system for use in shielded nuclear fuel reprocessing plants. Current plans for producing the scrub solution for the IODOX process require the concentration and recycle of low strength ( 3 ) 2 as the solvent and features two pots: an extractive distillation pot in which a concentrated acid product is obtained by contacting the acid feed with the solvent and a solvent recovery pot in which the solvent is dehydrated and recovered for recycle. In these experiments, a concentrated product of 89 wt % nitric acid was produced from azeotropic feed. The available vapor-liquid equilibria data for the Mg(NO 3 ) 2 -HNO 3 -H 2 O system has been empirically correlated, and a design methodology has been developed for the two-pot extractive distillation process

  3. Ultrathin silicon dioxide layers with a low leakage current density formed by chemical oxidation of Si

    Science.gov (United States)

    Asuha,; Kobayashi, Takuya; Maida, Osamu; Inoue, Morio; Takahashi, Masao; Todokoro, Yoshihiro; Kobayashi, Hikaru

    2002-10-01

    Chemical oxidation of Si by use of azeotrope of nitric acid and water can form 1.4-nm-thick silicon dioxide layers with a leakage current density as low as those of thermally grown SiO2 layers. The capacitance-voltage (C-V) curves for these ultrathin chemical SiO2 layers have been measured due to the low leakage current density. The leakage current density is further decreased to approx1/5 (cf. 0.4 A/cm2 at the forward gate bias of 1 V) by post-metallization annealing at 200 degC in hydrogen. Photoelectron spectroscopy and C-V measurements show that this decrease results from (i) increase in the energy discontinuity at the Si/SiO2 interface, and (ii) elimination of Si/SiO2 interface states and SiO2 gap states.

  4. Ageing of uranyl gel spherical particles

    International Nuclear Information System (INIS)

    Benadik, A.; Urbanek, V.; Vosecek, V.; Skvor, V.

    1978-01-01

    The structure and chemical composition of U(VI) gel are described and the course of crystal growth in ageing process at 22+-2 degC was found. Store conditions of probes had no influence on crystal growth rate. However, the way of probe storage influenced the quality and appearance of the xerogel obtained by drying via azeotropic distillation. The gel particles stored under trichloroethylene had a good appearance also after storing for 44 hours long. Particles stored in air saturated with H 2 O and NH 3 showed a worse appearance already after 20 hours. After 70 hours particles of spiny form were found. The worst particles were those stored under a trichloroethylene-ethylalcohol mixture. For storing purposes trichloroethylene was recommended as the most appropriate medium of gel protection. (author)

  5. Development of {sup 77}Ge/{sup 77}As parent-daughter system for periodic removal of {sup 77}As for environmental sanitation and biochemical purposes

    Energy Technology Data Exchange (ETDEWEB)

    Olah, Zita; Doczi, Rita [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques; Szuecs, Zoltan [Hungarian Academy of Sciences, Debrecen (Hungary). Inst. for Nuclear Research; Varga, Zoltan [Hungarian Academy of Sciences, Budapest (Hungary). Research Centre for Natural Sciences

    2015-07-01

    A simple method was developed for the separation of radioactive {sup 77}As from neutron irradiated natural GeO{sub 2} samples for environmental and biochemical studies. The method is based on the volatility of GeCl{sub 4}. The GeCl{sub 4} was co-evaporated from the reaction mixture with an azeotropic mixture of HCl and water, and immediately condensed into a separate finger part of the special glass apparatus which was cooled by liquid nitrogen. By inverting the room temperature and the deep frozen parts of the glass equipment after three half-lives of the {sup 77}Ge the separation process can be repetitive, getting a special type of {sup 77}Ge/{sup 77}As parent-daughter system. The radionuclidic purity of the remaining As fraction was found to be 99.95%. Its yield, however, drastically decreased in the second and subsequent separations.

  6. Ab Initio Molecular Dynamics Studies of Pb m Sb n ( m + n ≤ 9) Alloy Clusters

    Science.gov (United States)

    Song, Bingyi; Xu, Baoqiang; Yang, Bin; Jiang, Wenlong; Chen, Xiumin; Xu, Na; Liu, Dachun; Dai, Yongnian

    2017-10-01

    Structure, stability, and dynamics of Pb m Sb n ( m + n ≤ 9) clusters were investigated using ab initio molecular dynamics. Size dependence of binding energies, the second-order energy difference of clusters, dissociation energy, HOMO-LUMO gaps, Mayer bond order, and the diffusion coefficient of Pb m Sb n clusters were discussed. Results suggest that Pb3Sb2, Pb4Sb2, and Pb5Sb4 ( n = 2 or 4) clusters have higher stability than other clusters, which is consistent with previous findings. In case of Pb-Sb alloy, the dynamics results show that Pb4Sb2 (Pb-22.71 wt pct Sb) can exist in gas phase at 1073 K (800 °C), which reasonably explains the azeotropic phenomenon, and the calculated values are in agreement with the experimental results (Pb-22 wt pct Sb).

  7. Adaptation of systems to fluid changes; Adaptation des systemes aux changements de fluides

    Energy Technology Data Exchange (ETDEWEB)

    Clodic, D. [Ecole Nationale Superieure des Mines, 75 - Paris (France)

    1996-12-31

    Regulation constraints and the stoppage of CFCs production and HCFCs production in the future lead to rapid evolutions in the conceiving of refrigerating installations which are linked with refrigerant changes. The refrigerant/installation pair has become the aim of detailed analyses in order to understand the relation between the thermodynamical properties of fluids and the energy efficiency of refrigerating installations. The efficiency depends entirely on the global design of the installation while the choice of the fluid is only one element that contributes to this efficiency. This paper analyzes successively: the consequences of pure refrigerant substitution on volume and centrifugal compressors, and the constraints linked with the use of mixtures close to azeotropic compounds (R408A and R404A) and mixtures with temperature shift like R407C. In this last case, the replacement is deeply different in the case of water heat exchangers and in the case of air-circulation heat exchangers. (J.S.) 3 refs.

  8. Sample preparation for semivolatile organics analysis of Hanford single-shell tank waste with high nitrate/nitrite and water content

    International Nuclear Information System (INIS)

    Stromatt, R.W.; Hoppe, E.W.; Steele, M.J.

    1993-11-01

    This report describes research work carried out to solve sample preparation problems associated with applying gas chromatography with mass spectrometric detection (GC/MS) to the analysis of single shell tank (SST) samples from Hanford for semivolatile organic compounds. Poor performance was found when applying the procedures based on the U.S. Environmental Protection Agency (EPA), Contract Laboratory Program, Statement of Work (CLP SOW). Analysis work was carried out on simulated drainable liquid modeled after the SST core samples which had evidenced analysis problems. Some work was also conducted on true SST samples. It was found that the pH range was too broad in the original procedure. It was also found that by decreasing the amount of methanol used in the extraction process, problems associated with the formation of an azeotrope phase could be avoided. The authors suggest a new procedure, whose eventual application to a wide array of SST samples will lend itself to better quality control limits

  9. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    Energy Technology Data Exchange (ETDEWEB)

    Marquez Rossy, Andres E [ORNL; Armstrong, Beth L [ORNL; Elliott, Amy M [ORNL; Lara-Curzio, Edgar [ORNL

    2017-05-12

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to an azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.

  10. Vapour pressure and excess Gibbs free energy of binary mixtures of hydrogen sulphide with ethane, propane, and n-butane at temperature of 182.33K

    International Nuclear Information System (INIS)

    Lobo, L.Q.; Ferreira, A.G.M.; Fonseca, I.M.A.; Senra, A.M.P.

    2006-01-01

    The vapour pressure of binary mixtures of hydrogen sulphide with ethane, propane, and n-butane was measured at T=182.33K covering most of the composition range. The excess Gibbs free energy of these mixtures has been derived from the measurements made. For the equimolar mixtures G m E (x 1 =0.5)=(835.5+/-5.8)J.mol -1 for (H 2 S+C 2 H 6 ) (820.1+/-2.4)J.mol -1 for (H 2 S+C 3 H 8 ), and (818.6+/-0.9)J.mol -1 for (H 2 S+n-C 4 H 10 ). The binary mixtures of H 2 S with ethane and with propane exhibit azeotropes, but that with n-butane does not

  11. Determination of tritium in wine and wine yeast samples

    International Nuclear Information System (INIS)

    Cotarlea, Monica-Ionela; Paunescu, Niculina; Galeriu, D.; Mocanu, N.; Margineanu, R.; Marin, G.

    1997-01-01

    A sensitive method for evaluating the tritium content in wine and wine yeast was applied to estimate tritium impact on the environment in the surrounding area of nuclear power plant Cernavoda, where the vineyards are part of representative agricultural ecosystem. Analytical procedures were developed to determine HTO in wine and wine yeast samples. The content of organic compounds affecting the LSC measurement is reduced by fractionating distillation for wine samples and azeotropic distillation followed by fractional distillation for wine yeast samples. Finally, the water samples obtained after fractional distillation were normally distilled with KMO 4 . The established procedures were successfully applied for wine and wine yeast samples from Mulfatlar harvests of the years 1995 and 1996. (authors)

  12. Boiling temperature measurement for water, methanol, ethanol and their binary mixtures in the presence of a hydrochloric or acetic salt of mono-, di- or tri-ethanolamine at 101.3 kPa

    Energy Technology Data Exchange (ETDEWEB)

    Wang Junfeng [State Key Lab. of Chem. Resource Eng, College of Chem. Eng., Beijing Univ. of Chem. Tech. Beijing 100029 (China)], E-mail: Licx@mail.buct.edu.cn; Li Xuemei; Meng Hong [College of Chem. Eng.., Beijing Univ. of Chem. Tech. Beijing 100029 (China); Li Chunxi [State Key Lab. of Chem. Resource Eng, College of Chem. Eng., Beijing Univ. of Chem. Tech. Beijing 100029 (China); Wang Zihao [College of Chem. Eng., Beijing Univ. of Chem. Tech. Beijing 100029 (China)

    2009-02-15

    The boiling temperature at atmospheric pressure were measured for 12 binary systems within the range T = (316 to 379) K and 7 ternary systems using a dual circulation. The systems studied contained water, methanol or ethanol with the following ionic liquids (ILs): monoethanolammonium acetate ([HEMA][Ac]), diethanolammonium acetate ([HDEA][Ac]), triethanolammonium acetate ([HTEA][Ac]) and diethanolammonium chloride ([HDEA]Cl). The experimental VLE results of the IL-containing binary systems were correlated by NRTL equation, and the binary NRTL parameters were used for the prediction of VLE of ternary systems with average absolute deviation of 0.73 K in boiling temperature. The results indicate that [HDEA]Cl can be used as an efficient solvent for the extractive distillation of (ethanol + water) mixture due to its notable salting-out effect, which lower the vapour pressure of water, increase the volatility of ethanol and eliminate the azeotropic phenomenon of the (water + ethanol) mixture at definite IL concentration.

  13. Study of a dense metal membrane reactor for hydrogen separation from hydroiodic acid decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Tosti, Silvano; Borelli, Rodolfo; Borgognoni, Fabio [ENEA, Dipartimento FPN, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy); Favuzza, Paolo; Tarquini, Pietro [ENEA, Dipartimento TER, C.R. ENEA Casaccia, Via Anguillarese 301, Roma (Italy); Rizzello, Claudio [Tesi Sas, Via Bolzano 28, Roma (Italy)

    2008-10-15

    A membrane reactor has been studied for separating the hydrogen produced by the dissociation of hydroiodic acid in the thermochemical-sulfur iodine process. A dense metal membrane tube of wall thickness 0.250 mm has been considered in this analysis for hosting a fixed-bed catalyst: the selective separation of hydrogen from an azeotropic H{sub 2}O-HI mixture has been studied in the temperature range of 700-800 K. The materials being considered for the construction of the membrane tube are niobium and tantalum; as a matter of fact, the most commonly used Pd-Ag membranes cannot withstand the corrosive environment generated by the hydroiodic acid. The Damkohler-Peclet analysis has been used for designing the membrane reactor, while a finite element method has simulated its behaviour: the effect of the temperature and pressure on the HI conversion and hydrogen yield has been evaluated. (author)

  14. Dehydration of aluminum chloride hexahydrate: a technical assessment

    International Nuclear Information System (INIS)

    Miller, R.L.

    1984-04-01

    Physical and chemical properties of aluminum chloride hexahydrate, ACH, and related compounds are noted as well as the relation of these properties to the problem of dehydration of ACH to form anhydrous aluminum chloride. Several approaches to the dehydration of ACH are discussed and a rationale or each approach is given: solvent extraction, ligand exchange, azeotropic distillation, chemical dehydration, and energy specific direct heating. While the thermodynamics of dehydration are frequently favorable, the rate of reaction and the mechanisms of reaction are more frequently unfavorable. However, each approach requires experimentation to test its effectiveness. The stability of the aluminum-oxygen bond in the hydrate is such that dehydration without decomposition to the oxide will be very difficult

  15. Heat transfer in nucleate boiling of R134a/R152a mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Kehong [Hugo Kern und Liebers GmbH and Co. KG, Schramberg (Germany); Spindler, Klaus; Hahne, Erich [Universitaet Stuttgart ITW, Stuttgart (Germany)

    2010-11-15

    Heat transfer coefficients were measured on a horizontal platinum wire and converted to data on horizontal copper tubes. The measurements spanned a large region of pressures p*=p/p{sub crit}=0.05-0.50 and heat fluxes of q=10{sup 3}-1.5 x 10{sup 5} W/m{sup 2}. The preparation of the test equipment is described. The effects of pressure and concentration on the heat transfer coefficients are shown. The mixture behaves very much like an azeotropic mixture; concentration has only a small effect, the heat transfer coefficients can be obtained from the heat transfer coefficients of the pure components according to their molar fractions. The conversion steps from wire- to tube-data are presented. A comparison of wire-data with correlations given in literature is shown. It renders good agreement. (orig.)

  16. ZrOCl2·8H2O: An Efficient, Cheap and Reusable Catalyst for the Esterification of Acrylic Acid and Other Carboxylic Acids with Equimolar Amounts of Alcohols

    Directory of Open Access Journals (Sweden)

    Yingwu Yin

    2006-04-01

    Full Text Available Esterifications of carboxylic acids with equimolar amount of alcohols could beefficiently catalyzed by ZrOCl2·8H2O. Acrylate esters were obtained in good yields undersolvent-free conditions at ambient temperature. The esterification of other carboxylicacids with alcohols also proceeded at ambient temperature or at 50 oC to afford esters inhigh yields. If the esterification was performed in toluene under azeotropic refluxconditions to remove water, both the catalytic activity of ZrOCl2·8H2O and the rate ofesterification could be increased greatly. Furthermore, in the present catalytic system, theesters could be easily separated from the reaction mixtures and the catalyst could beeasily recovered and reused.

  17. Fluorocarbon Adsorption in Hierarchical Porous Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Motkuri, Radha K.; Annapureddy, Harsha V.; Vijayakumar, M.; Schaef, Herbert T.; Martin, P F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.

    2014-07-09

    The adsorption behavior of a series of fluorocarbon derivatives was examined on a set of microporous metal organic framework (MOF) sorbents and another set of hierarchical mesoporous MOFs. The microporous M-DOBDC (M = Ni, Co) showed a saturation uptake capacity for R12 of over 4 mmol/g at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous MOF MIL-101 showed an exceptionally high uptake capacity reaching over 14 mmol/g at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption were found to generally correlate with the polarizability of the refrigerant with R12 > R22 > R13 > R14 > methane. These results suggest the possibility of exploiting MOFs for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling and refrigeration applications.

  18. Isothermal (vapour + liquid) equilibrium for the binary {l_brace}1,1,2,2-tetrafluoroethane (R134) + propane (R290){r_brace} and {l_brace}1,1,2,2-tetrafluoroethane (R134) + isobutane (R600a){r_brace} systems

    Energy Technology Data Exchange (ETDEWEB)

    Dong Xueqiang [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Gong Maoqiong, E-mail: gongmq@mail.ipc.ac.c [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Liu Junsheng [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Wu Jianfeng, E-mail: jfwu@mail.ipc.ac.c [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China)

    2010-09-15

    (Vapour + liquid) equilibrium (VLE) data for the binary systems of {l_brace}1,1,2,2-tetrafluoroethane (R134) + propane (R290){r_brace} and {l_brace}1,1,2,2-tetrafluoroethane (R134) + isobutane (R600a){r_brace} were measured with a recirculation method at the temperatures ranging from (263.15 to 278.15) K and (268.15 to 288.15) K, respectively. All of the data were correlated by the Peng-Robinson (PR) equation of state (EoS) with the Huron-Vidal (HV) mixing rules utilizing the non-random two-liquid (NRTL) activity coefficient model. Good agreement can be found between the experimental data and the correlated results. Azeotropic behaviour can be found at the measured temperature ranges for these two mixtures.

  19. Immobilized Palladium Nanoparticles on Zirconium Carboxy-Aminophosphonates Nanosheets as an Efficient Recoverable Heterogeneous Catalyst for Suzuki–Miyaura and Heck Coupling

    Directory of Open Access Journals (Sweden)

    Vadym Kozell

    2017-06-01

    Full Text Available Zirconium phosphate glycine diphosphonate nanosheets (ZPGly have been used as support for the preparation of solid palladium nanoparticles, namely Pd@ZPGly. Thanks to the presence of carboxy-aminophosponate groups on the layer surface, ZPGly-based materials were able to stabilize a high amount of palladium (up to 22 wt % also minimizing the amount of metal leached in the final products of representative important cross-coupling processes selected for proving the catalysts’ efficiency. The catalytic systems have been fully characterized and used in low amounts (0.1 mol % in the Suzuki–Miyaura and Heck cross-couplings. Moreover, the protocols were optimized for the use of recoverable azeotropic mixtures (aq. EtOH 96% or aq. CH3CN 84%, respectively and in the flow procedure allowing one to isolate the final pure products, without any purification step, with very low residual palladium content and with a very low waste production.

  20. Radical copolymerization in homogenous medium and emulsion system monomers acrylonitrile/styrene

    Directory of Open Access Journals (Sweden)

    Boussehel H.

    2013-09-01

    Full Text Available This study examines the radical copolymerization in homogeneous and emulsion of the monomer system acrylonitrile/styrene. These copolymers are of great interest to the plastics industry, because they combine the good mechanical properties and implementation provided by the styrene units in the very high solvent resistance and extreme gas impermeability provided by the acrylonitrile units. The properties of a copolymer are directly related to its composition and distribution of monomer units in its macromolecular chains. Based on the reports of the couple reactivity's of monomers (AN/S found in the literature, the objective of the work is to provide theoretical simulation (by analytical and numerical integration of the equation of copolymerization: The kinetics of the reaction copolymerization of AN/S in a homogeneous medium and emulsion (drift composition, azeotropic and the microstructure (distribution of monomer sequences and the glass transition property of the macromolecular chains instant formed throughout the copolymerization reaction.

  1. Improvements in or relating to ceramic materials

    International Nuclear Information System (INIS)

    Lane, E.S.

    1975-01-01

    A method is described for the production of nuclear fuel containing sintered UC or PuC, or a mixture thereof, comprising the steps of precipitating an oxide forming compounds of U or Pu, or a mixture of same, in the form of gel particles containing C, and introducing into the gel particles a compound capable of providing Ni as a sintering aid by contacting the particles with a solution of the Ni compound in an organic solvent. The latter may be a chlorinated hydrocarbon such as trichloroethylene, perchloroethylene of CCl 4 , or an aliphatic alcohol such as n-hexanol, or 2-ethyl hexanol. The Ni compound may be Ni acetonyl acetate or a Ni salt of an organic solvent soluble carboxylic acid. The gel particles are dried by azeotropic distillation from the organic solvent containing the Ni compound, so that the particles absorb the Ni compound. Examples of application of the method are described. (U.K.)

  2. Achieving process intensification form the application of a phenomena based synthesis, Design and intensification methodology

    DEFF Research Database (Denmark)

    Babi, Deenesh Kavi; Lutze, Philip; Woodley, John

    of PI still faces challenges [2] because the identification and design of intensified processes is not simple [3]. Lutze et al [3] has developed a systematic PI synthesis/design method at the unit operations (Unit-Ops) level, where the search space is based on a knowledge-base of existing PI equipment...... for the manufacture of methyl acetate by replacing with one single reactive distillation column the multi-step process which consisted of one reactor, extractive distillation, liquid-liquid separation and azeotropic distillation. However, except for reactive distillation and dividing wall columns, the implementation......, the starting point is knowledge of existing Unit-Ops and therefore a limitation arising from their application is that they are able to generate new integrations/combinations of intensified equipment but are unable to generate novel PI solutions employing new Unit-Ops. Therefore, incentives exist for a more...

  3. Boiling temperature measurement for water, methanol, ethanol and their binary mixtures in the presence of a hydrochloric or acetic salt of mono-, di- or tri-ethanolamine at 101.3 kPa

    International Nuclear Information System (INIS)

    Wang Junfeng; Li Xuemei; Meng Hong; Li Chunxi; Wang Zihao

    2009-01-01

    The boiling temperature at atmospheric pressure were measured for 12 binary systems within the range T = (316 to 379) K and 7 ternary systems using a dual circulation. The systems studied contained water, methanol or ethanol with the following ionic liquids (ILs): monoethanolammonium acetate ([HEMA][Ac]), diethanolammonium acetate ([HDEA][Ac]), triethanolammonium acetate ([HTEA][Ac]) and diethanolammonium chloride ([HDEA]Cl). The experimental VLE results of the IL-containing binary systems were correlated by NRTL equation, and the binary NRTL parameters were used for the prediction of VLE of ternary systems with average absolute deviation of 0.73 K in boiling temperature. The results indicate that [HDEA]Cl can be used as an efficient solvent for the extractive distillation of (ethanol + water) mixture due to its notable salting-out effect, which lower the vapour pressure of water, increase the volatility of ethanol and eliminate the azeotropic phenomenon of the (water + ethanol) mixture at definite IL concentration

  4. Profitability increase of alcohol distilleries by the rational use of sub-products

    Energy Technology Data Exchange (ETDEWEB)

    Haandel, Adrianus C. van; Catunda, Paula F.C. [Paraiba Univ., Joao Pessoa, PB (Brazil). Dept. de Engenharia Civil

    1994-12-31

    Industrial alcohol production in Brazil is based on fermentation of sugar cane juice. After concentration and distillation, azeotropic alcohol is obtained along with four side streams. The profitability of alcohol distilleries could be improved by a more rational use of side stream products. An alternative for improved energy production is to abandon alcohol fermentation and apply anaerobic digestion directly to vegetal energy source. In that case the useful energy production is much higher and can be obtained using much simpler equipment. More importantly, the source for energy production would no longer be restricted to sugar cane, but other crops, notably those produced in the drier hinterland of Northeast Brazil could also de used for this purpose. 3 figs., 1 tab.

  5. Extraction of Aromatics from Heavy Naphtha Using Different Solvents

    International Nuclear Information System (INIS)

    EI-Bassuoni, A.A.; Esmael, K.K.

    2004-01-01

    Aromatic hydrocarbons are very important to the petrochemical industry. Among these are benzene, toluene and xylene (BTX), which are basic raw materials for the production of a number of important petrochemicals. There are many processes used to separate aromatic from non aromatic such as fractionation, azeotropic distillation and liquid I liquid extraction, etc. Liquid - liquid extraction is unique, efficiently used for heat sensitive, close boiling components and for separation of components not possible by other unit operations and it could be done at ambient temperature makes it more energy efficient. The choice of solvent depends on the properties and boiling range of the feedstock. Through the years, a lot of selective solvents has been proposed and selected for the physical separation of aromatics in liquid liquid extraction. Among the selection criteria are the stability,. chemical compatibility, availability, environmental hazards and price of the solvent. But the basic solvent properties that make it efficient are selectivity and capacity

  6. Analysis and optimal process development of the iodine-Sulfur cycle for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Lee, Byung Jin

    2009-02-01

    Hydrogen is expected to be a main energy vector for the future society. Among many thermo-chemical water splitting technologies for mass production of hydrogen, Iodine-Sulfur (I-S) cycle is considered to be the most promising one. Originated in the 1980s by General Atomics in the United States, the I-S cycle utilizes high temperature heat from energy sources such as nuclear reactors. Despite its high viability relative to many other options, lots of technical challenges need to be resolved until it can practically contribute to the mass production of hydrogen. In the present work, based on the experimental data available from previous works and discussions collected through the literature survey, the optimal operating conditions were proposed for the Bunsen reaction, considering the key concerns of the I-S cycle: i.e., the liquid-liquid (L-L) phase separation performance, the water distributions between the sulfuric acid and poly-hydroiodic acid (HI x ) phases, the side reactions, and the operating cost due to the excess iodine and water. All the available experimental data were combined together, and a series of parametric studies were done to find out any trends among parameters. The optimal operating point is determined as 4 mol of excess iodine and 11 mol of excess water in the stoichiometry at temperature of 330K, while the allowable window ranges between 4∼6 mol for excess iodine, 11∼13 moles for excess water, and 330∼350K for temperature. As for the distribution of excess water after the Bunsen reaction and L-L phase separation, 5 mol moves to the sulfuric acid phase and 6∼8 mol to the HI x phase. By controlling the operation within this window, it should be possible to avoid the side reaction and iodine solidification, to increase the HI concentration well above the azeotrope in the HI x section, and to minimize the operating cost caused by the excess iodine and water. With the optimized Bunsen reaction process to yield an over-azeotropic HI liquid

  7. Validation of tritium measurements in biological materials

    International Nuclear Information System (INIS)

    Kim, M.A.; Baumgartner, F.

    1988-01-01

    The maximum deviation of experimental R value from its real value, which is defined as the ratio of tissue bound to tissue water tritium, has been calculated and verified experimentally by taking consideration of isotopic fractionation arised in the course of water separation. Experimental procedures examined for the purpose are the azeotropic distillation and lyophilization for the removal of tissue water and the oxidative combustion of organic residue either by thermal process or by low temperature plasma generation. Each procedure optimalized by obviating or correcting isotope effects as well as other sources of error has been tested with mixed standards and biological samples. By washing out the exchangeable tritium and also physically bound tritium, the precision and accuracy of R values are further improved

  8. Processing hexavalent uranium gels and their properties

    International Nuclear Information System (INIS)

    Landspersky, H.; Benadik, A.; Spitzer, Z.

    1980-01-01

    The properties of xerogels of ammonium polyuranate prepared by various drying procedures were studied. The individual drying procedures affect differently both the chemical structure of the material (its composition) and the physicochemical properties of the final product (specific surface area, porosity). In addition, the physicochemical properties of xerogels depend on the properties of the starting material, i.e., on the type of the initial gel. The physicochemical properties of xerogels, in particular their porosity, are in turn relevant for their subsequent high-temperature processing. The porous structure is essential for thermal treatment. The structure of xerogels obtained by distillation procedures is affected both by the conditions of azeotropic distillation and by the medium employed. By judicious selection of these two variables it is possible to prepare materials with different pore size distributions. (author)

  9. Influence of solvent addition on the physicochemical properties of Brazilian gasoline

    Energy Technology Data Exchange (ETDEWEB)

    E.V. Takeshita; R.V.P. Rezende; S.M.A. Guelli; U. de Souza; A.A. Ulson de Souza [Federal University of Santa Catarina, Florianopolis (Brazil). Chemical Engineering Department

    2008-08-15

    The influence of several solvents (anhydrous ethanol, white spirit, alkylbenzene AB9, diesel) on the physicochemical parameters of gasoline was studied according to ASTM international standard methods. The parameters investigated (distillation curves, density, Reid vapor pressure) showed differentiated behavior, depending on the class of the solvent (oxygenated, light and heavy aliphatic, aromatic) and the quantity added to the gasoline. The azeotropic mixtures formed by ethanol and hydrocarbons showed a strong influence on the behavior of the distillation curves and the location of the point of a sudden change in temperature was shown to be a possible way to detect adulterations and determine the quantity of solvent added to the gasoline. 28 refs., 9 figs., 5 tabs.

  10. Prospects for the Production of Liquid Biofuels in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Zhelyezna, T.; Geletukha, G. [SEC ' Biomass' , Kiev (Ukraine)

    2006-07-15

    Ukraine is highly dependent on imported energy carriers. Prices of motor fuels permanently trend to rising. On the other hand, Ukraine has all necessary preconditions to start wide production of motor fuels from biomass for internal usage and export abroad. Ukrainian specialists have developed effective technology for production of high-octane oxygen containing admixture to petrol, which is the local analogue of bio-ethanol. For dewatering ethyl alcohol they use azeotropic distillation and adsorption on molecular sieves (zeolites). The technology is implemented at a number of distilleries of Ukraine. Besides, a few enterprises are about to start commercial production of bio-diesel in the country. The main barriers here are absence of clear state policy on the matter, lack of state support and sometimes still old way of thinking.

  11. Synthesis of nanosized powders of stabilized zirconia

    International Nuclear Information System (INIS)

    Takodoro, Sandra Kiyoko

    2000-01-01

    Zirconia solid solutions containing 3 mol % Yttria or 12 mol % ceria have been prepared by the coprecipitation technique followed by azeotropic distillation. The aim of this work is the synthesis of tetragonal zirconia polycrystals nanosized powders that sinter at comparatively lower temperatures attaining high densification, and without using any milling procedure. The main results show that: 1- the dopant cation has a strong influence on the crystallization behavior of the precipitates; 2- the used techniques allowed for obtaining high values of specific surface area (∼130 m 2 .g -1 ); 3- the optimization of the synthesis and processing parameters are responsible for obtaining high densification (≥97% of the theoretical value), at lower temperatures (∼1200 deg C) with average grain sizes lower than 500 nm; 4- impedance spectroscopy results show a strong correlation between the electrical resistivity and the microstructure of sintered ceramics.(author)

  12. A method to extract soil water for stable isotope analysis

    Science.gov (United States)

    Revesz, Kinga; Woods, Peter H.

    1990-07-01

    A method has been developed to extract soil water for determination of deuterium (D) and 18O content. The principle of this method is based on the observation that water and toluene form an azeotropic mixture at 84.1°C, but are completely immiscible at ambient temperature. In a specially designed distillation apparatus, the soil water is distilled at 84.1°C with toluene and is separated quantitatively in the collecting funnel at ambient temperature. Traces of toluene are removed and the sample can be analyzed by mass spectrometry. Kerosene may be substituted for toluene. The accuracy of this technique is ± 2 and ± 0.2‰, respectively, for δD and δ 18O. Reduced accuracy is obtained at low water contents.

  13. Melt-gas phase equilibria and state diagrams of the selenium-tellurium system

    Science.gov (United States)

    Volodin, V. N.; Trebukhov, S. A.; Burabaeva, N. M.; Nitsenko, A. V.

    2017-05-01

    The partial pressures of saturated vapor of the components in the Se-Te system are determined and presented in the form of temperature-concentration dependences from which the boundaries of the melt-gas phase transition are calculated at atmospheric pressure and vacuums of 2000 and 100 Pa. The existence of azeotropic mixtures is revealed. It is found that the points of inseparably boiling melts correspond to 7.5 at % of Se and 995°C at 101325 Pa, 10.9 at % at 673°C and 19.5 at % at 522°C in vacuums of 2000 and 100 Pa, respectively. A complete state diagram is constructed, including the fields of gas-liquid equilibria at atmospheric and low pressures, the boundaries of which allow us to assess the behavior of selenium and tellurium upon distillation fractionation.

  14. Occurrence of 1,4-dioxane in cosmetic raw materials and finished cosmetic products.

    Science.gov (United States)

    Black, R E; Hurley, F J; Havery, D C

    2001-01-01

    Surveys of cosmetic raw materials and finished products for the presence of the carcinogen 1,4-dioxane have been conducted by the U.S. Food and Drug Administration since 1979. Analytical methods are described for the determination of 1,4-dioxane in ethoxylated cosmetic raw materials and cosmetic finished products. 1,4-Dioxane was isolated by azeotropic atmospheric distillation and determined by gas chromatography using n-butanol as an internal standard. A solid-phase extraction procedure based on a previously published method for the determination of 1,4-dioxane in cosmetic finished products was also used. 1,4-Dioxane was found in ethoxylated raw materials at levels up to 1410 ppm, and at levels up to 279 ppm in cosmetic finished products. Levels of 1,4-dioxane in excess of 85 ppm in children's shampoos indicate that continued monitoring of raw materials and finished products is warranted.

  15. Tritium isotope fractionation in biological systems and in analytical procedures

    International Nuclear Information System (INIS)

    Kim, M.A.; Baumgaertner, Franz

    1989-01-01

    The organically bound tritium (OBT) is evaluated in biological systems by determining the tritium distribution ratio (R-value), i.e. tritium concentrations in organic substance to cell water. The determination of the R-value always involves isotope fractionation is applied analytical procedures and hence the evaluation of the true OBT -value in a given biological system appears more complicated than hitherto known in the literature. The present work concentrates on the tritium isotope fractionation in the cell water separation and on the resulting effects on the R-value. The analytical procedures examined are vacuum freeze drying under equilibrium and non-equilibrium conditions and azeotropic distillation. The vaporization isotope effects are determined separately in the phase transition of solid or liquid to gas in pure tritium water systems as well as in real biological systems, e.g. corn plant. The results are systematically analyzed and the influence of isotope effects on the R-value is rigorously quantified

  16. Quantitation of dialkyl phosphate metabolites of organophosphate pesticides in human urine using GC-MS-MS with isotopic internal standards.

    Science.gov (United States)

    Bravo, Roberto; Driskell, William J; Whitehead, Ralph D; Needham, Larry L; Barr, Dana B

    2002-01-01

    Human exposure to organophosphate pesticides can be estimated from the presence of urinary metabolites. An isotope-dilution gas chromatography-tandem mass spectrometry (GC-MS-MS) method was developed for quantitating the six dialkyl phosphate urinary metabolites of at least 29 organophosphate pesticides. Urine samples were spiked with stable isotope analogues of the dialkyl phosphates, evaporated using azeotropic distillation, followed by chemical derivatization of the metabolites to their respective chloropropyl phosphate esters. The chloropropyl phosphate esters were concentrated and then analyzed using GC-MS-MS. The limits of detection (LODs) of the method were in the low-to-mid picogram-per-milliliter range (parts per trillion) with coefficients of variation of less than 20%. The use of stable isotope analogues as internal standards for each of these metabolites allows for the highest degree of accuracy and precision. Additionally, the low LODs allow the use of this method in general population studies.

  17. Novel one-pot one-step synthesis of 2'-[(18)F]fluoroflumazenil (FFMZ) for benzodiazepine receptor imaging.

    Science.gov (United States)

    Yoon, Young Hyun; Jeong, Jae Min; Kim, Hyung Woo; Hong, Sung Hyun; Lee, Yun-Sang; Kil, Hee Sup; Chi, Dae Yoon; Lee, Dong Soo; Chung, June-Key; Lee, Myung Chul

    2003-07-01

    We describe the synthesis of 2'-[(18)F]fluoroflumazenil (FFMZ), which differs from the typically used [(18)F]fluoroethylflumazenil (FEFMZ) for benzodiazepine receptor imaging. For one-pot one-step labeling, the precursors, 2'-tosyloxyflumazenil (TFMZ) and 2'-mesyloxyflumazenil (MFMZ), were synthesized in three steps. The precursors were successfully labeled with no-carrier-added (18)F-fluoride which was activated by repeated azeotropic distillation with Kryptofix 2.2.2./potassium carbonate in MeCN. An automated system for labeling and purification of [(18)F]FFMZ was developed. Labeling efficiency and radiochemical purity of [(18)F]FFMZ after synthesis by the automated system were 68% and 98%, respectively. Specific binding of [(18)F]FFMZ to central benzodiazepine receptor of rats was demonstrated by phosphoimaging.

  18. Repurification and characterization of extractant mixture (isobutyl acetate-methyl isobutyl ketone) used in spectrophotometric analytical methods

    International Nuclear Information System (INIS)

    Al-Merey, R.; Al-Hameish, M.

    2001-01-01

    Isobutyl acetate (IBA) -methyl isobutyl ketone (MIBK) mixture used in analytical laboratories was re-purified by fractional distillation. The used mixture was washed with 0.5 M Na 2 CO 3 solution for the removal of inorganic substances. The range of fractional distillation was between 111-114 Centigrade which gave an azeotropic mixture that consists of 70% of IBA, 20% of MIBK and 10% of isobutanol (IBL). Gas chromatography (GC) analysis showed that isobutanol was increased by about 10% on the expense of IBA. This study suggests that MIBK could be determined in organic mixture spectrophotometrically. The analytical function of the re-purified mixture is found to be better than the unused mixture. Finally the distillation recovery was 93%. (author)

  19. Novel one-pot one-step synthesis of 2'-[18F]fluoroflumazenil (FFMZ) for benzodiazepine receptor imaging

    International Nuclear Information System (INIS)

    Young, Hyun Yoon; Jae, Min Jeong; Hyung, Woo Kim; Sung, Hyun Hong; Lee, Yun-Sang; Hee, Sup Kil; Dae, Yoon Chi; Dong, Soo Lee; Chung, June-Key; Myung, Chul Lee

    2003-01-01

    We describe the synthesis of 2'-[ 18 F]fluoroflumazenil (FFMZ), which differs from the typically used [ 18 F]fluoroethylflumazenil (FEFMZ) for benzodiazepine receptor imaging. For one-pot one-step labeling, the precursors, 2'-tosyloxyflumazenil (TFMZ) and 2'-mesyloxyflumazenil (MFMZ), were synthesized in three steps. The precursors were successfully labeled with no-carrier-added 18 F-fluoride which was activated by repeated azeotropic distillation with Kryptofix 2.2.2./potassium carbonate in MeCN. An automated system for labeling and purification of [ 18 F]FFMZ was developed. Labeling efficiency and radiochemical purity of [ 18 F]FFMZ after synthesis by the automated system were 68% and 98%, respectively. Specific binding of [ 18 F]FFMZ to central benzodiazepine receptor of rats was demonstrated by phosphoimaging

  20. Preparation of crystalline sodium norcarnitine: an easily handled precursor for the preparation of carnitine analogs and radiolabeled carnitine.

    Science.gov (United States)

    Colucci, W J; Turnbull, S P; Gandour, R D

    1987-05-01

    A procedure by which crystalline sodium norcarnitine can be prepared in large quantities and high yields has been developed. Carnitine is selectively demethylated by thiophenoxide ion in N,N-dimethylethanolamine. The reactive thiophenoxide ion is generated in situ by addition of thiophenol to this basic reaction solvent. Hence, sodium thiophenoxide, which has been used in similar applications, but is difficult to prepare, can be avoided. Accordingly, reaction of (R,S)-carnitine followed by aqueous azeotropic distillation of byproducts as well as excess starting materials and then by neutralization with sodium hydroxide gave sodium norcarnitine in 89% yield. (R)-Carnitine gave 91% yield of (R)-norcarnitine zwitterion before neutralization. A method for the facile preparation of radiolabeled (R)-carnitine is also described. Thus, methylation of sodium norcarnitine with methyl iodide in methanolic acetone produced carnitine, which precipitated, and sodium iodide, which was soluble.

  1. [Quantitative analysis of urinary ethylene glycol in rats exposed to ethylene oxide].

    Science.gov (United States)

    Koga, M; Hori, H; Tanaka, I; Akiyama, T; Inoue, N

    1985-03-01

    A gas chromatographic method was used for determining ethylene glycol in urine. The analytical procedure is based on an azeotropic distillation and on esterification with n-butyl boronic acid. The linear calibration curve was obtained up to 500 micrograms/ml of ethylene glycol. The detection limit was estimated to be 10 micrograms/ml and relative standard deviation was 3.5% for 100 micrograms/ml of ethylene glycol. This method was applied to determine the urinary excretion of ethylene glycol in rats exposed to ethylene oxide at various concentrations (from 50 to 500 ppm). The excretion amounts of ethylene glycol were observed to be dependent on the concentration of ethylene oxide exposed.

  2. Enhancement of impact strength of poly (methyl methacrylate) with surface fine-tuned nano-silica

    Science.gov (United States)

    Wen, Bin; Dong, Yixiao; Wu, Lili; Long, Chao; Zhang, Chaocan

    2015-07-01

    Highly dispersible nanoparticles in organic solvent always receive wide interests due to their compatibility with polymer materials. This paper reported a kind of isopropanol alcohol silica dispersion which obtained using a method of azeotropic distillation. The isopropanol alcohol dispersed silica (IPADS) were treated with coupling agents to fine-tune their surface properties. Polymethyl methacrylate (PMMA) was then used as a research object to test the compatibility between IPADS and polymer. UV-vis spectra indicate that IPADS would reach its high compatibility with PMMA if coupling with trimethoxypropylsilane (PTMS). Followed experiments on PMMA proved that the high compatibility can prominently enhance the impact strength about 30%. The results may provide reference both for nano-silica modification and better understanding of nano-enhanced materials.

  3. Conceptual design of distillation-based hybrid separation processes.

    Science.gov (United States)

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  4. Radwaste volume reduction and solidification by General Electric

    International Nuclear Information System (INIS)

    Green, T.A.; Weech, M.E.; Miller, G.P.; Eberle, J.W.

    1982-01-01

    Since 1978 General Electric has been actively engaged in developing a volume reduction and solidifcation system or treatment of radwaste generated in commercial nuclear power plants. The studies have been aimed at defining an integrated system that would be directly responsive to the rapid evolving needs of the industry for the volume reduction and solidification of low-level radwaste. The resulting General Electric Volume Reduction System (GEVRS) is an integrated system based on two processes: the first uses azeotropic distillation technology and is called AZTECH, and the second is controlled-air incineration...called INCA. The AZTECH process serves to remove water from concentrated salt solutions, ion exchange resins and filter sludge slurries and then encapsulates the dried solids into a dense plastic product. The INCA unit serves to reduce combustible wastes to ashes suitable for encapsulation into the same plastic product produced by AZTECH

  5. A procedure for the preparation of deoxynucleoside-5'-triphosphates labelled with phosphorus isotopes in the alpha position

    International Nuclear Information System (INIS)

    Havranek, M.; Vlna, J.

    1990-01-01

    The procedure concerns preparation of the title compounds labelled in the side chain -CH 2 -O-P * (O)(OH)-O-P(O)(OH)-O-P(O)(OH) 2 . In the first stage, deoxynucleoside with the side chain -CH 2 OH is condensed at 70 to 120 degC with [ 32 P] or [ 33 P]phosphoric acid in a molar ratio of 100:1 to 400:1 using cyanamide or cyanoguanidine as the condensing agent in the presence of optimal humidity, attained by azeotropic distillation. In the second stage, the deoxynucleoside monophosphate is enzymatically converted to the final product, which is purified by column chromatography on PEI cellulose using NH 4 HCO 3 as the eluting agent. (P.A.)

  6. Development of 77Ge/77As parent-daughter system for periodic removal of 77As for environmental sanitation and biochemical purposes

    International Nuclear Information System (INIS)

    Olah, Zita; Doczi, Rita; Szuecs, Zoltan; Varga, Zoltan

    2015-01-01

    A simple method was developed for the separation of radioactive 77 As from neutron irradiated natural GeO 2 samples for environmental and biochemical studies. The method is based on the volatility of GeCl 4 . The GeCl 4 was co-evaporated from the reaction mixture with an azeotropic mixture of HCl and water, and immediately condensed into a separate finger part of the special glass apparatus which was cooled by liquid nitrogen. By inverting the room temperature and the deep frozen parts of the glass equipment after three half-lives of the 77 Ge the separation process can be repetitive, getting a special type of 77 Ge/ 77 As parent-daughter system. The radionuclidic purity of the remaining As fraction was found to be 99.95%. Its yield, however, drastically decreased in the second and subsequent separations.

  7. Separation of the components of the binary mixture ethanol-water by steam flux in solid phase column; Separacao dos componentes da mistura binaria etanol-agua por passagem do vapor em coluna de fase solida

    Energy Technology Data Exchange (ETDEWEB)

    Terrones, M G.H.; Brune, W; Souza Barcellos, E de; Almeida, P G.V. de [Vicosa Univ., MG (Brazil). Dept. de Quimica; Fabris, J D [EMBRAPA, Sete Lagoas, MG (Brazil)

    1988-12-31

    This paper deals with the energy required to separate ethanol from an aqueous solution in a distillation column containing a solid phase. The solid phases evaluated consisted of either an amylatious (ground corn) or a cellulose (sugar cane bagasse) absorber whit particle sizes smaller than 4 mm. The water-retention capacity of each solid phase was measured by passing vapors or ethanol-water mixtures through the solid phase. When starting with initial concentrations bellow the azeotropic point, ethanol concentrations up to 99,5% (on corn) and 97,2% (on sugar cane) were achieved. The water content was evaluated potentiometrically (Karl`Fischer). Regarding the 2-4 mm ground corn solid phase column, the energy consumed was estimated to be reduced by 15,6% and 60% (by weight) ethanol-water mixture respectively. (author) 11 refs., 2 figs., 2 tabs

  8. Benzene and cyclohexane separation using 1-butyl-3-methylimidazolium thiocyanate

    Science.gov (United States)

    Gonfa, Girma; Ismail, Marhaina; Bustam, Mohamad Azmi

    2017-09-01

    Cyclohexane is mainly produced by catalytic hydrogenation of benzene. Removal of unreacted benzene from the product stream is very important in this process. However, due to their close boiling points and azeotrope formation, it is very difficult to separate cyclohexane and benzene by conventional distillation. Currently, special separation processes such as processes extractive distillation is commercially used for this separation. However, this extractive distillation suffers from process complexity and higher energy consumption due to their low extractive selectivity of molecular entrainers used. The aim of the present work is to investigate the applicability of ionic liquids as entrainer in extractive distillation of benzene and cyclohexane mixture. In this study, we investigated 1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN]) ionic liquid for separation of benzene and cyclohexane by measuring the Vapor Liquid Equilibrium data of the two components in the presence of the ionic liquid. As green and potential environmentally friendly solvents, ionic liquids have attracted increasing attention as alternative conventional entrainers in extractive distillation. Isothermal Vapor Liquid Equilibrium for the benzene + cyclohexane + [BMIM][SCN] ternary system was obtained at 353.15 K using a Head Space Gas Chromatography. The addition of [BMIM][SCN] breaks the benzene-cyclohexane azeotrope and increased the relative volatility cyclohexane to benzene in the mixture. The effect of [BMIM][SCN] on the relative volatility cyclohexane to benzene was studied at various benzene and cyclohexane compositions and solvent to feed ratios. The performance of [BMIM][SCN] was compared with typical conventional solvents, dimethylformamide (DMF) and dimethylsulfoxide (DMSO). The results show that the relative volatility of cyclohexane to benzene in the presence of [BMIM][SCN] is higher compared that of DMSO and DMF.

  9. A Moessbauer spectroscopic study of corrosion related reactions in the iron-hydrogen fluoride-water-oxygen system

    International Nuclear Information System (INIS)

    Crouse, P.L.

    1989-03-01

    The results of a study of a number of corrosion related reactions in the Fe-HF-H 2 O-O2 system are presented. The primary techniques used were transmission and conversion electron Moessbauer spectroscopy. Conversion electron Moessbauer spectra were recorded at very low γ-photon glancing angles and at normal incidence. Depth profiles of surface layers were obtained by recording spectra at different glancing angles. The initial product which forms when an iron surface is exposed to the vapour of azeotropic hydrofluoric acid was identified as FeF 25 ·47H 2 O. With increasing film thickness, a product, identified as non-stoichiometric Fe 2 F 5 ·7H 2 O, was shown to occur. A thermodynamic analysis of the system is presented which shows FeF 3 ·3H 2 O to be the most stable compound under the experimental conditions used, and suggests a stepwise reaction sequence in which FeF 2 ·4H 2 O forms first, followed by Fe 2 F 5 ·7H 2 O and finally FeF 3 ·3H 2 O. Results obtained in a gravimetric study reveal the rate of reaction of metallic iron with the azeotropic vapour to be controlled by the rate of diffusion of the gaseous species through the product layer. In the case of the reactions with the vapour of higher dilutions of aqueous HF, the chemical reaction between the iron substrate and the gaseous species is rate controlling. 86 refs., 61 figs., 14 tabs

  10. Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 1-(3-hydroxypropyl)pyridinium bis(trifluoromethylsulfonyl)-amide

    Energy Technology Data Exchange (ETDEWEB)

    Marciniak, Andrzej, E-mail: a.marciniak@ch.pw.edu.pl [Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland)

    2011-10-15

    Highlights: > The {gamma}{sub 13}{sup {infinity}} and KL for 46 solutes in the ionic liquid [N-C3OHPY][NTf2] were determined by GLC at different temperatures. > The partial molar excess Gibbs energies {Delta}G{sub 1}{sup E,{infinity}}, enthalpies {Delta}H{sub 1}{sup E,{infinity}} and entropies {Delta}S{sub 1}{sup E,{infinity}} at infinite dilution were calculated. > The selectivities for aliphatics/aromatics hydrocarbons separation problem were calculated and compared to other ILs, NMP and sulfolane. > The selectivities for selected compounds which form azeotropic mixtures were calculated. - Abstract: The activity coefficients at infinite dilution, {gamma}{sub 13}{sup {infinity}} and gas-liquid partition coefficients, K{sub L} for 46 solutes: alkanes, alkenes, alkynes, cycloalkanes, aromatic hydrocarbons, alcohols, thiophene, ethers, ketones, acetic acid, and water in the ionic liquid 1-(3-hydroxypropyl)pyridinium bis(trifluoromethylsulfonyl)-amide were determined by gas-liquid chromatography at the temperatures from (308.15 to 378.15) K. The partial molar excess Gibbs free energies {Delta}G{sub 1}{sup E,{infinity}}, enthalpies {Delta}H{sub 1}{sup E,{infinity}} and entropies {Delta}S{sub 1}{sup E,{infinity}} at infinite dilution were calculated from the experimental {gamma}{sub 13}{sup {infinity}} values obtained over the temperature range. The selectivities for aliphatic/aromatic hydrocarbons separation problem were calculated from the {gamma}{sub 13}{sup {infinity}} and compared to the literature values for other ionic liquids based on bis(trifluoromethylsulfonyl)-amide anion, NMP and sulfolane. It was found that the investigated ionic liquid shows much higher selectivity at infinite dilution than the general used organic solvents such as NMP, sulfolane and other ionic liquids. Additionally the selectivities for selected compounds which form azeotropic mixtures were calculated.

  11. Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 1-(3-hydroxypropyl)pyridinium bis(trifluoromethylsulfonyl)-amide

    International Nuclear Information System (INIS)

    Marciniak, Andrzej

    2011-01-01

    Highlights: → The γ 13 ∞ and KL for 46 solutes in the ionic liquid [N-C3OHPY][NTf2] were determined by GLC at different temperatures. → The partial molar excess Gibbs energies ΔG 1 E,∞ , enthalpies ΔH 1 E,∞ and entropies ΔS 1 E,∞ at infinite dilution were calculated. → The selectivities for aliphatics/aromatics hydrocarbons separation problem were calculated and compared to other ILs, NMP and sulfolane. → The selectivities for selected compounds which form azeotropic mixtures were calculated. - Abstract: The activity coefficients at infinite dilution, γ 13 ∞ and gas-liquid partition coefficients, K L for 46 solutes: alkanes, alkenes, alkynes, cycloalkanes, aromatic hydrocarbons, alcohols, thiophene, ethers, ketones, acetic acid, and water in the ionic liquid 1-(3-hydroxypropyl)pyridinium bis(trifluoromethylsulfonyl)-amide were determined by gas-liquid chromatography at the temperatures from (308.15 to 378.15) K. The partial molar excess Gibbs free energies ΔG 1 E,∞ , enthalpies ΔH 1 E,∞ and entropies ΔS 1 E,∞ at infinite dilution were calculated from the experimental γ 13 ∞ values obtained over the temperature range. The selectivities for aliphatic/aromatic hydrocarbons separation problem were calculated from the γ 13 ∞ and compared to the literature values for other ionic liquids based on bis(trifluoromethylsulfonyl)-amide anion, NMP and sulfolane. It was found that the investigated ionic liquid shows much higher selectivity at infinite dilution than the general used organic solvents such as NMP, sulfolane and other ionic liquids. Additionally the selectivities for selected compounds which form azeotropic mixtures were calculated.

  12. (Vapour + liquid) equilibria for binary and ternary mixtures of 2-propanol, tetrahydropyran, and 2,2,4-trimethylpentane at P = 101.3 kPa

    International Nuclear Information System (INIS)

    Lin, Dun-Yi; Tu, Chein-Hsiun

    2012-01-01

    Highlights: ► We report the VLE data at P = 101.3 kPa involving a cyclic ether. ► The activity coefficients of mixtures were obtained from modified Raoult’s law. ► The VLE data were correlated by four liquid activity coefficient models. ► The ternary VLE data were predicted from binary parameters of the four models. - Abstract: (Vapour + liquid) equilibrium (VLE) at P = 101.3 kPa have been determined for a ternary system (2-propanol + tetrahydropyran + 2,2,4-trimethylpentane) and its constituent binary systems (2-propanol + tetrahydropyran, 2-propanol + 2,2,4-trimethylpentane), and (tetrahydropyran + 2,2,4-trimethylpentane). Analysis of VLE data reveals that two binary systems (2-propanol + tetrahydropyran) and (2-propanol + 2,2,4-trimethylpentane) have a minimum boiling azeotrope. No azeotrope was found for the ternary system. The activity coefficients of liquid mixtures were obtained from the modified Raoult’s law and were used to calculate the reduced excess molar Gibbs free energy (g E /RT). Thermodynamic consistency tests were performed for all VLE data using the Van Ness direct test for the binary systems and the test of McDermott–Ellis as modified by Wisniak and Tamir for the ternary system. The VLE data of the binary mixtures were correlated using the three-suffix Margules, Wilson, NRTL, and UNIQUAC activity-coefficient models. The models with their best-fitted interaction parameters of the binary systems were used to predict the ternary (vapour + liquid) equilibrium.

  13. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    The term biofuel is referred to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. Biofuels include bioethanol, biomethanol, vegetable oils, biodiesel, biogas, bio-synthetic gas (bio-syngas), bio-oil, bio-char, Fischer-Tropsch liquids, and biohydrogen. Most traditional biofuels, such as ethanol from corn, wheat, or sugar beets, and biodiesel from oil seeds, are produced from classic agricultural food crops that require high-quality agricultural land for growth. Bioethanol is a petrol additive/substitute. Biomethanol can be produced from biomass using bio-syngas obtained from steam reforming process of biomass. Biomethanol is considerably easier to recover than the bioethanol from biomass. Ethanol forms an azeotrope with water so it is expensive to purify the ethanol during recovery. Methanol recycles easier because it does not form an azeotrope. Biodiesel is an environmentally friendly alternative liquid fuel that can be used in any diesel engine without modification. There has been renewed interest in the use of vegetable oils for making biodiesel due to its less polluting and renewable nature as against the conventional petroleum diesel fuel. Due to its environmental merits, the share of biofuel in the automotive fuel market will grow fast in the next decade. There are several reasons for biofuels to be considered as relevant technologies by both developing and industrialized countries. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. The biofuel economy will grow rapidly during the 21st century. Its economy development is based on agricultural production and most people live in the rural areas. In the most biomass-intensive scenario, modernized biomass energy contributes by 2050 about one half of total energy

  14. Phase equilibrium properties of binary aqueous solutions containing ethanediamine, 1,2-diaminopropane, 1,3-diaminopropane, or 1,4-diaminobutane at several temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Nouria Chiali-Baba [LATA2M, Laboratoire de Thermodynamique Appliquee et Modelisation Moleculaire, University AbouBekr Belkaid of Tlemcen, P.O. Box 119, Tlemcen 13000 (Algeria); Negadi, Latifa, E-mail: l_negadi@mail.univ-tlemcen.d [LATA2M, Laboratoire de Thermodynamique Appliquee et Modelisation Moleculaire, University AbouBekr Belkaid of Tlemcen, P.O. Box 119, Tlemcen 13000 (Algeria); Mokbel, Ilham; Jose, Jacques [LSA, Laboratoire des Sciences Analytiques, CNRS-UMR 5180, Universite Claude Bernard - Lyon I. 43, Bd du 11 Novembre 1918, Villeurbanne Cedex 69622 (France)

    2011-05-15

    Research highlights: Vapour pressures of ethanediamine (EDA), 1,2-diaminopropane, 1,3-diaminopropane (1,3-DAP), or 1,4-diaminobutane (1,4-DAB) aqueous solutions are reported between (293 and 363) K. The two first mixtures show negative azeotropic behaviour. The aqueous solutions of EDA, 1,2-DAP, or 1,3-DAP exhibit negative G{sup E} whereas the one containing 1,4-DAB shows either negative G{sup E} or sinusoidal shape for G{sup E}. - Abstract: The vapour pressures of {l_brace}ethanediamine (EDA) + water{r_brace}, {l_brace}1,2-diaminopropane (1,2-DAP) + water{r_brace}, {l_brace}1,3-diaminopropane (1,3-DAP) + water{r_brace} or {l_brace}1,4-diaminobutane (1,4-DAB) + water{r_brace} binary mixtures, and of pure EDA, 1,2-DAP, 1,3-DAP, 1,4-DAB, and water components were measured by means of two static devices at temperatures between (293 and 363) K. The data were correlated with the Antoine equation. From these data, the excess Gibbs function (G{sup E}) was calculated for several constant temperatures and fitted to a fourth-order Redlich-Kister equation using the Barker's method. The {l_brace}ethanediamine (EDA) + water{r_brace}, and {l_brace}1,2-diaminopropane (1,2-DAP) + water{r_brace} binary systems show negative azeotropic behaviour. The aqueous solutions of EDA, 1,2-DAP, or 1,3-DAP exhibit negative deviations in G{sup E} for all investigated temperatures over the whole composition range whereas the (1,4-DAB + water) binary mixture shows negative G{sup E} for temperatures (293.15 < T/K < 353.15) and a sinusoidal shape for G{sup E} at T = 363.15 K.

  15. Synthesis and plant growth modulation of tris (2-hydroxyethylammonium boron-containing compounds

    Directory of Open Access Journals (Sweden)

    I. A. Dain

    2017-01-01

    Full Text Available To develop boron deficiency treatment composite preparations for significant agricultural crops tris(2-hydroxyethylammonium complexes containing boron and lower dicarboxylic acid (C2-C4 anions were synthesized and characterized. It was shown, that formation and stabilization of complexes containing a greater number of carbon atoms or intermolecular ?- conjugation (e.g. maleic acid is related to space and electrostatical hurdles, respectively. According to NMR spectroscopy, in case of tartaric acid complex vicinal hydroxyl bounding with boron was found. The preexisted boratrane azeotropic water distillation synthetic method was modernized (videlicet optimal solvent mixture and raw materials ratio were chosen. Various triethanolamine and boric acid reaction mediums, i.e. nonpolar (toluene, polar aprotic (dimethylsulphoxide, protic (isopropanol, 2-butanol solvents and their mixtures, were tested. In the issue optimal synthetic method, utilizing isopropanol/2-butanol mixture in ratio 3 to 1, was elaborated. In comparison to standard azeotropic water-isopropanol distillation the yield of the process was exceeded to 12.08% (from 82.70% to 94.78% and low impurity concentrations in product was committed. Besides alternative laboratory solvent-free boratrane synthetic method was developed and optimal rinsing fluid composition was found. During agricultural experiments substance effectiveness in germination power and germinability of beet seeds and productivity of sugar beet was studied. Boratrane was found to be slightly effective for seed germinability stimulation. Boratrane-containing composition (i.e. boratrane + tris(2-hydroxyethylammonium o-cresoxyacetate + 1-chloromethylsilatrane was shown to have the best results in apical root length, average root-crop and average plant weigth increasing in comparison with the control.

  16. Effect of alkanolammonium formates ionic liquids on vapour liquid equilibria of binary systems containing water, methanol, and ethanol

    International Nuclear Information System (INIS)

    Li Xuemei; Shen Chong; Li Chunxi

    2012-01-01

    Highlights ► Vapour pressures for six ternary systems containing an IL were measured. ► Components studied were water, ethanol, methanol, and alkanolammonium formates. ► The isobaric VLE were predicted using the fitted binary NRTL parameters. ► The ILs studied can generate a promising salt effect on VLE of azeotrope. ► [HMEA][HCOO] might be used as a potential entrainer in extractive distillation. - Abstract: Vapour pressures were measured using a quasi-static ebulliometer for the pseudo-binary mixtures of (water + ethanol), (water + methanol), and (methanol + ethanol) containing an alkanolammonium-based ionic liquid (IL), namely, mono-ethanolammonium formate ([HMEA][HCOO]) and di-ethanolammonium formate ([HDEA][HCOO]), respectively, with fixed IL mass fraction of 0.30 and over the temperature ranges of (292.12 to 371.13) K. The vapour pressures of the IL-containing ternary systems were favourably correlated using the NRTL model with an overall average absolute relative deviation (AARD) of 0.0082. Further, the salt effects of [HMEA][HCOO] and [HDEA][HCOO] on isobaric vapour liquid equilibria (VLE) of azeotrope and close boiling mixture, especially for the mixtures of (water + ethanol) and (methanol + ethanol), were investigated and compared with other ILs in terms of the x′–y phase diagrams predicted with the binary NRTL parameters. It is demonstrated that the relative volatilities of ethanol to water and ethanol to methanol are enhanced, and [HMEA][HCOO] might be used as a promising entrainer for the efficient separation of ethanol aqueous solution by special rectification.

  17. Synthesis of phosphate monomers and bonding to dentin: esterification methods and use of phosphorus pentoxide.

    Science.gov (United States)

    Ogliari, Fabrício Aulo; da Silva, Eduardo de Oliveira; Lima, Giana da Silveira; Madruga, Francine Cardozo; Henn, Sandrina; Bueno, Márcia; Ceschi, Marco Antônio; Petzhold, Cesar Liberato; Piva, Evandro

    2008-03-01

    The aim of this study was to synthesize an acidic monomer using an alternative synthetic pathway and to evaluate the influence of the acidic monomer concentration on the microtensile bond strength to dentin. The intermediary 5-hydroxypentyl methacrylate (HPMA) was synthesized through methacrylic acid esterification with 1,5-pentanediol, catalyzed by p-toluenesulfonic acid. To displace the reaction balance, the water generated by esterification was removed by three different methods: anhydrous sodium sulfate; molecular sieves or azeotropic distillation. In the next step, a phosphorus pentoxide (4.82 mmol) slurry was formed in cold acetone and 29 mmol of HPMA was slowly added by funnel addition. After the reaction ended, solvent was evaporated and the product was characterized by 1HNMR and FTIR. The phosphate monomer was introduced in a self-etch primer at concentrations of 0, 15, 30, 50, 70 and 100 wt%. Clearfil SE Bond was used as commercial reference. Microtensile bond strength to dentin was evaluated 24h after the bonding procedures, followed by fracture analysis (n=20). Data was submitted to ANOVA and Tukey's post hoc test. The highest yield was obtained (62%) when azeotropic distillation was used, while the reaction with molecular sieves was not feasible. The phosphoric moiety attachment to the monomer was successfully performed with a quantitative yield that reached around 100%. The acidic monomer concentration significantly affected the bond strength and the highest mean (55.1+/-12.8 MPa) was obtained when 50% of acidic monomer was used. The synthesis pathways described in the present study appear to be a viable alternative for developing phosphate monomers.

  18. Procedure for the preparation of a radiodiagnostic agent for skeletal scintigraphy

    International Nuclear Information System (INIS)

    Budsky, F.; Kopecky, P.; Prokop, J.

    1997-01-01

    The procedure for the preparation of a radiodiagnostic agent based on an aminomethylphosphonic acid and 99m Tc is as follows: One mol of high-purity diethylenetriamine trihydrochloride, which is obtained by precipitating diethylenetriamine in methanol with azeotropic hydrochloric acid, and 5.3 mol of orthophosphoric acid are dissolved in 2 mol of azeotropic hydrochloric acid at 100-110 degC and reacted with a 34%-36% formaldehyde solution (5.6 mol) at the same temperature for a minimum of 60 min. The mixture is purified by repeated extraction with pentanol at 50 degC and evaporated to dryness. The residue is suspended in isopropanol and the suspension is evaporated to dryness again. The residue is boiled consecutively with dimethylformamide and with glacial acetic acid, dissolved in water, and precipitated with methanol to obtain diethylenetriamino-N,N,N',N',N''-pentakis(methylenephosphonic) acid (DTPMP). This product is filtered out, rinsed with methanol, and dried over sulfuric acid at 3 kPa for 3-5 days. The medical form is prepared by dissolving calcium carbonate in 0.1-1M aqueous DTPMP so that the two chemicals are in the molar ratio 1:1, and the solution is neutralized with sodium hydroxide so that the hydroxide-to-DTPMP molar ratio is 3:1. To the solution, freed from dissolved oxygen, a solution of tin dichloride in dilute hydrochloric acid is added so that the tin-to-DTPMP molar ratio is 1:10 to 2:10. Sodium hydroxide is added in order to exactly neutralize the hydrochloric acid, and the solution is subjected to sterile filtration and filled in vials. Each vial will contain 15-25 μmol DTPMP. The medical form is a lyophilisate of the monocalcium-trisodium salt of diethyleneamino-N,N,N',N',N''-pentakis(methylenephosphonic) salt and its complex with divalent tin. The radiodiagnostic agent is prepared by dissolving in the vial the eluate from a 99m Tc generator (0.25-5 ml) at activities of 250-2500 MBq. The Tc complex so obtained will be stable for a minimum

  19. HERRAMIENTAS PARA LA CARACTERIZACIÓN TERMODINÁMICA DE SISTEMAS TERNARIOS EN DESTILACIÓN FERRAMENTAS PARA A CARACTERIZAÇÃO TERMODINÂMICA DE SISTEMAS TERNÁRIOS EM DESTILAÇÃO THERMODYNAMIC CHARACTERIZATION TOOLS OF TERNARY SYSTEMS IN DISTILLATION

    Directory of Open Access Journals (Sweden)

    César Augusto Sánchez

    2010-07-01

    Full Text Available En este trabajo se presentan herramientas numéricas novedosas, fundamentadas en la teoría de los métodos de continuación por homotopía, para la solución de problemas del equilibrio de fases pertinentes en la caracterización termodinámica de las mezclas ternarias. El aporte principal es la estrategia para transformar los problemas del equilibrio de fases en homotopías termodinámicas que pueden resolverse con los métodos de continuación. Se ilustran algunas situaciones complejas, pero típicas en procesos de destilación azeotrópica y extractiva, acerca de la localización de los azeótropos, la clasificación de las regiones de volatilidad y la envolvente líquido-líquido-vapor.Neste trabalho se apresentam ferramentas numéricas novedosas, fundamentadas na teoria dos métodos de continuação por homotopia, para a solução de problemas do equilíbrio de fases pertinentes na caracterização termodinâmica das misturas ternárias. O aporte principal é a estratégia para transformar os problemas do equilíbrio de fases em homotopias termodinâmicas que podem resolver-se com os métodos de continuação. Ilustram-se algumas situações complexas, mas típicas em processos de destilação azeotrópica e extrativa, acerca da localização dos azeótropos, a classificação das regiões de volatilidade e a envolvente líquido-líquido-vapor.Innovative numerical tools are presented in this paper, based on the theory of homotopy continuation methods, for the solution of phase equilibrium problems, pertinent in the thermodynamic characterization of ternary mixtures. The main contribution is the strategy to transform phase equilibrium problems in thermodynamic homotopies that can be solved with the continuation methods. Some complex but typical situations are illustrated in processes of azeotropic and extractive distillation, related to the location of azeotropes, the classification of the volatility regions and the liquid

  20. Liquid-vapor equilibrium in VOCl3-Si2OCl6 and VOCl3-CCl3COCl systems

    International Nuclear Information System (INIS)

    Tret'yakova, K.V.

    1976-01-01

    Two methods were used in a study of liquid-vapor equilibrium of VOCl 3 -Si 2 OCl 6 (1) and VOCl 3 -CCl 3 COCl (2) systems. The first, ebulliometric method was used for determining the relationship saturated vapor pressure in the range from 450-500 to 1450-1500 mm Hg and the temperature which is in the range from 100-110 to 150-160 deg C. The data on saturated vapor pressure of pure substances and their mixtures were interpreted by the least squares method according to an equations of the type lgP=A-B/T. For 760 mm Hg isobar the dependence of the b.p. of system 1 on the concentration of its components considerably deviates fron the ideal state. In this case positive azeotrope is formed (b.p. 126.5 deg C) containing 83.5% mole VOCl 3 . The Van Laar euqation was used in calculating the relative volatility. At 760 mm Hg pressure in I, Si 2 OCl 6 is more volatile, the difference between the normal b.p. of VOCl 6 (127.7 deg C) and that of the azeotropic mixture (126.5 deg C) being only 1.2 deg C. The Rayleigh distillation method was used for direct determination of the volatility of this system. The average value for αsub(Si 2 OCl 6 /VOCl 3 ) was found to be 1.44. It accords well with the value of 1.47 obtained from an extrapolation of results for pure VOCl 3 on the basis of the ebulloimetric measurements. In the case of system 2 a considerable positive deviation from the ideal state was observed within the entire range of concentrations. Calculations of the activity coefficients for the components of this system, the composition of the vapor phase and the relative volatility were made with the aid of the Dugem-Margulis equation. The value for the relative volatility αsub(CCl 3 COCl/VOCl 3 ), as extrapolated for pure VOCl 3 , was 1.8. No direct measurements of α were made in this case owing to difficulties in analysis of the two components

  1. A Comparison of Soil-Water Sampling Techniques

    Science.gov (United States)

    Tindall, J. A.; Figueroa-Johnson, M.; Friedel, M. J.

    2007-12-01

    The representativeness of soil pore water extracted by suction lysimeters in ground-water monitoring studies is a problem that often confounds interpretation of measured data. Current soil water sampling techniques cannot identify the soil volume from which a pore water sample is extracted, neither macroscopic, microscopic, or preferential flowpath. This research was undertaken to compare values of extracted suction lysimeters samples from intact soil cores with samples obtained by the direct extraction methods to determine what portion of soil pore water is sampled by each method. Intact soil cores (30 centimeter (cm) diameter by 40 cm height) were extracted from two different sites - a sandy soil near Altamonte Springs, Florida and a clayey soil near Centralia in Boone County, Missouri. Isotopically labeled water (O18? - analyzed by mass spectrometry) and bromide concentrations (KBr- - measured using ion chromatography) from water samples taken by suction lysimeters was compared with samples obtained by direct extraction methods of centrifugation and azeotropic distillation. Water samples collected by direct extraction were about 0.25 ? more negative (depleted) than that collected by suction lysimeter values from a sandy soil and about 2-7 ? more negative from a well structured clayey soil. Results indicate that the majority of soil water in well-structured soil is strongly bound to soil grain surfaces and is not easily sampled by suction lysimeters. In cases where a sufficient volume of water has passed through the soil profile and displaced previous pore water, suction lysimeters will collect a representative sample of soil pore water from the sampled depth interval. It is suggested that for stable isotope studies monitoring precipitation and soil water, suction lysimeter should be installed at shallow depths (10 cm). Samples should also be coordinated with precipitation events. The data also indicate that each extraction method be use to sample a different

  2. Infinite dilution activity coefficients of volatile organic compounds in two ionic liquids composed of the tris(pentafluoroethyl)trifluorophosphate ([FAP]) anion and a functionalized cation

    International Nuclear Information System (INIS)

    Órfão, Eliana Fernandes; Dohnal, Vladimír; Blahut, Aleš

    2013-01-01

    Highlights: • Limiting activity coefficients and gas–liquid partition coefficients for 30 VOCs were determined by GLC. • Solution thermodynamic quantities were derived and analyzed. • [MO-EMPYR][FAP] and [HO-EMIM][FAP] were identified as ILs of very low and very high cohesivity, respectively. • [HO-EMIM][FAP] is an IL of extreme H-bond acidity exhibiting superior performance for petrochemical separations. • Both studied [FAP] ILs were indicated to separate some azeotropic mixtures of alcohols with aprotic oxygenates. -- Abstract: Interactions of volatile organic compounds with two ionic liquids (ILs) containing tris(pentafluoroethyl)trifluorophosphate ([FAP]) anion and a functionalized cation, 1-(2-hydroxyethyl)-3-methylimidazolium ([HO-EMIM]) and 1-(2-methoxyethyl)-1-methylpyrrolidinium ([MO-EMPYR]), were explored through systematic GLC retention measurements. Infinite dilution activity coefficients γ 1 ∞ and gas–liquid partition coefficients K L of 30 selected solutes in [HO-EMIM][FAP] and [MO-EMPYR][FAP] were determined at five temperatures in the range from (318.15 to 353.15) K. Partial molar excess enthalpies and entropies at infinite dilution were derived from the temperature dependence of the γ 1 ∞ values. The Linear Free Energy Relationship (LFER) solvation model was used to correlate the K L values. The LFER correlation parameters and excess thermodynamic functions were analyzed to identify molecular interactions operating between the ILs and the individual solutes. By comparing the behaviors of the studied ILs and of their closely similar unfunctionalized analogs, net effects imparted by cation functionalization were also disclosed. The cohesivity of the two ILs was shown to differ dramatically: while [MO-EMPYR][FAP] ranks among ILs to the least cohesive, [HO-EMIM][FAP] belongs to the most cohesive ones. Both [HO-EMIM][FAP] and [MO-EMPYR][FAP] are capable of interacting with solutes specifically through dipolarity/polarizibility and

  3. The influence of white and blue silica gels as adsorbents in adsorptive-distillation of ethanol-water mixture

    Science.gov (United States)

    Megawati, Jannah, Reni Ainun; Rahayuningtiyas, Indi

    2017-01-01

    This research studied the difference of white and blue silica gels when used as an adsorbent for ethanol purification that is processed via Adsorptive-Distillation (AD) at 1 atm pressure. The effect of process duration to purification process is also recorded and studied to evaluate the performance of designed AD equipment. The experiment was conducted using boiling flask covered with a heating mantle and the temperature was maintained at 78°C. The vapour flowed into the adsorbent column and was condensed using water as a cooling medium. The initial ethanol concentration was 90.8% v/v and volume was 300 mL. Experiment shows that designed AD equipment could be used to purify ethanol. The average vapour velocity was about 39.29 and 45.91 m/s for white and blue silica gels, respectively, which is considered very high. Therefore the saturated adsorption could not be obtained. Highest ethanol concentration achieved using white silica gel is about 96.671% v/v after 50 minutes. Thus AD with white silica gel showed good performance and passed azeotropic point. But AD with blue silica gel showed a different result, the adsorption of blue silica gel failed to break the azeotropic point. The outlet average water concentration for white and blue silica gels is 3.54 and 3.42 mole/L. Based on the weight ratio of adsorbed water per adsorbent, at 55th minutes of time; this ratio of blue silica gel is about 0.053 gwater/gads. The time required by the blue silica to achieve 0.5 wwater-adsorbed/wwater-initial is 45 minutes, and the average outlet water concentration is 3.42 mole/L. Meanwhile, the time required by a white silica to complete 0.5 wwater-adsorbed/wwater-initial is 35 minutes, and the average outlet water level is 3.54 mole/L. Based on the results, the blue silica as an adsorbent for AD of ethanol-water mixture is better than white silica gel.

  4. Chemistry of ice: Migration of ions and gases by directional freezing of water

    Directory of Open Access Journals (Sweden)

    Umer Shafique

    2016-09-01

    Full Text Available Redistribution of anions and cations creates an electrical imbalance in ice grown from electrolyte solutions. Movement of acidic and basic ions in cooling solutions can permanently change the pH of frozen and unfrozen parts of the system, largely. The extent of pH change associated with freezing is determined by solute concentration and the extent of cooling. In the present work, redistribution of hydrogen, hydroxyl, carbonate, and bicarbonate ions was studied during directional freezing in batch aqueous systems. Controlled freezing was employed vertically as well as radially in acidic and basic solutions. In each case, the ions substantially migrated along with moving freezing front. Conductometry and pH-metry were employed to monitor the moving ions. Besides, some other experiments were carried out with molecular gases, such as oxygen, carbon dioxide, and chlorine and an azeotropic mixture like water–ethanol. Findings can be used to understand possible changes that can occur in preserving materials by freezing.

  5. Application of Cascade Refrigeration System with Mixing Refrigerant in Cold Air Cutting

    Science.gov (United States)

    Yang, Y.; Tong, M. W.; Yang, G.; Wang, X. P.

    In the mechanical cutting process, the replacement of traditional cutting solution with cold air can avoid the pollution of environment. In order to high efficient the refrigerating device and flexible adjust the temperature of cold air, it is necessary to use cascade refrigeration system to supply cool quantity for the compressed air. The introduction of a two-component non-azeotropic mixing refrigerant into the cryogenic part of the cascade system, can effectively solve the problems of the system working at too high pressure and the volume expanding of refrigerant in case of the cascade refrigeration sets closed down. However, the filling ratio of mixing refrigerants impact on the relationships among the closing down pressure, refrigerating output and refrigerating efficiency. On the basis of computing and experiment, the optimal mixing ratio of refrigerant R22/R13 and a low temperature of -60° were obtained in this study. A cold air injecting device possessing high efficiency in energy saving has also been designed and manufactured. The cold air, generated from this cascade system and employed in a cutting process, takes good comprehensive effects on machining and cutting.

  6. Evaporating heat transfer of R22 and R410A in horizontal smooth and microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man-Hoe; Shin, Joeng-Seob [Korea Advanced Institute of Science and Technology, Daejeon (Korea). Department of Mechanical Engineering

    2005-09-01

    An experimental investigation of evaporating heat transfer in 9.52 mm O.D. horizontal copper tubes was conducted. The refrigerants tested were R22 and the near-azeotropic mixture, R410A. The test rig had a straight, horizontal test section with an active length of 0.92 m and was heated by the heat transfer fluid (hot water) circulated in a surrounding annulus. Constant heat flux of 11.0 kW/m{sup 2} was maintained and refrigerant quality varied from 0.2 to 0.8.. The results were reported for evaporation at 15 {sup o}C in a 0.92 m long test section for 30-60 kg/h mass flow rate. The local and average heat transfer coefficients for seven microfin tubes were presented compared to those for a smooth tube. The average evaporation heat transfer coefficients of R22 and R410A for the microfin tubes were 1.86-3.27 and 1.64-2.99 times higher than those for the smooth tube, respectively. When compared to R22 at the same test conditions, the evaporating heat transfer coefficients for R410A were 97-129% of R22. (author)

  7. Local heat transfer coefficients during boiling of R22 and R407C in horizontal smooth and microfin tubes; Coefficients d'echange locaux au cours de l'ebullition du R22 et du R407C dans des tubes horizontaux, lisse ou micro-ailete

    Energy Technology Data Exchange (ETDEWEB)

    Lallemand, M; Branescu, C; Haberschill, P [Centre de Thermique, INSA-CNRS, UMR 5008, Villeurbanne (France)

    2001-07-01

    The purpose of this study is to experimentally investigate forced convective boiling. The heat transfer coefficients of pure refrigerant R22 and non azeotropic refrigerant mixture R407C were measured in both a smooth tube and a microfin tube. The tests have been carried out with a uniform heat flux all along the tube length. The refrigerant mass flux was varied from 100 to 300 kg m{sup -2} s{sup -1} and heat fluxes from 10 to 30 kW m{sup -2}. Local heat transfer coefficient depend strongly on heat flux at a low quality and on mass fluxes at a high quality. When compared to smooth tube, the microfin tubes exhibit a significant heat transfer enhancement, up to 180%. In comparison to R22, the R407C heat transfer coefficients of smooth and microfin tubes are 15 to 35% lower, respectively. The best heat transfer enhancement is obtained at low heat flux and mass flow rate. (Author)

  8. Evaporating heat transfer characteristics of R22 and R410A in 9.52 mm O.D. smooth and microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M H; Shin, J S; Lim, B H [Sam Sung Electronics Corporation Limited (Korea, Republic of)

    1998-10-01

    An experimental investigation of evaporating heat transfer in 9.52 mm horizontal copper tubes was conducted. The refrigerant tested were R22 and near-azeotropic mixture, R410A. The test rig had a straight, horizontal test section with an active length of 0.92 m and was heated by the heat transfer fluid(hot water) circulated in a surrounding annulus. Constant heat flux of 11.0 kW/m{sup 2} was maintained and refrigerant quality varied from 0.2 to 0.8. The results were reported for evaporation at 15 deg. C in a 0.92 m long test section for 30{approx}60 kg/h mass flow rate. The local and average heat transfer coefficients for seven microfin tubes were presented compared to those for a smooth tube. The average evaporation heat transfer coefficients of R22 and R410A for the microfin tubes were 86{approx}227% and 64{approx}199%, respectively, higher than those for the smooth tube. When compared to R22 at the same test conditions, the evaporating heat transfer coefficients for R410A were 97{approx}129% of R22. (author). 23 refs., 9 figs., 4 tabs.

  9. Physical property, phase equilibrium, distillation. Measurement and prediction of vapor-liquid and liquid-liquid equilibria; Bussei / heiko / joryu. Kieki, ekieki heiko no sokutei to suisan

    Energy Technology Data Exchange (ETDEWEB)

    Tochigi, K. [Nihon Univ., Tokyo (Japan)

    1998-08-05

    The data on vapor-liquid equilibrium are basic data indispensable to the designing of a distillation process. The stage required for separation depends greatly upon the x-y curve, and the existence/nonexistence of an azeotropic point is also an important item to be checked. This paper describes the measurement of vapor-liquid equilibrium and liquid-liquid equilibrium, and then introduces reliable data on vapor-liquid equilibrium and parameters of an activity coefficient formula. For the prediction of vapor-liquid equilibrium, the ASOG, UNIFAC, and modified NIFAC, all being group contributive methods are utilized. The differences between these group contributive methods are based on the differences between the contributive items based on the differences in size of molecules influencing the activity coefficients and the expression of the group activity coefficient formula. The applicable number of groups of the ASOG is 43, while that of groups of the UNIFAC is 50. The modified UNIFAC covers 43 groups. The prediction of liquid-liquid equilibrium by using a group contributive method has little progressed since the of the results of the study of Magnussen et al. using the UNIFAC. 12 refs., 8 figs., 1 tab.

  10. Concentrated emulsion pathway to novel composite polymeric membranes and their use in pervaporation

    Energy Technology Data Exchange (ETDEWEB)

    Ruckenstein, E.; Sun, F. [State Univ. of New York, Buffalo, NY (United States). Dept. of Chemical Engineering

    1995-10-01

    Pervaporation is becoming recognized as an energy-efficient alternative to distillation and other separation methods of liquid mixtures, especially in cases in which the traditional separation techniques are not efficient, such as the separation of azeotropic mixtures, close-boiling-point components, isomeric components, and recovery or removal of trace organic substances from aqueous solutions. Novel composite polymeric membranes have been prepared, using concentrated emulsions as precursors, and employed in the pervaporation of various liquid mixtures. In order to improve the stability of the concentrated emulsion, the hydrophilicity and/or the hydrophobicity of the phases involved must be increased by replacing them with their solutions in water and/or in a hydrocarbon, respectively. Another possibility of improving the stability is to increase the viscosity of the phases, by partial polymerization of one or both phases before preparing the concentrated emulsion. The emulsion gel was subsequently transformed into a polymer composite by polymerizing both phases. The dispersed phase should be selected to yield a hydrophobic (hydrophilic) polymer which is compatible with the components selected for separation and incompatible with the other components, while the continuous phase should be selected to yield a hydrophilic (hydrophobic) polymer which is incompatible with all of the components of the mixture, and thus it can ensure the integrity of the membrane. As examples, several composite polymeric membranes were designed, prepared, and employed in the separation by pervaporation of water-ethanol,aromatics-paraffinics, and aromatics-alcohol mixtures.

  11. Epimerisation of 2-[18F]-Fluoro-2-Deoxy-D-Glucose under alkaline conditions. A convenient method for the preparation of 2-[18F]-Fluoro-2-Deoxy-D-Mannose

    International Nuclear Information System (INIS)

    Varelis, P.

    1998-01-01

    Full text: The intended goal of our study into the epimerisation of 2-[ 18 F]- fluoro-2-deoxy-D-glucose ([ 18 F]-FDG) was to obtain 2-[ 18 F]-fluoro- 2-deoxy-D-mannose ([ 18 F]-FDM) for the purpose of both development and validation of our analytical methods used to determine the diastereoisomeric excess of [ 18 F]-FDG prepared in our facility. The epimerisation of [ 18 F]-FDG is smoothly effected by heating an aqueous solution of this radiochemical with 1 M aqueous sodium hydroxide at 50-60 deg C for 30 min, which provides an ∼ 1:1 mixture of [ 18 F]-FDG and [ 18 F]-FDM. In addition to the value of this mixture in analytical method development, we also found it useful for gauging the performance of the HPLC column used in the analysis of [ 18 F]-FDG. The aqueous sample matrix can be conveniently changed by azeotropic evaporation of the water with dry acetonitrile. In summary, the base catalysed epimerisation of 2-[ 18 F]-fluoro-2- deoxy-D-glucose provides a convenient and reliable procedure for the preparation 2-[ 18 F]-fluoro-2-deoxy-D-mannose, the stable analogue of which is not commercially available

  12. Boronic, diboronic, and α-amino-boronic acids derived from 1-ethynyl-3, 4-dimethoxybenzene

    International Nuclear Information System (INIS)

    Nakagawa, Toshio; Mishima, Yutaka

    1985-01-01

    This work was undertaken with the intention of synthesizing (α-amino-β-(3, 4-dihydroxyphenyl) ethylboronic acid. Unfortunately, the goal could not be attained since the isolation of the target compound could not be achieved though some information suggested its existence in the final product. The methods of synthesis used in the second half of the attempted preparation are described here (compounds in the first half have been published elsewhere). In this procedure, (β-(3, 4-dimethoxyphenyl)) ethenylboronic acid is esterified and azeotropic distillation is conducted to provide diethyl (β-(3, 4-dimethoxyphenyl)) ethenylboronate. This compound is dissolved in diglyme and diborane gas is introduced. The hydroboration product is then subjected to amination with hydroxylamine-0-sulfonic acid. (β-(3, 4-dimethoxyphenyl)) ethyl-α, α-diboronic acid is obtained from the residue of acetone extraction. The acetone extract is concentrated to a solid caramel, from which (α-borono-β-(3, 4-dimethoxyphenyl)) ethylammonium tetraphenylborate is formed. Conversion from the tetraphenylborate salt to (α-amino-β-(3, 4-dimethoxyphenyl)) ethylboronic acid hydrochloride is attempted by the double decomposition RH BPh 4 + CsCl -- RH Cl + CsBPh 4 . The product is subjected to demethylation and treated with sodium tetraphenylborate to precipitate (α-borono-β-(3, 4-dihydroxyphenyl)) ethylammonium tetraphenylborate. Conversion of this to the target compound is tried by double decomposition. (Nogami, K.)

  13. Development of ethylene direct oxidation process acetic acid new manufacturing method; Echiren jikisanho sakusan shinseizoho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Ken' ichi; Nishino, Hiroshi; Iizuka, Yukio; Suzuki, Toshiro; Sasaki, Koji [Showa Denko Corp., Tokyo (Japan)

    1999-03-05

    Though existing acetic acid manufacturing which made the ethylene to be the starting material was two steps oxidation method of the via acetaldehyde, this study persons developed the new manufacturing method by the ethylenic direct oxyacid. In system of reaction, the following were realized by the development of palladium/heteropolyacid system composite catalyst: High activity and selectivity. In the purification system, the process of becoming, when the water consequentially forms azeotrope for the separation between acetic acid and extracting agent that extracting agent of alkyl acetate was done, that it was used and extracted, was developed. In the equipment material aspect, it is sufficient as a 316 stainless steel unlike other acetic acid manufacturing method. As an equipment scale, it has made to be the optium size for 5-200 thousand t/year, and that the location that it is more small-scale than methanol, carbonylation method and approaches the consumption ground is possible are features. The industrial plant for 100 thousand t/year based on this study carries out business operation in Oita since November, 1997. (translated by NEDO)

  14. Re-emission of HTO into the atmosphere after HT/HTO conversion in the soil

    International Nuclear Information System (INIS)

    Foerstel, H.; Lepa, K.; Trierweiler, H.

    1988-01-01

    After HT is converted to HTO by the soil, the HTO is reemitted back into the atmosphere. Since HTO is more radiotoxic by a factor of 10/sup 4/, this reemission is an important part of the radioecological pathway of HT. Laboratory studies show that the reemission rate from natural soil cores depends on the turnover in the gas space above the soil surface. Up to a wind velocity of about 4 m s/sup -1/, the portion of HTO reemitted hourly increases to about 18% of the initial amount of the reaction product. However, after the first hour, the observed reemission rate decreases quickly to about 3% h/sup -1/. Varying the humidity of an air stream fed into the reaction chamber had no influence on the reemission rate. For the Canadian release study, small soil samples were exposed to the plume and afterwards to the air. Then, at certain intervals following the release, the soil containers were sealed with gastight lids. The remnant HTO activity was then determined by azeotropic distillation. The reemission rate was about 3% h/sup -1/ during the day. During the night, no HTO loss was observed, possibly due to dew formation

  15. Alloy 33: A new material for the handling of HNO3/HF media in reprocessing of nuclear fuel

    International Nuclear Information System (INIS)

    Koehler, M.; Heubner, U.; Eichenhofer, K.W.; Renner, M.

    1997-01-01

    Alloy 33, an austenitic 33Cr-32Fe-31Ni-1.6Mo-0.6Cu-0.4N material shows excellent resistance to corrosion when exposed to highly oxidizing media as e.g. HNO 3 and HNO 3 /HF mixtures which are encountered in reprocessing of nuclear fuel. According to the test results available so far, resistance to corrosion in boiling azeotropic (67%) HNO 3 is about 6 and 2 times superior to AISI 304 L and 310 L. In higher concentrated nitric acid it can be considered corrosion resistant up to 95% HNO 3 at 25 C, up to 90% HNO 3 at 50 C and up to somewhat less than 85% HNO 3 at 75 C. In 20% HNO 3 /7% HF at 50 C its resistance to corrosion is superior to AISI 316 Ti and Alloy 28 by factors of about 200 and 2.4. Other media tested with different results include 12% HNO 3 with up to 3.5% HF and 0.4% HF with 32 to 67.5% HNO 3 at 90 C. Alloy 33 is easily fabricated into all product forms required for chemical plants (e.g. plate, sheet, strip, wire, tube and flanges). Components such as dished ends and tube to tube sheet weldments have been successfully fabricated facilitating the use of Alloy 33 for reprocessing of nuclear fuel

  16. Corrosion resistance of tantalum base alloys

    International Nuclear Information System (INIS)

    Gypen, L.A.; Brabers, M.; Deruyttre, A.

    1984-01-01

    The corrosion behaviour of substitutional Ta-Mo, Ta-W, Ta-Nb, Ta-Hf, Ta-Zr, Ta-Re, Ta-Ni, Ta-V, Ta-W-Mo, Ta-W-Nb, Ta-W-Hf and Ta-W-Re alloys has been investigated in various corrosive media, i.e. (1) concentrated sulfuric acid at 250 0 C and 200 0 C, (2) boiling hydrochloric acid of azeotropic composition, (3) concentrated hydrochloric acid at 150 0 C under pressure, (4) HF-Containing solutions and (5) 0.5% H 2 SO 4 at room temperature (anodisation). In highly corrosive media such as concentrated H 2 SO 4 at 250 0 C and concentrated HCl at 150 0 C tantalum is hydrogen embrittled, probably by stress induced precipitation of β-hydride. Both corrosion rate and hydrogen embrittlement in concentrated H 2 SO 4 at 250 0 C are strongly influenced by alloying elements. Small alloying additions of either Mo or Re decrease the corrosion rate and the hydrogen embrittlement, while Hf has the opposite effect. Hydrogen embrittlement in concentrated H 2 SO 4 at 250 0 C is completely eliminated by alloying Ta with 1 to 3 at % Mo (0.5 to 1.5 wt % Mo). These results can be explained in terms of oxygen deficiency of the Ta 2 O 5 film and the electronic structure of these alloys. (orig.) [de

  17. Corrosion of stainless steels and nickel-base alloys in solutions of nitric acid and hydrofluoric acid

    International Nuclear Information System (INIS)

    Horn, E.M.; Renner, M.

    1992-01-01

    Reactions involving nitric acid may always result in the contamination of this acid with fluorides. In highly concentrted nitric acid, the presence of small amounts of HF will substantially reduce the corrosion of metallic materials. Mixtures consisting of hydrofluoric acid and hypo-azeotropic nitric acid on the other hand will strongly attack: the metal loss will markedly increase with increasing HNO 3 and HF concentrations as well as with rising temperatures. The investigation covered 12 stainless steel grades and nickel-base alloys. With constant HNO 3 content, corrosion rates will rise linearly when increasing the HF concentration. With constant HF concentration (0,25 M), corrosion rates will increase rapidly with increasing nitric acid concentration (from 0.3 M to 14.8 M). This can best be described by superimposing a linear function and a hyperbolic function that is reflecting the change in the HNO 3 content. Alloys containing as much chromium as possible (up to 46 wt.%) will exhibit the best corrosion resistance. Alloy NiCr30FeMo (Hastelloy alloy G-30) proved to be well suitable in this investigation. (orig.) [de

  18. Improvement to molten salt reactors

    International Nuclear Information System (INIS)

    Bienvenu, Claude.

    1975-01-01

    The invention proposes a molten salt nuclear reactor whose core includes a mass of at least one fissile element salt to which can be added other salts to lower the melting temperature of the mass. This mass also contains a substance with a low neutron capture section that does not give rise to a chemical reaction or to an azeotropic mixture with these salts and having an atmospheric boiling point under that of the mass in operation. Means are provided for collecting this substance in the vapour state and returning it as a liquid to the mass. The kind of substance chosen will depend on that of the molten salts (fissile element salts and, where required, salts to lower the melting temperature). In actual practice, the substance chosen will have an atmospheric pressure boiling point of between 600 and 1300 0 C and a melting point sufficiently below 600 0 C to prevent solidification and clogging in the return line of the substance from the exchanger. Among the materials which can be considered for use, mention is made of magnesium, rubidium, cesium and potassium but metal cesium is not employed in the case of many fissile salts, such as fluorides, which it would reduced to the planned working temperatures [fr

  19. VHTR-based Nuclear Hydrogen Plant Analysis for Hydrogen Production with SI, HyS, and HTSE Facilities

    International Nuclear Information System (INIS)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan

    2016-01-01

    In this paper, analyses of material and heat balances on the SI, HyS, and HTSE processes coupled to a Very High Temperature gas-cooled Reactor (VHTR) were performed. The hydrogen production efficiency including the thermal to electric energy ratio demanded from each process is found and the normalized evaluation results obtained from three processes are compared to each other. The currently technological issues to maintain the long term continuous operation of each process will be discussed at the conference site. VHTR-based nuclear hydrogen plant analysis for hydrogen production with SI, HyS, and HTSE facilities has been carried out to determine the thermal efficiency. It is evident that the thermal to electrical energy ratio demanded from each hydrogen production process is an important parameter to select the adequate process for hydrogen production. To improve the hydrogen production efficiency in the SI process coupled to the VHTR without electrical power generation, the demand of electrical energy in the SI process should be minimized by eliminating an electrodialysis step to break through the azeotrope of the HI/I_2/H_2O ternary aqueous solution

  20. Producing fuel alcohol by extractive distillation: Simulating the process with glycerol

    Directory of Open Access Journals (Sweden)

    Ana María Uyazán

    2006-01-01

    Full Text Available Downstream separation processes in biotechnology form part of the stages having most impact on a product’s final cost. The tendency throughout the world today is to replace fossil fuels with those having a renewable origin such as ethanol; this, in turn, produces a demand for the same and the need for optimising fermentation, treating vinazas and dehydration processes. The present work approaches the problem of dehydration through simulating azeotropic ethanol extractive distillation using glycerol as separation agent. Simulations were done on an Aspen Plus process simulator (Aspen Tech version 11.1. The simulated process involves two distillation columns, a dehydrator and a glycerol recuperation column. Simulation restrictions were ethanol’s molar composition in dehydrator column distillate and the process’s energy consumption. The effect of molar reflux ratio, solvent-feed ratio, solvent entry and feed stage and solvent entry temperature were evaluated on the chosen restrictions. The results showed that the ethanol-water mixture dehydration with glycerol as separation agent is efficient from the energy point of view.

  1. Prediction of heat transfer coefficients for forced convective boiling of N2-hydrocarbon mixtures at cryogenic conditions using artificial neural networks

    Science.gov (United States)

    Barroso-Maldonado, J. M.; Belman-Flores, J. M.; Ledesma, S.; Aceves, S. M.

    2018-06-01

    A key problem faced in the design of heat exchangers, especially for cryogenic applications, is the determination of convective heat transfer coefficients in two-phase flow such as condensation and boiling of non-azeotropic refrigerant mixtures. This paper proposes and evaluates three models for estimating the convective coefficient during boiling. These models are developed using computational intelligence techniques. The performance of the proposed models is evaluated using the mean relative error (mre), and compared to two existing models: the modified Granryd's correlation and the Silver-Bell-Ghaly method. The three proposed models are distinguished by their architecture. The first is based on directly measured parameters (DMP-ANN), the second is based on equivalent Reynolds and Prandtl numbers (eq-ANN), and the third on effective Reynolds and Prandtl numbers (eff-ANN). The results demonstrate that the proposed artificial neural network (ANN)-based approaches greatly outperform available methodologies. While Granryd's correlation predicts experimental data within a mean relative error mre = 44% and the S-B-G method produces mre = 42%, DMP-ANN has mre = 7.4% and eff-ANN has mre = 3.9%. Considering that eff-ANN has the lowest mean relative error (one tenth of previously available methodologies) and the broadest range of applicability, it is recommended for future calculations. Implementation is straightforward within a variety of platforms and the matrices with the ANN weights are given in the appendix for efficient programming.

  2. Phase rule calculations and the thermodynamics of reactive systems under chemical equilibrium

    Directory of Open Access Journals (Sweden)

    PLATT G. M.

    1999-01-01

    Full Text Available In this paper, we examine the resolution of some phase rule problems within the context of multiple chemical equilibrium reactions, using cubic equations of state and an activity coefficient model. Bubble and dew reactive surfaces, reactive azeotropic loci and reactive critical loci are generated and presented in graphical form. Also isobaric bubble and dew reactive enthalpy loci, which may be useful in the modeling of reactive distillation operations, are depicted. All the formalism here employed is developed within the coordinate transformation of Ung and Doherty, which is appropriate for equilibrium reactive or multireactive systems. The major contribution of this work is the determination of critical loci for reactive or multireactive equilibrium systems. Since it is known that for some class of chemical reactions the kinetics and product distribution exhibit high sensitivity to pressure near criticality, the present study may be useful as a predicting tool in these cases if the chemical equilibrium condition is not too far from the real phenomenon.

  3. Prospects and challenges for the recovery of 2-butanol produced by vacuum fermentation - a techno-economic analysis.

    Science.gov (United States)

    Pereira, Joana P C; Lopez-Gomez, Gustavo; Reyes, Noelia G; van der Wielen, Luuk A M; Straathof, Adrie J J

    2017-07-01

    The conceptual design of a bio-based process for 2-butanol production is presented for the first time. Considering a hypothetical efficient producing strain, a vacuum fermentation is proposed to alleviate product toxicity, but the main challenge is the energy-efficient product recovery from the vapor. Three downstream scenarios were examined for this purpose: 1) multi-stage vapor recompression; 2) temperature swing adsorption; and 3) vapor absorption. The processes were simulated using Aspen Plus, considering a production capacity of 101 kton/yr. Process optimization was performed targeting the minimum selling price of 2-butanol. The feasibility of the different configurations was analyzed based on the global energy requirements and capital expenditure. The use of integrated adsorption and absorption minimized the energy duty required for azeotrope purification, which represents 11% of the total operational expenditure in Scenario 1. The minimum selling price of 2-butanol as commodity chemical was estimated as 1.05 $/kg, 1.21 $/kg, and 1.03 $/kg regarding the fermentation integrated with downstream scenarios 1), 2), and 3), respectively. Significant savings in 2-butanol production could be achieved in the suggested integrated configurations if more efficient microbial strains were engineered, and more selective adsorption and absorption materials were found for product recovery. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ethanol fuels in Brazil

    International Nuclear Information System (INIS)

    Trindade, S.C.

    1993-01-01

    The largest alternative transportation fuels program in the world today is Brazil's Proalcool Program. About 6.0 million metric tons of oil equivalent (MTOE) of ethanol, derived mainly from sugar cane, were consumed as transportation fuels in 1991 (equivalent to 127,000 barrels of crude oil per day). Total primary energy consumed by the Brazilian economy in 1991 was 184.1 million MTOE, and approximately 4.3 million vehicles -- about one third of the total vehicle fleet or about 40 percent of the total car population -- run on hydrous or open-quotes neatclose quotes ethanol at the azeotropic composition (96 percent ethanol, 4 percent water, by volume). Additional transportation fuels available in the country are diesel and gasoline, the latter of which is defined by three grades. Gasoline A (regular, leaded gas)d has virtually been replaced by gasoline C, a blend of gasoline and up to 22 percent anhydrous ethanol by volume, and gasoline B (premium gasoline) has been discontinued as a result of neat ethanol market penetration

  5. Establishing a routine procedure for determination of environmental tritium concentration at ICIT

    International Nuclear Information System (INIS)

    Varlam, C.; Stefanescu, I.; Faurescu, I.; Vagner, I.; Faurescu, D.; Bogdan, D.

    2009-01-01

    Full text: The Cryogenic Pilot is an experimental project within the national nuclear energy research program, which has the aim of developing technologies for tritium and deuterium separation by cryogenic distillation. The process used in this installation is based on a combined method for liquid-phase catalytic exchange (LPCE) and cryogenic distillation. There are two ways in which the Cryogenic Pilot can interact with the environment: by atmospheric release and through the sewage system. In order to establish the base level of tritium concentration in the environment around the nuclear facilities, we investigated the sample preparation treatment for different types of samples: spinach, spring wheat, onion, hay, grass, apple, garden lettuce, soil, milk, and meat. For the azeotropic distillation of all types of samples were used two solvents, toluene and cyclohexane, and all measurements for the determination of environmental tritium concentration were carried out using liquid scintillation counting (LSC), with ultra-low liquid scintillation spectrometer Quantulus 1220 specially designed for environmental samples and low radioactivity. Sample scintillation cocktail ratio was 8:12 ml and liquid scintillation cocktail was UltimaGold LLT. The background determined for the prepared blank samples was between 0.926 CPM and 1.002 CPM and the counting efficiency between 25.37% and 26.10%. The counting time was 1000 minutes (50 minutes/20 cycles) for each sample, and the minimum detectable activity according to ISO 9698 was 8.9 TU and 9.05 TU, respectively, at a confidence factor of 3. (authors)

  6. Establishing a routine procedure for extraction of water from vegetation samples

    International Nuclear Information System (INIS)

    Varlam, Carmen; Stefanescu, Ioan; Faurescu, Ionut; Vagner, Irina; Faurescu, Denisa

    2008-01-01

    Full text: The Cryogenic Pilot is an experimental project within the nuclear energy national research program, which has the aim of developing technologies for tritium and deuterium separation by cryogenic distillation. The process, used in this installation, is based on a combined method for liquid-phase catalytic exchange (LPCE) and cryogenic distillation. There are two ways that Cryogenic Pilot can interact with the environment: by atmospheric release and by sewage. In order to establish the base line of tritium concentration in the environment around the nuclear facilities we investigated the preparation procedure for different type of samples: soil, hay, apple, grass, milk, meat and water. For azeotropic distillation of all types of samples two solvents were used, toluene and cyclohexane, and all measurements for determination of environmental tritium concentration were carry out using liquid scintillation counting (LSC), with ultra-low level liquid scintillation spectrometer Quantulus 1220 specially designed for environmental samples and low radioactivity. Sample scintillation cocktail ratio was 8:12 ml and liquid scintillation cocktail was UltimaGold LLT. The background determined for control samples prepared ranged between 0.926 Cpm and 1.002 Cpm and counting efficiency between 25.3% and 26.1%. The counting time was 1000 minutes (50 minutes/20 cycles) for each sample, and minimum detectable activity according to ISO 9698 was 8.9 TU, and 9.05 TU, respectively, with a confidence coefficient of 3. (authors)

  7. ARTI Refrigerant Database. [Quarterly progress report, 1 July 1993--30 September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1993-11-28

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R134a, R-141b, R-142b, R-143a, R-152a, R-227ea, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyol ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  8. Correlation of refrigerant mass flow rate through adiabatic capillary tubes using mixture refrigerant carbondioxide and ethane for low temperature applications

    Science.gov (United States)

    Nasruddin, Syaka, Darwin R. B.; Alhamid, M. Idrus

    2012-06-01

    Various binary mixtures of carbon dioxide and hydrocarbons, especially propane or ethane, as alternative natural refrigerants to Chlorofluorocarbons (CFCs) or Hydro fluorocarbons (HFCs) are presented in this paper. Their environmental performance is friendly, with an ozone depletion potential (ODP) of zero and Global-warming potential (GWP) smaller than 20. The capillary tube performance for the alternative refrigerant HFC HCand mixed refrigerants have been widely studied. However, studies that discuss the performance of the capillary tube to a mixture of natural refrigerants, in particular a mixture of azeotrope carbon dioxide and ethane is still undeveloped. A method of empirical correlation to determine the mass flow rate and pipe length has an important role in the design of the capillary tube for industrial refrigeration. Based on the variables that effect the rate of mass flow of refrigerant in the capillary tube, the Buckingham Pi theorem formulated eight non-dimensional parameters to be developed into an empirical equations correlation. Furthermore, non-linear regression analysis used to determine the co-efficiency and exponent of this empirical correlation based on experimental verification of the results database.

  9. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Cain, J.M. (Calm (James M.), Great Falls, VA (United States))

    1993-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents to accelerate availability of the information and will be completed or replaced in future updates.

  10. Room temperature inorganic polycondensation of oxide (Cu2O and ZnO) nanoparticles and thin films preparation by the dip-coating technique

    International Nuclear Information System (INIS)

    Salek, G.; Tenailleau, C.; Dufour, P.; Guillemet-Fritsch, S.

    2015-01-01

    Oxide thin solid films were prepared by dip-coating into colloidal dispersions of oxide nanoparticles stabilized at room temperature without the use of chelating or complex organic dispersing agents. Crystalline oxide nanoparticles were obtained by inorganic polycondensation and characterized by X-ray diffraction and field emission gun scanning electron microscopy. Water and ethanol synthesis and solution stabilization of oxide nanoparticle method was optimized to prepare two different structural and compositional materials, namely Cu 2 O and ZnO. The influence of hydrodynamic parameters over the particle shape and size is discussed. Spherical and rod shape nanoparticles were formed for Cu 2 O and ZnO, respectively. Isoelectric point values of 7.5 and 8.2 were determined for cuprous and zinc oxides, respectively, after zeta potential measurements. A shear thinning and thixotropic behavior was observed in both colloidal sols after peptization at pH ~ 6 with dilute nitric acid. Every colloidal dispersion stabilized in a low cost and environmentally friendly azeotrope solution composed of 96 vol.% of ethanol with water was used for the thin film preparation by the dip-coating technique. Optical properties of the light absorber cuprous oxide and transparent zinc oxide thin solid films were characterized by means of transmittance and reflectance measurements (300–1100 nm). - Highlights: • Room temperature inorganic polycondensation of crystalline oxides • Water and ethanol synthesis and solution stabilization of oxide nanoparticles • Low cost method for thin solid film preparation

  11. Room temperature inorganic polycondensation of oxide (Cu{sub 2}O and ZnO) nanoparticles and thin films preparation by the dip-coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Salek, G.; Tenailleau, C., E-mail: tenailleau@chimie.ups-tlse.fr; Dufour, P.; Guillemet-Fritsch, S.

    2015-08-31

    Oxide thin solid films were prepared by dip-coating into colloidal dispersions of oxide nanoparticles stabilized at room temperature without the use of chelating or complex organic dispersing agents. Crystalline oxide nanoparticles were obtained by inorganic polycondensation and characterized by X-ray diffraction and field emission gun scanning electron microscopy. Water and ethanol synthesis and solution stabilization of oxide nanoparticle method was optimized to prepare two different structural and compositional materials, namely Cu{sub 2}O and ZnO. The influence of hydrodynamic parameters over the particle shape and size is discussed. Spherical and rod shape nanoparticles were formed for Cu{sub 2}O and ZnO, respectively. Isoelectric point values of 7.5 and 8.2 were determined for cuprous and zinc oxides, respectively, after zeta potential measurements. A shear thinning and thixotropic behavior was observed in both colloidal sols after peptization at pH ~ 6 with dilute nitric acid. Every colloidal dispersion stabilized in a low cost and environmentally friendly azeotrope solution composed of 96 vol.% of ethanol with water was used for the thin film preparation by the dip-coating technique. Optical properties of the light absorber cuprous oxide and transparent zinc oxide thin solid films were characterized by means of transmittance and reflectance measurements (300–1100 nm). - Highlights: • Room temperature inorganic polycondensation of crystalline oxides • Water and ethanol synthesis and solution stabilization of oxide nanoparticles • Low cost method for thin solid film preparation.

  12. Teknologi Proses Pembuatan Molecular Sieve TiZA Untuk Pemekatan Asam Nitrat

    Directory of Open Access Journals (Sweden)

    Ali Nurdin

    2017-10-01

    Full Text Available Molecular sieve zeolit dapat memurnikan campuran larutan yang bersifat azeotrop yang tidak bisa dilakukan menggunakan metode distilasi biasa. Namun, masih memiliki kelemahan dalam half life time molecular sieve tersebut, khususnya stabilitas bahan apabila digunakan pada larutan yang bersifat korosif seperti larutan asam atau basa. Pada penelitian ini telah  dilakukan pembuatan molecular sieve zeolit A yang dimodifikasi  dengan penambahan 10% titanium. Molecular sieve titanium - zeolit A (TiZA dibuat dengan dengan metode hidrotermal pada temperatur 110 °C dan kalsinasi pada temperatur 500 °C. Karakterisasi dilakukan antara lain menggunakan X-ray Diffraction (XRD, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDX dan karakterisasi pori dengan metode physisorption menggunakan nitrogen pada temperatur 44 K. Molecular sieve TiZA yang dihasilkan stabil terhadap temperatur tinggi, dan larutan asam. Modifikasi zeolit A dengan titanium telah mampu meningkatkan stabilitas molecular sieve Ti-zeolit A dalam larutan asam nitrat selama 24 jam. Distribusi ukuran pori BJH (Barret Joyner Halenda  yang sempit menggambarkan ukuran yang homogen dengan didominasi oleh mikro porus dengan diameter rata-rata sekitar 4Å. Uji coba pemurnian asam nitrat dengan menggunakan molecular sieve secara single stage dapat meningkatkan kemurnian asam nitrat dari 70% hingga 85%.

  13. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    Science.gov (United States)

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2002-01-01

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  14. Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass

    International Nuclear Information System (INIS)

    Cardona Alzate, C.A.; Sanchez Toro, O.J.

    2006-01-01

    Fuel ethanol is considered one of the most important renewable fuels due to the economic and environmental benefits of its use. Lignocellulosic biomass is the most promising feedstock for producing bioethanol due to its global availability and to the energy gain that can be obtained when non-fermentable materials from biomass are used for cogeneration of heat and power. In this work, several process configurations for fuel ethanol production from lignocellulosic biomass were studied through process simulation using Aspen Plus. Some flowsheets considering the possibilities of reaction-reaction integration were taken into account among the studied process routes. The flowsheet variants were analyzed from the energy point of view utilizing as comparison criterion the energy consumption needed to produce 1 L of anhydrous ethanol. Simultaneous saccharification and cofermentation process with water recycling showed the best results accounting an energy consumption of 41.96 MJ/L EtOH. If pervaporation is used as dehydration method instead of azeotropic distillation, further energy savings can be obtained. In addition, energy balance was estimated using the results from the simulation and literature data. A net energy value of 17.65-18.93 MJ/L EtOH was calculated indicating the energy efficiency of the lignocellulosic ethanol

  15. Polyhydroxy glucose functionalized silica for the dehydration of bio-ethanol distillate.

    Science.gov (United States)

    Tang, Baokun; Bi, Wentao; Row, Kyung Ho

    2014-07-01

    Although most of the water in a bio-ethanol fermentation broth can be removed by distillation, a small amount of water remains in the bio-ethanol distillate as the water-ethanol azeotrope. To improve the use of ethanol as a fuel, glucose-modified silica, as an adsorbent, was prepared using a facile method and applied to the dehydration of bio-ethanol distillate. The factors affecting the adsorption capacity of the adsorbent, such as the particle size, initial concentration of water in the samples, adsorption temperature and adsorbent dose, were examined by measuring the adsorption kinetics and equilibrium. The Langmuir, Freundlich and Temkin isotherms were used to evaluate the adsorption efficiency. Of these, the Freundlich and Temkin isotherms showed a good correlation with the experimental data. The Langmuir isotherm showed some deviation from the experimental results, and indicated that adsorption in this case was not a simple monolayer adsorption. The property of the adsorbent was attributed to functionalized silica with many hydroxyl groups on its surface. An examination of the separation factors of water/ethanol revealed the modified silica to have preferential selectivity for water. Compared to activated carbon and silica, glucose-modified silica exhibited higher adsorption capacity for water under the same adsorption conditions. In addition, the glucose-modified silica adsorbent exhibited a relatively constant adsorption capacity for five adsorption/desorption cycles.

  16. Dehydration of ethanol by facile synthesized glucose-based silica.

    Science.gov (United States)

    Tang, Baokun; Bi, Wentao; Row, Kyung Ho

    2013-02-01

    Bioethanol is considered a potential liquid fuel that can be produced from biomass by fermentation and distillation. Although most of the water is removed by distillation, the purity of ethanol is limited to 95-96 % due to the formation of a low-boiling point, water-ethanol azeotrope. To improve the use of ethanol as a fuel, many methods, such as dehydration, have been proposed to avoid distillation and improve the energy efficiency of extraction. Glucose-based silica, as an adsorbent, was prepared using a simple method, and was proposed for the adsorption of water from water-ethanol mixtures. After adsorption using 0.4 g of adsorbent for 3 h, the initial water concentration of 20 % (water, v/v) was decreased to 10 % (water, v/v). For water concentrations less than 5 % (water, v/v), the adsorbent could concentrate ethanol to 99 % (ethanol, v/v). The Langmuir isotherms used to describe the adsorption of water on an adsorbent showed a correlation coefficient of 0.94. The separation factor of the adsorbent also decreased with decreasing concentration of water in solution.

  17. The element technology of clean fuel alcohol plant construction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D S; Lee, D S [Sam-Sung Engineering Technical Institute (Korea, Republic of); Choi, C Y [Seoul National University, Seoul (Korea, Republic of); and others

    1996-02-01

    The fuel alcohol has been highlighted as a clean energy among new renewable energy sources. However, the production of the fuel alcohol has following problems; (i)bulk distillate remains is generated and (ii) benzene to be used as a entertainer in the azeotropic distillation causes the environmental problem. Thus, we started this research on the ground of preserving the cleanness in the production of fuel alcohol, a clean energy. We examined the schemes of replacing the azotropic distillation column which causes the problems with MSDP(Molecular Sieve Dehydration Process) system using adsorption technology and of treating the bulk distillate remains to be generated as by-products. In addition, we need to develop the continuous yea station technology for the continuous operation of fuel alcohol plant as a side goal. Thus, we try to develop a continuous ethanol fermentation process by high-density cell culture from tapioca, a industrial substrate, using cohesive yeast. For this purpose, we intend to examine the problem of tapioca, a industrial substrate, where a solid is existed and develop a new process which can solve the problem. Ultimately, the object of this project is to develop each element technology for the construction of fuel alcohol plant and obtain the ability to design the whole plant. (author) 54 refs., 143 figs., 34 tabs.

  18. Combustion water purification techniques influence on OBT analysing using liquid scintillation counting method

    Energy Technology Data Exchange (ETDEWEB)

    Varlam, C.; Vagner, I.; Faurescu, I.; Faurescu, D. [National Institute for Cryogenics and Isotopic Technologies, Valcea (Romania)

    2015-03-15

    In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ({sup 14}C from organically compounds, {sup 36}Cl as chloride and free chlorine, {sup 40}K as potassium cations) and emulsion separation. So the purification of the combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}), lyophilization, chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization.

  19. Heat transfer and combustion in microgravity; Mujuryokuka deno netsukogaku

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K [Hokkaido University, Sapporo (Japan). Faculty of Engineering

    1994-09-05

    Examples of thermal engineering under gravity free state are introduced. When making semiconductor crystals, the thermal conductivity of the molten substance becomes important but in a microgravity environment where the thermal convection is suppressed, this value can be accurately measured. Although there are many unknown points regarding the thermal conductive mechanism of thermal control equipment elements under microgravity, theoretical analysis is being advanced. It is anticipated that the verification of this theory using liquid droplets will be made. The conveying of boiling heat under microgravity is suppressed because the bubbles stick to the heat source. When a non-azeotropic composition is used, Marangoni convection occurs, and the conveying is promoted. Since there is no thermal convection in microgravity combustion, diffusion dominates. In order to make the phenomenon clear, the free-fall tower can be utilized. A liquid droplet flame will become a complete, integrated, spherical flame. Vaporization coefficient and combustion velocity which are impossible to measure on the ground can be measured. In the case of metal fires occuring in space, the movement of metal dominates the combustion. In microgravity, dust coal will float in a stationary state so the process of combustion can be observed. It is believed that the diffusion flame of hydrocarbons will be thicker than the flame on the ground. 11 refs., 4 figs.

  20. Experimental measurement of vapor pressures and (vapor + liquid) equilibrium for {1,1,1,2-tetrafluoroethane (R134a) + propane (R290)} by a recirculation apparatus with view windows

    International Nuclear Information System (INIS)

    Dong Xueqiang; Gong Maoqiong; Liu Junsheng; Wu Jianfeng

    2011-01-01

    The saturated vapor pressures of 1,1,1,2-tetrafluoroethane (R134a) and propane (R290), and the (vapor + liquid) equilibrium (VLE) data at (255.000, 265.000, 275.000, and 285.000) K for the (R134a + R290) system were measured by a recirculation apparatus with view windows. The uncertainty of the temperatures, pressures, and compositions are less than ±5 mK, ±0.0005 MPa, and ±0.005, respectively. The saturated vapor pressures data were correlated by a Wagner type equation and compared with the reference data. The binary VLE data were correlated with the Peng-Robinson equation of state (PR EoS) incorporating the Huron-Vidal (HV) mixing rule utilizing the nonrandom two-liquid (NRTL) activity coefficient model. For mixtures, the maximum average absolute relative deviation of pressure is 0.15%, while the maximum average absolute deviation of vapor phase mole fraction is 0.0045. Azeotropic behavior can be found for the (R134a + R290) system at measured temperatures.

  1. The study of water + HCl + ethanol vapor-liquid equilibrium at 78 kPa

    International Nuclear Information System (INIS)

    Ojeda Toro, Juan Carlos; Dobrosz-Gómez, Izabela; Gómez García, Miguel Ángel

    2017-01-01

    Graphical abstract: Comparison between experimental and calculated saturation temperature of water + HCl + ethanol system using two rigorous electrolyte models. - Highlights: • Data for the water + HCl + ethanol VLE is reported at 78 kPa. • The VLE for the system water + HCl + ethanol was determined. • A new set of parameters for extended UNIQUAC model were correlated. • A new set of parameters for LIQUAC model were correlated. - Abstract: In this work, the isobaric vapor-liquid equilibrium (VLE) data obtained for the ternary system water + HCl + ethanol at 78 kPa, using an Ellis still, were studied. Two rigorous electrolyte models (extended UNIQUAC and LIQUAC) were fitted to the experimental data. Ethanol-H + , water-H + , ethanol-Cl − , water-Cl − , and Cl − -H + interaction parameters were determined. Likewise, Henry’s law constants for the volatile electrolyte were defined. A high goodness of fit was obtained for both electrolyte models; however, the extended UNIQUAC one showed better performance (AAD = 0.1326%). Two azeotropes observed in the system were accurately predicted (ethanol + water: x EtOH = 0.86 at 344.6 K; and HCl + water: x HCl = 0.11 at 375.5 K).

  2. Purification Simulation With Vapor Permeation and Distillation-Adsorption In Bioethanol Plant

    Directory of Open Access Journals (Sweden)

    Misri Gozan

    2017-04-01

    Full Text Available High purity of Bioethanol is required in biofuel mixing with gasoline (EXX. In bioethanol production line, the azeotropic property of ethanol-water becomes the barrier for purification process. This study examined two bioethanol separation processes by support of simulation tools, Superpro Designer 9.0 software. Ethanol purity and a low costeconomical process were the major considerations. Purification method of vapor permeation membrane technology was compared with distillation-adsorption method. Data from previous lab experiments and some literatures were used. The results showed that distillation-adsorption method is more economical compared to vapor permeation technology. Payback period of the simulation is 3.9 years and 4.3 years to distillation adsorption and vapor permeation respectively with each IRR value is 20.23% and 17.89%. Initial investment value of vapor permeation is 9.6% higher than distillation method. Significant difference observed in operating costs, since more units involved in vapor permeation require more labors to operate.

  3. Updated Heat Atlas calculation method. Layout of flooded evaporators; Aktualisierte Waermeatlas-Rechenmethode. Auslegung ueberfluteter Verdampfer

    Energy Technology Data Exchange (ETDEWEB)

    Gorenflo, Dieter; Baumhoegger, Elmar; Herres, Gerhard [Paderborn Univ. (Germany). Thermodynamik und Energietechnik; Kotthoff, Stephan [Siemens AG, Goerlitz (Germany)

    2012-07-01

    For years, the most precise forecast of the heat transfer performance of evaporators is a current topic with regard to an efficient energy utilization. An established calculation method for the new edition of the Heat Atlas was updated with regard to flooded evaporators which especially were implemented in air-conditioning and cooling systems. The contribution under consideration outlines this method and enlarges upon the innovations in detail. The impact of the heat flow density and boiling pressure on the heat transfer during pool boiling is modified by means of measurement in the case of a single, horizontal vaporizer tube. Above all, the impact of the fluid can be described easier and more exact. The authors compare the forecasting results with the experimental results regarding the ribbing of the heating surface and impact of the bundle. Furthermore, examples of close boiling and near azeotropic mixtures were admitted to the Heat Atlas. The authors also consider the positive effect of the rising bubble swarm when boiling the mixture in horizontal tube bundles.

  4. Experimental and Numerical Study of the Radiant Induction-Unit and the Induction Radiant Air-Conditioning System

    Directory of Open Access Journals (Sweden)

    Qiang Si

    2016-12-01

    Full Text Available In this paper we proposed the novel air-conditioning system which combined induction ventilation and radiant air-conditioning. The indoor terminal device is the radiant induction-unit (RIDU. The RIDU is the induction unit combined with the pore radiant panel on which the copper pipes with rigid aluminum diffusion fins are installed. The two-stage evaporator chiller with the non-azeotropic mixture refrigerant is utilized in the system to reduce the initial investment in equipment. With the performance test and the steady state heat transfer model based on the theory of radiative heat transfer, the relationship between the induction ratio of the RIDU and the characteristic of the air supply was studied. Based on this, it is verified that the RIDU has a lower dew-point temperature and better anti-condensation performance than a traditional plate-type radiant panel. The characteristics of the radiation and convection heat transfer of the RIDU were studied. The total heat exchange of the RIDU can be 16.5% greater than that of the traditional plate-type radiant terminal.

  5. An intermediate heat exchanging-depressurizing loop for nuclear hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Soo [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); No, Hee Cheon, E-mail: hcno@kaist.ac.k [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Yoon, Ho Joon; Lee, Jeong Ik [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2010-10-15

    Sulfur-iodine (SI) cycle should overcome many engineering challenges to commercialize and prove its feasibilities to compete other thermo-chemical cycles. Some critical issues such as structural material, harsh operating condition and high capital costs were considered obstacles to be actualized. Operating SI cycle at low-pressure is one of the solutions to actualize the cycle. The flash operation with over-azeotropic HI at low pressure does not require temperature and pressure as high as those in the existing methods as well as heating for separation. The operation in low pressure reduces corrosion problems and enables us to use flexible selection of structural material. We devised an intermediate heat exchanging-depressurizing loop to eliminate high operating pressure in the hydrogen side as well as a large pressure difference between the reactor side and the hydrogen side. Molten salts are adequate candidates as working fluids under the high-temperature condition with homogeneous phase during pressure changing process. Using molten salts, 2.20-4.65 MW of pumping work is required to change the pressure from 1 bar to 7 MPa. We selected BeF{sub 2}-containing salts as the possible candidates based on preliminary economic and thermal hydraulic consideration.

  6. Fast and Easy Drying Method for the Preparation of Activated [{sup 18}F]Fluoride Using Polymer Cartridge

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jai Woong [Inha University, Inchon (Korea, Republic of); Lee, Byoung Se; Chi, Dae Yoon [FutureChem Co., Ltd., Seoul (Korea, Republic of); Lee, Sang Ju [Sogang University, Seoul (Korea, Republic of); Oh, Seung Jun [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2011-01-15

    An efficient nucleophilic [{sup 18}F]fluorination has been studied to reduce byproducts and preparation time. Instead of conventional aqueous solution of K{sub 2}CO{sub 3}-K{sub 222}, several organic solution containing inert organic salts were used to release [{sup 18}F]fluoride ion and anion bases captured in the polymer cartridge, concluding that methanol solution is the best choice. Comparing to azeotropic drying process, one min was sufficient to remove methanol completely, resulting in about 10% radioactivity saving by reducing drying time. The polymer cartridge, Chromafix (PS-HCO{sub 3}) was pretreated with several anion bases to displace pre-loaded bicarbonate base. Phosphate bases showed better results than carbonate bases in terms of lower basicity. tert-Butanol solvent used as a reaction media played another critical role in nucleophilic [{sup 18}F]fluorination by suppressing eliminated side product. Consequent [{sup 18}F]fluorination under the present condition afforded fast preparation of reaction solution and high radiochemical yields (98% radio-TLC, 84% RCY) with 94% of precursor remained.

  7. The Role of Hydrogen Bonding on Laminar Burning Velocity of Hydrous and Anhydrous Ethanol Fuel with Small Addition of n-Heptane

    Directory of Open Access Journals (Sweden)

    I Made Suarta

    2016-01-01

    Full Text Available The molecular structure of mixed hydrous and anhydrous ethanol with up to 10% v n-heptane had been studied. The burning velocity was examined in a cylindrical explosion combustion chamber. The result showed that the burning velocity of hydrous ethanol is higher than anhydrous ethanol and n-heptane at stoichiometric, rich, and very rich mixtures. The burning velocity of hydrous ethanol with n-heptane drops drastically compared to the burning velocity of anhydrous ethanol with n-heptane. It is caused by two reasons. Firstly, there was a composition change of azeotropic hydrous ethanol molecules within the mixture of fuel. Secondly, at the same volume the number of ethanol molecules in hydrous ethanol was less than in anhydrous ethanol at the same composition of the n-heptane in the mixture. At the mixture of anhydrous ethanol with n-heptane, the burning velocity decreases proportionally to the addition of the n-heptane composition. The burning velocity is between the velocities of anhydrous ethanol and n-heptane. It shows that the burning velocity of anhydrous ethanol mixed with n-heptane is only influenced by the mixture composition.

  8. CONCEPTUAL DESIGN OF NON-IDEAL MIXTURE SEPARATION WITH LIGHT ENTRAINERS

    Directory of Open Access Journals (Sweden)

    W. Shen

    Full Text Available Abstract A method is proposed to study the separation of minimum-, maximum-boiling azeotropic, and low volatility mixtures with a light entrainer, to investigate feasible regions of the key operating parameters reboil ratio (S and entrainer - feed flowrate ratio (FE/F for continuous processes. The thermodynamic topological predictions are carried out for 1.0-2, 1.0-1a, and 0.0-1 Serafimov's class diagrams. It relies upon the knowledge of residue curve maps, along with the univolatility line, and it enables the prediction of possible products at the bottom of the column and limiting values of FE/F. The profiles of the stripping, extractive, and rectifying sections are calculated by equations considering S and FE/F, and they bring information about the location of singular points and possible composition profile separatrices that could impair process feasibility. Providing specified product composition and recovery, the approximate calculations are compared with rigorous simulations of extractive distillation processes. Separating non-ideal mixtures using a light entrainer provides more opportunities for the case when it is not easy to find an appropriate heavy or intermediate entrainer.

  9. Thermodynamic comparision of R744/R600a and R744/R600 used in mid-high temperature heat pump system

    Directory of Open Access Journals (Sweden)

    Fan Xiao-Wei

    2014-01-01

    Full Text Available The mid-high temperature heat pump provides hot water at a relatively high temperature using some industrial waste heat as its source. Now, the main refrigerants in this application are CFC114, HCFC123, and HCFC142b, etc., which are scheduled to be phased out due to their high ozone depletion potential and global warmth potential. Some studies have been conducted to find an eco-friendly alternative. In this paper, the natural non-azeotropic mixtures R744/R600a and R744/R600 are analyzed as alternatives. The performance of the heat pump system using new mixture is discussed and compared with those with CFC114, HCFC123, and HCFC142b. Under the given operating conditions, the maximum heating COP should occur at the mass fractions of 18/82 for R744/R600a and 10/90 for R744/R600. Both of their COP are higher than those with the refrigerants of CFC114, HCFC123, and HCFC142b. The COP and volumetric heating capacity of the system with R744/R600a are superior to those with R744/R600.

  10. Experimental measurement of vapor pressures and (vapor + liquid) equilibrium for {l_brace}1,1,1,2-tetrafluoroethane (R134a) + propane (R290){r_brace} by a recirculation apparatus with view windows

    Energy Technology Data Exchange (ETDEWEB)

    Dong Xueqiang [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Gong Maoqiong, E-mail: gongmq@mail.ipc.ac.c [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Liu Junsheng [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Wu Jianfeng, E-mail: jfwu@mail.ipc.ac.c [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China)

    2011-03-15

    The saturated vapor pressures of 1,1,1,2-tetrafluoroethane (R134a) and propane (R290), and the (vapor + liquid) equilibrium (VLE) data at (255.000, 265.000, 275.000, and 285.000) K for the (R134a + R290) system were measured by a recirculation apparatus with view windows. The uncertainty of the temperatures, pressures, and compositions are less than {+-}5 mK, {+-}0.0005 MPa, and {+-}0.005, respectively. The saturated vapor pressures data were correlated by a Wagner type equation and compared with the reference data. The binary VLE data were correlated with the Peng-Robinson equation of state (PR EoS) incorporating the Huron-Vidal (HV) mixing rule utilizing the nonrandom two-liquid (NRTL) activity coefficient model. For mixtures, the maximum average absolute relative deviation of pressure is 0.15%, while the maximum average absolute deviation of vapor phase mole fraction is 0.0045. Azeotropic behavior can be found for the (R134a + R290) system at measured temperatures.

  11. Syntheses of 7-Substituted α-Cyperone Derivatives for Selective Sigma-1 Receptor over Cannabinoid-1 Receptor Binding Affinities

    Energy Technology Data Exchange (ETDEWEB)

    Park, Juyoung; Shin, Younggyun; Yoon, Sunghwa [Ajou Univ., Suwon (Korea, Republic of); Kim, Keewon; Kwon, Youngbae [ChonBuk National Univ., Jeonju (Korea, Republic of)

    2013-11-15

    We have successfully synthesized seven α-cyperone derivatives and found that the presence of a hydrogen bond donor/acceptor groups at the C7 position of α-cyperone significantly affects specificity and potency of CB{sub 1} receptor binding affinity over sigma-1 receptor binding affinity. In particular, the presence of the amino moiety at the C7 position of α-cyperone is beneficial for binding to sigmia-1 receptor. The molecular mechanism of compound 8 involved in the high binding affinity to sigma-1 receptor is under investigation. We first synthesized α-cyperone 1 by following the previously reported synthetic routes.15-19 In brief, azeotropic imination of (+)-dihydrocarvone and (R)-(+)-1-phenylethylamine followed by alkylation with a slight excess of ethyl vinyl ketone (EVK) in THF at 40 .deg. C produced the Micheal adduct. The resulting adduct was hydrolyzed and then treated with sodium methoxide at room temperature to give an easily separable mixture of α-cyperone 1 and its side product. Flash chromatography resulted in pure α-cyperone 1 in a 30% yield from (+)-dihydrocarvone.

  12. Fractionation of benzene/n-hexane mixtures by pervaporation using polyurethane membranes

    Directory of Open Access Journals (Sweden)

    CUNHA V. S.

    1999-01-01

    Full Text Available In the present work polyurethane membranes obtained from different polyester/MDI-based polymers were used to separate benzene/n-hexane mixtures by pervaporation. In pervaporation experiments, with a 50% wt feed at room temperature, permeate fluxes in the range of 0.3 to 3.2 Kg/m2h (10 mm membrane thickness and selectivity in the range of 3.8 to 5.6 were obtained. The permeate was always enriched in benzene. Taking into account the compromise between flux and selectivity, the best performance membrane was selected for complementary sorption and pervaporation experiments. Results show that selectivity increases and the permeation flux decreases when the benzene concentration in the feed decreases. In the present application, results also show that sorption is the main factor for selectivity. Using the distillation azeotropic mixture as feed, almost no influence of temperature on selectivity was observed in the range of 25oC to 56oC. The permeate flux increases seven-fold, while selectivity remains constant near 8.0.

  13. Dynamics and Control of Distillation Columns - A Critical Survey

    Directory of Open Access Journals (Sweden)

    Sigurd Skogestad

    1997-07-01

    Full Text Available Distillation column dynamics and control have been viewed by many as a very mature or even dead field. However, as is discussed in this paper significant new results have appeared over the last 5-10 years. These results include multiple steady states and instability in simple columns with ideal thermodynamics (which was believed to be impossible, the understanding of the difference between various control configurations and the systematic transformation between these, the feasibility of using the distillate-bottom structure, for control (which was believed to be impossible, the importance of flow dynamics for control studies, the fundamental problems in identifying models from open-loops responses, the use of simple regression estimators to estimate composition from temperatures, and an improved general understanding of the dynamic behavior of distillation columns which includes a better understanding of the fundamental difference between internal and external flow, simple formulas for estimating the dominant time constant, and a derivation of the linearizing effect of logarithmic transformations. These issues apply to all columns, even for ideal mixtures and simple columns with only two products. In addition, there have been significant advances for cases with complex thermodynamics and complex column configurations. These include the behavior and control of azeotropic distillation columns, and the possible complex dynamics of nonideal mixtures and of interlinked columns. However, both for the simple and more complex cases there are still a number of areas where further research is needed.

  14. Development of the closed-loop Joule-Thomson cryoablation device for long area cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheon Kyu; Park, Inn Yong; Yoo, Dong Gyu; Jeong, Sang Kwon [Cryogenic Engineering Laboratory, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park Sang Woo [Konkuk University Hospital, School of Medicine, Konkuk University, Seoul (Korea, Republic of)

    2013-09-15

    Cryoablation device is a surgical instrument to produce the cooling effect to destroy detrimental biological tissue by utilizing low temperature around 110 K. Usually, this device has the concentrated cooling region, so that it is suitable for concentrated and thick target. Accordingly, it is hard to apply this device for the target which is distributed and thin target. In this study, the design procedure of a closed-loop cryoablation device with multiple J-T expansion part is developed for the treatment of incompetent of great saphenous vein. The developed cyoablation device is designed with the analysis of 1-dimensional (1-D) bio-heat equation. The energy balance is considered to determine the minimum mass flow rate of refrigerant for consecutive flow boiling to develop the uniform cooling temperature. Azeotropic mixed refrigerant R410A and zeotropic mixed refrigerant (MR) of R22 (CHClF{sub 2}) and R23 (CHF{sub 3}) are utilized as operating fluids of the developed cryoablation device to form the sufficient temperature and to verify the quality of the inside of cryoablation probe. The experimental results of R410A and the zeotropic MR show the temperature non-uniformity over the range are 244.8K±2.7K and 239.8K±4.7K respectively. The experimental results demonstrate that the probe experiences the consecutive flow boiling over the target range of 200 mm.

  15. Test Report #33: Compressor Calorimeter Test of R-410A Alternative: R-32/R-134a Mixture Using a Scroll Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Som [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sharma, Vishaldeep [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-02-18

    This report investigates the tested performance of lower - GWP candidate refrigerant, 94.07 wt% R - 32 + 5.93 wt % R - 134 a mixture (hereafter referred to as R - 32/134a), as an alternative to baseline refrigerant R - 410 A using a 36,000 Btu/hr compressor calorimeter located at the Heat Exchanger Advanced Testing Facility at Oak Ridge National Laboratory . These tests were conducted during May and August 2013. R - 410A is a near - azeotropic blend of R - 32 and R - 125 with 0.5/0.5 mass fraction and has a GWP 100 of 2100. R - 32 and R - 134a are pure refrigerants and have GWP 100 of 716 and 1370 1, respectively. Based on the GWP 100 values of pure refrigerants and their mass fraction in the blend, GWP 100 of R - 32/134a, which is under development by National Refrigerant, is 755. This report compares various performance parameters, such as cooling capacity, compressor power, refrigerant mass flow rate, EER, isentropic efficiency and discharge temperature of the alternative refrigerant to that of R - 410 A.

  16. Fluorocarbon adsorption in hierarchical porous frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Motkuri, RK; Annapureddy, HVR; Vijaykumar, M; Schaef, HT; Martin, PF; McGrail, BP; Dang, LX; Krishna, R; Thallapally, PK

    2014-07-09

    Metal-organic frameworks comprise an important class of solid-state materials and have potential for many emerging applications such as energy storage, separation, catalysis and bio-medical. Here we report the adsorption behaviour of a series of fluorocarbon derivatives on a set of microporous and hierarchical mesoporous frameworks. The microporous frameworks show a saturation uptake capacity for dichlorodifluoromethane of >4 mmol g(-1) at a very low relative saturation pressure (P/P-o) of 0.02. In contrast, the mesoporous framework shows an exceptionally high uptake capacity reaching >14 mmol g(-1) at P/P-o of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption is found to generally correlate with the polarizability and boiling point of the refrigerant, with dichlorodifluoromethane >chlorodifluoromethane >chlorotrifluoromethane >tetrafluoromethane >methane. These results suggest the possibility of exploiting these sorbents for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling.

  17. Ocean Thermal Energy Conversion Using Double-Stage Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Yasuyuki Ikegami

    2018-03-01

    Full Text Available Ocean Thermal Energy Conversion (OTEC using non-azeotropic mixtures such as ammonia/water as working fluid and the multistage cycle has been investigated in order to improve the thermal efficiency of the cycle because of small ocean temperature differences. The performance and effectiveness of the multistage cycle are barely understood. In addition, previous evaluation methods of heat exchange process cannot clearly indicate the influence of the thermophysical characteristics of the working fluid on the power output. Consequently, this study investigated the influence of reduction of the irreversible losses in the heat exchange process on the system performance in double-stage Rankine cycle using pure working fluid. Single Rankine, double-stage Rankine and Kalina cycles were analyzed to ascertain the system characteristics. The simple evaluation method of the temperature difference between the working fluid and the seawater is applied to this analysis. From the results of the parametric performance analysis it can be considered that double-stage Rankine cycle using pure working fluid can reduce the irreversible losses in the heat exchange process as with the Kalina cycle using an ammonia/water mixture. Considering the maximum power efficiency obtained in the study, double-stage Rankine and Kalina cycles can improve the power output by reducing the irreversible losses in the cycle.

  18. Process for dehydration of oregano using propane gas as fuel

    Directory of Open Access Journals (Sweden)

    Carlos O. Velásquez-Santos

    2014-08-01

    Full Text Available The article describes two important issues, the first is the process to design, implement and validate a mechanical dryer of oregano, using propane gas as fuel, and the second is the cost of the process of dehydrated, taking into account the cost of electric energy consumption by the fan and the cost of propane gas consumption by the heat exchanger. To achieve this, it was necessary review the state of the art and the study of the raw material (oregano, were established as premises of design the necessary technical specifications and the variables involved in the process, using conceptual methods and simulation to ensure that it complies with the ISO standard 7925:1999, which defines the requirements for the marketing of dried oregano and processed. Emphasis was made on the percentage of moisture that is 10%, the moisture of the product was found by the azeotropic distillation method, subsequently was validated the functionality and efficiency, comparing the results from an experimental design, then it was obtained the drying curve of oregano with the prototype of drying and it was checked if it meets ISO 7925:1999 standard and the NTC 4423 standard in order to obtain a final product dehydrated with the percentage of humidity appropriate.

  19. Effect of mono-, di- and tri-ethanolammonium tetrafluoroborate protonic ionic liquids on vapour liquid equilibria of ethanol aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Shen Chong [State Key Laboratory of Chemical Resource Engineering and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Ma Xiaoyan [College of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Lu Yingzhou [State Key Laboratory of Chemical Resource Engineering and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Li Chunxi, E-mail: Licx@mail.buct.edu.c [State Key Laboratory of Chemical Resource Engineering and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-03-15

    Vapour pressures were measured using a quasi-static ebulliometer for the binary mixture of (water + ethanol) containing one of three protonic ionic liquids (PIL), namely, mono-, di- or tri-ethanolammonium tetrafluoroborate, over the temperature range of (318.24 to 356.58) K at fixed PIL content of 0.30 in mass fraction. The vapour pressure data of the PIL-containing ternary systems were correlated using the NRTL equation with an overall root mean square deviation (RMSD) of 0.0092. The regressed NRTL parameters were used to predict the isobaric vapour liquid equilibria (VLE) for ternary systems (water + ethanol + PIL) at varying mass fraction of PIL and atmospheric pressure (101.3 kPa). It is shown that the effect of PILs on the VLE of the (water + ethanol) mixture follows the order: [HTEA][BF{sub 4}] > [HDEA][BF{sub 4}] > [HMEA][BF{sub 4}]. In addition, the relative volatilities of ethanol to water for pseudo-binary systems (water + ethanol + PIL) were calculated. The results indicate that the PILs studied can enhance the relative volatility of ethanol to water and even break the azeotropic behaviour of ethanol aqueous solution when PIL content is increased to a specified content.

  20. Separation of ethanol and water by extractive distillation with salt and solvent as entrainer: process simulation

    Directory of Open Access Journals (Sweden)

    I. D. Gil

    2008-03-01

    Full Text Available The aim of this work is to simulate and analyze an extractive distillation process for azeotropic ethanol dehydration with ethylene glycol and calcium chloride mixture as entrainer. The work was developed with Aspen Plus® simulator version 11.1. Calculation of the activity coefficients employed to describe vapor liquid equilibrium of ethanol - water - ethylene glycol - calcium chloride system was done with the NRTL-E equation and they were validated with experimental data. The dehydration process used two columns: the main extractive column and the recovery column. The solvent to feed molar ratio S/F=0.3, molar reflux ratio RR=0.35, number of theoretical stages Ns=18, feed stage Sf=12, feed solvent stage SS=3, and feed solvent temperature TS=80 ºC, were determined to obtain a distillate with at least 99.5 % mole of ethanol. A substantial reduction in the energy consumption, compared with the conventional processes, was predicted by using ethylene glycol and calcium chloride as entrainer.

  1. Ultrasonic and immersion cleaning: a comparison using aqueous and fluorocarbon solvents

    International Nuclear Information System (INIS)

    Bond, R.D.; Kearsey, A.

    1984-11-01

    Decontamination is a necessary process in reducing radiation levels in the working environment in the nuclear industry. Components from active areas which require decontamination for re-use or maintenance operations. In this report, a typical chemical cleaning process using liquid pumping, airagitation and physical movement for agitation is compared with ultrasonic cleaning, now an established cleaning process in many industries. The chosen traditional method is immersion in an agitated solution of warm SDG.3 solution; an established decontaminating reagent. The decontamination effect of this process is compared with the effect of cleaning in an ultrasonic bath containing the same reagent at the same concentration and temperature. Fluorocarbon reagents are of particular interest to the nuclear industry for they offer the ability to clean electrical components without damage, and can clean product contaminated material without the risk of criticality. Such reagents are based on 1,1,2-trichloro, 1,2,2-trifluoroethane and azeotropic mixtures. This reagent and one mixture with 6% methanol were tested under agitation and ultrasonic immersion at the same temperature. Parallel control experiments were conducted using demineralised water as the cleaning media in an agitated bath. SGG3 is a good reagent for general purpose cleaning (it can remove 99% of particulate contamination) using scrubbing, immersion or spraying techniques. There is little evidence to show that ultrasonic cleaning increases its effectiveness. For special purpose fluorocarbon solvents will give satisfactory results when used in an ultrasonic system. (author)

  2. High throughput research and evaporation rate modeling for solvent screening for ethylcellulose barrier membranes in pharmaceutical applications.

    Science.gov (United States)

    Schoener, Cody A; Curtis-Fisk, Jaime L; Rogers, True L; Tate, Michael P

    2016-10-01

    Ethylcellulose is commonly dissolved in a solvent or formed into an aqueous dispersion and sprayed onto various dosage forms to form a barrier membrane to provide controlled release in pharmaceutical formulations. Due to the variety of solvents utilized in the pharmaceutical industry and the importance solvent can play on film formation and film strength it is critical to understand how solvent can influence these parameters. To systematically study a variety of solvent blends and how these solvent blends influence ethylcellulose film formation, physical and mechanical film properties and solution properties such as clarity and viscosity. Using high throughput capabilities and evaporation rate modeling, thirty-one different solvent blends composed of ethanol, isopropanol, acetone, methanol, and/or water were formulated, analyzed for viscosity and clarity, and narrowed down to four solvent blends. Brookfield viscosity, film casting, mechanical film testing and water permeation were also completed. High throughput analysis identified isopropanol/water, ethanol, ethanol/water and methanol/acetone/water as solvent blends with unique clarity and viscosity values. Evaporation rate modeling further rank ordered these candidates from excellent to poor interaction with ethylcellulose. Isopropanol/water was identified as the most suitable solvent blend for ethylcellulose due to azeotrope formation during evaporation, which resulted in a solvent-rich phase allowing the ethylcellulose polymer chains to remain maximally extended during film formation. Consequently, the highest clarity and most ductile films were formed. Employing high throughput capabilities paired with evaporation rate modeling allowed strong predictions between solvent interaction with ethylcellulose and mechanical film properties.

  3. RANCANG BANGUN ALAT DEHYDRATOR BIOETANOL UNTUK MENGHASILKAN FUEL GRADE ETHANOL (FGE

    Directory of Open Access Journals (Sweden)

    Rochmad Winarso

    2015-11-01

    Full Text Available ABSTRAK Bioethanol merupakan salah satu bahan bakar alternatif dengan sumber bahan baru yang dapat diperbarui. Bioethanol dapat menjadi bahan bakar alternatif bila mempunyai konsentrasi lebih dari 99% yang dikenal dengan nama Fuel Grade Ethanol. Proses pembuatan Fuel Grade Ethanol menggunakan metode pemisahan lanjut diantaranya adalah dengan metode distilasi azeotrop, pervorasi membran, dan adsorbsi. Tujuan dari penelitian ini adalah melakukan pengujian mesin dehydrator bioethanol yang bekerja dengan metode absorbsi. Mesin dehydrator ini menggunakan zeolit syntetis dengan ukuran 3 A yang sebelumnya telah dikembangkan. Pengembangan ini dilakukan melalui tiga tahapan, yaitu: (1 Tahap perancangan (desain alat dehydrator biorthanol; (2 Tahap pembuatan alat dehydrator berdasarkan spesifikasi yang telah ditetapkan ; (3 Pengujian alat dehydrator yang berorientasi hasil yaitu bioetanol minimal berkadar sekitar 99%. Mesin destilator bioetanol yang telah dikembangkan mempunya spesifikasi sebagai berikut: dimensi tangki bahan baku tingginya adalah 250 mm dengan diameter 300 mm, Bagian tabung I terbuat dari pipa stainless steel dengan diameter 100 mm dan tinggi 600 mm. Tebal dari pipa tersebut adalah 2 mm. Tabung II terbuat dari stainless steel yang mempunyai diamater 100 mm dan tinggi 300 mm dengan ketebalan 2 mm. Kondensor berdiameter 100 mm dan tinggi 600 mm. Hasil penelitian ini menunjukkan bahwa mesin yang sudah dikembangkan ini mampu menghasilkan Fuel Grade Ethanol dengan kadar lebih dari 99%. Kata kunci: dehydrator, bioethanol, fuel grade ethanol, bahan bakar alternatif.

  4. Development of a Scale-up Tool for Pervaporation Processes

    Directory of Open Access Journals (Sweden)

    Holger Thiess

    2018-01-01

    Full Text Available In this study, an engineering tool for the design and optimization of pervaporation processes is developed based on physico-chemical modelling coupled with laboratory/mini-plant experiments. The model incorporates the solution-diffusion-mechanism, polarization effects (concentration and temperature, axial dispersion, pressure drop and the temperature drop in the feed channel due to vaporization of the permeating components. The permeance, being the key model parameter, was determined via dehydration experiments on a mini-plant scale for the binary mixtures ethanol/water and ethyl acetate/water. A second set of experimental data was utilized for the validation of the model for two chemical systems. The industrially relevant ternary mixture, ethanol/ethyl acetate/water, was investigated close to its azeotropic point and compared to a simulation conducted with the determined binary permeance data. Experimental and simulation data proved to agree very well for the investigated process conditions. In order to test the scalability of the developed engineering tool, large-scale data from an industrial pervaporation plant used for the dehydration of ethanol was compared to a process simulation conducted with the validated physico-chemical model. Since the membranes employed in both mini-plant and industrial scale were of the same type, the permeance data could be transferred. The comparison of the measured and simulated data proved the scalability of the derived model.

  5. Pervaporation applied for dewatering of reaction mixture during esterification

    Directory of Open Access Journals (Sweden)

    Krasiński Andrzej

    2016-03-01

    Full Text Available In this work the esterification of diethyl tartrate was studied. The research was focused on the enhancement of reversible reaction yield, which is accomplished by dewatering of the reaction mixture. The removal of water shifts the equilibrium towards the main product. Pervaporation was applied for this purpose, and results were compared to distillation. The advantages and limitations of both processes are discussed. The experimental part consists of dewatering of mixture after the reaction had reached the equilibrium, and was subsequently fed to the test rig equipped with a single zeolite membrane purchased from Pervatech B.V. Results show a significant conversion increase as a result of water removal by pervaporation. Compared to distillation no addition of organics is necessary to efficiently remove water above the azeotrope. Nevertheless, some limitations and issues which call for optimisation are pointed out. A simple numerical model is proposed to support design and sizing of the pervaporation system. Various modes of integrated system operation are also briefly discussed.

  6. Thermodynamic model for predicting equilibrium conditions of clathrate hydrates of noble gases + light hydrocarbons: Combination of Van der Waals–Platteeuw model and sPC-SAFT EoS

    International Nuclear Information System (INIS)

    Abolala, Mostafa; Varaminian, Farshad

    2015-01-01

    Highlights: • Applying sPC-SAFT for phase equilibrium calculations. • Determining Kihara potential parameters for hydrate formers. • Successful usage of the model for systems with hydrate azeotropes. - Abstract: In this communication, equilibrium conditions of clathrate hydrates containing mixtures of noble gases (Argon, Krypton and Xenon) and light hydrocarbons (C 1 –C 3 ), which form structure I and II, are modeled. The thermodynamic model is based on the solid solution theory of Van der Waals–Platteeuw combined with the simplified Perturbed-Chain Statistical Association Fluid Theory equation of state (sPC-SAFT EoS). In dispersion term of sPC-SAFT EoS, the temperature dependent binary interaction parameters (k ij ) are adjusted; taking advantage of the well described (vapor + liquid) phase equilibria. Furthermore, the Kihara potential parameters are optimized based on the P–T data of pure hydrate former. Subsequently, these obtained parameters are used to predict the binary gas hydrate dissociation conditions. The equilibrium conditions of the binary gas hydrates predicted by this model agree well with experimental data (overall AAD P ∼ 2.17)

  7. Coupling of biologically active steroids to conjugating arms through ether linkages for use in immunochemistry.

    Science.gov (United States)

    Kohl, Michel J; Lejeune, Robert G

    2002-01-01

    Conjugation of haptens through ether linkages avoids leakage problems in immunoassays, but this procedure is not easily applied to most steroids that bear low reacting hydroxyls. A new technique allowing the ether coupling of biologically active steroids with conjugating arms in mild conditions compatible with thermosensitive protecting groups is presented. In the first step, the solvent (an aromatic hydrocarbon) was dehydrated by azeotropic distillation in a soxhlet apparatus using a cartridge filled with 0.3 nm and 0.4 nm molecular sieves. In this protected medium, a thallium steroid alkoxide was completely formed by reaction of the steroid with thallium ethoxide and by the continuous elimination of ethanol. The halogenated chain was then introduced into the same medium and reacted in the absence of moisture to give the ether. 17beta-Hydroxy and 11alpha-hydroxy derivatives were involved in this reaction. The coupling was effective for all of the compounds tested after 2-36 h of reaction time and at temperatures between 80 and 140 degrees C. The conjugates were at least 95% pure, and yields ranged from 15 to 95%.

  8. Radiation initiated polymerization of trioxane and stabilization of polyoxymethylene

    International Nuclear Information System (INIS)

    Rao, M.H.; Ramanan, G.; Kunjappu, J.T.; Rao, K.N.

    1990-01-01

    Gamma ray induced polymerization of trioxane from an indigenous source (M/s. Nuchem Plastics, Faridabad) has been investigated by both in-source and post polymerization techniques. Impurity levels in the trioxane samples are determined and compared with those in an imported material. Critical evaluation of the results of its purification by different methods, viz. treatment with molecular sieves, crystallization from solvents and their variations, has been carried out prior to optimising the conditions of polymerization. A novel but simple purification procedure employing benzene as the solvent which is found to form a ternary azeotrope with trioxane and water has been developed. The effect of these purification methods on the polymerization efficiency and their dependence on the molecular weight of the polymer formed are also discussed. Experimental details of polymerizing trioxane in 10 kg scale are also described. To improve upon the thermal stabilty of the polyoxymethylene thus formed, protection of the free hydroxyl end groups (end-capping) has been achieved by an acetylation procedure using acetic anhydride in presence of catalytic amounts of sodium acetate. (author). 11 tabs., 4 figs

  9. Tritium fractionation in biological systems and in analytical procedures

    International Nuclear Information System (INIS)

    Kim, M.A.; Baumgaertner, F.

    1991-01-01

    The organically bound tritium (OBT) is evaluated in biological systems by measuring the tritium distribution ratio (R-value), i.e. tritium concentrations in organic substance to tissue water. The determination of the R-value is found to involve always isotope fractionation in applied analytical procedures and hence the evaluation of the true OBT-value in a given biological system appears more complicated than hitherto known in the literature. The present work concentrates on the tritium isotope fraction in the tissue water separation and on the resulting effects on the R-value. The analytical procedures examined are vacuum freeze drying under equilibrium and non-equilibrium conditions and azeotropic distillation. The vaporization isotope effects are determined separately in the phase transition of solid or liquid to gas in pure water systems as well as in real biological systems, e.g. maize plant. The results are systematically analysed and the influence of isotope effects on the R-value is rigorously quantified. (orig.)

  10. On the atomistic mechanisms of alkane (methane-pentane) separation by distillation: a molecular dynamics study.

    Science.gov (United States)

    Zahn, Dirk

    2007-11-01

    Insights into the liquid-vapor transformation of methane-pentane mixtures were obtained from transition path sampling molecular dynamics simulations. This case study of the boiling of non-azeotropic mixtures demonstrates an unprejudiced identification of the atomistic mechanisms of phase separation in the course of vaporization which form the basis of distillation processes. From our simulations we observe spontaneous segregation events in the liquid mixture to trigger vapor nucleation. The formation of vapor domains stabilizes and further promotes the separation process by preferential evaporation of methane molecules. While this discrimination holds for all mixtures of different composition studied, a full account of the boiling process requires a more complex picture. At low methane concentration the nucleation of the vapor domains includes both methane and pentane molecules. The pentane molecules, however, tend to form small aggregates and undergo rapid re-condensation within picoseconds to nanoseconds scales. Accordingly, two aspects of selectivity accounting for methane-pentane separation in the course of liquid-vapor transformations were made accessible to molecular dynamics simulations: spontaneous segregation in the liquid phase leading to selective vapor nucleation and growth favoring methane vaporization and selective re-condensation of pentane molecules.

  11. Experimental studies on optimal process of the iodine-sulfur cycle for nuclear hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ho Joon

    2010-02-15

    For nuclear hydrogen production, we selected Iodine-Sulfur (I-S) cycle as the most promising one by screening process among 115 thermo-chemical water splitting technologies. We developed a thermo-physical model for the hydrogen-iodide (HI) VLE and decomposition behavior in the iodine-sulfur (IS) cycle to improve the conventional I-S cycle suggested by GA. Neumann's modified NRTL model was improved by correcting an unphysical assumption for the non-randomness parameter, and using the two-step equilibrium approach for the HI decomposition modeling. However, the parameters of the model were decided through regression with the 271 sets of existing experimental data: the accuracy of the model should be improved by more experimental data over all operating ranges, especially, in the high temperature and high pressure regions. To obtain the data of those regions, an autoclave for high temperature and high pressure was designed and manufactured. Various materials and surface coating technologies were investigated for preventing corrosion from acids. However, we have currently failed to overcome the corrosion problems with highly corrosive acids at a high temperature and high pressure. We experimentally validated that azeotropic constraint between acid and H{sub 2}O undermined the total efficiency of the I-S cycle. As mentioned above, the conventional I-S cycle suffers from low thermal efficiency and highly corrosive streams. To alleviate these problems, we have proposed the optimal operating conditions for the Bunsen reaction and devised a new KAIST flowsheet that produces highly enriched HI through spontaneous L-L phase separation and simple flash processes under low pressure. A series of phase separation experiments were performed to validate the new flowsheet and extend its feasibility. When the molar ratio of I{sub 2}/H{sub 2}SO{sub 4} in the feed increased from 2 to 4, the molar ratio of HI/(HI+H{sub 2}O) in the HI{sub x} phase improved from 0.157 to 0.22, which

  12. Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Cardona Alzate, C.A. [Department of Chemical Engineering, National University of Colombia at Manizales, Cra. 27 No. 64-60, Manizales (Colombia)]. E-mail: ccardonaal@unal.edu.co; Sanchez Toro, O.J. [Department of Chemical Engineering, National University of Colombia at Manizales, Cra. 27 No. 64-60, Manizales (Colombia); Department of Engineering, University of Caldas, Calle 65 No. 26-10, Manizales (Colombia)

    2006-10-15

    Fuel ethanol is considered one of the most important renewable fuels due to the economic and environmental benefits of its use. Lignocellulosic biomass is the most promising feedstock for producing bioethanol due to its global availability and to the energy gain that can be obtained when non-fermentable materials from biomass are used for cogeneration of heat and power. In this work, several process configurations for fuel ethanol production from lignocellulosic biomass were studied through process simulation using Aspen Plus. Some flowsheets considering the possibilities of reaction-reaction integration were taken into account among the studied process routes. The flowsheet variants were analyzed from the energy point of view utilizing as comparison criterion the energy consumption needed to produce 1 L of anhydrous ethanol. Simultaneous saccharification and cofermentation process with water recycling showed the best results accounting an energy consumption of 41.96 MJ/L EtOH. If pervaporation is used as dehydration method instead of azeotropic distillation, further energy savings can be obtained. In addition, energy balance was estimated using the results from the simulation and literature data. A net energy value of 17.65-18.93 MJ/L EtOH was calculated indicating the energy efficiency of the lignocellulosic ethanol.

  13. Method of extracting iodine from liquid mixtures of iodine, water and hydrogen iodide

    Science.gov (United States)

    Mysels, Karol J.

    1979-01-01

    The components of a liquid mixture consisting essentially of HI, water and at least about 50 w/o iodine are separated in a countercurrent extraction zone by treating with phosphoric acid containing at least about 90 w/o H.sub.3 PO.sub.4. The bottom stream from the extraction zone is substantially completely molten iodine, and the overhead stream contains water, HI, H.sub.3 PO.sub.4 and a small fraction of the amount of original iodine. When the water and HI are present in near-azeotropic proportions, there is particular advantage in feeding the overhead stream to an extractive distillation zone wherein it is treated with additional concentrated phosphoric acid to create an anhydrous HI vapor stream and bottoms which contain at least about 85 w/o H.sub.3 PO.sub.4. Concentration of these bottoms provides phosphoric acid infeed for both the countercurrent extraction zone and for the extractive distillation zone.

  14. The separation of benzene and cyclohexane by the batch extractive distillation

    International Nuclear Information System (INIS)

    Zhang Weijiang; Gui Xia

    2006-01-01

    The separation of the mixture is very important in environmental protection engineering and productive department. Azeotropic liquid mixture can not be separated by conventional distillation. But extractive distillation or combination of the two can be valid for them. In this paper, an experiment to separate benzene and Cyclohexane by batch extractive distillation was carried out with N,N-dimethylformide (DMF), dimethyl sulfoxide (DMSO) and their mixture as extractive solvent in this paper. The effect of operation parameter such as solvent flow rate and Reflux ratio on the separation was studied in the same operating condition. The results showed that the separation effect was improved with the increase of solvent flow rate and the Reflux ratio. All the three extractive solvent can separate benzene and cyclohexane to some extent, But the best was N,N- dimethylformide (DMF), the next was the mixture, and the last was dimethyl sulfoxide (DMSO). In the experiment the best operation condition was with N,N-dimethylformide(DMF) as extractive solvent, the solvent flow rate being 12.33ml/min, the Reflux ratio being 6. (authors)

  15. Experimental studies on optimal process of the iodine-sulfur cycle for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Yoon, Ho Joon

    2010-02-01

    For nuclear hydrogen production, we selected Iodine-Sulfur (I-S) cycle as the most promising one by screening process among 115 thermo-chemical water splitting technologies. We developed a thermo-physical model for the hydrogen-iodide (HI) VLE and decomposition behavior in the iodine-sulfur (IS) cycle to improve the conventional I-S cycle suggested by GA. Neumann's modified NRTL model was improved by correcting an unphysical assumption for the non-randomness parameter, and using the two-step equilibrium approach for the HI decomposition modeling. However, the parameters of the model were decided through regression with the 271 sets of existing experimental data: the accuracy of the model should be improved by more experimental data over all operating ranges, especially, in the high temperature and high pressure regions. To obtain the data of those regions, an autoclave for high temperature and high pressure was designed and manufactured. Various materials and surface coating technologies were investigated for preventing corrosion from acids. However, we have currently failed to overcome the corrosion problems with highly corrosive acids at a high temperature and high pressure. We experimentally validated that azeotropic constraint between acid and H 2 O undermined the total efficiency of the I-S cycle. As mentioned above, the conventional I-S cycle suffers from low thermal efficiency and highly corrosive streams. To alleviate these problems, we have proposed the optimal operating conditions for the Bunsen reaction and devised a new KAIST flowsheet that produces highly enriched HI through spontaneous L-L phase separation and simple flash processes under low pressure. A series of phase separation experiments were performed to validate the new flowsheet and extend its feasibility. When the molar ratio of I 2 /H 2 SO 4 in the feed increased from 2 to 4, the molar ratio of HI/(HI+H 2 O) in the HI x phase improved from 0.157 to 0.22, which is high enough to generate

  16. PETIs as High-Temperature Resin-Transfer-Molding Materials

    Science.gov (United States)

    Connell, John N.; Smith, Joseph G., Jr.; Hergenrother, Paul M.

    2005-01-01

    Compositions of, and processes for fabricating, high-temperature composite materials from phenylethynyl-terminated imide (PETI) oligomers by resin-transfer molding (RTM) and resin infusion have been developed. Composites having a combination of excellent mechanical properties and long-term high-temperature stability have been readily fabricated. These materials are particularly useful for the fabrication of high-temperature structures for jet-engine components, structural components on highspeed aircraft, spacecraft, and missiles. Phenylethynyl-terminated amide acid oligomers that are precursors of PETI oligomers are easily made through the reaction of a mixture of aromatic diamines with aromatic dianhydrides at high stoichiometric offsets and 4-phenylethynylphthalic anhydride (PEPA) as an end-capper in a polar solvent such as N-methylpyrrolidinone (NMP). These oligomers are subsequently cyclodehydrated -- for example, by heating the solution in the presence of toluene to remove the water by azeotropic distillation to form low-molecular-weight imide oligomers. More precisely, what is obtained is a mixture of PETI oligomeric species, spanning a range of molecular weights, that exhibits a stable melt viscosity of less than approximately 60 poise (and generally less than 10 poise) at a temperature below 300 deg C. After curing of the oligomers at a temperature of 371 deg C, the resulting polymer can have a glass-transition temperature (Tg) as high as 375 C, the exact value depending on the compositions.

  17. Syntheses of 2-nitroimidazole derivatives conjugated with 1,4,7-triazacyclononane-N,N'-diacetic acid labeled with F-18 using an aluminum complex method for hypoxia imaging.

    Science.gov (United States)

    Hoigebazar, Lathika; Jeong, Jae Min; Lee, Ji-Youn; Shetty, Dinesh; Yang, Bo Yeun; Lee, Yun-Sang; Lee, Dong Soo; Chung, June-Key; Lee, Myung Chul

    2012-04-12

    Hypoxia imaging is important for diagnosis of ischemic diseases, and thus various (18)F-labeled radiopharmaceuticals have been developed. However, (18)F-labeling requires multistep procedures including azeotropic distillation, which is complicated and difficult to automate. Recently, (18)F-labeling method using Al-F complex in aqueous solution was devised that offered a straightforward (18)F-labeling procedure. We synthesized nitroimidazole derivatives conjugated with 1,4,7-triazacyclononane-1,4-diacetic acid (NODA) that can be labeled with (18)F using Al-F complex and examined their radiochemistries, in vitro and in vivo biological properties, and animal PET imaging characteristics. We found that the synthesized derivatives have excellent (18)F-labeling efficiencies, high stabilities, specific uptakes in cultured hypoxic tumor cells, and high tumor to nontumor ratios in xenografted mice. Furthermore, the derivatives were labeled with (18)F in a straightforward manner within 15 min at high labeling efficiencies and radiochemical purities. In conclusion, (18)F-labeled NODA-nitroimidazole conjugates were developed and proved to be promising hypoxia PET agents. © 2012 American Chemical Society

  18. Recovery of acetic acid from waste streams by extractive distillation.

    Science.gov (United States)

    Demiral, H; Yildirim, M Ercengiz

    2003-01-01

    Wastes have been considered to be a serious worldwide environmental problem in recent years. Because of increasing pollution, these wastes should be treated. However, industrial wastes can contain a number of valuable organic components. Recovery of these components is important economically. Using conventional distillation techniques, the separation of acetic acid and water is both impractical and uneconomical, because it often requires large number of trays and a high reflux ratio. In practice special techniques are used depending on the concentration of acetic acid. Between 30 and 70% (w/w) acetic acid contents, extractive distillation was suggested. Extractive distillation is a multicomponent-rectification method similar in purpose to azeotropic distillation. In extractive distillation, to a binary mixture which is difficult or impossible to separate by ordinary means, a third component termed an entrainer is added which alters the relative volatility of the original constituents, thus permitting the separation. In our department acetic acid is used as a solvent during the obtaining of cobalt(III) acetate from cobalt(II) acetate by an electrochemical method. After the operation, the remaining waste contains acetic acid. In thiswork, acetic acid which has been found in this waste was recovered by extractive distillation. Adiponitrile and sulfolane were used as high boiling solvents and the effects of solvent feed rate/solution feed rate ratio and type were investigated. According to the experimental results, it was seem that the recovery of acetic acid from waste streams is possible by extractive distillation.

  19. Laboratory sol-gel preparation of fine fraction of sintered uranium dioxide spheres

    International Nuclear Information System (INIS)

    Landspersky, H.; Tympl, M.

    1984-01-01

    The results are summed up of the laboratory investigation of preparing the fine fraction of sintered uranium dioxide particles from uranyl gel using the method of the mixed reactor and the method of the dual-liquid nozzle, processed by leaching, drying, calcination and sintering. None of the two methods provides monodispersion particles under the given conditions but better control of the throughflow of the liquid media may improve results. Leaching of the fine fraction is very quick and the leaching of most components takes no longer than 5 minutes. In view of the fact that leaching of all components does not proceed at the same rate it is recommended that leaching time be doubled, or that leaching take place in two stages. Azeotropic distillation with chlorinated hydrocarbons is a favourable procedure for obtaining quality material; it is, however, necessary to prevent dried particles from comino. into contact with the water phase condensing on the walls of the distillation vessel and running down onto the surface of the distilling mixture. Calcination at a temperature of 500 degC in a thin layer and sintering at temperatures between 1350 and 1550 degC at an adequate rate of inflow of gaseous media and adequate rate of outflow of reaction wastes results in the production of high quality material whose density exceeds 97 to 98% theoretical density. (author)

  20. Retrofit of an MTBE-unit to ETBE

    Energy Technology Data Exchange (ETDEWEB)

    Rix, A.; Peters, U. [Degussa GmbH, Marl (Germany)

    2007-07-01

    New European policies on renewable fuels have created substantial market pressure to increase the share of bio-fuels. For blending in gasoline, ETBE formed by etherification of isobutene with bio-ethanol is an interesting alternative to direct blending of bio-ethanol. Since the physical properties of methanol and ethanol - and consequently MTBE and ETBE - are quite similar, MTBE-plants can be retrofitted for ETBE-production. Experience from a retrofit-project at Marl is presented. In an integrated C4-plant, isobutene removal is one the most important tasks of the etherification unit to purify the raffinate 2 stream for butene-1 production. Compared to MTBE, reaction rate and equilibrium constant are lower and suitable means of maintaining isobutene conversion on former levels must be found. Furthermore, the extraction of excess alcohol and its recovery by distillation is more difficult. The ethanol-water azeotrope formed on top of the alcohol recovery column has to undergo a further drying process. Alternatives for ethanol drying have been evaluated and performance data for a membrane process is presented. (orig.)

  1. Preparation of ZnO Nanoparticles and Photocatalytic H2 Production Activity from Different Sacrificial Reagent Solutions

    Science.gov (United States)

    Peng, Tian-you; Lv, Hong-jin; Zeng, Peng; Zhang, Xiao-hu

    2011-08-01

    ZnO nanoparticles were synthesized via a direct precipitation method followed by a heterogeneous azeotropic distillation and calcination processes, and then characterized by X-ray power diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption-desorption measurement. The effects of Pt-loading amount, calcination temperature, and sacrificial reagents on the photocatalytic H2 evolution efficiency from the present ZnO suspension were investigated. The experimental results indicate that ZnO nanoparticles calcined at 400 °C exhibit the best photoactivity for the H2 production in comparison with the samples calcined at 300 and 500 °C, and the photocatalytic H2 production efficiency from a methanol solution is much higher than that from a triethanolamine solution. It can be ascribed to the oxidization of methanol also contributes to the H2 production during the photochemical reaction process. Moreover, the photocatalytic mechanism for the H2 production from the present ZnO suspension system containing methanol solution is also discussed in detail.

  2. Heat processing of gels into sintered uranium dioxide modelled by thermal analysis. I

    International Nuclear Information System (INIS)

    Landspersky, H.; Urbanek, V.

    1979-01-01

    Thermoanalytical methods were used for investigating the processes of air drying and calcination of gels prepared by internal gelation of uranyl nitrate, urea and urotropine solutions at 90 degC. The gels were dried in air at room temperature, at 220 degC in a controlled atmosphere or by azeotropic distillation with CCl 4 . The course of thermal decomposition of the gel depends not only on the drying method used but also on the medium in which the drying process takes place. If the drying is carried out so as to produce a macroporous structure after the elimination of most of the water, ammonia and possibly other gelation by-products and non-reacted gelating agents, the resulting gels can be further processed by calcination, reduction and sintering, thus obtaining compact undamaged spheres of sintered uranium dioxide. Dilatometric analysis generated of uranium trioxide gels showed that the transformation of UO 3 to U 3 O 8 generated another intermediate thermal decomposition product showing a change in dimensions at temperatures of about 520 degC and a change in colour. This phenomenon is analogous to the decomposition of UO 3 prepared by thermal decomposition of α-UO 3 .2H 2 O involving a change in weight producing the UOsub(3-x) compound or a phase transformation with a change in colour; the structural conversion cannot be identified by X-ray structural analysis. (author)

  3. Three-body crystallization diagrams and the cooling of white dwarfs.

    Science.gov (United States)

    Segretain, L.

    1996-06-01

    The 3-body crystallization diagrams of C/O/Ne ionic mixtures characteristic of white dwarf interiors are examined within the framework of the density-functional theory of freezing. The crystallization process is described more accurately than in former calculations where the three-component system was treated as an effective two-component mixture (Segretain et al. 1994). The distillation process due to neon-crystallization is found to occur only for the late stages of crystallization. At the beginning, the presence of neon plays only a minor role and the phase diagram resembles a pure carbon-oxygen diagram. The final phase diagram is found to exhibit an azeotropic point with a neon concentration x_Ne_=0.22, a carbon concentration x_C_=0.78 and an oxygen concentration x_O_=0, so that during the distillation process, the fluid crystallizes into a pure neon-carbon solid. The critical temperature is T_A_=0.85T_C_, where T_C_ is the pure carbon crystallization temperature. We use this accurate phase diagram to calculate the total gravitational energy released during white dwarf crystallization and the related time delay. The final result yields {DELTA}τ=~2.6Gyr, among which about 20% are due to the neon-distillation process.

  4. Determination of trace amounts of cadmium in zirconium and its alloys by graphite furnace AAS

    International Nuclear Information System (INIS)

    Takashima, Kyoichiro; Toida, Yukio

    1994-01-01

    Trace amount of cadmium in zirconium and its alloys was determined by graphite furnace atomic absorption spectrometry (GF-AAS) after ion exchange separation. A 2g chip sample was decomposed with 20ml of hydrofluoric acid (1+9) and a few drops of nitric acid. A trace amount of cadmium was separated from zirconium by strongly acidic cation-exchange resin (MCI GEL CK 08P) using 50ml of hydrochloric acid as an eluent. The solution was gently evaporated to dryness on an electric hot plate heater and under an infrared lamp. The residue was dissolved in 1ml of nitric acid (1+14) and diluted to 10ml in a volumetric glass flask with distilled water. Ten microliters of this solution was injected into a graphite furnace and then atomized at 2200degC for 4s in argon at a flow rate of 3.0l/min. Acids used in the analytical procedure were purified by azeotropic distillation and cation-exchange resin. The limit of determination (3σ BK ) for cadmium was 0.5ngCd/g and the relative standard deviation (RSD) at 1ngCd/g level was less than 20% for the GF-AAS. The accuracy of this technique was confirmed by NIST SRM 1643b (trace elements in water). (author)

  5. Acetone-Butanol-Ethanol (ABE) production in fermentation of enzymatically hydrolyzed cassava flour by Clostridium beijerinckii BA101 and solvent separation.

    Science.gov (United States)

    Lépiz-Aguilar, Leonardo; Rodríguez-Rodríguez, Carlos E; Arias, María Laura; Lutz, Giselle

    2013-08-01

    Cassava constitutes an abundant substrate in tropical regions. The production of butanol in ABE fermentation by Clostridium beijerinckii BA101 using cassava flour (CF) was scaled-up to bioreactor level (5 L). Optimized fermentation conditions were applied; that is, 40℃, 60 g/l CF, and enzymatic pretreatment of the substrate. The batch fermentation profile presented an acidogenic phase for the first 24 h and a solventogenic phase afterwards. An average of 37.01 g/l ABE was produced after 83 h, with a productivity of 0.446 g/l/h. Butanol production was 25.71 g/l with a productivity of 0.310 g/l/h, high or similar to analogous batch processes described for other substrates. Solvent separation by different combinations of fractioned and azeotropic distillation and liquid-liquid separation were assessed to evaluate energetic and economic costs in downstream processing. Results suggest that the use of cassava as a substrate in ABE fermentation could be a cost-effective way of producing butanol in tropical regions.

  6. Combustion water purification techniques influence on OBT analysing using liquid scintillation counting method

    International Nuclear Information System (INIS)

    Varlam, C.; Vagner, I.; Faurescu, I.; Faurescu, D.

    2015-01-01

    In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ( 14 C from organically compounds, 36 Cl as chloride and free chlorine, 40 K as potassium cations) and emulsion separation. So the purification of the combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na 2 O 2 and KMnO 4 ), lyophilization, chemical treatment (Na 2 O 2 and KMnO 4 ) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization

  7. An automated technique for measuring deltaD and delta18O values of porewater by direct CO2 and H2 equilibration.

    Science.gov (United States)

    Koehler, G; Wassenaar, L I; Hendry, M J

    2000-11-15

    The stable-oxygen and -hydrogen isotopic values (deltaD, delta18O) of porewater in geologic media are commonly determined on water obtained by extraction techniques such as centrifugation, mechanical squeezing, vacuum heating and cryogenic microdistillation, and azeotropic distillation. Each of these techniques may cause isotopic fractionation as part the extraction process and each is laborious. Here we demonstrate a new approach to obtain automated, high-precision deltaD and delta18O measurements of porewater in geologic sediments by direct H2- and CO2-porewater equilibration using a modified commercial CO2-water equilibrator. This technique provides an important and cost-effective improvement over current extraction methods, because many samples can be rapidly analyzed with minimal handling, thereby reducing errors and potential for isotopic fractionation. The precision and accuracy of direct H2- and CO2-porewater equilibration is comparable to or better than current porewater extraction methods. Finally, the direct equilibration technique allows investigators to obtain high-resolution (cm scale) porewater deltaD and delta18O profiles using cores from individual boreholes, eliminating the need for costly piezometers or conventional porewater extractions.

  8. Transfers of Colloidal Silica from Water into Organic Solvents of Intermediate Polarities

    Science.gov (United States)

    Kasseh; Keh

    1998-01-15

    Dispersions of discrete metal-oxide submicroparticles in organic solvents of medium polarities are uneasy to generate and weakly documented. We address this topic along two general methods focusing on silica. Successive transfers of colloidal particles from water into n-propanol and then into 1,2-dichloroethane by azeotropic distillation yield a stable organosol. The particles are found to be propanol-coated by surface esterification to the extent of 0.40 nm2 per molecule. Alternatively, centrifugation-redispersion cycles make it possible to obtain stable suspensions of unaltered silica in methanol and acetonitrile starting from an aqueous silicasol. Particles are characterized by various methods including nitrogen adsorption, transmission electron microscopy, dynamic light scattering, and electrophoresis. The stabilities of these suspensions in various organic solvents are investigated with special concern for the role of residual water. Stabilization of silica in methanol is inconspicuously related to solvent permittivity and prominently dependent on the presence of adsorbed water. In contrast, the acetonitrile silicasol, which is unaffected by residual water, displays electrophoretic behavior compatible with electrostatic stabilization. Copyright 1998 Academic Press. Copyright 1998Academic Press

  9. A non-ideal model for predicting the effect of dissolved salt on the flash point of solvent mixtures.

    Science.gov (United States)

    Liaw, Horng-Jang; Wang, Tzu-Ai

    2007-03-06

    Flash point is one of the major quantities used to characterize the fire and explosion hazard of liquids. Herein, a liquid with dissolved salt is presented in a salt-distillation process for separating close-boiling or azeotropic systems. The addition of salts to a liquid may reduce fire and explosion hazard. In this study, we have modified a previously proposed model for predicting the flash point of miscible mixtures to extend its application to solvent/salt mixtures. This modified model was verified by comparison with the experimental data for organic solvent/salt and aqueous-organic solvent/salt mixtures to confirm its efficacy in terms of prediction of the flash points of these mixtures. The experimental results confirm marked increases in liquid flash point increment with addition of inorganic salts relative to supplementation with equivalent quantities of water. Based on this evidence, it appears reasonable to suggest potential application for the model in assessment of the fire and explosion hazard for solvent/salt mixtures and, further, that addition of inorganic salts may prove useful for hazard reduction in flammable liquids.

  10. Numerical simulation of tubes-in-tube heat exchanger in a mixed refrigerant Joule-Thomson cryocooler

    Science.gov (United States)

    Damle, R. M.; Ardhapurkar, P. M.; Atrey, M. D.

    2017-02-01

    Mixed refrigerant Joule-Thomson (MRJT) cryocoolers can produce cryogenic temperatures with high efficiency and low operating pressures. As compared to the high system pressures of around 150-200 bar with nitrogen, the operational pressures with non-azeotropic mixtures (e.g., nitrogen-hydrocarbons) come down to 10-25 bar. With mixtures, the heat transfer in the recuperative heat exchanger takes place in the two-phase region. The simultaneous boiling and condensation of the cold and hot gas streams lead to higher heat transfer coefficients as compared to single phase heat exchange. The two-phase heat transfer in the recuperative heat exchanger drastically affects the performance of a MRJT cryocooler. In this work, a previously reported numerical model for a simple tube-in-tube heat exchanger is extended to a multi tubes-in-tube heat exchanger with a transient formulation. Additionally, the J-T expansion process is also considered to simulate the cooling process of the heat exchanger from ambient temperature conditions. A tubes-in-tube heat exchanger offers more heat transfer area per unit volume resulting in a compact design. Also, the division of flow in multiple tubes reduces the pressure drop in the heat exchanger. Simulations with different mixtures of nitrogen-hydrocarbons are carried out and the numerical results are compared with the experimental data.

  11. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1998-08-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufactures and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on many refrigerants including propane, ammonia, water, carbon dioxide, propylene, ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  12. Oxidative desulphurization study of gasoline and kerosene. Role of some organic and inorganic oxidants

    Energy Technology Data Exchange (ETDEWEB)

    Shakirullah, M.; Ahmad, Waqas; Ahmad, Imtiaz; Ishaq, M.

    2010-11-15

    Desulphurization of gasoline and kerosene was carried out using organic and inorganic oxidants. Among the organic oxidants used were hydrogen peroxide in combination with acetic acid, formic acid, benzoic acid and butyric acid, while inorganic oxidants used included potassium permanganate and sodium perchlorate. The oxidation of each petroleum oil was carried out in two steps; the first step consisted of oxidation of the feed at moderate temperature and atmospheric pressure while in the second step, the oxidized mixture was extracted with azeotropic mixture of acetonitrile-water. A maximum desulphurization has occurred with NaClO{sub 4} and hydrogen peroxide and acetic acid, which are 68% and 61%, respectively in case of gasoline and 66% and 63%, respectively in case of kerosene oil. The FTIR study of the whole and variously desulphurized gasoline and kerosene was also carried out. The results indicate considerable desulphurization by absence of bands that corresponds to sulphur moieties in NaClO{sub 4} and hydrogen peroxide treated samples. (author)

  13. Formation and electrical characteristics of silicon dioxide layers by use of nitric acid oxidation method

    International Nuclear Information System (INIS)

    Imal, S.; Takahashi, M.; Matsuba, K.; Asuha; Ishikawa, Y.; Kobayashi, Hikaru

    2005-01-01

    SiO 2 /Si structure can be formed at low temperatures by use of nitric acid (HNO 3 ) oxidation of Si (NAOS) method. When Si wafers are immersed in ∼ 40 wt% HNO 3 solutions at 108 deg C, ∼ 1 nm SiO 2 layers are formed. The subsequent immersion in 68 wt% HNO 3 (i.e., azeotropic mixture of HNO 3 with water) at 121 deg C increases the SiO 2 thickness. The 3,5 nm-thick SiO 2 layers produced by this two-step NAOS method possess a considerably low leakage current density (e.g. 1 x 10 2 A/cmi 2 at the forward gate bias, V G , of 1.5 V), in spite of the low temperature oxidation, and further decreased (e.g., 8 x 10 4 A/cm 2 at V G = 1.5 V) by post-metallization annealing at 250 deg C in hydrogen atmosphere. In order to increase the SiO 2 thickness, a bias voltage is applied during the NAOS method. When 10 V is applied to Si with respect to a Pt counter electrode both immersed in 1 M HNO 3 solutions at 25 deg C, SiO 2 layers with 8 nm thickness can be formed for 1 h(Authors)

  14. New diorganotin(IV) derivatives of 7-hydroxycoumarin (umbelliferone) and their adducts with 1,10-phenanthroline

    Science.gov (United States)

    Nath, Mala; Jairath, Ruchi; Eng, George; Song, Xueqing; Kumar, Ashok

    2005-10-01

    New diorganotin(IV) derivatives of the general formula R 2Sn(Umb) 2 (where R = n-Bu, n-Oct and Ph; Umb = umbelliferone anion) have been synthesized either by the reaction of R 2SnO with umbelliferone under azeotropic removel of water or by the reaction of R 2SnCl 2 with sodium salt of umbelliferone. Further, the adducts of the general formula R 2Sn(Umb) 2·phen (where R = n-Bu and n-Oct; phen = 1,10-phenanthroline) have also been synthesized by the interaction of R 2Sn(Umb) 2 with 1,10-phenanthroline. The bonding and coordination behavior in these derivatives are discussed on the basis of IR and 119Sn Mössbauer spectroscopic studies in solid state. Their coordination behavior in solution is discussed by the multinuclear ( 1H, 13C and 119Sn) NMR spectral studies. The Mössbauer and IR studies indicate that umbelliferone acts as a monoanionic bidentate ligand in R 2Sn(Umb) 2 coordinating through O(7) and O(1). A distorted octahedral geometry around tin has been proposed for R 2Sn(Umb) 2 as well as for R 2Sn(Umb) 2·phen in solid state. The newly synthesized derivatives have been tested for their anti-inflammatory and cardiovascular activities. The average LD 50 value >1000 mg kg -1 of these compounds indicates their safety margin.

  15. Nitric acid oxidation of Si (NAOS) method for low temperature fabrication of SiO{sub 2}/Si and SiO{sub 2}/SiC structures

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, H., E-mail: koba771@ybb.ne.jp [Institute of Scientific and Industrial Research, Osaka University, and CREST, Japan Science and Technology Agency, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Imamura, K.; Kim, W.-B.; Im, S.-S.; Asuha [Institute of Scientific and Industrial Research, Osaka University, and CREST, Japan Science and Technology Agency, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2010-07-15

    We have developed low temperature formation methods of SiO{sub 2}/Si and SiO{sub 2}/SiC structures by use of nitric acid, i.e., nitric acid oxidation of Si (or SiC) (NAOS) methods. By use of the azeotropic NAOS method (i.e., immersion in 68 wt% HNO{sub 3} aqueous solutions at 120 deg. C), an ultrathin (i.e., 1.3-1.4 nm) SiO{sub 2} layer with a low leakage current density can be formed on Si. The leakage current density can be further decreased by post-metallization anneal (PMA) at 200 deg. C in hydrogen atmosphere, and consequently the leakage current density at the gate bias voltage of 1 V becomes 1/4-1/20 of that of an ultrathin (i.e., 1.5 nm) thermal oxide layer usually formed at temperatures between 800 and 900 deg. C. The low leakage current density is attributable to (i) low interface state density, (ii) low SiO{sub 2} gap-state density, and (iii) high band discontinuity energy at the SiO{sub 2}/Si interface arising from the high atomic density of the NAOS SiO{sub 2} layer. For the formation of a relatively thick (i.e., {>=}10 nm) SiO{sub 2} layer, we have developed the two-step NAOS method in which the initial and subsequent oxidation is performed by immersion in {approx}40 wt% HNO{sub 3} and azeotropic HNO{sub 3} aqueous solutions, respectively. In this case, the SiO{sub 2} formation rate does not depend on the Si surface orientation. Using the two-step NAOS method, a uniform thickness SiO{sub 2} layer can be formed even on the rough surface of poly-crystalline Si thin films. The atomic density of the two-step NAOS SiO{sub 2} layer is slightly higher than that for thermal oxide. When PMA at 250 deg. C in hydrogen is performed on the two-step NAOS SiO{sub 2} layer, the current-voltage and capacitance-voltage characteristics become as good as those for thermal oxide formed at 900 deg. C. A relatively thick (i.e., {>=}10 nm) SiO{sub 2} layer can also be formed on SiC at 120 deg. C by use of the two-step NAOS method. With no treatment before the NAOS method

  16. A comparison of the toluene distillation and vacuum/heat methods for extracting soil water for stable isotopic analysis

    Science.gov (United States)

    Ingraham, Neil L.; Shadel, Craig

    1992-12-01

    Hanford Loam, from Richland, Washington, was used as a test soil to determine the precision, accuracy and nature of two methods to extract soil water for stable isotopic analysis: azeotropic distillation using toluene, and simple heating under vacuum. The soil was oven dried, rehydrated with water of known stable isotopic compositions, and the introduced water was then extracted. Compared with the introduced water, initial aliquots of evolved water taken during a toluene extraction were as much as 30 ‰ more depleted in D and 2.7 ‰ more depleted in 18O, whereas final aliquots were as much as 40 ‰ more enriched in D and 14.3 ‰ more enriched in 18O. Initial aliquots collected during the vacuum/heat extraction were as much as 64 ‰ more depleted in D and 8.4 ‰ more depleted in 18O than was the introduced water, whereas the final aliquots were as much as 139 ‰ more enriched in D, and 20.8 ‰ more enriched in 18O. Neither method appears quantitative; however, the difference in stable isotopic composition between the first and last aliquots of water extracted by the toluene method is less than that from the vacuum/heat method. This is attributed to the smaller fractionation factors involved with the higher average temperatures of distillation of the toluene. The average stable isotopic compositions of the extracted water varied from that of the introduced water by up to 1.4 ‰ in δD and 4.2 ‰ in δ18O with the toluene method, and by 11.0 ‰ in δD and 1.8 ‰ in δ18O for the vacuum/heat method. The lack of accuracy of the extraction methods is thought to be due to isotopic fractionation associated with water being weakly bound (not released below 110°C) in the soil. The isotopic effect of this heat-labile water is larger at low water contents (3.6 and 5.2% water by weight) as the water bound in the soil is a commensurately larger fraction of the total. With larger soilwater contents the small volume of water bound with an associated fractionation is

  17. [18F]FMeNER-D2: Reliable fully-automated synthesis for visualization of the norepinephrine transporter

    International Nuclear Information System (INIS)

    Rami-Mark, Christina; Zhang, Ming-Rong; Mitterhauser, Markus; Lanzenberger, Rupert; Hacker, Marcus; Wadsak, Wolfgang

    2013-01-01

    Purpose: In neurodegenerative diseases and neuropsychiatric disorders dysregulation of the norepinephrine transporter (NET) has been reported. For visualization of NET availability and occupancy in the human brain PET imaging can be used. Therefore, selective NET-PET tracers with high affinity are required. Amongst these, [ 18 F]FMeNER-D2 is showing the best results so far. Furthermore, a reliable fully automated radiosynthesis is a prerequisite for successful application of PET-tracers. The aim of this work was the automation of [ 18 F]FMeNER-D2 radiolabelling for subsequent clinical use. The presented study comprises 25 automated large-scale syntheses, which were directly applied to healthy volunteers and adult patients suffering from attention deficit hyperactivity disorder (ADHD). Procedures: Synthesis of [ 18 F]FMeNER-D2 was automated within a Nuclear Interface Module. Starting from 20–30 GBq [ 18 F]fluoride, azeotropic drying, reaction with Br 2 CD 2 , distillation of 1-bromo-2-[ 18 F]fluoromethane-D2 ([ 18 F]BFM) and reaction of the pure [ 18 F]BFM with unprotected precursor NER were optimized and completely automated. HPLC purification and SPE procedure were completed, formulation and sterile filtration were achieved on-line and full quality control was performed. Results: Purified product was obtained in a fully automated synthesis in clinical scale allowing maximum radiation safety and routine production under GMP-like manner. So far, more than 25 fully automated syntheses were successfully performed, yielding 1.0–2.5 GBq of formulated [ 18 F]FMeNER-D2 with specific activities between 430 and 1707 GBq/μmol within 95 min total preparation time. Conclusions: A first fully automated [ 18 F]FMeNER-D2 synthesis was established, allowing routine production of this NET-PET tracer under maximum radiation safety and standardization

  18. [{sup 18}F]FMeNER-D2: Reliable fully-automated synthesis for visualization of the norepinephrine transporter

    Energy Technology Data Exchange (ETDEWEB)

    Rami-Mark, Christina [Radiochemistry and Biomarker Development Unit, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna (Austria); Department of Inorganic Chemistry, University of Vienna (Austria); Zhang, Ming-Rong [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba (Japan); Mitterhauser, Markus [Radiochemistry and Biomarker Development Unit, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna (Austria); Hospital Pharmacy of the General Hospital of Vienna (Austria); Lanzenberger, Rupert [Department of Psychiatry and Psychotherapy, Medical University of Vienna (Austria); Hacker, Marcus [Radiochemistry and Biomarker Development Unit, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna (Austria); Wadsak, Wolfgang [Radiochemistry and Biomarker Development Unit, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna (Austria); Department of Inorganic Chemistry, University of Vienna (Austria)

    2013-11-15

    Purpose: In neurodegenerative diseases and neuropsychiatric disorders dysregulation of the norepinephrine transporter (NET) has been reported. For visualization of NET availability and occupancy in the human brain PET imaging can be used. Therefore, selective NET-PET tracers with high affinity are required. Amongst these, [{sup 18}F]FMeNER-D2 is showing the best results so far. Furthermore, a reliable fully automated radiosynthesis is a prerequisite for successful application of PET-tracers. The aim of this work was the automation of [{sup 18}F]FMeNER-D2 radiolabelling for subsequent clinical use. The presented study comprises 25 automated large-scale syntheses, which were directly applied to healthy volunteers and adult patients suffering from attention deficit hyperactivity disorder (ADHD). Procedures: Synthesis of [{sup 18}F]FMeNER-D2 was automated within a Nuclear Interface Module. Starting from 20–30 GBq [{sup 18}F]fluoride, azeotropic drying, reaction with Br{sub 2}CD{sub 2}, distillation of 1-bromo-2-[{sup 18}F]fluoromethane-D2 ([{sup 18}F]BFM) and reaction of the pure [{sup 18}F]BFM with unprotected precursor NER were optimized and completely automated. HPLC purification and SPE procedure were completed, formulation and sterile filtration were achieved on-line and full quality control was performed. Results: Purified product was obtained in a fully automated synthesis in clinical scale allowing maximum radiation safety and routine production under GMP-like manner. So far, more than 25 fully automated syntheses were successfully performed, yielding 1.0–2.5 GBq of formulated [{sup 18}F]FMeNER-D2 with specific activities between 430 and 1707 GBq/μmol within 95 min total preparation time. Conclusions: A first fully automated [{sup 18}F]FMeNER-D2 synthesis was established, allowing routine production of this NET-PET tracer under maximum radiation safety and standardization.

  19. Numerical analysis of an air condenser working with the refrigerant fluid R407C

    International Nuclear Information System (INIS)

    Aprea, Ciro; Maiorino, Angelo

    2007-01-01

    As CFC (clorofluorocarbon) and HCFC (hydrochlorofluorocarbon) refrigerants which have been used as refrigerants in a vapour compression refrigeration system were know to provide a principal cause to ozone depletion and global warming, production and use of these refrigerants have been restricted. Therefore, new alternative refrigerants should be searched for, which fit to the requirements in an air conditioner or a heat pump, and refrigerant mixtures which are composed of HFC (hydrofluorocarbon) refrigerants having zero ODP (ozone depletion potential) are now being suggested as drop-in or mid-term replacement. However also these refrigerants, as the CFC and HCFC refrigerants, present a greenhouse effect. The zeotropic mixture designated as R407C (R32/R125/R134a 23/25/52% in mass) represents a substitute of the HCFC22 for high evaporation temperature applications as the air-conditioning. Aim of the paper is a numerical-experimental analysis for an air condenser working with the non azeotropic mixture R407C in steady-state conditions. A homogeneous model for the condensing refrigerant is considered to forecast the performances of the condenser; this model is capable of predicting the distributions of the refrigerant temperature, the velocity, the void fraction, the tube wall temperature and the air temperature along the test condenser. Obviously in the refrigerant de-superheating phase the numerical analysis becomes very simple. A comparison with the measurements on an air condenser mounted in an air channel linked to a vapour compression plant is discussed. The results show that the simplified model provides a reasonable estimation of the steady-state response and that this model is useful to design purposes

  20. Energy, carbon dioxide and water use implications of hydrous ethanol production

    International Nuclear Information System (INIS)

    Saffy, Howard A.; Northrop, William F.; Kittelson, David B.; Boies, Adam M.

    2015-01-01

    Highlights: • We use a chemical refinery model and exergy analysis to determine the impact of hydrous ethanol. • The process is 70% efficient with 86% of the losses from fermentation, steam generation and drying. • We found that producing 86 wt% ethanol is optimal for thermal energy consumption. • Hydrous ethanol production can reduce energy costs and emissions by ∼8%. • Hydrous ethanol reduces water use by decreasing evaporation in cooling towers. - Abstract: Sub-azeotropic hydrous ethanol has been demonstrated as an effective diesel fuel replacement when used in dual-fuel compression ignition engines. Previous studies have also suggested that hydrous ethanol may be more efficient to produce from corn than anhydrous ethanol. In this study, we investigate corn ethanol production from a dry-mill, natural gas-fired corn ethanol refinery, producing ethanol with a range of ethanol concentrations from 58 wt% to 100 wt% to determine the effect on energy use, water consumption and greenhouse gas (GHG) emissions in the refining stage of the corn ethanol lifecycle. A second law (exergy) analysis of anhydrous ethanol refining revealed the overall process to be 70% efficient, whereby 86% of the exergy losses could be accounted for by three processes: fermentation (34%), steam generation (29%) and distiller’s grains and solubles drying (23%). We found that producing 86 wt% ethanol is optimal as thermal energy consumption decreases by a maximum of 10% (from 7.7 MJ/L to 6.9 MJ/L). These savings have the potential to reduce energy costs by approximately 8% ($0.34/L) and reduce refinery emissions by 8% (2 g CO 2 e/MJ). Production of hydrous ethanol reduced refinery water use due to decreased evaporative losses in the cooling towers, leading to water savings of between 3% and 6% at 86 wt% ethanol.

  1. The Effect of Reactive Ionic Liquid or Plasticizer Incorporation on the Physicochemical and Transport Properties of Cellulose Acetate Propionate-Based Membranes

    Directory of Open Access Journals (Sweden)

    Edyta Rynkowska

    2018-01-01

    Full Text Available Pervaporation is a membrane-separation technique which uses polymeric and/or ceramic membranes. In the case of pervaporation processes applied to dehydration, the membrane should transport water molecules preferentially. Reactive ionic liquid (RIL (3-(1,3-diethoxy-1,3-dioxopropan-2-yl-1-methyl-1H-imidazol-3-ium was used to prepare novel dense cellulose acetate propionate (CAP based membranes, applying the phase-inversion method. The designed polymer-ionic liquid system contained ionic liquid partially linked to the polymeric structure via the transesterification reaction. The various physicochemical, mechanical, equilibrium and transport properties of CAP-RIL membranes were determined and compared with the properties of CAP membranes modified with plasticizers, i.e., tributyl citrate (TBC and acetyl tributyl citrate (ATBC. Thermogravimetric analysis (TGA testified that CAP-RIL membranes as well as CAP membranes modified with TBC and ATBC are thermally stable up to at least 120 °C. Tensile tests of the membranes revealed improved mechanical properties reflected by reduced brittleness and increased elongation at break achieved for CAP-RIL membranes in contrast to pristine CAP membranes. RIL plasticizes the CAP matrix, and CAP-RIL membranes possess preferable mechanical properties in comparison to membranes with other plasticizers investigated. The incorporation of RIL into CAP membranes tuned the surface properties of the membranes, enhancing their hydrophilic character. Moreover, the addition of RIL into CAP resulted in an excellent improvement of the separation factor, in comparison to pristine CAP membranes, in pervaporation dehydration of propan-2-ol. The separation factor β increased from ca. 10 for pristine CAP membrane to ca. 380 for CAP-16.7-RIL membranes contacting an azeotropic composition of water-propan-2-ol mixture (i.e., 12 wt % water.

  2. Tritium monitoring in environment at ICIT Tritium Separation Facility

    International Nuclear Information System (INIS)

    Varlam, Carmen; Stefanescu, I.; Vagner, Irina; Faurescu, I.; Toma, A.; Dulama, C.; Dobrin, R.

    2008-01-01

    Full text: The Cryogenic Pilot is an experimental project developed within the national nuclear energy research program, which is designed to develop the required technologies for tritium and deuterium separation by cryogenic distillation of heavy water. The process used in this installation is based on a combination between liquid-phase catalytic exchange (LPCE) and cryogenic distillation. Basically, there are two ways that the Cryogenic Pilot could interact with the environment: by direct atmospheric release and through the sewage system. This experimental installation is located 15 km near the region biggest city and in the vicinity - about 1 km, of Olt River. It must be specified that in the investigated area there is an increased chemical activity; almost the entire Experimental Cryogenic Pilot's neighborhood is full of active chemical installations. This aspect is really essential for our study because the sewerage system is connected with the other three chemical plants from the neighborhood. For that reason we progressively established elements of an environmental monitoring program well in advance of tritium operation in order to determine baseline levels. The first step was the tritium level monitoring in environmental water and wastewater of industrial activity from neighborhood. In order to establish the base level of tritium concentration in the environment around the nuclear facilities, we investigated the sample preparation treatment for different types of samples: onion, green beams, grass, apple, garden lettuce, tomato, cabbage, strawberry and grapes. We used azeotropic distillation of all types of samples, the carrier solvent being toluene from different Romanian providers. All measurements for the determination of environmental tritium concentration were performed using liquid scintillation counting (LSC), with the Quantulus 1220 spectrometer. (authors)

  3. Progress with alloy 33 (UNS R20033), a new corrosion resistant chromium-based austenitic material

    International Nuclear Information System (INIS)

    Koehler, M.; Heubner, U.; Eichenhofer, K.W.; Renner, M.

    1996-01-01

    Alloy 33 (UNS R20033), a new chromium-based corrosion resistant austenitic material with nominally (wt. %) 33 Cr, 32 Fe, 31 Ni, 1.6 Mo, 0.6 Cu, 0.4 N has been introduced to the market in 1995. This paper provides new data on this alloy with respect to mechanical properties, formability, weldability, sensitization characteristics and corrosion behavior. Mechanical properties of weldments including ductility have been established, and match well with those of wrought plate material, without any degradation of ISO V-notch impact toughness in the heat affected zone. When aged up to 8 hours between 600 C and 1,000 C the alloy is not sensitized when tested in boiling azeotropic nitric acid (Huey test). Under field test conditions alloy 33 shows excellent resistance to corrosion in flowing 96--98.5% H 2 SO 4 at 135 C--140 C and flowing 99.1% H 2 SO 4 at 150 C. Alloy 33 has also been tested with some success in 96% H 2 SO 4 with nitrosyl additions at 240 C. In nitric acid alloy 33 is corrosion resistant up to 85% HNO 3 and 75 C or even more. Alloy 33 is also corrosion resistant in 1 mol. HCl at 40 C and in NaOH/NaOCl-solutions. In artificial seawater the pitting potential remains unchanged up to 75 C and is still well above the seawater's redox potential at 95 C. Alloy 33 can be easily manufactured into all product forms required. The new data provided support the multipurpose character of alloy 33 to cope successfully with many requirements of the Chemical Process Industry, the Oil and Gas Industry and the Refinery Industry

  4. Experimental study on the adsorptive-distillation for dehydration of ethanol-water mixture using natural and synthetic zeolites

    Science.gov (United States)

    Megawati, Wicaksono, D.; Abdullah, M. S.

    2017-03-01

    This research studied adsorptive-distillation (AD) for dehydration of ethanol-water mixture using natural and synthetic zeolites as adsorbent for ethanol purification. Especially, the effect of purification time is recorded and studied to evaluate performance of designed AD equipment. This AD was performed in a batch condition using boiling flask covered with heating mantle and it was maintained at 78°C temperature and 1 atm pressure. The initial ethanol volume was 300 mL with 93.8% v/v concentration. The synthetic zeolite type used was zeolite 3A. The flowed vapour was condensed using water as a cooling medium. Every 5 minutes of time duration the samples were collected until the vapour could not be condensed in that condition and then be analyzed its concentration using Gas-Chromatography. Experiment shows that the designed AD equipment could increase ethanol concentration at first 5 minutes with highest ethanol concentration achieved using synthetic zeolite (97.47% v/v). However, ethanol concentration from AD process using natural zeolite only reached 96.5% v/v. Thus, synthetic zeolite as adsorbent could pass azeotropic point, but natural zeolite fail. The ratio of adsorbed water per adsorbent for natural and synthetic zeolites are about 0.023 and 0.056 gwater/gads, respectively, at 50 minutes of time. Finally, synthetic zeolite (at 55 minutes the value of C/C0 is about 0.85 and the average outlet water concentration is 4.70 mole/L) as adsorbent for AD of ethanol water is better than natural zeolite (at 55 minutes the value of C/C0 is about 0.63 and the average outlet water concentration is 6.43 mole/L).

  5. Toxicity Data to Determine Refrigerant Concentration Limits

    Energy Technology Data Exchange (ETDEWEB)

    Calm, James M.

    2000-09-30

    This report reviews toxicity data, identifies sources for them, and presents resulting exposure limits for refrigerants for consideration by qualified parties in developing safety guides, standards, codes, and regulations. It outlines a method to calculate an acute toxicity exposure limit (ATEL) and from it a recommended refrigerant concentration limit (RCL) for emergency exposures. The report focuses on acute toxicity with particular attention to lethality, cardiac sensitization, anesthetic and central nervous system effects, and other escape-impairing effects. It addresses R-11, R-12, R-22, R-23, R-113, R-114, R-116, R-123, R-124, R-125, R-134, R-134a, R-E134, R-141b, R-142b, R-143a, R-152a, R-218, R-227ea, R-236fa, R-245ca, R-245fa, R-290, R-500, R-502, R-600a, R-717, and R-744. It summarizes additional data for R-14, R-115, R-170 (ethane), R-C318, R-600 (n-butane), and R-1270 (propylene) to enable calculation of limits for blends incorporating them. The report summarizes the data a nd related safety information, including classifications and flammability data. It also presents a series of tables with proposed ATEL and RCL concentrations-in dimensionless form and the latter also in both metric (SI) and inch-pound (IP) units of measure-for both the cited refrigerants and 66 zerotropic and azeotropic blends. They include common refrigerants, such as R-404A, R-407C, R-410A, and R-507A, as well as others in commercial or developmental status. Appendices provide profiles for the cited single-compound refrigerants and for R-500 and R-502 as well as narrative toxicity summaries for common refrigerants. The report includes an extensive set of references.

  6. Stereochemical features of unsaturated aminodiesters - intermediates in the synthesis of Richlocaine

    Directory of Open Access Journals (Sweden)

    Meyrambek Ospanov

    2014-10-01

    Full Text Available The article provides information on the methods for synthesis of unsaturated aminodiesters, which are the key intermediates in the synthesis of N-substituted 2,5-dimethyl-piperidin-4-ones, including 1,2,5-trimetilpieridin-3-one. The developed method includes reaction of methyl ester of methacrylic acid with alkyl (alkenyl amines. The obtained N-alkyl(alkenyl-(2-methyl-2- carbmetoxyethyl methylamine are attached to acetoacetic ester being in the enol form. The optimal conditions for synthesis of N-alkyl(alkenyl-(2-methyl-2-carbethoxyethenemethylamines have been established. Results of gas chromatographic analysis has showed that, at room temperature, the reaction in polar solvents is delayed for two days. In non-polar solvents, the reaction runs with simultaneous distillation of water as an azeotrope with the solvent. Increase of the radical size at N atom has little effect on the reaction rate. Introduction of allyl radical at the nitrogen atom, apparently due to steric hindrance, resulted in lower reactivity of the monoester with allyl radical by condensation with acetoacetic ester. The structure of (1-methyl-2-carbethoxyethene-(2-methyl-2-carbmethoxyethyl methylamine has been studied by PMR spectroscopy. Study of the effect of chirality on the NMR spectra showed that, if the molecule of the organic compound has an asymmetric carbon atom, it may lead to the disappearance of the magnetic equivalence of neighboring protons or group of protons. Presence of an asymmetric carbon atom in b-position to the amino group of enamine leads to the disappearance of the magnetic equivalence of the neighboring protons is observed in the form of two quartets. For enaminodiesters, equilibrium is shifted toward the trans-S-cis conformer where less steric hindrance is pronounced.

  7. [18F]FMeNER-D2: reliable fully-automated synthesis for visualization of the norepinephrine transporter.

    Science.gov (United States)

    Rami-Mark, Christina; Zhang, Ming-Rong; Mitterhauser, Markus; Lanzenberger, Rupert; Hacker, Marcus; Wadsak, Wolfgang

    2013-11-01

    In neurodegenerative diseases and neuropsychiatric disorders dysregulation of the norepinephrine transporter (NET) has been reported. For visualization of NET availability and occupancy in the human brain PET imaging can be used. Therefore, selective NET-PET tracers with high affinity are required. Amongst these, [(18)F]FMeNER-D2 is showing the best results so far. Furthermore, a reliable fully automated radiosynthesis is a prerequisite for successful application of PET-tracers. The aim of this work was the automation of [(18)F]FMeNER-D2 radiolabelling for subsequent clinical use. The presented study comprises 25 automated large-scale syntheses, which were directly applied to healthy volunteers and adult patients suffering from attention deficit hyperactivity disorder (ADHD). Synthesis of [(18)F]FMeNER-D2 was automated within a Nuclear Interface Module. Starting from 20-30 GBq [(18)F]fluoride, azeotropic drying, reaction with Br2CD2, distillation of 1-bromo-2-[(18)F]fluoromethane-D2 ([(18)F]BFM) and reaction of the pure [(18)F]BFM with unprotected precursor NER were optimized and completely automated. HPLC purification and SPE procedure were completed, formulation and sterile filtration were achieved on-line and full quality control was performed. Purified product was obtained in a fully automated synthesis in clinical scale allowing maximum radiation safety and routine production under GMP-like manner. So far, more than 25 fully automated syntheses were successfully performed, yielding 1.0-2.5 GBq of formulated [(18)F]FMeNER-D2 with specific activities between 430 and 1707 GBq/μmol within 95 min total preparation time. A first fully automated [(18)F]FMeNER-D2 synthesis was established, allowing routine production of this NET-PET tracer under maximum radiation safety and standardization. © 2013.

  8. The exploitation of the physical exergy of liquid natural gas by closed power thermodynamic cycles. An overview

    International Nuclear Information System (INIS)

    Invernizzi, Costante M.; Iora, Paolo

    2016-01-01

    The world trade in LNG (liquefied natural gas) has tripled in the last 15 years and the forecasts are for its further rapid expansion. Although the cryogenic exergy of the LNG could be used in many industrial processes, it is recognized also as a source for power cycles. When using the low temperature capacity of LNG for power production, several thermodynamic cycles can be considered. This paper reports the state-of-the art of the most relevant solutions based on conventional and non-conventional thermodynamic closed cycles. Moreover, a novel metrics framework, suitable for a fairer comparison among the energy recovery performances of the different technologies is proposed. According to the defined indicators the compounds plants with gas turbine and closed Brayton cycles perform really better, with an almost full use of LNG available cold temperature and a fuel consumption with an efficiency better than that of the current combined cycles. The Rankine cycles with organic working fluids (pure fluids or non-azeotropic mixtures) using seawater or heat available at low temperature (for instance at 150 °C) also perform in a very satisfactory way. Real gas Brayton cycles and carbon dioxide condensation cycles work with very good thermal efficiency also at relatively low maximum temperatures (300 ÷ 600 °C) and could have peculiar applications. - Highlights: • A review of systems for the combined re-gasification of LNG and generation of power. • The considered systems are: closed Brayton cycles, condensation cycles, gas turbines. • Definition of new parameters for an energy assessment of the systems? performances. • A comparison among the various systems from the energy point of view.

  9. Pengaruh Variasi Penambahan Ragi dan Lamanya Waktu Fermentasi terhadap Hasil Fermentasi Etanol dari Serbuk Gergajian Kayu Ulin (Eusideroxylon zwageri T et B

    Directory of Open Access Journals (Sweden)

    Ahmad Jauhari

    2007-01-01

    Full Text Available Effect of  Variation yeast addition and Duration of Fermentation on the Amount of Ethanol Produced from Sawdust of Ulin Wood (Eusideroxylon zwageri T et B The research was aimed to assess the influence of different levels of yeast addition and duration of fermentation on the amount and percentage of ethanol produced from sawdust of ulin wood as raw material. Method used in this experiment was chemical hydrolysis of cellulose by using nitric acid (HNO3 as chemical agent. This substrate was inoculated into yeast cell (khamir to convert glucose into ethanol. The amount of ethanol (ml was obtained from distilled water (ml multiplied by the azeotropic value of ethanol (95,5%, while the value  ethanol (% obtained was from the amount of ethanol (ml divided by the amount of distilled water (ml multiplied by 100 percent. The study used a factorial design of 3 x 3 with 3 replications and the parameters used were A factor (amount of yeast consisting of 5, 10, and 15 grams, respectively, and B factor (duration of fermentation consisting of 1, 3, and 5 days, respectively. Significant differences of ANOVA at test levels of 5% and 1% will be continued by interaction test between the two factors to assess the influence of each factor on the amount and percentage of ethanol. Results indicated that the amount of yeast applied, duration of fermentation and interaction between the two gave very significant effects on the amount of ethanol (ml and its percentage (%. Following the treatment on ulin wood sawdust, the lowest yield of ethanol was found at A1B1 treatment (5 g, 1 day with. 1.69 ml, while the highest at A3B3 treatment (15 g, 5 day with 5.19 ml. In terms of ethanol percentage, the lowest was found at A1B1 treatment with 9.4% and the highest at A3B2 treatment with 29.9%.

  10. Ebulliometric determination and prediction of (vapor + liquid) equilibria for binary and ternary mixtures containing alcohols (C{sub 1}-C{sub 4}) and dimethyl carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroyuki, E-mail: matsuda@chem.cst.nihon-u.ac.jp [Department of Materials and Applied Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Fukano, Makoto; Kikkawa, Shinichiro [Department of Materials and Applied Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Constantinescu, Dana [Carl von Ossietzky Universitaet Oldenburg, Technische Chemie, D-26111 Oldenburg (Germany); Kurihara, Kiyofumi; Tochigi, Katsumi; Ochi, Kenji [Department of Materials and Applied Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Gmehling, Juergen [Carl von Ossietzky Universitaet Oldenburg, Technische Chemie, D-26111 Oldenburg (Germany)

    2012-01-15

    Highlights: > The VLE behavior of systems containing dimethyl carbonate (DMC) was investigated. > VLE data for ternary and binary mixtures containing alcohol and DMC were measured. > Several activity coefficient models were used for data reduction or prediction. > Valley line, i.e., distillation boundary, was observed for the ternary mixture. > Residue curves were calculated to investigate composition profile for distillation. - Abstract: (Vapor + liquid) equilibrium (VLE) data for a ternary mixture, namely {l_brace}methanol + propan-1-ol + dimethyl carbonate (DMC){r_brace}, and four binary mixtures, namely an {l_brace}alcohol (C{sub 3} or C{sub 4}) + DMC{r_brace}, containing the binary constituent mixtures of the ternary mixture, were measured at p = (40.00 to 93.32) kPa using a modified Swietoslawski-type ebulliometer. The experimental data for the binary systems were correlated using the Wilson model. The Wilson model was also applied to the ternary system to predict the VLE behavior using parameters from the binary mixtures. The modified UNIFAC (Dortmund) model was also tested for the predictions of the VLE behavior of the binary and ternary mixtures. In addition, the experimental VLE data for the ternary and constituent binary mixtures were correlated using the extended Redlich-Kister (ERK) model, which can completely represent the azeotropic points. For the ternary system, a comparison of the experimental and the predicted or correlated boiling points obtained using the Wilson and ERK models showed that the ERK model is more accurate. The valley line, i.e., the curve which divides the patterns of vapor-liquid tie lines, was found in the (methanol + propan-1-ol + DMC) system. This valley line could be represented by the ERK model. Finally, the composition profile for simple distillation of this ternary mixture was obtained by analysis of the residue curves from the estimated Wilson parameters of the constituent binary mixtures.

  11. ANALGETIC ACTIVITY OF CEP-CEPAN (Saurauia cauliflora DC. LEAVES EXTRACT

    Directory of Open Access Journals (Sweden)

    Emil Salim

    2017-03-01

    Full Text Available Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage. The people who live in Karo use several types of plants to relieve pain, one of which is cep-cepan (Saurauia cauliflora DC. The leaves of this plant traditionally used to treat gastrointestinal disorders. There is no scientific evidence about analgetic effect of the leaves. Thus, this study aimed to determine the potential effect of the ethanolic extract of cep-cepan leaves as an analgesic. Fresh Cep-cepan leaves were dried in a drying cabinet at 40°C. Furthermore, the water content of the powdered dried leaves was determined using azeotropic distillation method. Phytochemical screening was carried out to determine chemical groups contained in the dried leaves. Plant extraction was done by maceration method using ethanol 96%. Analgesic effect of the extract was evaluated by observing respon time of mices to infrared as pain inducer. Mices were grouped into six categories, they were: vehicle, antalgin 65 mg/kgBW, and extracts at the dose of 500 mg/kgBW, 250 mg/kgBW, 125 mg/kgBW, 62,5 mg/kgBW, all were administered orally. The data were analayzed using ANOVA followed by LSD. Results showed that the dried leaves contained flavonoids, alkaloids, tannins, anthraquinone glycosides and steroids/triterpenoids. The water contain of the dried leaves was 5,3%. The analgesic test results showed the extract at the dose of 250 mg/kgBW had strong analgesic effect similar to that of 500 mg/kgBW and antalgin 65 mg/kgBW.

  12. Radio-nuclide initiated chemiluminescence fueled secondary battery

    International Nuclear Information System (INIS)

    Schachter, M.M.

    1994-01-01

    The structure is a containment made of one centimeter-thick sheet polypropylene. The inwards are attached to a cover made of the same material having peripheral lugs at 5 centimeter intervals to accommodate nickel plated brass drop bolts for purpose of tight and secure closure, yet easily dismantling for repeated removal of spent chemicals. A non-electrolytic anode constructed of fine copper wire screening plated with gold less than 10 microns thick is intercalated with copper foil 0.01 millimeter-thick epitaxially coated with first copper(I)oxide, secondly with one micron-thick silver, and thirdly with aluminum oxide[Cr] epitaxy one micron thick. The screens are pulse electrified as positively charged at least 0.5 kilo-Hertz square wave and a peak potential to exceed the work function of the gold by a few milli-Volts only. The non-electrolyte is a saturated solution of potassium hydroxide circulated by a chromatography pump through a tank and the cell when battery is in use. The tank contains pill-sized pellets of 3-aminophthalhydrazide, the fuel. The solvent is an azeotropic mixture of 1,3-dioxolane -- 93 mol percent and water -- 7 mol percent. The potassium-40 radioactivity produces a very faint CL, but it is sufficient of generate a pulsed d-c via the string of photovoltaic and the neon bulb relaxation oscillator and inductive reactance to send a 57-Volt alternating spiked current at about 100 microamperes through the gold plated screen grids. These inverted pulses in turn trigger strong CL of many lumens per square centimeter to operate the intercalated photovoltaics' output of electricity of 0.2 Volt and 0.015 Ampere per square centimeter

  13. Synthesis of a fluorine-18 labeled hypoxic cell sensitizer

    International Nuclear Information System (INIS)

    Jerabek, P.A.; Dischino, D.D.; Kilbourn, M.R.; Welch, M.J.

    1984-01-01

    The objective of this work was to synthesize a positron emitting radiosensitizing agent as a potential in vivo marker of hypoxic regions within tumors, and ischemic areas of the heart and brain. The method involved radiochemical synthesis of fluorine-18 labeled 1-(2-nitro-imidazolyl)-3-fluoro-2-propanol via nucleophilic ring opening of 1-(2,3-epoxypropyl)2-nitro-imidzole by fluorine-18 labeled tetrabutylammonium fluoride (TBAF). Fluroine-18 TBAF was prepared by the exchange reaction of TBAF with aqueous flourine-18 produced by proton bombardment of enriched oxygen-18 water. The aqueous solution was evaporated carefully by azeotropic distillation with acetonitrile. The fluorine-18 labeled TBAF was taken up in N,N-dimethylacetamide or dimethysulfoxide, then reacted with the episode at 60C for 30 minutes. Separation and identification of the fluorine-18 labeled products by high performance liquid chromatography showed a radioactive peak with a retention time identical to that of 1-(2-nitro-1-imidazolyl)-3-fluoro-2-propanol and a second radioactive peak with a retention time three minutes longer in addition to unreacted fluorine-18 labeled TBAF. The second radioactive peak may represent fluorine-18 labeled 1-2-nitro-1-imidazolyl)-2-fluoro-3-propanol. The average radiochemical yield from reactions run in N,N-dimethylacetamide using 20 micromoles of TBAF and 1-2 mg of the epoxide was l7% in a synthesis time of about 40 minutes. The synthesis of fluorohydrins by the reaction of fluorine-18 labeled TBAF on epoxides represents a new method for the preparation of fluorine-18 labeled fluorohydrins

  14. Microwave-assisted extraction and accelerated solvent extraction with ethyl acetate-cyclohexane before determination of organochlorines in fish tissue by gas chromatography with electron-capture detection.

    Science.gov (United States)

    Weichbrodt, M; Vetter, W; Luckas, B

    2000-01-01

    Focused open-vessel microwave-assisted extraction (FOV-MAE), closed-vessel microwave-assisted extraction (CV-MAE), and accelerated solvent extraction (ASE) were used for extraction before determination of organochlorine compounds (polychlorinated biphenyls, DDT, toxaphene, chlordane, hexachlorobenzene, hexachlorocyclohexanes, and dieldrin) in cod liver and fish fillets. Wet samples were extracted without the time-consuming step of lyophilization or other sample-drying procedures. Extractions were performed with the solvent mixture ethyl acetate-cyclohexane (1 + 1, v/v), which allowed direct use of gel-permeation chromatography without solvent exchange. For FOV-MAE, the solvent mixture removed water from the sample matrix via azeotropic distillation. The status of water removal was controlled during extraction by measuring the temperature of the distillate. After water removal, the temperature of the distillate increased and the solvent mixture became less polar. Only the pure extraction solvent allowed quantitative extraction of the organochlorine compounds. For CV-MAE, water could not be separated during the extraction. For this reason, the extraction procedure for wet fish tissue required 2 extraction steps: the first for manual removal of coextracted water, and the second for quantitative extraction of the organochlorine compounds with the pure solvent. Therefore, CV-MAE is less convenient for samples with high water content. For ASE, water in the sample was bound with Na2SO4. The reproducibility for each technique was very good (relative standard deviation was typically <10%); the slightly varying levels were attributed to deviations during sample cleanup and the generally low levels.

  15. Synthesis and purification of oxide nanoparticle dispersions by modified emulsion precipitation.

    Science.gov (United States)

    Shi, Jingyu; Verweij, Henk

    2005-06-07

    ZrO2 and Fe2O3 precursor nanoparticles are synthesized, well-dispersed in decane, via a modified emulsion precipitation (MEP) method. This method starts with preparing two thermostable water-in-oil (w/o) emulsions with nonylphenol tetra(ethylene glycol) ether (Arkopal-40) as the main surfactant, didodecyldimethylammonium bromide (DiDAB) as the cosurfactant, decane as the continuous oil phase, and either a metal salt solution or a hexamethylenetetramine (HMTA) precipitation agent solution as the dispersed water phase. After mixing of the two emulsions, individual precursor particles are formed by precipitation in the confinement of the aqueous solution droplets. Excess water is removed by azeotropic distillation, and steric stabilization of the particles in the remaining oil medium is achieved with poly(octadecyl methacrylate) (PODMA), initially present dissolved in the oil phase. A purification process is conducted to remove the precipitation reaction byproduct and excess surfactants from the nanoparticle dispersions. Transmission electron microscopy (TEM) characterization shows that the ZrO2 and Fe2O3 precursor nanoparticles are both non-agglomerated, spherical, and have a narrow particle size distribution, centered at 4 nm in diameter. The precipitation from the dispersion of byproduct NH4Cl after water removal, and insoluble surfactant DiDAB after dilution with pure decane, is confirmed by X-ray diffraction (XRD). NMR results show that most of the oil-soluble surfactant Arkopal-40 can be removed from the dispersion by a 3x repeated dead-end pressure filtration process. It is shown that, after purification, the nanoparticle dispersions can be used for the preparation of homogeneous nanostructured coatings. The purification procedure as discussed provides guidelines for up-scaling the process and reuse of emulsifiers.

  16. Ebulliometric determination and prediction of (vapor + liquid) equilibria for binary and ternary mixtures containing alcohols (C1-C4) and dimethyl carbonate

    International Nuclear Information System (INIS)

    Matsuda, Hiroyuki; Fukano, Makoto; Kikkawa, Shinichiro; Constantinescu, Dana; Kurihara, Kiyofumi; Tochigi, Katsumi; Ochi, Kenji; Gmehling, Juergen

    2012-01-01

    Highlights: → The VLE behavior of systems containing dimethyl carbonate (DMC) was investigated. → VLE data for ternary and binary mixtures containing alcohol and DMC were measured. → Several activity coefficient models were used for data reduction or prediction. → Valley line, i.e., distillation boundary, was observed for the ternary mixture. → Residue curves were calculated to investigate composition profile for distillation. - Abstract: (Vapor + liquid) equilibrium (VLE) data for a ternary mixture, namely {methanol + propan-1-ol + dimethyl carbonate (DMC)}, and four binary mixtures, namely an {alcohol (C 3 or C 4 ) + DMC}, containing the binary constituent mixtures of the ternary mixture, were measured at p = (40.00 to 93.32) kPa using a modified Swietoslawski-type ebulliometer. The experimental data for the binary systems were correlated using the Wilson model. The Wilson model was also applied to the ternary system to predict the VLE behavior using parameters from the binary mixtures. The modified UNIFAC (Dortmund) model was also tested for the predictions of the VLE behavior of the binary and ternary mixtures. In addition, the experimental VLE data for the ternary and constituent binary mixtures were correlated using the extended Redlich-Kister (ERK) model, which can completely represent the azeotropic points. For the ternary system, a comparison of the experimental and the predicted or correlated boiling points obtained using the Wilson and ERK models showed that the ERK model is more accurate. The valley line, i.e., the curve which divides the patterns of vapor-liquid tie lines, was found in the (methanol + propan-1-ol + DMC) system. This valley line could be represented by the ERK model. Finally, the composition profile for simple distillation of this ternary mixture was obtained by analysis of the residue curves from the estimated Wilson parameters of the constituent binary mixtures.

  17. IMPROVEMENT OF BIOFUEL ETHANOL RECOVERY USING THE PERVAPORATION SEPARATION TECHNIQUE

    Energy Technology Data Exchange (ETDEWEB)

    Nilufer Durmaz Hilmioglu [Kocaeli University Chemical Engineering Department Veziroglu Campus, Kocaeli (Turkey)

    2008-09-30

    The climatic impact of carbon dioxide emissions from the burning of fossil fuels have become a major problem. The production of renewable biofuels from biomass has received increasing attention. Because of the economic and environmental benefits of fuel ethanol's use it is considered one of the most important renewable fuels. In ethanol fermentations inhibition of the microorganism by ethanol limits the amount of substrate in the feed that can be converted. In a process high feed concentrations are desirable to minimize the flows. Such high feed concentrations can be realized in integrated processes in which ethanol is recovered by pervaporation from the fermentation broth as it is formed. The hybrid process is an attractive process to increase ethanol production economics and to decrease environmental pollution. The separaiton of alcohol from mixtures with ethanol produced by fermentation is usually carried out by distillation and the energy consumption is very high when azeotropic concentration is reached, which corresponds to 5% water in ethanol/water mixture. The pervaporation process provides an economical alternative to the existing distillation technique. A continous recovery of alcohol could be achieved by using the pervaporation process during fermentation, making the process more energy efficient. In this work, for the purposes of membrane material development for pervaporation; zeolite filled and unfilled cellulose acetate membranes were prepared. Zeolite types were 4A, 13X. The effect of incorporation of nano-sized zeolites prepared in a colloidal form in membranes was also investigated. From the sorption tests it is concluded that, ethanol/water azeotropy can be breaked by pervaporation.

  18. Estimating Tritium Fluxes from the Shallow Unsaturated Zone to the Atmosphere in an Arid Environment Dominated by Creosote Bush (USGS-ADRS)

    Science.gov (United States)

    Garcia, C. A.; Andraski, B. J.; Wheatcraft, S. W.; Johnson, M. J.; Michel, R. L.; Stonestrom, D. A.

    2006-12-01

    Understanding the transport and fate of tritium is essential when evaluating options for low-level radioactive waste (LLRW) isolation. The magnitude and spatio-temporal variability of tritium transport from the shallow unsaturated zone to the atmosphere are being investigated adjacent to a LLRW facility at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS) in Southern Nevada. Site and community-scale tritium fluxes from the subsurface to the atmosphere were quantified using a simple gas-phase diffusive loading approach combining evaporation and transpiration fluxes with mass fractions of gas-phase tritium concentrations. A Priestly-Taylor model, calibrated with quarterly bare-soil evaporation measurements, was used to estimate continuous bare-soil evaporation from measured continuous eddy-covariance evapotransporation. Continuous transpiration was computed as the difference between measured evapotranspiration and estimated bare-soil evaporation. Tritium concentrations in plant water and soil-water vapor were measured along two transects perpendicular to the LLRW using azeotropic distillation of creosote bush (Larrea tridentata) foliage and soil vapor extraction from 0.5 and 1.5 m depths below land surface. A preliminary daily tritium flux estimate at a single plant site was 1.66 × 10-11 gm-2. Spatio- temporal variability over a 75-ha area and 2-yr period will be quantified using a combination of tritium concentration maps and continuous evaporation and transpiration flux estimates. Quantifying tritium fluxes from the shallow unsaturated zone to the atmosphere on a site and community-scale will improve knowledge and understanding of vertical contaminant transport in arid environments.

  19. Selection of ionic liquids as entrainers for separation of (water + ethanol)

    Energy Technology Data Exchange (ETDEWEB)

    Ge Yun [College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014 (China); Zhang Lianzhong [College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014 (China)], E-mail: zhanglz@zjut.edu.cn; Yuan Xingcai; Geng Wei; Ji Jianbing [College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014 (China)

    2008-08-15

    For selection of ionic liquids (ILs) which can be potentially used as entrainers for separation of the azeotropic mixture of (water + ethanol) by extractive distillation, (vapor + liquid) equilibrium was measured for the ternary systems of (water + ethanol + an IL) using a previously proposed ebulliometer. The experimental measurement was performed at p = 100 kPa and in a way of continuous synthesis, in which analysis of liquid phase composition was avoided. While the mole fraction of ethanol calculated on IL-free basis, x{sub 2}{sup '}, was kept almost unchanged at 0.95, isobaric T, x, y data were measured at different IL mass fractions. Activity coefficients, as well as relative volatilities, of the volatile components were obtained from the experimental data without the need of a thermodynamic model of the liquid phase. There were eight ILs in our investigation: 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF{sub 4}]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF{sub 4}]), 1-butyl-3-methylimidazolium dicyanamide ([bmim][N(CN){sub 2}]), 1-ethyl-3-methylimidazolium dicyanamide ([emim][N(CN){sub 2}]), 1-butyl-3-methylimidazolium chloride ([bmim][Cl]), 1-ethyl-3-methylimidazolium chloride ([emim][Cl]), 1-butyl-3-methylimidazolium acetate ([bmim][OAc]), and 1-ethyl-3-methylimidazolium acetate ([emim][OAc]). The effect of the ILs on the relative volatility of the volatile components was depicted separately by their effect on the activity coefficients. The results indicated that, among the eight ILs studied, [emim][Cl] has the largest effect on enhancement of the relative volatility. Another IL, [emim][OAc], has also significant effect. Considering the relatively low viscosity and melting point of [emim][OAc], this IL might be favorable candidate as entrainer for potential industrial application.

  20. Determination of optimal wet ethanol composition as a fuel in spark ignition engine

    International Nuclear Information System (INIS)

    Fagundez, J.L.S.; Sari, R.L.; Mayer, F.D.; Martins, M.E.S.; Salau, N.P.G.

    2017-01-01

    Highlights: • Batch distillation to produce HEF and fuel blends of wet ethanol. • Conversion efficiency of a SI engine operating with HEF and wet ethanol. • NEF as a new metric to calculate the energy efficiency of HEF and wet ethanol. • Optimal wet ethanol composition as a fuel in SI engine based on NEF. - Abstract: Studies are unanimous that the greatest fraction of the energy necessary to produce hydrous ethanol fuel (HEF), i.e. above 95%v/v of ethanol in water, is spent on water removal (distillation). Previous works have assessed the energy efficiency of HEF; but few, if any, have done the same for wet ethanol fuel (sub-azeotropic hydrous ethanol). Hence, a new metric called net energy factor (NEF) is proposed to calculate the energy efficiency of wet ethanol and HEF. NEF calculates the ratio of Lower Heating Value (LHV) derived from ethanol fuel, total energy out, to energy used to obtain ethanol fuel as distillate, total energy in. Distillation tests were performed batchwise to obtain as distillate HEF and four different fuel blends of wet ethanol with a range from 60%v/v to 90%v/v of ethanol and the amount of energy spent to distillate each ethanol fuel calculated. The efficiency parameters of a SI engine operating with the produced ethanol fuels was tested to calculate their respective conversion efficiency. The results of net energy factors show a clear advantage of wet ethanol fuels over HEF; the optimal efficiency was wet ethanol fuel with 70%v/v of ethanol.

  1. Synthesis, spectral characterization and biological studies of some organotin(IV) complexes of L-proline, trans-hydroxy- L-proline and L-glutamine

    Science.gov (United States)

    Nath, Mala; Jairath, Ruchi; Eng, George; Song, Xueqing; Kumar, Ashok

    2005-12-01

    New organotin(IV) complexes of the general formula R 3Sn(L) (where R = Me, n-Bu and HL = L-proline; R = Me, Ph and HL = trans-hydroxy- L-proline and L-glutamine) and R 2Sn(L) 2 (where R = n-Bu, Ph and HL = L-proline; R = Ph, HL = trans-hydroxy- L-proline) have been synthesized by the reaction of R nSnCl 4- n (where n = 2 or 3) with sodium salt of the amino acid (HL). n-Bu 2Sn(Pro) 2 was synthesized by the reaction of n-Bu 2SnO with L-proline under azeotropic removal of water. The bonding and coordination behavior in these complexes have been discussed on the basis of IR and 119Sn Mössbauer spectroscopic studies in the solid-state. Their coordination behavior in solution has been discussed with the help of multinuclear ( 1H, 13C and 119Sn) NMR spectral studies. The 119Sn Mössbauer and IR studies indicate that L-proline and trans-hydroxy- L-proline show similar coordination behavior towards organotin(IV) compounds. Pentacoordinate trigonal-bipyramidal and hexacoordinate octahedral structures, respectively, have been proposed for the tri- and diorganotin(IV) complexes of L-proline and trans-hydroxy- L-proline, in which the carboxylate group acts as bidentate group. L-Glutamine shows different coordination behavior towards organotin(IV) compounds, it acts as monoanionic bidentate ligand coordinating through carboxylate and amino group. The triorganotin(IV) complexes of L-glutamine have been proposed to have trigonal-bipyramidal environment around tin. The newly synthesized complexes have been tested for their antiinflammatory and cardiovascular activities. Their LD 50 values are >1000 mg kg -1.

  2. Kiglapait Feldspar States 5 to Review

    Science.gov (United States)

    Morse, S. A.

    2017-12-01

    The 1305 Ga Kiglapait Intrusion of coastal Labrador records the crystallization of troctolite through olivine gabbro to magnetite- and apatite-bearing rocks to monoclinic sanidine- mesoperthite-ferrosyenite below an inverted stratigraphy of a thin Upper Border Zone. The crystallization history was about 1 Ma. ¶The evolutionary history of Kiglapait feldspars in an 8.4 km thick magma chamber runs from plagioclase An70 at 5 kbar and 1250°C, cooling through to ferrosyenite with mesoperthite and two feldspars at 3 kbar and 1,000°C. The residual magma encountered the binodal solvus and finished crystallizing as an azeotrope with plagioclase (Or 21, An 15) and sanidine (Or 52, An 8) in liquid (Xor = 1/3; An 11). Cooling in the subsolidus brought the feldspars to compositions An15-Or 3, An0-Or 80-85 at 800-730°C. Metastable mesoperthite on the coherent solvus in various stages of late equilibration persists in the local assemblages. Arrested to complete feldspar symplectites suggest the local presence of a vapor phase. ¶Splits of the final Or-rich feldspar were found by mass spectrometry to have a dominant quantity of Rb and 87Sr/86Sr along with % amounts of Ba; in contrast, the plag fraction has very low Rb and 87Sr/86Sr. The estimated timing of the isotopic segregation was plausibly continuous with major-element fractionation or perhaps at the moment(s) of exsolution. ¶The cooling record of the solidified intrusion at 3 kbar is shown by 40Ar/39Ar data to have been rapid, reaching an ambient temperature near 240°C within the first 20 Ma, compared to the ambient country-rock temperature before intrusion of 350°C. The difference suggests a late uplift of the region after the Kiglapait magmatism. ¶Contributions from Y. Yu, T. Krogh, M. Hamilton, D. Lindsley, D. DePaolo, M. Jercinovic and S.R. Hart are especially acknowledged.

  3. Effect of some degossypolisation treatments of cottonseed meal on its functional properties

    Directory of Open Access Journals (Sweden)

    Mohamed, S. S.

    1993-10-01

    Full Text Available The presence of gossypol is a limiting factor in the use of cottonseed meal for animal feed and human foods. Gossypol in the free form has been found to be toxic to monogastric animals and the Protein Advisor Group of U.N. has limited its content in cottonseed protein products to 0,06%. In the present paper the effect of some degossypolisation techniques on the functional properties of cottonseed meals has been studied. Best results were obtained with the acetic acid method as it improved the nitrogen solubility and available lysine, reduced the free gossypol to 0,03% and enhanced the water absorption capacity, wettability and flowability. The protein product resulting from this treatment can be incorporated into bakery and instant products. The azeotrope: ammonium treatment produced similar effects. Ethanolamine treatment is recommended for the preparation of protein products for instant foods.

    La presencia de gosipol es un factor limitante en el uso de harina de semilla de algodón para la alimentación animal y humana. El gosipol, en forma libre, ha sido encontrado tóxico para animales monogástricos, y el Grupo Asesor en Proteína de Naciones Unidas ha limitado su contenido en productos proteínicos de semilla de algodón al 0,06%. En el presente trabajo se ha estudiado el efecto de algunas técnicas de desgosiposilación sobre las propiedades funcionales de harinas de semillas de algodón. Los mejores resultados se obtuvieron con el método del ácido acético ya que mejoró la solubilidad de nitrógeno y lisina disponible, redujo el gosipol libre al 0,03% y aumentó la capacidad de absorción de agua, humectabilidad y fluidez. El producto proteínico resultante de este tratamiento puede ser incorporado en productos alimenticios instantáneos y horneados. El tratamiento azeótropo: amonio produjo efectos similares. El tratamiento con etanolamina está recomendado para la preparación de productos proteínicos para alimentos instantáneos.

  4. Séparations par changement de phase. Etude et représentation des équilibres liquide-vapeur Separation by Phase Hange. Study and Computing Liquid-Vapor Equilibria

    Directory of Open Access Journals (Sweden)

    Asselineau L.

    2006-11-01

    Full Text Available Pour concevoir et optimiser les principales opérations de séparation (particulièrement les distillations avec ou sans solvant et l'extraction liquide-liquide on doit disposer de méthodes de corrélation ou, mieux, de prédiction des équilibres entre phases. A basse pression, et pour les mélanges d'hydrocarbures, les résultats présentés permettent la prévision des coefficients d'équilibre, même pour les séparations les plus délicates. En présence de constituants polaires, les données expérimentales d'équilibre liquide-liquide et liquide-vapeur de mélanges binaires et ternaires peuvent être simultanément corrélées dans le but de simuler et d'optimiser les distillations azéotropiques ou extractives. Sous haute pression, et particulièrement aux abords immédiats du point critique, le choix d'une équation d'état conduit à un traitement unitaire des phases en présence et permet, en particulier, la prédiction du lieu des points critiques des mélanges d'hydrocarbures et la corrélation de ce lieu en présence de solvants polaires. To determine and optimize the main separation operations (in particular distillations with or without a solvent, and liquid-liquid extraction correlation methods must be available or, better yet, methods of predicting phase equilibria. At low pressure and for hydrocarbon mixtures, the results described make the prediction of equilibrium coefficients possible, even for the most delicate separation. In the presence of polar constituents, the experimental data for the liquid-liquid and liquid-vapor equilibrium of binary and ternary mixtures can be simultaneously correlaten so as to simulate and optimize azeotropic or extractive distillations. Under high pressure and especially in the immediate vicinityof the critical point, the choice of an equation of state leads ta a unit treatment of the phases present and, in particular, makes it possible to predict the location of critical points in hydrocarbon

  5. Evaluation of specific tritium transfer parameters in equilibrium conditions for Cernavoda area

    International Nuclear Information System (INIS)

    Paunescu, N.; Galeriu, D.; Mocanu, N.; Margineanu, R.

    1998-01-01

    In Romania, a CANDU nuclear power plant with five reactors of 600 MWe is under construction. The first unit reached its criticality on April 1996 and became operational at full power on December 1996. The nuclear power plant is placed in Cernavoda area, in the S-E of Romania, between the Danube River and the Danube-Black Sea Canal. The prevalent local climate is continental and agricultural activity in the neighbourhood of the nuclear power plant is of intensive type. The routine atmospheric tritium release from the 3 GWe nuclear power plant is expected to be about 460 TBq/year and the aqueous release is expected to be 350 TBq/year. The aim of this study was to evaluate the environmental tritium reference level before commissioning the nuclear power plant. Representative samples for Cernavoda area were analysed: air humidity; water from Danube River, Danube-Black Sea Canal, lakes; drinking and ground water, rain (snow) water; soil at different depths; tissue free water tritium in vegetal and animal foodstuff relevant for human diet: cereals (wheat, maize, barley), vegetables (potato, tomato, cabbage, onion, bean), fruits, grapes, wine and milk; organically bound tritium in wheat and maize grains. The equipment and methods used were: Liquid scintillation analyzer of type TRICARB 1900 TR; scintillation cocktails of Instagel and Pico Fluor LLT type; sampling system for trapping the atmospheric tritium on molecular sieves; furnace; vacuum line and freeze trap (-60 deg. C); equipment for simple, fractionating and azeotropic distillation. The background level of tritium concentration was determined in environmental samples in Cernavoda area, in preoperational stage of nuclear power plant. The mean values determined during 1994-early 1996 are : (7.4±5.5) Bq/L in air humidity, (3.1±1.0) Bq/L in water, (3.53±0.4) Bq/L in tissue water from vegetable and (4.9±1.7) Bq/L in tissue water from cereals (grains). The values of tritium concentration in air, water, soil and

  6. Toward a simple, repeatable, non-destructive approach to measuring stable-isotope ratios of water within tree stems

    Science.gov (United States)

    Raulerson, S.; Volkmann, T.; Pangle, L. A.

    2017-12-01

    Traditional methodologies for measuring ratios of stable isotopes within the xylem water of trees involve destructive coring of the stem. A recent approach involves permanently installed probes within the stem, and an on-site assembly of pumps, switching valves, gas lines, and climate-controlled structure for field deployment of a laser spectrometer. The former method limits the possible temporal resolution of sampling, and sample size, while the latter may not be feasible for many research groups. We present results from initial laboratory efforts towards developing a non-destructive, temporally-resolved technique for measuring stable isotope ratios within the xylem flow of trees. Researchers have used direct liquid-vapor equilibration as a method to measure isotope ratios of the water in soil pores. Typically, this is done by placing soil samples in a fixed container, and allowing the liquid water within the soil to come into isotopic equilibrium with the headspace of the container. Water can also be removed via cryogenic distillation or azeotropic distillation, with the resulting liquid tested for isotope ratios. Alternatively, the isotope ratios of the water vapor can be directly measured using a laser-based water vapor isotope analyzer. Well-established fractionation factors and the isotope ratios in the vapor phase are then used to calculate the isotope ratios in the liquid phase. We propose a setup which would install a single, removable chamber onto a tree, where vapor samples could non-destructively and repeatedly be taken. These vapor samples will be injected into a laser-based isotope analyzer by a recirculating gas conveyance system. A major part of what is presented here is in the procedure of taking vapor samples at 100% relative humidity, appropriately diluting them with completely dry N2 calibration gas, and injecting them into the gas conveyance system without inducing fractionation in the process. This methodology will be helpful in making

  7. Quantification of groundwater recharge through application of pilot techniques in the unsaturated zone.

    Science.gov (United States)

    Kallioras, Andreas; Piepenbrink, Matthias; Schuth, Christoph; Pfletschinger, Heike; Dietrich, Peter; Koeniger, Franz; Rausch, Randolf

    2010-05-01

    Accurate determination of groundwater recharge is a key issue for the "smart mining" of groundwater resources. Groundwater recharge estimation techniques depend on the investigated hydrologic zone, and therefore main approaches are based on (a) unsaturated zone, (b) saturated zone and (c) surface water studies. This research contributes to the determination of groundwater recharge by investigating the infiltration of groundwater through the unsaturated zone. The investigations are conducted through the application of a combination of different pilot field as well as lab techniques. The field techniques include the installation of specially designed Time Domain Reflectometry (TDR) sensors, at different depths within the unsaturated zone for in-situ and continuous measurements of the volumetric pore water content. Additionally, the extraction of pore water -for analysis of its isotopic composition- from multilevel undisturbed soil samples through significant depths within the unsaturated zone column, enables the dating of the groundwater age through the determination of its isotopic composition. The in-situ investigation of the unsaturated zone is complemented by the determination of high resolution temperature profiles. The installation of the pilot TDR sensors is achieved by using direct push methods at significant depths within the unsaturated zone, providing continuous readings of the soil moisture content. The direct push methods are also ideal for multilevel sampling of undisturbed -without using any drilling fluids which affect the isotopic composition of the containing pore water- soil and consequent extraction of the included pore water for further isotopic determination. The pore water is extracted by applying the method of azeotropic distillation; a method which has the least isotopic fractionation effects on groundwater samples. The determination of different isotopic signals such as 18O, 2H, 3H, and 36Cl, aims to the investigation of groundwater transit

  8. A simple microfluidic platform for rapid and efficient production of the radiotracer [18F]fallypride.

    Science.gov (United States)

    Zhang, Xin; Liu, Fei; Knapp, Karla-Anne; Nickels, Michael L; Manning, H Charles; Bellan, Leon M

    2018-05-01

    Herein, we report the development of a simple, high-throughput and efficient microfluidic system for synthesizing radioactive [18F]fallypride, a PET imaging radiotracer widely used in medical research. The microfluidic chip contains all essential modules required for the synthesis and purification of radioactive fallypride. The radiochemical yield of the tracer is sufficient for multiple animal injections for preclinical imaging studies. To produce the on-chip concentration and purification columns, we employ a simple "trapping" mechanism by inserting rows of square pillars with predefined gaps near the outlet of microchannel. Microspheres with appropriate functionality are suspended in solution and loaded into the microchannels to form columns for radioactivity concentration and product purification. Instead of relying on complicated flow control elements (e.g., micromechanical valves requiring complex external pneumatic actuation), external valves are utilized to control transfer of the reagents between different modules. The on-chip ion exchange column can efficiently capture [18F]fluoride with negligible loss (∼98% trapping efficiency), and subsequently release a burst of concentrated [18F]fluoride to the reaction cavity. A thin layer of PDMS with a small hole in the center facilitates rapid and reliable water evaporation (with the aid of azeotropic distillation and nitrogen flow) while reducing fluoride loss. During the solvent exchange and fluorination reaction, the entire chip is uniformly heated to the desired temperature using a hot plate. All aspects of the [18F]fallypride synthesis were monitored by high-performance liquid chromatography (HPLC) analysis, resulting in labelling efficiency in fluorination reaction ranging from 67-87% (n = 5). Moreover, after isolating unreacted [18F]fluoride, remaining fallypride precursor, and various by-products via an on-chip purification column, the eluted [18F]fallypride is radiochemically pure and of a sufficient

  9. Determination of the δ2H and δ18O of soil water and water in plant matter; RSIL lab code 1700

    Science.gov (United States)

    Revesz, Kinga M.; Buck, Bryan; Coplen, Tyler B.

    2012-01-01

    The purpose of the Reston Stable Isotope Laboratory lab code 1700 is to determine the δ2H/1H), abbreviated as δ2H, and the δ18O/16O), abbreviated as δ18O, of soil water and water in plant matter. This method is based on the observation that water and toluene form an azeotropic mixture at 84.1 °C. This temperature is substantially lower than the boiling points of water (100 °C) and toluene (110 °C), but water and toluene are immiscible at ambient temperature. The water content of a soil or plant is determined by weighing, drying, and reweighing a small amount of sample. Sufficient sample to collect 3 to 5 milliliters of water after distillation is loaded into a distillation flask. Sufficient toluene is added so that the sample is immersed throughout the entire distillation to minimize evaporation of water, which would affect the δ2H and δ18O values. The mixture of sample and toluene is heated in a flask to its boiling point (84.1 °C) so that water from the sample and toluene can distill together into a specially designed collection funnel. The temperature of 84.1 °C is maintained until the water has been quantitatively transferred to the collection funnel, at which time the temperature is raised to the boiling point of the remaining component (toluene, 110 °C). The collection funnel is maintained at ambient temperature so that the sample water and toluene can be separated physically. After separation, the sample water is purified by addition of paraffin wax to the container with the sample water, capping the container, and heating to approximately 60 °C to melt the wax. Trace amounts of toluene will dissolve in the wax, purifying the sample water for isotopic analysis. The isotopic composition of the purified water is then determined by equilibration with gaseous hydrogen or carbon dioxide, followed by dual-inlet isotope-ratio mass spectrometry. Because laser-absorption spectrometry is sensitive to organic compounds, such as trace toluene remaining in

  10. Polimerizacija, toplinska stabilnost i mehanizam razgradnje kopolimera (metakril-dicikloheksiluree i (metakril-diizopropiluree sa stirenom i α-metilstirenom (Polymerization, Thermal Stability and Degradation Mechanism of (Methacryl-Dicyclohexylurea and (Methacryl-Diisopropylurea Copolymers with Styrene and α-Methylstyrene

    Directory of Open Access Journals (Sweden)

    Vuković, R.

    2006-05-01

    Full Text Available This paper describes the polymerization of N-acryl-N,N'-dicyclohexylurea (A-DCU, N-methacryl- N,N'-dicyclohexylurea (MA-DCU and N-methacryl-N,N'-diisopropylurea (MA-DiPrU monomers with styrene (St and α-methylstyrene (α-MeSt, thermal stability and degradation mechanism of prepared copolymers. Free-radical initiated polymerization was performed to low conversion by using dibenzoyl peroxyde (Bz2O2 in butanone at 70 °C under nitrogen stream. It was found that the pendant group in (methacrylic monomers have high influence to the polymerization as well as to the copolymer properties. A-DCU readily homopolymerized and copolymerized with St and r1,A-DCU = 0.72 and r2,α-MeSt= 0.07, while MA-DCU does not homopolymerized or copolymerized with α-MeSt under the same conditions, but copolymerized with St to randomly composed copolymers after a long heating of comonomers. Copolymers A-DCU with α-MeSt prepared under different monomer-to monomer-ratios in the feed have random composition with an azeotropic point at ratio of 0.75 (A-DCU to 0.25 (St. The initial rate of copolymerization indicates that the rate increases almost linearly with the increase of ratio of A-DCU in the comonomer feed. Reactivity ratios determined by the Kelen-Tüdös method are: r1,A-DCU = 0.72 and r2,α-MeSt = 0.07. Molar mass of copolymers increased from 8.5 to 30 (kg mol-1 when mole ratio of A-DCU to α-MeStin the feed increased from 0.1 to 0.9. Poly(A-DCU and copolymers with α-MeSt decomposed by two-step mechanism. Under TGA (nitrogen,10 °C min-1 conditions in the first step between 180 °C and 250 °C a quantitative yield of cyclohexylisocyanate (C6H11NCO separated by a decomposition of dicyclohexylurea (DCU. The thermally stable residue represented poly(acryl-cyclohexylamide, poly(A-CHA, and copolymer with α-MeSt, poly(A-CHA-co-α-MeSt. Glass transition temperature (Tg of poly(A-DCU was at 184 °C and Tg of residue, poly(A-CHA, was at 161 °C. Tg's of the copolymers are

  11. CHEMICAL ANALYSIS OF DENSE-GAS EXTRACTS FROM LIME FLOWERS

    Directory of Open Access Journals (Sweden)

    Demyanenko DV

    2015-04-01

    Full Text Available The purpose of this work was to make qualitative and quantitative analysis of phenolic biologically active substances (BAS in the extracts produced from lime flowers with condensed gases, using method of high-performance liquid chromatography (HPLC. Materials and methods: materials for this study were the extracts obtained by consequent processing of the herbal drug and marcs thereof with various condensed gases: difluorochloromethane (Freon R22, difluoromethane (Freon R32, azeotropic mixture of difluoromethane with pentafluoroethane (Freon 410A and freon-ammonium mixture. Extracts obtained with the latter were subjected to further fractionation by liquidliquid separation into hexane, chloroform, ethyl acetate and aqueous-alcohol phases. Besides, the supercritical СО2 extract, obtained from the herbal drug under rather strong conditions (at temperature 60°С and pressure 400 bar, was studied in our previous research. Presence of phenolic BAS and their quantity in the researched samples were determined by method of HPLC with UVspectrometric detection. Results and discussion: It has been found that Freon R22 extracted trace amounts of rutin from lime flowers – its content was only 0.08% of the total extract weight. On the other hand, Freons R32 and R410А showed good selectivity to moderately polar BAS of lime flowers (derivatives of flavonoids and hydroxycinnamic acids: in particular, the extract obtained with freon R32 contained about 1.3% of the total phenolic substances, and it was the only one of the investigated condensed gases used by us which took the basic flavonoid of lime flowers tiliroside – its content was 0.42% of extract weight. Also Freons R32 and R410А were able to withdraw another compound dominating among phenolic substances in the yielded extracts. Its quantity was rather noticeable – up to 0.87% of extract weight. This substance was not identified by existing database, but its UV-spectrum was similar to those of

  12. Surface modified carbon nanoparticle papers and applications on polymer composites

    Science.gov (United States)

    Ouyang, Xilian

    a tensile strength of 360 MPa and an electrical conductivity of 4.45x104 S/m, much better than any similar materials reported in the literature. However, they didn't show good gas barrier properties. Since the GO paper presented zero gas permeability for both CO2 and H2, a hybrid paper fabrication approach was proposed to combine the advantages of individual GP and GO papers. This was done by filtering GP and GO layer by layer with GO sandwiched in between two layers of GP. The resulting hybrid papers showed high mechanical tensile strength and EMI shielding effectiveness that are close to GP nanopapers, and excellent gas barrier properties that comparable to GO nanopapers. The GP, GO and GP-Go-GP hybrid nanopapers have been successfully coated onto the thermoplastic surface by thermal lamination and injection molding. In the third part, the effect of PANI-CNF nanopapers and a chelating agent, 2, 4- Pentanedione (2, 4-P) on kinetics of an in-mold coating (IMC) resin was investigated. The results showed that the presence of amine functionalized carbon nanoparticles tended to retard the resin reaction, while 2, 4-P was capable of promoting the redox based free radical polymerization by forming a complex with the cobalt promoter in the initiation step. In order to understand the chemical and physical changes during the resin curing process, kinetics study on two major resin components, i.e. hexanediol diacrylate (HDDA) and styrene (St), were carried out using an integrated analysis design: differential scanning calorimetry (DSC) for overall reaction, Fourier transform infrared spectroscopy (FTIR) for individual component reactions, and rheometry for liquid-solid transition during the reaction. The gel point of this radical polymerization resin system was found to be <2% which implied that most curing was conducted in the solid phase. The results showed that the double bonds in acrylates and St followed an azeotropic polymerization pattern.

  13. Energy savings in distillation via identification of useful configurations

    Science.gov (United States)

    Shah, Vishesh Hemanshu

    Recent market and environmental forces require the rapid development of better and cheaper separation process solutions. Especially for multicomponent mixtures, there are several feasible separation process solutions differing significantly in cost and energy consumption in spite of carrying out the same overall process. Therefore a systematic method to identify and design optimal multicomponent separation sequences is needed instead of relying on the inventive activity of a few experienced engineers. Even for a commonly perceived "mature" technology such as distillation, until recently there has been an absence of systematic methods to (i) elucidate all possible separation configurations and to (ii) identify energy efficient candidates. This research aims to address these needs. In this work, we focus on the continuous distillation of non-azeotropic mixtures into n distinct composition final product streams. We develop a computationally efficient and easy-to-use mathematical framework to generate all the basic distillation configurations that use exactly (n-1) distillation columns to carry out this n-component separation. We extend the framework to generate all the additional distillation configurations with thermal coupling. We observe that the search space of distillation configurations grows very rapidly as the number of product streams increases. For instance, for a mixture to be separated into 4 product streams, we can choose from 18 basic configurations and 134 additional configurations with thermal coupling; while for a mixture to be separated into 8 product streams, we can choose from 15,767,207 basic configurations and 29,006,926,681 additional configurations with thermal coupling. The next challenge for a process engineer is to be able to quickly prune the search space to a handful of attractive energy efficient candidates that can be studied in greater detail. To this effect, we develop a quick screening optimization tool that identifies configurations

  14. Synthesis, thermolysis and pyrolysis of group IV metal pinacolates: The impact of a vicinal diol as a supporting ligand for molecular precursors

    Science.gov (United States)

    Zechmann, Cecilia A.

    In an effort to investigate the suitability of an alternative ligand class for molecular precursors, the following studies were carried out: (1) New zirconium species were obtained by reaction of zirconium isopropoxide alcoholate, Zr2(OiPr)8(HOiPr) 2, with pinacol (HOCMe2CMe2OH). Control of reaction stoichiometries followed by azeotropic distillation of evolved isopropanol led to the successful preparation of a range of homo- and heteroleptic trinuclear species, Zr3(OCMe2CMe2O)2(O iPr)8(HOiPr)2, Zr3(OCMe 2CMe2O)4(OCMe2CMe2OH) 2(OiPr)2, and Zr3(OCMe2CMe 2O)4(OCMe2CMe2OH)4. Dinuclear products could be obtained by carrying out the reactions at room temperature or by addition of excess pinacol (in which case Zr2(OCMe2 CMe2O)2(OCMe2CMe2OH) 4 was the product). (2) Similar reactions between Ti(Oi Pr)4 and pinacol gave dinuclear products under all conditions. Both homo- (Ti2(OiPr)2(OCMe2CMe 2O)2(OCMe2CMe2OH)2) and heterometallic complexes (Ti2(OCMe2CMe2O) 2(OCMe2CMe2OH)4) were characterized. (3) Controlled addition of water to either of the isolated titanium pinacolates gave Ti3(mu3-O)(OCMe2CMe2O) 4(OCMe2CMe2OH)2. (4) Reaction of zirconium pinacolates with water led to the isolation of Zr4(mu 2-O)(OCMe2CMe2O)4(OCMe2CMe 2OH)6 and Zr6(mu3-O)4(H 2O)2(OCMe2CMe2O)5(OCMe 2CMe2OH)5. 17O NMR studies aided in the investigation of active equilibria and reversibility of hydrolysis. (5) The thermolysis of Zr2(OCMe2CMe2O) 2(OCMe2CMe2OH)4 gave ZrO2 in a mixture of crystalline phases. GC-MS and NMR analysis of the volatiles revealed 4 C6 products as well as two ligand coupled products. Isotope-labeling studies were carried out to probe the mechanisms by which the organic products were formed. (6) Reaction of Zr2(OCMe 2CMe2O)2(OCMe2CMe2OH) 4 with Ti(OiPr)4 gives (OiPr) 2TiZr2(OCMe2CMe2O)4(OCMe 2CMe2OH)2 which reacts with a second equivalent of Ti(OiPr)4 to give (OiPr) 4Ti2Zr2(OCMe2CMe2O) 6. (7) Reaction of Li{N(SiMe3)2}·Et 2O or Na{N(SiMe3)2}·x THF with Zr2(OCMe2CMe2O)2(OCMe 2CMe2OH)4

  15. Design methodology for integrated downstream separation systems in an ethanol biorefinery

    Science.gov (United States)

    Mohammadzadeh Rohani, Navid

    Energy security and environmental concerns have been the main drivers for a historic shift to biofuel production in transportation fuel industry. Biofuels should not only offer environmental advantages over the petroleum fuels they replace but also should be economically sustainable and viable. The so-called second generation biofuels such as ethanol which is the most produced biofuel are mostly derived from lignocellulosic biomasses. These biofuels are more difficult to produce than the first generation ones mainly due to recalcitrance of the feedstocks in extracting their sugar contents. Costly pre-treatment and fractionation stages are required to break down lignocellulosic feedstocks into their constituent elements. On the other hand the mixture produced in fermentation step in a biorefinery contains very low amount of product which makes the subsequent separation step more difficult and more energy consuming. In an ethanol biorefinery, the dilute fermentation broth requires huge operating cost in downstream separation for recovery of the product in a conventional distillation technique. Moreover, the non-ideal nature of ethanol-water mixture which forms an iseotrope at almost 95 wt%, hinders the attainment of the fuel grade ethanol (99.5 wt%). Therefore, an additional dehydration stage is necessary to purify the ethanol from its azeotropic composition to fuel-grade purity. In order to overcome the constraint pertaining to vapor-liquid equilibrium of ethanol-water separation, several techniques have been investigated and proposed in the industry. These techniques such as membrane-based technologies, extraction and etc. have not only sought to produce a pure fuel-grade ethanol but have also aimed at decreasing the energy consumption of this energy-intensive separation. Decreasing the energy consumption of an ethanol biorefinery is of paramount importance in improving its overall economics and in facilitating the way to displacing petroleum transportation fuel