WorldWideScience

Sample records for axoplasmic pressure waves

  1. Pressure wave model for action potential propagation in excitable cells

    CERN Document Server

    Rvachev, M M

    2003-01-01

    Speed of propagation of small-amplitude pressure waves through the cytoplasmic interior of myelinated and unmyelinated axons of different diameters is theoretically estimated and is found to generally agree with the action potential (AP) conduction velocities. This remarkable coincidence allows to surmise a model in which AP spread along axon is propelled not by straggling ionic currents as in the widely accepted local circuit theory, but by mechanoactivation of the membrane ion channels by a traveling pressure pulse. Hydraulic pulses propagating in the viscous axoplasm are calculated to decay over ~1 mm distances, and it is further hypothesized that it is the role of influxing during the AP calcium ions to activate membrane skeletal protein network attached to the membrane cytoplasmic side for a brief radial contraction amplifying the pressure pulse and preventing its decay. The model correctly predicts that the AP conduction velocity should vary as the one-half power of axon diameter for large unmyelinated ...

  2. Effect of vinpocetine on retrograde axoplasmic transport.

    Science.gov (United States)

    Knyihar-Csillik, Elizabeth; Vecsei, Laszlo; Mihaly, Andras; Fenyo, Robert; Farkas, Ibolya; Krisztin-Peva, Beata; Csillik, Bertalan

    2007-01-01

    Vinpocetine, a derivate of vincamine, is widely used in the clinical pharmacotherapy of cerebral circulatory diseases. Herewith we report on a novel effect of vinpocetine: inhibition of retrograde axoplasmic transport of nerve growth factor (NGF) in the peripheral nerve. Blockade of retrograde transport of NGF results in transganglionic degenerative atrophy (TDA) in the segmentally related ipsilateral superficial spinal dorsal horn, which is characterized by depletion of the marker enzymes fluoride-resistant acid phosphatase (FRAP) and thiamine monophosphatase (TMP). At the same time, pain-related neuropeptides such as substance P (SP) and calcitonin gene-related peptide (CGRP), are depleted from lamina I-III from the segmentally related, ipsitateral Rolando substance of the spinal cord. On the basis of these experiments it is suggested that vinpocetine may result in a locally restricted decrease of nociception, that might be useful in clinical treatment of intractable pain. Pilot self-experiments support this assumption. PMID:17319607

  3. Effects of pressure waves

    Science.gov (United States)

    1977-01-01

    Two parameters, side on overpressure and side on impulse loads, and their application to the determination of structural damage to buildings and vehicles in the vicinity of an explosion are investigated. Special consideration was given to what constitutes damage and what level of damage is acceptable. Solutions were sorted through the examination of glass breakage, curve fit to bomb damage, overturning of marginal structures (buses, trucks, mobile homes) subject to toppling, and initiation of yielding in either beam or plate structural components. Three different empirical pressure versus impulse diagrams were presented - the first is for minor structural damage involving wrenched joints and partitions, the second is for major damage structural damage with load bearing members at least partially destroyed, and the third is for 50% to 75% of the building demolished. General guidelines were obtained from the results when the accurate structural details are unknown.

  4. Wave effects on a pressure sensor

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; DeSa, E.J.; Desa, E.; McKeown, J.; Peshwe, V.B.

    Wave flume experiments indicated that for waves propagating on quiescent waters the sensor's performance improved (i.e. the difference Delta P between the average hydrostatic and measured pressures was small and positive) when the inlet...

  5. Blast waves with cosmic-ray pressure

    International Nuclear Information System (INIS)

    The effects of cosmic-ray pressure on the dynamics of self-similar, spherical blast waves and driven waves are investigated on the assumptions that the ratio of relativistic cosmic-ray pressure to total pressure at the shock front is a constant w and the the cosmic rays and thermal gas evolve as independent adiabatic fluids in the postshock flow. For blast waves from a point explosion in a uniform medium, the cosmic rays dominate the pressure near r = 0 if w>0. The solutions show that, if w is small, the ratio of cosmic-ray energy to total energy in the blast wave is several times w. The solutions are used to make specific predictions of the pion-decay γ-ray flux from a blast wave as a function of w. If w is large, the predicted fluxes from supernova remnants are close to the current observational limits. It is also noted that cosmic rays may limit the compression in the radiative shock waves of supernova remnants. The addition of cosmic pressure does not change the geneal nature of the driven wave self-similar solutions. The solutions are used to predict the pion-decay γ-ray flux from a young Type II supernova interacting with circumstellar material. Observations these γ-rays from extragalactic supernovae are not promising, but a galactic supernova could be very bright in γ-rays

  6. Blast wave parameters at diminished ambient pressure

    Science.gov (United States)

    Silnikov, M. V.; Chernyshov, M. V.; Mikhaylin, A. I.

    2015-04-01

    Relation between blast wave parameters resulted from a condensed high explosive (HE) charge detonation and a surrounding gas (air) pressure has been studied. Blast wave pressure and impulse differences at compression and rarefaction phases, which traditionally determine damage explosive effect, has been analyzed. An initial pressure effect on a post-explosion quasi-static component of the blast load has been investigated. The analysis is based on empirical relations between blast parameters and non-dimensional similarity criteria. The results can be directly applied to flying vehicle (aircraft or spacecraft) blast safety analysis.

  7. Transient flows and pressure waves in pipes

    International Nuclear Information System (INIS)

    Transient laminar flows and pressure-wave propagations in pipes connected with components, commonly known as water hammer, are analyzed. The system studied consists of a constant-pressure vessel, a uniform circular pipe, a valve between them, and a receiver vessel. A pressure-wave equation and a linearized velocity equation are derived from the equations of mass and momentum conservation. Waveform distortion due to viscous dissipation and pipe-wall elastic expansion is characterized by a dimensionless transmission number, K. The coefficients of the damping of the pressure waves were found to be related to the roots of the Bessel function J0. An exact solution of the pressure-wave equation was obtained numerically. The relationship between the distortion of a traveling wave and the transmission number K was studied. The problem is also calculated with a general-purpose computer code, COMMIX, which solves the exact mass conservation equation and Navier-Stokes equations. The COMMIX calculational results agreed well with the analytical solutions

  8. Modulated pressure waves in large elastic tubes.

    Science.gov (United States)

    Mefire Yone, G R; Tabi, C B; Mohamadou, A; Ekobena Fouda, H P; Kofané, T C

    2013-09-01

    Modulational instability is the direct way for the emergence of wave patterns and localized structures in nonlinear systems. We show in this work that it can be explored in the framework of blood flow models. The whole modified Navier-Stokes equations are reduced to a difference-differential amplitude equation. The modulational instability criterion is therefore derived from the latter, and unstable patterns occurrence is discussed on the basis of the nonlinear parameter model of the vessel. It is found that the critical amplitude is an increasing function of α, whereas the region of instability expands. The subsequent modulated pressure waves are obtained through numerical simulations, in agreement with our analytical expectations. Different classes of modulated pressure waves are obtained, and their close relationship with Mayer waves is discussed. PMID:24089964

  9. Pressure measurements of nonplanar stress waves

    International Nuclear Information System (INIS)

    A useful gage has been developed for measuring pressure of nonplanar or obliquely incident stress waves. The measurements made with these gages are not as precise as direct strain gage measurements, but are very good considering the conditions under which these gages are used. We feel a need to further develop our ability to measure nonplanar stress waves in the 0 to 10 kbar range. Carbon or ytterbium will probably be chosen for the sensing element

  10. Propagation of Nonlinear Pressure Waves in Blood

    OpenAIRE

    Elgarayhi, A.; E. K. El-Shewy; MAHMOUD, ABEER A.; Elhakem, Ali A.

    2013-01-01

    The propagation of weakly nonlinear pressure waves in a fluid-filled elastic tube has been investigated. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation for small but finite amplitude. The effect of the final inner radius of the tube on the basic properties of the soliton wave was discussed. Moreover, the conditions of stability and the soliton existence via the potential and the corresponding phase portrait were computed. The applicability of the ...

  11. Accumulation of smooth endoplasmic reticulum in Alzheimer's disease: new morphological evidence of axoplasmic flow disturbances.

    OpenAIRE

    Richard, S; Brion, Jean Pierre; Couck, A. M.; Flament Durand, Jacqueline

    1989-01-01

    Numerous enlarged neurites and presynaptic terminals containing tubulovesicular profiles of smooth endoplasmic reticulum (SER) were observed in frontal biopsies from six patients with Alzheimer's disease. These accumulations of SER probably reflect disturbances of axoplasmic flows. In addition, curvilinear tubular inclusions similar to those characteristic of Farber's disease were found in one patient. Finally, accumulation of glycogen within neurites and enlarged mitochondria were observed i...

  12. Soluble axoplasm enriched from injured CNS axons reveals the early modulation of the actin cytoskeleton.

    Directory of Open Access Journals (Sweden)

    Patrick Garland

    Full Text Available Axon injury and degeneration is a common consequence of diverse neurological conditions including multiple sclerosis, traumatic brain injury and spinal cord injury. The molecular events underlying axon degeneration are poorly understood. We have developed a novel method to enrich for axoplasm from rodent optic nerve and characterised the early events in Wallerian degeneration using an unbiased proteomics screen. Our detergent-free method draws axoplasm into a dehydrated hydrogel of the polymer poly(2-hydroxyethyl methacrylate, which is then recovered using centrifugation. This technique is able to recover axonal proteins and significantly deplete glial contamination as confirmed by immunoblotting. We have used iTRAQ to compare axoplasm-enriched samples from naïve vs injured optic nerves, which has revealed a pronounced modulation of proteins associated with the actin cytoskeleton. To confirm the modulation of the actin cytoskeleton in injured axons we focused on the RhoA pathway. Western blotting revealed an augmentation of RhoA and phosphorylated cofilin in axoplasm-enriched samples from injured optic nerve. To investigate the localisation of these components of the RhoA pathway in injured axons we transected axons of primary hippocampal neurons in vitro. We observed an early modulation of filamentous actin with a concomitant redistribution of phosphorylated cofilin in injured axons. At later time-points, RhoA is found to accumulate in axonal swellings and also colocalises with filamentous actin. The actin cytoskeleton is a known sensor of cell viability across multiple eukaryotes, and our results suggest a similar role for the actin cytoskeleton following axon injury. In agreement with other reports, our data also highlights the role of the RhoA pathway in axon degeneration. These findings highlight a previously unexplored area of axon biology, which may open novel avenues to prevent axon degeneration. Our method for isolating CNS axoplasm

  13. A model for the diffusion of fluorescent probes in the septate giant axon of earthworm. Axoplasmic diffusion and junctional membrane permeability.

    OpenAIRE

    Brink, P. R.; Ramanan, S V

    1985-01-01

    The diffusion of the three fluorescent probes dichlorofluorescein, carboxyfluorescein, and Lucifer Yellow within the septate median giant axon of the earthworm was monitored using fluorometric methods. A diffusion model was derived that allowed computation of the apparent axoplasmic diffusion coefficient, junctional membrane permeability (septal membranes), and plasma membrane permeability for each probe. Dichlorofluorescein and carboxyfluorescein have similar apparent axoplasmic diffusion co...

  14. Jaime Alvarez and the case against slow axoplasmic transport: some epistemological reflections

    Directory of Open Access Journals (Sweden)

    ALEJANDRO SERANI-MERLO

    2001-01-01

    Full Text Available The 'slow axoplasmic transport theory' has been the prevailing view over the last forty years in order to explain the metabolic maintenance of neuronal axons and nerve endings. A significant amount of evidence against this theoretic interpretation of the existing experimental data has been presented by J. Alvarez, A. Giuditta and E. Koenig in an exhaustive review. They propose an alternative theoretical interpretation called the 'local synthesis model', integrating recent evidence for axon biology and regeneration. We present some epistemological considerations that reinforce the above criticisms and propositions.

  15. Axoplasmic transport of microtubule-associated proteins in the rat sciatic nerve

    International Nuclear Information System (INIS)

    32P-ATP was injected into the L5 dorsal root ganglion and axoplasmic transport of the phosphorylate MA proteins 2, microtubule-associated proteins 2, was observed. After the injection of 32P-ATP, the nerve was dissected out at prescribed time intervals and sliced into 5-mm pieces. Each segment was electrophoresed on an SDS-polyacrylamide slab gel and subjected to autoradiography. A protein of 310,000 dalton was transported at a velocity of 6.6-10.6 mm/day in the axon with the electrophoretic mobility identical to that of MA proteins 2, one of the key components associated with the microtubules

  16. Wave-induced pore water pressure in marine cohesive soils

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Cyclic triaxial tests and numerical analyses were undertaken, in order to evaluate the wave-induced pore water pressure in seabed sediments in the Hangzhou Bay. The cyclic triaxial tests indicate that the rate of pore water pressure generation in cohesive soils decreases with time, and the development of the pore water pressure can be represented by a hyperbolic curve. Numerical analyses, taking into account the generation and dissipation of pore water pressure simultaneously, suggest that the pore water pressure buildup in cohesive soils may increase with time continuously until the pore water pressure ratio approaches to 1, or it may decrease after a certain time, which is controlled by drain conditions. These phenomena are different from those in sands. For waves with a return period of 100 a in the Hangzhou Bay, ifthe wave duration is more than 60 h, then the pore water pressure ratio will be close to 1 and soil fabric failure will take place.

  17. Surface wave propagation characteristics in atmospheric pressure plasma column

    International Nuclear Information System (INIS)

    In the typical experiments of surface wave sustained plasma columns at atmospheric pressure the ratio of collision to wave frequency (ν/ω) is much greater than unity. Therefore, one might expect that the usual analysis of the wave dispersion relation, performed under the assumption ν/ω = 0, cannot give adequate description of the wave propagation characteristics. In order to study these characteristics we have analyzed the wave dispersion relationship for arbitrary ν/ω. Our analysis includes phase and wave dispersion curves, attenuation coefficient, and wave phase and group velocities. The numerical results show that a turning back point appears in the phase diagram, after which a region of backward wave propagation exists. The experimentally observed plasma column is only in a region where wave propagation coefficient is higher than the attenuation coefficient. At the plasma column end the electron density is much higher than that corresponding to the turning back point and the resonance

  18. Surface wave propagation characteristics in atmospheric pressure plasma column

    Science.gov (United States)

    Pencheva, M.; Benova, E.; Zhelyazkov, I.

    2007-04-01

    In the typical experiments of surface wave sustained plasma columns at atmospheric pressure the ratio of collision to wave frequency (ν/ω) is much greater than unity. Therefore, one might expect that the usual analysis of the wave dispersion relation, performed under the assumption ν/ω = 0, cannot give adequate description of the wave propagation characteristics. In order to study these characteristics we have analyzed the wave dispersion relationship for arbitrary ν/ω. Our analysis includes phase and wave dispersion curves, attenuation coefficient, and wave phase and group velocities. The numerical results show that a turning back point appears in the phase diagram, after which a region of backward wave propagation exists. The experimentally observed plasma column is only in a region where wave propagation coefficient is higher than the attenuation coefficient. At the plasma column end the electron density is much higher than that corresponding to the turning back point and the resonance.

  19. Surface wave propagation characteristics in atmospheric pressure plasma column

    Energy Technology Data Exchange (ETDEWEB)

    Pencheva, M [Faculty of Physics, Sofia University, 5 James Bourchier Blvd., BG-1164 Sofia (Bulgaria); Benova, E [Department for Language Teaching and International Students, Sofia University, 27 Kosta Loulchev Street, BG-1111 Sofia (Bulgaria); Zhelyazkov, I [Faculty of Physics, Sofia University, 5 James Bourchier Blvd., BG-1164 Sofia (Bulgaria)

    2007-04-15

    In the typical experiments of surface wave sustained plasma columns at atmospheric pressure the ratio of collision to wave frequency ({nu}/{omega}) is much greater than unity. Therefore, one might expect that the usual analysis of the wave dispersion relation, performed under the assumption {nu}/{omega} = 0, cannot give adequate description of the wave propagation characteristics. In order to study these characteristics we have analyzed the wave dispersion relationship for arbitrary {nu}/{omega}. Our analysis includes phase and wave dispersion curves, attenuation coefficient, and wave phase and group velocities. The numerical results show that a turning back point appears in the phase diagram, after which a region of backward wave propagation exists. The experimentally observed plasma column is only in a region where wave propagation coefficient is higher than the attenuation coefficient. At the plasma column end the electron density is much higher than that corresponding to the turning back point and the resonance.

  20. Numerical Study of Unsteady Supercavitation Perturbed by a Pressure Wave

    Science.gov (United States)

    Zheng, J. G.; Khoo, B. C.

    2016-06-01

    The unsteady features of supercavitation disturbed by an introduced pressure wave are investigated numerically using a one-fluid cavitation model. The supercavitating flow is assumed to be the homogeneous mixture of liquid and vapour which are locally under both kinetic and thermodynamic equilibrium. The compressibility effects of liquid water are taken into account to model the propagation of pressure wave through flow and its interaction with supercavitation bubble. The interaction between supercavity enveloping an underwater flat-nose cylinder and pressure wave is simulated and the resulting unsteady behavior of supercavitation is illustrated. It is observed that the supercavity will become unstable under the impact of the pressure wave and may collapse locally, which depends on the strength of perturbation. The huge pressure surge accompanying the collapse of supercavitation may cause the material erosion, noise, vibration and efficiency loss of operating underwater devices.

  1. The Ballistic Pressure Wave Theory of Handgun Bullet Incapacitation

    CERN Document Server

    Courtney, Michael

    2008-01-01

    This paper presents a summary of seven distinct chains of evidence, which, taken together, provide compelling support for the theory that a ballistic pressure wave radiating outward from the penetrating projectile can contribute to wounding and incapacitating effects of handgun bullets. These chains of evidence include the fluid percussion model of traumatic brain injury, observations of remote ballistic pressure wave injury in animal models, observations of rapid incapacitation highly correlated with pressure magnitude in animal models, epidemiological data from human shootings showing that the probability of incapacitation increases with peak pressure magnitude, case studies in humans showing remote pressure wave damage in the brain and spinal cord, and observations of blast waves causing remote brain injury.

  2. The Measurement and Analysis of Pressure Square Wave Generator

    International Nuclear Information System (INIS)

    Investigating the dynamic characteristics is a significant study for actual hydraulic pressure system because the dynamic environment is used more often than static one. A dynamic pressure generator is called pressure square wave generator (PSWG) that developed in our team and generate square-like waveform and change testing pressure and frequency form 0.1 to 5 MPa and 12 to 2 KHz, respectively. In this study, dynamic performance of PSWG was investigated under different testing tangent velocity of rotor of PSWG including detailed transient response of a pressure square-like wave, rise time and deviation of magnitude. Results show that the tangent velocity of the rotor of PSWG affects the transient response of pressure square-like wave form. The desired transient response can be obtained when the tangent velocity is larger than 0.5 m/s. Furthermore, the larger the tangent velocity used, the smaller the rise time will be

  3. Damping Pressure Pulsations in a Wave-Powered Desalination System

    OpenAIRE

    Padhye, Nikhil; Torres, James, Ph. D. Massachusetts Institute of Technology.; Thomas, Levon; Ljubicic, Dean M.; Kassner, Mortiz P.; Slocum, Alexander H.; Hopkins, Brandon James; Greenlee, Alison S.

    2014-01-01

    Wave-driven reverse osmosis desalination systems can be a cost-effective option for providing a safe and reliable source of drinking water for large coastal communities. Such systems usually require the stabilization of pulsating pressures for desalination purposes. The key challenge is to convert a fluctuating pressure flow into a constant pressure flow. To address this task, stub-filters, accumulators, and radially elastic-pipes are considered for smoothing the pressure fluctuations in the ...

  4. Novel wave power analysis linking pressure-flow waves, wave potential, and the forward and backward components of hydraulic power.

    Science.gov (United States)

    Mynard, Jonathan P; Smolich, Joseph J

    2016-04-15

    Wave intensity analysis provides detailed insights into factors influencing hemodynamics. However, wave intensity is not a conserved quantity, so it is sensitive to diameter variations and is not distributed among branches of a junction. Moreover, the fundamental relation between waves and hydraulic power is unclear. We, therefore, propose an alternative to wave intensity called "wave power," calculated via incremental changes in pressure and flow (dPdQ) and a novel time-domain separation of hydraulic pressure power and kinetic power into forward and backward wave-related components (ΠP±and ΠQ±). Wave power has several useful properties:1) it is obtained directly from flow measurements, without requiring further calculation of velocity;2) it is a quasi-conserved quantity that may be used to study the relative distribution of waves at junctions; and3) it has the units of power (Watts). We also uncover a simple relationship between wave power and changes in ΠP±and show that wave reflection reduces transmitted power. Absolute values of ΠP±represent wave potential, a recently introduced concept that unifies steady and pulsatile aspects of hemodynamics. We show that wave potential represents the hydraulic energy potential stored in a compliant pressurized vessel, with spatial gradients producing waves that transfer this energy. These techniques and principles are verified numerically and also experimentally with pressure/flow measurements in all branches of a central bifurcation in sheep, under a wide range of hemodynamic conditions. The proposed "wave power analysis," encompassing wave power, wave potential, and wave separation of hydraulic power provides a potent time-domain approach for analyzing hemodynamics. PMID:26873972

  5. Ultrahigh pressure laser-driven shock wave experiments

    International Nuclear Information System (INIS)

    We review recent laser-driven shock wave experiments, with a view toward assessing the prospects of making accurate physical properties measurements at ultrahigh pressures. Recent experimental results on the scaling of shock pressure with laser intensity and wavelength are presented, and preliminary impedance matching experiments are discussed

  6. Dual mode acoustic wave sensor for precise pressure reading

    Science.gov (United States)

    Mu, Xiaojing; Kropelnicki, Piotr; Wang, Yong; Randles, Andrew Benson; Chuan Chai, Kevin Tshun; Cai, Hong; Gu, Yuan Dong

    2014-09-01

    In this letter, a Microelectromechanical system acoustic wave sensor, which has a dual mode (lateral field exited Lamb wave mode and surface acoustic wave (SAW) mode) behavior, is presented for precious pressure change read out. Comb-like interdigital structured electrodes on top of piezoelectric material aluminium nitride (AlN) are used to generate the wave modes. The sensor membrane consists of single crystalline silicon formed by backside-etching of the bulk material of a silicon on insulator wafer having variable device thickness layer (5 μm-50 μm). With this principle, a pressure sensor has been fabricated and mounted on a pressure test package with pressure applied to the backside of the membrane within a range of 0 psi to 300 psi. The temperature coefficient of frequency was experimentally measured in the temperature range of -50 °C to 300 °C. This idea demonstrates a piezoelectric based sensor having two modes SAW/Lamb wave for direct physical parameter—pressure readout and temperature cancellation which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications using the dual mode behavior of the sensor and differential readout at the same time.

  7. A Thoracic Mechanism of Mild Traumatic Brain Injury Due to Blast Pressure Waves

    OpenAIRE

    Courtney, Amy; Courtney, Michael

    2008-01-01

    The mechanisms by which blast pressure waves cause mild to moderate traumatic brain injury (mTBI) are an open question. Possibilities include acceleration of the head, direct passage of the blast wave via the cranium, and propagation of the blast wave to the brain via a thoracic mechanism. The hypothesis that the blast pressure wave reaches the brain via a thoracic mechanism is considered in light of ballistic and blast pressure wave research. Ballistic pressure waves, caused by penetrating b...

  8. Identification of a MAP 2-like ATP-binding protein associated with axoplasmic vesicles that translocate on isolated microtubules

    OpenAIRE

    1986-01-01

    Axoplasmic vesicles were purified and observed to translocate on isolated microtubules in an ATP-dependent, trypsin-sensitive manner, implying that ATP-binding polypeptides essential for force generation were present on the vesicle surface. To identify these proteins [alpha 32P]8-azidoadenosine 5'-triphosphate ([alpha 32P]8-N3ATP), a photoaffinity analogue of ATP, was used. The results presented here identify and characterize a vesicle-associated polypeptide having a relative molecular mass o...

  9. Influence of ambient air pressure on impact pressure caused by breaking waves

    NARCIS (Netherlands)

    Moutzouris, C.

    1979-01-01

    Engineers are interested in the dynamics of the interface waterstructure. In case of breaking of water waves on a structure high positive and sometimes negative pressures of very short duration occur. Not only the maxima and minima of the pressures on the structure are important to a designing engin

  10. Dynamic Wave Pressures on Deeply Embedded Large Cylindrical Structures due to Random Waves

    Institute of Scientific and Technical Information of China (English)

    刘海笑; 唐云; 周锡礽

    2003-01-01

    The response of dynamic wave pressures on structures would be more complicated and bring about new phenomena under the dynamic interaction between soil and structure. In order to better understand the response characteristics on deeply embedded large cylindrical structures under random waves, and accordingly to offer valuable findings for engineering, the authors designed wave flume experiments to investigate comparatively dynamic wave pressures on a single and on continuous cylinders with two different embedment depths in response to two wave spectra.The time histories of the water surface elevation and the corresponding dynamic wave pressures exerted on the cylinder were analyzed in the frequency domain. By calculating the transfer function and spectral density for dynamic wave pressures along the height and around the circumference of the cylinder, experimental results of the single cylinder were compared with the theoretical results based on the linear diffraction theory, and detailed comparisons were also carried out between the single and continuous cylinders. Some new findings and the corresponding analysis are reported in present paper. The investigation on continuous cylinders will be used in particular for reference in engineering applications because information is scarce on studying such kind of problem both analytically and experimentally.

  11. Pressure induced Superconductivity in the Charge Density Wave Compound Tritelluride

    Energy Technology Data Exchange (ETDEWEB)

    Hamlin, J.J.; Zocco, D.A.; Sayles, T.A.; Maple, M.B.; /UC, Davis; Chu, J.-H.; Fisher, I.R.; /Stanford U., Geballe Lab.

    2010-02-15

    A series of high-pressure electrical resistivity measurements on single crystals of TbTe{sub 3} reveal a complex phase diagram involving the interplay of superconducting, antiferromagnetic and charge density wave order. The onset of superconductivity reaches a maximum of almost 4 K (onset) near {approx} 12.4 GPa.

  12. Measurement of Blast Waves from Bursting Pressureized Frangible Spheres

    Science.gov (United States)

    Esparza, E. D.; Baker, W. E.

    1977-01-01

    Small-scale experiments were conducted to obtain data on incident overpressure at various distances from bursting pressurized spheres. Complete time histories of blast overpressure generated by rupturing glass spheres under high internal pressure were obtained using eight side-on pressure transducers. A scaling law is presented, and its nondimensional parameters are used to compare peak overpressures, arrival times, impulses, and durations for different initial conditions and sizes of blast source. The nondimensional data are also compared, whenever possible, with results of theoretical calculations and compiled data for Pentolite high explosive. The scaled data are repeatable and show significant differences from blast waves generated by condensed high-explosives.

  13. Attenuation characteristics of nonlinear pressure waves propagating in pipes

    Science.gov (United States)

    Shih, C. C.

    1974-01-01

    A series of experiments was conducted to investigate temporal and spatial velocity distributions of fluid flow in 3-in. open-end pipes of various lengths up to 210 ft, produced by the propagation of nonlinear pressure waves of various intensities. Velocity profiles across each of five sections along the pipes were measured as a function of time with the use of hot-film and hot-wire anemometers for two pressure waves produced by a piston. Peculiar configurations of the velocity profiles across the pipe section were noted, which are uncommon for steady pipe flow. Theoretical consideration was given to this phenomenon of higher velocity near the pipe wall for qualitative confirmation. Experimentally time-dependent velocity distributions along the pipe axis were compared with one-dimensional theoretical results obtained by the method of characteristics with or without diffusion term for the purpose of determining the attenuation characteristics of the nonlinear wave propagation in the pipes.

  14. Calculations of pressure wave bursts in steam pipes

    International Nuclear Information System (INIS)

    Using as an example the live steam system of a boiling water reactor, the pressure wave propagation phenomena resulting from turbine trips in response to the by-pass system are described. The results of a previous calculation, using linearised characteristics methods are compared with those of a calculation using a differential procedure based on results of measurements. In a second example the periodic operation of safety valves of the steam generating system of a sodium cooled reactor is studied. (orig.)

  15. Evaluation and performance enhancement of a pressure transducer under flows, waves, and a combination of flows and waves

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, J.A.E.; Foden, P.; Taylor, K.; McKeown, J.; Desa, E.

    The performance of a pressure transducer, with its inlet attached to differing hydromechanical front ends, has been evaluated in flow flume and wave flume experiments in which laminar and turbulent flows, and regular progressive gravity waves...

  16. Shock wave velocity and shock pressure for low density powders : A novel approach

    NARCIS (Netherlands)

    Dijken, D.K.; Hosson, J.Th.M. De

    1994-01-01

    A novel approach is presented to predict the shock wave velocity as well as the shock wave pressure in powder materials. It is shown that the influence of the specific volume behind the shock wave on shock wave velocity and shock pressure decreases with decreasing initial powder density. The new mod

  17. SHOCK-WAVE VELOCITY AND SHOCK PRESSURE FOR LOW-DENSITY POWDERS - A NOVEL-APPROACH

    NARCIS (Netherlands)

    DIJKEN, DK; DEHOSSON, JTM

    1994-01-01

    A novel approach is presented to predict the shock wave velocity as well as the shock wave pressure in powder materials. It is shown that the influence of the specific volume behind the shock wave on shock wave velocity and shock pressure decreases with decreasing initial powder density. The new mod

  18. Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Klein, Spencer

    2009-06-04

    We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at {approx}5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.

  19. Nonlinear Modeling and Analysis of Pressure Wave inside CEUP Fuel Pipeline

    Directory of Open Access Journals (Sweden)

    Qaisar Hayat

    2014-01-01

    Full Text Available Operating conditions dependent large pressure variations are one of the working characteristics of combination electronic unit pump (CEUP fuel injection system for diesel engines. We propose a precise and accurate nonlinear numerical model of pressure inside HP fuel pipeline of CEUP using wave equation (WE including both viscous and frequency dependent frictions. We have proved that developed hyperbolic approximation gives more realistic description of pressure wave as compared to classical viscous damped wave equation. Frictional effects of various frequencies on pressure wave have been averaged out across valid frequencies to represent the combined effect of all frequencies on pressure wave. Dynamic variations of key fuel properties including density, acoustic wave speed, and bulk modulus with varying pressures have also been incorporated. Based on developed model we present analysis on effect of fuel pipeline length on pressure wave propagation and variation of key fuel properties with both conventional diesel and alternate fuel rapeseed methyl ester (RME for CEUP pipeline.

  20. Mitigation of nociception via transganglionic degenerative atrophy: possible mechanism of vinpocetine-induced blockade of retrograde axoplasmic transport.

    Science.gov (United States)

    Csillik, Bertalan; Mihály, András; Krisztin-Péva, Beata; Farkas, Ibolya; Knyihár-Csillik, Elizabeth

    2008-01-01

    Vinpocetine, a derivative of vincamine, widely used in the clinical pharmacotherapy of cerebral circulatory diseases, inhibits retrograde axoplasmic transport of nerve growth factor (NGF) in the peripheral nerve, resulting in transganglionic degenerative atrophy (TDA) in the related ipsilateral superficial spinal dorsal horn, as shown in our previous publications. TDA induced by vinpocetine has been demonstrated to be followed by depletion of the marker enzyme fluoride-resistant acid phosphatase (FRAP) and its isoenzyme thiamine monophosphatase (TMP), and by the decrease in the pain-related neuropeptide substance P from laminae I-II-(III) from the segmentally related, ipsilateral substance of Rolando of the spinal cord. In the present paper, we report on the behavioral effects of perineurally administered vinpocetine. Nociception, induced by intraplantar injection of formalin, was mitigated by vinpocetine; increased expression of c-fos in the ipsilateral, segmentally related upper dorsal horn was also prevented. Since vinpocetine is not a microtubule inhibitor, and its chemical structure differs from that of vincristin and vinblastin (used formerly by us in the therapy of intractable, chronic neuropathic pain), its mode of action is enigmatic. We assume that the effect of vinpocetine in blocking retrograde axoplasmic transport of NGF might be related to its interaction with membrane trafficking proteins, such as signalling endosomes and the endocytosis-mediating "pincher" protein. Temporary, locally restricted decrease of nociception, induced by vinpocetine, might be useful in the clinical treatment of intractable, chronic neuropathic pain, since vinpocetine can successfully be applied by transcutaneous iontophoresis. PMID:18413267

  1. Tunnel pressure waves - A smartphone inquiry on rail travel

    Science.gov (United States)

    Müller, Andreas; Hirth, Michael; Kuhn, Jochen

    2016-02-01

    When traveling by rail, you might have experienced the following phenomenon: The train enters a tunnel, and after some seconds a noticeable pressure change occurs, as perceived by your ears or even by a rapid wobbling of the train windows. The basic physics is that pressure waves created by the train travel down the tunnel, are reflected at its other end, and travel back until they meet the train again. Here we will show (i) how this effect can be well understood as a kind of large-scale outdoor case of a textbook paradigm, and (ii) how, e.g., a prediction of the tunnel length from the inside of a moving train on the basis of this model can be validated by means of a mobile phone measurement.

  2. Impact Pressure of Incident Regular Waves and Irregular Waves on the Subface of Open-Piled Structures

    Institute of Scientific and Technical Information of China (English)

    任冰; 王永学

    2004-01-01

    This paper presents the results of comparison of impact pressures on open-plied structures induced by regular waves and irregular waves in a laboratory channel. Regular waves with wave heights ranging from 0.1 ~ 0.2 m and periods ranging from 1.0 ~ 2.0 s are tested. The target spectrm for the irregular wave is JONSWAP spectrum. Irregular waves with significant wave heights in the range of 0.10 ~ 0.25 m and peak periods in the range of 1.0 ~ 2.0 s are tested. The relative clearance s/H1/3(H) is between - 0.1 and 0.4, s being the subface level of structure model above the still water level. Time series of impact pressure are analyzed to indicate whether the property of impact pressures induced by the regular wave significantly deviates from that by the irregular wave. The distribution of the impact pressure along the underside of the structure is compared for different types of incident waves. The effects of wave parameters, structure dimension and structure clearance on the impact pressure are also discussed.

  3. Wave-Induced Pressure Under an Internal Solitary Wave and Its Impact at the Bed

    Science.gov (United States)

    Rivera, Gustavo; Diamesis, Peter; Jenkins, James; Berzi, Diego

    2015-11-01

    The bottom boundary layer (BBL) under a mode-1 internal solitary wave (ISW) of depression propagating against an oncoming model barotropic current is examined using 2-D direct numerical simulation based on a spectral multidomain penalty method model. Particular emphasis is placed on the diffusion into the bed of the pressure field driven by the wake and any near-bed instabilities produced under specific conditions. To this end, a spectral nodal Galerkin approach is used for solving the diffusion equation for the wave-induced pressure. At sufficiently high ISW amplitude, the BBL undergoes a global instability which produces intermittent vortex shedding from within the separation bubble in the lee of the wave. The interplay between the bottom shear stress field and pressure perturbations during vortex ejection events and the subsequent evolution of the vortices is examined. The potential for bed failure upon the passage of the ISW trough and implications for resuspension of bottom particulate matter are both discussed in the context of specific sediment transport models.

  4. Electron density measurements of high pressure argon surface wave plasmas

    International Nuclear Information System (INIS)

    The electron density of an argon standing surface wave plasma has been measured from Stark broadening of the hydrogen H/sub beta/ (4861A) line. The experimental setup, consisting of two coaxial cavities, was similar to that reported by Rogers and Asmussen. The plasma was generated by 45 watts per cavity of CW, 2.54 GHz microwave power in a 6 mm O.D. (4 mm I.D.) quartz tube. Experimental argon gas pressure varied from 50 torr to over one atmosphere. Small amounts (1-5%) of hydrogen added to the argon plasma were found to shorten the plasma by as much as 80%. Thus, the Stark measurements were made using trace amounts of hydrogen. The line width of H/sub beta/ was measured with a 1 meter Czerny-Turner grating spectrometer. The Stark broadening measurements revealed that the electron density is between 1013 and 1014 electrons/cc for a pressure range of 50 to 1000 torr. These measurements agree very well with the electron density determined from the wavelength of standing surface waves. The volume of the plasma was also measured photographically and average plasma power densities (absorbed power in the plasma divided by the plasma volume) was calculated

  5. Wave-induced stresses and pore pressures near a mudline

    Directory of Open Access Journals (Sweden)

    Andrzej Sawicki

    2008-12-01

    Full Text Available Conventional methods for the determination of water-wave induced stresses inseabeds composed of granular soils are based on Biot-type models, in which the soilskeleton is treated as an elastic medium. Such methods predict effective stressesin the soil that are unacceptable from the physical point of view, as they permittensile stresses to occur near the upper surface of the seabed. Therefore, in thispaper the granular soil is assumed to behave as an elastic-ideally plastic material,with the Coulomb-Mohr yield criterion adopted to bound admissible stress states inthe seabed. The governing equations are solved numerically by a~finite differencemethod. The results of simulations, carried out for the case of time-harmonicwater waves, illustrate the depth distributions of the excess pore pressures and theeffective stresses in the seabed, and show the shapes of zones of soil in the plastic state.~In particular, the effects on the seabed behaviour of suchparameters as the degree of pore water saturation, the soil permeability, and theearth pressure coefficient, are illustrated.

  6. Internal wave pressure, velocity, and energy flux from density perturbations

    Science.gov (United States)

    Allshouse, Michael R.; Lee, Frank M.; Morrison, Philip J.; Swinney, Harry L.

    2016-05-01

    Determination of energy transport is crucial for understanding the energy budget and fluid circulation in density varying fluids such as the ocean and the atmosphere. However, it is rarely possible to determine the energy flux field J =p u , which requires simultaneous measurements of the pressure and velocity perturbation fields p and u , respectively. We present a method for obtaining the instantaneous J (x ,z ,t ) from density perturbations alone: A Green's function-based calculation yields p ; u is obtained by integrating the continuity equation and the incompressibility condition. We validate our method with results from Navier-Stokes simulations: The Green's function method is applied to the density perturbation field from the simulations and the result for J is found to agree typically to within 1% with J computed directly using p and u from the Navier-Stokes simulation. We also apply the Green's function method to density perturbation data from laboratory schlieren measurements of internal waves in a stratified fluid and the result for J agrees to within 6 % with results from Navier-Stokes simulations. Our method for determining the instantaneous velocity, pressure, and energy flux fields applies to any system described by a linear approximation of the density perturbation field, e.g., to small-amplitude lee waves and propagating vertical modes. The method can be applied using our matlab graphical user interface EnergyFlux.

  7. A Comparison of Measured and Predicted Wave-Impact Pressures from Breaking and Non-breaking Waves

    CERN Document Server

    Fullerton, Anne M; Brewton, Susan; Brucker, Kyle A; O'Shea, Thomas T; Dommermuth, Douglas G

    2014-01-01

    Impact loads from waves on vessels and coastal structures are complex and may involve wave breaking, which has made these loads difficult to estimate numerically or empirically. Results from previous experiments have shown a wide range of forces and pressures measured from breaking and nonbreaking waves, with no clear trend between wave characteristics and the localized forces and pressures that they generate. In 2008, a canonical breaking wave impact data set was obtained at the Naval Surface Warfare Center, Carderock Division, by measuring the distribution of impact pressures of incident nonbreaking and breaking waves on one face of a cube. This experimental effort was sponsored by the Office of Naval Research (ONR), under the Dynamics of Interacting Platforms Program, Program Manager Dr. Ron Joslin. The effects of wave height, wavelength, face orientation, face angle, and submergence depth were investigated. Additionally, a limited number of runs were made at low forward speeds, ranging from about 0.5 to 2...

  8. An Inexpensive Arterial Pressure Wave Sensor and its application in different physiological condition

    CERN Document Server

    Sur, S; Sur, Shantanu

    2005-01-01

    Arterial Blood Pressure wave monitoring is considered to be important in assessment of cardiovascular system. We developed a novel pulse wave detection system using low frequency specific piezoelectric material as pressure wave sensor. The transducer detects the periodic change in the arterial wall diameter produced by pressure wave and the amplified signal after integration represents the pressure wave. The signal before integration is proportional to the rate of change of pressure wave and it not only reproduces the pressure waveform faithfully, but also its sharper nature helps to reliably detect the heart period variability (HPV). We have studied the position-specific (e.g. over carotid or radial artery) nature of change of this pulse wave signal (shape and amplitude) and also the changes at different physiological states.

  9. Effect of the initial pressure of multicomponent bubble media on the characteristics of detonation waves

    Science.gov (United States)

    Sychev, A. I.

    2016-05-01

    The effect of the initial pressure of multicomponent bubble media on the conditions of initiation, the structure, the velocity, and the pressure of detonation waves is experimentally studied. The variation of the initial pressure of a bubble medium is found to be an effective method to control the parameters of bubble detonation waves.

  10. Mass Spectrometry of Atmospheric Pressure Surface Wave Discharges

    Science.gov (United States)

    Ridenti, M. A.; Souza-Corrêa, J. A.; Amorim, J.

    2016-05-01

    By applying mass spectrometry techniques, we carried out measurements of ionic mass spectrum and their energy distribution in order to investigate an atmospheric argon discharge by using a surfatron surface-wave device. The mass and energy distribution measurements were performed with fixed flow rate (2.5 SLM) of pure argon gas (99.999%) and different Ar-O2 gas mixture compositions (99-1, 98-2 and 97-3). The mass spectra and energy distributions were recorded for Ar+, O+, O+ 2, N+ and N2 +. The axial distribution profiles of ionic mass and their energy were obtained for different experimental conditions as a function of the plasma length. The results showed that the peak of the positive ion energy distributions shifted to higher energies and also that the distribution width increased as the distance between the sampling orifice and the launcher gap was increased. It was also found that under certain experimental conditions the ion flux of atomic species were higher than the ion flux of their diatomic counterpart. The motivation of this study was to obtain a better understanding of a surface wave discharge in atmospheric pressure that may play a key role on new second generation biofuel technologies.

  11. Physical-chemical studies of proteins of squid nerve axoplasm, with special reference to the axon fibrous protein.

    Science.gov (United States)

    DAVISON, P F; TAYLOR, E W

    1960-03-01

    The proteins in the axoplasm of the squid, Dosidicus gigas, have been resolved electrophoretically into a major fraction including the fibrous protein, and possibly its structural subunits, and a minor fraction including at least two proteins with low sedimentation coefficients. A partially reversible change in the structure of the fibrous protein occurs under the action of 0.4 M salt or high pH. These experiments have been interpreted to indicate that in the intact fiber one, or a few, protofibrils are arranged helically or longitudinally along the fiber axis, and linked by electrostatic bonds. On the dissociation of these bonds the separated protofibrils assume a less extended form and sediment more rapidly than the intact fibers. Some material with a lower sedimentation rate is also released on the dissociation. This fraction may comprise smaller chain fragments. The volume fraction and the approximate refractive index of the fibers have been calculated. PMID:13814536

  12. Ballistic pressure wave contributions to rapid incapacitation in the Strasbourg goat tests

    CERN Document Server

    Courtney, M; Courtney, Amy; Courtney, Michael

    2007-01-01

    This article presents empirical models for the relationship between peak ballistic pressure wave magnitude and incapacitation times in the Strasbourg goat test data. Using a model with the expected limiting behavior at large and small pressure wave magnitudes, the average incapacitation times are highly correlated (R = 0.91) with peak pressure wave magnitude. The cumulative incapacitation probability as a function of time reveals both fast (t 5 s) incapacitation mechanisms. The fast incapacitation mechanism can be accurately modeled as a function of peak pressure wave magnitude. The slow incapacitation mechanism is presumably due to blood loss via damaged vascular tissue.

  13. THE EFFECTS OF AREA CONTRACTION ON SHOCK WAVE STRENGTH AND PEAK PRESSURE IN SHOCK TUBE

    Directory of Open Access Journals (Sweden)

    A. M. Mohsen

    2012-06-01

    Full Text Available This paper presents an experimental investigation into the effects of area contraction on shock wave strength and peak pressure in a shock tube. The shock tube is an important component of the short duration, high speed fluid flow test facility, available at the Universiti Tenaga Nasional (UNITEN, Malaysia. The area contraction was facilitated by positioning a bush adjacent to the primary diaphragm section, which separates the driver and driven sections. Experimental measurements were performed with and without the presence of the bush, at various diaphragm pressure ratios, which is the ratio of air pressure between the driver (high pressure and driven (low pressure sections. The instantaneous static pressure variations were measured at two locations close to the driven tube end wall, using high sensitivity pressure sensors, which allow the shock wave strength, shock wave speed and peak pressure to be analysed. The results reveal that the area contraction significantly reduces the shock wave strength, shock wave speed and peak pressure. At a diaphragm pressure ratio of 10, the shock wave strength decreases by 18%, the peak pressure decreases by 30% and the shock wave speed decreases by 8%.

  14. A Thoracic Mechanism of Mild Traumatic Brain Injury Due to Blast Pressure Waves

    CERN Document Server

    Courtney, Amy; 10.1016/j.mehy.2008.08.015

    2008-01-01

    The mechanisms by which blast pressure waves cause mild to moderate traumatic brain injury (mTBI) are an open question. Possibilities include acceleration of the head, direct passage of the blast wave via the cranium, and propagation of the blast wave to the brain via a thoracic mechanism. The hypothesis that the blast pressure wave reaches the brain via a thoracic mechanism is considered in light of ballistic and blast pressure wave research. Ballistic pressure waves, caused by penetrating ballistic projectiles or ballistic impacts to body armor, can only reach the brain via an internal mechanism and have been shown to cause cerebral effects. Similar effects have been documented when a blast pressure wave has been applied to the whole body or focused on the thorax in animal models. While vagotomy reduces apnea and bradycardia due to ballistic or blast pressure waves, it does not eliminate neural damage in the brain, suggesting that the pressure wave directly affects the brain cells via a thoracic mechanism. ...

  15. Calculation of pressure wave inside the steam line with turbine trip

    International Nuclear Information System (INIS)

    After turbine trip, a pressure wave phenomenon happens inside the steam lines and has disadvantageous effects on the steam generator and steam lines. To study this effect, the mathematical models for pressure wave calculation are developed and the calculating results are analyzed

  16. A mathematical model and numerical simulation of pressure wave in horizontal gas-liquid bubbly flow

    Institute of Scientific and Technical Information of China (English)

    HUANG Fei; BAI Bofeng; GUO Liejin

    2004-01-01

    By using an ensemble-averaged two-fluid model,with valid closure conditions of interfacial momentum exchange due to virtual mass force,viscous shear stress and drag force,a model for pressure wave propagation in a horizontal gas-liquid bubbly flow is proposed.According to the small perturbation theory and solvable condition of one-order linear uniform equations,a dispersion equation of pressure wave is induced.The pressure wave speed calculated from the model is compared and in good agreement with existing data.According to the dispersion equation,the propagation and attenuation of pressure wave are investigated systemically.The factors affecting pressure wave,such as void fraction,pressure,wall shear stress,perturbation frequency,virtual mass force and drag force,are analyzed.The result shows that the decrease in system pressure,the increase in void fraction and the existence of wall shear stress,will cause a decrease in pressure wave speed and an increase in the attenuation coefficient in the horizontal gas-liquid bubbly flow.The effects of perturbation frequency,virtual mass and drag force on pressure wave in the horizontal gas-liquid bubbly flow at low perturbation frequency are different from that at high perturbation frequency.

  17. Inner ear pressure changes following square wave intracranial or ear canal pressure manipulation in the same guinea pig

    NARCIS (Netherlands)

    Thalen, E; Wit, H; Segenhout, H; Albers, F

    2002-01-01

    Inner ear pressure was measured in scala tympani with a micropipette during square wave pressure manipulation of the intracranial compartment and, subsequently, of the external ear canal (EEC) in the same guinea pig. As expected, the combination of the cochlear aqueduct and the inner ear behaves as

  18. Links between traumatic brain injury and ballistic pressure waves originating in the thoracic cavity and extremities

    OpenAIRE

    Courtney, Amy; Courtney, Michael

    2008-01-01

    Identifying patients at risk of traumatic brain injury (TBI) is important because research suggests prophylactic treatments to reduce risk of long-term sequelae. Blast pressure waves can cause TBI without penetrating wounds or blunt force trauma. Similarly, bullet impacts distant from the brain can produce pressure waves sufficient to cause mild to moderate TBI. The fluid percussion model of TBI shows that pressure impulses of 15-30 psi cause mild to moderate TBI in laboratory animals. In pig...

  19. Influence of the initial pressure in bubble media on the detonation wave parameters

    Science.gov (United States)

    Sychev, A. I.

    2015-04-01

    The influence of the initial pressure in bubble media on the initiation, structure, velocity, and pressure of detonation waves in single-component bubble media is studied. The test medium (bubbles of a stoichiometric acetylene-oxygen mixture in a hydroglyceric solution) falls under the category of "chemically inactive liquid—bubbles of a chemically active gas." It is found that one can effectively control the parameters of bubble detonation waves by varying the initial pressure in the bubble medium.

  20. Generation and propagation of pressure waves in supersonic deep-cavity flows

    Energy Technology Data Exchange (ETDEWEB)

    Handa, Taro; Ozaki, Takaya [Kyushu University, Department of Energy and Environmental Engineering, Kasuga City, Fukuoka (Japan); Miyachi, Hiroaki [Mitsubishi Heavy Industries, Power Systems Plant Engineering Department, Takasago, Hyogo (Japan); Kakuno, Hatsuki [Nippon Steel and Sumikin Engineering, Plant and Machinery Division, Kitakyushu, Fukuoka (Japan)

    2012-12-15

    The mechanism behind cavity-induced pressure oscillations in supersonic flows past a deep rectangular cavity is not well understood despite several investigations having been carried out. In particular, the process by which the pressure wave is generated and the path of the pressure wave propagating inside the cavity remains unclear. In the present study, the pressure waves around a deep rectangular cavity over which nitrogen gas flows at a Mach number of 1.7 are visualized using the schlieren method. The length of the cavity is 14.0 mm. The depths of the cavity are selected as 20.0 and 11.7 mm, corresponding to length-to-depth ratios of 0.70 and 1.2, respectively. The pressure waves propagating inside as well as outside the cavity have been successfully visualized using a high-speed camera, and the propagation pattern of these waves is found to be different from that previously predicted by numerical simulation and from those expected in previous oscillation models. In addition, the pressure oscillation near the trailing edge of the cavity is also measured using semiconductor-type pressure transducers simultaneously with the capture of the schlieren images. As a result, the relationship between the shear-layer motion, pressure-wave generation, and pressure oscillation at the trailing edge of the cavity is clarified experimentally. (orig.)

  1. Rogue wave formation under the action of quasi-stationary pressure

    Science.gov (United States)

    Abrashkin, A. A.; Oshmarina, O. E.

    2016-05-01

    The process of rogue wave formation on deep water is considered. A wave of extreme amplitude is born against the background of uniform waves (Gerstner waves) under the action of external pressure on free surface. The pressure distribution has a form of a quasi-stationary "pit". The fluid motion is supposed to be a vortex one and is described by an exact solution of equations of 2D hydrodynamics for an ideal fluid in Lagrangian coordinates. Liquid particles are moving around circumferences of different radii in the absence of drift flow. Values of amplitude and wave steepness optimal for rogue wave formation are found numerically. The influence of vorticity distribution and pressure drop on parameters of the fluid is investigated.

  2. Propagation of pore pressure diffusion waves in saturated dual-porosity media (II)

    Science.gov (United States)

    Yang, Duoxing; Li, Qi; Zhang, Lianzhong

    2016-04-01

    A mechanism has been established for pressure diffusion waves in dual-porosity media. Pressure diffusion waves are heavily damped with relatively low velocities and short wavelengths. The characteristic frequency dominates the attenuation behavior of pressure diffusions and separates wave fields into two asymptotic regimes: relaxed and unrelaxed. Characteristic delay times control the pressure diffusion between the matrix and the fractures. The transition zones in wavelength and attenuation peak shift toward high frequencies when the characteristic delay time decreases. In contrast, the transition zones in both phase and group velocity shift toward low frequencies as the characteristic time of the delay increases. In a spatially dependent diffusivity field, the pressure diffusion waves in dual-porosity media obey an accumulation-depletion law.

  3. Pressure increase in two-phase media behind air shock waves and by shock wave accelerated pistons

    Science.gov (United States)

    Patz, G.; Smeets, G.

    Results are summarized from experimental and theoretical studies of the effects of a shock wave on a two-phase medium (TPM) and the compression of a TPM by a piston accelerated by the pressure behind a reflected shock. Attention is also given to the use of foam as the TPM and actions of the changing pressure as the shock moves to the end of the shock tube and returns. The situation is extended to the situation where the returning wave drives a piston into the foam. Analysis of the pressure variations in the foam shows that the peak pressure will depend only on the piston pressure. No shocks formed in the TMP, either in the model predictions or in an experimental validation, because the piston speed was always well below the sonic velocity in the lather.

  4. Role of the vertical pressure gradient in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård; Sumer, B. Mutlu; Vittori, Giovanna;

    2014-01-01

    By direct numerical simulation (DNS) of the flow in an oscillatory boundary layer, it is possible to obtain the pressure field. From the latter, the vertical pressure gradient is determined. Turbulent spots are detected by a criterion involving the vertical pressure gradient. The vertical pressure...... gradient is also treated as any other turbulence quantity like velocity fluctuations and statistical properties of the vertical pressure gradient are calculated from the DNS data. The presence of a vertical pressure gradient in the near bed region has significant implications for sediment transport....

  5. Using Clifford Algebra to Understand the Nature of Negative Pressure Waves

    Science.gov (United States)

    McClellan, Gene

    2014-03-01

    The geometric algebra of 3-D Euclidean space, a sub-discipline of Clifford algebra, is a useful tool for analyzing wave propagation. We use geometric algebra to explore the concept of negative pressure. In free space a straightforward extension of Maxwell's equations using geometric algebra yields a theory in which classical electromagnetic waves coexist with nonelectromagnetic waves having retrograde momentum. By retrograde momentum we mean waves carrying momentum pointing in the opposite direction of energy flow. If such waves exist, they would have negative pressure. In rebounding from a wall, they would pull rather than push. In this presentation we use standard methods of analyzing energy and momentum conservation and their flow through the surface of an enclosed volume to illustrate the properties of both the electromagnetic and nonelectromagnetic solutions of the extended Maxwell equations. The nonelectromagnetic waves consist of coupled scalar and electric waves and coupled magnetic and pseudoscalar waves. They superimpose linearly with electromagnetic waves. We show that the nonelectromagnetic waves, besides having negative pressure, propagate with the speed of light and do not interact with conserved electric currents. Hence, they have three properties in common with dark energy.

  6. Non-invasive measurement of aortic pressure in patients: Comparing pulse wave analysis and applanation tonometry

    OpenAIRE

    Naidu, M.U.R; C Prabhakar Reddy

    2012-01-01

    Objective: The aim of the present study was to validate and compare novel methods to determine aortic blood pressure non-invasively based on Oscillometric Pulse Wave Velocity (PWV) measurement using four limb-cuff pressure waveforms and two lead Electrocardiogram (ECG) with a validated tonometric pulse wave analysis system in patients. Materials and Methods: After receiving the consent, in 49 patients with hypertension, coronary artery disease, diabetes mellitus, PWV, and central blood p...

  7. Increasing pulse wave velocity in a realistic cardiovascular model does not increase pulse pressure with age

    OpenAIRE

    Mohiuddin, Mohammad W.; Rihani, Ryan J.; Laine, Glen A.; Quick, Christopher M.

    2012-01-01

    The mechanism of the well-documented increase in aortic pulse pressure (PP) with age is disputed. Investigators assuming a classical windkessel model believe that increases in PP arise from decreases in total arterial compliance (Ctot) and increases in total peripheral resistance (Rtot) with age. Investigators assuming a more sophisticated pulse transmission model believe PP rises because increases in pulse wave velocity (cph) make the reflected pressure wave arrive earlier, augmenting systol...

  8. Measuring high pressure equation of state of polystyrene using laser driven shock wave

    Science.gov (United States)

    Shu, Hua; Huang, Xiuguang; Ye, Junjian; Wu, Jiang; Jia, Guo; Fang, Zhiheng; Xie, Zhiyong; Zhou, Huazhen; Fu, Sizu

    2015-11-01

    High precision polystyrene equation of state data were measured using laser-driven shock waves with pressures from 180 GPa to 700 GPa. α quartz was used as standard material, the shock wave trajectory in quartz and polystyrene was measured using the Velocity Interferometer for Any Reflector (VISAR). Instantaneous shock velocity in quartz and polystyrene was obtained when the shock wave pass the interface. This provided ~1% precision in shock velocity measurements.

  9. Measuring high pressure equation of state of polystyrene using laser driven shock wave

    International Nuclear Information System (INIS)

    High precision polystyrene equation of state data were measured using laser-driven shock waves with pressures from 180 GPa to 700 GPa. Alpha quartz was used as standard material, the shock wave trajectory in quartz and polystyrene was measured using the Velocity Interferometer for Any Reflector (VISAR). Instantaneous shock velocity in quartz and polystyrene was obtained when the shock wave pass the interface. This provided ∼1% precision in shock velocity measurements. (authors)

  10. Electromagnetic cyclotron waves in the dayside subsolar outer magnetosphere generated by enhanced solar wind pressure: EMIC wave coherency

    Science.gov (United States)

    Remya, B.; Tsurutani, B. T.; Reddy, R. V.; Lakhina, G. S.; Hajra, R.

    2015-09-01

    Electromagnetic ion (proton) cyclotron (EMIC) waves and whistler mode chorus are simultaneously detected in the Earth's dayside subsolar outer magnetosphere. The observations were made near the magnetic equator 3.1°-1.5° magnetic latitude at 1300 magnetic local time from L = 9.9 to 7.0. It is hypothesized that the solar wind external pressure caused preexisting energetic 10-100 keV protons and electrons to be energized in the T⊥ component by betatron acceleration and the resultant temperature anisotropy (T⊥>T∥) formed led to the simultaneous generation of both EMIC (ion) and chorus (electron) waves. The EMIC waves had maximum wave amplitudes of ˜6 nT in a ˜60 nT ambient field B0. The observed EMIC wave amplitudes were about ˜10 times higher than the usually observed chorus amplitudes (˜0.1-0.5 nT). The EMIC waves are found to be coherent to quasi-coherent in nature. Calculations of relativistic ˜1-2 MeV electron pitch angle transport are made using the measured wave amplitudes and wave packet lengths. Wave coherency was assumed. Calculations show that in a ˜25-50 ms interaction with an EMIC wave packet, relativistic electron can be transported ˜27° in pitch. Assuming dipole magnetic field lines for a L = 9 case, the cyclotron resonant interaction is terminated ˜±20° away from the magnetic equator due to lack of resonance at higher latitudes. It is concluded that relativistic electron anomalous cyclotron resonant interactions with coherent EMIC waves near the equatorial plane is an excellent loss mechanism for these particles. It is also shown that E > 1 MeV electrons cyclotron resonating with coherent chorus is an unlikely mechanism for relativistic microbursts. Temporal structures of ˜30 keV precipitating protons will be ˜2-3 s which will be measurable at the top of the ionosphere.

  11. Analysis of pressure waves in the cone-type combustion chamber under SI engine knock

    International Nuclear Information System (INIS)

    Highlights: • A 3D numerical model is conducted to investigate the shock waves in the engine knock. • Overpressure distribution on the top piston surface is caught while knocking. • Numerical simulation shows that shock waves converge in the combustion chamber. • The converged shock waves damage piston during severe knock. - Abstract: For the internal-combustion engine, super knock produced by the engine downsizing technology induces severe oscillations in a combustion chamber, which may damage the piston. In this work, 3D numerical simulation is used to study the propagation and reflection of pressure waves produced in the cone roof type combustion chamber. Overpressure distribution of top piston surface is caught. Numerical simulation shows that the pressure waves are amplified in a special zone because of the shape of the combustion chamber, which induces the overpressure much higher than that in other zones. The numerical results are validated by the damaged pistons. It is found that the converged pressure waves could be the reason which causes damage in the local region of the piston under super knock. The results obtained in the study provide assistance in the design of combustion chamber shape in order to avoid piston destroyed by the pressure waves

  12. On the recovery of traveling water waves with vorticity from the pressure at the bed

    CERN Document Server

    Hur, Vera Mikyoung

    2015-01-01

    We propose higher-order approximation formulae recovering the surface elevation from the pressure at the bed and the background shear flow for small-amplitude Stokes and solitary water waves. They offer improvements over the pressure transfer function and the hydrostatic approximation. The formulae compare reasonably well with asymptotic approximations of the exact relation between the pressure at the bed and the surface wave in the zero vorticity case, but they incorporate the effects of vorticity through solutions of the Rayleigh equation. Several examples are discussed.

  13. Energy transfer from a laser pulse to a blast wave in reduced-pressure air atmospheres

    International Nuclear Information System (INIS)

    Focusing a transversely excited atmospheric CO2 laser beam in air atmospheres induced a blast wave. The kinetic energy of a laser-induced blast wave was determined from shadowgraph images of shock wave expansion. Results showed that the fraction of input laser energy that is converted into the blast wave energy decreased from 0.45 to 0.2 concomitant with the decrease in ambient pressure from 100 to 10 kPa. Also, it was insensitive to input laser energy from 4 to 13 J

  14. Links between traumatic brain injury and ballistic pressure waves originating in the thoracic cavity and extremities

    CERN Document Server

    Courtney, Amy

    2007-01-01

    Identifying patients at risk of traumatic brain injury (TBI) is important because research suggests prophylactic treatments to reduce risk of long-term sequelae. Blast pressure waves can cause TBI without penetrating wounds or blunt force trauma. Similarly, bullet impacts distant from the brain can produce pressure waves sufficient to cause mild to moderate TBI. The fluid percussion model of TBI shows that pressure impulses of 15-30 psi cause mild to moderate TBI in laboratory animals. In pigs and dogs, bullet impacts to the thigh produce pressure waves in the brain of 18-45 psi and measurable injury to neurons and neuroglia. Analyses of research in goats and epidemiological data from shooting events involving humans show high correlations (r > 0.9) between rapid incapacitation and pressure wave magnitude in the thoracic cavity. A case study has documented epilepsy resulting from a pressure wave without the bullet directly hitting the brain. Taken together, these results support the hypothesis that bullet imp...

  15. Rubber-induced uniform laser shock wave pressure for thin metal sheets microforming

    International Nuclear Information System (INIS)

    Highlights: • The rubber is introduced to smooth laser shock wave pressure. • The mechanism of rubber-induced smoothing effect is proposed. • Smoothing effect is mainly due to the radial expansion of plasma cloud on rubber. • The good surface quality can be obtained under rubber dynamic loading. - Abstract: Laser shock microforming of thin metal sheets is a new high velocity forming technique, which employs laser shock wave to deform the thin metal sheets. The spatial distribution of forming pressure is mainly dependent on the laser beam. A new type of laser shock loading method is introduced which gives a uniform pressure distribution. A low density rubber is inserted between the laser beam and the thin metal sheets. The mechanism of rubber-induced smoothing effect on confined laser shock wave is proposed. Plasticine is used to perform the smoothing effect experiments due to its excellent material flow ability. The influence of rubber on the uniformity of laser shock wave pressure is studied by measuring the surface micro topography of the deformed plasticine. And the four holes forming experiment is used to verify the rubber-induced uniform pressure on thin metal sheets surface. The research results show the possibility of smoothing laser shock wave pressure using rubber. And the good surface quality can be obtained under rubber dynamic loading

  16. Quantification of wave reflection in the human aorta from pressure alone: a proof of principle.

    Science.gov (United States)

    Westerhof, Berend E; Guelen, Ilja; Westerhof, Nico; Karemaker, John M; Avolio, Alberto

    2006-10-01

    Wave reflections affect the proximal aortic pressure and flow waves and play a role in systolic hypertension. A measure of wave reflection, receiving much attention, is the augmentation index (AI), the ratio of the secondary rise in pressure and pulse pressure. AI can be limiting, because it depends not only on the magnitude of wave reflection but also on wave shapes and timing of incident and reflected waves. More accurate measures are obtainable after separation of pressure in its forward (P(f)) and reflected (P(b)) components. However, this calculation requires measurement of aortic flow. We explore the possibility of replacing the unknown flow by a triangular wave, with duration equal to ejection time, and peak flow at the inflection point of pressure (F(tIP)) and, for a second analysis, at 30% of ejection time (F(t30)). Wave form analysis gave forward and backward pressure waves. Reflection magnitude (RM) and reflection index (RI) were defined as RM=P(b)/P(f) and RI=P(b)/(P(f)+P(b)), respectively. Healthy subjects, including interventions such as exercise and Valsalva maneuvers, and patients with ischemic heart disease and failure were analyzed. RMs and RIs using F(tIP) and F(t30) were compared with those using measured flow (F(m)). Pressure and flow were recorded with high fidelity pressure and velocity sensors. Relations are: RM(tIP)=0.82RM(mf)+0.06 (R(2)=0.79; n=24), RM(t30)=0.79RM(mf)+0.08 (R(2)=0.85; n=29) and RI(tIP)=0.89RI(mf)+0.02 (R(2)=0.81; n=24), RI(t30)=0.83RI(mf)+0.05 (R(2)=0.88; n=29). We suggest that wave reflection can be derived from uncalibrated aortic pressure alone, even when no clear inflection point is distinguishable and AI cannot be obtained. Epidemiological studies should establish its clinical value. PMID:16940207

  17. Low-pressure sustainment of surface-wave microwave plasma with modified microwave coupler

    Science.gov (United States)

    Sasai, Kensuke; Suzuki, Haruka; Toyoda, Hirotaka

    2016-01-01

    Sustainment of long-scale surface-wave plasma (SWP) at pressures below 1 Pa is investigated for the application of the SWP as an assisting plasma source for roll-to-roll sputter deposition. A modified microwave coupler (MMC) for easier surface-wave propagation is proposed, on the basis of the concept of the power direction alignment of the slot antenna and surface-wave propagation. The superiority of the MMC-SWP over conventional SWPs is shown at a sustainment pressure as low as 0.6 Pa and an electron density as high as 3 × 1017 m-3. A polymer film is treated with the MMC-SWP at a low pressure of 0.6 Pa, and surface modification at a low pressure is proved using Ar plasma. These results show the availability of the MMC-SWP as the surface treatment plasma source that is compatible with sputter deposition in the same processing chamber.

  18. Modelling and Experimental Verification of Pressure Wave Following Gaseous Helium Storage Tank Rupture

    Science.gov (United States)

    Chorowski, M.; Grabowski, M.; Jędrusyna, A.; Wach, J.

    Helium inventory in high energy accelerators, tokamaks and free electron lasers may exceed tens of tons. The gaseous helium is stored in steel tanks under a pressure of about 20 bar and at environment temperature. Accidental rupture of any of the tanks filled with the gaseous helium will create a rapid energy release in form of physical blast. An estimation of pressure wave distribution following the tank rupture and potential consequences to the adjacent research infrastructure and buildings is a very important task, critical in the safety aspect of the whole cryogenic system. According to the present regulations the TNT equivalent approach is to be applied to evaluate the pressure wave following a potential gas storage tank rupture. A special test stand was designed and built in order to verify experimentally the blast effects in controlled conditions. In order to obtain such a shock wave a pressurized plastic tank was used. The tank was ruptured and the resulting pressure wave was recorded using a spatially-distributed array of pressure sensors connected to a high-speed data acquisition device. The results of the experiments and the comparison with theoretical values obtained from thermodynamic model of the blast are presented. A good agreement between the simulated and measured data was obtained. Recommendations regarding the applicability of thermodynamic model of physical blast versus TNT approach, to estimate consequences of gas storage tank rupture are formulated. The laboratory scale experimental results have been scaled to ITER pressurized helium storage tanks.

  19. The impact of hepatic pressurization on liver shear wave speed estimates in constrained versus unconstrained conditions

    International Nuclear Information System (INIS)

    Increased hepatic venous pressure can be observed in patients with advanced liver disease and congestive heart failure. This elevated portal pressure also leads to variation in acoustic radiation-force-derived shear wave-based liver stiffness estimates. These changes in stiffness metrics with hepatic interstitial pressure may confound stiffness-based predictions of liver fibrosis stage. The underlying mechanism for this observed stiffening behavior with pressurization is not well understood and is not explained with commonly used linear elastic mechanical models. An experiment was designed to determine whether the stiffness increase exhibited with hepatic pressurization results from a strain-dependent hyperelastic behavior. Six excised canine livers were subjected to variations in interstitial pressure through cannulation of the portal vein and closure of the hepatic artery and hepatic vein under constrained conditions (in which the liver was not free to expand) and unconstrained conditions. Radiation-force-derived shear wave speed estimates were obtained and correlated with pressure. Estimates of hepatic shear stiffness increased with changes in interstitial pressure over a physiologically relevant range of pressures (0–35 mmHg) from 1.5 to 3.5 m s−1. These increases were observed only under conditions in which the liver was free to expand while pressurized. This behavior is consistent with hyperelastic nonlinear material models that could be used in the future to explore methods for estimating hepatic interstitial pressure noninvasively. (paper)

  20. Influence of dielectric barrier discharges on low Mach number shock waves at low to medium pressures

    International Nuclear Information System (INIS)

    For shock wave propagation in nonequilibrium plasmas, it has been shown that when the electron Debye length exceeds the shock wave discontinuity dimension, strong double layers are generated, propagating with the shock wave. Strong double layer formation leads to the enhancement of the local excitation, ionization, and local neutral gas heating which increases the shock wave velocity. It is shown that dielectric barrier discharges (DBD) in pure N2 also increase the shock wave velocity and broaden the shock wave. The DBD is considerably more energy efficient in producing these effects compared to a dc glow discharge and can operate over a wide pressure range. It is shown that these effects are also operative in the pure N2 discharge afterglow, allowing a wide range of pulse repetition frequencies

  1. A new method to record subglottal pressure waves : potential applications

    NARCIS (Netherlands)

    Neumann, K; Gall, [No Value; Schutte, HK; Miller, DG

    2003-01-01

    Rapid subglottal pressure changes related to the glottal cycles influence the aerodynamics of phonation. Various methods to measure these have been developed, but are not practical for routine phoniatric use. For that reason, a noninvasive measurement tool is necessary. This article presents a techn

  2. Analytical evaluation of special numerical calculations of pressure waves in the fluid. Pt. 1

    International Nuclear Information System (INIS)

    The practise of applying control calculations to the results of extensive numerical calculations in the field of scientific engineering is indispensable, especially with regard to safety assessments. Analytical methods are often best suited for this purpose. Furthermore, they allow developing a sound understanding of the physical processes involved. This also applies to several methods for determining the pressure behavior inside a fluid. In the present report, the results of calculations are checked by the method of the so-called one-dimensional wave propagation. It is presumed that the propagation of the pressure wave in a fluid-filled system can be closely approximated by a function which, in addition to time and other parameters depends only on the coordinate of the direction of wave propagation. Satisfactory approximations are obtained wherever the averaging of certain parameters in the direction perpendicular to the direction of propagation is sufficient with regard to the mathematical evaluation of essential effects. The examples presented in this report start with approximative descriptions of non-linear effects in pressure waves. Starting from a certain location and point in time, the pressure waves have a linear characteristic. This is because pressure pulses introduced into the fluid are usually dampened to a considerable extent. Going backward in time, perturbation calculations can then be carried out. Certain aspects of the resulting approximation are well suited to check the results of extensive numerical calculations. The comparisons presented show good to reasonable results. (orig./GL)

  3. Calculation Analysis of Pressure Wave Velocity in Gas and Drilling Mud Two-Phase Fluid in Annulus during Drilling Operations

    OpenAIRE

    Lin, Yuanhua; Kong, Xiangwei; Qiu, Yijie; Yuan, Qiji

    2013-01-01

    Investigation of propagation characteristics of a pressure wave is of great significance to the solution of the transient pressure problem caused by unsteady operations during management pressure drilling operations. With consideration of the important factors such as virtual mass force, drag force, angular frequency, gas influx rate, pressure, temperature, and well depth, a united wave velocity model has been proposed based on pressure gradient equations in drilling operations, gas-liquid tw...

  4. A computational study of pressure wave reflections in the pulmonary arteries.

    Science.gov (United States)

    Qureshi, M Umar; Hill, N A

    2015-12-01

    Experiments using wave intensity analysis suggest that the pulmonary circulation in sheep and dogs is characterized by negative or open-end type wave reflections, that reduce the systolic pressure. Since the pulmonary physiology is similar in most mammals, including humans, we test and verify this hypothesis by using a subject specific one-dimensional model of the human pulmonary circulation and a conventional wave intensity analysis. Using the simulated pressure and velocity, we also analyse the performance of the P-U loop and sum of squares techniques for estimating the local pulse wave velocity in the pulmonary arteries, and then analyse the effects of these methods on linear wave separation in the main pulmonary artery. P-U loops are found to provide much better estimates than the sum of squares technique at proximal locations, but both techniques accumulate progressive error at distal locations away from heart, particularly near junctions. The pulse wave velocity estimated using the sum of squares method also gives rise to an artificial early systolic backward compression wave. Finally, we study the influence of three types of pulmonary hypertension viz. pulmonary arterial hypertension, chronic thromboembolic pulmonary hypertension and pulmonary hypertension associated with hypoxic lung disease. Simulating these conditions by changing the relevant parameters in the model and then applying the wave intensity analysis, we observe that for each group the early systolic backward decompression wave reflected from proximal junctions is maintained, whilst the initial forward compression and the late systolic backward compression waves amplify with increasing pathology and contribute significantly to increases in systolic pressure. PMID:25754476

  5. Comparative experimental study on several methods for measuring elastic wave velocities in rocks at high pressure

    Institute of Scientific and Technical Information of China (English)

    XIE; Hongsen(谢鸿森); ZHOU; Wenge; 周文戈); LIU; Yonggang; (刘永刚); GUO; Jie; (郭捷); HOU; Wei; (侯渭); ZHAO; Zhidan(赵志丹)

    2002-01-01

    To measure elastic wave velocities in rocks at high temperature and high pressure is an important way to acquire the mechanics and thermodynamics data of rocks in the earth's interior and also a substantial approach to studying the structure and composition of materials there. In recent years, a rapid progress has been made in methodology pertaining to the measurements of elastic wave velocities in rocks at high temperature and high pressure with solids as the pressure-transfer media. However, no strict comparisons have been made of the elastic wave velocity data of rocks measured at high temperature and high pressure by various laboratories. In order to compare the experimental results from various laboratories, we have conducted a comparative experimental study on three measuring methods and made a strict comparison with the results obtained by using the transmission method with fluid as the pressure-transfer medium. Our experimental results have shown that the measurements obtained by the three methods are comparable in the pressure ranges of their application. The cubic sample pulse transmission method used by Kern is applicable to measuring elastic wave velocities in crustal rocks at lower temperature and lower pressure. The prism sample pulse reflection-transmission method has some advantages in pressure range, heating temperature and measuring precision. Although the measurements obtained under relatively low pressure conditions by the prism sample pulse transmission method are relatively low in precision, the samples are large in length and their assemblage is simple. So this method is suitable to the experiments that require large quantities of samples and higher pressures. Therefore, in practical application the latter two methods are usually recommended because their measurements can be mutually corrected and supplemented.

  6. Vertical pressure gradient and particle motions in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård

    is a function of phase. Therefore the particle will settle towards the end of each half period, and after flow reversal, when the turbulent intensity becomes large enough it can be suspended. If the particle is light enough it can be maintained in suspension, otherwise it will settle before it is....... This is in contrast to velocity fluctuations that are diffusive, so they can also contain residual turbulence from the previous half cycle until they are dissipated. Furthermore, the magnitude of the mean value of conditionally averaged vertical pressure gradient (for −∂p∗/∂x∗ 2 > 0) is compared to the...... submerged weight of sediment. This revels that the upward directed vertical pressure gradient on average has a magnitude that yields in a contribution to the force needed to overcome the submerged weight of the water-sediment mixture. Secondly particle motion in the oscillatory boundary layer is...

  7. The Importance of Pressure Sampling Frequency in Models for Determination of Critical Wave Loadings on Monolithic Structures

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Andersen, Thomas Lykke; Meinert, Palle

    2008-01-01

    Wave induced pressures on model scale monolithic structures like caissons and concrete superstructures on rubble mound breakwaters show very peaky variations, even in cases without impacts from slamming waves....

  8. Pressure dependence of the charge-density-wave gap in rare-earth tritellurides.

    Science.gov (United States)

    Sacchetti, A; Arcangeletti, E; Perucchi, A; Baldassarre, L; Postorino, P; Lupi, S; Ru, N; Fisher, I R; Degiorgi, L

    2007-01-12

    We investigate the pressure dependence of the optical properties of CeTe3, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the midinfrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice compression removes the perfect nesting condition of the Fermi surface and therefore diminishes the impact of the CDW transition on the electronic properties of RTe3. PMID:17358625

  9. Pressure Dependence of the Charge-Density-Wave Gap in Rare-Earth Tri-Tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Sacchetti, A.; /Zurich, ETH; Arcangeletti, E.; Perucchi, A.; Baldassarre, L.; Postorino, P.; Lupi, S.; /Rome U.; Ru, N.; Fisher, I.R.; /Stanford U., Geballe Lab.; Degiorgi, L.; /Zurich, ETH

    2009-12-14

    We investigate the pressure dependence of the optical properties of CeTe{sub 3}, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice compression removes the perfect nesting condition of the Fermi surface and therefore diminishes the impact of the CDW transition on the electronic properties of RTe{sub 3}.

  10. Pressure dependence of the charge-density-wave gap in rare-earth tri-tellurides

    OpenAIRE

    A. Sacchetti; Arcangeletti, E.; Perucchi, A.; Baldassarre, L.; Postorino, P.; Lupi, S.; Ru, N.; Fisher, I. R.; Degiorgi, L.

    2006-01-01

    We investigate the pressure dependence of the optical properties of CeTe$_3$, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice com...

  11. Stone Comminution Correlates with the Average Peak Pressure Incident on a Stone during Shock Wave Lithotripsy

    OpenAIRE

    Smith, N; P Zhong

    2012-01-01

    To investigate the roles of lithotripter shock wave (LSW) parameters and cavitation in stone comminution, a series of in vitro fragmentation experiments have been conducted in water and 1,3-butanediol (a cavitation-suppressive fluid) at a variety of acoustic field positions of an electromagnetic shock wave lithotripter. Using field mapping data and integrated parameters averaged over a circular stone holder area (Rh = 7 mm), close logarithmic correlations between the average peak pressure (P+...

  12. Molecular modeling of high-pressure ramp waves in tantalum

    Science.gov (United States)

    Lane, J. Matthew D.; Lim, Hojun; Brown, Justin L.

    2015-03-01

    Ramp wave compression experiments of bcc metals under extreme conditions have produced differing measurements of material strength response. These variations are often attributed to differing experimental techniques, and varying material factors such as microstructure, and strain-rate. We present non-equilibrium molecular dynamics simulations of tantalum for single crystal and two polycrystalline nanostructures out to 250 GPa, over strain states ranging from 108 to 1011 1/s. Results will be compared to recent Z-machine strength experiments, meso-scale crystal plasticity models and continuum-scale polycrystalline model. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Wave pattern in the wake of an arbitrary moving surface pressure disturbance

    Science.gov (United States)

    Miao, Sha; Liu, Yuming

    2015-12-01

    We study the problem of wave pattern in the wake of an arbitrary surface pressure disturbance that moves forward at constant speed U in deep water. We seek the dependence of the location of the maximum amplitude of waves upon the pressure distribution and the Froude number F ≡ U / √{ g L } , where L is the characteristic length of the pressure disturbance and g is the gravitational acceleration. We show by theoretical analysis and direct numerical evaluation that half of the included angle (ϕmax) of the V-shape corresponding to the maximum amplitude of the waves in the wake at large Froude numbers behaves asymptotically as ϕ max = C F - a for F > F c , with the constant a, coefficient C, and threshold value of Froude number F c all being functions of the pressure distribution. It is found that for most pressure disturbances, a equals 1, but a can equal 2 for special non-smooth pressure disturbances. The condition in terms of the order of discontinuity and distribution shape of the pressure disturbance for the result of a = 2 is provided. These findings imply that for ship wakes, ϕmax generally decreases with increasing F at large Froude numbers, while the exact value of ϕmax is dependent on ship geometry and F .

  14. Influence of ambient air pressure on the energy conversion of laser-breakdown induced blast waves

    International Nuclear Information System (INIS)

    Influence of ambient pressure on energy conversion efficiency from a Nd : glass laser pulse (λ = 1.053 µm) to a laser-induced blast wave was investigated at reduced pressure. Temporal incident and transmission power histories were measured using sets of energy meters and photodetectors. A half-shadowgraph half-self-emission method was applied to visualize laser absorption waves. Results show that the blast energy conversion efficiency ηbw decreased monotonically with the decrease in ambient pressure. The decrease was small, from 40% to 38%, for the pressure change from 101 kPa to 50 kPa, but the decrease was considerable, to 24%, when the pressure was reduced to 30 kPa. Compared with a TEA-CO2-laser-induced blast wave (λ = 10.6 µm), higher fraction absorption in the laser supported detonation regime ηLSD of 90% was observed, which is influenced slightly by the reduction of ambient pressure. The conversion fraction ηbw/ηLSD≈90% was achieved at pressure >50 kPa, which is significantly higher than that in a CO2 laser case. (paper)

  15. The Oblique Incident Effects of Electromagnetic Wave in Atmospheric Pressure Plasma Layers

    Institute of Scientific and Technical Information of China (English)

    HE Yong; JIANG Zhonghe; HU Xiwei; LIU Minghai

    2008-01-01

    The propagating behaviours, i.e. phase shift, transmissivity, reflectivity and absorptivity, of an electromagnetic (EM) wave in a two-dimensional atmospheric pressure plasma layer are described by the numerical solutions of integral-differential Maxwell's equations through a generalized finite-difference-time-domain (FDTD) algorithm. These propagating behaviours are found to be strongly affected by five factors: two EM wave characteristics relevan.t to the oblique incident and three dimensionless factors. The two EM wave factors are the polarization mode (TM mode or TE mode) and its incident angle. The three dimensionless factors are: the ratio of the maximum electron density to the critical density n0/ncr, the ratio of the plasma layer width to the wave length d/λ, and the ratio of the collision frequency between electrons and neutrals to the incident wave frequency ve0/f.

  16. Modeling and simulation of pressure waves generated by nano-thermite reactions

    Science.gov (United States)

    Martirosyan, Karen S.; Zyskin, Maxim; Jenkins, Charles M.; (Yuki) Horie, Yasuyuki

    2012-11-01

    This paper reports the modeling of pressure waves from the explosive reaction of nano-thermites consisting of mixtures of nanosized aluminum and oxidizer granules. Such nanostructured thermites have higher energy density (up to 26 kJ/cm3) and can generate a transient pressure pulse four times larger than that from trinitrotoluene (TNT) based on volume equivalence. A plausible explanation for the high pressure generation is that the reaction times are much shorter than the time for a shock wave to propagate away from the reagents region so that all the reaction energy is dumped into the gaseous products almost instantaneously and thereby a strong shock wave is generated. The goal of the modeling is to characterize the gas dynamic behavior for thermite reactions in a cylindrical reaction chamber and to model the experimentally measured pressure histories. To simplify the details of the initial stage of the explosive reaction, it is assumed that the reaction generates a one dimensional shock wave into an air-filled cylinder and propagates down the tube in a self-similar mode. Experimental data for Al/Bi2O3 mixtures were used to validate the model with attention focused on the ratio of specific heats and the drag coefficient. Model predictions are in good agreement with the measured pressure histories.

  17. Acoustic Pressure Waves in Vibrating 3-D Laminated Beam-Plate Enclosures

    Directory of Open Access Journals (Sweden)

    Charles A. Osheku

    2009-01-01

    Full Text Available The effect of structural vibration on the propagation of acoustic pressure waves through a cantilevered 3-D laminated beam-plate enclosure is investigated analytically. For this problem, a set of well-posed partial differential equations governing the vibroacoustic wave interaction phenomenon are formulated and matched for the various vibrating boundary surfaces. By employing integral transforms, a closed form analytical expression is computed suitable for vibroacoustic modeling, design analysis, and general aerospace defensive applications. The closed-form expression takes the form of a kernel of polynomials for acoustic pressure waves showing the influence of linear interface pressure variation across the axes of vibrating boundary surfaces. Simulated results demonstrate how the mode shapes and the associated natural frequencies can be easily computed. It is shown in this paper that acoustic pressure waves propagation are dynamically stable through laminated enclosures with progressive decrement in interfacial pressure distribution under the influence of high excitation frequencies irrespective of whether the induced flow is subsonic, sonic , supersonic, or hypersonic. Hence, in practice, dynamic stability of hypersonic aircrafts or jet airplanes can be further enhanced by replacing their noise transmission systems with laminated enclosures.

  18. Experimental Study on Peak Pressure of Shock Waves in Quasi-Shallow Water

    Directory of Open Access Journals (Sweden)

    Zhenxiong Wang

    2015-01-01

    Full Text Available Based on the similarity laws of the explosion, this research develops similarity requirements of the small-scale experiments of underwater explosions and establishes a regression model for peak pressure of underwater shock waves under experimental condition. Small-scale experiments are carried out with two types of media at the bottom of the water and for different water depths. The peak pressure of underwater shock waves at different measuring points is acquired. A formula consistent with the similarity law of explosions is obtained and an analysis of the regression precision of the formula confirms its accuracy. Significance experiment indicates that the influence of distance between measuring points and charge on peak pressure of underwater shock wave is the greatest and that of water depth is the least within the range of geometric parameters. An analysis of data from experiments with different media at the bottom of the water reveals an influence on the peak pressure, as the peak pressure of a shock wave in a body of water with a bottom soft mud and rocks is about 1.33 times that of the case where the bottom material is only soft mud.

  19. a New Approach of Dynamic Blood Pressure Measurement Based on the Time Domain Analysis of the Pulse Wave

    Science.gov (United States)

    Zimei, Su; Wei, Xu; Hui, Yu; Fei, Du; Jicun, Wang; Kexin, Xu

    2009-08-01

    In this study the pulse wave characteristics were used as a new approach to measure the human blood pressure. Based the principle of pulse wave and theory of the elastic vascular, the authors analyzed the characteristic of the pulse waveforms and revealed the characteristics points which could be used to represent the blood pressure. In this investigation the relevant mathematical feature was used to identify the relationship between the blood pressure and pulse wave parameters in a more accurate way. It also provided an experimental basis to carry out continuing non-invasive blood pressure monitoring using the pulse wave method.

  20. Pressure and wall heat transfer behind a hydrogen/azide detonation wave in narrow tubes

    International Nuclear Information System (INIS)

    The reported study is concerned with the pressure evolution behind the detonation wave in tubes with an interior diameter in the range from 1 to 10 mm. Hydrogen azide in tubes with length-to-diameter ratios greater than 375 was detonated. The initial pressures were in the range from 1 to 20 Torr. The pressure behind the leading shock was measured with piezoelectrical transducers made of lead titanate and lead zirconate. It was found that the detonation velocity depends on wall heat losses. The wall heat flux observed behind the wave front was not in agreement with that calculated for constant flow parameters. In the diameter and pressure range considered, the wall heat flux varies strongly with tube diameter. This observation can be related to flow deviations regarding the Chapman-Jouguet parameters

  1. Non-invasive measurement of local pulse pressure by pulse wave-based ultrasound manometry (PWUM)

    OpenAIRE

    Vappou, J.; Luo, J; Okajima, K.; Di Tullio, M; Konofagou, E E

    2011-01-01

    The central Blood Pressure (CBP) has been established as a relevant indicator of cardiovascular disease. Despite its significance, CBP remains particularly challenging to measure in standard clinical practice. The objective of this study is to introduce Pulse Wave-based Ultrasound Manometry (PWUM) as a simple-touse, non-invasive ultrasound-based method for quantitative measurement of the central pulse pressure. Arterial wall displacements are estimated using radiofrequency (RF) ultrasound sig...

  2. Experimental study on pressure wave propagation through the open end of pipe

    International Nuclear Information System (INIS)

    The steam generators of a double pool type liquid metal fast breeder reactor (LMFBR) are used in a large sodium pool which is formed between the primary vessel and the secondary vessel and accommodates the entire secondary heat transport system. Therefore, if there is a sodium-water reaction event in the steam generator, it becomes important to evaluate the pressure rises at the walls of the primary and secondary vessels as well as those at the other secondary components. An experimental study was performed, focusing on the propagation of the initial pressure spike of the-sodium-water reaction from the bottom end of the steam generator to the sodium pool. Pressure wave propagation from inside of a pipe to an open space through the pipe end was measured. Two kinds of pressure propagation media, water and air, ensured a wide range of experimental conditions. The experimental results revealed that the pressure attenuation at the open end of a pipe can be put in order using the concept of inertial length, and that the dimensionless inertial length, i.e., the inertial length divided by the half wave length of the pressure pulse, is proportional to the square of the dimensionless diameter. These results provide a prediction method for a pressure rise by the initial pressure spike in the secondary sodium pool of the Double Pool LMFBR

  3. Internal wave pressure, velocity, and energy flux from density perturbations

    CERN Document Server

    Allshouse, Michael R; Morrison, Philip J; Swinney, Harry L

    2016-01-01

    Determination of energy transport is crucial for understanding the energy budget and fluid circulation in density varying fluids such as the ocean and the atmosphere. However, it is rarely possible to determine the energy flux field $\\mathbf{J} = p \\mathbf{u}$, which requires simultaneous measurements of the pressure and velocity perturbation fields, $p$ and $\\mathbf{u}$. We present a method for obtaining the instantaneous $\\mathbf{J}(x,z,t)$ from density perturbations alone: a Green's function-based calculation yields $p$, and $\\mathbf{u}$ is obtained by integrating the continuity equation and the incompressibility condition. We validate our method with results from Navier-Stokes simulations: the Green's function method is applied to the density perturbation field from the simulations, and the result for $\\mathbf{J}$ is found to agree typically to within $1\\%$ with $\\mathbf{J}$ computed directly using $p$ and $ \\mathbf{u}$ from the Navier-Stokes simulation. We also apply the Green's function method to densit...

  4. Pressure and intracorporal acceleration measurements in pigs exposed to strong shock waves in a free field

    International Nuclear Information System (INIS)

    A theoretical study on the propagation of a pressure wave in a diphasic medium, when compared to the onset mechanism of pulmonary lesions in subjects exposed to strong shock waves, shows an increase in the incident overpressure at the interface level. Using hydrophones, intracorporal pressure was measured in pigs. The authors recorded the costal wall acceleration on the side directly exposed to the shock wave and calculated the displacement of the costal wall after a shock wave passed by. These experiments were conducted for shock waves in a free field, at an overpressure peak level ranging from 26 kFPa to 380 kPa and for a first positive phase lasting 2 ms. Sensors placed in an intracorporal position detected no increase of the overpressure level for any value of the incident pressure. A comparison of the costal wall displacement, measured experimentally, relative to the theoretical displacement of the entire animal mass indicates that the largest relative displacement of the costal wall could be the origin of the pulmonary lesions found. 5 refs., 13 figs

  5. Development of microbubble generator for suppression of pressure waves in mercury target of spallation source

    International Nuclear Information System (INIS)

    A MW-class mercury target for the spallation neutron source is subjected to the pressure waves and cavitation erosion induced by high-intense pulsed-proton beam bombardment. Helium-gas microbubbles injection into mercury is one of the effective techniques to suppress the pressure waves. The microbubble injection technique was developed. The selection test of bubble generators indicated that the bubble generator utilizing swirl flow of liquid (swirl-type bubble-generator) will be suitable from the viewpoint of the produced bubble size. However, when single swirl-type bubble-generator was used in flowing mercury, swirl flow of mercury remains at downstream of the generator. The remaining swirl flow causes the coalescence of bubbles which results in ineffective suppression of pressure waves. To solve this concern, a multi-swirl type bubble-generator, which consists of several single swirl-type bubble-generators arraying in the plane perpendicular to mercury flow direction, was invented. The multi-swirl type bubble-generator was tested in mercury and the geometry was optimized to generate small bubble with low flow resistance based on the test results. It is estimated to generate the microbubbles of 65 μm in radius under the operational condition of the Japanese Spallation Neutron Source mercury target, which is the sufficient size to suppress the pressure waves. (author)

  6. Internal combustion engine supercharging: turbocharger vs. pressure wave compressor. Performance comparison

    Science.gov (United States)

    George, Atanasiu; Chiru, Anghel

    2014-06-01

    This paper aims on comparison between a turbocharged engine and a pressure wave charged engine. The comparison was accomplished using the engine simulation software AVL Boost, version 2010. The grahps were extracted using AVL Impress, version 2010. The performance increase is limited by the mechanical side of the simulated engine.

  7. 3D problem of pressure wave propagation in the tube with inconstant

    Czech Academy of Sciences Publication Activity Database

    Pochylý, F.; Habán, V.; Foldyna, Josef; Sitek, Libor

    Vienna: Viena University of Technology , 2007, s. 1-4. ISBN N. [International Congress on Ultrasonics. Vienna (AT), 09.04.2007-12.04.2007] R&D Projects: GA ČR GA101/07/1451 Institutional research plan: CEZ:AV0Z30860518 Keywords : pressure pulsations * wave equation * second viscosity Subject RIV: JQ - Machines ; Tools

  8. Relations between diabetes, blood pressure and aortic pulse wave velocity in haemodialysis patients

    DEFF Research Database (Denmark)

    Peters, Christian Daugaard; Kjærgaard, Krista Dybtved; Dzeko, Mirela;

    Diabetes (DM) is common in haemodialysis (HD) patients and affects both blood pressure (BP) and arterial stiffness. Carotid femoral pulse wave velocity (PWV) reflects the stiffness of the aorta and is regarded as a strong risk factor for cardiovascular (CV) mortality in HD patients. However, PWV is...

  9. Arterial blood pressure measurement and pulse wave analysis—their role in enhancing cardiovascular assessment

    International Nuclear Information System (INIS)

    The most common method of clinical measurement of arterial blood pressure is by means of the cuff sphygmomanometer. This instrument has provided fundamental quantitative information on arterial pressure in individual subjects and in populations and facilitated estimation of cardiovascular risk related to levels of blood pressure obtained from the brachial cuff. Although the measurement is taken in a peripheral limb, the values are generally assumed to reflect the pressure throughout the arterial tree in large conduit arteries. Since the arterial pressure pulse becomes modified as it travels away from the heart towards the periphery, this is generally true for mean and diastolic pressure, but not for systolic pressure, and so pulse pressure. The relationship between central and peripheral pulse pressure depends on propagation characteristics of arteries. Hence, while the sphygmomanometer gives values of two single points on the pressure wave (systolic and diastolic pressure), there is additional information that can be obtained from the time-varying pulse waveform that enables an improved quantification of the systolic load on the heart and other central organs. This topical review will assess techniques of pressure measurement that relate to the use of the cuff sphygmomanometer and to the non-invasive registration and analysis of the peripheral and central arterial pressure waveform. Improved assessment of cardiovascular function in relation to treatment and management of high blood pressure will result from future developments in the indirect measurement of arterial blood pressure that involve the conventional cuff sphygmomanometer with the addition of information derived from the peripheral arterial pulse. (topical review)

  10. Arterial blood pressure measurement and pulse wave analysis--their role in enhancing cardiovascular assessment.

    Science.gov (United States)

    Avolio, Alberto P; Butlin, Mark; Walsh, Andrew

    2010-01-01

    The most common method of clinical measurement of arterial blood pressure is by means of the cuff sphygmomanometer. This instrument has provided fundamental quantitative information on arterial pressure in individual subjects and in populations and facilitated estimation of cardiovascular risk related to levels of blood pressure obtained from the brachial cuff. Although the measurement is taken in a peripheral limb, the values are generally assumed to reflect the pressure throughout the arterial tree in large conduit arteries. Since the arterial pressure pulse becomes modified as it travels away from the heart towards the periphery, this is generally true for mean and diastolic pressure, but not for systolic pressure, and so pulse pressure. The relationship between central and peripheral pulse pressure depends on propagation characteristics of arteries. Hence, while the sphygmomanometer gives values of two single points on the pressure wave (systolic and diastolic pressure), there is additional information that can be obtained from the time-varying pulse waveform that enables an improved quantification of the systolic load on the heart and other central organs. This topical review will assess techniques of pressure measurement that relate to the use of the cuff sphygmomanometer and to the non-invasive registration and analysis of the peripheral and central arterial pressure waveform. Improved assessment of cardiovascular function in relation to treatment and management of high blood pressure will result from future developments in the indirect measurement of arterial blood pressure that involve the conventional cuff sphygmomanometer with the addition of information derived from the peripheral arterial pulse. PMID:19940350

  11. Acoustoelastic effects on mode waves in a fluid-filled pressurized borehole in triaxially stressed formations

    Institute of Scientific and Technical Information of China (English)

    Ping'en Li; Youquan Yin; Xianyue Su

    2006-01-01

    Based on the nonlinear theory of acoustoelasticity,considering the triaxial terrestrial stress,the fluid static pressure in the borehole and the fluid nonlinear effect jointly,the dispersion curves of the monopole Stoneley wave and dipole flexural wave propagating along the borehole axis in a homogeneous isotropic formation are investigated by using the perturbation method.The relation of the sensitivity coefficient and the velocity-stress coefficient to frequency are also analyzed.The results show that variations of the phase velocity dispersion curve are mainly affected by three sensitivity coefficients related to third-order elastic constant.The borehole stress concentration causes a split of the flexural waves and an intersection of the dispersion curves of the flexural waves polarized in directions parallel and normal to the uniaxial horizontal stress direction.The stress-induced formation anisotropy is only dependent on the horizontal deviatoric terrestrial stress and independent of the horizontal mean terrestrial stress,the superimposed stress and the fluid static pressure.The horizontal terrestrial stress ratio ranging from 0 to 1 reduces the stress-induced formation anisotropy.This makes the intersection of flexural wave dispersion curves not distinguishable.The effect of the fluid nonlinearity on the dispersion curve of the mode wave is small and can be ignored.

  12. Modeling wave-induced pore pressure and effective stress in a granular seabed

    Science.gov (United States)

    Scholtès, Luc; Chareyre, Bruno; Michallet, Hervé; Catalano, Emanuele; Marzougui, Donia

    2015-01-01

    The response of a sandy seabed under wave loading is investigated on the basis of numerical modeling using a multi-scale approach. To that aim, the discrete element method is coupled to a finite volume method specially enhanced to describe compressible fluid flow. Both solid and fluid phase mechanics are upscaled from considerations established at the pore level. Model's predictions are validated against poroelasticity theory and discussed in comparison with experiments where a sediment analog is subjected to wave action in a flume. Special emphasis is put on the mechanisms leading the seabed to liquefy under wave-induced pressure variation on its surface. Liquefaction is observed in both dilative and compactive regimes. It is shown that the instability can be triggered for a well-identified range of hydraulic conditions. Particularly, the results confirm that the gas content, together with the permeability of the medium are key parameters affecting the transmission of pressure inside the soil.

  13. Effect of the dynamic pressure on the shock wave structure in a rarefied polyatomic gas

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Shigeru, E-mail: taniguchi@stat.nitech.ac.jp; Sugiyama, Masaru, E-mail: sugiyama@nitech.ac.jp [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Arima, Takashi, E-mail: tks@stat.nitech.ac.jp [Center for Social Contribution and Collaboration, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Ruggeri, Tommaso, E-mail: tommaso.ruggeri@unibo.it [Department of Mathematics and Research Center of Applied Mathematics (CIRAM), University of Bologna, Bologna (Italy)

    2014-01-15

    We study the shock wave structure in a rarefied polyatomic gas based on a simplified model of extended thermodynamics in which the dissipation is due only to the dynamic pressure. In this case the differential system is very simple because it is a variant of Euler system with a new scalar equation for the dynamic pressure [T. Arima, S. Taniguchi, T. Ruggeri, and M. Sugiyama, Phys. Lett. A 376, 2799–2803 (2012)]. It is shown that this theory is able to describe the three types of the shock wave structure observed in experiments: the nearly symmetric shock wave structure (Type A, small Mach number), the asymmetric structure (Type B, moderate Mach number), and the structure composed of thin and thick layers (Type C, large Mach number)

  14. Effects of Shelves on Amplification of Long Waves Generated by Atmospheric Pressure Differences

    Science.gov (United States)

    Duha Metin, Ayse; Cevdet Yalciner, Ahmet; Ozyurt Tarakcıoglu, Gulizar; Zaytsev, Andrey

    2016-04-01

    Meteotsunami is a type of long period ocean wave generated by different types of meteorological disturbances such as atmospheric gravity waves, spatial and temporal pressure distributions and squall lines. The main idea behind the occurrence of this type of long wave is that low atmospheric pressure leads to static water level rise in a part of the marine area and high atmospheric pressure leads to static water level drop in another zone. Then, it causes deformation of the water level throughout the entire sea area. The relation between the pressure difference and change of water level from normal position (η =0.99Δ P where η is the water level change (cm) according to the pressure difference from normal pressure Δ P) can be used to determine the sea level deformation. The relation represents that 1 hPa decrease in air pressure causes 1 cm rise in mean sea level. Due to the spatial and temporal changes of atmospheric pressure, the respective small amplitude long waves propagate along the entire marine area. This type of tsunami-like waves can propagate through long distances and can also be amplified due to resonant effects in the enclosed basins, offshore shelves, and nearshore/offshore coastal morphology. Therefore, it can result in considerable amplifications and causes unexpected effects in some coastal regions. This study is mainly focused on understanding of amplification of long waves generated by atmospheric pressure differences when they encounter the offshore shelves while it is propagating towards to the shore. The problem is investigated by numerically solving nonlinear shallow water equations by using regular shaped basins with different depth and shelf characteristics. In all cases, the rectangular shape large basin is triggered by spatial and temporal distributions of atmospheric pressure. The water depth and shelf formation is changed for different cases. Initially, a deep flat bottom basin is used in simulations and the reference data of water

  15. Continuous blood pressure monitoring during exercise using pulse wave transit time measurement.

    Science.gov (United States)

    Lass, J; Meigas, K; Karai, D; Kattai, R; Kaik, J; Rossmann, M

    2004-01-01

    This paper gives an overview of a research, which is focused on the development of the convenient device for continuous non-invasive monitoring of arterial blood pressure. The blood pressure estimation method is based on a presumption that there is a singular relationship between the pulse wave propagation time in arterial system and blood pressure. The parameter used in this study is pulse wave transit time (PWTT). The measurement of PWTT involves the registration of two time markers, one of which is based on ECG R peak detection and another on the detection of pulse wave in peripheral arteries. The reliability of beat to beat systolic blood pressure calculation during physical exercise was the main focus for the current paper. Sixty-one subjects (healthy and hypertensive) were studied with the bicycle exercise test. As a result of current study it is shown that with the correct personal calibration it is possible to estimate the beat to beat systolic arterial blood pressure during the exercise with comparable accuracy to conventional noninvasive methods. PMID:17272172

  16. Experimental Study on a Standing Wave Thermoacoustic Prime Mover with Air Working Gas at Various Pressures

    Science.gov (United States)

    Setiawan, Ikhsan; Achmadin, Wahyu N.; Murti, Prastowo; Nohtomi, Makoto

    2016-04-01

    Thermoacoustic prime mover is an energy conversion device which converts thermal energy into acoustic work (sound wave). The advantages of this machine are that it can work with air as the working gas and does not produce any exhaust gases, so that it is environmentally friendly. This paper describes an experimental study on a standing wave thermoacoustic prime mover with air as the working gas at various pressures from 0.05 MPa to 0.6 MPa. We found that 0.2 MPa is the optimum pressure which gives the lowest onset temperature difference of 355 °C. This pressure value would be more preferable in harnessing low grade heat sources to power the thermoacoustic prime mover. In addition, we find that the lowest onset temperature difference is obtained when rh /δ k ratio is 2.85, where r h is the hydraulic radius of the stack and δ k is the thermal penetration depth of the gas. Moreover, the pressure amplitude of the sound wave is significantly getting larger from 2.0 kPa to 9.0 kPa as the charged pressure increases from 0.05 MPa up to 0.6 MPa.

  17. Pressure transducer used for measuring close-in shock waves of nuclear explosions in the atmosphere

    International Nuclear Information System (INIS)

    This paper introduces a variable reluctance pressure transducer. It has been successfully used for the measurement of close-in shock waves of nuclear explosions in the atmosphere. This transducer's highest pressure range is 100kg/cm2 and its response rise time for all ranges is lms. It uses a specially made oil-filled pressure which allows the transducer to be able to realize underground installation. In this way, it can endure the intense nuclear radiation of nuclear explosions without losing its fast speed response characteristics. This transducer has undergone a series of environmental tests and dynamic standardizations. Therefore, it was used to measure the complete waveform of shock wave overpressure in areas near the fire ball of nuclear explosions. This paper lists the test data of a group of nuclear explosion tests

  18. Comparison of actinide production in traveling wave and pressurized water reactors

    International Nuclear Information System (INIS)

    The geopolitical problems associated with civilian nuclear energy production arise in part from the accumulation of transuranics in spent nuclear fuel. A traveling wave reactor is a type of breed-burn reactor that could, if feasible, reduce the overall production of transuranics. In one possible configuration, a cylinder of natural or depleted uranium would be subjected to a fast neutron flux at one end. The neutrons would transmute the uranium, producing plutonium and higher actinides. Under the right conditions, the reactor could become critical, at which point a self-stabilizing fission wave would form and propagate down the length of the reactor cylinder. The neutrons from the fission wave would burn the fissile nuclides and transmute uranium ahead of the wave to produce additional fuel. Fission waves in uranium are driven largely by the production and fission of 239Pu. Simulations have shown that the fuel burnup can reach values greater than 400 MWd/kgIHM, before fission products poison the reaction. In this work we compare the production of plutonium and minor actinides produced in a fission wave to that of a UOX fueled light water reactor, both on an energy normalized basis. The nuclide concentrations in the spent traveling wave reactor fuel are computed using a one-group diffusion model and are verified using Monte Carlo simulations. In the case of the pressurized water reactor, a multi-group collision probability model is used to generate the nuclide quantities. We find that the traveling wave reactor produces about 0.187 g/MWd/kgIHM of transuranics compared to 0.413 g/MWd/kgIHM for a pressurized water reactor running fuel enriched to 4.95 % and burned to 50 MWd/kgIHM. (authors)

  19. Comparison of actinide production in traveling wave and pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, A.G.; Smith, T.A.; Deinert, M.R. [Department of Mechanical Engineering, University of Texas at Austin, Austin, TX (United States)

    2013-07-01

    The geopolitical problems associated with civilian nuclear energy production arise in part from the accumulation of transuranics in spent nuclear fuel. A traveling wave reactor is a type of breed-burn reactor that could, if feasible, reduce the overall production of transuranics. In one possible configuration, a cylinder of natural or depleted uranium would be subjected to a fast neutron flux at one end. The neutrons would transmute the uranium, producing plutonium and higher actinides. Under the right conditions, the reactor could become critical, at which point a self-stabilizing fission wave would form and propagate down the length of the reactor cylinder. The neutrons from the fission wave would burn the fissile nuclides and transmute uranium ahead of the wave to produce additional fuel. Fission waves in uranium are driven largely by the production and fission of {sup 239}Pu. Simulations have shown that the fuel burnup can reach values greater than 400 MWd/kgIHM, before fission products poison the reaction. In this work we compare the production of plutonium and minor actinides produced in a fission wave to that of a UOX fueled light water reactor, both on an energy normalized basis. The nuclide concentrations in the spent traveling wave reactor fuel are computed using a one-group diffusion model and are verified using Monte Carlo simulations. In the case of the pressurized water reactor, a multi-group collision probability model is used to generate the nuclide quantities. We find that the traveling wave reactor produces about 0.187 g/MWd/kgIHM of transuranics compared to 0.413 g/MWd/kgIHM for a pressurized water reactor running fuel enriched to 4.95 % and burned to 50 MWd/kgIHM. (authors)

  20. Theory of azimuthally small-scale hydromagnetic waves in the axisymmetric magnetosphere with finite plasma pressure

    Directory of Open Access Journals (Sweden)

    D. Y. Klimushkin

    Full Text Available The structure of monochromatic MHD-waves with large azimuthal wave number m≫1 in a two-dimensional model of the magnetosphere has been investigated. A joint action of the field line curvature, finite plasma pressure, and transversal equilibrium current leads to the phenomenon that waves, standing along the field lines, are travelling across the magnetic shells. The wave propagation region, the transparency region, is bounded by the poloidal magnetic surface on one side and by the resonance surface on the other. In their meaning these surfaces correspond to the usual and singular turning points in the WKB-approximation, respectively. The wave is excited near the poloidal surface and propagates toward the resonance surface where it is totally absorbed due to the ionospheric dissipation. There are two transparency regions in a finite-beta magnetosphere, one of them corresponds to the Alfvén mode and the other to the slow magnetosound mode.

    Key words. Magnetosphere · Azimuthally small-scale waves · MHD waves

  1. Water Waves from General, Time-Dependent Surface Pressure Distribution in the Presence of a Shear Current

    CERN Document Server

    Li, Yan

    2015-01-01

    We obtain a general solution for the water waves resulting from a general, time-dependent surface pressure distribution, in the presence of a shear current of uniform vorticity beneath the surface, in three dimensions. Linearized governing equations and boundary conditions including the effects of gravity, a distributed external pressure disturbance, and constant finite depth, are solved analytically, and particular attention is paid to classic initial value problems: an initial pressure impulse and a steady pressure distribution which appears suddenly. In the present paper, good agreement with previous results is demonstrated. We subsequently show both analytically and numerically how transient waves from a suddenly appearing steady pressure distribution vanis for large times, and steady ship waves remain. The transient contribution to wave resistance was derived. The results show that a shear current has significant impact on the transient wave motions, resulting in asymmetry between upstream and downstream...

  2. Low-frequency pressure wave propagation in liquid-filled, flexible tubes. (A)

    DEFF Research Database (Denmark)

    Bjørnø, Leif; Bjelland, C.

    1992-01-01

    A model has been developed for propagation of low-frequency pressure waves in viscoelastic tubes with distensibility of greater importance than compressibility of the liquid. The dispersion and attenuation are shown to be strongly dependent on the viscoelastic properties of the tube wall. The com......A model has been developed for propagation of low-frequency pressure waves in viscoelastic tubes with distensibility of greater importance than compressibility of the liquid. The dispersion and attenuation are shown to be strongly dependent on the viscoelastic properties of the tube wall......) moduli determined by stress wave transfer function measurements in simple extension experiments. The moduli are used in the model to produce realistic dispersion relations and frequency dependent attenuation. Signal transfer functions between positions in the liquid-filled tube can be synthesized from...... the model and are compared with results of experimental pressure wave propagation in the liquid-filled, flexible tube. A good agreement between experimental data and theoretical predictions is found....

  3. Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo [Tokyo Institute of Technology (Japan)

    1995-09-01

    In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that there exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.

  4. The dynamics of pressure and form drag on a sloping headland: Internal waves versus eddies

    Science.gov (United States)

    Warner, Sally J.; MacCready, Parker

    2014-03-01

    Topographically generated eddies and internal waves have traditionally been studied separately even though bathymetry that creates both phenomena is abundant in coastal regions. Here a numerical model is used to understand the dynamics of eddy and wave generation as tidal currents flow past Three Tree Point, a 1 km long, 200 m deep, sloping headland in Puget Sound, WA. Bottom pressure anomalies due to vertical perturbations of the sea surface and isopycnals are used to calculate form drag in different regions of the topography to assess the relative importance of eddies versus internal waves. In regions where internal waves dominate, sea surface and isopycnal perturbations tend to work together to create drag, whereas in regions dominated by eddies, sea surface, and isopycnal perturbations tend to counteract each other. Both phenomena are found to produce similar amounts of form drag even though the bottom pressure anomalies from the eddy have much larger magnitudes than those created by the internal waves. Topography like Three Tree Point is common in high latitude, coastal regions, and therefore the findings here have implications for understanding how coastal topography removes energy from tidal currents.

  5. Characterization of a Setup to test the Impact of High-Amplitude Pressure Waves on Living Cells

    Science.gov (United States)

    Schmidt, Mischa; Kahlert, Ulf; Wessolleck, Johanna; Maciaczyk, Donata; Merkt, Benjamin; Maciaczyk, Jaroslaw; Osterholz, Jens; Nikkhah, Guido; Steinhauser, Martin O.

    2014-01-01

    The impact of pressure waves on cells may provide several possible applications in biology and medicine including the direct killing of tumors, drug delivery or gene transfection. In this study we characterize the physical properties of mechanical pressure waves generated by a nanosecond laser pulse in a setup with well-defined cell culture conditions. To systematically characterize the system on the relevant length and time scales (micrometers and nanoseconds) we use photon Doppler velocimetry (PDV) and obtain velocity profiles of the cell culture vessel at the passage of the pressure wave. These profiles serve as input for numerical pressure wave simulations that help to further quantify the pressure conditions on the cellular length scale. On the biological level we demonstrate killing of glioblastoma cells and quantify experimentally the pressure threshold for cell destruction.

  6. Pressure wave measurements from thermal cook-off of an HMX based high explosive

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, J W; Tarver, C M; Urtiew, P A; Garcia, F; Greenwood, D W; Vandersall, K S

    2000-10-10

    A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios.

  7. Pressure Wave Measurements from Thermal Cook-off of an HMX Based Explosive

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, J W; Tarver, C M; Urtiew, P A; Garcia, F; Greenwood, D W; Vandersall, K S

    2001-05-09

    A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios.

  8. Pressure Wave Measurements from Thermal Cook-Off of an HMX Based High Explosive PBX 9501

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, F; Forbes, J W; Tarver, C M; Urtiew, P A; Greenwood, D W; Vandersall, K S

    2001-05-31

    A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios.

  9. Loads on structures inside reactor pressure vessels due to loca - decompression waves

    International Nuclear Information System (INIS)

    A theoretical model is described to calculate forces and moments onto core barrels, guide tubes of control rods, grid plates etc. inside the reactor pressure vessel due to decompression waves propagating with sonic velocity from the fracture during loss-of-coolant accidents in light water reactors. Simplicity of the model, short computer times and sufficient accuracy were the boundary conditions for the development. Therefore, no fluid dynamic coupling with the structure is considered. The main equations of the model are given and explained. The results of parametric studies as well as comparison to decompression wave experiments and calculations with coupling are presented. (orig.)

  10. Radial energy transport by magnetospheric ULF waves: Effects of magnetic curvature and plasma pressure

    Science.gov (United States)

    Kouznetsov, Igor; Lotko, William

    1995-01-01

    The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the

  11. Arterial pulse pressure amplification described by means of a nonlinear wave model: characterization of human aging

    Science.gov (United States)

    Alfonso, M.; Cymberknop, L.; Armentano, R.; Pessana, F.; Wray, S.; Legnani, W.

    2016-04-01

    The representation of blood pressure pulse as a combination of solitons captures many of the phenomena observed during its propagation along the systemic circulation. The aim of this work is to analyze the applicability of a compartmental model for propagation regarding the pressure pulse amplification associated with arterial aging. The model was applied to blood pressure waveforms that were synthesized using solitons, and then validated by waveforms obtained from individuals from differentiated age groups. Morphological changes were verified in the blood pressure waveform as a consequence of the aging process (i.e. due to the increase in arterial stiffness). These changes are the result of both a nonlinear interaction and the phenomena present in the propagation of nonlinear mechanic waves.

  12. Central blood pressure assessment using 24-hour brachial pulse wave analysis

    Directory of Open Access Journals (Sweden)

    Muiesan ML

    2014-10-01

    Full Text Available Maria Lorenza Muiesan, Massimo Salvetti, Fabio Bertacchini, Claudia Agabiti-Rosei, Giulia Maruelli, Efrem Colonetti, Anna Paini Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy Abstract: This review describes the use of central blood pressure (BP measurements during ambulatory monitoring, using noninvasive devices. The principles of measuring central BP by applanation tonometry and by oscillometry are reported, and information on device validation studies is described. The pathophysiological basis for the differences between brachial and aortic pressure is discussed. The currently available methods for central aortic pressure measurement are relatively accurate, and their use has important clinical implications, such as improving diagnostic and prognostic stratification of hypertension and providing a more accurate assessment of the effect of treatment on BP. Keywords: aortic blood pressure measurements, ambulatory monitoring, pulse wave analysis

  13. Combined ultrasonic elastic wave velocity and microtomography measurements at high pressures

    International Nuclear Information System (INIS)

    Combined ultrasonic and microtomographic measurements were conducted for simultaneous determination of elastic property and density of noncrystalline materials at high pressures. A Paris-Edinburgh anvil cell was placed in a rotation apparatus, which enabled us to take a series of x-ray radiography images under pressure over a 180 deg. angle range and construct accurately the three-dimensional sample volume using microtomography. In addition, ultrasonic elastic wave velocity measurements were carried out simultaneously using the pulse reflection method with a 10 deg. Y-cut LiNbO3 transducer attached to the end of the lower anvil. Combined ultrasonic and microtomographic measurements were carried out for SiO2 glass up to 2.6 GPa and room temperature. A decrease in elastic wave velocities of the SiO2 glass was observed with increasing pressure, in agreement with previous studies. The simultaneous measurements on elastic wave velocities and density allowed us to derive bulk (Ks) and shear (G) moduli as a function of pressure. Ks and G of the SiO2 glass also decreased with increasing pressure. The negative pressure dependence of Ks is stronger than that of G, and as a result the value of Ks became similar to G at 2.0-2.6 GPa. There is no reason why we cannot apply this new technique to high temperatures as well. Hence the results demonstrate that the combined ultrasonic and microtomography technique is a powerful tool to derive advanced (accurate) P-V-Ks-G-(T) equations of state for noncrystalline materials.

  14. Cavitation inception by the backscattering of pressure waves from a bubble interface

    Science.gov (United States)

    Takahira, Hiroyuki; Ogasawara, Toshiyuki; Mori, Naoto; Tanaka, Moe

    2015-10-01

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t0 to a characteristic time of wave propagation tS, η = t0/ts, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  15. CMOS-compatible ruggedized high-temperature Lamb wave pressure sensor

    International Nuclear Information System (INIS)

    This paper describes the development of a novel ruggedized high-temperature pressure sensor operating in lateral field exited (LFE) Lamb wave mode. The comb-like structure electrodes on top of aluminum nitride (AlN) were used to generate the wave. A membrane was fabricated on SOI wafer with a 10 µm thick device layer. The sensor chip was mounted on a pressure test package and pressure was applied to the backside of the membrane, with a range of 20–100 psi. The temperature coefficient of frequency (TCF) was experimentally measured in the temperature range of −50 °C to 300 °C. By using the modified Butterworth–van Dyke model, coupling coefficients and quality factor were extracted. Temperature-dependent Young's modulus of composite structure was determined using resonance frequency and sensor interdigital transducer (IDT) wavelength which is mainly dominated by an AlN layer. Absolute sensor phase noise was measured at resonance to estimate the sensor pressure and temperature sensitivity. This paper demonstrates an AlN-based pressure sensor which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications. (paper)

  16. CMOS-compatible ruggedized high-temperature Lamb wave pressure sensor

    Science.gov (United States)

    Kropelnicki, P.; Muckensturm, K.-M.; Mu, X. J.; Randles, A. B.; Cai, H.; Ang, W. C.; Tsai, J. M.; Vogt, H.

    2013-08-01

    This paper describes the development of a novel ruggedized high-temperature pressure sensor operating in lateral field exited (LFE) Lamb wave mode. The comb-like structure electrodes on top of aluminum nitride (AlN) were used to generate the wave. A membrane was fabricated on SOI wafer with a 10 µm thick device layer. The sensor chip was mounted on a pressure test package and pressure was applied to the backside of the membrane, with a range of 20-100 psi. The temperature coefficient of frequency (TCF) was experimentally measured in the temperature range of -50 °C to 300 °C. By using the modified Butterworth-van Dyke model, coupling coefficients and quality factor were extracted. Temperature-dependent Young's modulus of composite structure was determined using resonance frequency and sensor interdigital transducer (IDT) wavelength which is mainly dominated by an AlN layer. Absolute sensor phase noise was measured at resonance to estimate the sensor pressure and temperature sensitivity. This paper demonstrates an AlN-based pressure sensor which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications.

  17. On the pressure wave problem in liquid metal targets for pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    A liquid metal target for a pulsed spallation source was modelled on the computer to investigate the effect of the high instantaneous power deposition (60 KJ in 1 μs) on the pressure in the liquid and the resulting stress on the container. It was found that for the short pulse duration the resulting stress would be likely to exceed the allowable design stress for steels of the HT-9 type with low nickel content. Adding a small volume fraction of gas bubbles might be a way to suppress almost completely the generation of pressure waves. (author) 12 figs., 5 refs

  18. Pressure broadening measurement of submillimeter-wave lines of O3

    Science.gov (United States)

    Yamada, M. M.; Amano, T.

    2005-10-01

    The pressure broadening coefficients and their temperature dependences for two submillimeter-wave transitions of ozone, one being monitored with Odin and the other to be monitored with JEM/SMILES and EOS-MLS, have been determined by using a BWO based submillimeter-wave spectrometer. The measurements have also been extended to one of the symmetric isotopic species, 16O18O16O. The isotopic species is observed in natural abundance and as a consequence the temperature dependence is not determined due to weak signal intensity. The pressure broadening parameters are determined with better than 1% accuracy, while the temperature dependence exponents are obtained within 1.5 3% accuracy for the normal species transitions.

  19. Pressure broadening measurement of submillimeter-wave lines of O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, M.M. [Institute for Astrophysics and Planetary Sciences, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512 (Japan); Amano, T. [Institute for Astrophysics and Planetary Sciences, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512 (Japan)]. E-mail: amano@mx.ibaraki.ac.jp

    2005-10-01

    The pressure broadening coefficients and their temperature dependences for two submillimeter-wave transitions of ozone, one being monitored with Odin and the other to be monitored with JEM/SMILES and EOS-MLS, have been determined by using a BWO based submillimeter-wave spectrometer. The measurements have also been extended to one of the symmetric isotopic species, {sup 16}O{sup 18}O{sup 16}O. The isotopic species is observed in natural abundance and as a consequence the temperature dependence is not determined due to weak signal intensity. The pressure broadening parameters are determined with better than 1% accuracy, while the temperature dependence exponents are obtained within 1.5-3% accuracy for the normal species transitions.

  20. Shock wave reflection induced detonation (SWRID) under high pressure and temperature condition in closed cylinder

    Science.gov (United States)

    Wang, Z.; Qi, Y.; Liu, H.; Zhang, P.; He, X.; Wang, J.

    2016-07-01

    Super-knock is one of the major obstacles for improving power density in advanced internal combustion engines (ICE). This work studied the mechanism of super-knock initiation using a rapid compression machine that simulated conditions relevant to ICEs and provided excellent optical accessibility. Based on the high-speed images and pressure traces of the stoichiometric iso-octane/oxygen/nitrogen combustion under high-temperature and high-pressure conditions, it was observed that detonation was first initiated in the near-wall region as a result of shock wave reflection. Before detonation was initiated, the speed of the combustion wave front was less than that of the Chapman-Jouguet (C-J) detonation speed (around 1840 m/s). In the immediate vicinity of the initiation, the detonation speed was much higher than that of the C-J detonation.

  1. Relative incapacitation contributions of pressure wave and wound channel in the Marshall and Sanow data set

    CERN Document Server

    Courtney, M; Courtney, Amy; Courtney, Michael

    2007-01-01

    The Marshall and Sanow data set is the largest and most comprehensive data set available quantifying handgun bullet effectiveness in humans. This article presents an empirical model for relative incapacitation probability in humans hit in the thoracic cavity by handgun bullets. The model is constructed by employing the hypothesis that the wound channel and ballistic pressure wave effects each have an associated independent probability of incapacitation. Combining models for these two independent probabilities using the elementary rules of probability and performing a least-squares fit to the Marshall and Sanow data provides an empirical model with only two adjustable parameters for modeling bullet effectiveness with a standard error of 5.6% and a correlation coefficient R = 0.939. This supports the hypothesis that wound channel and pressure wave effects are independent (within the experimental error), and it also allows assignment of the relative contribution of each effect for a given handgun load. This mode...

  2. Increasing pulse wave velocity in a realistic cardiovascular model does not increase pulse pressure with age.

    Science.gov (United States)

    Mohiuddin, Mohammad W; Rihani, Ryan J; Laine, Glen A; Quick, Christopher M

    2012-07-01

    The mechanism of the well-documented increase in aortic pulse pressure (PP) with age is disputed. Investigators assuming a classical windkessel model believe that increases in PP arise from decreases in total arterial compliance (C(tot)) and increases in total peripheral resistance (R(tot)) with age. Investigators assuming a more sophisticated pulse transmission model believe PP rises because increases in pulse wave velocity (c(ph)) make the reflected pressure wave arrive earlier, augmenting systolic pressure. It has recently been shown, however, that increases in c(ph) do not have a commensurate effect on the timing of the reflected wave. We therefore used a validated, large-scale, human arterial system model that includes realistic pulse wave transmission to determine whether increases in c(ph) cause increased PP with age. First, we made the realistic arterial system model age dependent by altering cardiac output (CO), R(tot), C(tot), and c(ph) to mimic the reported changes in these parameters from age 30 to 70. Then, c(ph) was theoretically maintained constant, while C(tot), R(tot), and CO were altered. The predicted increase in PP with age was similar to the observed increase in PP. In a complementary approach, C(tot), R(tot), and CO were theoretically maintained constant, and c(ph) was increased. The predicted increase in PP was negligible. We found that increases in c(ph) have a limited effect on the timing of the reflected wave but cause the system to degenerate into a windkessel. Changes in PP can therefore be attributed to a decrease in C(tot). PMID:22561301

  3. Interactions of Delta Shock Waves for Zero-Pressure Gas Dynamics with Energy Conservation Law

    Directory of Open Access Journals (Sweden)

    Wei Cai

    2016-01-01

    Full Text Available We study the interactions of delta shock waves and vacuum states for the system of conservation laws of mass, momentum, and energy in zero-pressure gas dynamics. The Riemann problems with initial data of three piecewise constant states are solved case by case, and four different configurations of Riemann solutions are constructed. Furthermore, the numerical simulations completely coinciding with theoretical analysis are shown.

  4. Non-invasive measurement of aortic pressure in patients: Comparing pulse wave analysis and applanation tonometry

    Directory of Open Access Journals (Sweden)

    M.U.R. Naidu

    2012-01-01

    Full Text Available Objective: The aim of the present study was to validate and compare novel methods to determine aortic blood pressure non-invasively based on Oscillometric Pulse Wave Velocity (PWV measurement using four limb-cuff pressure waveforms and two lead Electrocardiogram (ECG with a validated tonometric pulse wave analysis system in patients. Materials and Methods: After receiving the consent, in 49 patients with hypertension, coronary artery disease, diabetes mellitus, PWV, and central blood pressures were recorded in a randomised manner using both the oscillometric and tonometric devices. All recordings were performed 10 minutes after the patient lying comfortably in a noise-free temperature-controlled room. The test was performed between 09 am and 10 am after overnight fast. A minimum of three measurements were performed by the same skilled and trained operator. From the raw data obtained with two devices, software calculated the final vascular parameters. Results: A total of 49 patients (8 women and 41 men, of mean age 40.5 years (range: 19-81 years participated in the present study. After transforming the brachial pressures into aortic pressures, the correlation coefficient between the Aortic Systolic Pressure (ASP values obtained with two methods was 0.9796 (P<0.0001. The mean difference between ASP with two methods was 0.3 mm Hg. Similarly, Aortic Diastolic Pressure (ADP values obtained with two methods also correlated significantly with correlation coefficient of 0.9769 (P<0.0001. The mean difference of ADP was 0.2 mm Hg. In case of Aortic Pulse Pressure (APP, the mean difference was 0.1 mm Hg. All parameters of central aortic pressures obtained with two methods correlated significantly. Conclusion: The new method of transforming the Carotid Femoral PWV (cfPWV and brachial blood pressure values into aortic blood pressure values seems to be reasonably good. The significant correlation between the values obtained by tonometric device and

  5. Drift wave excitation in the THETA-pinch high pressure plasma

    International Nuclear Information System (INIS)

    Excitation of low-frequency (LF) drift waves has been experimentally investigated in a high-pressure plasma in a gas discharge of the direct THETA-pinch type. The electrodeless inductive gas discharge is produced in an alundum tube of 150 cm length and 6.5 cm internal diameter filled with hydrogen at the pressure of (1-20).10-3 mm Hg. The discharge magnetic field (MF) has been investigated by a system of five magnetic probes both oriented along the radius and the length of the discharge chamber. The longitudinal temperature of electrons reaches 4 keV at the 6 kV voltage on the coil. Successive development of two types of instability has been observed: HF ''starting'' and LF ones. The LF oscillations observed have been identified as drift waves in a system with large β. The amplitude of the MF oscillations for the given instability may be compared with the value of the main MF, and the transverse wave lengths for these oscillations are of the order of the plasma filament radius. The longitudinal wave lengths are comparable with the magnetic system length

  6. Isothermal self-similar blast wave theory of supernova remnants driven by relativistic gas pressure

    International Nuclear Information System (INIS)

    The spherically symmetric, self-similar flow behind a blast wave from a point explosion in a medium whose density varies with distance as rsup(-ω) is investigated with the assumption that the flow is both isothermal and contains a relativistic component of pressure. A self-similar solution is shown to exist only if both the blast wave speed, usub(s), and the local sound speed, w, are constant. If Ω [equivalent to ω(1-w2/c2)] lies in 1 >Ω>0, there exists a critical point in the radial distance-flow velocity plane. To be physically acceptable, the solution must pass through the origin and through the critical point and then through to the blast front; solution branches between these points exist, although a proper connection at the critical point has not been demonstrated. It is concluded that isothermal self-similar blast waves do not provide a valid model for a supernova remnant driven by a relativistic gas pressure. Since the validity of the adiabatic blast wave models has elsewhere been shown to be questionable, it is doubtful whether the self-similar property can be involved at all in the case of supernova remnants. This raises serious questions of interpretation of quantities deduced for supernova remnants on the basis of the use of self-similar models. (Auth.)

  7. Underwater blast wave pressure sensor based on polymer film fiber Fabry-Perot cavity.

    Science.gov (United States)

    Wang, Junjie; Wang, Meng; Xu, Jian; Peng, Li; Yang, Minghong; Xia, Minghe; Jiang, Desheng

    2014-10-01

    This paper describes the theoretical and experimental aspects of an optical underwater shock wave sensor based on a polymer film optical fiber Fabry-Perot cavity manufactured by vacuum deposition technology. The transduction mechanism of the sensor involves a normally incident acoustic stress wave that changes the thickness of the polymer film, thereby giving rise to a phase shift. This transient interferometric phase is interrogated by a three-phase-step algorithm. Theoretically, the sensor-acoustic-field interaction principle is analyzed, and the phase modulation sensitivity based on the theory of waves in the layered media is calculated. Experimentally, a static calibration test and a dynamic calibration test are conducted using a piston-type pressure calibration machine and a focusing-type electromagnetic shock wave. Results indicate that the repeatability, hysteresis, nonlinearity, and the overall measurement accuracy of the sensor within the full pressure range of 55 MPa are 1.82%, 0.86%, 1.81%, and 4.49%, respectively. The dynamic response time is less than 0.767 μs. Finally, three aspects that need further study for practical use are pointed out. PMID:25322237

  8. Evaluation of sloshing wave crest impact pressure acting on a fixed roof cylindrical tank

    International Nuclear Information System (INIS)

    This report describes the applicability of a newly developed computer code SLOSH-3D on estimating of sloshing wave crest impact pressure acting on a fixed roof of cylindrical tank. Based on the computed results, slosh-induced pressure loads and distribution on the tank roof is presented. A large shaking table test conducted on the E-Defense shaking table by a joint study group, composed of some electric companies, has been analyzed. In the shaking table test, partially water-filled cylindrical tank (diameter: 3m, height: 3m, water depth: 2.3m or 1.9m) with a flat fixed roof was subjected to a sinusoidal excitation at the first sloshing resonant frequency. The computer code well simulated the observed waveform with a spiky rising large pressure at the time of liquid impact on the tank wall, including appearance of negative pressures in the post impact period, with sufficient accuracy. As for the liquid impact zone of the tank roof including the water splash phenomena, the numerical computations indicated good agreement with the observed results. Furthermore, the numerical computations provided the total pressure load and pressure distribution on the tank wall at an instant of time when maximum pressure peak occurs. Consequently, the computer code SLOSH-3D was capable of predicting the complex nonlinear sloshing behavior with the collision of the liquid surface against the thank roof with an acceptable level of accuracy. (author)

  9. In situ measurements of impact-induced pressure waves in sandstone targets

    Science.gov (United States)

    Hoerth, Tobias; Schäfer, Frank; Nau, Siegfried; Kuder, Jürgen; Poelchau, Michael H.; Thoma, Klaus; Kenkmann, Thomas

    2014-10-01

    In the present study we introduce an innovative method for the measurement of impact-induced pressure waves within geological materials. Impact experiments on dry and water-saturated sandstone targets were conducted at a velocity of 4600 m/s using 12 mm steel projectiles to investigate amplitudes, decay behavior, and speed of the waves propagating through the target material. For this purpose a special kind of piezoresistive sensor capable of recording transient stress pulses within solid brittle materials was developed and calibrated using a Split-Hopkinson pressure bar. Experimental impact parameters (projectile size and speed) were kept constant and yielded reproducible signal curves in terms of rise time and peak amplitudes. Pressure amplitudes decreased by 3 orders of magnitude within the first 250 mm (i.e., 42 projectile radii). The attenuation for water-saturated sandstone is higher compared to dry sandstone which is attributed to dissipation effects caused by relative motion between bulk material and interstitial water. The proportion of the impact energy radiated as seismic energy (seismic efficiency) is in the order of 10-3. The present study shows the feasibility of real-time measurements of waves caused by hypervelocity impacts on geological materials. Experiments of this kind lead to a better understanding of the processes in the crater subsurface during a hypervelocity impact.

  10. Calculation Analysis of Pressure Wave Velocity in Gas and Drilling Mud Two-Phase Fluid in Annulus during Drilling Operations

    Directory of Open Access Journals (Sweden)

    Yuanhua Lin

    2013-01-01

    Full Text Available Investigation of propagation characteristics of a pressure wave is of great significance to the solution of the transient pressure problem caused by unsteady operations during management pressure drilling operations. With consideration of the important factors such as virtual mass force, drag force, angular frequency, gas influx rate, pressure, temperature, and well depth, a united wave velocity model has been proposed based on pressure gradient equations in drilling operations, gas-liquid two-fluid model, the gas-drilling mud equations of state, and small perturbation theory. Solved by adopting the Runge-Kutta method, calculation results indicate that the wave velocity and void fraction have different values with respect to well depth. In the annulus, the drop of pressure causes an increase in void fraction along the flow direction. The void fraction increases first slightly and then sharply; correspondingly the wave velocity first gradually decreases and then slightly increases. In general, the wave velocity tends to increase with the increase in back pressure and the decrease of gas influx rate and angular frequency, significantly in low range. Taking the virtual mass force into account, the dispersion characteristic of the pressure wave weakens obviously, especially at the position close to the wellhead.

  11. Non-invasive measurement of local pulse pressure by pulse wave-based ultrasound manometry (PWUM)

    International Nuclear Information System (INIS)

    Central blood pressure (CBP) has been established as a relevant indicator of cardiovascular disease. Despite its significance, CBP remains particularly challenging to measure in standard clinical practice. The objective of this study is to introduce pulse wave-based ultrasound manometry (PWUM) as a simple-to-use, non-invasive ultrasound-based method for quantitative measurement of the central pulse pressure. Arterial wall displacements are estimated using radiofrequency ultrasound signals acquired at high frame rates and the pulse pressure waveform is estimated using both the distension waveform and the local pulse wave velocity. The method was tested on the abdominal aorta of 11 healthy subjects (age 35.7±16 y.o.). PWUM pulse pressure measurements were compared to those obtained by radial applanation tonometry using a commercial system. The average intra-subject variability of the pulse pressure amplitude was found to be equal to 4.2 mmHg, demonstrating good reproducibility of the method. Excellent correlation was found between the waveforms obtained by PWUM and those obtained by tonometry in all subjects (0.94 < r < 0.98). A significant bias of 4.7 mmHg was found between PWUM and tonometry. PWUM is a highly translational method that can be easily integrated in clinical ultrasound imaging systems. It provides an estimate of the pulse pressure waveform at the imaged location, and may offer therefore the possibility to estimate the pulse pressure at different arterial sites. Future developments include the validation of the method against invasive estimates on patients, as well as its application to other large arteries

  12. Pressure Wave Measurements During Thermal Explosion of HMX-Based High Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, J W; Garcia, F; Tarver, C M; Urtiew, P A; Greenwood, D W; Vandersall, K S

    2002-06-27

    Five different experiments on thermal heating of explosive materials have been performed. Three experiments thermally exploded PBX 9501 (HMX/Estane/BDNPA-F; 9512.512.5 wt %) donor charges while two others thermally exploded LX-04 (HMX/Viton A; 85/15 wt %). These donor charges were encased in 304 stainless steel. The transmitted two-dimensional pressure waves were measured by gauges in acceptor cylinders of Teflon, PBX 9501, or LX-04 that were in contact with the donors' steel case. A fifth experiment measured the pressure in an acceptor charge of PBX 9501 that had a 100 mm stand-off from the top of the steel case of the thermally cooked off PBX 9501 donor charge. Reactive flow hydrodynamic modeling using a rapid deflagration velocity of approximately 500 m/s was able to reproduce the pressure gauge records for both the in contact and stand off experiments that used PBX 9501 donors and acceptors.

  13. Laboratory measurement of longitudinal wave velocity of artificial gas hydrate under different temperatures and pressures

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The longitudinal wave velocity and attenuation measurements of artificial gas hy- drate samples at a low temperature are reported. And the temperature and pressure dependence of longitudinal wave velocity is also investigated. In order to under- stand the acoustic properties of gas hydrate, the pure ice, the pure tetrahydrofuran (THF), the pure gas hydrate samples and sand sediment containing gas hydrate are measured at a low temperature between 0℃ and –15℃. For the pure ice, the pure THF and the pure gas hydrate samples, whose density is 898 kg/m3, 895 kg/m3 and 475 kg/m3, the velocity of longitudinal wave is respectively 3574 m/s, 3428 m/s and 2439 m/s. For synthesized and compacted samples, the velocity of synthesized samples is lower than that of compacted samples. The velocities increase when the densities of the samples increase, while the attenuation decreases. Under the con- dition of low temperature, the results show that the velocity is slightly affected by the temperature. The results also show that wave velocities increase with the in- crease of piston pressures. For example, the velocity of one sample increases from 3049 up to 3337 m/s and the other increases from 2315 up to 2995 m/s. But wave velocity decreases from 3800 to 3546 m/s when the temperature increases from –15℃ to 5℃ and changes significantly close to the melting point. Formation con- ditions of the two samples are the same but with different conversion ratios of wa- ter. The results of the experiment are important for exploration of the gas hydrate resources and development of acoustic techniques.

  14. High pressure generation by laser driven shock waves: application to equation of state measurement

    International Nuclear Information System (INIS)

    This work is dedicated to shock waves and their applications to the study of the equation of state of compressed matter.This document is divided into 6 chapters: 1) laser-produced plasmas and abrasion processes, 2) shock waves and the equation of state, 3) relative measuring of the equation of state, 4) comparison between direct and indirect drive to compress the target, 5) the measurement of a new parameter: the shock temperature, and 6) control and measurement of the pre-heating phase. In this work we have reached relevant results, we have shown for the first time the possibility of generating shock waves of very high quality in terms of spatial distribution, time dependence and of negligible pre-heating phase with direct laser radiation. We have shown that the shock pressure stays unchanged as time passes for targets whose thickness is over 10 μm. A relative measurement of the equation of state has been performed through the simultaneous measurement of the velocity of shock waves passing through 2 different media. The great efficiency of the direct drive has allowed us to produce pressures up to 40 Mbar. An absolute measurement of the equation of state requires the measurement of 2 parameters, we have then performed the measurement of the colour temperature of an aluminium target submitted to laser shocks. A simple model has been developed to infer the shock temperature from the colour temperature. The last important result is the assessment of the temperature of the pre-heating phase that is necessary to know the media in which the shock wave propagates. The comparison of the measured values of the reflectivity of the back side of the target with the computed values given by an adequate simulation has allowed us to deduce the evolution of the temperature of the pre-heating phase. (A.C.)

  15. An improved calculation model for the wave-induced pore pressure distribution in a rubble-mound breakwater core

    OpenAIRE

    Vanneste, D.; Troch, P.

    2012-01-01

    The spatial distribution of the wave-induced pore pressure height in the core of a conventional rubble-mound breakwater is studied in this work. Use is made of existing theoretical and experimental knowledge to establish a calculation model for the pressure distribution on the front core slope and the attenuation of pore pressures within the breakwater core. The new model formulae are derived empirically and calibrated by means of a non-linear regression analysis of pore pressure measurements...

  16. An Improved Negative Pressure Wave Method for Natural Gas Pipeline Leak Location Using FBG Based Strain Sensor and Wavelet Transform

    OpenAIRE

    Qingmin Hou; Liang Ren; Wenling Jiao; Pinghua Zou; Gangbing Song

    2013-01-01

    Methods that more quickly locate leakages in natural gas pipelines are urgently required. In this paper, an improved negative pressure wave method based on FBG based strain sensors and wavelet analysis is proposed. This method takes into account the variation in the negative pressure wave propagation velocity and the gas velocity variation, uses the traditional leak location formula, and employs Compound Simpson and Dichotomy Searching for solving this formula. In addition, a FBG based strain...

  17. Cavitation inception by the backscattering of pressure waves from a bubble interface

    Energy Technology Data Exchange (ETDEWEB)

    Takahira, Hiroyuki, E-mail: takahira@me.osakafu-u.ac.jp; Ogasawara, Toshiyuki, E-mail: oga@me.osakafu-u.ac.jp; Mori, Naoto, E-mail: su101064@edu.osakafu-u.ac.jp; Tanaka, Moe [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531 (Japan)

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  18. Attenuation of wave-induced groundwater pressure in shallow water. Part 2. Theory

    Directory of Open Access Journals (Sweden)

    Stanisław R. Massel

    2005-09-01

    Full Text Available In this Part 2 of the paper (Part 1 was published by Massel et al. 2004 an exact close-form solution for the pore-water pressure component and velocity circulation pattern induced by surface waves is developed. This comprehensive theoretical model, based on Biot's theory, takes into account soil deformations, volume change and pore-water flow. The calculations indicate that for the stiffness ratio G/E'w ≥ 100, the vertical distribution of the pore pressure becomes very close to the Moshagen & Tørum (1975 approach, when the soil is rigid and the fluid is incompressible.     The theoretical results of the paper have been compared with the experimental data collected during the laboratory experiment in the Large Wave Channel in Hannover (see Massel et al. 2004 and showed very good agreement. The apparent bulk modulus of pore water was not determined in the experiment but was estimated from the best fit of the experimental pore-water pressure with the theoretical one. In the paper only a horizontal bottom is considered and the case of an undulating bottom will be dealt with in another paper.

  19. PHERMEX applications to study high-pressure flow and detonation waves

    International Nuclear Information System (INIS)

    Pulsed High-Energy Radiographic Machine Emitting X Rays (PHERMEX), has been used as a diagnostic tool to make quantitative measurements from radiographs of inert materials under dynamic high-pressure conditions and of explosives during the detonation process. In some experiments, radiography is the best method (compared to high-speed optical cameras and contactor pins) to study complicated hydrodynamic flow occurring in a dynamic experiment. To demonstrate the versatility and uniqueness of PHERMEX and the radiographic method, several experiments on inert solids having high and low atomic numbers will be discussed with some particulars. This includes the observation of the 11.0-GPa-pressure phase transition for antimony and the accompanying two-shock structure and the off-Hugoniot data for lead using regular reflection. Also, by careful design of a radiographic experiment, the Hugoniot state behind a shock front can be completely and precisely specified. Aluminum is an example of a material studies in this manner. PHERMEX is useful in studying some detonation properties of explosives. As an illustration, the discussion will include radiographic results of divergence characteristics of a detonation wave in sensitive and insensitive explosives as it propagates past a corner and the effect of preshocking on the detonation process of insensitive explosives when the detonation wave interacts with a region that has been shock-compressed at a pressure too low to cause detonation

  20. First hints of pressure waves in a helical extragalactic jet: S5~0836+710

    CERN Document Server

    Perucho, Manel

    2013-01-01

    One of the open questions in extragalactic jet Astrophysics is related to the nature of the observed radio jet, namely whether it traces a pattern or the flow structure itself. In this paper I summarize the evidence collected for the presence of waves in extragalactic jets. The evidence points towards the peak of emission in helical jets corresponding to pressure-maxima of a wave that is generated within the core region and propagates downstream. Making use of a number of very long baseline interferometry (VLBI) observations of the radio jet in the quasar S5~0836+710 at different frequencies and epochs, Perucho et al. (2012) were able to observe wave-like behavior within the observed radio-jet. The ridge-line of the emission in the jet coincides within the errors at all frequencies. Moreover, small differences between epochs at 15 GHz reveal wave-like motion of the ridge-line transversal to the jet propagation axis. The authors conclude that the helicity is a real, physical structure. I report here on those r...

  1. An Improved Negative Pressure Wave Method for Natural Gas Pipeline Leak Location Using FBG Based Strain Sensor and Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Qingmin Hou

    2013-01-01

    Full Text Available Methods that more quickly locate leakages in natural gas pipelines are urgently required. In this paper, an improved negative pressure wave method based on FBG based strain sensors and wavelet analysis is proposed. This method takes into account the variation in the negative pressure wave propagation velocity and the gas velocity variation, uses the traditional leak location formula, and employs Compound Simpson and Dichotomy Searching for solving this formula. In addition, a FBG based strain sensor instead of a traditional pressure sensor was developed for detecting the negative pressure wave signal produced by leakage. Unlike traditional sensors, FBG sensors can be installed anywhere along the pipeline, thus leading to high positioning accuracy through more frequent installment of the sensors. Finally, a wavelet transform method was employed to locate the pressure drop points within the FBG signals. Experiment results show good positioning accuracy for natural gas pipeline leakage, using this new method.

  2. Optimal pressure-sensitive cuts for surface acoustic waves on langasite

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The crystal langasite manifests its unique advantages and potentials for high temperature applications due to a high electromechanical coupling coefficient, temperature compensated orientations for surface acoustic wave (SAW), and temperature stability. In order to analyze the pressure-induced frequency shift in SAW resonator type sensors at high temperature, this paper presents the electroelastic wave equations employing the effective material constants for small vibrations superimposed on biases originated from homogeneous temperature and external pressure fields in the Lagrangian description. Incorporated with the first-order perturbation integration, a model including both the mechanical and electrical perturbation items originating from thermal biases and small pressure fields is proposed. This universal model is suitable for substrate with high piezoelectricity and can be applied at either room temperature or high temperature circumstance. The criteria of optimal cuts for SAW pressure sensitivity, I.e., high electromechanical coupling coefficient and low temperature coefficient of delay, are proposed. A thorough investigation in trebly rotated cuts has shown that optimal pressure sensitive crystallographic areas can be obtained. The areas suitable for pressure sensors at room temperature are defined with Euler anglesThe areas suitable for pressure sensors at high temperature are defined with Euler anglesΩ1: φ= 0°―0.6°,θ= 144.4°―145.8°, ψ= 23.2°―24.1°,Ω2: φ=59.4°―61°,θ= 34.2°―36.2°, ψ= 24.1°―22.3°,Ω3: φ=119°―120°,θ = 143.8°―145.5°, ψ= 22.3°―23.5°.The areas suitable for pressure sensors at high temperature are defined with Euler anglesI:φ= 8°―30°,θ= 24°―36°,ψ= 4°―25°,II:φ = 30°―55°,θ= 144°―158°,ψ= 4°―28°.A set of experiments employing LGS (0, 150°, 22°) and (0, 90°, 0) has been performed to check the validity of the proposed calculation. The experimental relative sensitivity is

  3. Evaluation of mechanical losses in a linear motor pressure wave generator

    Science.gov (United States)

    Jacob, Subhash; Rangasamy, Karunanithi; Jonnalagadda, Kranthi Kumar; Chakkala, Damu; Achanur, Mallappa; Govindswamy, Jagadish; Gour, Abhay Singh

    2012-06-01

    A moving magnet linear motor compressor or pressure wave generator (PWG) of 2 cc swept volume with dual opposed piston configuration has been developed to operate miniature pulse tube coolers. Prelimnary experiments yielded only a no-load cold end temperature of 180 K. Auxiliary tests and the interpretation of detailed modeling of a PWG suggest that much of the PV power has been lost in the form of blow-by at piston seals due to large and non-optimum clearance seal gap between piston and cylinder. The results of experimental parameters simulated using Sage provide the optimum seal gap value for maximizing the delivered PV power.

  4. Seismic attenuation: effects of interfacial impedance on wave-induced pressure diffusion

    Science.gov (United States)

    Qi, Qiaomu; Müller, Tobias M.; Rubino, J. Germán

    2014-12-01

    Seismic attenuation and dispersion in layered sedimentary structures are often interpreted in terms of the classical White model for wave-induced pressure diffusion across the layers. However, this interlayer flow is severely dependent on the properties of the interface separating two layers. This interface behaviour can be described by a pressure jump boundary condition involving a non-vanishing interfacial impedance. In this paper, we incorporate the interfacial impedance into the White model by solving a boundary value problem in the framework of quasi-static poroelasticity. We show that the White model predictions for attenuation and dispersion substantially change. These changes can be attributed to petrophysically plausible scenarios such as imperfect hydraulic contacts or the presence of capillarity.

  5. Studies on an improved indigenous pressure wave generator and its testing with a pulse tube cooler

    Science.gov (United States)

    Jacob, S.; Karunanithi, R.; Narsimham, G. S. V. L.; Kranthi, J. Kumar; Damu, C.; Praveen, T.; Samir, M.; Mallappa, A.

    2014-01-01

    Earlier version of an indigenously developed Pressure Wave Generator (PWG) could not develop the necessary pressure ratio to satisfactorily operate a pulse tube cooler, largely due to high blow by losses in the piston cylinder seal gap and due to a few design deficiencies. Effect of different parameters like seal gap, piston diameter, piston stroke, moving mass and the piston back volume on the performance is studied analytically. Modifications were done to the PWG based on analysis and the performance is experimentally measured. A significant improvement in PWG performance is seen as a result of the modifications. The improved PWG is tested with the same pulse tube cooler but with different inertance tube configurations. A no load temperature of 130 K is achieved with an inertance tube configuration designed using Sage software. The delivered PV power is estimated to be 28.4 W which can produce a refrigeration of about 1 W at 80 K.

  6. High Definition Oscillometry: Non-invasive Blood Pressure Measurement and Pulse Wave Analysis.

    Science.gov (United States)

    Egner, Beate

    2015-01-01

    Non-invasive monitoring of blood pressure has become increasingly important in research. High-Definition Oscillometry (HDO) delivers not only accurate, reproducible and thus reliable blood pressure but also visualises the pulse waves on screen. This allows for on-screen feedback in real time on data validity but even more on additional parameters like systemic vascular resistance (SVR), stroke volume (SV), stroke volume variances (SVV), rhythm and dysrhythmia. Since complex information on drug effects are delivered within a short period of time, almost stress-free and visible in real time, it makes HDO a valuable technology in safety pharmacology and toxicology within a variety of fields like but not limited to cardiovascular, renal or metabolic research. PMID:26091643

  7. Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials.

    Science.gov (United States)

    Chen, Yongyao; Liu, Haijun; Reilly, Michael; Bae, Hyungdae; Yu, Miao

    2014-01-01

    Acoustic sensors play an important role in many areas, such as homeland security, navigation, communication, health care and industry. However, the fundamental pressure detection limit hinders the performance of current acoustic sensing technologies. Here, through analytical, numerical and experimental studies, we show that anisotropic acoustic metamaterials can be designed to have strong wave compression effect that renders direct amplification of pressure fields in metamaterials. This enables a sensing mechanism that can help overcome the detection limit of conventional acoustic sensing systems. We further demonstrate a metamaterial-enhanced acoustic sensing system that achieves more than 20 dB signal-to-noise enhancement (over an order of magnitude enhancement in detection limit). With this system, weak acoustic pulse signals overwhelmed by the noise are successfully recovered. This work opens up new vistas for the development of metamaterial-based acoustic sensors with improved performance and functionalities that are highly desirable for many applications. PMID:25316410

  8. Probabilistic safety verification for the overturning of a service water pump house against 'over pressure wave'

    International Nuclear Information System (INIS)

    The Atucha II Nuclear Power Plant is being built in a riverside site located about 100 km north of the city of Buenos Aires. When completed it will become Argentina's third operating station. The Service Water Pump House of the 740 MW Natural Uranium NPP is supplied directly by the Parana de las Palmas River, which is a navigable waterway with heavy fluvial traffic that links the River Plate Estuary with ports along the Parana River, including Rosario, Argentina's third city. Although dolphins were built to protect the water intake structures from direct impact from ships or barges, an accidental escape of gas or flammable material outside the protected area that may result in an explosion with a subsequent pressure wave, could not be precluded. Thus, the water intake structures had to be designed against this event. In addition, concern with the margin of safety against foundation instability due to the overturning moment associated to the induced pressures, made an evaluation of the conditional probability of failure for this loading condition, desirable. The task placed still uncommon demands on the Project Engineers, who were required to provide estimates of the Pump House reliability. In the process, it became necessary to introduce assumptions concerning the unspecified variability of the loads which, according to current international practice, were defined in the form of 'deterministic' design criteria. It seems appropriate to underline these deficiencies in current standards, as well as in aspects of the dynamic of soils that are responsible for a quite large model uncertainty. On the basis of available information, it may be established that the probability of occurrence of a pressure wave at the site is less than 10-3 per year. Accordingly, the probability of failure of the foundation due to a pressure wave does not exceed 1.5 -8 per year, value that is considered admissible by current standards. The use of triangular probability density functions for

  9. Effect of anisotropic dust pressure and superthermal electrons on propagation and stability of dust acoustic solitary waves

    International Nuclear Information System (INIS)

    Employing the reductive perturbation technique, Zakharov–Kuznetzov (ZK) equation is derived for dust acoustic (DA) solitary waves in a magnetized plasma which consists the effects of dust anisotropic pressure, arbitrary charged dust particles, Boltzmann distributed ions, and Kappa distributed superthermal electrons. The ZK solitary wave solution is obtained. Using the small-k expansion method, the stability analysis for DA solitary waves is also discussed. The effects of the dust pressure anisotropy and the electron superthermality on the basic characteristics of DA waves as well as on the three-dimensional instability criterion are highlighted. It is found that the DA solitary wave is rarefactive (compressive) for negative (positive) dust. In addition, the growth rate of instability increases rapidly as the superthermal spectral index of electrons increases with either positive or negative dust grains. A brief discussion for possible applications is included

  10. Response of NPP structures to simultaneously acting air pressure loads and ground waves caused by a gas cloud explosion

    International Nuclear Information System (INIS)

    Gas cloud explosions cause air pressure waves which propagate over the ground surface. The ground motion induced by these loads and their effect on structures are studied. The soil is modelled as a linear viscoelastic medium. A semianalytical method is used to compute the ground motion produced by a deflagration and by a detonation in a stiff and a soft layered soil. For a PWR reactor building subjected to the direct impact of an air pressure wave the additional effects of the ground waves on the motion of the building are studied. Whereas the vertical structural response is increased, the horizontal response decreases, when the effect of the ground waves is included. For the case studied the additional effect of the ground waves is small. (orig.)

  11. Experimental determination of radiated internal wave power without pressure field data

    International Nuclear Information System (INIS)

    We present a method to determine, using only velocity field data, the time-averaged energy flux (J) and total radiated power P for two-dimensional internal gravity waves. Both (J) and P are determined from expressions involving only a scalar function, the stream function ψ. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data

  12. Resonant pressure wave setup for simultaneous sensing of longitudinal viscosity and sound velocity of liquids

    Science.gov (United States)

    Beigelbeck, Roman; Antlinger, Hannes; Cerimovic, Samir; Clara, Stefan; Keplinger, Franz; Jakoby, Bernhard

    2013-12-01

    Increasing demands for online monitoring of liquids have not only resuted in many new devices relying on well-established sensing parameters like shear viscosity but also initiated research on alternative parameters. Recently, the longitudinal viscosity has been evaluated as a promising candidate because the devices arising enable the bulk of the liquid to be probed rather than a thin surface layer. We report on a multi-purpose sensor which allows simultaneous measurement of the sound velocity and longitudinal viscosity of liquids. The device embodiment features a cube-shaped chamber containing the sample liquid, where one boundary surface carries a flush-mounted PZT transducer. In operation, the transducer induces standing, resonant pressure waves in the liquid under test. We studied the influences of sound velocity and longitudinal viscosity on the generated pressure waves by means of the Navier-Stokes equation for adiabatic compressible liquids and exploited both parameters as the basic sensing mechanism. Furthermore, a three-port network model describing the interaction of the transducer and sample liquid was developed in order to be applied for extracting the parameters of interest from the raw measurement data. Finally, we demonstrate the device and method by carrying out and discussing test measurements on glycerol-water solutions.

  13. DAPSY - a computer program for the pressure wave propagation in reactor cooling systems

    International Nuclear Information System (INIS)

    The computer code DAPSY is developed to calculate pressure wave phenomena in the primary coolant system. For this purpose it is necessary to treat 3-dimensional single-phase and two-phase flow of water and steam. The technique used in DAPSY is the simulation of the real geometry by a pipe network with connected one-dimensional flow paths. The calculation of the unsteady one-dimensional flow is taken from the BLAST code. In this code pressure wave propagation and delayed attainment of thermal equilibrium is taken into consideration. Integration by the method of characteristics in a fixed grid, which is used in this code, is very convenient for the computation of boundary value problems, especially for critical state of flow. In order to determine the boundary conditions of each pipe, calculated by the one-dimensional code, subroutines were developed, which simulate several components of the primary system, e.g. strong cross-section variations with eventual critical flow, valves, pumps, dead ends of pipes, perhaps with a gas bulb, breaking points with critical mass-flow rate and eventual orifices, connection points of several pipes, free surfaces of water with transition to steam phase, and separators in which two-phase mixture is divided in steam and water flow. These components can be composed in any way so that a whole primary system is described. (orig.)

  14. The relationship between gas hydrate saturation and P-wave velocity of pressure cores obtained in the Eastern Nankai Trough

    Science.gov (United States)

    Konno, Y.; Yoneda, J.; Jin, Y.; Kida, M.; Suzuki, K.; Nakatsuka, Y.; Fujii, T.; Nagao, J.

    2014-12-01

    P-wave velocity is an important parameter to estimate gas hydrate saturation in sediments. In this study, the relationship between gas hydrate saturation and P-wave velocity have been analyzed using natural hydrate-bearing-sediments obtained in the Eastern Nankai Trough, Japan. The sediment samples were collected by the Hybrid Pressure Coring System developed by Japan Agency for Marine-Earth Science and Technology during June-July 2012, aboard the deep sea drilling vessel CHIKYU. P-wave velocity was measured on board by the Pressure Core Analysis and Transfer System developed by Geotek Ltd. The samples were maintained at a near in-situ pressure condition during coring and measurement. After the measurement, the samples were stored core storage chambers and transported to MHRC under pressure. The samples were manipulated and cut by the Pressure-core Non-destructive Analysis Tools or PNATs developed by MHRC. The cutting sections were determined on the basis of P-wave velocity and visual observations through an acrylic window equipped in the PNATs. The cut samples were depressurized to measure gas volume for saturation calculations. It was found that P-wave velocity correlates well with hydrate saturation and can be reproduced by the hydrate frame component model. Using pressure cores and pressure core analysis technology, nondestructive and near in-situ correlation between gas hydrate saturation and P-wave velocity can be obtained. This study was supported by funding from the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) planned by the Ministry of Economy, Trade and Industry (METI), Japan.

  15. Reference values of central blood pressure and pulse wave velocity in relation with 24 hours ambulatory blood pressure monitoring in Belgian healthy young subjects

    OpenAIRE

    Saint-Remy, Annie; Krzesinski, Jean-Marie

    2010-01-01

    The present study aimed to define reference values of central blood pressure (cBP) and Pulse Wave Velocity (PWV) together with 24H ABPM in healthy normotensive young adults before starring a follow-up of their CV profile modifications over time. Peer reviewed

  16. Reference values of central blood pressure and pulse wave velocity in relations with 24 hours ambulatory blood pressure monitoring in Belgian normotensive young subjects

    OpenAIRE

    Saint-Remy, Annie; Krzesinski, Jean-Marie

    2010-01-01

    The present study aimed to define reference values of central blood pressure (cBP) and Pulse Wave Velocity (PWV) together with 24H APPM in healththy normotensive young adults before starting a follow-up of their CV profile modifications over time. Peer reviewed

  17. LIGHT PRESSURE: Theoretical study of the light pressure force acting on a spherical dielectric particle of an arbitrary size in the interference field of two plane monochromatic electromagnetic waves

    Science.gov (United States)

    Guzatov, D. V.; Gaida, L. S.; Afanas'ev, Anatolii A.

    2008-12-01

    The light pressure force acting on a spherical dielectric particle in the interference field of two plane monochromatic electromagnetic waves is studied in detail for different particle radii and angles of incidence of waves.

  18. Experimental research on characteristic of start-up pressure wave propagation in gelled crude oil by large-scale flow loop

    Institute of Scientific and Technical Information of China (English)

    崔秀国; 艾慕阳; 姜保良; 霍连风; 张立新

    2008-01-01

    In order to research start-up pressure wave propagation mechanism and determine pressure wave speed in gelled crude oil pipelines accurately,experiment of Large-scale flow loop was carried out.In the experiment,start-up pressure wave speeds under various operation conditions were measured,and effects of correlative factors on pressure wave were analyzed.The experimental and theoretical analysis shows that thermal shrinkage and structural properties of gelled crude oils are key factors influencing on start-up pressure wave propagation.The quantitative analysis for these effects can be done by using volume expansion coefficient and structural property parameter of gelled crude oil.A new calculation model of pressure wave speed was developed on the basis of Large-scale flow loop experiment and theoretical analysis.

  19. Geometric Scaling for a Detonation Wave Governed by a Pressure-Dependent Reaction Rate and Yielding Confinement

    OpenAIRE

    Li, Jianling; Mi, XiaoCheng; Higgins, Andrew J.

    2014-01-01

    The propagation of detonation waves in reactive media bounded by an inert, compressible layer is examined via computational simulations in two different geometries, axisymmetric cylinders and two dimensional, planar slabs. For simplicity, an ideal gas equation of state is used with a pressure-dependent reaction rate that results in a stable detonation wave structure. The detonation is initiated as an ideal Chapman-Jouguet (CJ) detonation with a one-dimensional structure, and then allowed to p...

  20. The transfer of atmospheric-pressure ionization waves via a metal wire

    International Nuclear Information System (INIS)

    Our study has shown that the atmospheric-pressure He ionization waves (IWs) may be transferred from one dielectric tube (tube 1) to the other one (tube 2) via a floating metal wire. The propagation of IWs along the two tubes is not affected by the diameter of a floating metal wire, however, their propagation is strongly dependent on the length of a floating metal wire. The propagation of one IW along the tube 1 may result in the second IW propagating reversely inside the tube in vicinity of a floating metal wire, which keeps from their further propagation through the tube 1. After they merge together as one conduction channel inside the tube 1, the transferred plasma bullet starts to propagate along the tube 2. The propagation of transferred plasma bullets along the tube 2 is mainly determined by the capacitance and inductance effects, and their velocity and density can be controlled by the length of a floating metal wire

  1. The transfer of atmospheric-pressure ionization waves via a metal wire

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yang; Liu, Dongping, E-mail: Dongping.liu@dlnu.edu.cn [Liaoning Key Lab of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Wang, Wenchun [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Peng, Yifeng; Niu, Jinhai; Bi, Zhenhua; Ji, Longfei; Song, Ying; Wang, Xueyang; Qi, Zhihua [Liaoning Key Lab of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China)

    2016-01-15

    Our study has shown that the atmospheric-pressure He ionization waves (IWs) may be transferred from one dielectric tube (tube 1) to the other one (tube 2) via a floating metal wire. The propagation of IWs along the two tubes is not affected by the diameter of a floating metal wire, however, their propagation is strongly dependent on the length of a floating metal wire. The propagation of one IW along the tube 1 may result in the second IW propagating reversely inside the tube in vicinity of a floating metal wire, which keeps from their further propagation through the tube 1. After they merge together as one conduction channel inside the tube 1, the transferred plasma bullet starts to propagate along the tube 2. The propagation of transferred plasma bullets along the tube 2 is mainly determined by the capacitance and inductance effects, and their velocity and density can be controlled by the length of a floating metal wire.

  2. Magnetospheric ULF waves with increasing amplitude related to solar wind dynamic pressure changes: The Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations

    Science.gov (United States)

    Shen, X. C.; Zong, Q.-G.; Shi, Q. Q.; Tian, A. M.; Sun, W. J.; Wang, Y. F.; Zhou, X. Z.; Fu, S. Y.; Hartinger, M. D.; Angelopoulos, V.

    2015-09-01

    Ultralow frequency (ULF) waves play an important role in transferring energy by buffeting the magnetosphere with solar wind pressure impulses. The amplitudes of magnetospheric ULF waves, which are induced by solar wind dynamic pressure enhancements or shocks, are thought to damp in one half a wave cycle or an entire wave cycle. We report in situ observations of solar wind dynamic pressure impulse-induced magnetospheric ULF waves with increasing amplitudes. We found six ULF wave events induced by solar wind dynamic pressure enhancements with slow but clear wave amplitude increase. During three or four wave cycles, the amplitudes of ion velocities and electric field of these waves increased continuously by 1.3-4.4 times. Two significant events were selected to further study the characteristics of these ULF waves. We found that the wave amplitude growth is mainly contributed by the toroidal mode wave. Three possible mechanisms of causing the wave amplitude increase are discussed. First, solar wind dynamic pressure perturbations, which are observed in a duration of 20-30 min, might transfer energy to the magnetospheric ULF waves continually. Second, the wave amplitude increase in the radial electric field may be caused by superposition of two wave modes, a standing wave excited by the solar wind dynamic impulse and a propagating compressional wave directly induced by solar wind oscillations. When superposed, the two wave modes fit observations as does a calculation that superposes electric fields from two wave sources. Third, the normal of the solar wind discontinuity is at an angle to the Sun-Earth line. Thus, the discontinuity will affect the dayside magnetopause continuously for a long time.

  3. On the influence of low initial pressure and detonation stochastic nature on Mach reflection of gaseous detonation waves

    Science.gov (United States)

    Wang, C. J.; Guo, C. M.

    2014-09-01

    The two-dimensional, time-dependent and reactive Navier-Stokes equations were solved to obtain an insight into Mach reflection of gaseous detonation in a stoichiometric hydrogen-oxygen mixture diluted by 25 % argon. This mixture generates a mode-7 detonation wave under an initial pressure of 8.00 kPa. Chemical kinetics was simulated by an eight-species, forty-eight-reaction mechanism. It was found that a Mach reflection mode always occurs for a planar detonation wave or planar air shock wave sweeping over wedges with apex angles ranging from to . However, for cellular detonation waves, regular reflection always occurs first, which then transforms into Mach reflection. This phenomenon is more evident for detonations ignited under low initial pressure. Low initial pressure may lead to a curved wave front, that determines the reflection mode. The stochastic nature of boundary shape and transition distance, during deflagration-to-detonation transition, leads to relative disorder of detonation cell location and cell shape. Consequently, when a detonation wave hits the wedge apex, there appears a stochastic variation of triple point origin and variation of the angle between the triple point trajectory and the wedge surface. As the wedge apex angle increases, the distance between the triple point trajectory origin and the wedge apex increases, and the angle between the triple point trajectory and the wedge surface decreases exponentially.

  4. One-Dimensional Simulation of the Pressure Wave near the Exit of a High-Speed Train Tunnel

    Institute of Scientific and Technical Information of China (English)

    杨宇光; 朱克勤; 席葆树

    2001-01-01

    The one-dimensional (1-D) unsteady flow induced by a high-speed train entering a tunnel isnumerically studied by the method of characteristics. The tube area is dependent on time and distance. Theenergy equation used by Kage et al. is corrected to avoid the conflict with the isentropic assumption. Theeffect of the tunnel hood on the pressure wave is studied near the tunnel exit. Results show that the tunnel hoodis useful in reducing the peak value and the time derivative of the pressure wave.``

  5. Design and Experiment for Exhaust Pipes of Pressure Wave Supercharged Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    JI Chang-wei; ZHAO Yong; MA Hui; HAN Ai-min; LI Chao

    2007-01-01

    NOx and soot emissions from diesel engines can be greatly reduced by pressure wave supercharging (PWS). The diesel engine matched with PWS needs redesigning its exhaust pipes. Except for meeting the installation requirements, the exhaust gas must be stable in pressure before rushing into PWS. In this paper the lateral and center ported divergent exhaust pipes are designed, modeled geometrically and analyzed structurally based on a 3-D design software-CATIA to determine the structure of two exhaust pipes having the required inner volume. Then flow analysis for two exhaust pipes is done using a flow analysis software-ANASYS. Moreover, the optimal exhaust pipes are determined comprehensively and cast for engine test. Engine test results show that PWS is superior to turbocharging at low engine speeds and inferior to turbocharging in power and emissions at medium-to-high engine speeds. The performance of PWS engine under high speed operating conditions can be improved by contriving larger surge volume intake and exhaust pipes.

  6. An algorithm for extracting intracranial pressure latency relative to electrocardiogram R wave

    International Nuclear Information System (INIS)

    Intracranial pressure (ICP) latency is defined as the time interval between the peak of the QRS complex of the electrocardiogram (ECG) and the corresponding onset of intracranial pressure (ICP) pulse. Due to its inherent relationship with arterial pulse wave velocity, ICP latency may allow continuous monitoring of pathophysiological changes in the cerebrovasculature. The objective of the present work was to develop and validate a computerized algorithm for extracting ICP latency in a beat-by-beat fashion. The proposed ICP latency extraction algorithm exploits the mature technique of ECG QRS detection and includes a new adaptive peak detection methodology. The results were validated by comparing the performance of two human observers versus the algorithm in terms of locating the onset points of ICP pulses for 59 recordings extracted from 25 adult patients. The average ICP latency was 72.6 ± 19.5 ms (range 40.0–159.8). The ICP pulse detection algorithm demonstrated a baseline sensitivity of 0.97 and a positive predictivity of 0.88. No difference was found in the mean location errors from comparing the results obtained by the two observers and those from comparing the results from the algorithm to those from the two observers. Further investigation is needed to demonstrate the role of ICP latency in characterizing dynamic cerebral vascular pathophysiological changes in clinical states such as subarachnoid hemorrhage and traumatic brain injury

  7. Optimization of pressure waveform, distribution and sequence in shock wave lithotripsy

    Science.gov (United States)

    Zhou, Yufeng

    This work aims to improve shock wave lithotripsy (SWL) technology by increasing stone comminution efficiency while reducing simultaneously the propensity of tissue injury. First, the mechanism of vascular injury in SWL was investigated. Based on in vitro vessel phantom experiment and theoretical calculation, it was found that SWL-induced large intraluminal bubble expansion may constitute a primary mechanism for the rupture of capillaries and small blood vessels. However, when the large intraluminal bubble expansion is suppressed by inversion of the pressure waveform of the lithotripter shock wave (LSW), rupture of a 200-mum cellulose hollow fiber vessel phantom can be avoided. Based on these experimental observations and theoretical assessment of bubble dynamics using the Gilmore model an in situ pulse superposition technique was developed to reduce tissue injury without compromising stone comminution in SWL. A thin shell ellipsoidal reflector insert was fabricated to fit snugly with the original HM-3 reflector. Using the Hamilton model, the effects of reflector geometry on the pulse profile and sequence of the shock waves were evaluated qualitatively. Guided by this analysis, the design of the reflector insert had been refined to suppress the intraluminal bubble expansion, which was confirmed by high-speed imaging of bubble dynamics both in free field and inside a vessel phantom. The pulse pressure, beam size and stone comminution efficiency of the upgraded reflector were all found to be comparable to those of the original reflector. However, the greatest difference lies in the propensity for tissue injury. At the lithotripter focus, about 30 shocks are needed to cause a rupture of the vessel phantom using the original reflector, but no rupture can be produced after 200 shocks by the upgraded reflector. Overall, the upgraded reflector could significantly reduce the propensity of vessel rupture while maintaining satisfactory stone comminution. Second, to improve

  8. MARS-KS Code Analysis of the Pressure Wave test 0 performed at the PMK-2 test facility

    International Nuclear Information System (INIS)

    The pressure waves might be expected in the nuclear reactor systems due to sudden rupture of pipes, or quick opening or closure of the system valves. If generated, they can result in large mechanical loads on the RPV internal structures and pipelines, threatening their integrity. This kind of phenomena is an important issue and a limiting accident case for the nuclear power plant safety, which requires extensive analysis to ensure nuclear power plant safety. To study these phenomena, four PWP (Pressure Wave Propagation) tests have been performed in the PMK-2 test facility in MTA EK. In addition, these tests have been used to assess the capability of the MARS-KS code in simulating the PWP phenomena. Then, an input model representing the PMK-2 test facility was developed to simulate the tests. The MARS-KS simulation results are then compared with the test results. The comparison shows that the MARS code can simulate the PWP frequencies and initial pressure peaks well. After the qualified assessment, the MARS-KS code is then deployed to conduct the sensitivity analysis on the effect of the break size, break time, coolant initial conditions on the PWP phenomena. The sensitivity analysis on the break sizes shows that the pressure wave amplitude is relevant to the break times: the shorter the break opening time is, the faster the pressure decreases. The sensitivity analysis on the break sizes shows that the larger the break size is, the higher the pressure peak is

  9. A Novel Dynamic Model for Predicting Pressure Wave Velocity in Four-Phase Fluid Flowing along the Drilling Annulus

    Directory of Open Access Journals (Sweden)

    Xiangwei Kong

    2015-01-01

    Full Text Available A dynamic pressure wave velocity model is presented based on momentum equation, mass-balance equation, equation of state, and small perturbation theory. Simultaneously, the drift model was used to analyze the flow characteristics of oil, gas, water, and drilling fluid multiphase flow. In addition, the dynamic model considers the gas dissolution, virtual mass force, drag force, and relative motion of the interphase as well. Finite difference and Newton-Raphson iterative are introduced to the numerical simulation of the dynamic model. The calculation results indicate that the wave velocity is more sensitive to the increase of gas influx rate than the increase of oil/water influx rate. Wave velocity decreases significantly with the increase of gas influx. Influenced by the pressure drop of four-phase fluid flowing along the annulus, wave velocity tends to increase with respect to well depth, contrary to the gradual reduction of gas void fraction at different depths with the increase of backpressure (BP. Analysis also found that the growth of angular frequency will lead to an increase of wave velocity at low range. Comparison with the calculation results without considering virtual mass force demonstrates that the calculated wave velocity is relatively bigger by using the presented model.

  10. Geometric Scaling for a Detonation Wave Governed by a Pressure-Dependent Reaction Rate and Yielding Confinement

    CERN Document Server

    Jianling, Li; Higgins, Andrew J

    2014-01-01

    The propagation of detonation waves in reactive media bounded by an inert, compressible layer is examined via computational simulations in two different geometries, axisymmetric cylinders and two dimensional, planar slabs. For simplicity, an ideal gas equation of state is used with a pressure-dependent reaction rate that results in a stable detonation wave structure. The detonation is initiated as an ideal Chapman-Jouguet (CJ) detonation with a one-dimensional structure, and then allowed to propagate into a finite diameter or thickness layer of explosive surrounded by an inert layer. The yielding confinement of the inert layer results in the detonation wave decaying to a sub-CJ steady state velocity or failing entirely. Simulations are performed with different values of the reaction rate pressure exponent (n = 2 and 3) and different impedance confinement (greater than, less than, and equal to the confinement of the explosive). The velocity decrement and critical dimension (critical diameter or thickness) are ...

  11. Signal Analysis and Waveform Reconstruction of Shock Waves Generated by Underwater Electrical Wire Explosions with Piezoelectric Pressure Probes.

    Science.gov (United States)

    Zhou, Haibin; Zhang, Yongmin; Han, Ruoyu; Jing, Yan; Wu, Jiawei; Liu, Qiaojue; Ding, Weidong; Qiu, Aici

    2016-01-01

    Underwater shock waves (SWs) generated by underwater electrical wire explosions (UEWEs) have been widely studied and applied. Precise measurement of this kind of SWs is important, but very difficult to accomplish due to their high peak pressure, steep rising edge and very short pulse width (on the order of tens of μs). This paper aims to analyze the signals obtained by two kinds of commercial piezoelectric pressure probes, and reconstruct the correct pressure waveform from the distorted one measured by the pressure probes. It is found that both PCB138 and Müller-plate probes can be used to measure the relative SW pressure value because of their good uniformities and linearities, but none of them can obtain precise SW waveforms. In order to approach to the real SW signal better, we propose a new multi-exponential pressure waveform model, which has considered the faster pressure decay at the early stage and the slower pressure decay in longer times. Based on this model and the energy conservation law, the pressure waveform obtained by the PCB138 probe has been reconstructed, and the reconstruction accuracy has been verified by the signals obtained by the Müller-plate probe. Reconstruction results show that the measured SW peak pressures are smaller than the real signal. The waveform reconstruction method is both reasonable and reliable. PMID:27110789

  12. Signal Analysis and Waveform Reconstruction of Shock Waves Generated by Underwater Electrical Wire Explosions with Piezoelectric Pressure Probes

    Directory of Open Access Journals (Sweden)

    Haibin Zhou

    2016-04-01

    Full Text Available Underwater shock waves (SWs generated by underwater electrical wire explosions (UEWEs have been widely studied and applied. Precise measurement of this kind of SWs is important, but very difficult to accomplish due to their high peak pressure, steep rising edge and very short pulse width (on the order of tens of μs. This paper aims to analyze the signals obtained by two kinds of commercial piezoelectric pressure probes, and reconstruct the correct pressure waveform from the distorted one measured by the pressure probes. It is found that both PCB138 and Müller-plate probes can be used to measure the relative SW pressure value because of their good uniformities and linearities, but none of them can obtain precise SW waveforms. In order to approach to the real SW signal better, we propose a new multi-exponential pressure waveform model, which has considered the faster pressure decay at the early stage and the slower pressure decay in longer times. Based on this model and the energy conservation law, the pressure waveform obtained by the PCB138 probe has been reconstructed, and the reconstruction accuracy has been verified by the signals obtained by the Müller-plate probe. Reconstruction results show that the measured SW peak pressures are smaller than the real signal. The waveform reconstruction method is both reasonable and reliable.

  13. Signal Analysis and Waveform Reconstruction of Shock Waves Generated by Underwater Electrical Wire Explosions with Piezoelectric Pressure Probes

    Science.gov (United States)

    Zhou, Haibin; Zhang, Yongmin; Han, Ruoyu; Jing, Yan; Wu, Jiawei; Liu, Qiaojue; Ding, Weidong; Qiu, Aici

    2016-01-01

    Underwater shock waves (SWs) generated by underwater electrical wire explosions (UEWEs) have been widely studied and applied. Precise measurement of this kind of SWs is important, but very difficult to accomplish due to their high peak pressure, steep rising edge and very short pulse width (on the order of tens of μs). This paper aims to analyze the signals obtained by two kinds of commercial piezoelectric pressure probes, and reconstruct the correct pressure waveform from the distorted one measured by the pressure probes. It is found that both PCB138 and Müller-plate probes can be used to measure the relative SW pressure value because of their good uniformities and linearities, but none of them can obtain precise SW waveforms. In order to approach to the real SW signal better, we propose a new multi-exponential pressure waveform model, which has considered the faster pressure decay at the early stage and the slower pressure decay in longer times. Based on this model and the energy conservation law, the pressure waveform obtained by the PCB138 probe has been reconstructed, and the reconstruction accuracy has been verified by the signals obtained by the Müller-plate probe. Reconstruction results show that the measured SW peak pressures are smaller than the real signal. The waveform reconstruction method is both reasonable and reliable. PMID:27110789

  14. Effect of thermal pressure on upward plasma fluxes due to ponderomotive force of Alfvén waves

    Directory of Open Access Journals (Sweden)

    A. K. Nekrasov

    2011-03-01

    Full Text Available We consider the action of the ponderomotive force of low-frequency Alfvén waves on the distribution of the background plasma. It is assumed that the ponderomotive force for traveling waves arises as a result of the background inhomogeneity of medium under study. Expressions for the ponderomotive force obtained in this paper differ from previous analogous results. The induced magnetic moment of medium is taken into account. It is shown that the well-known Pitayevsky's formula for the magnetic moment is not complete. The role of the induced nonlinear thermal pressure in the evolution of the background plasma is considered. We give estimations for plasma displacement due to the long- and short-acting nonlinear wave perturbations. Some discussion of the ponderomotive action of standing waves is provided.

  15. Numerical simulation of the nonlinear ultrasonic pressure wave propagation in a cavitating bubbly liquid inside a sonochemical reactor.

    Science.gov (United States)

    Dogan, Hakan; Popov, Viktor

    2016-05-01

    We investigate the acoustic wave propagation in bubbly liquid inside a pilot sonochemical reactor which aims to produce antibacterial medical textile fabrics by coating the textile with ZnO or CuO nanoparticles. Computational models on acoustic propagation are developed in order to aid the design procedures. The acoustic pressure wave propagation in the sonoreactor is simulated by solving the Helmholtz equation using a meshless numerical method. The paper implements both the state-of-the-art linear model and a nonlinear wave propagation model recently introduced by Louisnard (2012), and presents a novel iterative solution procedure for the nonlinear propagation model which can be implemented using any numerical method and/or programming tool. Comparative results regarding both the linear and the nonlinear wave propagation are shown. Effects of bubble size distribution and bubble volume fraction on the acoustic wave propagation are discussed in detail. The simulations demonstrate that the nonlinear model successfully captures the realistic spatial distribution of the cavitation zones and the associated acoustic pressure amplitudes. PMID:26611813

  16. Direct analysis of dispersive wave fields from near-field pressure measurements

    NARCIS (Netherlands)

    Horchens, L.

    2011-01-01

    Flexural waves play a significant role for the radiation of sound from plates. The analysis of flexural wave fields enables the detection of sources and transmission paths in plate-like structures. The measurement of these wave fields can be carried out indirectly by means of near-field acoustic hol

  17. The mechanical response of piles with consideration of pile-soil interactions under a periodic wave pressure

    Institute of Scientific and Technical Information of China (English)

    朱峰; 徐卫亚; 王环玲

    2014-01-01

    The pile-soil interaction under wave loads is an extremely complex and difficult issue in engineering. In this study, a physical model test is designed based on the principle of the gravity similarity to obtain time histories of wave forces of unsteady regular waves, and to measure the magnitude and the distribution of wave forces acting on the piles. A numerical model and relevant numerical methods for the pile-soil contact surface are adopted based on the principles of elastic dynamics. For a practical project, the time histories of wave forces on the piles are obtained through physical model tests. The deformations of the piles in the pile-soil interactions and the distribution of the bending moment on the piles are studied. It is shown that, with the increase of the period of wave pressures, the absolute value of the horizontal displacement of the piles increases, the embedment depth of the piles increases, and the scope of influence of soils increases. The change of the bending moment on the piles is consistent with that of its theoretical results, and the proposed numerical method can very well simulate the properties of the piles.

  18. Pressure dependence of the optical properties of the charge-density-wave compound LaTe$_2$

    OpenAIRE

    Lavagnini, M.; A. Sacchetti; Degiorgi, L.; Arcangeletti, E.; Baldassarre, L.; Postorino, P.; Lupi, S.; Perucchi, A.; Shin, K Y; Fisher, I. R.

    2007-01-01

    We report the pressure dependence of the optical response of LaTe$_2$, which is deep in the charge-density-wave (CDW) ground state even at 300 K. The reflectivity spectrum is collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 7 GPa. We extract the energy scale due to the single particle excitation across the CDW gap and the Drude weight. We establish that the gap decreases upon compressing the lattice, while the Drude weight increases. This signals...

  19. Pressure waves in liquid mercury target from pulsed heat loads and the possible way controlling their effects

    Energy Technology Data Exchange (ETDEWEB)

    Ni, L.; Skala, K. [Paul Scherrer Institute, Villingen (Switzerland)

    1996-06-01

    In ESS project liquid metals are selected as the main target for the pulsed spallation neutron source. Since the very high instantaneous energy is deposited on the heavy molten target in a very short period time, pressure waves are generated. They travel through the liquid and cause high stress in the container. Also, additional stress should be considered in the wall which is the result of direct heating of the target window. These dynamic processes were simulated with computational codes with the static response being analized first. The total resulting dynamic wall stress has been found to have exceeded the design stress for the selected container material. Adding a small amount of gas bubbles in the liquid could be a possible way to reduce the pressure waves.

  20. The Relationship among Pulse Wave Velocity, Ankle-Brachial Pressure Index and Heart Rate Variability in Adult Males

    OpenAIRE

    Ahn, Jeong-Hwan; Kong, Mihee

    2011-01-01

    Background Pulse wave velocity (PWV) and ankle-brachial pressure index (ABI) are non-invasive tools to measure atherosclerosis and arterial stiffness. Heart rate variability (HRV) has proven to be a non-invasive powerful tool in the investigation of the autonomic cardiovascular control. Therefore, the purpose of this study was to determine the relationship among PWV, ABI, and HRV parameters in adult males. Methods The study was carried out with 117 males who visited a health care center from ...

  1. Small model experiment on the gradient of pressure wave formed by train entering into the tunnel at 160km/h

    Science.gov (United States)

    Yonemoto, Temma; Endo, Hirokazu; Meguro, Fumiya; Ota, Masanori; Maeno, Kazuo

    2014-06-01

    In recent years, running speed of the trains of conventional lines becomes faster with improving vehicle and rail performance. At the high-speed range compression wave is formed when a high speed train enters a tunnel. This compression wave propagates in the tunnel at the speed of sound. This propagated wave is called "tunnel pressure wave". In some cases, when the station of conventional lines is located in the tunnel, problems such as breaking the window glass have been reported by the tunnel pressure wave at the station. Though the research on pressure wave inside the tunnel of the Shinkansen has been widely studied in connection with "tunnel micro-pressure wave" problems, the number of research reports on the operating speed of conventional lines(130~160km/h) is insufficient. In this study we focused on Hokuhoku line which has maximum operating speed of conventional lines in Japan (160km/h), and we performed the experiment on the gradient of the pressure wave by using diaphragmless driver acceleration system, small train nose model, and tunnel model of the limited express of Hokuhoku line. We have performed the pressure-time variation measurement on the tunnel model, including a station model or signal crossing station [SCS] model. As the thpical train model, we used Streamline-type or Gangway-type for train nose geometry. We have obtained pressure gradient data on several running conditions and observed the temporal .behavior in the tunnel pressure wave. As a result, we clarified large difference in pressure gradient with the train nose geometry and with the cross-sectional area of the tunnel.

  2. SMALL-SCALE PRESSURE-BALANCED STRUCTURES DRIVEN BY OBLIQUE SLOW MODE WAVES MEASURED IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Yao Shuo [School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083 (China); He, J.-S.; Tu, C.-Y.; Wang, L.-H. [Department of Geophysics, Peking University, Beijing (China); Marsch, E., E-mail: yaoshuo@cugb.edu.cn [Christian Albrechts University at Kiel, Kiel (Germany)

    2013-09-01

    Recently, small-scale pressure-balanced structures (PBSs) were identified in the solar wind, but their formation mechanism remains unclear. This work aims to reveal the dependence of the properties of small-scale PBSs on the background magnetic field (B{sub 0}) direction and thus to corroborate the in situ mechanism that forms them. We analyze the plasma and magnetic field data obtained by WIND in the quiet solar wind at 1 AU. First, we use a developed moving-average method to obtain B{sub 0}(s, t) for every temporal scale (s) at each time moment (t). By wavelet cross-coherence analysis, we obtain the correlation coefficients between the thermal pressure P{sub th} and the magnetic pressure P{sub B}, distributing against the temporal scale and the angle {theta}{sub xB} between B{sub 0}(s, t) and Geocentric Solar Ecliptic coordinates (GSE)-x. We note that the angle coverage of a PBS decreases with shorter temporal scale, but the occurrence of the PBSs is independent of {theta}{sub xB}. Suspecting that the isolated small PBSs are formed by compressive waves in situ, we continue this study by testing the wave modes forming a small-scale PBS with B{sub 0}(s, t) quasi-parallel to GSE-x. As a result, we identify that the cross-helicity and the compressibility attain values for a slow mode from theoretical calculations. The wave vector is derived from minimum variance analysis. Besides, the proton temperatures obey T < T{sub Parallel-To} derived from the velocity distribution functions, excluding a mirror mode, which is the other candidate for the formation of PBSs in situ. Thus, a small-scale PBS is shown to be driven by oblique, slow-mode waves in the solar wind.

  3. SMALL-SCALE PRESSURE-BALANCED STRUCTURES DRIVEN BY OBLIQUE SLOW MODE WAVES MEASURED IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Recently, small-scale pressure-balanced structures (PBSs) were identified in the solar wind, but their formation mechanism remains unclear. This work aims to reveal the dependence of the properties of small-scale PBSs on the background magnetic field (B0) direction and thus to corroborate the in situ mechanism that forms them. We analyze the plasma and magnetic field data obtained by WIND in the quiet solar wind at 1 AU. First, we use a developed moving-average method to obtain B0(s, t) for every temporal scale (s) at each time moment (t). By wavelet cross-coherence analysis, we obtain the correlation coefficients between the thermal pressure Pth and the magnetic pressure PB, distributing against the temporal scale and the angle θxB between B0(s, t) and Geocentric Solar Ecliptic coordinates (GSE)-x. We note that the angle coverage of a PBS decreases with shorter temporal scale, but the occurrence of the PBSs is independent of θxB. Suspecting that the isolated small PBSs are formed by compressive waves in situ, we continue this study by testing the wave modes forming a small-scale PBS with B0(s, t) quasi-parallel to GSE-x. As a result, we identify that the cross-helicity and the compressibility attain values for a slow mode from theoretical calculations. The wave vector is derived from minimum variance analysis. Besides, the proton temperatures obey T ∥ derived from the velocity distribution functions, excluding a mirror mode, which is the other candidate for the formation of PBSs in situ. Thus, a small-scale PBS is shown to be driven by oblique, slow-mode waves in the solar wind

  4. Aortic pressure wave reconstruction during exercise is improved by adaptive filtering: a pilot study.

    Science.gov (United States)

    Stok, Wim J; Westerhof, Berend E; Guelen, Ilja; Karemaker, John M

    2011-08-01

    Reconstruction of central aortic pressure from a peripheral measurement by a generalized transfer function (genTF) works well at rest and mild exercise at lower heart rates, but becomes less accurate during heavy exercise. Particularly, systolic and pulse pressure estimations deteriorate, thereby underestimating central pressure. We tested individualization of the TF (indTF) by adapting its resonance frequency at the various levels of exercise. In seven males (age 44-57) with coronary artery disease, central and peripheral pressures were measured simultaneously. The optimal resonance frequency was predicted from regression formulas using variables derived from the individual's peripheral pressure pulse, including a pulse contour estimation of cardiac output (pcCO). In addition, reconstructed pressures were calibrated to central mean and diastolic pressure at each exercise level. Using a genTF and without calibration, the error in estimated aortic pulse pressure was -7.5 ± 6.4 mmHg, which was reduced to 0.2 ± 5.7 mmHg with the indTFs using pcCO for prediction. Calibration resulted in less scatter at the cost of a small bias (2.7 mmHg). In exercise, the indTFs predict systolic and pulse pressure better than the genTF. This pilot study shows that it is possible to individualize the peripheral to aortic pressure transfer function, thereby improving accuracy in central blood pressure assessment during exercise. PMID:21720842

  5. Destabilization of hydromagnetic drift-Alfven waves in a finite pressure, collisional plasma

    International Nuclear Information System (INIS)

    The hydromagnetic drift mode of the coupled drift-Alfven wave is destabilized as a standing wave in a dense, current-free plasma in the presence of a density gradient. When an axial electron current is drawn, a localized Alfven mode propagating against the current is destabilized, in addition to the unstable drift mode now propagating along the current. The measured wave properties, dispersion, and dependence on plasma parameters are found to agree with the theory derived for a finite β, collisional plasma

  6. PASSIVE WIRELESS MULTI-SENSOR TEMPERATURE AND PRESSURE SENSING SYSTEM USING ACOUSTIC WAVE DEVICES Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) sensors and multi-sensor systems for NASA application to remote wireless sensing of...

  7. Passive Wireless Multi-Sensor Temperature and Pressure Sensing System Using Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the continued development of passive, orthogonal frequency coded (OFC) surface acoustic wave (SAW) sensors and multi-sensor systems, an...

  8. Extreme storm wave influence on sandy beach macrofauna with distinct human pressures.

    Science.gov (United States)

    Machado, Phillipe M; Costa, Leonardo L; Suciu, Marjorie C; Tavares, Davi C; Zalmon, Ilana R

    2016-06-15

    We evaluated the influence of storm waves on the intertidal community structure of urbanized and non-urbanized areas of a sandy beach on the northern coast of Rio de Janeiro, Brazil. The macrofauna was sampled before (PREV) and after two storm wave events (POEV I; POEV II) in 2013 and 2014. Significant differences in community structure between PREV and POEV I in the urbanized sector demonstrate higher macrofauna vulnerability, and the community recovery within 41days on this scenario of less frequent events in 2013. On the other hand, significant differences in the macrofauna only in the urbanized sector between PREV and POEV II also highlight macrofauna vulnerability and community recovery failure within 42days on this scenario of more frequent storm in 2014. Urbanization and wave height were the variables that most influenced species, indicating that high storm wave events and increasing urbanization synergism are a threat to the macrofauna. PMID:27103425

  9. Bramwell-Hill modeling for local aortic pulse wave velocity estimation: a validation study with velocity-encoded cardiovascular magnetic resonance and invasive pressure assessment

    OpenAIRE

    Westenberg Jos JM; van Poelgeest Eveline P; Steendijk Paul; Grotenhuis Heynric B; Jukema JW; de Roos Albert

    2012-01-01

    Abstract Background The Bramwell-Hill model describes the relation between vascular wall stiffness expressed in aortic distensibility and the pulse wave velocity (PWV), which is the propagation speed of the systolic pressure wave through the aorta. The main objective of this study was to test the validity of this model locally in the aorta by using PWV-assessments based on in-plane velocity-encoded cardiovascular magnetic resonance (CMR), with invasive pressure measurements serving as the gol...

  10. Aortic pressure wave reconstruction during exercise is improved by adaptive filtering: a pilot study

    OpenAIRE

    Stok, W.J.; Westerhof, B E; Guelen, I.; Karemaker, J. M.

    2011-01-01

    Reconstruction of central aortic pressure from a peripheral measurement by a generalized transfer function (genTF) works well at rest and mild exercise at lower heart rates, but becomes less accurate during heavy exercise. Particularly, systolic and pulse pressure estimations deteriorate, thereby underestimating central pressure. We tested individualization of the TF (indTF) by adapting its resonance frequency at the various levels of exercise. In seven males (age 44–57) with coronary artery ...

  11. Determination of the elastic wave velocities in porous rocks with the change of overburden pressure and its universal significance

    Institute of Scientific and Technical Information of China (English)

    史謌; 杨东全

    2002-01-01

    Typical rock samples with different lithologic characteristics were collected from exploring wells drilled in sandstone-conglomerate sedimental reservoirs with positive rhythm. In different pore fluid states (fully saturated with gas, water and oil), the velocities of compressional and shear waves (Vp, Vs) were measured under different overburden pressure in laboratory. The effects of pore fluid and different fluid types on the velocities were analyzed. The velocities (Vp, Vs) of the samples fully saturated with water were calculated by use of Gassmann's formula that is suitable for low frequency. The calculated values were compared with the experimental values obtained at high frequency. The result shows that Gassmann's theory can be used to calculate elastic wave velocities in porous rocks saturated with fluid. By this result, the change of elastic velocities with the change of fluid can be predicted. The error is allowable in petroleum engineering. This conclusion is useful for sonic logging interpretation and seismic datum processing.

  12. Real Time Monitoring of SF6 Gas Pressure for Optimization Point on Wave Switching of SF6 Circuit Breaker

    OpenAIRE

    Ashish Maheshwari1 , Sunil Kumar Singla

    2013-01-01

    This paper introduce the real time analysis of sf6 gas pressure for optimizing point on wave switching of sf6 circuit breaker. Circuit Breaker plays an important role in today’s growing Indian economy in power systems. It provides protection to transmission equipment incorporated in transmission networks. SF6 Circuit Breaker is very important equipment in Power Systems which is used for up to 1200 kVbecause of its excellent performance. SF6 Gas plays a vital role to operate the Breaker. Also ...

  13. Pressure dependence of the single particle excitation in the charge-density-wave CeTe$_3$ system

    OpenAIRE

    Lavagnini, M.; A. Sacchetti; Marini, C.; Valentini, M; Sopracase, R.; Perucchi, A.; Postorino, P.; Lupi, S.; Chu, J. -H.; Fisher, I. R.; Degiorgi, L.

    2008-01-01

    We present new data on the pressure dependence at 300 K of the optical reflectivity of CeTe$_3$, which undergoes a charge-density-wave (CDW) phase transition well above room temperature. The collected data cover an unprecedented broad spectral range from the infrared up to the ultraviolet, which allows a robust determination of the gap as well as of the fraction of the Fermi surface affected by the formation of the CDW condensate. Upon compressing the lattice there is a progressive closing of...

  14. Study of atmospheric gravity waves and infrasonic sources using the USArray Transportable Array pressure data

    Science.gov (United States)

    Hedlin, Michael; de Groot-Hedlin, Catherine; Hoffmann, Lars; Alexander, M. Joan; Stephan, Claudia

    2016-04-01

    The upgrade of the USArray Transportable Array (TA) with microbarometers and infrasound microphones has created an opportunity for a broad range of new studies of atmospheric sources and the large- and small-scale atmospheric structure through which signals from these events propagate. These studies are akin to early studies of seismic events and the Earth's interior structure that were made possible by the first seismic networks. In one early study with the new dataset we use the method of de Groot-Hedlin and Hedlin (2015) to recast the TA as a massive collection of 3-element arrays to detect and locate large infrasonic events. Over 2,000 events have been detected in 2013. The events cluster in highly active regions on land and offshore. Stratospherically ducted signals from some of these events have been recorded more than 2,000 km from the source and clearly show dispersion due to propagation through atmospheric gravity waves. Modeling of these signals has been used to test statistical models of atmospheric gravity waves. The network is also useful for making direct observations of gravity waves. We are currently studying TA and satellite observations of gravity waves from singular events to better understand how the waves near ground level relate to those observed aloft. We are also studying the long-term statistics of these waves from the beginning of 2010 through 2014. Early work using data bandpass filtered from 1-6 hr shows that both the TA and satellite data reveal highly active source regions, such as near the Great Lakes. de Groot-Hedlin and Hedlin, 2015, A method for detecting and locating geophysical events using clusters of arrays, Geophysical Journal International, v203, p960-971, doi: 10.1093/gji/ggv345.

  15. Numerical survey of pressure wave propagation around and inside an underground cavity with high order FEM

    Science.gov (United States)

    Esterhazy, Sofi; Schneider, Felix; Schöberl, Joachim; Perugia, Ilaria; Bokelmann, Götz

    2016-04-01

    The research on purely numerical methods for modeling seismic waves has been more and more intensified over last decades. This development is mainly driven by the fact that on the one hand for subsurface models of interest in exploration and global seismology exact analytic solutions do not exist, but, on the other hand, retrieving full seismic waveforms is important to get insides into spectral characteristics and for the interpretation of seismic phases and amplitudes. Furthermore, the computational potential has dramatically increased in the recent past such that it became worthwhile to perform computations for large-scale problems as those arising in the field of computational seismology. Algorithms based on the Finite Element Method (FEM) are becoming increasingly popular for the propagation of acoustic and elastic waves in geophysical models as they provide more geometrical flexibility in terms of complexity as well as heterogeneity of the materials. In particular, we want to demonstrate the benefit of high-order FEMs as they also provide a better control on the accuracy. Our computations are done with the parallel Finite Element Library NGSOLVE ontop of the automatic 2D/3D mesh generator NETGEN (http://sourceforge.net/projects/ngsolve/). Further we are interested in the generation of synthetic seismograms including direct, refracted and converted waves in correlation to the presence of an underground cavity and the detailed simulation of the comprehensive wave field inside and around such a cavity that would have been created by a nuclear explosion. The motivation of this application comes from the need to find evidence of a nuclear test as they are forbidden by the Comprehensive Nuclear-Test Ban Treaty (CTBT). With this approach it is possible for us to investigate the wave field over a large bandwidth of wave numbers. This again will help to provide a better understanding on the characteristic signatures of an underground cavity, improve the protocols for

  16. Wave

    OpenAIRE

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for t...

  17. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....

  18. Modeling and experiments with low-frequency pressure wave propagation in liquid-filled, flexible tubes

    DEFF Research Database (Denmark)

    Bjelland, C; Bjarnø, Leif

    1992-01-01

    A model for wave propagation in a liquid-filled viscoelastic tube with arrays of receivers inside, is being used to analyze the influence of noise generated by in-line vibrational noise sources. In this model, distensibility is of greater importance than compressibility of the liquid...... relations and frequency-dependent attenuation. A 12-m-long, liquid-filled tube with interior stress members and connectors in each end is hanging vertically from an upper fixture. The lower end connector is excited by a power vibrator to generate the relevant wave modes. Measurements with reference...

  19. Measurements of blast waves from bursting frangible spheres pressurized with flash-evaporation vapor or liquid

    Science.gov (United States)

    Esparaza, E. D.; Baker, W. E.

    1977-01-01

    Incident overpressure data from frangible spheres pressurized with a flash-evaporating fluid in liquid and vapor form were obtained in laboratory experiments. Glass spheres under higher than ambient internal pressure of Freon-12 were purposely burst to obtain time histories of overpressure. Nondimensional peak pressures, arrival and duration times, and impulses are presented, and whenever possible plotted and compared with compiled data for Pentolite high-explosive. The data are generally quite repeatable and show differences from blast data produced by condensed high-explosives.

  20. Frequency based approach for simulating pressure waves at the inlet of internal combustion engines using a parameterized model

    International Nuclear Information System (INIS)

    Highlights: ► Transfer function technique for engine intake wave action simulation. ► Frequency domain characterization of dynamic pressure using shock tube experiments. ► Simulink and GT-Power coupling using transfer function methodology. ► Parameterized analytical model depending on tube geometry for dynamic pressure. ► Intake pressure simulation. - Abstract: Today’s downsized turbocharged engines mainly focus on improving low end torque and increasing mass flow rate, this is done in order to improve the overall thermodynamic efficiency of the engine and to gain a lower BSFC. An integral part of any combustion engine is the air intake line that has a first order effect on engine filling and emptying. The wave action that takes place is usually simulated using one-dimensional codes. This paper presents a novel technique based on a frequency domain characterization of the intake line. A link over a wide frequency spectrum is identified between the instantaneous mass flow at the valve and the dynamic pressure response. This model is implemented into Simulink via a transfer function and coupled to GT-Power to produce an engine simulation. A shock tube experimental campaign was conducted for a number of tubes with varying lengths and diameters. The parameters of this transfer function are measured for each case then combined with gas dynamic theory and a frequency analysis to identify a law of behavior as a function of pipe geometry. The final model is validated on a single cylinder engine in GT-Power for a variety of pipe geometry

  1. The analysis of ultrasonic examination wave for pressure-retraining studs

    International Nuclear Information System (INIS)

    The author describes the mechanism and characteristics of echo signals produced from various false defects in ultrasonic examination of the pressure-retaining studs and the distinction of false defect signals

  2. The computation of pressure waves in shock tubes by a finite difference procedure

    International Nuclear Information System (INIS)

    A finite difference solution of one-dimensional unsteady isentropic compressible flow equations is presented. The computer program has been tested by solving some cases of the Riemann shock tube problem. Predictions are in good agreement with those presented by other authors. Some inaccuracies may be attributed to the wave smearing consequent of the finite-difference treatment. (author)

  3. The Importance of Pressure Sampling Frequency in Models for Determination of Critical Wave Loadingson Monolithic Structures

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Andersen, Thomas Lykke; Meinert, Palle

    2008-01-01

    This paper discusses the influence of wave load sampling frequency on calculated sliding distance in an overall stability analysis of a monolithic caisson. It is demonstrated by a specific example of caisson design that for this kind of analyses the sampling frequency in a small scale model could...

  4. Pressure dependence of the optical properties of the charge-density-wave compound LaTe2

    Energy Technology Data Exchange (ETDEWEB)

    Lavagnini, M.; Sacchetti, A.; Degiorgi, L.; /Zurich, ETH; Arcangeletti, E.; Baldassarre, L.; Postorino, P.; Lupi, S.; /Rome U.; Perucchi, A.; /INFM, Trieste; Shin, K.Y.; Fisher, I.R.; /Stanford U., Geballe Lab.

    2009-12-14

    We report the pressure dependence of the optical response of LaTe{sub 2}, which is deep in the charge-density-wave (CDW) ground state even at 300 K. The reflectivity spectrum is collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 7 GPa. We extract the energy scale due to the single particle excitation across the CDW gap and the Drude weight. We establish that the gap decreases upon compressing the lattice, while the Drude weight increases. This signals a reduction in the quality of nesting upon applying pressure, therefore inducing a lesser impact of the CDW condensate on the electronic properties of LaTe{sub 2}. The consequent suppression of the CDW gap leads to a release of additional charge carriers, manifested by the shift of weight from the gap feature into the metallic component of the optical response. On the contrary, the power-law behavior, seen in the optical conductivity at energies above the gap excitation and indicating a weakly interacting limit within the Tomonaga-Luttinger liquid scenario, seems to be only moderately dependent on pressure.

  5. The mobility analog for modeling the intra-arterial pressure wave parameters.

    Science.gov (United States)

    Ferris, C D; Stinnett, H O

    1995-01-01

    To assist in the identification of physical/physiological parameters obtained from in vivo rat aortic artery dynamic pressure data, the natural (mobility) mechanical circuit model was constructed. The direct electrical analog of the model thus obtained was then analyzed using SPICE. The experimental data were obtained using a Multifunction Pressure Generator (MPG), appropriate pressure probes, and a high-speed video camera. Two 486 computers were used for system control and data recording and computation. Transfer functions in rational form of the ratio of the MPG input pressure (Pi) to the intra-arterial pressure (Po) were then generated in the s-domain. The mechanical circuit described by these rational functions was then constructed and transformed into its equivalent electrical model for analysis. On this basis, physiological pressures are represented by electrical currents, and volume flow rates by electrical voltages. The results obtained through steady-state (Bode plot) and transient analysis of the model developed suggest a compartmental model that explains the experimental observations. The mobility model is an improvement over previous models in that the mass element is referred to a single frame of reference, which agrees with the physical property that mass is a one-terminal device. PMID:7654985

  6. Influence of pressure, temperature, and pore fluid on the frequency-dependent attenuation of elastic waves in Berea sandstone

    Science.gov (United States)

    O'hara, Stephen G.

    1985-07-01

    The effects of pore fluid, effective stress, pore fluid pressure, and temperature on the frequency dependence of elastic wave attenuation in Berea sandstone are interrelated in a series of systematic experiments. The attenuation of both the extensional and torsional modes of cylindrical samples of the sandstone is measured on the frequency range 3-30 kHz. To simulate conditions within the earth, the sandstone is subjected to confining stress to 70.0 MPa and temperature from 24.0 °C to 120.0 °C. Confining pressure and pore fluid pressure are varied independently. Data for two different pore fluids, brine and n-heptane, suggest that a scaling law exists for the pressure and temperature dependence of the attenuation in terms of the pore fluid. The logarithmic decrement of the sandstone is almost frequency independent in a vacuum evacuated sample, but shows a linear frequency dependence, once the sample is saturated. Extrapolation of this linear trend to low frequencies suggests that the decrement in fluid-filled sandstone is effectively frequency independent at seismic frequencies (<100 Hz). The frequency dependence becomes more pronounced as either the effective stress or the temperature is decreased. When the difference between the external stress on the sandstone and the pore fluid pressure is large, the attenuation depends only on the effective stress and is relatively temperature independent. But at low effective stress, the attenuation increases linearly with increasing pore fluid pressure and decreases linearly with increasing temperature. While a specific model is lacking, the attenuation process is apparently influenced most strongly by chemical processes at the pore fluid-matrix interface accompanied by subtle changes in the sandstone matrix dimensions.

  7. Model of a surface-wave discharge at atmospheric pressure with a fixed profile of the gas temperature

    Science.gov (United States)

    Nikovski, M.; Kiss'ovski, Zh; Tatarova, E.

    2016-03-01

    We present a 3D model of a surface-wave-sustained discharge at 2.45 GHz at atmospheric pressure. A small plasma source creates a plasma column in a dielectric tube and a plasma torch is observed above the top. The plasma parameters and the axial profile of the gas temperature are significantly changed in the presence of the substrate above the plasma torch. The Boltzmann equation for electrons under the local approximation is solved, together with the heavy particle balance equations at a fixed axial profile of the gas temperature. The model of this finite length plasma column includes also the dispersion relation of azimuthally-symmetric surface waves. A detailed collisional-radiative model is also implemented for argon discharge at atmospheric pressure, which includes 21 rate balance equations for excited Ar atoms [(Ar(1s5-1s2), Ar(2p10-2p1), Ar(2s3d), Ar(3p)], for positive Ar+ and Ar2 + ions and for excited molecules. The changes in the EEDF shape and the mean electron energy along the plasma column are investigated and the axial structures of the discharge and plasma parameters are obtained.

  8. Black Tea Lowers Blood Pressure and Wave Reflections in Fasted and Postprandial Conditions in Hypertensive Patients: A Randomised Study

    Directory of Open Access Journals (Sweden)

    Davide Grassi

    2015-02-01

    Full Text Available Hypertension and arterial stiffening are independent predictors of cardiovascular mortality. Flavonoids may exert some vascular protection. We investigated the effects of black tea on blood pressure (BP and wave reflections before and after fat load in hypertensives. According to a randomized, double-blind, controlled, cross-over design, 19 patients were assigned to consume black tea (129 mg flavonoids or placebo twice a day for eight days (13 day wash-out period. Digital volume pulse and BP were measured before and 1, 2, 3 and 4 h after tea consumption. Measurements were performed in a fasted state and after a fat load. Compared to placebo, reflection index and stiffness index decreased after tea consumption (p < 0.0001. Fat challenge increased wave reflection, which was counteracted by tea consumption (p < 0.0001. Black tea decreased systolic and diastolic BP (−3.2 mmHg, p < 0.005 and −2.6 mmHg, p < 0.0001; respectively and prevented BP increase after a fat load (p < 0.0001. Black tea consumption lowers wave reflections and BP in the fasting state, and during the challenging haemodynamic conditions after a fat load in hypertensives. Considering lipemia-induced impairment of arterial function may occur frequently during the day, our findings suggest regular consumption of black tea may be relevant for cardiovascular protection.

  9. Influence of field emission on the propagation of cylindrical fast ionization wave in atmospheric-pressure nitrogen

    Science.gov (United States)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-01

    The influence of field emission of electrons from surfaces on the fast ionization wave (FIW) propagation in high-voltage nanosecond pulse discharge in the atmospheric-pressure nitrogen is studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions model. A strong influence of field emission on the FIW dynamics and plasma parameters is obtained. Namely, the accounting for the field emission makes possible the bridging of the cathode-anode gap by rather dense plasma (˜1013 cm-3) in less than 1 ns. This is explained by the generation of runaway electrons from the field emitted electrons. These electrons are able to cross the entire gap pre-ionizing it and promoting the ionization wave propagation. We have found that the propagation of runaway electrons through the gap cannot be accompanied by the streamer propagation, because the runaway electrons align the plasma density gradients. In addition, we have obtained that the field enhancement factor allows controlling the speed of ionization wave propagation.

  10. Unusual properties of high-compliance porosity extracted from measurements of pressure-dependent wave velocities in rocks

    Science.gov (United States)

    Zaitsev, Vladimir Y.; Radostin, Andrey V.; Pasternak, Elena; Dyskin, Arcady

    2016-04-01

    Conventionally the interpretation of wave velocities and their variations under load is conducted assuming that closable cracks have simple planar shapes, like the popular model of penny-shape cracks. For such cracks, the proportion between complementary variations in different elastic parameters of rocks (such as S- and P-wave velocities) is strictly pre-determined, in particular, it is independent of the crack aspect ratio and rather weakly dependent on the Poisson's ratio of the intact rock. Real rocks, however, contain multitude of cracks of different geometry. Faces of such cracks can exhibit complex modes of interaction when closed by external load, which may result in very different ratios between normal- and shear compliances of such defects. In order to describe the reduction of different elastic moduli, we propose a model in which the compliances of crack-like defects are explicitly decoupled and are not predetermined, so that the ratio q between total normal- and shear- compliances imparted to the rock mass (as well as individual values of these compliances) can be estimated from experimental data on reduction of different elastic moduli (e.g., pressure dependences of P- and S-wave velocities). Physically, the so-extracted ratio q can be interpreted as intrinsic property of individual crack-like defects similar to each other, or as a characteristic of proportion between concentrations of pure normal cracks with very large q and pure shear cracks with q→0. The latter case can correspond, e.g., to saturated cracks in which weakly-compressible liquid prevents crack closing under normal loading. It can be shown that for conventional dry planar cracks, the compliance ratio is q ˜2. The developed model applied to the data on wave-velocity variations with external pressure indicates that elastic properties of the real crack-like defects in rocks can differ considerably from the usually assumed ones. Comparison with experimental data on variations P- and S-wave

  11. RELATIONS BETWEEN DAIRY FOOD INTAKE AND ARTERIAL STIFFNESS: PULSE WAVE VELOCITY AND PULSE PRESSURE

    OpenAIRE

    Crichton, Georgina E; Elias, Merrrill F.; Dore, Gregory A.; Abhayaratna, Walter P.; Robbins, Michael A.

    2012-01-01

    Modifiable risk factors, such as diet, are becomingly increasingly important in the management of cardiovascular disease, one of the greatest major causes of death and disease burden. Few studies have examined the role of diet as a possible means of reducing arterial stiffness, as measured by pulse wave velocity, an independent predictor of cardiovascular events and all-cause mortality. The aim of this study was to investigate whether dairy food intake is associated with measures of arterial ...

  12. Use of Z pinch radiation sources for high pressure shock wave studies

    International Nuclear Information System (INIS)

    Recent developments in pulsed power technology demonstrate use of intense radiation sources (Z pinches) for driving planar shock waves in samples with spatial dimensions larger than possible with other radiation sources. Initial indications are that the use of Z pinch sources can be used to produce planar shock waves in samples with diameters of a few millimeters and thicknesses approaching one half millimeter. These dimensions allow increased accuracy of both shock velocity and particle velocity measurements. The Z pinch radiation source uses imploding metal plasma induced by self-magnetic fields applied to wire arrays to produce high temperature x-ray environments in vacuum hohlraum enclosures. Previous experiments have demonstrated that planar shock waves can be produced with this approach. A photograph of a wire array located inside the vacuum hohlraum is shown here. Typically, a few hundred individual wires are used to produce the Z pinch source. For the shock wave experiments being designed, arrays of 120 to 240 tungsten wires with a diameter of 40 mm and with individual diameters of about 10 microm are used. Preliminary experiments have been performed on the Z pulsed radiation source to demonstrate the ability to obtain VISAR measurements in the Z accelerator environment. Analysis of these results indicate that another effect, not initially anticipated, is an apparent change in refractive index that occurs in the various optical components used in the system. This effect results in an apparent shift in the frequency of reflected laser light, and causes an error in the measured particle velocity. Experiments are in progress to understand and minimize this effect

  13. Analysis of reflected blast wave pressure profiles in a confined room

    OpenAIRE

    Sochet, Isabelle; Sauvan, Pierre-Emmanuel; Trelat, Sophie

    2012-01-01

    To understand the blast effects of confined explosions, it is necessary to study the characteristic parameters of the blast wave in terms of overpressure, impulse and arrival time. In a previous study, experiments were performed using two different scales of a pyrotechnic workshop. The main purpose of these experiments was to compare the TNT equivalent for solid and gaseous explosives in terms of mass to define a TNT equivalent in a reflection field and to validate the similitude between real...

  14. Experimental and numerical characterization of the sound pressure in standing wave acoustic levitators

    Science.gov (United States)

    Stindt, A.; Andrade, M. A. B.; Albrecht, M.; Adamowski, J. C.; Panne, U.; Riedel, J.

    2014-01-01

    A novel method for predictions of the sound pressure distribution in acoustic levitators is based on a matrix representation of the Rayleigh integral. This method allows for a fast calculation of the acoustic field within the resonator. To make sure that the underlying assumptions and simplifications are justified, this approach was tested by a direct comparison to experimental data. The experimental sound pressure distributions were recorded by high spatially resolved frequency selective microphone scanning. To emphasize the general applicability of the two approaches, the comparative studies were conducted for four different resonator geometries. In all cases, the results show an excellent agreement, demonstrating the accuracy of the matrix method.

  15. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results.

    Science.gov (United States)

    Saito, Masashi; Ikenaga, Yuki; Matsukawa, Mami; Watanabe, Yoshiaki; Asada, Takaaki; Lagrée, Pierre-Yves

    2011-12-01

    Pulse wave evaluation is an effective method for arteriosclerosis screening. In a previous study, we verified that pulse waveforms change markedly due to arterial stiffness. However, a pulse wave consists of two components, the incident wave and multireflected waves. Clarification of the complicated propagation of these waves is necessary to gain an understanding of the nature of pulse waves in vivo. In this study, we built a one-dimensional theoretical model of a pressure wave propagating in a flexible tube. To evaluate the applicability of the model, we compared theoretical estimations with measured data obtained from basic tube models and a simple arterial model. We constructed different viscoelastic tube set-ups: two straight tubes; one tube connected to two tubes of different elasticity; a single bifurcation tube; and a simple arterial network with four bifurcations. Soft polyurethane tubes were used and the configuration was based on a realistic human arterial network. The tensile modulus of the material was similar to the elasticity of arteries. A pulsatile flow with ejection time 0.3 s was applied using a controlled pump. Inner pressure waves and flow velocity were then measured using a pressure sensor and an ultrasonic diagnostic system. We formulated a 1D model derived from the Navier-Stokes equations and a continuity equation to characterize pressure propagation in flexible tubes. The theoretical model includes nonlinearity and attenuation terms due to the tube wall, and flow viscosity derived from a steady Hagen-Poiseuille profile. Under the same configuration as for experiments, the governing equations were computed using the MacCormack scheme. The theoretical pressure waves for each case showed a good fit to the experimental waves. The square sum of residuals (difference between theoretical and experimental wave-forms) for each case was <10.0%. A possible explanation for the increase in the square sum of residuals is the approximation error for flow

  16. Plasma diagnostics of low pressure high power impulse magnetron sputtering assisted by electron cyclotron wave resonance plasma

    International Nuclear Information System (INIS)

    This paper reports on an investigation of the hybrid pulsed sputtering source based on the combination of electron cyclotron wave resonance (ECWR) inductively coupled plasma and high power impulse magnetron sputtering (HiPIMS) of a Ti target. The plasma source, operated in an Ar atmosphere at a very low pressure of 0.03 Pa, provides plasma where the major fraction of sputtered particles is ionized. It was found that ECWR assistance increases the electron temperature during the HiPIMS pulse. The discharge current and electron density can achieve their stable maximum 10 μs after the onset of the HiPIMS pulse. Further, a high concentration of double charged Ti++ with energies of up to 160 eV was detected. All of these facts were verified experimentally by time-resolved emission spectroscopy, retarding field analyzer measurement, Langmuir probe, and energy-resolved mass spectrometry.

  17. Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration

    International Nuclear Information System (INIS)

    The shock wave acceleration of ions driven by laser-heated thermal pressure is studied through one-dimensional particle-in-cell simulation and analysis. The generation of high-energy mono-energetic protons in recent experiments (D. Haberberger et al., 2012 Nat. Phys. 8 95) is attributed to the use of exponentially decaying density profile of the plasma target. It does not only keep the shock velocity stable but also suppresses the normal target normal sheath acceleration. The effects of target composition are also examined, where a similar collective velocity of all ion species is demonstrated. The results also give some reference to future experiments of producing energetic heavy ions. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. Atmospheric pressure ionization waves propagating through a flexible high aspect ratio capillary channel and impinging upon a target

    International Nuclear Information System (INIS)

    Atmospheric pressure ionization waves (IWs) propagating in flexible capillary tubes are a unique way of transporting a plasma and its active species to remote sites for applications such as biomedical procedures, particularly in endoscopic procedures. The propagation mechanisms for such IWs in tubes having aspect ratios of hundreds to thousands are not clear. In this paper, results are discussed from a numerical investigation of the fundamental properties of ionization waves generated by nanosecond voltage pulses inside a 15 cm long, 600 µm wide (aspect ratio 250), flexible dielectric channel. The channel, filled with a Ne/Xe = 99.9/0.1 gas mixture at 1 atm, empties into a small chamber separated from a target substrate by 1 cm. The IWs propagate through the entire length of the channel while maintaining similar strength and magnitude. Upon exiting the channel into the chamber, the IW induces a second streamer discharge at the channel–chamber junction. This streamer then propagates across the chamber and impinges upon the target. The average speeds of the capillary-bounded IW are about 5 × 107 cm s−1 and 1 × 108 cm s−1 for positive and negative polarities, respectively. The propagation speed is sensitive to the curvature of the channel. In both cases, the peak in ionization tends to be located along the channel walls and alternates from side-to-side depending on the direction of the local instantaneous electric field and curvature of the channel. The ionization region following the IW extends up to several centimeters inside the channel, as opposed to being highly localized at the ionization front in unconstrained, atmospheric pressure IWs. The maximum speed of the IW in the chamber is about twice that in the channel. (paper)

  19. The product of resting heart rate times blood pressure is associated with high brachial-ankle pulse wave velocity.

    Directory of Open Access Journals (Sweden)

    Anxin Wang

    Full Text Available OBJECTIVE: To investigate potential associations between resting heart rate, blood pressure and the product of both, and the brachial-ankle pulse wave velocity (baPWV as a maker of arterial stiffness. METHODS: The community-based "Asymptomatic Polyvascular Abnormalities in Community (APAC Study" examined asymptomatic polyvascular abnormalities in a general Chinese population and included participants with an age of 40+ years without history of stroke and coronary heart disease. Arterial stiffness was defined as baPWV≥1400 cm/s. We measured and calculated the product of resting heart rate and systolic blood pressure (RHR-SBP and the product of resting heart rate and mean arterial pressure (RHR-MAP. RESULTS: The study included 5153 participants with a mean age of 55.1 ± 11.8 years. Mean baPWV was 1586 ± 400 cm/s. Significant (P<0.0001 linear relationships were found between higher baPWV and higher resting heart rate or higher arterial blood pressure, with the highest baPWV observed in individuals from the highest quartiles of resting heart rate and blood pressure. After adjusting for confounding parameters such as age, sex, educational level, body mass index, fasting blood concentrations of glucose, blood lipids and high-sensitive C-reactive protein, smoking status and alcohol consumption, prevalence of arterial stiffness increased significantly (P<0.0001 with increasing RHR-SBP quartile (Odds Ratio (OR: 2.72;95%Confidence interval (CI:1.46,5.08 and increasing RHR-MAP (OR:2.10;95%CI:1.18,3.72. Similar results were obtained in multivariate linear regression analyses with baPWV as continuous variable. CONCLUSIONS: Higher baPWV as a marker of arterial stiffness was associated with a higher product of RHR-SBP and RHR-MAP in multivariate analysis. In addition to other vascular risk factors, higher resting heart rate in combination with higher blood pressure are risk factors for arterial stiffness.

  20. Numerical model for the calculation of spherical pressure wave propagation in elastoplastic and viscoelastic materials, and calculation of the air-blast induced ground movements in the subseismic case

    International Nuclear Information System (INIS)

    The results of two works on the topic 'propagation and effect of nuclear pressure waves in the ground and in rocks' are given in this report. The first part deals with fundamentals and preliminary results of a numerical computer programme to calculate the spherically symmetrical pressure wave propagation in viscoelastic and elastoplastic media. The second part deals with the application of existing programmes to calculate the building stress in the subseismic region of air-blast induced ground pressure waves. (orig./LH)

  1. Numerical study with experimental comparison of pressure waves in the air intake system of an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, Carlos E.G.; Vielmo, Horacio A. [Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Mechanical Engineering Dept.], E-mails: vielmoh@mecanica.ufrgs.br; Hanriot, Sergio M. [Pontifical Catholic University of Minas Gerais (PUC-Minas), Belo Horizonte, MG (Brazil). Mechanical Engineering Dept.], E-mail: hanriot@pucminas.br

    2010-07-01

    The work investigates the pressure waves behavior in the intake system of an internal combustion engine. For the purpose of examining this problem, it was chosen an experimental study in order to validate the results of the present simulation. At the literature there are several experimental studies, and some numerical simulations, but the most of the numerical studies treat the problem only in one dimension in practical problems, or two dimensions in specific problems. Using a CFD code it is possible to analyze more complex systems, including tridimensional effects. The pulsating phenomenon is originated from the periodic movement of the intake valve, and produces waves that propagate within the system. The intake system studied was composed by a straight pipe connected to a 1000 cc engine with a single operating cylinder. The experiments were carried out in a flow bench. In the present work, the governing equations was discretized by Finite Volumes Method with an explicit formulation, and the time integration was made using the multi-stage Runge-Kutta time stepping scheme. The solution is independent of mesh or time step. The numerical analysis presents a good agreement with the experimental results. (author)

  2. Two-wave photon Doppler velocimetry measurements in direct impact Hopkinson pressure bar experiments

    Science.gov (United States)

    Lea, Lewis J.; Jardine, Andrew P.

    2015-09-01

    Direct impact Hopkinson pressure bar systems offer many potential advantages over split Hopkinson pressure bars, including access to higher strain rates, higher strains for equivalent striker velocity and system length, lower dispersion and faster achievement of force equilibrium. Currently advantages are gained at a significant cost: the fact that input bar data is unavailable removes all information about the striker impacted specimen face, preventing the determination of force equilibrium, and requiring approximations to be made on the sample deformation history. Recently photon Doppler velocimetry methods have been developed, which can replace strain gauges on Hopkinson bars. In this paper we discuss an experimental method and complementary data analysis for using Doppler velocimetry to measure surface velocities of the striker and output bars in a direct impact bar experiment, allowing similar data to be recorded as in a split bar system, with the same level of convenience. We discuss extracting velocity and force measurements, and improving the accuracy and convenience of Doppler velocimetry on Hopkinson bars. Results obtained using the technique are compared to equivalent split bar tests, showing improved stress measurements for the lowest and highest strains.

  3. Two-wave photon Doppler velocimetry measurements in direct impact Hopkinson pressure bar experiments

    Directory of Open Access Journals (Sweden)

    Lea Lewis J.

    2015-01-01

    Full Text Available Direct impact Hopkinson pressure bar systems offer many potential advantages over split Hopkinson pressure bars, including access to higher strain rates, higher strains for equivalent striker velocity and system length, lower dispersion and faster achievement of force equilibrium. Currently advantages are gained at a significant cost: the fact that input bar data is unavailable removes all information about the striker impacted specimen face, preventing the determination of force equilibrium, and requiring approximations to be made on the sample deformation history. Recently photon Doppler velocimetry methods have been developed, which can replace strain gauges on Hopkinson bars. In this paper we discuss an experimental method and complementary data analysis for using Doppler velocimetry to measure surface velocities of the striker and output bars in a direct impact bar experiment, allowing similar data to be recorded as in a split bar system, with the same level of convenience. We discuss extracting velocity and force measurements, and improving the accuracy and convenience of Doppler velocimetry on Hopkinson bars. Results obtained using the technique are compared to equivalent split bar tests, showing improved stress measurements for the lowest and highest strains.

  4. Interplay between charge density waves and reentrant superconductivity in the pressure - temperature phase diagram of TTF(Ni(dmit) sub 2 ) sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, L.; Ribault, M. (Lab. de Physique des Solides, Univ. Paris-Sud, 91 - Orsay (France)); Canadell, E. (Lab. de Chimie Theorique, Univ. Paris Sud, 91 - Orsay (France)); Valade, L.; Legros, J.P. (Lab. de Chimie de Coordination, Univ. P. Sabatier, 31 - Toulouse (France))

    1991-06-14

    The pressure-temperature phase diagram of the molecular superconductor TTF(Ni(dmit){sub 2}){sub 2} was determined by a.c. resistivity measurements up to 14 kbar. Increasing pressures induce electronic phase tranistions between a high temperature metal and successive, semimetallic, insulating and reentrant superconducting ground states. This phase diagram is discussed in connection with ambient pressure charge density wave (CDW) instabilities. Their wave vector can be well accounted for by an original conduction band structure. This structure involves both the partially filled HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) bands of the acceptor slabs. The superconductivity coexists with a high temperature CDW instability and is in weak competition with low temperature CDW fluctuations. This explains the pressure increase of the superconducting temperature T{sub c}. (orig.).

  5. Compressional wave velocities in rocks at high temperatures and pressures, critical thermal gradients, and crustal low-velocity zones

    International Nuclear Information System (INIS)

    The velocities of compressional waves have been determined for several igneous and metamorphic rocks to temperatures of 5000C at elevated confining pressures. At 2 kbar and between 250 and 3000C, temperature coefficients (partialV/sub p//partialT)/sub p/ for many of the rocks range between -0.5 x 10-3 and -0.6 x 10-3 km s-10C-1. At higher temperatures and 2 kbar the temperature coefficients show extreme variability, which is related to the opening of grain boundary cracks caused by anisotropic thermal expansion of the mineral components. Critical thermal gradients (dT/ dZ)/sub c/ for a low-velocity layer in the continental crust at pressures of 5--8 kbar are between 100 and 140C/km. These values are probably high because of porosity; however, they are still lower than estimated crustal temperature gradients in normal and high heat flow provinces. Thus it is concluded that crustal velocity inversions produced by high temperature are likely to be common within the crust. It is significant, however, that the velocity decreases reported for some crustal low-velocity layers are much greater than the decrease which can be accounted for by temperature alone. At higher pressures (10--30 kbar), (dT/dZ)/sub c/=6.30C/km for dunite and eclogite, in excellent agreement with estimates from single-crystal data. The velocities in dunite as a function of temperature further support the conclusion that the observed increase in upper oceanic mantle velocity with age is a consequence of decreasing temperature

  6. Toroidal and poloidal Alfvén waves with arbitrary azimuthal wavenumbers in a finite pressure plasma in the Earth's magnetosphere

    Directory of Open Access Journals (Sweden)

    D. Yu. Klimushkin

    2004-01-01

    Full Text Available In this paper, in terms of an axisymmetric model of the magnetosphere, we formulate the criteria for which the Alfvén waves in the magnetosphere can be toroidally and poloidally polarized (the disturbed magnetic field vector oscillates azimuthally and radially, respectively. The obvious condition of equality of the wave frequency ω to the toroidal (poloidal eigenfrequency ΩTNPN is a necessary and sufficient one for the toroidal polarization of the mode and only a necessary one for the poloidal mode. In the latter case we must also add to it a significantly stronger condition ∣ΩTN–ΩPN∣/ΩTNm–1 where m is the azimuthal wave number, and N is the longitudinal wave number. In cold plasma (the plasma to magnetic pressure ratio β = 0 the left-hand side of this inequality is too small for the routinely recorded (in the magnetosphere second harmonic of radially polarized waves, therefore these waves must have nonrealistically large values of m. By studying several models of the magnetosphere differing by the level of disturbance, we found that the left-hand part of the poloidality criterion can be satisfied by taking into account finite plasma pressure for the observed values of m ∼ 50 – 100 (and in some cases, for even smaller values of the azimuthal wave numbers. When the poloidality condition is satisfied, the existence of two types of radially polarized Alfvén waves is possible. In magnetospheric regions, where the function ΩPN is a monotonic one, the mode is poloidally polarized in a part of its region of localization. It propagates slowly across magnetic shells and changes its polarization from poloidal to toroidal. The other type of radially polarized waves can exist in those regions where this function reaches its extreme values (ring current

  7. Developing a platform for high-resolution phase contrast imaging of high pressure shock waves in matter

    Science.gov (United States)

    Schropp, Andreas; Patommel, Jens; Seiboth, Frank; Arnold, Brice; Galtier, Eric C.; Lee, Hae Ja; Nagler, Bob; Hastings, Jerome B.; Schroer, Christian G.

    2012-10-01

    Current and upcoming X-ray sources, such as the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC, USA), the SPring-8 Angstrom Compact Free Electron Laser (SACLA, Japan), or the X-ray Free Electron Laser (XFEL, Germany) will provide X-ray beams with outstanding properties.1, 2 Short and intense X-ray pulses of about 50 fs time duration and even shorter will push X-ray science to new frontiers such as, e. g., in high-resolution X-ray imaging, high-energy-density physics or in dynamical studies based on pump-probe techniques. Fast processes in matter often require high-resolution imaging capabilities either by magnified imaging in direct space or diffractive imaging in reciprocal space. In both cases highest resolutions require focusing the X-ray beam.3, 4 In order to further develop high-resolution imaging at free-electron laser sources we are planning a platform to carry out high-resolution phase contrast imaging experiments based on Beryllium compound refractive X-ray lenses (Be-CRLs) at the Matter in Extreme Conditions (MEC) endstation of the LCLS. The instrument provides all necessary equipment to induce high pressure shock waves by optical lasers. The propagation of a shock wave is then monitored with an X-ray Free Electron Laser (FEL) pulse by magnified phase contrast imaging. With the CRL optics, X-ray beam sizes in the sub-100nm range are expected, leading to a similar spatial resolution in the direct coherent projection image. The experiment combines different state-of-the art scientific techniques that are currently available at the LCLS. In this proceedings paper we describe the technical developments carried out at the LCLS in order to implement magnified X-ray phase contrast imaging at the MEC endstation.

  8. 3D velocity distribution of P- and S-waves in a biotite gneiss, measured in oil as the pressure medium: Comparison with velocity measurements in a multi-anvil pressure apparatus and with texture-based calculated data

    Science.gov (United States)

    Lokajíček, T.; Kern, H.; Svitek, T.; Ivankina, T.

    2014-06-01

    Ultrasonic measurements of the 3D velocity distribution of P- and S-waves were performed on a spherical sample of a biotite gneiss from the Outokumpu scientific drill hole. Measurements were done at room temperature and pressures up to 400 and 70 MPa, respectively, in a pressure vessel with oil as a pressure medium. A modified transducer/sample assembly and the installation of a new mechanical system allowed simultaneous measurements of P- and S-wave velocities in 132 independent directions of the sphere on a net in steps of 15°. Proper signals for P- and S-waves could be recorded by coating the sample surface with a high-viscosity shear wave gel and by temporal point contacting of the transmitter and receiver transducers with the sample surface during the measurements. The 3D seismic measurements revealed a strong foliation-related directional dependence (anisotropy) of P- and S-wave velocities, which is confirmed by measurements in a multi-anvil apparatus on a cube-shaped specimen of the same rock. Both experimental approaches show a marked pressure sensitivity of P- and S-wave velocities and velocity anisotropies. With increasing pressure, P- and S-wave velocities increase non-linearly due to progressive closure of micro-cracks. The reverse is true for velocity anisotropy. 3D velocity calculations based on neutron diffraction measurements of crystallographic preferred orientation (CPO) of major minerals show that the intrinsic bulk anisotropy is basically caused by the CPO of biotite constituting about 23 vol.% of the rock. Including the shape of biotite grains and oriented low-aspect ratio microcracks into the modelling increases bulk anisotropy. An important finding from this study is that the measurements on the sample sphere and on the sample cube displayed distinct differences, particularly in shear wave velocities. It is assumed that the differences are due to the different geometries of the samples and the configuration of the transducer-sample assembly

  9. Simulation of pressure waves in the coolant loop of PWR type reactors with a network of one-dimensional flow channels, taking the structural flexibility into account

    International Nuclear Information System (INIS)

    The DAPSY code is explained to be a universal tool for simulating and describing dynamic load effects on pipings, internals and components, and valves in the coolant loop. Excitation of pressure waves primarily is due to pipe rupture which leads to rapid pressure reduction. This is why the code very carefully calculates critical blowdown rates also for the case of only partial rupture with reduced outflow, as thus the course of disturbance is described that affects the system. A network method is presented for calculation of multidimensional geometries. As the pressure wave phenomena are observed in a low-compressibility fluid and in a system with sometimes very flexible structural components, the fluid-structure interactions are taken into account. The model presented allows to consider either quasi-static structural behaviour, or dynamic interaction of fluid and structure, depending on the configuration characteristics. (orig./HP)

  10. Small gas bubble experiment for mitigation of cavitation damage and pressure waves in short-pulse mercury spallation targets

    International Nuclear Information System (INIS)

    Populations of small helium gas bubbles were introduced into a flowing mercury experiment test loop to evaluate mitigation of beam-pulse induced cavitation damage and pressure waves. The test loop was developed and thoroughly tested at the Spallation Neutron Source (SNS) prior to irradiations at the Los Alamos Neutron Science Center–Weapons Neutron Research (LANSCE–WNR) facility. Twelve candidate bubblers were evaluated over a range of mercury flow and gas injection rates by use of a novel optical measurement technique that accurately assessed the generated small bubble size distributions. Final selection for irradiation testing included two variations of a swirl bubbler provided by Japan Proton Accelerator Research Complex (J-PARC) collaborators and one orifice bubbler developed at SNS. Bubble populations of interest consisted of sizes up to 150 μm in radius with achieved gas volume fractions in the 10−5–10−4 range. The nominal WNR beam pulse used for the experiment created energy deposition in the mercury comparable to SNS pulses operating at 2.5 MW. Nineteen test conditions were completed each with 100 pulses, including variations on mercury flow, gas injection and protons per pulse. The principal measure of cavitation damage mitigation was pitting damage assessment on test specimens that were manually replaced for each test condition. Damage assessment was done after radiation decay and decontamination by optical and laser profiling microscopy with damaged area fraction and maximum pit depth being the more valued results. Damage was reduced by flow alone; the best mitigation from bubble injection was to one-third that of stagnant mercury. Other data collected included surface motion tracking by three Laser Doppler Vibrometers (LDV), test loop wall dynamic strain, beam diagnostics for charge and beam profile assessment, embedded hydrophones and pressure sensors, and sound measurement by a suite of conventional and contact microphones

  11. Dependence of P-wave dispersion on mean arterial pressure as an independent hemodynamic variable in school children

    Directory of Open Access Journals (Sweden)

    Elibet Chávez González

    2013-09-01

    Full Text Available Introduction:The relationship between diastolic dysfunction and P-wave dispersion (PWD in the electrocardiogram has been studied for some time. In this regard, echocardiography is emerging as a diagnostic tool to improve risk stratification for mild hypertension.Objective:To determine the dependence of PWD on the electrocardiogram and on echocardiographic variables in a pediatric population.Methods: Five hundred and fifteen children from three elementary schools were studiedfrom a total of 565 children. Those whose parents did not want them to take part in the study, as well as those with known congenital diseases, were excluded. Tests including 12-lead surface ECGs and 4 blood pressure (BP measurements were performed. Maximum and minimum P-values were measured, and the PWD on the electrocardiogram was calculated. Echocardiography for structural measurements and the pulsed Doppler of mitral flow were also performed.Results: A significant correlation in statistical variables was found between PWD and mean BP for pre-hypertensive and hypertensive children, i.e., r= 0.32, p <0.01 and r= 0.33, p <0.01, respectively. There was a significant correlation found between PWD and the left atrial area (r= 0.45 and p <0.01.Conclusions: We highlight the dependency between PWD, the electrocardiogram and  mean  blood pressure. We also draw attention to the dependence of PWD on the left atrial area.  This result provides an explanation for earlier changes in atrial electrophysiological and hemodynamic characteristics in pediatric patients.

  12. The Generation of Gravity-Capillary Solitary Waves by a Pressure Source Moving at a Trans-critical Speed

    CERN Document Server

    Masnadi, Naeem

    2016-01-01

    The unsteady response of a water free surface to a localized pressure source moving at constant speed $U$ in the range $0.95c_\\mathrm{min} \\lesssim U \\leq 1.02 c_\\mathrm{min}$, where $c_\\mathrm{min}$ is the minimum phase speed of linear gravity-capillary waves in deep water, is investigated through experiments and numerical simulations. This unsteady response state, which consists of a V-shaped pattern behind the source and features periodic shedding of pairs of depressions from the tips of the V, was first observed qualitatively by Diorio et al. (Phys. Rev. Let., 103, 214502, 2009) and called state III. In the present investigation, cinematic shadowgraph and refraction-based techniques are utilized to measure the temporal evolution of the free surface deformation pattern downstream of the source as it moves along a towing tank, while numerical simulations using the model equation proposed by Cho et al. (J. Fluid Mech., 672, 288-306, 2011) are used to extend the experimental results over longer times than are...

  13. Simulation of the pressure field beneath a turbulent boundary layer using realizations of uncorrelated wall plane waves.

    Science.gov (United States)

    Maxit, Laurent

    2016-08-01

    This paper investigates the modeling of a vibrating structure excited by a turbulent boundary layer (TBL). Although the wall pressure field (WPF) of the TBL constitutes a random excitation, the element-based methods generally used for describing complex mechanical structures consider deterministic loads. The response of such structures to a random excitation like TBL is generally deduced from calculations of numerous Frequency Response Functions. Consequently, the process is computationally expansive. To tackle this issue, an efficient process is proposed for generating realizations of the WPF corresponding to the TBL. This process is based on a formulation of the problem in the wavenumber space and the interpretation of the WPF as uncorrelated wall plane waves. Once the WPF has been synthesized, the local vibroacoustic responses are calculated for the different realizations and averaged together in the last step. A numerical application of this process to a plate located beneath a TBL is used to verify its efficiency and ability to reproduce the partial space correlation of the excitation. To further illustrate the proposed method, a stiffened panel modeled using the finite element method is finally examined. PMID:27586754

  14. Analytical study of nuclear-coupled density-wave instability in a natural circulation pressure tube type boiling water reactor

    International Nuclear Information System (INIS)

    An analytical model has been developed to study the nuclear-coupled density-wave instability in the Indian advanced heavy water reactor (AHWR) which is a natural circulation pressure tube type boiling water reactor. The model considers a point kinetics model for the neutron dynamics and a lumped parameter model for the fuel thermal dynamics along with the conservation equations of mass, momentum and energy and equation of state for the coolant. In addition, to study the effect of neutron interactions between different parts of the core, the model considers a coupled multipoint kinetics equation in place of simple point kinetics equation. Linear stability theory was applied to reveal the instability of in-phase and out-of-phase modes in the boiling channels of the AHWR. The results indicate that the stability behavior of the reactor is greatly influenced by the void reactivity coefficient, fuel time constant, radial power distribution and channel inlet orificing. The delayed neutrons were found to have a strong influence on the Type I and Type II instabilities observed at low and high channel powers, respectively. Also, it was found that the coupled multipoint kinetics model and the modal point kinetics model predict the same threshold power for out-of-phase instability if the coupling coefficient in the former model is half the eigen value separation between the fundamental and the first harmonic mode in the latter model. Decay ratio maps were predicted considering various operating parameters of the reactor, which are useful for its design. (orig.)

  15. Method of optical self-mixing for pulse wave transit time in comparison with other methods and correlation with blood pressure

    Science.gov (United States)

    Meigas, Kalju; Lass, Jaanus; Kattai, Rain; Karai, Deniss; Kaik, Juri

    2004-07-01

    This paper is a part of research to develop convenient method for continuous monitoring of arterial blood pressure by non-invasive and non-oscillometric way. A simple optical method, using self-mixing in a diode laser, is used for detection of skin surface vibrations near the artery. These vibrations, which can reveal the pulsate propagation of blood pressure waves along the vasculature, are used for pulse wave registration. The registration of the Pulse Wave Transit Time (PWTT) is based on computing the time delay in different regions of the human body using an ECG as a reference signal. In this study, the comparison of method of optical self-mixing with other methods as photoplethysmographic (PPG) and bioimpedance (BI) for PWTT is done. Also correlation of PWTT, obtained with different methods, with arterial blood pressure is calculated. In our study, we used a group of volunteers (34 persons) who made the bicycle exercise test. The test consisted of cycling sessions of increasing workloads during which the HR changed from 60 to 180 beats per minute. In addition, a blood pressure (NIBP) was registered with standard sphygmomanometer once per minute during the test and all NIBP measurement values were synchronized to other signals to find exact time moments where the systolic blood pressure was detected (Korotkoff sounds starting point). Computer later interpolated the blood pressure signal in order to get individual value for every heart cycle. The other signals were measured continuously during all tests. At the end of every session, a recovery period was included until person's NIBP and heart rate (HR) normalized. As a result of our study it turned out that time intervals that were calculated from plethysmographic (PPG) waveforms were in the best correlation with systolic blood pressure. The diastolic pressure does not correlate with any of the parameters representing PWTT. The pulse wave signals measured by laser and piezoelectric transducer are very similar

  16. Ultrasonic P and S wave Velocity Measurements at Mid-to-Lower Crustal Conditions of Pressure and Temperature in a Piston Cylinder Apparatus

    Science.gov (United States)

    Ishikawa, M.; Arima, M.

    2007-12-01

    In order to interpret seismic structures in terms of rock type, temperature anomaly, degree of partial melting and distribution of fluids, we have carried out research on the elastic properties of the crustal rocks using ultrasonic measurements. We have developed techniques to perform ultrasonic velocity measurements at mid-to-lower crustal conditions of pressure and temperature. These techniques are now been applied to study the rock physics of exposed deep crustal sections and crustal xenoliths, including gabbro, tonalite, granite, anorthosite, granulite and amphibolite, which were collected from the Tanzawa Mountain of central Japan, Kohistan area of Pakistan, Ichinomegata of NE Japan, Takashima and Kurose of SW Japan, and granulite-facies complex of East Antarctica. Compressional (P) and shear (S) wave velocities for these rock specimens are measured in piston cylinder apparatus. In order to compare directly to seismic velocities at the deep island arc pressures and temperatures, we developed ultrasonic velocity measurements using buffer rod technique. Pt buffer rod is used to isolate the piezoelectric transducer from the high-temperature condition. Travel times through the rock sample were determined with the pulse reflection technique. We are developing a method for simultaneous P-wave and S-wave velocity measurements using dual-mode piezoelectric transducer which generates P-waves and S-waves simultaneously. Using these techniques, we can determine Vp/Vs ratio and Poisson's ratio precisely.

  17. Wave Pressures and Loads on a Small Scale Model of the Svåheia SSG Pilot Project

    DEFF Research Database (Denmark)

    Buccino, Mariano; Vicinanza, Diego; Ciardulli, Francesco;

    2011-01-01

    The paper reports on 2D small scale experiments conducted to investigate wave loadings acting on a pilot project of device for the conversion of wave energy into electricity. The conversion concept is based on the overtopping principle and the structure is worldwide known with the acronym SSG. The...... hydraulic model tests have been carried out at the LInC laboratory of the University of Naples Federico II using random waves. Results indicate wave overtopping is able to cause a sudden inversion of vertical force under wave crest, so that it is alternatively upward and downward directed over a short time...

  18. High Pressure-Differential Thermal Analysis and Ultrasonic Wave Amplitude Analysis of Ice-Water Equilibrium at 1.5-5.0GPa

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    Water is the most active component in all geological systems.It has an important effect on the physical properties of minerals and melts.It also plays a key role in the evolution of the Earth.Accurate thermodynamics data on water are currently confined to pressures below 1.0GPa and temperatures below 900℃.Presented in this paper are new data available on the P-T properties of water at pressures up to 5.0GPa,develoged from differential thermal analysis and ultrasonic wave amplitude analysis.It has been found that there may exist another ternary point at 3.0GPa and that ultrasonic wave amplitude change of ice-water transition shows two inflection points above 2.0GPa, consistent with the two peaks of differential thermal curves above 2.0GPa .It may be a new phenomenon which needs further study.

  19. Effect of porosity on shock wave propagation in the low shock pressure range using mesoscale modelling in comparison to laboratory experiments

    Science.gov (United States)

    Güldemeister, N.; Kowitz, A.; Wünnemann, K.; Reimold, W. U.; Schmitt, R. T.

    2012-09-01

    Porosity plays an important role in impact crater formation and shock wave propagation. Where present, it causes fast attenuation of shock pressure. In the framework of the "MEMIN" (Multidisciplinary Experimental and Modeling Impact crater research Network) project, the effect of porosity in dry and water-saturated sandstone on shock wave loading is investigated [1]. We are focusing on shock recovery experiments that have been carried out within one sub-project of MEMIN. The experiments are subject to investigate shock effects in experimentally shocked quartz at low shock pressure (5 - 12.5 GPa) where diagnostic shock features and calibration data are lacking at the moment. The influence of porosity on progressive shock metamorphism is investigated. The laboratory impact experiments were accompanied by meso-scale numerical modeling in order to quantify processes beyond the optical and electron optical observational capabilities. The model enables a detailed description and quantification of thermo-dynamic parameters during single pore collapse.

  20. l-Citrulline supplementation attenuates blood pressure, wave reflection and arterial stiffness responses to metaboreflex and cold stress in overweight men.

    Science.gov (United States)

    Figueroa, Arturo; Alvarez-Alvarado, Stacey; Jaime, Salvador J; Kalfon, Roy

    2016-07-01

    Combined isometric exercise or metaboreflex activation (post-exercise muscle ischaemia (PEMI)) and cold pressor test (CPT) increase cardiac afterload, which may lead to adverse cardiovascular events. l-Citrulline supplementation (l-CIT) reduces systemic arterial stiffness (brachial-ankle pulse wave velocity (baPWV)) at rest and aortic haemodynamic responses to CPT. The aim of this study was to determine the effect of l-CIT on aortic haemodynamic and baPWV responses to PEMI+CPT. In all, sixteen healthy, overweight/obese males (age 24 (sem 6) years; BMI 29·3 (sem 4·0) kg/m2) were randomly assigned to placebo or l-CIT (6 g/d) for 14 d in a cross-over design. Brachial and aortic systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP), aortic augmented pressure (AP), augmentation index (AIx), baPWV, reflection timing (Tr) and heart rate (HR) were evaluated at rest and during isometric handgrip exercise (IHG), PEMI and PEMI+CPT at baseline and after 14 d. No significant effects were evident after l-CIT at rest. l-CIT attenuated the increases in aortic SBP and wave reflection (AP and AIx) during IHG, aortic DBP, MAP and AIx during PEMI, and aortic SBP, DBP, MAP, AP, AIx and baPWV during PEMI+CPT compared with placebo. HR and Tr were unaffected by l-CIT in all conditions. Our findings demonstrate that l-CIT attenuates aortic blood pressure and wave reflection responses to exercise-related metabolites. Moreover, l-CIT attenuates the exaggerated arterial stiffness response to combined metaboreflex activation and cold exposure, suggesting a protective effect against increased cardiac afterload during physical stress. PMID:27160957

  1. Lactotripeptides effect on office and 24-h ambulatory blood pressure, blood pressure stress response, pulse wave velocity and cardiac output in patients with high-normal blood pressure or first-degree hypertension: a randomized double-blind clinical trial.

    Science.gov (United States)

    Cicero, Arrigo F G; Rosticci, Martina; Gerocarni, Beatrice; Bacchelli, Stefano; Veronesi, Maddalena; Strocchi, Enrico; Borghi, Claudio

    2011-09-01

    Contrasting data partially support a certain antihypertensive efficacy of lactotripeptides (LTPs) derived from enzymatic treatment of casein hydrolysate. Our aim was to evaluate this effect on a large number of hemodynamic parameters. We conducted a prospective double-blind randomized clinical trial, which included 52 patients affected by high-normal blood pressure (BP) or first-degree hypertension. We investigated the effect of a 6-week treatment with the LTPs isoleucine-proline-proline and valine-proline-proline at 3 mg per day, assumed to be functional food, on office BP, 24-h ambulatory BP monitoring (ABPM) values, stress-induced BP increase and cardiac output-related parameters. In the LTP-treated subjects, we observed a significant reduction in office systolic BP (SBP; -5±8 mm Hg, P=0.013) and a significant improvement in pulse wave velocity (PWV; -0.66±0.81 m s(-1), P=0.001; an instrumental biomarker of vascular rigidity). No effect on 24-h ABPM parameters and BP reaction to stress was observed from treatment with the combined LTPs. LTPs, but not placebo, were associated with a mild but significant change in the stroke volume (SV), SV index (markers of cardiac flow), the acceleration index (ACI) and velocity index (VI) (markers of cardiac contractility). No effect was observed on parameters related to fluid dynamics or vascular resistance. LTPs positively influenced the office SBP, PWV, SV, SV index, ACI and VI in patients with high-normal BP or first-degree hypertension. PMID:21753776

  2. CTD, current meter, pressure gauge, and wave spectra data from fixed platforms and other platforms from the Coastal Waters of California as part of the Santa Barbara Channel project from 27 April 1983 to 04 January 1985 (NODC Accession 8500177)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD, current meter, pressure gauge, and wave spectra data were collected from fixed platforms and other platforms from the Coastal Waters of California from 27...

  3. Pressure gauge and other data from MOANA WAVE in the Gulf of Alaska as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 04 March 1976 to 22 August 1976 (NODC Accession 7601926)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pressure gauge and other data were collected from the MOANA WAVE in the Gulf of Alaska from 04 March 1976 to 22 August 1976. Data were collected by the Pacific...

  4. Underway pressure, temperature, and salinity data from the MOANA WAVE from the Pacific warm pool in support of the Coupled Ocean-Atmosphere Response Experiment (COARE) from 02 February 1993 to 21 February 1993 (NODC Accession 9600090)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pressure, temperature, and salinity data were collected while underway from the MOANA WAVE from the Pacific warm pool. Data were collected in support of the Coupled...

  5. Charge density wave formation, superconductivity and Fermi surface determination in NbSe3: a pressure study

    International Nuclear Information System (INIS)

    The resistance of single crystals of NbSe3 under pressure, between 1.2 and 70 K has been measured in magnetic fields up to 180 kG. The CDW which appears at ambient pressures at 59 K, is totally suppressed for pressures greater than 5.5 kbar. At this pressure NbSe3 is fully superconducting as shown by a total Meissner effect. Fermi surface studies by Shubnikov-de Haas oscillations show that the Fermi surface is strongly affected by the CDW formation. At ambient pressure, when H is parallel to the plane (b,c), one frequency (0.3 MG) is detected, but when the pressure has suppressed the CDW, at least eight frequencies (up to 7 MG) were detected. The experiments are consistent with the model of different types of chains in NbSe3 on which the two CDW form. (author)

  6. Pulsed High-Energy Radiographic Machine Emiting X-Rays (PHERMEX): applications to study high-pressure flow and detonation waves

    International Nuclear Information System (INIS)

    PHERMEX, an acronym for Pulsed High-Energy Radiographic Machine Emitting X-Rays, has been used as a diagnostic tool to make quantitative measurements from radiographs of inert materials under dynamic high-pressure conditions and of explosives during the detonation process. In some experiments, radiography is the best method (compared to high-speed optical cameras and contactor pins) to study complicated hydro-dynamic flow occuring in a dynamic experiment. To demonstrate the versatility and uniqueness of PHERMEX and the radiographic method, several experiments on inert solids having high and low atomic numbers will be discussed with some particulars. This includes the observation of the 11.0-GPa-pressure phase transition for antimony and the accompanying two-shock structure and the off-Hugoniot data for lead using regular reflection. Also, by careful design of a radiographic experiment, the Hugoniot state behind a shock front can be completely and precisely specified. Aluminium is an example of a material studies in this manner. PHERMEX is useful in studying some detonation properties of explosives. As an illustration, the discussion will include radiographic results of divergence characteristics of a detonation wave in sensitive explosives as it propagates past a corner and the effect of preshocking on the detonation process of insensitive explosives when the detonation wave interacts with a region that has been shock-compressed at a pressure too low to cause detonation

  7. Proof of Concept of Crack Localization Using Negative Pressure Waves in Closed Tubes for Later Application in Effective SHM System for Additive Manufactured Components

    Directory of Open Access Journals (Sweden)

    Michaël F. Hinderdael

    2016-01-01

    Full Text Available Additive manufactured components have a different metallurgic structure and are more prone to fatigue cracks than conventionally produced metals. In earlier papers, an effective Structural Health Monitoring solution was presented to detect fatigue cracks in additive manufactured components. Small subsurface capillaries are embedded in the structure and pressurized (vacuum or overpressure. A crack that initiated at the component’s surface will propagate towards the capillary and finally breach it. One capillary suffices to inspect a large area of the component, which makes it interesting to locate the crack on the basis of the pressure measurements. Negative pressure waves (NPW arise from the abrupt encounter of high pressure fluid with low pressure fluid and can serve as a basis to locate the crack. A test set-up with a controllable leak valve was built to investigate the feasibility of using NPW to localize a leak in closed tubes with small lengths. Reflections are expected to occur at the ends of the tube, possibly limiting the localization accuracy. In this paper, the results of the tests on the test set-up are reported. It will be shown that the crack could be localized with high accuracy (millimeter accuracy which proves the concept of crack localization on basis of NPW in a closed tube of small length.

  8. Microfluidic waves.

    Science.gov (United States)

    Utz, Marcel; Begley, Matthew R; Haj-Hariri, Hossein

    2011-11-21

    The propagation of pressure waves in fluidic channels with elastic covers is discussed in view of applications to flow control in microfluidic devices. A theory is presented which describes pressure waves in the fluid that are coupled to bending waves in the elastic cover. At low frequencies, the lateral bending of the cover dominates over longitudinal bending, leading to propagating, non-dispersive longitudinal pressure waves in the channel. The theory addresses effects due to both the finite viscosity and compressibility of the fluid. The coupled waves propagate without dispersion, as long as the wave length is larger than the channel width. It is shown that in channels of typical microfluidic dimensions, wave velocities in the range of a few 10 m s(-1) result if the channels are covered by films of a compliant material such as PDMS. The application of this principle to design microfluidic band pass filters based on standing waves is discussed. Characteristic frequencies in the range of a few kHz are readily achieved with quality factors above 30. PMID:21966667

  9. Characterization of pressure-wave propagation during the condensation of R404A and R134a refrigerants in pipe mini-channels that undergo periodic hydrodynamic disturbances

    International Nuclear Information System (INIS)

    Highlights: ► Studied the pressure wave propagation velocity during condensation of refrigerants R134a and R404A. ► Condensation process occurred in minichannels. ► In the calculations used two-phase flow model. ► Having regard to relevant flow regime obtained satisfactory agreement with experimental results of computational. -- Abstract: In the present paper, an attempt was undertaken to model the propagation of a pressure wave triggered by periodic hydrodynamic instabilities in the condensation of the R404A and R134a refrigerants in pipe mini-channels. A homogenous transient two-fluid model was used based on balance equations. The model presents the complexity of multi-phase flows. The heat exchange between the phases in the condensation process was calculated using the one-dimensional form of Fourier’s equation. The dependence which defines the interfacial the drag forces for the flow in mini-channels was also taken into consideration. The results of the numerical calculations were verified with experimental investigations and satisfactory compliance was obtained

  10. Numerical research on density wave oscillation of two-phase flow in parallel inclined internally ribbed pipes for supercritical pressure boiler

    International Nuclear Information System (INIS)

    An instability theoretical model for multi-channel system had been developed by building one-dimensional homogeneous model and adopting nonlinear analysis for two-phase flow in vertical single pipe, supplied by Clausse and Lahey. With the same parameters as the experiment, two-phase flow density wave oscillation in parallel inclined inner ribbed pipes was analyzed and solved in this paper. The variation of the working fluid inlet velocity perturbation with time was found using the time domain method. The criteria of density wave oscillation were defined according to the convergence or divergence of the velocity. The pulse cycle of calculated results was mostly between 5 and 16 seconds, which was quite similar to the data between 7 and 19 seconds in the experiment. It is shown that the calculated results have a good agreement with the experimental data. Therefore, the method can be used to determine whether the incidence of density wave instabilities. It can also provide a reference for the safety parameters of the water wall in the supercritical pressure boiler. (authors)

  11. High resolution technique for measuring charge and polarization distributions in dielectrics by piezoelectrically induced pressure step waves (PPS)

    OpenAIRE

    Haardt, Martin; Eisenmenger, Wolfgang

    1982-01-01

    Our step wave technique, so far, has been discussed with respect to the investigation of already prepared samples. In some situations it is of interest to study the buildup of charge and polarization distributions during the poling procedure. This can be accomplished by inserting an additional insulating film, e.g. mylar between the conducting rubber electrode and the sample film. The insulating film acts as a series capacitor reducing the signal amplitude with no influence on the signal shap...

  12. Bramwell-Hill modeling for local aortic pulse wave velocity estimation: a validation study with velocity-encoded cardiovascular magnetic resonance and invasive pressure assessment

    Directory of Open Access Journals (Sweden)

    Westenberg Jos JM

    2012-01-01

    Full Text Available Abstract Background The Bramwell-Hill model describes the relation between vascular wall stiffness expressed in aortic distensibility and the pulse wave velocity (PWV, which is the propagation speed of the systolic pressure wave through the aorta. The main objective of this study was to test the validity of this model locally in the aorta by using PWV-assessments based on in-plane velocity-encoded cardiovascular magnetic resonance (CMR, with invasive pressure measurements serving as the gold standard. Methods Seventeen patients (14 male, 3 female, mean age ± standard deviation = 57 ± 9 years awaiting cardiac catheterization were prospectively included. During catheterization, intra-arterial pressure measurements were obtained in the aorta at multiple locations 5.8 cm apart. PWV was determined regionally over the aortic arch and locally in the proximal descending aorta. Subsequently, patients underwent a CMR examination to measure aortic PWV and aortic distention. Distensibility was determined locally from the aortic distension at the proximal descending aorta and the pulse pressure measured invasively during catheterization and non-invasively from brachial cuff-assessment. PWV was determined regionally in the aortic arch using through-plane and in-plane velocity-encoded CMR, and locally at the proximal descending aorta using in-plane velocity-encoded CMR. Validity of the Bramwell-Hill model was tested by evaluating associations between distensibility and PWV. Also, theoretical PWV was calculated from distensibility measurements and compared with pressure-assessed PWV. Results In-plane velocity-encoded CMR provides stronger correlation (p = 0.02 between CMR and pressure-assessed PWV than through-plane velocity-encoded CMR (r = 0.69 versus r = 0.26, with a non-significant mean error of 0.2 ± 1.6 m/s for in-plane versus a significant (p = 0.006 error of 1.3 ± 1.7 m/s for through-plane velocity-encoded CMR. The Bramwell-Hill model shows a

  13. Pathogenesis of optic disc edema in raised intracranial pressure.

    Science.gov (United States)

    Hayreh, Sohan Singh

    2016-01-01

    Optic disc edema in raised intracranial pressure was first described in 1853. Ever since, there has been a plethora of controversial hypotheses to explain its pathogenesis. I have explored the subject comprehensively by doing basic, experimental and clinical studies. My objective was to investigate the fundamentals of the subject, to test the validity of the previous theories, and finally, based on all these studies, to find a logical explanation for the pathogenesis. My studies included the following issues pertinent to the pathogenesis of optic disc edema in raised intracranial pressure: the anatomy and blood supply of the optic nerve, the roles of the sheath of the optic nerve, of the centripetal flow of fluids along the optic nerve, of compression of the central retinal vein, and of acute intracranial hypertension and its associated effects. I found that, contrary to some previous claims, an acute rise of intracranial pressure was not quickly followed by production of optic disc edema. Then, in rhesus monkeys, I produced experimentally chronic intracranial hypertension by slowly increasing in size space-occupying lesions, in different parts of the brain. Those produced raised cerebrospinal fluid pressure (CSFP) and optic disc edema, identical to those seen in patients with elevated CSFP. Having achieved that, I investigated various aspects of optic disc edema by ophthalmoscopy, stereoscopic color fundus photography and fluorescein fundus angiography, and light microscopic, electron microscopic, horseradish peroxidase and axoplasmic transport studies, and evaluated the effect of opening the sheath of the optic nerve on the optic disc edema. This latter study showed that opening the sheath resulted in resolution of optic disc edema on the side of the sheath fenestration, in spite of high intracranial CSFP, proving that a rise of CSFP in the sheath was the essential pre-requisite for the development of optic disc edema. I also investigated optic disc edema with

  14. Correction for frequency-dependent hydrophone response to nonlinear pressure waves using complex deconvolution and rarefactional filtering: application with fiber optic hydrophones.

    Science.gov (United States)

    Wear, Keith; Liu, Yunbo; Gammell, Paul M; Maruvada, Subha; Harris, Gerald R

    2015-01-01

    Nonlinear acoustic signals contain significant energy at many harmonic frequencies. For many applications, the sensitivity (frequency response) of a hydrophone will not be uniform over such a broad spectrum. In a continuation of a previous investigation involving deconvolution methodology, deconvolution (implemented in the frequency domain as an inverse filter computed from frequency-dependent hydrophone sensitivity) was investigated for improvement of accuracy and precision of nonlinear acoustic output measurements. Timedelay spectrometry was used to measure complex sensitivities for 6 fiber-optic hydrophones. The hydrophones were then used to measure a pressure wave with rich harmonic content. Spectral asymmetry between compressional and rarefactional segments was exploited to design filters used in conjunction with deconvolution. Complex deconvolution reduced mean bias (for 6 fiber-optic hydrophones) from 163% to 24% for peak compressional pressure (p+), from 113% to 15% for peak rarefactional pressure (p-), and from 126% to 29% for pulse intensity integral (PII). Complex deconvolution reduced mean coefficient of variation (COV) (for 6 fiber optic hydrophones) from 18% to 11% (p+), 53% to 11% (p-), and 20% to 16% (PII). Deconvolution based on sensitivity magnitude or the minimum phase model also resulted in significant reductions in mean bias and COV of acoustic output parameters but was less effective than direct complex deconvolution for p+ and p-. Therefore, deconvolution with appropriate filtering facilitates reliable nonlinear acoustic output measurements using hydrophones with frequency-dependent sensitivity. PMID:25585399

  15. Validation of semi-empirical blast pressure predictions for far field explosions - is there inherent variability in blast wave parameters?

    OpenAIRE

    Rigby, S.E.; Tyas, A; Fay, S.D.; Clarke, S.D.; Warren, J. A.

    2014-01-01

    A considerable amount of scientific effort has been expended over many decades on developing means of predicting the loading generated when a blast wave impinges on a structure. Semi-empirical ‘look-up’ predictive methods, such as those incorporated in the UFC-3-340-02 manual, the ConWep code or the *LOAD_BLAST module of LS-DYNA, offer a simple means for predicting the blast loading generated in geometrically simple scenarios. However, reported test data frequently show considerable spread an...

  16. The experimental studies on electrical conductivities and P-wave velocities of anorthosite at high pressure and high temperature

    Institute of Scientific and Technical Information of China (English)

    白利平; 杜建国; 刘巍; 周文戈

    2002-01-01

    Results of P-wave velocity (vP) and electrical conductivity measurements on anorthosite are presented from room temperature to 880 (C at 1.0 GPa using ultrasonic transmission technique and impedance spectra technique respectively. The experiments show that the P-wave velocities in anorthosite decrease markedly above 680 (C following the dehydration of hydrous minerals in the rock, and the complex impedances collected from 12 Hz to 105 Hz only indicate the grain interior conduction mechanism at 1.0 GPa, from 410 (C to 750 (C. Because the fluids in the rock have not formed an interconnected network, the dehydration will not pronouncedly enhance the electrical conductivity and change the electrical conduction mechanism. It is concluded that the formation and evolution of the low-velocity zones and high-conductivity layers in the crust may have no correlations, and the dehydration can result in the formation of the low-velocity zones, but cannot simultaneously result in the high-conductivity layers.

  17. Pressure waves transient occurred in the steam generators feedwater lines of the Atucha-1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    The pressure transient occurred at Atucha I Nuclear Power Plant in March 1990 is simulated. The transient was due to the fast closure of a flow control valve at the steam generators feedwater lines. The system was modelled, including the actuation of the relief valves. The minimum closure time for no actuation of the relief valves and the evolution of the velocity and piezo metric head for different cases were calculated. (author)

  18. 基于OpenFOAM的波浪对舰船水压场识别影响研究磁%Ocean Wave Impact on Ship Hydrodynamic Pressure Field Based on OpenFOAM

    Institute of Scientific and Technical Information of China (English)

    吕连立; 孙鹤泉; 王继光; 黄鹏飞

    2014-01-01

    The numerical wave tanks are established to study the ocean waves by using OpenFOAM .The characteris-tics of wave pressure field can be calculated at different water depths .The wave impact on the ship pressure field can be esti-mated .Some useful comments can be obtained .%利用开源软件OpenFOAM 建立数值波浪水槽,实现了数值造波与消波,计算了不同波况下波压场随水深的变化特点,研究了波浪对舰船水压场识别的影响,得出了有益的结论。

  19. 空气波压力治疗仪治疗奥沙利铂神经毒性的临床观察%Observe the efficacy of the air wave pressure therapeutic equipment in treatment of oxaliplatin nerve toxicity

    Institute of Scientific and Technical Information of China (English)

    Weihua Qian; Yingying Pan; Yimin Yang

    2012-01-01

    Objective: The aim of this study was to observe the efficacy of air wave pressure therapeutic equipment in prevention of oxaliplatin-inducted neurotoxicity. Methods: Forty-five patients with colorectal cancer were randomly divided into treatment group and control group, treatment group were given the treatment of air wave pressure therapeutic equipment during chemotherapy with oxaliplatin, the control group were given preventive treatment, the oxaliplatin-inducted neurotoxicity was evaluated after each cycle of chemotherapy. Evaluate the chemotherapy efficacy after the third cycle and sixth cycle of chemotherapy. Results: The treatment group have lower incidence of peripheral nerve toxicity than the control group, the difference was statistically significant (χ2 = 13.93; P 0.05). Conclusion: Treatment with air wave pressure therapeutic equipment can reduce the incidence of peripheral nerve toxicity during oxaliplatin chemotherapy.

  20. Relation between burnout and differential pressure fluctuation characteristics by the disturbance waves near the flow obstacle in a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Shoji; Fukano, Tohru [Kyushu Univ., Graduate School of Engineering, Fukuoka (Japan)

    2002-07-01

    If a flow obstruction such as a spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some cases the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. But the thermo-fluid dynamic mechanism to cause burnout near the spacer is not still clear. In the present paper we discuss temperature fluctuation characteristics in relation to the change of the differential pressure across the spacer caused by the passing of the disturbance waves in case that the burnout generates. (author)

  1. Relation between burnout and differential pressure fluctuation characteristics by the disturbance waves near the flow obstacle in a vertical annular channel

    International Nuclear Information System (INIS)

    If a flow obstruction such as a spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some cases the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. But the thermo-fluid dynamic mechanism to cause burnout near the spacer is not still clear. In the present paper we discuss temperature fluctuation characteristics in relation to the change of the differential pressure across the spacer caused by the passing of the disturbance waves in case that the burnout generates. (author)

  2. Detection of Cracks in feeder Pipes of Pressurized Heavy Water Reactor Using an EMAT Torsional Guided Wave

    International Nuclear Information System (INIS)

    A torsional guided wave mode was applied to detect a crack in a pipe. An array of electromagnetic acoustic transduce. (EMAT that can generate and receive torsional guided ultrasound with the frequency of 200kHz was designed and fabricated for testing a pipe of 2.5 inch diameter Artificial notches with various depths were fabricated in a bent feeder pipe mock-up and the detectability was examined from the distance of 2m of the specimen. The axial notches with the depth of 5% of wall thickness were successfully detected by a torsional mode (T(0,1)) generated by the EMAT However, it was found that the depth of defects was not related to the signal amplitude

  3. Low-Pressure Burst-Mode Focused Ultrasound Wave Reconstruction and Mapping for Blood-Brain Barrier Opening: A Preclinical Examination

    Science.gov (United States)

    Xia, Jingjing; Tsui, Po-Hsiang; Liu, Hao-Li

    2016-06-01

    Burst-mode focused ultrasound (FUS) exposure has been shown to induce transient blood-brain barrier (BBB) opening for potential CNS drug delivery. FUS-BBB opening requires imaging guidance during the intervention, yet current imaging technology only enables postoperative outcome confirmation. In this study, we propose an approach to visualize short-burst low-pressure focal beam distribution that allows to be applied in FUS-BBB opening intervention on small animals. A backscattered acoustic-wave reconstruction method based on synchronization among focused ultrasound emission, diagnostic ultrasound receiving and passively beamformed processing were developed. We observed that focal beam could be successfully visualized for in vitro FUS exposure with 0.5–2 MHz without involvement of microbubbles. The detectable level of FUS exposure was 0.467 MPa in pressure and 0.05 ms in burst length. The signal intensity (SI) of the reconstructions was linearly correlated with the FUS exposure level both in-vitro (r2 = 0.9878) and in-vivo (r2 = 0.9943), and SI level of the reconstructed focal beam also correlated with the success and level of BBB-opening. The proposed approach provides a feasible way to perform real-time and closed-loop control of FUS-based brain drug delivery.

  4. Effect of excited nitrogen atoms on inactivation of spore-forming microorganisms in low pressure N2/O2 surface-wave plasma

    Science.gov (United States)

    Yang, Xiaoli; Chang, Xijiang; Tei, Reitou; Nagatsu, Masaaki

    2016-06-01

    Using a vacuum ultraviolet (VUV) absorption spectroscopy with a compact low pressure plasma light source, the absolute nitrogen atom density was measured to study its role in the spore inactivation with low pressure N2/O2 gas mixture surface-wave plasmas (SWPs). Self-absorption effect of the resonance emission lines of nitrogen atoms near 120 nm was minimized by optimizing its discharge conditions of the plasma light source. Experimental results showed that excited nitrogen atom densities monotonically decreased with the decrease of N2 gas percentage in N2/O2 gas mixture SWPs, concomitantly with similar decrease of VUV/UV emission intensities of nitrogen atoms and molecules. In the pure N2 gas SWPs, it was confirmed that a dominant lethal factor was VUV/UV emission generated by N2 plasma, while spore etching occurred via physical and chemical interactions with nitrogen species. With an addition of O2 gas, significant spore etching by excited oxygen atoms made it much easier for the VUV/UV photons emitted by nitrogen atoms, N2 and NO molecules to penetrate through the etched spore coats to the core and cause the fatal DNA damage of the microorganisms. As a result, more rapid inactivation was achieved in the middle region of N2/O2 gas mixture ratio, such as 30–80% O2 gas addition, in the present N2/O2 gas mixture SWPs.

  5. High-efficiency generation of pulsed Lyman-α radiation by resonant laser wave mixing in low pressure Kr-Ar mixture.

    Science.gov (United States)

    Saito, Norihito; Oishi, Yu; Miyazaki, Koji; Okamura, Kotaro; Nakamura, Jumpei; Louchev, Oleg A; Iwasaki, Masahiko; Wada, Satoshi

    2016-04-01

    We report an experimental generation of ns pulsed 121.568 nm Lyman-α radiation by the resonant nonlinear four-wave mixing of 212.556 nm and 845.015 nm radiation pulses providing a high conversion efficiency 1.7x10-3 with the output pulse energy 3.6 μJ achieved using a low pressure Kr-Ar mixture. Theoretical analysis shows that this efficiency is achieved due to the advantage of using (i) the high input laser intensities in combination with (ii) the low gas pressure allowing us to avoid the onset of full-scale discharge in the laser focus. In particular, under our experimental conditions the main mechanism of photoionization caused by the resonant 2-photon 212.556 nm radiation excitation of Kr atoms followed by the 1-photon ionization leads to ≈17% loss of Kr atoms and efficiency loss only by the end of the pulse. The energy of free electrons, generated by 212.556 nm radiation via (2 + 1)-photon ionization and accelerated mainly by 845.015 nm radiation, remains during the pulse below the level sufficient for the onset of full-scale discharge by the electron avalanche. Our analysis also suggests that ≈30-fold increase of 845.015 nm pulse energy can allow one to scale up the L-α radiation pulse energy towards the level of ≈100 μJ. PMID:27137045

  6. Characteristics of an atmospheric-pressure line plasma excited by 2.45 GHz microwave travelling wave

    Science.gov (United States)

    Suzuki, Haruka; Nakano, Suguru; Itoh, Hitoshi; Sekine, Makoto; Hori, Masaru; Toyoda, Hirotaka

    2016-01-01

    An atmospheric-pressure line plasma was produced by microwave discharge using a slot antenna with travelling microwave power. Two different types of plasma mode, i.e., “pseudo” and “real” line plasma were investigated using a high-speed camera under different discharge conditions, such as slot gap width and power. Using wide slot gaps (0.5 mm) and low powers (microwave power, the plasma mode changed from the pseudo to real line plasma mode, i.e., the spatiotemporally uniform plasma mode along the slot. A gas temperature was obtained from N2 second positive band spectra as low as 400 K. The movement of the plasma in the pseudo line plasma mode was well explained by a one-dimensional diffusion model including the spatial distribution of the ionization rate in a moving plasma.

  7. Delay Pressure Detection Method to Eliminate Pump Pressure Interference on the Downhole Mud Pressure Signals

    OpenAIRE

    Yue Shen; Ling-Tan Zhang; Shi-Li Cui; Li-Min Sheng; Lin Li; Yi-Nao Su

    2013-01-01

    The feasibility of applying delay pressure detection method to eliminate mud pump pressure interference on the downhole mud pressure signals is studied. Two pressure sensors mounted on the mud pipe in some distance apart are provided to detect the downhole mud continuous pressure wave signals on the surface according to the delayed time produced by mud pressure wave transmitting between the two sensors. A mathematical model of delay pressure detection is built by analysis of transmission path...

  8. The propagation of pressure wave in closed channel filed of periodic alternate corks with the gas–liquid mixture and gas

    Directory of Open Access Journals (Sweden)

    Grigoryan Sh.A.

    2015-09-01

    Full Text Available The propagation of wave in closed channel filed of corks is considered. It is supposed that the discrete structure of corks is periodic. The dispersion equation of the Bloch wave number dependence on wave numbers of corks is derived. It is obtained the frequencies bands of transmitting waves.

  9. Submillimeter-wave measurements of N2 and O2 pressure broadening for HO2 radical generated by Hg-photosensitized reaction

    International Nuclear Information System (INIS)

    The N2 and O2 pressure broadening coefficients of the pure rotational transitions at 625.66 GHz (NKaKc=101-9-100-10, J=10.5-10.5) and 649.70 GHz (NKaKc=102-9-92-8, J=9.5-8.5) in the vibronic ground state X2A′ of the perhydroxyl (HO2) radical have been determined by precise laboratory measurements. For the production of HO2, the mercury-photosensitized reaction of the H2 and O2 precursors was used to provide an optimum condition for measurement of the pressure broadening coefficient. The Superconducting Submillimeter-wave Limb Emission Sounder (SMILES) was designed to monitor the volume mixing ratio of trace gases including HO2 in the Earth's upper atmosphere using these transitions. The precise measurement of pressure broadening coefficient γ in terms of the half width at half maximum is required in order to retrieve the atmospheric volume mixing ratio. In this work, γ coefficients of the 625.66 GHz transition were determined for N2 and O2 at room temperature as γ(N2)=4.085±0.049 MHz/Torr and γ(O2)=2.578±0.047 MHz/Torr with 3σ uncertainty. Similarly, the coefficients of the 649.70 GHz transition were determined as γ(N2)=3.489±0.094 MHz/Torr and γ(O2)=2.615±0.099 MHz/Torr. The air broadening coefficients for the 625.66 GHz and 649.70 GHz lines were estimated at γ(air)=3.769±0.067 MHz and 3.298±0.099 MHz respectively, where the uncertainty includes possible systematic errors. The newly determined coefficients are compared with previous results and we discuss the advantage of the mercury-photosensitized reaction for HO2 generation. In comparison with those of other singlet molecules, the pressure broadening coefficients of the HO2 radical are not much affected by the existence of an unpaired electron.

  10. 隧道内缓冲结构对高速列车微压波的影响%The Influence of Baffle Structure on Micro-pressure Wave Generated by High-speed Train Entering a Tunnel

    Institute of Scientific and Technical Information of China (English)

    臧俊; 薛雷平

    2013-01-01

    采用数值方法模拟列车通过隧道的过程,并使用前人的实验数据对计算模型进行了验证.研究了隧道内挡板缓冲结构对微压波强度的影响,揭示挡板装置产生微压波的双峰特征,得到挡板大小和挡板安装位置对微压波强度的影响规律.结果表明,在隧道内合理地安装挡板能有效地削减隧道内压缩波强度,从而削减隧道出口处徼压波强度.%A compressive wave will be generated when a high-speed train enters a tunnel. Then the com-pressive wave will travel with the velocity of sound to the outlet of the tunnel and radiate a micro-pressure wave into the field outside of the tunnel. A numerical method was used to simulate the process that the high-speed train enters a tunnel. Also the experimental data was used to verify the computational model. On this base, the influence of the baffle structure on the micro-pressure wave was studied. The result shows that two micro-pressure waves will be generated with the baffle assembled in the tunnel. Also we the influence of the position and size of the baffle on the micro-pressure wave was got.

  11. 一种基于APDL语言的船舶波浪压力自动加载方法%An Approach to Automatically Loading Wave Pressure Using APDL in ANSYS

    Institute of Scientific and Technical Information of China (English)

    丁德勇; 郑杰; 谢伟; 胡要武; 杨龙

    2011-01-01

    针对全船结构强度直接计算中,波浪加载较为麻烦的问题,提出了一种ANSYS环境下的波浪压力自动加载的方法。该方法将三维水动力程序计算的船体表面的波浪压力经过插值算法转换到有限元结构单元上,压力数据文件读入ANSYS实现了自动加载。最后,利用该自动加载方法对一艘穿浪双体船进行加载。结果表明,该方法将波浪载荷计算和结构强度分析有机结合起来了,提高了波浪压力加载的准确性和效率。%Since wave pressure loading in the direct calculation of overall ship structural strength is a time-consuming job, an automatic loading approach in the ANSYS environment was proposed. Using this method, wave pressure on ship surface calculated by 3D hydrodynamic program was transferred to Finite Element model by interpolation algorithm. The pressure data file was read into ANSYS to fulfill the automatic loading process. The automatic approach was applied to a wave piercing catamaran as an example. The results show that the proposed approach can combine the wave load calculation with ship structural strength analysis, greatly improving accuracy and efficiency of wave pressure loading.

  12. Surface waves

    International Nuclear Information System (INIS)

    Two dimensional surface waves including surface tension are considered in this paper. The disturbance potential φ created by a moving concentrated pressure has been determined uniquely following Peters. Linearized free surface conditions have been utilized. The free surface elevations η(x) have been obtained and discussed for stream velocities U ≥ = min, the minimum wave velocity. The results obtained are satisfactory. It is hoped that a similar approach may help to solve the three dimensional problem. It is, of course, apprehended that it may lead to complications which may not be easy to handle theoretically. (author). 11 refs, 5 figs

  13. Modelling of the positive column of a medium-pressure Cs-Xe dc discharge affected by a millimetre wave pulse

    Science.gov (United States)

    Gitlin, M. S.; Epstein, I. L.; Lebedev, Yu A.

    2013-10-01

    A time-dependent zero-dimensional kinetic model of the positive column (PC) of a medium-pressure Cs-Xe dc discharge was used to gain a better insight into the physical basics of plasma techniques for imaging and control of millimetre wave (MMW) beams. The model allowed one to study the effect of MMWs on the kinetic and electrical characteristics of the spatially homogeneous PC of a Cs-Xe dc discharge. We computed the PC plasma parameters for 30 Torr and 45 Torr xenon and discharge current densities of about 0.1 A cm-2. First, the dependences of the PC parameters on caesium density were calculated in the case of no MMWs incident on the PC plasma. Then, the temporal evolution of the parameters of the PC plasma affected by a long watt-scale Ka-band MMW pulse was modelled for caesium densities of about 3 × 1012 and 5 × 1012 cm-3. The calculations showed that the electron temperature in the PC plasma attained quasisteady-state values for about 1 µs after the beginning of the MMW pulse. The electron temperature rises by 0.2-0.3 eV as the MMW intensity increases from 0 to 1 W cm-2. The rise time of the electron density decreased with an increase in the MMW intensity W from about 1 ms for W = 0.15 W cm-2 to tens of microseconds for W > 1.5 W cm-2. The steady-state values of the electron density increased in proportion to W, if W 3 W cm-2 could be a cause of the microwave breakdown of the homogeneous PC plasma. The results of the modelling are in good agreement with the published experimental data.

  14. Characterization of the pressure wave originating in the explosion of an extended heavy gas cloud: critical analysis of the treatment of its propagation in air and interaction with obstacles

    International Nuclear Information System (INIS)

    The protection of nuclear power plants against external explosions of heavy gas clouds is a relevant topic of nuclear safety studies. The ultimate goal of such studies is to provide realistic inputs for the prediction of structure loadings and transient response. To obtain those inputs, relatively complex computer codes have been constructed to describe the propagation in air of strong perturbations due to unconfined gas cloud explosions. A detailed critical analysis of those codes is presented. In particular, the relative errors on wave speed, induced flow velocity, as well as on reflected wave speed and overpressure, respectively due to the use of a simplified non-linear isentropic approximation and of linear acoustic models, are estimated as functions of the overpressure of the incident pulse. The ability of the various models to accurately predict the time and distance required for sharp pressure front formation is discussed. Simple computer codes using implicit finite-difference discretizations are proposed to compare the results obtained with the various models for spherical wave propagation. Those codes are also useful to study the reflection of the waves on an outer spherical flexible wall and to investigate the effect of the elasticity and damping coefficients of the wall on the characteristics of the reflected pressure pulse

  15. Wave Loads on Cylinders

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Frigaard, Peter

    1989-01-01

    Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area.......Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area....

  16. 基于容积脉搏波的无创连续血压测量系统%A Non-invasive Continuous Blood Pressure Measurement System Based on Plethysmographic Pulse Wave

    Institute of Scientific and Technical Information of China (English)

    梁永波; 陈真诚; 朱健铭; 殷世民

    2013-01-01

    Objective To develop a non-invasive continuous blood pressure measurement system without the cuff based on plethysmographic pulse wave. Methods A blood pressure estimation equation was established by the stepwise regression analysis on blood pressure and pulse wave transit time which was extracted from a single circle of plethysmographic pulse wave, and then the non-invasive continuous blood pressure measurement was realized. Results Compared blood pressure value with detection by the system and Yu-Yue brand mercury sphygmomanometer from various populations, the results indicated that the two methods exhibit good coherence , and the measurement error is better than the Association for the Advancement of Medical Instrumentation (AAMI) recommendation standard. Conclusion Compared with traditional blood pressure measurement method , the non-invasive continuous blood pressure measurement method is more convenient. It can measure blood pressure continuously without cuff and invasion, and may have promising application in the future.%目的 设计一种基于容积脉搏波的无袖套连续血压测量系统.方法 从单一容积脉搏波中提取脉搏波传导时间,经逐步回归分析与血压建立血压估算方程,实现无创连续血压测量.结果 通过对不同人群血压检测,并与鱼跃牌水银血压计进行对比,结果表明该方法和传统方法具有较好的测试一致性,测量误差优于美国医疗仪器促进协会(AAMI)推荐标准.结论 该方法同传统血压测量方法相比,测量方便,可彻底摆脱缚带,并能实现无创连续测量,具有更广阔的应用前景.

  17. Modelling of the positive column of a medium-pressure Cs–Xe dc discharge affected by a millimetre wave pulse

    International Nuclear Information System (INIS)

    A time-dependent zero-dimensional kinetic model of the positive column (PC) of a medium-pressure Cs–Xe dc discharge was used to gain a better insight into the physical basics of plasma techniques for imaging and control of millimetre wave (MMW) beams. The model allowed one to study the effect of MMWs on the kinetic and electrical characteristics of the spatially homogeneous PC of a Cs–Xe dc discharge. We computed the PC plasma parameters for 30 Torr and 45 Torr xenon and discharge current densities of about 0.1 A cm−2. First, the dependences of the PC parameters on caesium density were calculated in the case of no MMWs incident on the PC plasma. Then, the temporal evolution of the parameters of the PC plasma affected by a long watt-scale Ka-band MMW pulse was modelled for caesium densities of about 3 × 1012 and 5 × 1012 cm−3. The calculations showed that the electron temperature in the PC plasma attained quasisteady-state values for about 1 µs after the beginning of the MMW pulse. The electron temperature rises by 0.2–0.3 eV as the MMW intensity increases from 0 to 1 W cm−2. The rise time of the electron density decreased with an increase in the MMW intensity W from about 1 ms for W = 0.15 W cm−2 to tens of microseconds for W > 1.5 W cm−2. The steady-state values of the electron density increased in proportion to W, if W −2. They were approximately constant for 0.5 −2 due to the nearly full ionization of caesium atoms in the PC plasma. Efficient xenon excitation and ionization for W > 3 W cm−2 could be a cause of the microwave breakdown of the homogeneous PC plasma. The results of the modelling are in good agreement with the published experimental data. (paper)

  18. High pressure generation by laser driven shock waves: application to equation of state measurement; Generation de hautes pressions par choc laser: application a la mesure d'equations d'etat

    Energy Technology Data Exchange (ETDEWEB)

    Benuzzi, A

    1997-12-15

    This work is dedicated to shock waves and their applications to the study of the equation of state of compressed matter.This document is divided into 6 chapters: 1) laser-produced plasmas and abrasion processes, 2) shock waves and the equation of state, 3) relative measuring of the equation of state, 4) comparison between direct and indirect drive to compress the target, 5) the measurement of a new parameter: the shock temperature, and 6) control and measurement of the pre-heating phase. In this work we have reached relevant results, we have shown for the first time the possibility of generating shock waves of very high quality in terms of spatial distribution, time dependence and of negligible pre-heating phase with direct laser radiation. We have shown that the shock pressure stays unchanged as time passes for targets whose thickness is over 10 {mu}m. A relative measurement of the equation of state has been performed through the simultaneous measurement of the velocity of shock waves passing through 2 different media. The great efficiency of the direct drive has allowed us to produce pressures up to 40 Mbar. An absolute measurement of the equation of state requires the measurement of 2 parameters, we have then performed the measurement of the colour temperature of an aluminium target submitted to laser shocks. A simple model has been developed to infer the shock temperature from the colour temperature. The last important result is the assessment of the temperature of the pre-heating phase that is necessary to know the media in which the shock wave propagates. The comparison of the measured values of the reflectivity of the back side of the target with the computed values given by an adequate simulation has allowed us to deduce the evolution of the temperature of the pre-heating phase. (A.C.)

  19. Central blood pressure and pulse wave velocity: relationship to target organ damage and cardiovascular morbidity-mortality in diabetic patients or metabolic syndrome. An observational prospective study. LOD-DIABETES study protocol

    Directory of Open Access Journals (Sweden)

    Castaño-Sánchez Carmen

    2010-03-01

    Full Text Available Abstract Background Diabetic patients show an increased prevalence of non-dipping arterial pressure pattern, target organ damage and elevated arterial stiffness. These alterations are associated with increased cardiovascular risk. The objectives of this study are the following: to evaluate the prognostic value of central arterial pressure and pulse wave velocity in relation to the incidence and outcome of target organ damage and the appearance of cardiovascular episodes (cardiovascular mortality, myocardial infarction, chest pain and stroke in patients with type 2 diabetes mellitus or metabolic syndrome. Methods/Design Design: This is an observational prospective study with 5 years duration, of which the first year corresponds to patient inclusion and initial evaluation, and the remaining four years to follow-up. Setting: The study will be carried out in the urban primary care setting. Study population: Consecutive sampling will be used to include patients diagnosed with type 2 diabetes between 20-80 years of age. A total of 110 patients meeting all the inclusion criteria and none of the exclusion criteria will be included. Measurements: Patient age and sex, family and personal history of cardiovascular disease, and cardiovascular risk factors. Height, weight, heart rate and abdominal circumference. Laboratory tests: hemoglobin, lipid profile, creatinine, microalbuminuria, glomerular filtration rate, blood glucose, glycosylated hemoglobin, blood insulin, fibrinogen and high sensitivity C-reactive protein. Clinical and 24-hour ambulatory (home blood pressure monitoring and self-measured blood pressure. Common carotid artery ultrasound for the determination of mean carotid intima-media thickness. Electrocardiogram for assessing left ventricular hypertrophy. Ankle-brachial index. Retinal vascular study based on funduscopy with non-mydriatic retinography and evaluation of pulse wave morphology and pulse wave velocity using the SphygmoCor system. The

  20. Experimental investigation of influence of ambient pressure on properties of laser-induced cavitation bubble collapse sound waves%环境压强对激光空泡声波特性影响的实验研究

    Institute of Scientific and Technical Information of China (English)

    李胜勇; 王晓宇; 王江安; 宗思光; 刘涛

    2015-01-01

    The ambient pressure is one of the basic factors determining cavitation. In order to investigate the influence of ambient pressure on properties of laser-induced cavitation bubble collapse sound waves, besides analysing the influence of ambient pressure on properties of laser-induced cavitation bubble oscillation, the experimental investigation of the laser-induced cavitation bubble callapse in liquids with different ambient pressure was done with high-speed video, the cavity sound waves generated by the cavitation bubble was detected with the high-frequency hydrophone. The pressure inside the tank was accurately controlled by an air pump. The results show that the ambient pressure has obvious influence on the bubble oscillation, but has no influence on sound intensity and spectrum. The radiation frequency range is 0- 50 kHz, the radiation sound wave energy is 0- 20 kHz, and have two obvious frequency peak value at 2 kHz and 8 kHz.%环境压强是影响空泡脉动的一个重要因素。为了研究环境压强对激光空泡声波特性的影响,采用理想液体中单空泡运动的理论模型,对不同环境压强下液体中空泡运动过程进行了数值模拟,并通过充气泵精确调节高压水箱内的气压,采用高速照相机、高频测量水听器,得到了在不同压强条件下,空泡脉动特性的序列图像和声谱图,根据实验数据研究了不同环境压强下液体中激光诱导产生的空泡脉动规律与声波特性。结果表明:环境压强的改变影响了空泡生存周期和脉动的剧烈程度,但对声波的强度和声谱分布没有影响。辐射的频率集中在0~50 kHz范围内,所辐射的声波能量主要集中在0~20 kHz频段范围,并在2 kHz与8 kHz有两个明显的频率峰值。

  1. Effect of initial pressure on propagation of detonation wave in round tube%初始压力对爆轰波在管道内传播的影响

    Institute of Scientific and Technical Information of China (English)

    喻健良; 高远; 闫兴清; 高伟

    2014-01-01

    建立爆轰管道研究不同初始压力下爆轰波在管道内传播规律。选用 CH4+2O2气体,采用光纤探针测量爆轰波在管道内的传播速度,采用烟迹法记录爆轰波胞格结构。结果表明:爆轰波在管道内传播时出现5种不同传播模式,分别为稳态式、快速波动式、结巴式、驰振式与失效模式。在稳态传播模式下,爆轰波局部速度波动很小且平均速度接近理论爆轰 CJ 速度,并呈现多头胞格结构。随着初始压力的降低,爆轰波局部速度波动增加且其平均速度产生衰减。在驰振式爆轰解耦处,爆轰波胞格结构消失,过载爆轰时,重新形成胞格结构。进一步降低初始压力至爆轰失效时,则无胞格结构。%Detonation tube was built to investigate the effect of initial pressure on the propagation of detonation wave in round tube.The premixed gas of CH4+2O2 was selected as experimental gas. Optical fiber probe was used to measure the local velocity of detonation wave.Smoked foils were used to register the cellular structure of detonation wave in tubes.The experimental results show that there are five distinct modes during the propagation of detonation wave in tubes,which are stable mode,rapid fluctuation mode,stuttering mode,galloping mode and failure mode.Under the mode of stable detonation,the fluctuations of the local velocity of detonation wave are generally small and the averaged velocity of detonation wave is close to the theoretical CJ value.The detonation wave has multi-headed cellular structure.With decreasing of the initial pressure,the fluctuations of the local velocity of detonation wave increase,and the averaged velocity of detonation wave decreases.For the galloping detonation,at the decoupled position,cellular structure disappears.Cellular structure forms again when overdriven detonation occurs.If the initial pressure is further decreased till the detonation failure,no cellular structure is

  2. Study of Combustible Case Effects on Pressure Waves for Low-zone of Bi-modular Charge%可燃容器对小号模块装药压力波影响的研究

    Institute of Scientific and Technical Information of China (English)

    王育维; 郭映华; 董彦诚; 张洪汉

    2016-01-01

    An analysis is made of the interior ballistics structural characteristics of low-zone in Bi-modular charge. In response to the problem of much more prominent pressure wave of zone 2,a two-phase and one-dimensional model of interior ballistics was built with combustible case combustion law provided. An analysis is made of the effects of combustible case energy parameter on pressure waves. Through the comparative experimental study of different energy combustible cases and theoretical simu-lation analysis of interior ballistics multiphase flow,the effect laws of combustible case energy parame-ter on zone 2 pressure waves was obtained. Great agreement is shown between model and experimental measurements. The study results can serve as a guideline for pressure wave and optimizing combustible case energy parameter of zone 2 in Bi-modular charge.%分析了双元模块装药小号装药的结构特点,针对小号装药的2号装药压力波现象较为突出的问题,建立了双一维多相流内弹道模型,给出了可燃容器燃烧规律,分析了可燃容器能量参数对压力波的影响。通过对可燃容器不同能量参数的对比试验研究及利用多相流内弹道理论仿真分析,得到了可燃容器能量特性对2号装药压力波的影响规律,理论仿真结果与试验结果一致,为分析小号装药压力波现象及可燃容器参数优化设计提供一定参考。

  3. Validation of a new non-invasive blood pressure measurement method on mice via pulse wave propagation time measurement on a cuff

    OpenAIRE

    Nguyen, Xuan P.; Kronemayer, Ralf; Herrmann, Peter; Mejía, Atila; Daw, Zamira; Nguyen, Xuan D.; Kränzlin, Bettina; Gretz, Norbert

    2011-01-01

    In the present article, we describe the validation of a new non-invasive method for measuring blood pressure (BP) which also enables to determine the three BP values: systolic, diastolic and mean value. Our method is based on the pulse transit time (PTT) measurement along an artery directly at the BP cuff. The accuracy of this method was evaluated by comparison with the direct simultaneous measurement of blood pressure from 40 anesthetized female mice. Close correlation ...

  4. Relation between the occurrence of Burnout and differential pressure fluctuation characteristics caused by the disturbance waves passing by a flow obstacle in a vertical boiling two-phase upward flow in a narrow annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Shoji [Yokohama National University, Yokohama 240-8501 (Japan)]. E-mail: morisho@ynu.ac.jp; Fukano, Tohru [Kurume Institute of University, Fukuoka 830-0052 (Japan)]. E-mail: fukanot@cc.kurume-it.ac.jp

    2006-05-15

    If a flow obstacle such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions the spacer has a cooling effect, and under other conditions the spacer causes dryout of the cooling water film on the heating surface, resulting in burnout of the tube. The burnout mechanism near the spacer, however, remains unclear. In a previous paper (Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81-90), we reported that the disturbance wave has a significant effect on dryout occurrence. Therefore, in the present paper, the relation between dryout, burnout occurrence, and interval between two successive disturbance waves obtained from the differential pressure fluctuation caused by the disturbance waves passing by a spacer, is further discussed in detail.

  5. Relation between the occurrence of Burnout and differential pressure fluctuation characteristics caused by the disturbance waves passing by a flow obstacle in a vertical boiling two-phase upward flow in a narrow annular channel

    International Nuclear Information System (INIS)

    If a flow obstacle such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions the spacer has a cooling effect, and under other conditions the spacer causes dryout of the cooling water film on the heating surface, resulting in burnout of the tube. The burnout mechanism near the spacer, however, remains unclear. In a previous paper (Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81-90), we reported that the disturbance wave has a significant effect on dryout occurrence. Therefore, in the present paper, the relation between dryout, burnout occurrence, and interval between two successive disturbance waves obtained from the differential pressure fluctuation caused by the disturbance waves passing by a spacer, is further discussed in detail

  6. The Wave Energy Device

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Tedd, James William

    2006-01-01

    The Wave Dragon is a 4 to 11 MW offshore wave energy converter of the overtopping type. It basically consists of two wave reflectors focusing the waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the...... period from 1998 to 2001 extensive testing on a scale 1:50 model was carried at Aalborg University. During the last two years, testing has started on a prototype of the Wave Dragon in Nissum Bredning, Denmark (scale 1:4.5 of the North Sea). The prototype was grid connected in May 2003 as the world......'s first offshore wave energy converter. During this period an extensive measuring program has established the background for optimal design of the structure and regulation of the power take off system. Planning for full scale deployment of a 7 MW unit within the next 2 years is in progress. The prototype...

  7. Direct bed stress measurements under solitary tsunami-type waves and breaking tsunami wave fronts

    Digital Repository Service at National Institute of Oceanography (India)

    JayaKumar, S.; Baldock, T.E.

    , the force measured by the shear plate includes the bed shear stress and the pressure gradient force from the wave. Linear wave theory is often used to estimate (Rankin and Hires, 2000) and eliminate the pressure gradient from the total force so... for selected solitary waves generated in laboratory that are comparable with the theory Parameters Cyclone (shallow) Cyclone (deep) Tsunami-1 (shallow) Tsunami-2 (shallow) Tsunami-1 (deep) Tsunami-2 (deep) Wave height (m) 20 20 1 1 1 1 Wave...

  8. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Friis-Madsen, Erik;

    2006-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57!27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world’s first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. In the period May 2003 to January 2005 an extensive...

  9. Wave Forces Acting on Vertical Walls

    Institute of Scientific and Technical Information of China (English)

    LI Ben-xia; YU Yu-xiu; YU Xi-ping

    2008-01-01

    Regular and irregular wave forces acting on vertical walls are studied by a previously developed numerical model. The computed wave forces are compared with the available experimental data to verify the numerical model, and satisfactory agreements are obtained. The variation of wave forces with incident angles and the shape of simultaneous pressure distribution are investigated, and the comparisons between numerical results and Goda's predictions are also carried out. It is concluded that the maximum wave forces acting on the unit length of vertical wall is often induced by the obliquely incident waves instead of normally incident waves, while Goda's formula may be inapplicable for oblique wave incidence. The shape of simultaneous pressure distribution is not significantly influenced by incident angles, and it can be favorably predicted by Goda's formula. When regular wave heights are taken as the same as irregular wave height H1%, the irregular wave forces Ph,1% are slightly larger than regular wave forces in most cases.

  10. Subduction Factory 3: An Excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature

    Science.gov (United States)

    Hacker, Bradley R.; Abers, Geoffrey A.

    2004-01-01

    An Excel macro to calculate mineral and rock physical properties at elevated pressure and temperature is presented. The workbook includes an expandable database of physical parameters for 52 rock-forming minerals stable at high pressures and temperatures. For these minerals the elastic moduli, densities, seismic velocities, and H2O contents are calculated at any specified P and T conditions, using basic thermodynamic relationships and third-order finite strain theory. The mineral modes of suites of rocks are also specifiable, so that their predicted aggregate properties can be calculated using standard solid mixing theories. A suite of sample rock modes taken from the literature provides a useful starting point. The results of these calculations can be applied to a wide variety of geophysical questions including estimating the alteration of the oceanic crust and mantle; predicting the seismic velocities of lower-crustal xenoliths; estimating the effects of changes in mineralogy, pressure and temperature on buoyancy; and assessing the H2O content and mineralogy of subducted lithosphere from seismic observations.

  11. Relation between the occurrence of burnout and differential-pressure fluctuation characteristics caused by the disturbance waves passing by a flow obstacle in a vertical boiling two-phase upward flow in a narrow annular channel

    International Nuclear Information System (INIS)

    If a flow obstacle such as a spacer is set in a boiling two-phase flow within an annular channel, where the inner tube is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some case the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. The burnout mechanism near the spacer, however, is not still clear. In the present paper we focus our attention on the occurrence of the burnout near a spacer, and discuss the occurrence location of dryout and burnout and the relation between the occurrence of burnout and differential-pressure fluctuation characteristics caused by the disturbance waves passing by a spacer. (author)

  12. Velocidade da onda de pulso, pressão arterial e adipocitocinas em adultos jovens: estudo do Rio de Janeiro Pulse wave velocity, blood pressure and adipocytokines in young adults: the Rio de Janeiro study

    Directory of Open Access Journals (Sweden)

    Oswaldo Luiz Pizzi

    2012-01-01

    identificação do acometimento vascular nessa faixa etária.BACKGROUND: Data on noninvasive vascular assessment and their association with cardiovascular risk variables are scarce in young individuals. OBJECTIVE: To evaluate the association between pulse wave velocity and blood pressure, anthropometric and metabolic variables, including adipocytokines, in young adults. METHODS: A total of 96 individuals aged 26 to 35 years (mean 30.09 ± 1.92; 51 males were assessed in the Rio de Janeiro study. Pulse wave velocity (Complior method, blood pressure, body mass index, glucose, lipid profile, leptin, insulin, adiponectin and insulin resistance index (HOMA-IR were analyzed. Subjects were stratified into three groups according to the PWV tertile for each gender. RESULTS: The group with the highest pulse wave velocity (PWV tertile showed higher mean systolic and diastolic blood pressure, mean blood pressure, body mass index, insulin, and HOMA-IR, as well as lower mean adiponectin; higher prevalence of diabetes mellitus/glucose intolerance and hyperinsulinemia. There was a significant positive correlation of PWV with systolic blood pressure, diastolic blood pressure, pulse pressure and mean blood pressure, body mass index, and LDL-cholesterol, and a negative correlation with HDL-cholesterol and adiponectin. In the multiple regression model, after adjustment of HDL-cholesterol, LDL-cholesterol and adiponectin for gender, age, body mass index and mean blood pressure, only the male gender and mean blood pressure remained significantly correlated with PWV. CONCLUSION: PWV in young adults showed a significant association with cardiovascular risk variables, especially in the male gender, and mean blood pressure as important determinant variables. The findings suggest that PWV measurement can be useful for the identification of vascular impairment in this age group.

  13. Velocidade da onda de pulso, pressão arterial e adipocitocinas em adultos jovens: estudo do Rio de Janeiro Pulse wave velocity, blood pressure and adipocytokines in young adults: the Rio de Janeiro study

    Directory of Open Access Journals (Sweden)

    Oswaldo Luiz Pizzi

    2013-01-01

    identificação do acometimento vascular nessa faixa etária.BACKGROUND: Data on noninvasive vascular assessment and their association with cardiovascular risk variables are scarce in young individuals. OBJECTIVE: To evaluate the association between pulse wave velocity and blood pressure, anthropometric and metabolic variables, including adipocytokines, in young adults. METHODS: A total of 96 individuals aged 26 to 35 years (mean 30.09 ± 1.92; 51 males were assessed in the Rio de Janeiro study. Pulse wave velocity (Complior method, blood pressure, body mass index, glucose, lipid profile, leptin, insulin, adiponectin and insulin resistance index (HOMA-IR were analyzed. Subjects were stratified into three groups according to the PWV tertile for each gender. RESULTS: The group with the highest pulse wave velocity (PWV tertile showed higher mean systolic and diastolic blood pressure, mean blood pressure, body mass index, insulin, and HOMA-IR, as well as lower mean adiponectin; higher prevalence of diabetes mellitus/glucose intolerance and hyperinsulinemia. There was a significant positive correlation of PWV with systolic blood pressure, diastolic blood pressure, pulse pressure and mean blood pressure, body mass index, and LDL-cholesterol, and a negative correlation with HDL-cholesterol and adiponectin. In the multiple regression model, after adjustment of HDL-cholesterol, LDL-cholesterol and adiponectin for gender, age, body mass index and mean blood pressure, only the male gender and mean blood pressure remained significantly correlated with PWV. CONCLUSION: PWV in young adults showed a significant association with cardiovascular risk variables, especially in the male gender, and mean blood pressure as important determinant variables. The findings suggest that PWV measurement can be useful for the identification of vascular impairment in this age group.

  14. Ultrasonic wave inspection device

    International Nuclear Information System (INIS)

    The device of the present invention inspects incore structural components by visualizing them by scanning an ultrasonic transducer in an opaque liquid metal sodium in a pressure vessel of an FBR type reactor. Namely, a piezoelectric vibrator for transmitting/receiving ultrasonic waves is formed into a protruded shape. A portion at the center of the protruded piezoelectric vibrator is coaxially separated. Upon transmitting ultrasonic waves, a large opening of the entire piezoelectric vibrator is used. A small opening at the center of the piezoelectric vibrator is used upon receiving ultrasonic waves. With such a constitution, an object to be inspected is visualized based on the waveform of the received ultrasonic wave signals defining the center of a curvature of the protruded piezoelectric vibrator as a position of transmitting ultrasonic waves and defining the center of the opening at the center of the piezoelectric vibrator as a position of receiving ultrasonic waves. As a result, the energy of the ultrasonic waves can be enhanced to improve sensitivity upon transmitting ultrasonic waves. Since the distance between an optional position of the receiving surface and the reflecting surface of the object is minimized upon receiving ultrasonic waves, there is no distortion in the waveforms of the received signals thereby enabling to obtain images at high accuracy. (I.S.)

  15. Unexpected waves

    Science.gov (United States)

    Gemmrich, J.; Garrett, C.

    2009-04-01

    Rogue waves have received considerable scientific attention in recent years. They are commonly defined as waves with height H ≥ 2.2Hs, where Hs is the significant wave height (typically estimated from records that are several tens of minutes long). This definition of rogue waves is solely based on the wave height. We suggest that the "unexpectedness" of large waves is also of great concern to mariners and beachcombers, and define "unexpected waves" as waves being twice as large as any of the preceding 30 waves. Our simulations suggest that, even in a Gaussian sea, unexpected waves might be as common as rogue waves occurring within a longer wave group. The return period of unexpected waves decreases if modifications of the wave shape due to phase locked second harmonics are allowed for. In particular, shallow water effects significantly increase the probability of occurrence of unexpected waves. We analyze historical Canadian wave buoy records from the Pacific and Atlantic in terms of unexpected waves, and find our simulations to be in agreement with the occurrence rates of unexpected waves obtained from these records. This agreement suggests that extreme waves in the ocean occur largely due to linear superposition

  16. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis...

  17. 基于负压波-流量法的管道泄漏检测试验系统%Pipeline Leak Detection Testing System Based on Negative Pressure Wave and Flow

    Institute of Scientific and Technical Information of China (English)

    胡琼; 范世东

    2009-01-01

    构建了一套基于负压波和流量的管道泄漏检测试验系统.该系统利用研华PCI-1710HG数据采集卡实时采集管道的压力和流量数据,利用小波变换去除混杂在压力和流量数据中的噪声信号,采用连续小波变换检测压力和流量数据的奇异点从而实现泄漏的检测与定位.监测系统的软件部分采用NI公司的图形化编程语言LabVIEW开发.该系统能及时检测管道泄漏并进行定位.%To solve the problem of pipeline leak detection and meet the demand of student's learning,an experimental system of pipeline leak detection based on negative pressure wave and flow is estab-lished in the laboratory. Advantech DAQ board PCI-1710HG is used to acquire pressure and flow flux, wavelet transform is utilized to analyze the test data; the software of the monitoring system is developed by National Instruments' graphical programming language LabVIEW. It can detect and locate pipeline leak point in time. Finally, a set of testing results is provided.

  18. A MATLAB toolbox and Excel workbook for calculating the densities, seismic wave speeds, and major element composition of minerals and rocks at pressure and temperature

    Science.gov (United States)

    Abers, Geoffrey A.; Hacker, Bradley R.

    2016-02-01

    To interpret seismic images, rock seismic velocities need to be calculated at elevated pressure and temperature for arbitrary compositions. This technical report describes an algorithm, software, and data to make such calculations from the physical properties of minerals. It updates a previous compilation and Excel® spreadsheet and includes new MATLAB® tools for the calculations. The database of 60 mineral end-members includes all parameters needed to estimate density and elastic moduli for many crustal and mantle rocks at conditions relevant to the upper few hundreds of kilometers of Earth. The behavior of α and β quartz is treated as a special case, owing to its unusual Poisson's ratio and thermal expansion that vary rapidly near the α-β transition. The MATLAB tools allow integration of these calculations into a variety of modeling and data analysis projects.

  19. Two-phase flow model for energetic proton beam induced pressure waves in mercury target systems in the planned European Spallation Source

    International Nuclear Information System (INIS)

    Two-phase flow calculations are presented to investigate the thermo-hydraulic effects of the interaction between 2 ms long 1.3 GeV proton pulses with a closed mercury loop which can be considered as a model system of the target of the planned European Spallation Source (ESS) facility. The two-fluid model consists of six first-order partial differential equations that present one dimensional mass, momentum and energy balances for mercury vapor and liquid phases are capable to describe quick transients like cavitation effects or shock waves. The absorption of the proton beam is represented as instantaneous heat source in the energy balance equations. Densities and internal energies of the mercury liquid-vapor system is calculated from the van der Waals equation, but general method how to obtain such properties using arbitrary equation of state is also presented. A second order accurate high-resolution shock-capturing numerical scheme is applied with different kind of limiters in the numerical calculations. Our analysis shows that even 75 degree temperature heat shocks cannot cause considerable cavitation effects in mercury. (authors)

  20. Measurement uncertainty in pulmonary vascular input impedance and characteristic impedance estimated from pulsed-wave Doppler ultrasound and pressure: clinical studies on 57 pediatric patients

    International Nuclear Information System (INIS)

    Pulmonary vascular input impedance better characterizes right ventricular (RV) afterload and disease outcomes in pulmonary hypertension compared to the standard clinical diagnostic, pulmonary vascular resistance (PVR). Early efforts to measure impedance were not routine, involving open-chest measurement. Recently, the use of pulsed-wave (PW) Doppler-measured velocity to non-invasively estimate instantaneous flow has made impedance measurement more practical. One critical concern remains with clinical use: the measurement uncertainty, especially since previous studies only incorporated random error. This study utilized data from a large pediatric patient population to comprehensively examine the systematic and random error contributions to the total impedance uncertainty and determined the least error prone methodology to compute impedance from among four different methods. We found that the systematic error contributes greatly to the total uncertainty and that one of the four methods had significantly smaller propagated uncertainty; however, even when this best method is used, the uncertainty can be large for input impedance at high harmonics and for the characteristic impedance modulus. Finally, we found that uncertainty in impedance between normotensive and hypertensive patient groups displays no significant difference. It is concluded that clinical impedance measurement would be most improved by advancements in instrumentation, and the best computation method is proposed for future clinical use of the input impedance

  1. Two-phase flow model for energetic proton beam induced pressure waves in mercury target systems in the planned European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Barna, I.F.; Imre, A.R. [KFKI Atomic Energy Research Institute (AEKI) of the Hungarian Academy of Sciences, Budapest (Hungary); Rosta, L.; Mezei, F. [Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, Budapest (Hungary)

    2008-12-15

    Two-phase flow calculations are presented to investigate the thermo-hydraulic effects of the interaction between 2 ms long 1.3 GeV proton pulses with a closed mercury loop which can be considered as a model system of the target of the planned European Spallation Source (ESS) facility. The two-fluid model consists of six first-order partial differential equations that present one dimensional mass, momentum and energy balances for mercury vapor and liquid phases are capable to describe quick transients like cavitation effects or shock waves. The absorption of the proton beam is represented as instantaneous heat source in the energy balance equations. Densities and internal energies of the mercury liquid-vapor system is calculated from the van der Waals equation, but general method how to obtain such properties using arbitrary equation of state is also presented. A second order accurate high-resolution shock-capturing numerical scheme is applied with different kind of limiters in the numerical calculations. Our analysis shows that even 75 degree temperature heat shocks cannot cause considerable cavitation effects in mercury. (authors)

  2. 基于HHT去噪和互相关原理的ABS制动液压力波波速的研究%Research of Pressure Wave Velocity of Brake Fluid of ABS Based on HHT and Principle of Cross-correlation

    Institute of Scientific and Technical Information of China (English)

    戚雪珍; 李孝禄; 王文越

    2016-01-01

    汽车防抱死系统( ABS)依靠制动液压力波传递制动压力,对汽车制动效能影响很大。文中利用压力传感器采集ABS制动液压力,对采集的数据进行希尔伯特-黄变换( HHT)去噪,再利用互相关原理对不同刹车盘转速和制动管路长度下的制动液压力波波速进行计算。研究表明,制动液压力波波速可达1181.8 m/s。%Pressure wave velocity of brake fluid of Anti-lock braking system( ABS) have an obvious effect on brake ability of automobile, which transfers braking pressure for braking disc. The brake fluid pressure was acquired by the pressure transmitters in an ABS, and with Hilbert-huang transform ( HHT) de-noised. The pressure wave velocities of brake fluid were calculated by the cross-correlation principle under different rotating speeds and braking pipe lengths. The results show that the pressure wave velocity of brake fluid is up to 1 181.8m/s.

  3. Stabilization of gravity water waves

    OpenAIRE

    Alazard, Thomas

    2016-01-01

    This paper is devoted to the stabilization of the incompressible Euler equation with free surface. We study the damping of two-dimensional gravity waves by an absorbing beach where the water-wave energy is dissipated by using the variations of the external pressure.

  4. Blood pressure

    Science.gov (United States)

    ... the walls of the arteries is called blood pressure. Blood pressure is measured both as the heart contracts, which ... as it relaxes, which is called diastole. Normal blood pressure is considered to be a systolic blood pressure ...

  5. Imploding Detonation Waves

    Directory of Open Access Journals (Sweden)

    B. G. Verma

    1981-01-01

    Full Text Available The problem of imploding detonation waves propagating through a gas with initial density, is studied. It is shown that the consideration of varying initial density affects the problem considerably incomparison to a uniform gas at rest. An analytical expression for the pressure distribution in the neighbourhood of the centre of symmetry has been found.

  6. Imploding Detonation Waves

    OpenAIRE

    B. G. Verma; Singh, J. B.

    1981-01-01

    The problem of imploding detonation waves propagating through a gas with initial density, is studied. It is shown that the consideration of varying initial density affects the problem considerably incomparison to a uniform gas at rest. An analytical expression for the pressure distribution in the neighbourhood of the centre of symmetry has been found.

  7. Wave vertaisverkossa

    OpenAIRE

    Kankaanniemi, Marko

    2011-01-01

    Google Wave is a real-time communication and collaboration system introduced in 2009. The Wave system allows multiple users to view and modify hosted conversations called waves simultaneously. A wave conversation consists of a tree-like structure of messages. The messages can contain rich text, images and other attachments. Concurrency control is handled using a technique called operational transformation. It enables users to modify a wave simultaneously without acquiring any locks. Google ha...

  8. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter Bak; Friis-Madsen, Erik;

    2004-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57 x 27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world's first offshore wave energy...... the coming 1½ years an extensive measuring program will establish the background for optimal design of the structure and regulation of the power take off system. Planning for deployment of a 7 MW power production unit in the Atlantic within the next 2-3 years is in progress....

  9. Residual Liquefaction under Standing Waves

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    This paper summarizes the results of an experimental study which deals with the residual liquefaction of seabed under standing waves. It is shown that the seabed liquefaction under standing waves, although qualitatively similar, exhibits features different from that caused by progressive waves....... The experimental results show that the buildup of pore-water pressure and the resulting liquefaction first starts at the nodal section and spreads towards the antinodal section. The number of waves to cause liquefaction at the nodal section appears to be equal to that experienced in progressive waves for the same...... wave height. Recommendations are made as to how to assess liquefaction potential in standing waves. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE)....

  10. WAVE EQUATION MODEL FOR SHIP WAVES IN BOUNDED SHALLOW WATER

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Ships were modelled as moving pressure disturbances on the free surface of a shallow water basin in the present paper.The moving-pressure generating waves were subjected to the reflection of land boundaries and the radiation of open boundaries.This paper proposed and examined a wave equation model (WEM) to solve the shallow water equations with moving surface pressures simulating ship waves in a bounded shallow water region.The Galerkin finite element method was used to solve a second order wave equation for the free surface elevations and the hydrodynamic pressure of the ship bottom simultaneously.Horizontal velocities were obtained from the momentum equations.Numerical solutions of Series 60 CB=0.6 ships moving with the depth Froude number of Fh=0.6, 1.0, 1.3 in a rectangular shallow water harbor were investigated.Three dimensional surface elevation profiles and the depth-averaged horizontal velocities were analysed.The numerical results characterised very well the ship waves in shallow water.Strong boundary reflection waves were found in the case of high depth Froude number (Fh=1.3).Waves generated by the interactions of two ships moving in the same directions and in the opposite directions were also numerically investigated in the present study.

  11. Wave turbulence

    Science.gov (United States)

    Nazarenko, Sergey

    2015-07-01

    Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.

  12. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  13. Structures in Detonation Waves in Low-Pressure H2–O2–Ar Mixtures: A Summary of Results Obtained with the Adaptive Mesh Refinement Framework AMROC

    Directory of Open Access Journals (Sweden)

    Ralf Deiterding

    2011-01-01

    Full Text Available Numerical simulation can be key to the understanding of the multidimensional nature of transient detonation waves. However, the accurate approximation of realistic detonations is demanding as a wide range of scales needs to be resolved. This paper describes a successful solution strategy that utilizes logically rectangular dynamically adaptive meshes. The hydrodynamic transport scheme and the treatment of the nonequilibrium reaction terms are sketched. A ghost fluid approach is integrated into the method to allow for embedded geometrically complex boundaries. Large-scale parallel simulations of unstable detonation structures of Chapman-Jouguet detonations in low-pressure hydrogen-oxygen-argon mixtures demonstrate the efficiency of the described techniques in practice. In particular, computations of regular cellular structures in two and three space dimensions and their development under transient conditions, that is, under diffraction and for propagation through bends are presented. Some of the observed patterns are classified by shock polar analysis, and a diagram of the transition boundaries between possible Mach reflection structures is constructed.

  14. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...

  15. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  16. Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.;

    1998-01-01

    This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies......, concerning a hydraulic evaluation and optimisation of the geometry of the Wave Dragon, is presented. Furthermore, the plans for the future development projects are sketched....

  17. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Knapp, W.;

    2006-01-01

    Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during this...

  18. Wave phenomena

    CERN Document Server

    Towne, Dudley H

    1988-01-01

    This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.

  19. Wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.

    2011-07-01

    Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)

  20. Wind speed, wind direction, air temperature, wave energy spectra, significant wave height, dominant wave period and direction, peak wave period and direction, currents, temperature, conductivity, pressure, sigma-theta, river level, sonar readings, and backscatter data collected at Myrtle Beach in the North Atlantic Ocean from instruments deployed on MOORINGS using platforms RV NANCY FOSTER and RV DAN MOORE from October 1, 2003 to May 1, 2004 (NODC Accession 0066109)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These bottom current, wave and associated observations were collected as part of a larger study to understand the physical processes that control the transport of...

  1. Study on Technology of Oil Pipeline Leakage Detection Based on Negative Pressure Wave%负压波输油管道泄漏检测技术研究

    Institute of Scientific and Technical Information of China (English)

    李宏; 王兰兰; 张冬生; 林义刚

    2011-01-01

    Pipeline transportation plays an important role in the national economy for its unique advantages.However, due to various reasons, the leakage accidents in pipelines transportation occur frequently not only cause great loss of resoursel, but also pollute the environment, what' s more, it may lead to serious casualties. In order to guarantee the pipelines work safely and minimize the losses caused by leakage accidents, it' s necessary to study leakage detecting technology to raise the sensitivity of detection and accuracy of localization. To solve this issue,the negative pressure wave leak detecting technology is introduced, analyzed the principles of detection and localization and the key factors that effect accurate localization. At last, the design and structure of pipeline leak detecting system are given.%管道输送以自己独特的优点在国民经济中占有重要的地位.然而由于各种原因,管道泄漏事故频频发生,不仅造成资源损失和环境污染,而且会带来巨大的财产损失和人员伤亡.为保障管道安全运行和将泄漏事故造成的危害减少到最小,需要研究泄漏检测技术以获得更高的泄漏检测灵敏度和更准确的泄漏点定位精度.针对这个问题,主要介绍了负压波泄漏检测技术.分析了其检测定位原理以及影响准确定位的关键因素.最后说明了管道泄漏检测系统的设计与构成.

  2. Refrigeration system having standing wave compressor

    Science.gov (United States)

    Lucas, Timothy S.

    1992-01-01

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  3. Theoretical Analysis and Derivation of Combustion Wave Parameters

    Institute of Scientific and Technical Information of China (English)

    CHEN Jun

    2006-01-01

    Theoretical relations of pressure, density, velocity, temperature and Mach number of combustion waves are built. The parameters' curves with different combustion energy are illustrated in which four zones are pointed out to represent different combustion states. The expressions and curves of parameters are important to analyze the trends of combustion waves, and to determine conditions on which detonation waves or deflagration waves occur.

  4. Standing wave compressor

    Science.gov (United States)

    Lucas, Timothy S.

    1991-01-01

    A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

  5. Violent breaking wave impacts

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Peregrine, D.H.; Bullock, G.N.

    2009-01-01

    When an ocean wave breaks against a steep-fronted breakwater, sea wall or a similar marine structure, its impact on the structure can be very violent. This paper describes the theoretical studies that, together with field and laboratory investigations, have been carried out in order to gain a...... better understanding of the processes involved. The wave's approach towards a structure is modelled with classical irrotational flow to obtain the different types of impact profiles that may or may not lead to air entrapment. The subsequent impact is modelled with a novel compressible-flow model for a...... homogeneous mixture of incompressible liquid and ideal gas. This enables a numerical description of both trapped air pockets and the propagation of pressure shock waves through the aerated water. An exact Riemann solver is developed to permit a finite-volume solution to the flow model with smallest possible...

  6. Deflagration Wave Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Laboratory

    2012-04-03

    Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.

  7. Plane waves as tractor beams

    Science.gov (United States)

    Forgács, Péter; Lukács, Árpád; Romańczukiewicz, Tomasz

    2013-12-01

    It is shown that in a large class of systems, plane waves act as tractor beams: i.e., an incident plane wave can exert a pulling force on the scatterer. The underlying physical mechanism for the pulling force is due to the sufficiently strong scattering of the incoming wave into another mode carrying more momentum, in which case excess momentum is created behind the scatterer. This tractor beam or negative radiation pressure (NRP) effect, is found to be generic in systems with multiple scattering channels. In a birefringent medium, electromagnetic plane waves incident on a thin plate exert NRP of the same order of magnitude as optical radiation pressure, while in artificial dielectrics (metamaterials), the magnitude of NRP can even be macroscopic. In two dimensions, we study various scattering situations on vortices, and NRP is shown to occur by the scattering of heavy baryons into light leptons off cosmic strings, and by neutron scattering off vortices in the XY model.

  8. Superconducting traveling wave accelerators

    International Nuclear Information System (INIS)

    This note considers the applicability of superconductivity to traveling wave accelerators. Unlike CW operation of a superconducting standing wave or circulating wave accelerator section, which requires improvement factors (superconductor conductivity divided by copper conductivity) of about 106 in order to be of practical use, a SUperconducting TRaveling wave Accelerator, SUTRA, operating in the pulsed mode requires improvement factors as low as about 103, which are attainable with niobium or lead at 4.2K, the temperature of liquid helium at atmospheric pressure. Changing from a copper traveling wave accelerator to SUTRA achieves the following. (1) For a given gradient SUTRA reduces the peak and average power requirements typically by a factor of 2. (2) SUTRA reduces the peak power still further because it enables us to increase the filling time and thus trade pulse width for gradient. (3) SUTRA makes possible a reasonably long section at higher frequencies. (4) SUTRA makes possible recirculation without additional rf average power. 8 references, 6 figures, 1 table

  9. Third Wave.

    Science.gov (United States)

    Reed, Chris

    2000-01-01

    Third Wave is a Christian charity based in Derby (England) that offers training in vocational skills, preindustrial crafts, horticultural and agricultural skills, environmental education, and woodland survival skills to disadvantaged people at city and farm locations. Third Wave employs a holistic approach to personal development in a community…

  10. Gravitational Waves

    OpenAIRE

    Schutz, Bernard F.

    1990-01-01

    In 1989 four groups around the world proposed the construction of large-scale laser interferometric gravitational wave detectors. The author reviews the design of these detectors, the problems of analysing their data, and the theory of the sources of the gravitational waves that they are designed to detect.

  11. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Friis-Madsen, Erik;

    2008-01-01

    Since March 2003 a prototype of Wave Dragon has been tested in an inland sea in Denmark. This has been a great success with all subsystems tested and improved through working in an offshore environment. The project has proved the Wave Dragon device and has enabled the next stage, a production sized...

  12. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  13. Pressure Sores

    Science.gov (United States)

    ... pressure sore include the following: Thick yellow or green pus A bad smell from the sore Redness ... spots, color changes or other signs of sores. Pay special attention to the pressure points where sores ...

  14. Pressure ulcers.

    Science.gov (United States)

    O'Byrne, Deborah

    2016-04-13

    My nursing experience is in acute care. Acute medical nurses are well placed to assess skin integrity, identify patients at risk of pressure ulcer development, and commence appropriate interventions to prevent or treat pressure ulcers. PMID:27073966

  15. Simultaneous competition and coexistence between charge-density waves and reentrant superconductivity in the pressure-temperature phase diagram of the molecular conductor TTF (Ni(dmit) sub 2 ) sub 2 (TTF is tetrathiafulvalene and dmit is the 1,3-dithia-2-thione-4,5-dithiolato group)

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, L.; Ribault, M. (Laboratoire de Physique des Solides, Batiment 510, Universite Paris-Sud, 91405 Orsay (France)); Valade, L.; Cassoux, P. (Laboratoire de Chimie de Coordination du Centre National de la Recherche Scientifique, 205 route de Narbonne, 31077 Toulouse CEDEX (France))

    1990-09-01

    The pressure-temperature phase diagram of the quasi-one-dimensional molecular superconductor TTF (Ni(dmit){sub 2}){sub 2} has been carefully determined by ac resistivity measurements up to 14 kbar. Increasing pressures induce electronic phase transitions between a high-temperature metal and successive, metallic or semimetallic, semiconducting and reentrant superconducting ground states. This unusual phase diagram is compared with that of TTF (Pd(dmit){sub 2}){sub 2}. It is discussed in connection with ambient-pressure charge-density-wave (CDW) instabilities, the wave vector of which can be well accounted for by an original conduction-band structure involving both the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals of the acceptor slabs. It is confirmed that the superconducting temperature increases slowly with increasing pressure. It is suggested that the superconductivity coexists with a high-temperature CDW instability and is in weak competition with low-temperature CDW fluctuations; these CDW's affect different parts of the Fermi surface.

  16. Peer Pressure

    Science.gov (United States)

    ... How Can I Help a Friend Who Cuts? Peer Pressure KidsHealth > For Teens > Peer Pressure Print A A A Text Size What's in ... She'd just had a big dose of peer pressure. Who Are Your Peers? When you were a ...

  17. Ship waves and lee waves

    Science.gov (United States)

    Sharman, R. D.; Wurtele, M. G.

    1983-01-01

    Dynamics analogous to those of surface ship waves on water of finite depth are noted for the three-dimensional trapped lee wave modes produced by an isolated obstacle in a stratified fluid. This vertical trapping of wave energy is modeled by uniform upstream flow and stratification, bounded above by a rigid lid, and by a semiinfinite fluid of uniform stability whose wind velocity increases exponentially with height, representing the atmosphere. While formal asymptotic solutions are produced, limited quantitative usefulness is obtained through them because of the limitations of the approximations and the infinity of modes in the solution. Time-dependent numerical models are accordingly developed for both surface ship waves and internal and atmospheric ship waves, yielding a variety of results.

  18. Infragravity waves across the oceans

    Science.gov (United States)

    Rawat, Arshad; Ardhuin, Fabrice; Aucan, Jerome

    2014-05-01

    The propagation of transoceanic Infragravity (IG) wave was investigated using a global spectral wave model together with deep-ocean pressure recorders. IG waves are generated mostly at the shorelines due to non-linear hydrodynamic effects that transfer energy from the main windsea and swell band, with periods of 1 to 25 s, to periods up to 500 s. IG waves are important for the study of near-shore processes and harbor agitation, and can also be a potential source of errors in satellite altimetry measurements. Setting up a global IG model was motivated by the investigation of these errors for the future planned SWOT mission. Despite the fact that the infragravity waves exhibit much smaller vertical amplitudes than the usual high frequency wind-driven waves, of the order of 1 cm in the deep oceans, their propagation throughout the oceans and signature in the wave spectrum can be clearly observed. Using a simplified empirical parameterization of the nearshore source of free IG waves as a function of the incoming wave parameters we extended to WAVEWATCH III model, used so far for windseas and swell, to the IG band, up to periods of 300 s. The spatial and temporal variability of the modeled IG energy was well correlated to the DART station records, making it useful to interpret the records of IG waves. Open ocean IG wave records appear dominated by trans-oceanic events with well defined sources concentrated on a few days, usually on West coasts, and affecting the entire ocean basin, with amplitude patterns very similar to those of tsunamis. Three particular IG bursts during 2008 are studied, 2 in the Pacific Ocean and 1 in the North Atlantic. It was observed that the liberated IG waves can travel long distances often crossing whole oceans with negligible dissipation. The IG signatures are clearly observed at sensors along their propagation paths.

  19. Cavitation pressure in liquid helium

    OpenAIRE

    Caupin, Frederic; Balibar, Sebastien

    2001-01-01

    Recent experiments have suggested that, at low enough temperature, the homogeneous nucleation of bubbles occurs in liquid helium near the calculated spinodal limit. This was done in pure superfluid helium 4 and in pure normal liquid helium 3. However, in such experiments, where the negative pressure is produced by focusing an acoustic wave in the bulk liquid, the local amplitude of the instantaneous pressure or density is not directly measurable. In this article, we present a series of measur...

  20. Shock response of porous metals: characterization of pressure field

    International Nuclear Information System (INIS)

    Shock wave reaction on porous metals is numerically simulated. When the pressure threshold is low, the increasing rate of high-pressure area gives roughly the propagation velocity of the compressive waves in the porous material. and the wave front in the condensed pressure map is nearly a plane: with the increasing of pressure threshold. more low-pressure-spots appear in the high-pressure background, and neighboring spots may coalesce, consequently, the topology of the pressure Turing pattern may change. The deviation from linearity of the increasing rate of high-pressure area is a pronounced effect of porous material under shock. The stronger the initial shock, the more pronounced the porosity effects. When the initial yield of material becomes higher, the material shows more elastic behaviors and the less porous effects, compressive and tension waves propagate more quickly, and the porous material becomes less compressible. (authors)

  1. Reducing pressure oscillations in discrete fluid power systems

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    Discrete fluid power systems featuring transmission lines inherently include pressure oscillations. Experimental verification of a discrete fluid power power take off system for wave energy converters has shown the cylinder pressure to oscillate as force shifts are performed. This article...

  2. High Accuracy, Miniature Pressure Sensor for Very High Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  3. Point Measurement of Detonation Wave Speed

    Science.gov (United States)

    Lu, F. K.; Gupta, N. K. M.; Wilson, D. R.

    Accurate determination of the speed of a detonation wave is important for studies of detonation phenomena. Different types of sensors that measure pressure, ion and flame have been used for this purpose.

  4. Acoustic field distribution of sawtooth wave with nonlinear SBE model

    International Nuclear Information System (INIS)

    For precise prediction of the acoustic field distribution of extracorporeal shock wave lithotripsy with an ellipsoid transducer, the nonlinear spheroidal beam equations (SBE) are employed to model acoustic wave propagation in medium. To solve the SBE model with frequency domain algorithm, boundary conditions are obtained for monochromatic and sawtooth waves based on the phase compensation. In numerical analysis, the influence of sinusoidal wave and sawtooth wave on axial pressure distributions are investigated

  5. Numerical and experimental study of blast wave shape in tunnels

    OpenAIRE

    Pennetier, Olivier; Langlet, André; William-Louis, Mame J.-P.

    2012-01-01

    When an explosion occurs in a tunnel, the study of the blast wave quickly becomes complicated, due to the multiple propagation patterns of the blast wave (Incident wave, regular and Mach reflections) and to the geometrical conditions. Considering this problem, two patterns can be revealed. Near the explosive, one can see the well known free-field pressure wave. This overpressure, during its propagation, after multiple reflections on the tunnel's walls, can behave like a one-dimensional wave. ...

  6. Janus Waves

    CERN Document Server

    Papazoglou, Dimitris G; Tzortzakis, Stelios

    2016-01-01

    We show the existence of a family of waves that share a common interesting property affecting the way they propagate and focus. These waves are a superposition of twin waves, which are conjugate to each other under inversion of the propagation direction. In analogy to holography, these twin "real" and "virtual" waves are related respectively to the converging and the diverging part of the beam and can be clearly visualized in real space at two distinct foci under the action of a focusing lens. Analytic formulas for the intensity distribution after focusing are derived, while numerical and experimental demonstrations are given for some of the most interesting members of this family, the accelerating Airy and ring-Airy beams.

  7. Alfven wave

    International Nuclear Information System (INIS)

    Seven chapters are included. Chapters 1 and 2 introduce the Alfven wave and describe its linear properties in a homogeneous medium. Chapters 3 and 4 cover the effects of inhomogeneities on these linear properties. Particular emphasis is placed on the appearance of a continuum spectrum and the associated absorption of the Alfven wave which arise due to the inhomogeneity. The explanation of the physical origin of absorption is given using kinetic theory. Chapter 5 is devoted to the associated plasma instabilities. Nonlinear effects discussed in Chapter 6 include quasilinear diffusion, decay, a solitary wave, and a modulational instability. The principles of Alfven wave heating, a design example and present-day experimental results are described in Chapter 7

  8. Wave Measurements

    OpenAIRE

    Bazzi, Tomaso; Di Memmo, Alberico; Palini, Massimo; Sellini, Massimiliano; Fabbri, Luigi

    2011-01-01

    Purpose of the present report is the summary of the experimental campaign performed at INSEAN facilities. This campaign has been oriented to analyze the classical wave measurement systems and, furthermore, to validate the results of the numerical models. A devoted paragraph describes the main features of a new innovative and non intrusive methodology for the wave measurements aimed to perform both model and ship scale trials.

  9. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  10. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  11. Abnormal storm waves in the winter East/Japan Sea: generation process and hindcasting using an atmosphere-wind wave modelling system

    OpenAIRE

    Lee, H.S.; Kim, K. O.; Yamashita, T.; Komaguchi, T.; Mishima, T.

    2010-01-01

    Abnormal storm waves cause coastal disasters along the coasts of Korean Peninsula and Japan in the East/Japan Sea (EJS) in winter, arising due to developed low pressures during the East Asia winter monsoon. The generation of these abnormal storm waves during rough sea states were studied and hindcast using an atmosphere-wave coupled modelling system. Wind waves and swell due to developed low pressures were found to be the main components of abnormal storm waves. The meteorological conditions ...

  12. Attenuation Analysis and Acoustic Pressure Levels for Combined Absorptive Mufflers

    Directory of Open Access Journals (Sweden)

    Ovidiu Vasile

    2011-09-01

    Full Text Available The paper describes the pressure-wave propagation in a muffler for an internal combustion engine in case of two combined mufflers geometry. The approach is generally applicable to analyzing the damping of propagation of harmonic pressure waves. The paper purpose is to show finite elements analysis of both inductive and resistive damping in pressure acoustics. The main output is the attenuation and acoustic pressure levels for the frequency range 50 Hz–3000 Hz.

  13. Blast Waves

    CERN Document Server

    Needham, Charles E

    2010-01-01

    The primary purpose of this text is to document many of the lessons that have been learned during the author’s more than forty years in the field of blast and shock. The writing therefore takes on an historical perspective, in some sense, because it follows the author’s experience. The book deals with blast waves propagating in fluids or materials that can be treated as fluids. It begins by distinguishing between blast waves and the more general category of shock waves. It then examines several ways of generating blast waves, considering the propagation of blast waves in one, two and three dimensions as well as through the real atmosphere. One section treats the propagation of shocks in layered gases in a more detailed manner. The book also details the interaction of shock waves with structures in particular reflections, progressing from simple to complex geometries, including planar structures, two-dimensional structures such as ramps or wedges, reflections from heights of burst, and three-dimensional st...

  14. Dynamics of a spark produced blast wave

    International Nuclear Information System (INIS)

    The expansion of a spark produced plasma was studied with a simple model and compared to experiments. The model and experiments were performed using a 11.2 nF capacitor bank charged up to 10kV corresponding to a total energy of 0.6 J. The nanosecond shadow pictures revealed detail structure of the shock waves, giving trajectory, speed and blast wave pressure ratios. Conversions of energy into motion and light wave were estimated

  15. Three-Dimensional Propagation of Magnetohydrodynamic Waves in the Solar Chromosphere and Corona

    Institute of Scientific and Technical Information of China (English)

    李波; 郑惠南; 王水

    2002-01-01

    We study the three-dimensional magnetohydrodynamic (MHD) wave propagation in the solar atmosphere consisting of the chromosphere and corona. Pressure enhancement and velocity shear are implemented simultaneously at the bottom of the chromosphere. The global propagation of the incurred MHD waves, including fast-mode and slow-mode magnetoacoustic waves as well as Alfvén wave, can be identified. Wave front positions obtained numerically with respect to specific waves fit well with those calculated with local MHD wave speeds.

  16. Downhole pressure attenuation apparatus

    International Nuclear Information System (INIS)

    This patent describes a process for preventing damage to tool strings and other downhole equipment in a well caused by pressures produced during detonation of one or more downhole explosive devices. It comprises adding to a tool string at least one pressure attenuating apparatus for attenuating the peak pressure wave and quasi-static pressure pulse produced by the explosive devices, the pressure attenuating apparatus including an initially closed relief vent including tubing means supporting a plurality of charge port assemblies each including an explosive filled shaped charge and a prestressed disc, the shaped charges interconnected by a detonating cord, the amount of explosive in each shaped charge being sufficient to rupture its associated disc without damaging surrounding tubular bodies in the well, and a vent chamber defined by the tubing means and providing a liquid free volume, and opening the relief vent substantially contemporaneously with downhole explosive device detonation by detonating the shaped charges to rupture the discs of the charge port assemblies

  17. Nonlinear wave-wave interactions and wedge waves

    Institute of Scientific and Technical Information of China (English)

    Ray Q.Lin; Will Perrie

    2005-01-01

    A tetrad mechanism for exciting long waves,for example edge waves,is described based on nonlinear resonant wave-wave interactions.In this mechanism,resonant interactions pass energy to an edge wave,from the three participating gravity waves.The estimated action flux into the edge wave can be orders of magnitude greater than the transfer fluxes derived from other competing mechanisms,such as triad interactions.Moreover,the numerical results show that the actual transfer rates into the edge wave from the three participating gravity waves are two-to three- orders of magnitude greater than bottom friction.

  18. Shock waves data for minerals

    Science.gov (United States)

    Ahrens, Thomas J.; Johnson, Mary L.

    1994-01-01

    Shock compression of the materials of planetary interiors yields data which upon comparison with density-pressure and density-sound velocity profiles constrain internal composition and temperature. Other important applications of shock wave data and related properties are found in the impact mechanics of terrestrial planets and solid satellites. Shock wave equation of state, shock-induced dynamic yielding and phase transitions, and shock temperature are discussed. In regions where a substantial phase change in the material does not occur, the relationship between the particle velocity, U(sub p), and the shock velocity, U(sub s), is given by U(sub s) = C(sub 0) + S U(sub p), where C(sub 0) is the shock velocity at infinitesimally small particle velocity, or the ambient pressure bulk sound velocity. Numerical values for the shock wave equation of state for minerals and related materials of the solar system are provided.

  19. Shock waves & explosions

    CERN Document Server

    Sachdev, PL

    2004-01-01

    Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...

  20. Wave Generation Theory

    DEFF Research Database (Denmark)

    Frigaard, Peter; Høgedal, Michael; Christensen, Morten

    The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered.......The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered....

  1. Standing wave tube electro active polymer wave energy converter

    Science.gov (United States)

    Jean, Philippe; Wattez, Ambroise; Ardoise, Guillaume; Melis, C.; Van Kessel, R.; Fourmon, A.; Barrabino, E.; Heemskerk, J.; Queau, J. P.

    2012-04-01

    Over the past 4 years SBM has developed a revolutionary Wave Energy Converter (WEC): the S3. Floating under the ocean surface, the S3 amplifies pressure waves similarly to a Ruben's tube. Only made of elastomers, the system is entirely flexible, environmentally friendly and silent. Thanks to a multimodal resonant behavior, the S3 is capable of efficiently harvesting wave energy from a wide range of wave periods, naturally smoothing the irregularities of ocean wave amplitudes and periods. In the S3 system, Electro Active Polymer (EAP) generators are distributed along an elastomeric tube over several wave lengths, they convert wave induced deformations directly into electricity. The output is high voltage multiphase Direct Current with low ripple. Unlike other conventional WECs, the S3 requires no maintenance of moving parts. The conception and operating principle will eventually lead to a reduction of both CAPEX and OPEX. By integrating EAP generators into a small scale S3, SBM achieved a world first: direct conversion of wave energy in electricity with a moored flexible submerged EAP WEC in a wave tank test. Through an extensive testing program on large scale EAP generators, SBM identified challenges in scaling up to a utility grid device. French Government supports the consortium consisting of SBM, IFREMER and ECN in their efforts to deploy a full scale prototype at the SEMREV test center in France at the horizon 2014-2015. SBM will be seeking strategic as well as financial partners to unleash the true potentials of the S3 Standing Wave Tube Electro Active Polymer WEC.

  2. Gravitational waves

    CERN Document Server

    Thorne, K S

    1995-01-01

    This article reviews current efforts and plans for gravitational-wave detection, the gravitational-wave sources that might be detected, and the information that the detectors might extract from the observed waves. Special attention is paid to (i) the LIGO/VIRGO network of earth-based, kilometer-scale laser interferometers, which is now under construction and will operate in the high-frequency band (1 to 10^4 Hz), and (ii) a proposed 5-million-kilometer-long Laser Interferometer Space Antenna (LISA), which would fly in heliocentric orbit and operate in the low-frequency band (10^{-4} to 1 Hz). LISA would extend the LIGO/VIRGO studies of stellar-mass (M\\sim2 to 300 M_\\odot) black holes into the domain of the massive black holes (M\\sim1000 to 10^8M_\\odot) that inhabit galactic nuclei and quasars.

  3. Plane waves as tractor beams

    CERN Document Server

    Forgács, Péter; Romańczukiewicz, Tomasz

    2013-01-01

    It is shown that in a large class of systems plane waves can act as tractor beams: i.e., an incident plane wave can exert a pulling force on the scatterer. The underlying physical mechanism for the pulling force is due to the sufficiently strong scattering of the incoming wave into another mode having a larger wave number, in which case excess momentum is created behind the scatterer. Such a tractor beam or negative radiation pressure effect arises naturally in systems where the coupling between the scattering channels is due to Aharonov-Bohm (AB) gauge potentials. It is demonstrated that this effect is also present if the AB potential is an induced, ("artificial") gauge potential such as the one found in J. March-Russell, J. Preskill, F. Wilczek, Phys. Rev. Lett. 58 2567 (1992).

  4. Whistler wave ducting caused by antenna actions

    International Nuclear Information System (INIS)

    Whistler waves launched from an antenna damp away for small incident power. With increasing power, undamped nondiverging waves (the ducted waves) are observed, together with a field-aligned density trough and electron heating. However, the density trough is found not only in the wave propagation regime (ω/ω/sub c/1). This implies that the density depression is mainly created by the effect of the antenna near-zone field rather than by the wave radiation pressure. The intense localized field near the antenna gives rise to electron heating which leads to the density trough. The ducting of antenna-launched whistler waves has been explained as a filamentation instability in terms of nonlinear wave-plasma interactions

  5. Springing response due to bidirectional wave excitation

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena

    2005-01-01

    -linear (second order) high frequency springing analyses with unidirectional wave excitation are much more scattered. Some of the reasons are different level of wave excitation accounted in the different Executive Summary ivtheories, inclusion of additional hydrodynamic phenomena e.g. slamming in the time......Springing is a two-node high frequency resonant vibration of the hull induced by unsteady wave pressure field on the hull. The excitation force may be rather complex - any wave activity (or their combination) in the Ocean matching the two-node natural hull vibration frequency. With some ship...... theories deal with the unidirectional wave excitation. This is quite standard. The problem is how to include more than one directional wave systems described by a wave spectrum with arbitrary heading. The main objective of the present work has been to account for the additional second-order springing...

  6. Magnetoacoustic Waves in the Solar Stratified Atmosphere

    Institute of Scientific and Technical Information of China (English)

    郑惠南; 王水; 吴式灿; 李波

    2001-01-01

    The propagation of magnetoacoustic waves in the solar atmosphere consisting of the photosphere, chromosphere and corona has been studied numerically by time-dependent multi-dimensional magnetohydrodynamic (MHD) simulation. Pressure disturbances are introduced at the bottom of the chromosphere and at the bottom of the corona, respectively. The computational results show that incurred fast and slow MHD waves propagate away from the source of the disturbances. The fast MHD wave propagates as an expansive wave in the radial direction, while the slow one steepens and it may evolve into a slow shock. We suggest that the extreme ultraviolet imaging telescope wave observed by the SOHO and Moreton wave are a fast MHD wave propagating in the corona and in the chromosphere, respectively.

  7. Pressure transient in liquid lines

    International Nuclear Information System (INIS)

    The pressure surge that results from a step change of flow in liquid pipelines, commonly known as water hammer, was analyzed by an eigenfunction method. A differential-integral Pressure wave equation and a linearized velocity equation were derived from the equations of mass and momentum conservation. Waveform distortion due to viscous dissipation and pipe-wall elastic expansion is characterized by a dimensionless transmission number K. The pressure surge condition, which is mathematically singular, was used in the solution procedure. The exact solutions from numerical calculation of the differential-integral equation provide a complete Pressure transient in the pipe. The problems are also calculated With the general-purpose computer code COMMIX, which solves the exact mass conservation equation and Navier-Stokes equations. These solutions were compared with published experimental results, and agreement was good. The effect of turbulence on the pressure transient is discussed in the light of COMMIX calculational results

  8. Heat precursor of the blast wave in weakly ionized plasma

    International Nuclear Information System (INIS)

    Electron temperature distributions in weakly ionized plasma are numerically calculated for the blast-type shock waves. Comparison with experimental data obtained in glow discharge in Ar, as well as in shock waves with constant pressure in HF low-pressure discharge plasma in air is made

  9. Pressure transducers

    International Nuclear Information System (INIS)

    Strain gauges pressure transducers types are presented. Models, characteristics and calibration procedures were also analysed. Initially, a theoretical study was accomplished to evaluate metallic alloys behavior on sensing elements manufacturing, and diaphragm was used as deflecting elements. Electrical models for potenciometric transducers were proposed at the beginning and subsequently comproved according our experiments. Concerning bridge transducers, existing models confirmed the conditions of linearity and sensitivity related to the electrical signal. All the work done was of help on the calibration field and pressure measurements employing unbounded strain gauge pressure transducers

  10. Effects of Low Frequency Sound Waves of Different Timbres on Weizhong Microcirculation and Transcutaneous Oxygen Partial Pressure of Healthy People%不同音色低频声波对健康人委中微循环及经皮氧分压的影响

    Institute of Scientific and Technical Information of China (English)

    王普艳; 陈雪; 许继宗; 汤心钰; 张波; 李玉华; 司英奎; 李洁; 杨戈; 李新艳; 刘亚峰

    2014-01-01

    目的:观察频率相同的情况下不同音色的低频声波对健康人委中微循环及经皮氧分压的影响,探讨体感音乐疗法的作用机理。方法在30例健康人的委中附近,播放频率相同(98.00 Hz)、音色不同(分别模拟古琴、箫、埙、钟、鼓的音色)的低频声波,各音色分别播放至60、120、180、240、300 s时,以激光多普勒血流仪分析委中微循环及经皮氧分压的变化。结果钟、鼓、箫的音色声波使委中微循环量、经皮氧分压逐渐升高,且鼓>钟>箫;埙、古琴的音色声波使委中微循环量、经皮氧分压逐渐降低,且埙递减大于古琴。同一时点组间比较,鼓音色组高于其他组(P<0.01)。结论不同音色的低频声波五行属性不同,频谱成分不同,可对穴位产生不同影响。%Objective To discuss different effects of low frequency sound waves of different timbres on microcirculation and transcutaneous oxygen partial pressure of Weizhong (BL40) of healthy people;To study the mechanism of somatosensory music therapy. Methods The same frequency (98.00 Hz), different timbres (sounds of guqin, flute, ocarina, bell, and drum were simulated) low frequency sound waves were played near Weizhong acupoint of 30 healthy persons. Laser Doppler flowmetry was used to analyze microcirculation and the changes of transcutaneous oxygen pressure of meridian acupoints, when each timbre was played for 60, 120, 180, 240 and 300 s. Results Sound waves of bell, drum, and flute made point microcirculation and transcutaneous oxygen pressure gradually increase, and the influence of drum>bell>flute;timbre waves of ocarina and guqin made the point microcirculation and transcutaneous oxygen pressure decrease gradually decrease, and the decrease of ocarina was more significant than that of guqin. In the same time point, sound waves of bell made point microcirculation and transcutaneous oxygen pressure increase more than the other

  11. Noise Evaluation Technique Based on Surface Pressure

    DEFF Research Database (Denmark)

    Fischer, Andreas

    In this chapter the relevant theory for the understanding of TE noise modeling is collected. It contains the acoustic formulations of [31] and [57]. Both give a relation for the far field sound pressure in dependence of the frequency wave number spectral density of the pressure on the airfoil...

  12. Cooldown Measurements in a Standing Wave Thermoacoustic Refrigerator

    CERN Document Server

    Dhuley, R C

    2016-01-01

    Thermoacoustic Refrigerators (TARs) use acoustic power to generate cold temperatures. Apart from the operating frequency and the mean temperature of the working medium, the charging pressure and the dynamic pressure in the TAR govern its attainable cold temperature. The effect of charging pressure on the dynamic pressure in a loudspeaker driven gas filled standing wave column has been well understood. The present work aims to investigate the effect of charging pressure on the cold end temperature of a standing wave TAR. The cold end temperature lift and the cooldown for several changing pressures are reported. The effect of vacuum around the cold end on the TAR performance is also presented.

  13. Design of a 1.5MW Wave Dragon

    DEFF Research Database (Denmark)

    Soerensen, H. C.; Friis-Madsen, E.; Parmeggiani, Stefano

    2013-01-01

    The paper discusses results of regular wave tests conducted at the University of Naples “Federico II” with the purpose of investigating the qualitative features and the magnitude of the wave pressures acting onto the front face of a Seawave Slot-Cone Generator (SSG). Various wave conditions have ...

  14. Standing Sound Waves in Air with DataStudio

    Science.gov (United States)

    Kraftmakher, Yaakov

    2010-01-01

    Two experiments related to standing sound waves in air are adapted for using the ScienceWorkshop data-acquisition system with the DataStudio software from PASCO scientific. First, the standing waves are created by reflection from a plane reflector. The distribution of the sound pressure along the standing wave is measured. Second, the resonance…

  15. Incident Wave Climate at the OWC Pico Plant

    DEFF Research Database (Denmark)

    Le Crom, I.; Cabrera Bermejo, H.; Pecher, Arthur;

    2011-01-01

    The aim of the study is to retrieve the incident wave information that coincides with former Pico plant operation periods. The recent implementation of a directional pressure sensor for wave measurement as well as the recovery of the data gathered by a directional wave rider buoy allowed embarking...

  16. [Individual pressure tolerance--a "target" pressure?].

    Science.gov (United States)

    Bogdănici, C; Vancea, P P

    1999-01-01

    In literature there are many meanings for the limit between normal and pathological intraocular pressure: "normative pressure", "critic pressure", "individual tolerance pressure" and "target pressure". The aim of this paper is to demonstrate that these terms are synonymous. PMID:10756882

  17. Shallow Water Waves and Solitary Waves

    CERN Document Server

    Hereman, Willy

    2013-01-01

    Encyclopedic article covering shallow water wave models used in oceanography and atmospheric science. Sections: Definition of the Subject; Introduction and Historical Perspective; Completely Integrable Shallow Water Wave Equations; Shallow Water Wave Equations of Geophysical Fluid Dynamics; Computation of Solitary Wave Solutions; Numerical Methods; Water Wave Experiments and Observations; Future Directions, and Bibliography.

  18. Wave Dragon

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    På foranledning af Löwenmark F.R.I, er der udført numeriske beregninger af Wave Dragons (herefter WD) armes effektivitet for forskellige geometriske udformninger. 5 geometriske modeller, hvor WD's arme er forkortet/forlænget er undersøgt for 3 forskellige drejninger af armene. I alt er 15...

  19. Pressure Drop

    Science.gov (United States)

    Lawson, Mike

    2010-01-01

    Mike Lawson briefly discussed pressure drop for aerospace applications and presented short stories about adventures experienced while working at NASA and General Dynamics, including exposure to technologies like the Crew and Equipment Translation Aid (CETA) cart and the SWME.

  20. Pressure sensor

    Energy Technology Data Exchange (ETDEWEB)

    Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.

    2015-09-29

    Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  1. Chapter 4: Pulsating Wave Loads Section 4.3: 3D Effects Force Reduction of Short-Crested Non-Breaking Waves on Caissons

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Liu, Zhou

    1999-01-01

    The effect of wave short-crestedness on the horizontal wave force on a caisson is twofold. The one is the force reduction due to the reduction of point pressure on the caisson, named point-pressure reduction. The other is the force reduction due to the fact that the peak pressures do not occur si...

  2. Relationship between Blood Pressure Variability and Brachial-ankle Pulse Wave Velocity in Hypertensive Patients%高血压患者血压变异性与肱踝脉搏波传导速度的关系研究

    Institute of Scientific and Technical Information of China (English)

    王宁; 余振球

    2012-01-01

    目的 探讨高血压患者血压变异性与肱踝脉搏波传导速度(brachial-ankle pulse wave velocity,baPWV)的关系.方法 选择原发性高血压患者313例,根据baPWV值,将其分为两组:baPWV正常组(baPWV<1 400 cm/s)87例,baPWV升高组(baPWV≥1 400 cm/s)226例.比较两组患者年龄、性别构成比、血糖、血脂、血肌酐、血尿酸、血压及血压变异性.结果 单因素分析显示,baPWV升高组患者的年龄、胆固醇、低密度脂蛋白、高密度脂蛋白、24 h平均收缩压、24 h收缩压变异性及24 h舒张压变异性均高于baPWV正常组(P<0.05),代入Logistic回归分析显示年龄、胆固醇、高密度脂蛋白、24 h平均收缩压、24 h收缩压变异性及24 h舒张压变异性与baPWV呈相关性(P<0.05).结论 高血压患者24 h收缩压变异性和舒张压变异性是影响baPWV的独立因素.%Objective To explore the relationship between blood pressure variability and brachial - ankle pulse wave velocity ( baPWV ) in hypertensive patients. Methods Totally 313 patients with essential hypertension were enrolled in this study and divided into normal baPWV group ( baPWV < 1 400cm/s, n =87 ) and high baPWV group ( baPWV≥1 400cm/s, n= 226 ) based on their baPWV values. Age, gender ratio, fasting blood glucose ( FBG ), blood lipids including cholesterol ( CHO ), low - density lipoprotein cholesterol ( LDL ), and high - density lipoprotein cholesterol ( HDL ), serum creatinine ( Cr ), blood uric acid ( UA ), blood pressure, and blood pressure variability were measured. Results Univariate analysis revealed that age, CHO, LDL, HDL, 24 - hour systolic blood pressure, 24 - hour systolic blood pressure variability, and 24 -hour diastolic blood pressure variability were significantly higher in high baPWV group than in normal baPWV group ( P <0. 05 ). Multivariate Logistic regression analysis indicated that age, CHO, HDL, 24 -hour systolic blood pressure, 24 -hour systolic blood pressure variability

  3. Age dependency of central and peripheral systolic blood pressures: Cross-sectional and longitudinal observations in European populations

    OpenAIRE

    Wojciechowska, Wiktoria; Stolarz-Skrzypek, Katarzyna; Tikhonoff, Valérie; Richart, Tom; Seidlerová, Jitka; Cwynar, Marcin; Thijs, Lutgarde; Li, Yan; Kuznetsova, Tatiana; Filipovský, Jan; Casiglia, Edoardo; Grodzicki, Tomasz; Kawecka-Jaszcz, Kalina; O'Rourke, Michael; Staessen, Jan A.

    2012-01-01

    Abstract Background. As arteries become stiffer with ageing, reflected waves move faster and augment late systolic pressure. We investigated the age dependency of peripheral and central systolic pressure, pressure amplification (peripheral systolic blood pressure - central systolic blood pressure), and peripheral and central systolic augmentation (maximal systolic pressure minus the first peak of the pressure wave). Methods. We randomly recruited 1420 White Europeans (mean age, 41.7 years). p...

  4. Fast Magnetosonic Waves Driven by Gravitational Waves

    OpenAIRE

    Papadopoulos, D.; Stergioulas, N.; Vlahos, L.; Kuijpers, J.

    2001-01-01

    The propagation of a gravitational wave (GW) through a magnetized plasma is considered. In particular, we study the excitation of fast magnetosonic waves (MSW) by a gravitational wave, using the linearized general-relativistic hydromagnetic equations. We derive the dispersion relation for the plasma, treating the gravitational wave as a perturbation in a Minkowski background space-time. We show that the presence of gravitational waves will drive magnetosonic waves in the plasma and discuss th...

  5. Gas explosion characterization, wave propagation

    International Nuclear Information System (INIS)

    A number of experiments have been performed with blast waves arising from the ignition of homogeneous and well defined mixtures of methane, oxygen and nitrogen, contained within spherical balloons with controlled initial dimensions. The maximum flame speed has been of the order of 100 m/s, resulting in positive peak pressures of 50-100x102Pa in 5-10 m distance from the source. The explosion process was found to be reasonable symmetric. The attenuation of the blast wave due to vegetation and the influence of obstacles as banks, walls and houses on the pressure field have been investigated. The presence of the bank and the house was felt in a zone with a length corresponding to a typical dimension of the obstacles, whereas the overall pressure field is shown to be unaffected by the the type of obstacles and vegetation investigated. For the wall and house, reflection factors have been established, and some variation over the surface has been measued. The scatter of the pressure measurements is estimated for stable, neutral and unstable atmospheric conditions, and an attempt to determine the ground reflection factor has been performed. Finally the accelerations of a house exposed to the blast wave have been examined. (author)

  6. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter; Brorsen, Michael

    Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....

  7. Gravitational waves

    CERN Document Server

    Ciufolini, I; Moschella, U; Fre, P

    2001-01-01

    Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.

  8. Shock Waves

    CERN Document Server

    Jiang, Z

    2005-01-01

    The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.

  9. Slosh wave excitation and stability of spacecraft fluid systems

    Science.gov (United States)

    Hung, R. J.; Lee, C. C.; Leslie, F. W.

    1990-01-01

    The instability of liquid and gas interface can be induced by the pressure of longitudinal and lateral accelerations, vehicle vibration, and rotational fields of spacecraft in a microgravity environment. Characteristics of slosh waves excited by the restoring force field of gravity jitters have been investigated. Results show that lower frequency gravity jitters excite slosh waves with higher ratio of maximum amplitude to wave length than that of the slosh waves generated by the higher frequency gravity jitters.

  10. Propagation characteristics of electromagnetic waves along a dense plasma filament

    Energy Technology Data Exchange (ETDEWEB)

    Nowakowska, H.; Zakrzewski, Z. [Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk (Poland); Moisan, M. [Departement de Physique, Universite de Montreal, Montreal, PQ (Canada)

    2001-05-21

    The characteristics of electromagnetic waves propagating along dense plasma filaments, as encountered in atmospheric pressure discharges, are examined in the microwave frequency range; they turn out to be surface waves. Results of numerical calculations of the dependence of the phase and attenuation coefficients on the plasma parameters are presented. In the limit of large electron densities, this guided wave is akin to a Sommerfeld wave and the propagation can be described in an analytical form. (author)

  11. Spherical Shock-wave-2D Surface Interaction

    OpenAIRE

    Pavel Viktorovich Bulat; Mikhail Vladimirovich Silnikov; Mikhail Viktorovich Chernyshev

    2015-01-01

    The purpose of research is the study of the transformation of the shock-wave configuration, caused by the reflection of a spherical shock wave from a flat surface. The blast of HE charge heightened over earth surface leads to formation of shock-wave triple configuration. In spite of static pressure equality of gas streams after the different wave sequences, the velocities, densities and other flow parameters are not equal. In view of the fact that flow velocities are sufficiently different, w...

  12. Acoustic Remote Sensing of Rogue Waves

    Science.gov (United States)

    Parsons, Wade; Kadri, Usama

    2016-04-01

    We propose an early warning system for approaching rogue waves using the remote sensing of acoustic-gravity waves (AGWs) - progressive sound waves that propagate at the speed of sound in the ocean. It is believed that AGWs are generated during the formation of rogue waves, carrying information on the rogue waves at near the speed of sound, i.e. much faster than the rogue wave. The capability of identifying those special sound waves would enable detecting rogue waves most efficiently. A lot of promising work has been reported on AGWs in the last few years, part of which in the context of remote sensing as an early detection of tsunami. However, to our knowledge none of the work addresses the problem of rogue waves directly. Although there remains some uncertainty as to the proper definition of a rogue wave, there is little doubt that they exist and no one can dispute the potential destructive power of rogue waves. An early warning system for such extreme waves would become a demanding safety technology. A closed form expression was developed for the pressure induced by an impulsive source at the free surface (the Green's function) from which the solution for more general sources can be developed. In particular, we used the model of the Draupner Wave of January 1st, 1995 as a source and calculated the induced AGW signature. In particular we studied the AGW signature associated with a special feature of this wave, and characteristic of rogue waves, of the absence of any local set-down beneath the main crest and the presence of a large local set-up.

  13. Cooldown Measurements in a Standing Wave Thermoacoustic Refrigerator

    OpenAIRE

    Dhuley, R. C.; Atrey, M. D.

    2016-01-01

    Thermoacoustic Refrigerators (TARs) use acoustic power to generate cold temperatures. Apart from the operating frequency and the mean temperature of the working medium, the charging pressure and the dynamic pressure in the TAR govern its attainable cold temperature. The effect of charging pressure on the dynamic pressure in a loudspeaker driven gas filled standing wave column has been well understood. The present work aims to investigate the effect of charging pressure on the cold end tempera...

  14. Magnetospheric ULF waves driven by external sources

    CERN Document Server

    Agapitov, Oleksiy

    2015-01-01

    The multi-spacecraft missions (Cluster and THEMIS) observations allowed to collect large data base for Ultra Low Frequency (ULF) waves properties, their localization, and sources. Mainly here we focused on these recent results. Studying of the source and characteristics of ULF waves can help in the understanding of the interaction and energy transport from solar wind to the magnetosphere. Here we present peculiarities of ULF waves generated by different solar wind phenomenon: surface magnetopause instability, magnetosphere cavity modes and solar wind dynamic pressure sudden impulses (SI) penetration into the magnetosphere. Permanent observations of ULF waves involve existence of the permanent source and, as the previous studies showed, the contributions to Pc4-Pc5 ULF wave power from the external sources are larger than the contribution from internal magnetosphere sources. The Kelvin-Helmholtz instability (KHI) can generate on the magnetosphere flanks classical ULF resonant waves with spatially localized ampl...

  15. Compaction Waves in Granular HMX

    Energy Technology Data Exchange (ETDEWEB)

    E. Kober; R. Menikoff

    1999-01-01

    Piston driven compaction waves in granular HMX are simulated with a two-dimensional continuum mechanics code in which individual grains are resolved. The constitutive properties of the grains are modeled with a hydrostatic pressure and a simple elastic-plastic model for the shear stress. Parameters are chosen to correspond to inert HMX. For a tightly packed random grain distribution (with initial porosity of 19%) we varied the piston velocity to obtain weak partly compacted waves and stronger fully compacted waves. The average stress and wave speed are compatible with the porous Hugoniot locus for uni- axial strain. However, the heterogeneities give rise to stress concentrations, which lead to localized plastic flow. For weak waves, plastic deformation is the dominant dissipative mechanism and leads to dispersed waves that spread out in time. In addition to dispersion, the granular heterogeneities give rise to subgrain spatial variation in the thermodynamic variables. The peaks in the temperature fluctuations, known as hot spots, are in the range such that they are the critical factor for initiation sensitivity.

  16. Stochastic excitation of seismic waves by a hurricane

    Science.gov (United States)

    Tanimoto, Toshiro; Valovcin, Anne

    2015-11-01

    We investigate how a tropical cyclone (Hurricane Isaac in 2012) generated seismic ground motions using seismic and barometric data from the Earthscope network. In the frequency band 0.01-0.02 Hz, seismic and surface pressure amplitudes show a systematic decreasing trend with distance from the center of the hurricane. However, the decreasing rate is much higher for seismic waves than for pressure. We develop a stochastic theory of seismic wave excitation by surface pressure that connects these two observed data sets; surface pressure is the excitation source, and seismic data are the resulting seismic wave field. This theory contains two parameters: (i) the pressure power spectral density (Sp) and (ii) the correlation length in the pressure field (L). Using the formula, we solve for the spatial variation of correlation lengths. The solution shows that longer correlation lengths in pressure are near the hurricane center. Because seismic wave excitation is proportional to L2Sp, the excitation for seismic waves becomes effectively more localized closer to the center. Also, the scaling relation between L and Sp leads to an excitation source which is approximately proportional to the third power of surface pressure. This centralized source for seismic wave excitation explains why the decreasing rate with distance is higher for seismic data than for barometric data. However, this spatial coherence mechanism may not be the only process, as strong turbulence near the center may cause transient bursts of pressure and also induce higher temporal correlation. These alternative mechanisms need to be carefully analyzed in the future.

  17. Shock wave generated by high-energy electric spark discharge

    Science.gov (United States)

    Liu, Qingming; Zhang, Yunming

    2014-10-01

    Shock wave generated by electric spark discharge was studied experimentally and the shock wave energy was evaluated in this paper. A pressure measurement system was established to study the pressure field of the electric spark discharge process. A series of electric spark discharge experiments were carried out and the energy of the electric spark used in present study was in the range of 10 J, 100 J, and 1000 J, respectively. The shock wave energy released from the electric spark discharge process was calculated by using the overpressure values at different measurement points near the electric spark discharge center. The good consistency of shock wave energies calculated by pressure histories at different measuring points in the same electric spark discharge experiment illustrates the applicability of the weak shock wave theory in calculating the energy of shock wave induced by electric spark discharge process. The result showed that shock wave formed at the initial stage of electric spark discharge process, and the shock wave energy is only a little part of electric spark energy. From the analysis of the shock wave energy and electric spark energy, a good linear relationship between shock wave energy and electric spark energy was established, which make it possible to calculate shock wave energy by measuring characteristic parameters of electric spark discharge process instead of shock wave. So, the initiation energy of direct initiation of detonation can be determined easily by measuring the parameters of electric spark discharge process.

  18. Chemical pressure

    OpenAIRE

    Hauser, Andreas; Amstutz, Nahid; Delahaye, Sandra; Sadki, Asmaâ; Schenker, Sabine; Sieber, Regula; Zerara, Mohamed

    2002-01-01

    The physical and photophysical properties of three classic transition metal complexes, namely [Fe(bpy)3]2+, [Ru(bpy)3]2+, and [Co(bpy)3]2+, can be tuned by doping them into a variety of inert crystalline host lattices. The underlying guest-host interactions are discussed in terms of a chemical pressure.

  19. Impact of Wave Dragon on Wave Climate

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Tedd, James; Kramer, Morten;

    This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator....

  20. Effects of Ambient Pressure on Bubble Characteristics

    Institute of Scientific and Technical Information of China (English)

    卢新培; 刘明海; 江中和; 潘垣

    2002-01-01

    The effects of the ambient pressure Pambient on the bubble characteristics of pulsed discharge in water are investigated. The simulation results show that, when Pambient increases from 1 atm to 100 atm, the bubble radius R decreases from 4cma to 7mm, and its pulsation period decreases frown 8ms to 0.2ms. The results also show that the peak pressure of the first shock wave is independent of Pambient, but the peak pressure of the second shock wave caused by the bubble re-expansion decreases when Pambient increases. On the other hand, the larger the ambient pressure, the larger the peak pressure of the plasma in the bubble, while the plasma temperature is independent of Pambient.

  1. Vertical variations of wave-induced radiation stress tensor

    Institute of Scientific and Technical Information of China (English)

    Zheng Jinhai; Yan Yixin

    2001-01-01

    The distributions of the wave-induced radiation stress tensor over depth are studied by using the linear wave theory, which are divided into three regions, i.e., above the mean water level, below the wave trough level, and between these two levels. The computational expressions of the wave-induced radiation stress tensor at the arbitrary wave angle are established by means of the Eulerian coordinate transformation, and the asymptotic forms for deep and shallow water are also presented. The vertical variations of a 30° incident wave-induced radiation stress tensor in deep water, intermediate water and shallow water are calculated respectively. The following conclusions are obtained from computations.The wave-induced radiation stress tensor below the wave trough level is induced by the water wave particle velocities only, whereas both the water wave particle velocities and the wave pressure contribute to the tensor above the wave trough level. The vertical variations of the wave-induced radiation stress tensor are influenced substantially by the velocity component in the direction of wave propagation. The distributions of the wave-induced radiation stress tensor over depth are nonuniform and the proportion of the tensor below the wave trough level becomes considerable in the shallow water. From the water surface to the seabed, the reversed variations occur for the predominant tensor components.

  2. Geometrical vs wave optics under gravitational waves

    CERN Document Server

    Angélil, Raymond

    2015-01-01

    We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely null geodesics and Maxwell's equations, or, geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics, rather than solving Maxwell's equations directly for the fields, as in most previous approaches, we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic...

  3. 3-D Effects Force Reduction of Short-Crested Non-Breaking Waves on Caissons

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Z.

    1998-01-01

    The effect of wave short-crestedness on the horizontal wave force on a caisson is twofold. The one is the force reduction due to the reduction of point pressure on the caisson, named point-pressure reduction. The other is the force reduction due to the fact that the peak pressures do not occur si...

  4. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    Science.gov (United States)

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere. PMID:24606251

  5. Pressurized hopper

    International Nuclear Information System (INIS)

    A Secure Automated Fuel Fabrication Line is being developed to reduce personnel exposure and to improve safeguards. Fertile and fissile fuel powders are blended in the line for making fuel pellets. A pressurized hopper was developed for use not only as a blender, but also as a storage and feeding device. It works with or without injection tubes to produce a well-blended powder with reduced agglomerate population. Results of blending experiments using dry Kaolin clay and Tempra pigment are given

  6. Wave Motion of Smoke in Subway Fire Environment

    Institute of Scientific and Technical Information of China (English)

    WU Wenzhong; YOU Shijun

    2009-01-01

    Wave motion in subway or tunnel fire is an intrinsic property of smoke.As the pressure of smoke changes with mass of certain power,a kind of linear wave equation for smoke can be derived from the conservation equations of its mass and momentum,under nearly homogeneous zone assumption.The smoke movement of 4 subway fires was simulated with Airpak.By fitting the pressure-mass functions to the simulated data,wave equations of the smoke were derived,and wave motions of smoke were thus validated.It can be seen that smoke wave is a kind of mass wave,whose velocity is inversely proportional to smoke mass,and wave of a bigger fire propagates slower.

  7. Breakdown of Acceleration Waves in Radiative Magneto-fluids

    Directory of Open Access Journals (Sweden)

    Arisudan Rai

    2003-10-01

    Full Text Available The problem of propagation of acceleration waves in an optically thick medium of electrically conducting fluid has been dealt with. During propagation of the waves, the effects of radiation pressure, radiation energy density, and heat transfer through thermal radiation and thermal conduction have been taken into account. The growth equation for the variation of amplitude of the wave has been derived and solved. It has been concluded that all the compressive waves with initial amplitudes greater than a critical value will grow and terminate into a shock wave due to nonlinear steepening, while all expansion waves will decay out. Acritical stage, when the compressive wave will either grow or decay, has also been discussed. The effects of radiation pressure and radiative heat transfer on the shock formation have been discussed and analysed.

  8. Depth-dependent expression of obliquely incident wave induced radiation stress

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The vertically dependent expressions of obliquely incident waves induced radiation stress are derived by use of the second order Stokes wave theory within three regions of the water column, that is, above the mean water level, below the wave trough level, and between these two levels. Computations indicate that the wave-induced radiation stress below the wave trough level is from the water wave particle velocity only, whereas both the water wave particle velocity and the wave pressure contribute to the tensor above the wave trough level; the vertical variations of the wave-induced radiation stress are influenced substantially by the velocity component in the direction of wave propagation; the distributions of the wave-induced radiation stress tensor over depth are non-uniform and the proportion of the tensor below the wave trough level becomes considerable in the shallow water; from water surface to seabed, the reversed variations occur for the predominant tensor components.

  9. Efficient Wave Energy Amplification with Wave Reflectors

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Frigaard, Peter Bak

    2002-01-01

    Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130......-140%. In the paper a procedure for calculating the efficiency and optimizing the geometry of wave reflectors are described, this by use of a 3D boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power...... benifit for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....

  10. Environmental data collection using autonomous Wave Gliders

    OpenAIRE

    Hermsdorfer, Kathryn M.

    2014-01-01

    Approved for public release; distribution is unlimited The Sensor Hosting Autonomous Remote Craft (SHARC), also known as Wave Glider, is an autonomous ocean vehicle powered by wave motion. This slow-moving platform makes long-term deployments and environmental data collection feasible, especially in data sparse regions or hazardous environments. The standard SHARC hosts a meteorological station (Airmar PB200) that samples air pressure, temperature, wind speed and wind direction at 1.12 m. ...

  11. Feasibility of a blast wave attenuation structure

    OpenAIRE

    Hartmann, Dale Richard

    1997-01-01

    This thesis begins with an overview of bombings in the United States, followed by the introduction of the Rankine Hugoniot equations for blast wave pressure. The subsequent chapters develop the one dimensional and two dimensional Euler equations. These equations are the solved using the MacCormack finite difference algorithm. The basis of the investigation then begins by placing pole, shear plate and wedge obstacles in the path of the blast wave. The results of these simulations are interpret...

  12. Transformational acoustic metamaterials based on pressure gradients

    OpenAIRE

    García Meca, Carlos; Carloni, S; Barceló, Carlos; Sánchez-Dehesa Moreno-Cid, José; Martínez Abietar, Alejandro José

    2014-01-01

    We apply a homogenization process to the acoustic velocity potential wave equation. The study of various examples shows that the resulting effective properties are different from those of the homogenized pressure wave equation for the same underlying acoustic parameters. A careful analysis reveals that a given set of inhomogeneous parameters represents an entirely different physical system depending on the considered equation. Our findings unveil a different way of tailoring acoustic properti...

  13. Underwater shock measurements using a ruby pressure gauge

    International Nuclear Information System (INIS)

    The measurement of the temporal profile of the pressure in a shock wave propagating underwater and interacting with a nearby metal plate is presented. Pressures are deduced from the time-resolved fluorescence of a submillimeter ruby crystal mounted on an optical fiber tip. The measured pressures agree with finite-element code predictions, which model the production and propagation of the shock wave. These measurements are useful to evaluate shock-induced phenomena that are strongly dependent on the temporal profile of a shock wave, in small-scale testing, and in substantiating finite-element code predictions. (c) 2000 American Institute of Physics

  14. Blood Pressure Quiz

    Science.gov (United States)

    ... page please turn Javascript on. Feature: High Blood Pressure Blood Pressure Quiz Past Issues / Fall 2011 Table of Contents ... About High Blood Pressure / Treatment: Types of Blood Pressure Medications / Blood Pressure Quiz Fall 2011 Issue: Volume 6 Number ...

  15. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... right away. continue How Do Doctors Measure Blood Pressure? Blood pressure readings are fast and painless. Blood pressure ... same age, height, and gender have lower blood pressure. Blood pressure between 90% and 95% of the normal ...

  16. Blood pressure measurement

    Science.gov (United States)

    Diastolic blood pressure; Systolic blood pressure; Blood pressure reading; Measuring blood pressure ... or your health care provider will wrap the blood pressure cuff snugly around your upper arm. The ...

  17. On output measurements via radiation pressure

    DEFF Research Database (Denmark)

    Leeman, S.; Healey, A.J.; Forsberg, F.; Jensen, J.A.

    It is shown, by simple physical argument, that measurements of intensity with a radiation pressure balance should not agree with those based on calorimetric techniques. The conclusion is ultimately a consequence of the circumstance that radiation pressure measurements relate to wave momentum, while...... calorimetric methods relate to wave energy. Measurements with some typical ultrasound fields are performed with a novel type of hydrophone, and these allow an estimate to be made of the magnitude of the discrepancy to be expected between the two types of output measurement in a typical case....

  18. Noninvasive blood pressure measurement in large vessels

    International Nuclear Information System (INIS)

    Pulse pressure in the aorta was evaluated by the measurement of pulse wave velocity (PWV) and blood flow velocity (BFV). PWV reflects the elasticity of the vessel and was determined by a time-of-flight method. BFV was measured by analyzing the change of magnetization decay due to flow in multiecho experiments. If one neglects pulse wave reflections at vascular branch points and flow resistance due to blood viscosity, pulse pressure is proportional to PWV and BFV. Noninvasive MR imaging measurements were obtained in 12 patients, all of whom underwent correlative arterial catheterization. Values varied between 35 and 100 mm Hg. The results demonstrated a high correlation between the two methods

  19. Pulse Wave Propagation in the Arterial Tree

    Science.gov (United States)

    van de Vosse, Frans N.; Stergiopulos, Nikos

    2011-01-01

    The beating heart creates blood pressure and flow pulsations that propagate as waves through the arterial tree that are reflected at transitions in arterial geometry and elasticity. Waves carry information about the matter in which they propagate. Therefore, modeling of arterial wave propagation extends our knowledge about the functioning of the cardiovascular system and provides a means to diagnose disorders and predict the outcome of medical interventions. In this review we focus on the physical and mathematical modeling of pulse wave propagation, based on general fluid dynamical principles. In addition we present potential applications in cardiovascular research and clinical practice. Models of short- and long-term adaptation of the arterial system and methods that deal with uncertainties in personalized model parameters and boundary conditions are briefly discussed, as they are believed to be major topics for further study and will boost the significance of arterial pulse wave modeling even more.

  20. Pressure transfer functions for interfacial fluid problems

    CERN Document Server

    Chen, Robin Ming; Walsh, Samuel

    2015-01-01

    We make a consistent derivation, from the governing equations, of the pressure transfer function in the small-amplitude Stokes wave regime and the hydrostatic approximation in the small-amplitude solitary water wave regime, in the presence of a background shear flow. The results agree with the well-known formulae in the zero vorticity case,but they incorporate the effects of vorticity through solutions to the Rayleigh equation. We extend the results to permit continuous density stratification and to internal waves between two constant-density fluids. Several examples are discussed.

  1. Smooth sandwich gravitational waves

    OpenAIRE

    Podolsky, J.

    1998-01-01

    Gravitational waves which are smooth and contain two asymptotically flat regions are constructed from the homogeneous pp-waves vacuum solution. Motion of free test particles is calculated explicitly and the limit to an impulsive wave is also considered.

  2. Watching Gravitational Waves

    OpenAIRE

    Moortgat, Joachim

    2001-01-01

    In the vicinity of merging neutron strar binaries or supernova remnants, gravitational waves can interact with the prevailing strong magnetic fields. The resulting partial conversion of gravitational waves into electromagnetic (radio) waves might prove to be an indirect way of detecting gravitational waves from such sources. Another interesting interaction considered in this article is the excitation of magnetosonic plasma waves by a gravitational wave passing through the surrounding plasma. ...

  3. Coronal Waves and Oscillations

    OpenAIRE

    Nakariakov Valery M.; Verwichte Erwin

    2005-01-01

    Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD) wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves), theoretical modelling of interactio...

  4. Exploratory experimental investigation of a wave propeller

    OpenAIRE

    Dane, Carl W.

    1992-01-01

    Approved for public release; distribution is unlimited A low-speed wind tunnel investigation was conducted to determine if a small secondary airfoil or wave propeller, oscillating in a rotary plunging motion, could significantly affect the airflow over a lifting airfoil surface to delay the onset of stall. The lifting airfoil shape was a NACA 66(215)-216, chosen for its chordwise pressure port instrumentation. Testing consisted of measuring the pressure distribution of the NACA 66(215)-2...

  5. Pressure dependence of positron annihilation in Si

    International Nuclear Information System (INIS)

    The pressure dependence of the electron-positron and the electron-electron momentum densities in silicon are studied. The observations that the electron-positron momentum density increases more rapidly with pressure than the electron-electron momentum density alone is explained in terms of increased positron penetration into the ion cores. The computational technique used here is based on the independent-particle model (IPM) coupled with the use of the electron pseudo-wave functions. (orig.)

  6. Shock wave compression of condensed matter a primer

    CERN Document Server

    Forbes, Jerry W

    2012-01-01

    This book introduces the core concepts of the shock wave physics of condensed matter, taking a continuum mechanics approach to examine liquids and isotropic solids. The text primarily focuses on one-dimensional uniaxial compression in order to show the key features of condensed matter’s response to shock wave loading. The first four chapters are specifically designed to quickly familiarize physical scientists and engineers with how shock waves interact with other shock waves or material boundaries, as well as to allow readers to better understand shock wave literature, use basic data analysis techniques, and design simple 1-D shock wave experiments. This is achieved by first presenting the steady one-dimensional strain conservation laws using shock wave impedance matching, which insures conservation of mass, momentum and energy. Here, the initial emphasis is on the meaning of shock wave and mass velocities in a laboratory coordinate system. An overview of basic experimental techniques for measuring pressure...

  7. Characteristics of Spherical Shock Wave and Circular Pulse Jet Generated by Discharge of Propagating Shock Wave at Open End of Tube

    Institute of Scientific and Technical Information of China (English)

    Tsukasa Irie; Tsuyoshi Yasunobu; Hideo Kashimura; Toshiaki Setoguchi; Kazuyasu Matsuo

    2003-01-01

    When the shock wave propagating in the straight circular tube reaches at the open end, the impulsive wave is generated by the emission of a shock wave from an open end, and unsteady pulse jet is formed near the open end behind the impulsive wave under the specific condition. The pulse jet transits to spherical shock wave with the increase in the strength of shock wave. The strength is dependent on the Mach number of shock wave, which attenuates by propagation distance from the open end. In this study, the mechanism of generating the unsteady pulse jet, the characteristics of the pressure distribution in the flow field and the emission of shock wave from straight circular tube which has the infinite flange at open end are analyzed numerically by the TVD method. Strength of spherical shock wave, relation of shock wave Mach number, distance decay of spherical shock wave and directional characteristics are clarified.

  8. Pressure History Measurement in a Microwave Beaming Thruster

    International Nuclear Information System (INIS)

    In a microwave beaming thruster with a 1-dimensional nozzle, plasma and shock wave propagates in the nozzle absorbing microwave power. In this study, pressure histories in the thruster are measured using pressure gauges. Measured pressure history at the thruster wall shows constant pressure during plasma propagation in the nozzle. The result of measurement of the propagating velocities of shock wave and plasma shows that both propagate in the same velocity. These result shows that thrust producing model of analogy of pulse detonation engine is successful for the 1D thruster

  9. An investigation of the modulation of capillary and short gravity waves in the open ocean

    Science.gov (United States)

    Evans, D. D.; Shemdin, O. H.

    1980-01-01

    A preliminary investigation of the modulation of capillary and gravity waves by long ocean waves is described. A pressure transducer is used to obtain water surface displacements, and a high-response laser-optical system is used to detect short-wave slopes. Analytical techniques are developed to account for the orbital motion of long waves. The local mean squared wave slope is found to be maximum leeward of the long-wave crests. For the long waves studied here and for short waves from 1 cm to 1 m, the longer a short-wave component is, the more leeward its maximum tends to occur. Also, the shortest waves tend to modulate least. The modulation of short waves is found to be strong enough to be an important component of the synthetic aperture radar image formation mechanism for long ocean waves.

  10. 波浪导致黄河口海床沉积物超孔压响应现场试验研究%In situ experiment of wave-induced excess pore pressure in the seabed sediment in Yellow River estuary

    Institute of Scientific and Technical Information of China (English)

    刘晓磊; 贾永刚; 郑杰文

    2015-01-01

    Both the special engineering geological properties and the complex engineering dynamic stability problems are closely related to the wave-induced dynamic response of pore pressure in seabed sediment in the Yellow River estuary. Four typical sites on the intertidal flats of the Yellow River delta are selected to simulate the wave action on the intact seabed sediments. Various testing methods, such as pore water piezometer test, field sediment strength test and sampling/laboratory geotechnical experiments, are employed to determine the variations in pore pressure and strength of the undisturbed seabed sediments at different stages under the cyclic loading. It is shown that during the cyclic loading process, the excess pore pressure response of undisturbed seabed sediment can be separated into 5 stages including gradual accumulation, partial dissipation, rapid accumulation, accumulated liquefaction and complete dissipation, which correspond to five processes of sediment strength variation including attenuation, increase, attenuation, loss and recovery, respectively. The grain size composition and structural strength dominate the excess pore pressure response. The wave-induced liquefied depth of intact seabed sediment is significantly affected by the initial physical properties such as dry density, void ratio, saturation degree, etc. To a large extent, the relative amount of fine grained components also controls the liquefaction characteristics of sediment in the Yellow River estuary.%黄河口海床特殊的工程地质性质与复杂的工程动力稳定性问题,均与海床沉积物在波浪荷载作用下的孔压动力响应密切相关。在现代黄河水下三角洲潮间带岸滩选择4个典型研究点,现场模拟波浪作用对原状海床沉积物实施循环加载,利用孔隙水压力观测、沉积物强度测试、样品采集与实验室土工测试等方法手段,测定黄河口原状海床沉积物在循环荷载作用

  11. Numerical and reduced-scale experimental investigation of blast wave shape in underground transportation infrastructure

    OpenAIRE

    Pennetier, Olivier; William-Louis, Mame; Langlet, André

    2015-01-01

    When an explosion occurs in a tunnel, the study of the blast wave quickly becomes complicated, owing to the multiple propagation patterns of the blast wave (Incident wave, regular and Mach reections) and to the geometrical conditions. Considering this problem, two patterns can be revealed. Near the explosive, the well known free-eld pressure wave can be observed. After multiple reections on the tunnel's walls, this overpressure behaves like a one-dimensional (1D) wave. One aim of this paper i...

  12. Intense cavitation at extreme static pressure.

    Science.gov (United States)

    Pishchalnikov, Yuri A; Gutierrez, Joel; Dunbar, Wylene W; Philpott, Richard W

    2016-02-01

    Cavitation is usually performed at hydrostatic pressures at or near 0.1 MPa. Higher static pressure produces more intense cavitation, but requires an apparatus that can build high amplitude acoustic waves with rarefactions exceeding the cavitation threshold. The absence of such an apparatus has prevented the achievement of intense acoustic cavitation, hindering research and the development of new applications. Here we describe a new high-pressure spherical resonator system, as well as experimental and modeling results in water and liquid metal (gallium), for cavitation at hydrostatic pressures between 10 and 150 MPa. Our computational data, using HYADES plasma hydrodynamics code, show the formation of dense plasma that, under these conditions, reaches peak pressures of about three to four orders of magnitude greater than the hydrostatic pressure in the bulk liquid and temperatures in the range of 100,000 K. Passive cavitation detection (PCD) data validate both a linear increase in shock wave amplitude and the production of highly intense concentrations of mechanical energy in the collapsing bubbles. High-speed camera observations show the formation of bubble clusters from single bubbles. The increased shock wave amplitude produced by bubble clusters, measured using PCD and fiber optic probe hydrophone, was consistent with current understanding that bubble clusters enable amplification of energy produced. PMID:26341849

  13. Blood pressure modifies retinal susceptibility to intraocular pressure elevation.

    Directory of Open Access Journals (Sweden)

    Zheng He

    Full Text Available Primary open angle glaucoma affects more than 67 million people. Elevated intraocular pressure (IOP is a risk factor for glaucoma and may reduce nutrient availability by decreasing ocular perfusion pressure (OPP. An interaction between arterial blood pressure and IOP determines OPP; but the exact contribution that these factors have for retinal function is not fully understood. Here we sought to determine how acute modifications of arterial pressure will affect the susceptibility of neuronal function and blood flow to IOP challenge. Anaesthetized (ketamine:xylazine Long-Evan rats with low (∼60 mmHg, sodium nitroprusside infusion, moderate (∼100 mmHg, saline, or high levels (∼160 mmHg, angiotensin II of mean arterial pressure (MAP, n = 5-10 per group were subjected to IOP challenge (10-120 mmHg, 5 mmHg steps every 3 minutes. Electroretinograms were measured at each IOP step to assess bipolar cell (b-wave and inner retinal function (scotopic threshold response or STR. Ocular blood flow was measured using laser-Doppler flowmetry in groups with similar MAP level and the same IOP challenge protocol. Both b-wave and STR amplitudes decreased with IOP elevation. Retinal function was less susceptible to IOP challenge when MAP was high, whereas the converse was true for low MAP. Consistent with the effects on retinal function, higher IOP was needed to attenuated ocular blood flow in animals with higher MAP. The susceptibility of retinal function to IOP challenge can be ameliorated by acute high BP, and exacerbated by low BP. This is partially mediated by modifications in ocular blood flow.

  14. Plane shock wave interaction with a cylindrical water column

    Science.gov (United States)

    Sembian, S.; Liverts, M.; Tillmark, N.; Apazidis, N.

    2016-05-01

    A complex system of waves propagating inside a water column due to the impact of plane shock wave is investigated both experimentally and numerically. Flow features, such as, focusing of expansion waves generating large negative pressure, nucleation of cavitation bubbles, and a re-circulation zone are observed and discussed qualitatively and quantitatively. Experiments are conducted on a 22 mm diametrical water column hit by shock waves with Mach numbers 1.75 and 2.4 in a newly constructed exploding wire facility. A new technique to create a properly shaped, repeatable, large diameter water column with straight walls is presented. Qualitative features of the flow are captured using the shadowgraph technique. With the aid of numerical simulations the wave motions inside the column are analyzed; the spatial location of the expansion wave focusing point and the corresponding negative peak pressures is estimated.

  15. Low frequency wave modes of liquid-filled flexible tubes

    Science.gov (United States)

    Chou, Yuan-Fang; Peng, Tzu-Huan

    2015-09-01

    Many canals in the human body are liquid-filled thin wall flexible tubes. In general the P-wave and S-wave velocities of tube material are much slower than the sound velocity of the liquid. It is interested to study the dynamic deformation of the wall caused by pressure fluctuation of liquid. In the low frequency range, the liquid pressure is essentially axial symmetric. Therefore, axial symmetric wave propagation modes are investigated. The calculated spectrum shows there are two modes with zero frequency limit. Phase velocities of these two modes are much smaller than the sound velocity of the liquid. They are also slower than the P-wave velocity of the tube material. At very low wave number, radial displacements of both liquid particles and tube are very small compared to their axial counter parts. As the frequency goes higher, boundary waves are observed.

  16. Acoustic-Gravity Waves Interacting with a Rectangular Trench

    OpenAIRE

    Usama Kadri

    2014-01-01

    A mathematical solution of the two-dimensional linear problem of an acoustic-gravity wave interacting with a rectangular trench, in a compressible ocean, is presented. Expressions for the flow field on both sides of the trench are derived. The dynamic bottom pressure produced by the acoustic-gravity waves on both sides of the trench is measurable, though on the transmission side it decreases with the trench depth. A successful recording of the bottom pressures could assist in the early detect...

  17. Cardioaccelerometery: the assessment of pulse wave velocity using accelerometers

    OpenAIRE

    Pereira, Helena Catarina de Bastos Marques

    2007-01-01

    In the past recent years, great emphasis has been placed on the role of arterial stiffness in the development of cardiovascular diseases, recognized as the leading cause of death in the world. This hemodynamic parameter, generally associated to age and blood pressure increase, can be assessed by the measurement of the pulse wave velocity (PWV), i.e., the velocity at which the pressure wave propagates along an artery. Although PWV measurement is accepted as the most simple, non-...

  18. Practical and highly sensitive elemental analysis for aqueous samples containing metal impurities employing electrodeposition on indium-tin oxide film samples and laser-induced shock wave plasma in low-pressure helium gas.

    Science.gov (United States)

    Kurniawan, Koo Hendrik; Pardede, Marincan; Hedwig, Rinda; Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Idris, Nasrullah; Jobiliong, Eric; Suyanto, Hery; Suliyanti, Maria Margaretha; Tjia, May On; Lie, Tjung Jie; Lie, Zener Sukra; Kurniawan, Davy Putra; Kagawa, Kiichiro

    2015-09-01

    We have conducted an experimental study exploring the possible application of laser-induced breakdown spectroscopy (LIBS) for practical and highly sensitive detection of metal impurities in water. The spectrochemical measurements were carried out by means of a 355 nm Nd-YAG laser within N2 and He gas at atmospheric pressures as high as 2 kPa. The aqueous samples were prepared as thin films deposited on indium-tin oxide (ITO) glass by an electrolysis process. The resulting emission spectra suggest that concentrations at parts per billion levels may be achieved for a variety of metal impurities, and it is hence potentially feasible for rapid inspection of water quality in the semiconductor and pharmaceutical industries, as well as for cooling water inspection for possible leakage of radioactivity in nuclear power plants. In view of its relative simplicity, this LIBS equipment offers a practical and less costly alternative to the standard use of inductively coupled plasma-mass spectrometry (ICP-MS) for water samples, and its further potential for in situ and mobile applications. PMID:26368882

  19. Spin wave instabilities and field induced transitions in heavy fermions

    OpenAIRE

    Continentino, Mucio A.

    2006-01-01

    We study phase transitions in heavy fermion systems due to spin-wave instabilities. One motivation is to determine the changes in the spin-wave parameters of a magnetically ordered heavy fermion system as it approaches a quantum critical point (QCP) by applying pressure. The other more actual is to provide an alternative approach, based on spin-wave instabilities, for the magnetic field induced transitions recently observed in antiferromagnetic heavy fermion materials.

  20. Spinning swimming of Volvox by tangential helical wave

    CERN Document Server

    Felderhof, B U

    2016-01-01

    The swimming of a sphere by means of tangential helical waves running along its surface is studied on the basis of the Stokes equations. Two types of tangential waves are found. The first of these is associated with a pressure disturbance and leads to a higher rate of net rotation than the second one for the same power. It is suggested that the helical waves are relevant for the rotational swimming of Volvox.

  1. Horizontal Coherence of Wave Forces on Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Archetti, R.; Frigaard, Peter; Lamberti, A.;

    2001-01-01

    Spatial coherence of wave impact pressures at a vertical breakwater in multidirectional seas is studied as part of an EU project under the LSF‐TMR programme. The lay out and programme of tests are shortly described. A method for the identification of breaking waves is presented. The percentage of...

  2. EXPERIMENTAL STUDY OF SHOCK WAVE DYNAMICS IN MAGNETIZED PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Nirmol K. Podder

    2009-03-17

    In this four-year project (including one-year extension), the project director and his research team built a shock-wave-plasma apparatus to study shock wave dynamics in glow discharge plasmas in nitrogen and argon at medium pressure (1–20 Torr), carried out various plasma and shock diagnostics and measurements that lead to increased understanding of the shock wave acceleration phenomena in plasmas. The measurements clearly show that in the steady-state dc glow discharge plasma, at fixed gas pressure the shock wave velocity increases, its amplitude decreases, and the shock wave disperses non-linearly as a function of the plasma current. In the pulsed discharge plasma, at fixed gas pressure the shock wave dispersion width and velocity increase as a function of the delay between the switch-on of the plasma and shock-launch. In the afterglow plasma, at fixed gas pressure the shock wave dispersion width and velocity decrease as a function of the delay between the plasma switch-off and shock-launch. These changes are found to be opposite and reversing towards the room temperature value which is the initial condition for plasma ignition case. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas.

  3. EXPERIMENTAL STUDY OF SHOCK WAVE DYNAMICS IN MAGNETIZED PLASMAS

    International Nuclear Information System (INIS)

    In this four-year project (including one-year extension), the project director and his research team built a shock-wave-plasma apparatus to study shock wave dynamics in glow discharge plasmas in nitrogen and argon at medium pressure (1-20 Torr), carried out various plasma and shock diagnostics and measurements that lead to increased understanding of the shock wave acceleration phenomena in plasmas. The measurements clearly show that in the steady-state dc glow discharge plasma, at fixed gas pressure the shock wave velocity increases, its amplitude decreases, and the shock wave disperses non-linearly as a function of the plasma current. In the pulsed discharge plasma, at fixed gas pressure the shock wave dispersion width and velocity increase as a function of the delay between the switch-on of the plasma and shock-launch. In the afterglow plasma, at fixed gas pressure the shock wave dispersion width and velocity decrease as a function of the delay between the plasma switch-off and shock-launch. These changes are found to be opposite and reversing towards the room temperature value which is the initial condition for plasma ignition case. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas

  4. Self-similar solutions of laser produced blast waves

    OpenAIRE

    Reddy, KPJ

    1996-01-01

    The aerodynamics of the blast wave produced by laser ablation is studied using the piston analogy. The unsteady one-dimensional gasdynamic equations governing the flow an solved under assumption of self-similarity. The solutions are utilized to obtain analytical expressions for the velocity, density, pressure and temperature distributions. The results predict. all the experimentally observed features of the laser produced blast waves.

  5. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... your doctor prescribes it, medicine. What Is Blood Pressure? Blood pressure is the force of blood flow inside ... Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you won't ...

  6. Understanding Blood Pressure Readings

    Science.gov (United States)

    ... What is the AHA recommendation for healthy blood pressure? This blood pressure chart reflects categories defined by the American ... unusually low blood pressure readings. How is high blood pressure diagnosed? Your healthcare providers will want to get ...

  7. High Blood Pressure

    Science.gov (United States)

    ... Connected Home » High Blood Pressure Heath and Aging High Blood Pressure What Is Blood Pressure? Do ... high blood pressure increases as you get older. Gender. Before age 55, men have a greater chance ...

  8. High Blood Pressure

    Science.gov (United States)

    ... pressure and should be taken seriously. Over time, consistently high blood pressure weakens and damages ... of landmark NIH blood pressure study confirm that lower blood pressure target can reduce ...

  9. Bedsores (Pressure Ulcers)

    Science.gov (United States)

    ... and rashes clinical tools newsletter | contact Share | Bedsores (Pressure Ulcers) Information for adults A A A A well-defined superficial pressure ulcer. Overview Bedsores (pressure ulcers), also known as pressure ...

  10. Financial Rogue Waves

    International Nuclear Information System (INIS)

    We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic, which is nonlinear wave alternative of the Black-Scholes model. These rogue wave solutions may he used to describe the possible physical mechanisms for rogue wave phenomenon in financial markets and related fields.

  11. Financial Rogue Waves

    Science.gov (United States)

    Yan, Zhen-Ya

    2010-11-01

    We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic, which is nonlinear wave alternative of the Black—Scholes model. These rogue wave solutions may he used to describe the possible physical mechanisms for rogue wave phenomenon in financial markets and related fields.

  12. Waves in inhomogeneous media

    NARCIS (Netherlands)

    Gerritsen, S.

    2007-01-01

    In this thesis we study wave propagation in inhomogeneous media. Examples of the classical (massless) waves we consider are acoustic waves (sound) and electromagnetic waves (light, for example). Interaction with inhomogeneities embedded in a reference medium alter the propagation direction, velocity

  13. Residual liquefaction of seabed under standing waves

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2013-01-01

    This paper presents the results of an experimental study of the seabed liquefaction beneath standing waves. Silt (with d50 =0.070mm) was used in the experiments. Two kinds of measurements were carried out: pore water pressure measurements and water surface elevation measurements. These measuremen...

  14. Studies on seismic waves

    Institute of Scientific and Technical Information of China (English)

    张海明; 陈晓非

    2003-01-01

    The development of seismic wave study in China in the past four years is reviewed. The discussion is divided into several aspects, including seismic wave propagation in laterally homogeneous media, laterally heterogeneous media, anisotropic and porous media, surface wave and seismic wave inversion, and seismic wave study in prospecting and logging problems. Important projects in the current studies on seismic wave is suggested as the development of high efficient numerical methods, and applying them to the studies of excitation and propagation of seismic waves in complex media and strong ground motion, which will form a foundation for refined earthquake hazard analysis and prediction.

  15. Wave Data Analysis

    DEFF Research Database (Denmark)

    Alikhani, Amir; Frigaard, Peter; Burcharth, Hans F.

    1998-01-01

    The data collected over the course of the experiment must be analysed and converted into a form suitable for its intended use. Type of analyses range from simple to sophisticated. Depending on the particular experiment and the needs of the researcher. In this study three main part of irregular wave...... data analyses are presented e.g. Time Domain (Statistical) Analyses, Frequency Domain (Spectral) Analyses and Wave Reflection Analyses. Random wave profile and definitions of representative waves, distributions of individual wave height and wave periods and spectra of sea waves are presented....

  16. Seasonal prediction of ocean surface waves.

    Science.gov (United States)

    Dobrynin, Mikhail; Brune, Sebastian; Fröhlich, Kristina; Bunzel, Felix; Pohlmann, Holger; Müller, Wolfgang A.; Baehr, Johanna

    2016-04-01

    Due to the short-term nature of wind, storms and surface ocean waves dynamics, the seasonal prediction of ocean wave requires a robust prediction system which can realistically represent the variably of sea level pressure and wind on a seasonal scale. The seasonal prediction system based on the mixed resolution CMIP5 version of the Max Planck Institute for Meteorology Earth System Model (MPI-ESM MR) provides a skilful seasonal prediction of sea level pressure and wind. The system is initialised every six months by reanalysis and observations in the atmospheric, ocean and sea ice components of the model. The seasonal prediction system was extended by the wave model WAM, which is running offline, using the wind re-forecast provided by the MPI-ESM MR. Our 10-member wave re-forecast over the period from 1982 to 2012 demonstrates a skilful prediction of the wave height up to 2-4 months in the Pacific, Equatorial Atlantic and Indian Ocean depending on the season. We evaluate our re-forecast by statistical metrics such as the anomaly correlation, spread-error ratio, and root-mean-square-error using the ERA-Interim forced wave reanalysis and buoys measurements as a reference.

  17. Shock wave science and technology reference library

    CERN Document Server

    2009-01-01

    This book is the second of several volumes on solids in the Shock Wave Science and Technology Reference Library. These volumes are primarily concerned with high-pressure shock waves in solid media, including detonation and high-velocity impact and penetration events. Of the four extensive chapters in this volume, the first two describe the reactive behavior of condensed phase explosives, - Condensed-Phase Explosives: Shock Initiation and Detonation Phenomena (SA Sheffield and R Engelke) - First Principles Molecular Simulations of Energetic Materials at High-Pressures (F Zhang, S Alavi, and TK Woo), and the remaining two discuss the inert, mechanical response of solid materials. - Combined Compression and Shear Plane Waves (ZP Tang and JB Aidun), and - Dynamic Fragmentation of Solids (D Grady). All chapters are each self-contained, and can be read independently of each other. They offer a timely reference, for beginners as well as professional scientists and engineers, on the foundations of detonation phenomen...

  18. Intrinsic Frequency and the Single Wave Biopsy

    Science.gov (United States)

    Petrasek, Danny; Pahlevan, Niema M.; Tavallali, Peyman; Rinderknecht, Derek G.; Gharib, Morteza

    2015-01-01

    Insulin resistance is the hallmark of classical type II diabetes. In addition, insulin resistance plays a central role in metabolic syndrome, which astonishingly affects 1 out of 3 adults in North America. The insulin resistance state can precede the manifestation of diabetes and hypertension by years. Insulin resistance is correlated with a low-grade inflammatory condition, thought to be induced by obesity as well as other conditions. Currently, the methods to measure and monitor insulin resistance, such as the homeostatic model assessment and the euglycemic insulin clamp, can be impractical, expensive, and invasive. Abundant evidence exists that relates increased pulse pressure, pulse wave velocity (PWV), and vascular dysfunction with insulin resistance. We introduce a potential method of assessing insulin resistance that relies on a novel signal-processing algorithm, the intrinsic frequency method (IFM). The method requires a single pulse pressure wave, thus the term “ wave biopsy.” PMID:26183600

  19. Pore Pressure Measurements Inside Rubble Mound Breakwaters

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, H. F.; Grüne, Joachim

    2004-01-01

    The present paper presents pore pressure measurements from large scale model tests performed at the Large Wave Channel, Hannover, Germany and small scale model test performed at the Hydraulic & Coastal Engineering Laboratory, Aalborg University, Denmark. Information on pore pressure attenuation and...... wave damping in the core and important for the scaling of core materials in small scale hydraulic models. The main objectives are to study and examine the wave damping in the core of rubble mound breakwater models. the acquired test results are compared with results available from the literature, and...... compared to a damping model presented by Burcharth et al. (1999). Reasonable agreement is found when considering the difference in the grading and uniformity of the model core materials. Comparison between results obtained from small and large scale model tests showed no clear evidence of scale effects....

  20. Gravity wave transmission diagram

    OpenAIRE

    Tomikawa, Y.

    2015-01-01

    A new method of obtaining power spectral distribution of gravity waves as a function of ground-based horizontal phase speed and propagation direction from airglow observations has recently been proposed. To explain gravity wave power spectrum anisotropy, a new gravity wave transmission diagram was developed in this study. Gravity wave transmissivity depends on the existence of critical and turning levels for waves that are determined by background horizontal wind distributio...

  1. Relativistic spherical plasma waves

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P

    2011-01-01

    Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.

  2. Wave-Ice interaction

    Institute of Scientific and Technical Information of China (English)

    沈奚海莉

    2001-01-01

    The growth and movement of sea ice cover are influenced by the presence of wave field. Inturn, the wave field is influenced by the presence of ice cover. Their interaction is not fully understood.In this paper, we discuss some current understanding on wave attenuation when it propagates through frag-mented ice cover, ice drift due to the wave motion, and the growth characteristics of ice cover in wave field.

  3. Gravity wave transmission diagram

    Science.gov (United States)

    Tomikawa, Yoshihiro

    2016-07-01

    A possibility of gravity wave propagation from a source region to the airglow layer around the mesopause has been discussed based on the gravity wave blocking diagram taking into account the critical level filtering alone. This paper proposes a new gravity wave transmission diagram in which both the critical level filtering and turning level reflection of gravity waves are considered. It shows a significantly different distribution of gravity wave transmissivity from the blocking diagram.

  4. Clinical significance of brachial-ankle pulse wave velocity in healthy people classified by blood pressure and age%以年龄和血压分类的健康人群臂-踝脉搏波速度参考值的临床意义

    Institute of Scientific and Technical Information of China (English)

    陈大伟; 张婧; 姜树强; 刘超; 郑海芳; 靳英; 韩春雷; 王建昌

    2015-01-01

    目的:探讨以年龄和血压分类的一般健康人群的臂-踝脉搏波传导速度(baPWV)参考值的临床意义。方法选取30岁以上无心脑血管疾病的1750名健康体检者,收集 baPWV、血压、血糖、血脂、体质量指数、吸烟、饮酒及服药史等资料。结果校正年龄和血压后,糖尿病、降压和降脂药物与 baPWV 相关,排除这些因素的1237人作为参考值人群。baPWV 参考值随年龄和血压增加而增加。结论一般健康人群按年龄和血压分类的 baPWV 参考值,可为不同年龄段和血压状态下的健康体检人群判定 baPWV 检测结果和积极防治动脉硬化提供依据。%Objective To investigate the clinical significance of brachial-ankle pulse wave velocity(baP-WV)in healthy people who were classified by blood pressure and age.Methods A total of 1750 healthy subjects without cerebral-cardiovascular diseases in the physical examination were recruited.The data of baPWV,blood pres-sure,glucose,lipid,body mass index,smoking,alcohol drinking and drugs were collected.Results After adjusting for age and blood pressure,the diabetes,drugs for anti-hypertensive drugs and lipid-lowering drugs were related with baP-WV,and the rest 1237 persons without these factors were selected as control group.Conclusion The study provides the reference value of baPWV in healthy people classified by blood pressure and age,which may be valuable for the selection of baPWV test for people in different states of ages and blood pressure in health examination,and the preven-tion of arterial stiffness.

  5. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    Science.gov (United States)

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion. PMID:26509428

  6. Nonlinear longitudinal waves in a two-dimensional screened Coulomb crystal

    International Nuclear Information System (INIS)

    Nonlinear interactions of longitudinal waves were observed in a two-dimensional plasma crystal, i.e., a lattice composed of highly charged microspheres immersed in a plasma. The waves were launched by radiation pressure of a laser, and wave spectra in ω-k space were analyzed at various amplitudes of waves. At a sufficiently large amplitude of wave, the second and third wave harmonics satisfying a dispersion relation were observed. As the second harmonic propagates from the excitation region, it was amplified for a small distance, and then damped. The experimental results were compared to a nonlinear wave theory and to a molecular dynamic simulation

  7. Long Waves Associated with Bichromatic Waves

    Institute of Scientific and Technical Information of China (English)

    DONG Guohai(董国海); YE Wenya(叶文亚); Nicholas Dodd

    2001-01-01

    A numerical model of low frequency waves is presented. The model is based on that of Roelvink (1993), but the numerical techniques used in the solution are based on the so-called Weighted-Average Flux (WAF) method withTime-Operator-Splitting (TOS) used for the treatment of the source terms. This method allows a small number ofcomputational points to be used, and is particularly efficient in modeling wave setup. The short wave (or primary wave)energy equation is solved with a traditional Lax-Wendroff technique. A nonlinear wave theory is introduced. The modeldescribed in this paper is found to be satisfactory in modeling low frequency waves associated with incident bichromaticwaves.

  8. Linear surface capillary-gravity short-crested waves on a current

    Institute of Scientific and Technical Information of China (English)

    HUANG Hu

    2008-01-01

    One of the forward situations in the study of water waves is the basic three-dimensional surface wave motion of short-crested waves. Capillary waves result in rich effects concerned closely with remote sensing in the open ocean. Ocean currents experience a complete process in surface wave motion. Based on the above ideas, a linear dynamical system of surface capillary-gravity short-crested waves is developed by considering the current effects, thus leading to the following analytical expressions of the kinematic and dynamic variables: the wave height, the wave steepness, the phase velocity, the wave-particle velocities, accelerations and trajectories and the wave pressure. A number of the classi-cal, typical and latest special wave cases can arise from these expressions.

  9. Ocean Wave Energy: Underwater Substation System for Wave Energy Converters

    International Nuclear Information System (INIS)

    This thesis deals with a system for operation of directly driven offshore wave energy converters. The work that has been carried out includes laboratory testing of a permanent magnet linear generator, wave energy converter mechanical design and offshore testing, and finally design, implementation, and offshore testing of an underwater collector substation. Long-term testing of a single point absorber, which was installed in March 2006, has been performed in real ocean waves in linear and in non-linear damping mode. The two different damping modes were realized by, first, a resistive load, and second, a rectifier with voltage smoothing capacitors and a resistive load in the DC-link. The loads are placed on land about 2 km east of the Lysekil wave energy research site, where the offshore experiments have been conducted. In the spring of 2009, another two wave energy converter prototypes were installed. Records of array operation were taken with two and three devices in the array. With two units, non-linear damping was used, and with three units, linear damping was employed. The point absorbers in the array are connected to the underwater substation, which is based on a 3 m3 pressure vessel standing on the seabed. In the substation, rectification of the frequency and amplitude modulated voltages from the linear generators is made. The DC voltage is smoothened by capacitors and inverted to 50 Hz electrical frequency, transformed and finally transmitted to the on-shore measuring station. Results show that the absorption is heavily dependent on the damping. It has also been shown that by increasing the damping, the standard deviation of electrical power can be reduced. The standard deviation of electrical power is reduced by array operation compared to single unit operation. Ongoing and future work include the construction and installation of a second underwater substation, which will connect the first substation and seven new WECs

  10. Characteristics of a compression wave propagating over porous plate wall in a high-speed railway tunnel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A pressure wave is generated ahead of a high-speed train, while entering a tunnel. This pressure wave propagates to the tunnel exit and spouts as a micro-pressure wave, which causes an exploding sound. From the fact that the ballast track tunnel has smaller noise than the slab track tunnel, we have suggested a new inner tunnel model to decrease the noise of the micro-pressure wave, using the ballast effect. Experimental and numerical investigations are carried out to clarify the attenuation and distortion of propagating compression wave over porous plate wall in a model tunnel. Data shows that the strength of the compression wave and a maximum pressure gradient of the compression wave was weakened. These data shows the possibility of the present a11eviative method using the porous plate wall in a tunnel

  11. Free Internal Waves in Polytropic Atmospheres

    CERN Document Server

    Ivanov, Mikhail I

    2011-01-01

    Free internal waves in polytropic atmospheres are studied (polytropic atmosphere is such one that the temperature of gas linearly depends on altitude). We suppose gas to be ideal and incompressible. Also, we regard the atmosphere of constant height with the "rigid lid" condition on its top to filter internal waves. If temperature, density and pressure of such undisturbed atmosphere do not depend on latitude and longitude then the internal waves are harmonic with apriori unknown eigenfrequencies, the problem permits separation of variables and reduces to the system of two ODE's. The first ODE (the Laplace's tidal equation) is analyzed by author earlier. The second ODE determines the vertical structure of the waves to be considered and has analytical solution for polytropic atmospheres. There are 6 dimensionless numbers, 2 for the Laplace's tidal equation and 4 for the vertical structure equation. The solution is a countable set of the eigenfrequencies and eigenfunctions of the vertical structure equation; ever...

  12. Low-frequency waves in magnetized dusty plasmas revisited

    International Nuclear Information System (INIS)

    The general dispersion relation of any wave is examined for low-frequency waves in a homogeneous dusty plasma in the presence of an external magnetic field. The low-frequency parallel electromagnetic wave propagates as a dust cyclotron wave or a whistler in the frequency range below the ion cyclotron frequency. In the same frequency regime, the transverse electromagnetic magnetosonic wave is modified with a cutoff frequency at the dust-ion lower-hybrid frequency, which reduces to the usual magnetosonic wave in absence of the dust. Electrostatic dust-lower- hybrid mode is also recovered propagating nearly perpendicular to the magnetic field with finite ion temperature and cold dust particles which for strong ion-Larmor radius effect reduces to the usual dust-acoustic wave driven by the ion pressure. (author)

  13. Light detonation wave in a cylindrical Z-pinch

    Science.gov (United States)

    Yusupaliev, U.; Sysoev, N. N.; Shuteev, S. A.; Elenskii, V. G.

    2015-09-01

    A secondary compression wave previously observed by other researchers in a cylindrical Z-pinch has been identified in this work as a light detonation wave. It appears on the inner surface of a discharge chamber under the action of the intense ultraviolet radiation from a plasma pinch at the stage of its maximum compression. The condition of the light detonation wave has been determined experimentally. The dependence of its Mach number on a generalized dimensionless variable has been determined taking into account the conservation laws for the light detonation wave including the pressure of the gas, expenses on the formation of the surface plasma, and the energy of ionization of the gas involved in the wave. An analogy with the laser-supported detonation wave created by intense laser radiation has been revealed. The indicated dependence is within the error of measurement in agreement with the experimental data for light detonation waves created by both methods.

  14. Magneto-atmospheric waves

    Science.gov (United States)

    Thomas, J. H.

    1983-01-01

    A theoretical treatment of magneto-atmospheric waves is presented and applied to the modelling of waves in the solar atmosphere. The waves arise in compressible, stratified, electrically conductive atmospheres within gravitational fields when permeated by a magnetic field. Compression, buoyancy, and distortion of the magnetic field all contribute to the existence of the waves. Basic linearized equations are introduced to describe the waves and attention is given to plane-stratified atmospheres and their stability. A dispersion relation is defined for wave propagation in a plane-stratified atmosphere when there are no plane-wave solutions. Solutions are found for the full wave equation in the presence of either a vertical or a horizontal magnetic field. The theory is applied to describing waves in sunspots, in penumbrae, and flare-induced coronal disturbances.

  15. ULF Waves at Mercury

    Science.gov (United States)

    Kim, E.-H.; Boardsen, S. A.; Johnson, J. R.; Slavin, J. A.

    2016-02-01

    This chapter provides a brief overview of the observed characteristics of ultra-low-frequency (ULF) waves at Mercury. It shows how field-aligned propagating ULF waves at Mercury can be generated by externally driven fast compressional waves (FWs) via mode conversion at the ion-ion hybrid resonance. Then, the chapter reviews the interpretation that the strong magnetic compressional waves near and its harmonics observed with 20 of Mercury's magnetic equator could be the ion Bernstein wave (IBW) mode. A recent statistical study of ULF waves at Mercury based on MESSENGER data reported the occurrence and polarization of the detected waves. The chapter further introduces the field line resonance and the electromagnetic ion Bernstein waves to explain such waves, and shows that both theories can partially explain the observations.

  16. Effects of explosion-generated shock waves in ducts

    International Nuclear Information System (INIS)

    An explosion in a space causes an increase in temperature and pressure. To quantify the challenge that will be presented to essential components in a ventilation system, it is necessary to analyze the dynamics of a shock wave generated by an explosion, with attention directed to the propagation of such a wave in a duct. Using the equations of unsteady flow and shock tube theory, a theoretical model has been formulated to provide flow properties behind moving shock waves that have interacted with various changes in duct geometry. Empirical equations have been derived to calculate air pressure, temperature, Mach number, and velocity in a duct following an explosion

  17. Elastohydrodynamic wake and wave resistance

    CERN Document Server

    Arutkin, Maxence; Salez, Thomas; Raphaël, Elie

    2016-01-01

    The dynamics of a thin elastic sheet lubricated by a narrow layer of liquid is relevant to various situations and length scales. In the continuity of our previous work on viscous wakes, we study theoretically the effects of an external pressure disturbance moving at constant speed along the surface of a thin lubricated elastic sheet. In the comoving frame, the imposed pressure field creates a stationary deformation of the free interface that spatially vanishes in the far-field region. The shape of the wake and the way it decays depend on the speed and size of the external disturbance, as well as the rheological properties of both the elastic and liquid layers. The wave resistance, namely the force that has to be externally furnished in order to maintain the wake, is analyzed in detail.

  18. Theoretical Investigation of Peak-Delay Force Reduction for Caissons Exposed to Non-breaking Short-Crested Waves

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Z.

    In nature coastal structures are exposed to oblique short-crested waves. The effect of wave incident angle on total wave force on a long caisson are twofold. The one is the force reduction due to the reduction of instantaneous point pressure on the caisson, named point-pressure force reduction. The...... other is the force reduction due to the fact that the peak pressures do not occur simultaneously along the caisson, named peak-delay force reduction. These two reduction effects can also be expected with short-crested waves, as the short-crestedness of waves means the spreading of wave energy over a...... on the peak-delay force reduction of caissons exposed to non-breaking short-crested waves. Battjes (1982) has investigated theoretically the peak-delay force reduction of shortcrested waves with only one frequency component. Such a force reduction factor cannot be applied because in nature waves are...

  19. Space charge wave accelerators

    International Nuclear Information System (INIS)

    We present an account of experimental observations showing control of the wave phase velocity for a slow wave, measurements of the wave electric field, and indicate how these results might apply to an ion accelerator. An interesting and new possibility is also indicated, namely the use of fast waves for electron accelerators. In this case preliminary estimates indicate that comparable field gradients to those already obtained in the slow wave scheme should be obtainable in fast waves and that these field gradients can be maintained at phase velocities close to the speed of light. (orig./HSI)

  20. Statistical Downscaling in Multi-dimensional Wave Climate Forecast

    Science.gov (United States)

    Camus, P.; Méndez, F. J.; Medina, R.; Losada, I. J.; Cofiño, A. S.; Gutiérrez, J. M.

    2009-04-01

    Wave climate at a particular site is defined by the statistical distribution of sea state parameters, such as significant wave height, mean wave period, mean wave direction, wind velocity, wind direction and storm surge. Nowadays, long-term time series of these parameters are available from reanalysis databases obtained by numerical models. The Self-Organizing Map (SOM) technique is applied to characterize multi-dimensional wave climate, obtaining the relevant "wave types" spanning the historical variability. This technique summarizes multi-dimension of wave climate in terms of a set of clusters projected in low-dimensional lattice with a spatial organization, providing Probability Density Functions (PDFs) on the lattice. On the other hand, wind and storm surge depend on instantaneous local large-scale sea level pressure (SLP) fields while waves depend on the recent history of these fields (say, 1 to 5 days). Thus, these variables are associated with large-scale atmospheric circulation patterns. In this work, a nearest-neighbors analog method is used to predict monthly multi-dimensional wave climate. This method establishes relationships between the large-scale atmospheric circulation patterns from numerical models (SLP fields as predictors) with local wave databases of observations (monthly wave climate SOM PDFs as predictand) to set up statistical models. A wave reanalysis database, developed by Puertos del Estado (Ministerio de Fomento), is considered as historical time series of local variables. The simultaneous SLP fields calculated by NCEP atmospheric reanalysis are used as predictors. Several applications with different size of sea level pressure grid and with different temporal domain resolution are compared to obtain the optimal statistical model that better represents the monthly wave climate at a particular site. In this work we examine the potential skill of this downscaling approach considering perfect-model conditions, but we will also analyze the