WorldWideScience

Sample records for axonal transport drug

  1. Tri-partite complex for axonal transport drug delivery achieves pharmacological effect

    Directory of Open Access Journals (Sweden)

    Frederickson Martyn

    2010-01-01

    Full Text Available Abstract Background Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior. Results We developed chemical synthesis methodologies for assembling these tripartite complexes using a variety of axonal transport facilitators including nerve growth factor, wheat germ agglutinin, and synthetic facilitators derived from phage display work. Loading of up to 100 drug molecules per complex was achieved. Conjugation methods were used that allowed the drugs to be released in active form inside the cell body after transport. Intramuscular and intradermal injection proved effective for introducing pharmacologically effective doses into selected populations of CNS neurons. Pharmacological efficacy with gabapentin in a paw withdrawal latency model revealed a ten fold increase in half life and a 300 fold decrease in necessary dose relative to systemic administration for gabapentin when the drug was delivered by axonal transport using the tripartite vehicle. Conclusion Specific targeting of selected subpopulations of CNS neurons for drug delivery by axonal

  2. Axonal Transport and Neurodegeneration: How Marine Drugs Can Be Used for the Development of Therapeutics

    Science.gov (United States)

    White, Joseph A.; Banerjee, Rupkatha; Gunawardena, Shermali

    2016-01-01

    Unlike virtually any other cells in the human body, neurons are tasked with the unique problem of transporting important factors from sites of synthesis at the cell bodies, across enormous distances, along narrow-caliber projections, to distally located nerve terminals in order to maintain cell viability. As a result, axonal transport is a highly regulated process whereby necessary cargoes of all types are packaged and shipped from one end of the neuron to the other. Interruptions in this finely tuned transport have been linked to many neurodegenerative disorders including Alzheimer’s (AD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS) suggesting that this pathway is likely perturbed early in disease progression. Therefore, developing therapeutics targeted at modifying transport defects could potentially avert disease progression. In this review, we examine a variety of potential compounds identified from marine aquatic species that affect the axonal transport pathway. These compounds have been shown to function in microtubule (MT) assembly and maintenance, motor protein control, and in the regulation of protein degradation pathways, such as the autophagy-lysosome processes, which are defective in many degenerative diseases. Therefore, marine compounds have great potential in developing effective treatment strategies aimed at early defects which, over time, will restore transport and prevent cell death. PMID:27213408

  3. The genetics of axonal transport and axonal transport disorders.

    Directory of Open Access Journals (Sweden)

    Jason E Duncan

    2006-09-01

    Full Text Available Neurons are specialized cells with a complex architecture that includes elaborate dendritic branches and a long, narrow axon that extends from the cell body to the synaptic terminal. The organized transport of essential biological materials throughout the neuron is required to support its growth, function, and viability. In this review, we focus on insights that have emerged from the genetic analysis of long-distance axonal transport between the cell body and the synaptic terminal. We also discuss recent genetic evidence that supports the hypothesis that disruptions in axonal transport may cause or dramatically contribute to neurodegenerative diseases.

  4. Neurofilament Polymer Transport in Axons

    OpenAIRE

    Yan, Yanping; Brown, Anthony

    2005-01-01

    Neurofilament proteins are known to be transported along axons by slow axonal transport, but the form in which they move is controversial. In previous studies on cultured rat sympathetic neurons, we found that green fluorescent protein-tagged neurofilament proteins move predominantly in the form of filamentous structures, and we proposed that these structures are single neurofilament polymers. In the present study, we have tested this hypothesis by using a rapid perfusion technique to capture...

  5. Mitochondrial Transport and Docking in Axons

    OpenAIRE

    Cai, Qian; Sheng, Zu-Hang

    2009-01-01

    Proper transport and distribution of mitochondria in axons and at synapses are critical for the normal physiology of neurons. Mitochondria in axons display distinct motility patterns and undergo saltatory and bidirectional movement, where mitochondria frequently stop, start moving again, and change direction. While approximately one-third of axonal mitochondria are mobile in mature neurons, a large proportion remains stationary. Their net movement is significantly influenced by recruitment to...

  6. Dynamics of mitochondrial transport in axons

    Directory of Open Access Journals (Sweden)

    Robert Francis Niescier

    2016-05-01

    Full Text Available The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

  7. Dynamics of Mitochondrial Transport in Axons.

    Science.gov (United States)

    Niescier, Robert F; Kwak, Sang Kyu; Joo, Se Hun; Chang, Karen T; Min, Kyung-Tai

    2016-01-01

    The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons. PMID:27242435

  8. Axonal transport of ribonucleoprotein particles (vaults).

    Science.gov (United States)

    Li, J Y; Volknandt, W; Dahlstrom, A; Herrmann, C; Blasi, J; Das, B; Zimmermann, H

    1999-01-01

    RNA was previously shown to be transported into both dendritic and axonal compartments of nerve cells, presumably involving a ribonucleoprotein particle. In order to reveal potential mechanisms of transport we investigated the axonal transport of the major vault protein of the electric ray Torpedo marmorata. This protein is the major protein component of a ribonucleoprotein particle (vault) carrying a non-translatable RNA and has a wide distribution in the animal kingdom. It is highly enriched in the cholinergic electromotor neurons and similar in size to synaptic vesicles. The axonal transport of vaults was investigated by immunofluorescence, using the anti-vault protein antibody as marker, and cytofluorimetric scanning, and was compared to that of the synaptic vesicle membrane protein SV2 and of the beta-subunit of the F1-ATPase as a marker for mitochondria. Following a crush significant axonal accumulation of SV2 proximal to the crush could first be observed after 1 h, that of mitochondria after 3 h and that of vaults after 6 h, although weekly fluorescent traces of accumulations of vault protein were observed in the confocal microscope as early as 3 h. Within the time-period investigated (up to 72 h) the accumulation of all markers increased continuously. Retrograde accumulations also occurred, and the immunofluorescence for the retrograde component, indicating recycling, was weaker than that for the anterograde component, suggesting that more than half of the vaults are degraded within the nerve terminal. High resolution immunofluorescence revealed a granular structure-in accordance with the biochemical characteristics of vaults. Of interest was the observation that the increase of vault immunoreactivity proximal to the crush accelerated with time after crushing, while that of SV2-containing particles appeared to decelerate, indicating that the crush procedure with time may have induced perikaryal alterations in the production and subsequent export to the axon

  9. Axonal Transport Impairment in Chemotherapy-Induced Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Gabriella Nicolini

    2015-08-01

    Full Text Available Chemotherapy-Induced Peripheral Neuropathy (CIPN is a dose-limiting side effect of several antineoplastic drugs which significantly reduces patients’ quality of life. Although different molecular mechanisms have been investigated, CIPN pathobiology has not been clarified yet. It has largely been recognized that Dorsal Root Ganglia are the main targets of chemotherapy and that the longest nerves are the most damaged, together with fast axonal transport. Indeed, this bidirectional cargo-specific transport has a pivotal role in neuronal function and its impairment is involved in several neurodegenerative and neurodevelopmental diseases. Literature data demonstrate that, despite different mechanisms of action, all antineoplastic agents impair the axonal trafficking to some extent and the severity of the neuropathy correlates with the degree of damage on this bidirectional transport. In this paper, we will examine the effect of the main old and new chemotherapeutic drug categories on axonal transport, with the aim of clarifying their potential mechanisms of action, and, if possible, of identifying neuroprotective strategies, based on the knowledge of the alterations induced by each drugs.

  10. Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Fang Cheng

    2012-06-01

    Full Text Available Abstract Background Reactive oxygen species (ROS released by microglia and other inflammatory cells can cause axonal degeneration. A reduction in axonal transport has also been implicated as a cause of axonal dystrophies and neurodegeneration, but there is a paucity of experimental data concerning the effects of ROS on axonal transport. We used live cell imaging to examine the effects of hydrogen peroxide on the axonal transport of mitochondria and Golgi-derived vesicles in cultured rat hippocampal neurons. Results Hydrogen peroxide rapidly inhibited axonal transport, hours before any detectable changes in mitochondrial morphology or signs of axonal degeneration. Mitochondrial transport was affected earlier and was more severely inhibited than the transport of Golgi-derived vesicles. Anterograde vesicle transport was more susceptible to peroxide inhibition than retrograde transport. Axonal transport partially recovered following removal of hydrogen peroxide and local application of hydrogen peroxide inhibited transport, suggesting that the effects were not simply a result of nerve cell death. Sodium azide, an ATP synthesis blocker, had similar effects on axonal transport, suggesting that ATP depletion may contribute to the transport inhibition due to hydrogen peroxide. Conclusions These results indicate that inhibition of axonal transport is an early consequence of exposure to ROS and may contribute to subsequent axonal degeneration.

  11. Synaptic Democracy and Vesicular Transport in Axons

    Science.gov (United States)

    Bressloff, Paul C.; Levien, Ethan

    2015-04-01

    Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".

  12. In vivo imaging of axonal transport using MRI: aging and Alzheimer's disease

    International Nuclear Information System (INIS)

    MRI using manganese as a trans-synaptic axonal tracing agent can unveil dynamics of axonal transport in living subjects. We use this technology to test the hypotheses if impaired axonal transport is a significant pathophysiological process in aging and early Alzheimer's disease (AD) and in part accounting for ''selective vulnerability'' of projection neurons in AD. To allow quantitative assessment of axonal transport in vivo, we developed voxel-based statistical mapping technology as well as a tracer kinetic modeling method based on mass transport for manganese-enhanced MRI to estimate axonal transport rates in aging rats and AD transgenic mice. These techniques demonstrated manganese-enhanced signal changes in axonal projections of the olfactory tract and decreased axonal transport rates in rodent models of aging and AD. Altered axonal transport may be a critical pathophysiological process in aging and AD. Manganese-enhanced MRI provides exciting opportunities for the investigations of altered axonal transport in AD and related disorders. (orig.)

  13. Slowing of the axonal transport of neurofilament proteins during development

    International Nuclear Information System (INIS)

    We examined age-dependent changes in neurofilament transport in motor axons of the rat sciatic nerve. SDS-PAGE and gel fluorography confirmed that the distribution of labeled neurofilament triplet protein coincides with the major slow component a (SCa) wave in these neurons. The velocity of neurofilament transport was calculated on the basis of the location of the 50th percentile of radioactivity in this wave 33 days after motor neurons were labeled by the intraspinal administration of [3H]leucine and [3H]lysine. Overall, the velocity fell from 1.95 mm/day at 3 weeks of age to 1.12 mm/day at 20 weeks. Between 3 and 10 weeks, it fell at a 6-fold higher rate (0.096 mm/day/week) than between 10 and 20 weeks (0.016 mm/day/week). We also found a marked change in the shape of the slow component wave during development. It appeared to consist of several overlapping peaks moving at slightly different velocities in animals 10 weeks of age or less as compared to a single slower moving peak at 20 weeks. We propose that the velocity of slow axonal transport reflects the level of maturation of the neuron, and that the presence of several overlapping peaks of transported radioactivity in the sciatic nerve of younger animals reflects the presence of several populations of motor axons at different stages of development. We also discuss the relationship between changes in the velocity of neurofilament transport and alterations in the composition of the cytoskeleton that occur as the axon grows in caliber during postnatal development

  14. Tau phosphorylation affects its axonal transport and degradation

    OpenAIRE

    Rodríguez-Martín, Teresa; Cuchillo-Ibáñez, Inmaculada; Noble, Wendy; Nyenya, Fanon; Anderton, Brian H; Hanger, Diane P.

    2013-01-01

    Phosphorylated forms of microtubule-associated protein tau accumulate in neurofibrillary tangles in Alzheimer's disease. To investigate the effects of specific phosphorylated tau residues on its function, wild type or phosphomutant tau was expressed in cells. Elevated tau phosphorylation decreased its microtubule binding and bundling, and increased the number of motile tau particles, without affecting axonal transport kinetics. In contrast, reducing tau phosphorylation enhanced the amount of ...

  15. Pharmacological characterization of axonally transported (125I)-alpha-bungatoxin binding sites in rat sciatic nerve

    International Nuclear Information System (INIS)

    The authors attempt to label the putative receptors as they are axonally transported in peripheral nerves. With the use of an innovative autoradiographic technique, this approach as enabled the investigation of the pharmacological properties of the toxin-binding site interaction. The tissue sections from adult male rat sciatic nerves were incubated for 60 min at room temperature in phosphate buffer saline containing 2 nM I 125-alpha-BuTX with or without displacer. A bright field micrograph as well as dark field autoradiograph is illustrated of a ligated (12 hr.) rat sciatic nerve section incubated with I 125-alpha-BuTX. If one presumes that axonally transported I 125-alpha-BuTX binding sites correspond to receptors whose destination is the presynaptic membrane, then the data presented in this study may provide a pharmacological basis for differentiating pre- and postsynaptic sites of action of cholinergic drugs on the mammalian neuromuscular junction

  16. Automated kymograph analysis for profiling axonal transport of secretory granules.

    Science.gov (United States)

    Mukherjee, Amit; Jenkins, Brian; Fang, Cheng; Radke, Richard J; Banker, Gary; Roysam, Badrinath

    2011-06-01

    This paper describes an automated method to profile the velocity patterns of small organelles (BDNF granules) being transported along a selected section of axon of a cultured neuron imaged by time-lapse fluorescence microscopy. Instead of directly detecting the granules as in conventional tracking, the proposed method starts by generating a two-dimensional spatio-temporal map (kymograph) of the granule traffic along an axon segment. Temporal sharpening during the kymograph creation helps to highlight granule movements while suppressing clutter due to stationary granules. A voting algorithm defined over orientation distribution functions is used to refine the locations and velocities of the granules. The refined kymograph is analyzed using an algorithm inspired from the minimum set cover framework to generate multiple motion trajectories of granule transport paths. The proposed method is computationally efficient, robust to significant levels of noise and clutter, and can be used to capture and quantify trends in transport patterns quickly and accurately. When evaluated on a collection of image sequences, the proposed method was found to detect granule movement events with 94% recall rate and 82% precision compared to a time-consuming manual analysis. Further, we present a study to evaluate the efficacy of velocity profiling by analyzing the impact of oxidative stress on granule transport in which the fully automated analysis correctly reproduced the biological conclusion generated by manual analysis. PMID:21330183

  17. In vivo imaging of axonal transport using MRI: aging and Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Minoshima, Satoshi [University of Washington, Departments of Radiology and Bioengineering, 1959 N.E. Pacific Street, RR215, Box 357115, Seattle, WA (United States); Cross, Donna [University of Washington, Department of Radiology, 1959 N.E. Pacific Street, RR215, Box 357115, Seattle, WA (United States)

    2008-03-15

    MRI using manganese as a trans-synaptic axonal tracing agent can unveil dynamics of axonal transport in living subjects. We use this technology to test the hypotheses if impaired axonal transport is a significant pathophysiological process in aging and early Alzheimer's disease (AD) and in part accounting for ''selective vulnerability'' of projection neurons in AD. To allow quantitative assessment of axonal transport in vivo, we developed voxel-based statistical mapping technology as well as a tracer kinetic modeling method based on mass transport for manganese-enhanced MRI to estimate axonal transport rates in aging rats and AD transgenic mice. These techniques demonstrated manganese-enhanced signal changes in axonal projections of the olfactory tract and decreased axonal transport rates in rodent models of aging and AD. Altered axonal transport may be a critical pathophysiological process in aging and AD. Manganese-enhanced MRI provides exciting opportunities for the investigations of altered axonal transport in AD and related disorders. (orig.)

  18. Regeneration of motor axons in the rat sciatic nerve studied by labeling with axonally transported radioactive proteins

    International Nuclear Information System (INIS)

    Labeling regenerating axons with axonally transported radioactive proteins provides information about the location of the entire range of axons from the fastest growing ones to those which are trapped in the scar. This technique has been used to study the regeneration of motor axons in the rat sciatic nerve after a crush lesion. From 2 to 14 days after the crush the lumbar spinal cord was exposed by laminectomy and multiple injections of [3H]proline were made stereotactically in the ventral horn. Twenty-four hours later the nerves were removed and the distribution of radioactivity along the nerve was measured by liquid scintillation counting. There was a peak of radioactivity in the regenerating axons distal to the crush due to an accumulation of label in the tips of these axons. After a delay of 3.2 +- 0.2 (S.E.) days, this peak advanced down the nerve at a rate of 3.0 +- 0.1 (S.E.) mm/day. The leading edge of this peak, which marks the location of the endings of the most rapidly growing labeled fibers, moved down the nerve at a rate of 4.4 +- 0.2 mm/day after a delay of 2.1 +- 0.2 days; this is the same time course as that of the most rapidly regenerating sensory axons in the rat sciatic nerve, measured by the pinch test. Another peak of radioactivity at the crush site, presumed to represent the ends of unregenerated axons or misdirected sprouts, declined rapidly during the first week, and more slowly thereafter. (Auth.)

  19. Axonal Transport Proteomics Reveals Mobilization of Translation Machinery to the Lesion Site in Injured Sciatic Nerve*

    OpenAIRE

    Michaelevski, Izhak; Medzihradszky, Katalin F.; Lynn, Aenoch; Burlingame, Alma L.; Fainzilber, Mike

    2009-01-01

    Investigations of the molecular mechanisms underlying responses to nerve injury have highlighted the importance of axonal transport systems. To obtain a comprehensive view of the protein ensembles associated with axonal transport in injured axons, we analyzed the protein compositions of axoplasm concentrated at ligatures following crush injury of rat sciatic nerve. LC-MS/MS analyses of iTRAQ-labeled peptides from axoplasm distal and proximal to the ligation sites revealed protein ensembles tr...

  20. Axonal transport of proteoglycans to the goldfish optic tectum

    International Nuclear Information System (INIS)

    The study addressed the question of whether 35SO4 labeled molecules that have been delivered to the goldfish optic nerve terminals by rapid axonal transport include soluble proteoglycans. For analysis, tectal homogenates were subfractionated into a soluble fraction (soluble after centrifugation at 105,000 g), a lysis fraction (soluble after treatment with hypotonic buffer followed by centrifugation at 105,000 g) and a final 105,000 g pellet fraction. The soluble fraction contained 25.7% of incorporated radioactivity and upon DEAE chromatography was resolved into a fraction of sulfated glycoproteins eluting at 0-0.32 M NaCl and containing 39.5% of total soluble label and a fraction eluting at 0.32-0.60 M NaCl containing 53.9% of soluble label. This latter fraction was included on columns of Sepharose CL-6B with or without 4 M guanidine and after pronase digestion was found to have 51% of its radioactivity contained in the glycosaminoglycans (GAGs) heparan sulfate and chondroitin (4 or 6) sulfate in the ratio of 70% to 30%. Mobility of both intact proteoglycans and constituent GAGs on Sepharose CL-6B indicated a size distribution that is smaller than has been observed for proteoglycans and GAGs from cultured neuronal cell lines. Similar analysis of lysis fraction, containing 11.5% of incorporated 35SO4, showed a mixture of heparan sulfate and chondroitin sulfate containing proteoglycans, apparent free heparan sulfate and few, if any, sulfated glycoproteins. Overall, the results support the hypothesis that soluble proteoglycans are among the molecules axonally transported in the visual system

  1. Riluzole protects against glutamate-induced slowing of neurofilament axonal transport.

    LENUS (Irish Health Repository)

    Stevenson, Alison

    2009-04-24

    Riluzole is the only drug approved for the treatment of amyotrophic lateral sclerosis (ALS) but its precise mode of action is not properly understood. Damage to axonal transport of neurofilaments is believed to be part of the pathogenic mechanism in ALS and this has been linked to defective glutamate handling and increased phosphorylation of neurofilament side-arm domains. Here, we show that riluzole protects against glutamate-induced slowing of neurofilament transport. Protection is associated with decreased neurofilament side-arm phosphorylation and inhibition of the activities of two neurofilament kinases, ERK and p38 that are activated in ALS. Thus, the anti-glutamatergic properties of riluzole include protection against glutamate-induced changes to neurofilament phosphorylation and transport.

  2. DIRECT MEASUREMENT OF FAST AXONAL ORGANELLE TRANSPORT IN THE SCIATIC NERVE OF RATS TREATED WITH ACRYLAMIDE

    Science.gov (United States)

    The effects of acrylamide on fast axonal transport have been measured primarily using the indirect methods of isotope or enzyme accumulation. e report the first direct evaluation of the effects of sub-chronic acrylamide dosing (150, 300 or 500 mg/kg total dose) on the fast axonal...

  3. RETROGRADE AXONAL TRANSPORT OF PHOSPHOINOSITIDES AFTER INTRANEURAL INJECTION OF [3H]MYO-INOSITOL INTO THE RAT SCIATIC NERVE

    Science.gov (United States)

    Although autoradiography has demonstrated local incorporation of [3H]inositol into axonal phospholipids after intraneural injection (Gould, 1976; Gould et at., 1987b), retrograde axonal transport of phosphatidylinositol has only been demonstrated after injection of lipid precurso...

  4. In vivo axonal transport deficits in a mouse model of fronto-temporal dementia

    Directory of Open Access Journals (Sweden)

    Tabassum Majid

    2014-01-01

    Discussion: In our study, we identified the presence of age-dependent axonal transport deficits beginning at 3 months of age in rTg4510 mice. We correlated these deficits at 3 months to the presence of hyperphosphorylated tau in the brain and the presence within the olfactory epithelium. We observed tau pathology not only in the soma of these neurons but also within the axons and processes of these neurons. Our characterization of axonal transport in this tauopathy model provides a functional time point that can be used for future therapeutic interventions.

  5. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease

    OpenAIRE

    Chu, Yaping; Morfini, Gerardo A.; Langhamer, Lori B.; He, Yinzhen; Brady, Scott T.; KORDOWER, JEFFREY H.

    2012-01-01

    The progressive loss of the nigrostriatal pathway is a distinguishing feature of Parkinson’s disease. As terminal field loss seems to precede cell body loss, we tested whether alterations of axonal transport motor proteins would be early features in Parkinson’s disease. There was a decline in axonal transport motor proteins in sporadic Parkinson’s disease that preceded other well-known nigral cell-related pathology such as phenotypic downregulation of dopamine. Reductions in conventional kine...

  6. Quantification of Retrograde Axonal Transport in the Rat Optic Nerve by Fluorogold Spectrometry

    OpenAIRE

    van Oterendorp, Christian; Sgouris, Stavros; Bach, Michael; Martin, Gottfried; Biermann, Julia; Jordan, Jens F.; Lagrèze, Wolf A

    2012-01-01

    Purpose Disturbed axonal transport is an important pathogenic factor in many neurodegenerative diseases, such as glaucoma, an eye disease characterised by progressive atrophy of the optic nerve. Quantification of retrograde axonal transport in the optic nerve usually requires labour intensive histochemical techniques or expensive equipment for in vivo imaging. Here, we report on a robust alternative method using Fluorogold (FG) as tracer, which is spectrometrically quantified in retinal tissu...

  7. Neurofilament subunit (NFL) head domain phosphorylation regulates axonal transport of neurofilaments.

    LENUS (Irish Health Repository)

    Yates, Darran M

    2009-04-01

    Neurofilaments are the intermediate filaments of neurons and are synthesised in neuronal cell bodies and then transported through axons. Neurofilament light chain (NFL) is a principal component of neurofilaments, and phosphorylation of NFL head domain is believed to regulate the assembly of neurofilaments. However, the role that NFL phosphorylation has on transport of neurofilaments is poorly understood. To address this issue, we monitored axonal transport of phosphorylation mutants of NFL. We mutated four known phosphorylation sites in NFL head domain to either preclude phosphorylation, or mimic permanent phosphorylation. Mutation to preclude phosphorylation had no effect on transport but mutation of three sites to mimic permanent phosphorylation inhibited transport. Mutation of all four sites together to mimic permanent phosphorylation proved especially potent at inhibiting transport and also disrupted neurofilament assembly. Our results suggest that NFL head domain phosphorylation is a regulator of neurofilament axonal transport.

  8. Axonal transport and incorporation of radioactivity after injection of N-[3H]acetyl-D-mannosamine into rat mesencephalon

    International Nuclear Information System (INIS)

    A study has been performed to demonstrate the possibility of incorporation of sialic acid into nerve endings of the rubrospinal tract after antegrade axonal transport. Young adult rats received injections of N-[3H]acetyl-D-mannosamine into the red nucleus and axonal transport of the tritiated compounds along the axons of afferent and efferent connections of the red nucleus was studied and the transported material was analysed. Light microscopic autoradiography and biochemical methods were used. (Auth./C.F.)

  9. Effects of p-xylene inhalation on axonal transport in the rat retinal ganglion cells

    International Nuclear Information System (INIS)

    Although the solvent xylene is suspected of producing nervous system dysfunction in animals and humans, little is known regarding the neurochemical consequences of xylene inhalation. The intent of this study was to determine the effect of intermittent, acute, and subchronic p-xylene exposure on the axonal transport of proteins and glycoproteins within the rat retinofugal tract. A number of different exposure regimens were tested ranging from 50 ppm for a single 6-hr exposure to 1600 ppm 6 hr/day, 5 days/week, for a total of 8 exposure days. Immediately following removal from the inhalation chambers rats were injected intraocularly with [35S]methionine and [3H]fucose (to label retinal proteins and glycoproteins, respectively) and the axonal transport of labeled macromolecules to axons (optic nerve and optic tract) and nerve endings (lateral geniculate body and superior colliculus) was examined 20 hr after precursor injection. Only relatively severe exposure regimens (i.e., 800 or 1600 ppm 6 hr/day, 5 days/week, for 1.5 weeks) produced significant reductions in axonal transport; there was a moderate reduction in the axonal transport of 35S-labeled proteins in the 800-ppm-treated group which was more widespread in the 1600 ppm-treated group. Transport of 3H-labeled glycoproteins was less affected. Assessment of retinal metabolism immediately after isotope injection indicated that the rate of precursor uptake was not reduced in either treatment group. Furthermore, rapid transport was still substantially reduced in animals exposed to 1600 ppm p-xylene and allowed a 13-day withdrawal period. These data indicate that p-xylene inhalation decreases rapid axonal transport supplied to the projections of the rat retinal ganglion cells immediately after cessation of inhalation exposure and that this decreased transport is still apparent 13 days after the last exposure

  10. Reduced axonal transport in Parkinson's disease cybrid neurites is restored by light therapy

    Directory of Open Access Journals (Sweden)

    De Taboada Luis

    2009-06-01

    Full Text Available Abstract Background It has been hypothesized that reduced axonal transport contributes to the degeneration of neuronal processes in Parkinson's disease (PD. Mitochondria supply the adenosine triphosphate (ATP needed to support axonal transport and contribute to many other cellular functions essential for the survival of neuronal cells. Furthermore, mitochondria in PD tissues are metabolically and functionally compromised. To address this hypothesis, we measured the velocity of mitochondrial movement in human transmitochondrial cybrid "cytoplasmic hybrid" neuronal cells bearing mitochondrial DNA from patients with sporadic PD and disease-free age-matched volunteer controls (CNT. The absorption of low level, near-infrared laser light by components of the mitochondrial electron transport chain (mtETC enhances mitochondrial metabolism, stimulates oxidative phosphorylation and improves redox capacity. PD and CNT cybrid neuronal cells were exposed to near-infrared laser light to determine if the velocity of mitochondrial movement can be restored by low level light therapy (LLLT. Axonal transport of labeled mitochondria was documented by time lapse microscopy in dopaminergic PD and CNT cybrid neuronal cells before and after illumination with an 810 nm diode laser (50 mW/cm2 for 40 seconds. Oxygen utilization and assembly of mtETC complexes were also determined. Results The velocity of mitochondrial movement in PD cybrid neuronal cells (0.175 +/- 0.005 SEM was significantly reduced (p Conclusion The results from this study support our proposal that axonal transport is reduced in sporadic PD and that a single, brief treatment with near-infrared light can restore axonal transport to control levels. These results are the first demonstration that LLLT can increase axonal transport in model human dopaminergic neuronal cells and they suggest that LLLT could be developed as a novel treatment to improve neuronal function in patients with PD.

  11. Improvement of cobalt-transport in axons by complexing agents.

    Science.gov (United States)

    Gallyas, F; Lénárd, L; Lázár, G

    1978-09-01

    The use of the cobalt technique is limited by the fact that cobaltous ions travel within axons for a shorter distance than do other intracellular markers. In the present experiments different organic cobaltous complexes were tested in the rat's sciatic nerve. Cobaltous complexes containing ornithine, threonine, lysine or Girard's reagent travelled two or three times further than did the cobaltous ions alone. Using the lysine complex in the frog's visual system, very fine terminals were observed which have never been demonstrated with other techniques. The possible use of other metal complexes as intracellular markers are also discussed. PMID:19605220

  12. Effect of MSH/ACTH peptides on fast axonal transport in intact and regenerating sciatic nerves

    International Nuclear Information System (INIS)

    Fast axonal transport was examined in intact rats treated with ACTH 4-10 or ACTH 4-9 (ORG 2766), hypophysectomized rats, adrenalectomized rats, and in ACTH 4-10 treated rats with crushed regenerating sciatic nerves by injecting 3H-leucine into the ventral horn region of the spinal cord. The distance traveled by the transported activity along the sciatic nerve and the rate of fast axonal transport were not significantly altered as a result of treatment with ACTH 4-10, ACTH 4-9 (ORG 2766), hypophysectomy, or adrenalectomy. Treatment with ACTH 4-9 (ORG 2766) at concentrations of 1 μg/Kg /day and 10 μg/Kg/day caused significant reductions (62% and 64% respectively) in the crest height of the fast axonal transport curve as compared to 0.9% saline treated control animals. No significant differences were found in comparing the distance, rate, slope, or crest height of ACTH 4-10 treated animals with crushed regenerating (7 or 14d) sciatic nerves to control animals. In the group of animals in days, the amount of radiolabeled activity was significantly increased in the ACTH 4-10 treated animals as compared to control animals. The results indicate that during regeneration the peptide acts to prolong the initially high levels of synthetic activity which occur in regenerating axons

  13. LOCALLY SYNTHESIZED PHOSPHATIDYCHOLINE, BUT NOT PROTEIN, UNDERGOES RAPID RETROGRADE AXONAL TRANSPORT IN THE RAT SCIATIC NERVE

    Science.gov (United States)

    Retrograde axonal transport of phosphatidylcholine (PC) in the sciatic nerve has been demonstrated only after injection of lipid precursors into the cell body regions (Armstrong et al. 1985). icroinjection of [methyl-3H]choline into the sciatic nerve results in extensive incorpor...

  14. Fast axonal transport of labeled proteins in motoneurons of exercise-trained rats

    International Nuclear Information System (INIS)

    In this study, the fast orthograde axonal transport of radiolabeled proteins was measured to determine the effects of endurance-running training on transport velocity and amounts of transported proteins in rat sciatic motoneurons. Female rats were subjected to a progressive running-training program for 10-12 wk. Twenty-four hours after the last training session, rats underwent right L4-L5 dorsal root ganglionectomy. The next day, 20 microCi of [3H]leucine was injected bilaterally in the vicinity of the motoneuronal cell bodies supplying the sciatic nerve, to study axonal transport parameters. Results showed that peak and average transport velocities of labeled proteins were significantly (P less than 0.05) increased by 22 and 29%, respectively, in the deafferented nerves of the runners as compared with controls. Moreover, the amount of total transported protein-bound radioactivity was increased in both left (40%) and right (37%) sciatic nerves of the runners. An exhaustive exercise session reduced (P less than 0.05) peak displacement (8%) and total transported protein-bound radioactivity (36%) in the sciatic nerves of control rats, whereas no changes were noticed in trained animals. The data suggest that chronic endurance running induces significant adaptations in the fast axonal transport of labeled proteins

  15. Axonal transport of enzymes and labeled proteins in experimental axonopathy induced by p-bromophenylacetylurea

    International Nuclear Information System (INIS)

    Axonal transport was studied by several techniques in the sciatic nerves of adult male Sprague-Dawley rats with neuropathy induced by treatment with p-bromophenylacetylurea (BPAU) in dimethylsulfoxide solution. Control rats were treated with solvent alone. BPAU, 200 mg/kg, induced severe muscle weakness in the hindlimbs, beginning after a latent period of 1 week and progressing to near total paralysis by 2 weeks. Axonal transport of the endogenous transmitter enzymes, acetylcholinesterase, dopamine-β-hydroxylase and choline acetyltransferase, was normal at both 2 and 15 days after administration of BPAU, as judged by the accumulation of enzyme activity above and below a set of double ligatures on the sciatic nerve. The velocity of fast anterograde transport of [35S]methionine labeled protein was also unaffected by BPAU. However, 4 abnormalities of transport were detected in BPAU treated rats. These abnormalities are discussed. (Auth.)

  16. A comparative quantitative assessment of axonal and dendritic mRNA transport in maturing hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Gunja K Pathak

    Full Text Available Translation of mRNA in axons and dendrites enables a rapid supply of proteins to specific sites of localization within the neuron. Distinct mRNA-containing cargoes, including granules and mitochondrial mRNA, are transported within neuronal projections. The distributions of these cargoes appear to change during neuronal development, but details on the dynamics of mRNA transport during these transitions remain to be elucidated. For this study, we have developed imaging and image processing methods to quantify several transport parameters that can define the dynamics of RNA transport and localization. Using these methods, we characterized the transport of mitochondrial and non-mitochondrial mRNA in differentiated axons and dendrites of cultured hippocampal neurons varying in developmental maturity. Our results suggest differences in the transport profiles of mitochondrial and non-mitochondrial mRNA, and differences in transport parameters at different time points, and between axons and dendrites. Furthermore, within the non-mitochondrial mRNA pool, we observed two distinct populations that differed in their fluorescence intensity and velocity. The net axonal velocity of the brighter pool was highest at day 7 (0.002±0.001 µm/s, mean ± SEM, raising the possibility of a presynaptic requirement for mRNA during early stages of synapse formation. In contrast, the net dendritic velocity of the brighter pool increased steadily as neurons matured, with a significant difference between day 12 (0.0013±0.0006 µm/s and day 4 (-0.003±0.001 µm/s suggesting a postsynaptic role for mRNAs in more mature neurons. The dim population showed similar trends, though velocities were two orders of magnitude higher than of the bright particles. This study provides a baseline for further studies on mRNA transport, and has important implications for the regulation of neuronal plasticity during neuronal development and in response to neuronal injury.

  17. The myriad roles of Miro in the nervous system: axonal transport of mitochondria and beyond

    OpenAIRE

    Lee, Kyu-Sun; Lu, Bingwei

    2014-01-01

    Mitochondrial rho GTPase (Miro) is a mitochondrial outer membrane protein containing two GTPase domains and two helix-loop-helix Ca2+-binding domains called EF hands. Pioneering genetic studies in Drosophila first revealed a key function of Miro in regulating the axonal transport of mitochondria, during which Miro forms a multi-protein transport complex with Milton and Kinesin heavy chain (KHC) to link trafficking mitochondria with the microtubule (MT) cytoskeleton. Recent studies showed that...

  18. The Myriad Roles of Miro in the Nervous System: Axonal Transport of Mitochondria and Beyond

    OpenAIRE

    Bingwei Lu

    2014-01-01

    Mitochondrial rho GTPase (Miro) is a mitochondrial outer membrane protein containing two GTPase domains and two helix-loop-helix Ca2+-binding domains called EF hands. Pioneering genetic studies in Drosophila first revealed a key function of Miro in regulating the axonal transport of mitochondria, during which Miro forms a multi-protein transport complex with Milton and Kinesin heavy chain (KHC) to link trafficking mitochondria with the microtubule cytoskeleton. Recent studies showed that thro...

  19. Non-Cell-Autonomous Regulation of Retrograde Motoneuronal Axonal Transport in an SBMA Mouse Model

    Science.gov (United States)

    Halievski, Katherine; Kemp, Michael Q.; Breedlove, S. Marc; Miller, Kyle E.

    2016-01-01

    Abstract Defects in axonal transport are seen in motoneuronal diseases, but how that impairment comes about is not well understood. In spinal bulbar muscular atrophy (SBMA), a disorder linked to a CAG/polyglutamine repeat expansion in the androgen receptor (AR) gene, the disease-causing AR disrupts axonal transport by acting in both a cell-autonomous fashion in the motoneurons themselves, and in a non-cell-autonomous fashion in muscle. The non-cell-autonomous mechanism is suggested by data from a unique “myogenic” transgenic (TG) mouse model in which an AR transgene expressed exclusively in skeletal muscle fibers triggers an androgen-dependent SBMA phenotype, including defects in retrograde transport. However, motoneurons in this TG model retain the endogenous AR gene, leaving open the possibility that impairments in transport in this model also depend on ARs in the motoneurons themselves. To test whether non-cell-autonomous mechanisms alone can perturb retrograde transport, we generated male TG mice in which the endogenous AR allele has the testicular feminization mutation (Tfm) and, consequently, is nonfunctional. Males carrying the Tfm allele alone show no deficits in motor function or axonal transport, with or without testosterone treatment. However, when Tfm males carrying the myogenic transgene (Tfm/TG) are treated with testosterone, they develop impaired motor function and defects in retrograde transport, having fewer retrogradely labeled motoneurons and deficits in endosomal flux based on time-lapse video microscopy of living axons. These findings demonstrate that non-cell-autonomous disease mechanisms originating in muscle are sufficient to induce defects in retrograde transport in motoneurons. PMID:27517091

  20. 4S RNA is transported axonally in normal and regenerating axons of the sciatic nerves of rats

    International Nuclear Information System (INIS)

    Experiments were designed to determine if following injection of [3H]uridine into the lumbar spinal cord of the rat, [3H]RNA could be demonstrated within axons of the sciatic nerve, and if 4S RNA is the predominant predominant RNA species present in these axons. (Auth.)

  1. Assessment of retinal ganglion cell damage in glaucomatous optic neuropathy: Axon transport, injury and soma loss.

    Science.gov (United States)

    Nuschke, Andrea C; Farrell, Spring R; Levesque, Julie M; Chauhan, Balwantray C

    2015-12-01

    Glaucoma is a disease characterized by progressive axonal pathology and death of retinal ganglion cells (RGCs), which causes structural changes in the optic nerve head and irreversible vision loss. Several experimental models of glaucomatous optic neuropathy (GON) have been developed, primarily in non-human primates and, more recently and commonly, in rodents. These models provide important research tools to study the mechanisms underlying glaucomatous damage. Moreover, experimental GON provides the ability to quantify and monitor risk factors leading to RGC loss such as the level of intraocular pressure, axonal health and the RGC population. Using these experimental models we are able to gain a better understanding of GON, which allows for the development of potential neuroprotective strategies. Here we review the advantages and disadvantages of the relevant and most often utilized methods for evaluating axonal degeneration and RGC loss in GON. Axonal pathology in GON includes functional disruption of axonal transport (AT) and structural degeneration. Horseradish peroxidase (HRP), rhodamine-B-isothiocyanate (RITC) and cholera toxin-B (CTB) fluorescent conjugates have proven to be effective reporters of AT. Also, immunohistochemistry (IHC) for endogenous AT-associated proteins is often used as an indicator of AT function. Similarly, structural degeneration of axons in GON can be investigated via changes in the activity and expression of key axonal enzymes and structural proteins. Assessment of axonal degeneration can be measured by direct quantification of axons, qualitative grading, or a combination of both methods. RGC loss is the most frequently quantified variable in studies of experimental GON. Retrograde tracers can be used to quantify RGC populations in rodents via application to the superior colliculus (SC). In addition, in situ IHC for RGC-specific proteins is a common method of RGC quantification used in many studies. Recently, transgenic mouse models

  2. Drug transporters in breast cancer

    DEFF Research Database (Denmark)

    Kümler, Iben; Stenvang, Jan; Moreira, José;

    2015-01-01

    basis. Although effective, their usefulness is limited by the inevitable development of resistance, a lack of response to drug-induced cancer cell death. A large body of research has resulted in the characterization of a plethora of mechanisms involved in resistance; ATP-binding cassette transporter...... proteins, through their function in xenobiotic clearance, play an important role in resistance. We review here the current evidence for drug transporters as biomarkers and the benefit of adding drug transporter modulators to conventional chemotherapy....

  3. Calsyntenin-1 shelters APP from proteolytic processing during anterograde axonal transport

    Directory of Open Access Journals (Sweden)

    Martin Steuble

    2012-06-01

    Endocytosis of amyloid-β precursor protein (APP is thought to represent the major source of substrate for the production of the amyloidogenic Aβ peptide by the β-secretase BACE1. The irreversible nature of proteolytic cleavage implies the existence of an efficient replenishment route for APP from its sites of synthesis to the cell surface. We recently found that APP exits the trans-Golgi network in intimate association with calsyntenin-1, a transmembrane cargo-docking protein for Kinesin-1-mediated vesicular transport. Here we characterized the function of calsyntenin-1 in neuronal APP transport using selective immunoisolation of intracellular trafficking organelles, immunocytochemistry, live-imaging, and RNAi. We found that APP is co-transported with calsyntenin-1 along axons to early endosomes in the central region of growth cones in carriers that exclude the α-secretase ADAM10. Intriguingly, calsyntenin-1/APP organelles contained BACE1, suggesting premature cleavage of APP along its anterograde path. However, we found that APP contained in calsyntenin-1/APP organelles was stable. We further analyzed vesicular trafficking of APP in cultured hippocampal neurons, in which calsyntenin-1 was reduced by RNAi. We found a markedly increased co-localization of APP and ADAM10 in axons and growth cones, along with increased proteolytic processing of APP and Aβ secretion in these neurons. This suggested that the reduced capacity for calsyntenin-1-dependent APP transport resulted in mis-sorting of APP into additional axonal carriers and, therefore, the premature encounter of unprotected APP with its ectodomain proteases. In combination, our results characterize calsyntenin-1/APP organelles as carriers for sheltered anterograde axonal transport of APP.

  4. Disruption of mitochondrial DNA replication in Drosophila increases mitochondrial fast axonal transport in vivo.

    Directory of Open Access Journals (Sweden)

    Rehan M Baqri

    Full Text Available Mutations in mitochondrial DNA polymerase (pol gamma cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol gamma leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol gamma deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol gamma-alpha mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases.

  5. Drug Transporters in the Intestine

    DEFF Research Database (Denmark)

    Steffansen, Bente

    2016-01-01

    that may impact drug absorption. Thus absorptive transporters may facilitate BA of APIs that are substrates/victims for the transporters and have permeability-limited absorption, i.e. those that are classified in the biopharmaceutics classification system (BCS) Class 3 and 4. On the other hand, exsorptive...... transporters may restrict BA of APIs that are victims for these efflux transporters, especially those APIs classified to have solubility-limited absorption, i.e. compounds in BCS Class 2 and 4. The aim of the present Chapter is to review drug transporters (DTs) present within the intestine and to discuss...... and exemplify their roles in drug absorption/exsorption and in drug-drug interactions (DDIs). Although focus in the present Chapter is on DTs that are mentioned in American and European regulatory guidances, the intestinal transporters for nutrients and endogens (endogenous compounds) are also briefly...

  6. Axon Transport and Neuropathy: Relevant Perspectives on the Etiopathogenesis of Familial Dysautonomia.

    Science.gov (United States)

    Tourtellotte, Warren G

    2016-03-01

    Peripheral neuropathies are highly prevalent and are most often associated with chronic disease, side effects from chemotherapy, or toxic-metabolic abnormalities. Neuropathies are less commonly caused by genetic mutations, but studies of the normal function of mutated proteins have identified particular vulnerabilities that often implicate mitochondrial dynamics and axon transport mechanisms. Hereditary sensory and autonomic neuropathies are a group of phenotypically related diseases caused by monogenic mutations that primarily affect sympathetic and sensory neurons. Here, I review evidence to indicate that many genetic neuropathies are caused by abnormalities in axon transport. Moreover, in hereditary sensory and autonomic neuropathies. There may be specific convergence on gene mutations that disrupt nerve growth factor signaling, upon which sympathetic and sensory neurons critically depend. PMID:26724390

  7. Berberine Attenuates Axonal Transport Impairment and Axonopathy Induced by Calyculin A in N2a Cells

    OpenAIRE

    Xiaofeng Liu; Jie Zhou; Morad Dirhem Naji Abid; Huanhuan Yan; Hao Huang; Limin Wan; Zuohua Feng; Juan Chen

    2014-01-01

    Berberine is a primary component of the most functional extracts of Coptidis rhizome used in traditional Chinese medicine for centuries. Recent reports indicate that Berberine has the potential to prevent and treat Alzheimer's disease (AD). The previous studies reported that Calyculin A (CA) impaired the axonal transport in neuroblastoma-2a (N2a) cells. Berberine attenuated tau hyperphosphorylation and cytotoxicity induced by CA. Our study aimed at investigating the effects of Berberine on th...

  8. Analysis of axonal transport and molecular chaperones during neurodegeneration in drosophila

    OpenAIRE

    Sinadinos, Christopher

    2010-01-01

    Neuronal dysfunction and cell death occurs during neurodegeneration. Animal models that express human disease genes and show neurodegenerative-like pathologies are widely used to study particular molecular systems in early neurodegenerative changes. Axonal transport (AT) is perturbed in several prevalent neurodegenerative diseases. The development of a Huntington’s Disease (HD) model in Drosophila melanogaster larvae is described, in which disease gene expression is directed to motor neurons ...

  9. Release of axonally transported material from an in vitro amphibian sciatic nerve preparation

    International Nuclear Information System (INIS)

    The rapid axonal transport of a pulse of [35S]methionine-labelled material was used to study the release of transported material from amphibian nerve maintained in vitro. Following creation of a moving pulse of activity in a dorsal root ganglion-sciatic nerve preparation, the ganglion was removed and the nerve placed in a three-compartment tray, the section of nerve in the middle compartment containing no truncated branches (unbranched section). All three compartments were filled with a saline solution that in some studies contained nonradioactive methionine (1.0 mmol/L). Analysis of studies in which nonradioactive methionine was absent revealed that labelled material appeared in the bathing solution of the end compartments that contained truncated branches, but not in the solution of the middle (unbranched) compartment. The quantity of label released in the branched compartments was approximately 6% of that remaining in the corresponding section of nerve following an 18-20 h incubation period. However, when nonradioactive methionine was present, all compartments showed an additional activity in the bathing solution of approximately 10% of that remaining in the nerve. In another study in which a position-sensitive detector of ionizing radiation was used to monitor progress of the pulse, it was found that activity did not enter the bathing solution of a compartment prior to the pulse of activity. It is concluded that in the absence of methionine from the bathing solution, axonally transported material is released only from regions of nerve that contain severed axons; however, the presence of methionine allows transported material to be released from nerve containing intact axons. Ultrafiltration studies and thin-layer chromatography revealed the majority of material released to be of low-molecular weight (less than 30,000 daltons) and not free [35S]methionine

  10. Quantification of retrograde axonal transport in the rat optic nerve by fluorogold spectrometry.

    Directory of Open Access Journals (Sweden)

    Christian van Oterendorp

    Full Text Available PURPOSE: Disturbed axonal transport is an important pathogenic factor in many neurodegenerative diseases, such as glaucoma, an eye disease characterised by progressive atrophy of the optic nerve. Quantification of retrograde axonal transport in the optic nerve usually requires labour intensive histochemical techniques or expensive equipment for in vivo imaging. Here, we report on a robust alternative method using Fluorogold (FG as tracer, which is spectrometrically quantified in retinal tissue lysate. METHODS: To determine parameters reflecting the relative FG content of a sample FG was dissolved in retinal lysates at different concentrations and spectra were obtained. For validation in vivo FG was injected uni- or bilaterally into the superior colliculus (SC of Sprague Dawley rats. The retinal lysate was analysed after 3, 5 and 7 days to determine the time course of FG accumulation in the retina (n = 15. In subsequent experiments axona transport was impaired by optic nerve crush (n = 3, laser-induced ocular hypertension (n = 5 or colchicine treatment to the SC (n = 10. RESULTS: Spectrometry at 370 nm excitation revealed two emission peaks at 430 and 610 nm. We devised a formula to calculate the relative FG content (c(FG, from the emission spectrum. c(FG is proportional to the real FG concentration as it corrects for variations of retinal protein concentration in the lysate. After SC injection, c(FG monotonously increases with time (p = 0.002. Optic nerve axonal damage caused a significant decrease of c(FG (crush p = 0.029; hypertension p = 0.025; colchicine p = 0.006. Lysates are amenable to subsequent protein analysis. CONCLUSIONS: Spectrometrical FG detection in retinal lysates allows for quantitative assessment of retrograde axonal transport using standard laboratory equipment. It is faster than histochemical techniques and may also complement morphological in vivo analyses.

  11. Demyelination induces transport of ribosome-containing vesicles from glia to axons: evidence from animal models and MS patient brains.

    Science.gov (United States)

    Shakhbazau, Antos; Schenk, Geert J; Hay, Curtis; Kawasoe, Jean; Klaver, Roel; Yong, V Wee; Geurts, Jeroen J G; van Minnen, Jan

    2016-06-01

    Glial cells were previously proven capable of trafficking polyribosomes to injured axons. However, the occurrence of such transfer in the general pathological context, such as demyelination-related diseases, needs further evidence. Since this may be a yet unidentified universal contributor to axonal survival, we study putative glia-axonal ribosome transport in response to demyelination in animal models and patients in both peripheral and central nervous system. In the PNS we investigate whether demyelination in a rodent model has the potential to induce ribosome transfer. We also probe the glia-axonal ribosome supply by implantation of transgenic Schwann cells engineered to produce fluorescent ribosomes in the same demyelination model. We furthermore examine the presence of axonal ribosomes in mouse experimental autoimmune encephalomyelitis (EAE), a well-established model for multiple sclerosis (MS), and in human MS autopsy brain material. We provide evidence for increased axonal ribosome content in a pharmacologically demyelinated sciatic nerve, and demonstrate that at least part of these ribosomes originate in the transgenic Schwann cells. In the CNS one of the hallmarks of MS is demyelination, which is associated with severe disruption of oligodendrocyte-axon interaction. Here, we provide evidence that axons from spinal cords of EAE mice, and in the MS human brain contain an elevated amount of axonal ribosomes compared to controls. Our data provide evidence that increased axonal ribosome content in pathological axons is at least partly due to glia-to-axon transfer of ribosomes, and that demyelination in the PNS and in the CNS is one of the triggers capable to initiate this process. PMID:27115494

  12. Axonal transport of cadmium in the olfactory nerve of the pike

    International Nuclear Information System (INIS)

    109Cd2+ was applied in the olfactory chambers of pikes (Esox lucius) and the dynamics of the axoplasmic flow of the metal was determined in the olfactory nerves by gamma spectrometry and autoradiography. The results showed that the 109Cd2+ is transported at a constant rate along the olfactory nerves. The profile of the 109Cd2+ in the nerves showed a wave front of transported metal followed by a saddle region. When the nasal chambers were washed 2 hr after application of the 109Cd2+ well-defined transport peaks for the metal were seen in the olfactory axons. The maximal velocity for the transport of 109Cd2+, which corresponds to the movement of the wave front, was 2.38±0.10 mm/hr (mean±S.E.) at the experimental temperature (10 deg. C). The average velocity for the transport of the 109Cd2+, which corresponds to the peak apex movement of the wave, was 2.18±0.05 mm/hr (mean ±S.E.) at 10 deg. C. The tranported 109Cd2+ was strongly accumulated in the anterior parts of the olfactory bulbs, whereas in other brain areas the levels of the metal remained low. Autoradiography of a pike exposed to 109Cd2+ via the water showed a strong labelling in the receptor-cell-containing olfactory rosettes, whereas other structures in the olfactory chambers were only weakly labelled. The accumulation and axonal transport in the olfactory neurons may be noxious and constitute an important component in the toxicology of cadmium in fish, and this may apply also to some other heavy metals. (author)

  13. Ndel1-derived peptides modulate bidirectional transport of injected beads in the squid giant axon

    Directory of Open Access Journals (Sweden)

    Michal Segal

    2012-01-01

    Bidirectional transport is a key issue in cellular biology. It requires coordination between microtubule-associated molecular motors that work in opposing directions. The major retrograde and anterograde motors involved in bidirectional transport are cytoplasmic dynein and conventional kinesin, respectively. It is clear that failures in molecular motor activity bear severe consequences, especially in the nervous system. Neuronal migration may be impaired during brain development, and impaired molecular motor activity in the adult is one of the hallmarks of neurodegenerative diseases leading to neuronal cell death. The mechanisms that regulate or coordinate kinesin and dynein activity to generate bidirectional transport of the same cargo are of utmost importance. We examined how Ndel1, a cytoplasmic dynein binding protein, may regulate non-vesicular bidirectional transport. Soluble Ndel1 protein, Ndel1-derived peptides or control proteins were mixed with fluorescent beads, injected into the squid giant axon, and the bead movements were recorded using time-lapse microscopy. Automated tracking allowed for extraction and unbiased analysis of a large data set. Beads moved in both directions with a clear bias to the anterograde direction. Velocities were distributed over a broad range and were typically slower than those associated with fast vesicle transport. Ironically, the main effect of Ndel1 and its derived peptides was an enhancement of anterograde motion. We propose that they may function primarily by inhibition of dynein-dependent resistance, which suggests that both dynein and kinesin motors may remain engaged with microtubules during bidirectional transport.

  14. The Myriad Roles of Miro in the Nervous System: Axonal Transport of Mitochondria and Beyond

    Directory of Open Access Journals (Sweden)

    Bingwei Lu

    2014-10-01

    Full Text Available Mitochondrial rho GTPase (Miro is a mitochondrial outer membrane protein containing two GTPase domains and two helix-loop-helix Ca2+-binding domains called EF hands. Pioneering genetic studies in Drosophila first revealed a key function of Miro in regulating the axonal transport of mitochondria, during which Miro forms a multi-protein transport complex with Milton and Kinesin heavy chain (KHC to link trafficking mitochondria with the microtubule cytoskeleton. Recent studies showed that through binding to the EF hands of Miro and causing conformational changes of Miro and alteration of protein-protein interactions within the transport complex, Ca2+ can alter the engagement of mitochondria with the microtubule (MT/kinesin network, offering one mechanism to match mitochondrial distribution with neuronal activity. Despite the importance of the Miro/Milton/Kinesin complex in regulating mitochondrial transport in metazoans, not all components of the transport complex are conserved in lower organisms, and transport-independent functions of Miro are emerging. Here we review the diverse functions of the evolutionarily conserved Miro proteins that are relevant to the development, maintenance, and functioning of the nervous system and discuss the potential contribution of Miro dysfunction to the pathogenesis of diseases of the nervous system.

  15. Quantitative measurements and modeling of cargo–motor interactions during fast transport in the living axon

    International Nuclear Information System (INIS)

    The kinesins have long been known to drive microtubule-based transport of sub-cellular components, yet the mechanisms of their attachment to cargo remain a mystery. Several different cargo-receptors have been proposed based on their in vitro binding affinities to kinesin-1. Only two of these—phosphatidyl inositol, a negatively charged lipid, and the carboxyl terminus of the amyloid precursor protein (APP-C), a trans-membrane protein—have been reported to mediate motility in living systems. A major question is how these many different cargo, receptors and motors interact to produce the complex choreography of vesicular transport within living cells. Here we describe an experimental assay that identifies cargo–motor receptors by their ability to recruit active motors and drive transport of exogenous cargo towards the synapse in living axons. Cargo is engineered by derivatizing the surface of polystyrene fluorescent nanospheres (100 nm diameter) with charged residues or with synthetic peptides derived from candidate motor receptor proteins, all designed to display a terminal COOH group. After injection into the squid giant axon, particle movements are imaged by laser-scanning confocal time-lapse microscopy. In this report we compare the motility of negatively charged beads with APP-C beads in the presence of glycine-conjugated non-motile beads using new strategies to measure bead movements. The ensuing quantitative analysis of time-lapse digital sequences reveals detailed information about bead movements: instantaneous and maximum velocities, run lengths, pause frequencies and pause durations. These measurements provide parameters for a mathematical model that predicts the spatiotemporal evolution of distribution of the two different types of bead cargo in the axon. The results reveal that negatively charged beads differ from APP-C beads in velocity and dispersion, and predict that at long time points APP-C will achieve greater progress towards the presynaptic

  16. Acrylamide Retards the Slow Axonal Transport of Neurofilaments in Rat Cultured Dorsal Root Ganglia Neurons and the Corresponding Mechanisms.

    Science.gov (United States)

    An, Lihong; Li, Guozhen; Si, Jiliang; Zhang, Cuili; Han, Xiaoying; Wang, Shuo; Jiang, Lulu; Xie, Keqin

    2016-05-01

    Chronic acrylamide (ACR) exposure induces peripheral-central axonopathy in occupational workers and laboratory animals, but the underlying mechanisms remain unclear. In this study, we first investigated the effects of ACR on slow axonal transport of neurofilaments in cultured rat dorsal root ganglia (DRG) neurons through live-cell imaging approach. Then for the underlying mechanisms exploration, the protein level of neurofilament subunits, motor proteins kinesin and dynein, and dynamitin subunit of dynactin in DRG neurons were assessed by western blotting and the concentrations of ATP was detected using ATP Assay Kit. The results showed that ACR treatment results in a dose-dependent decrease of slow axonal transport of neurofilaments. Furthermore, ACR intoxication significantly increases the protein levels of the three neurofilament subunits (NF-L, NF-M, NF-H), kinesin, dynein, and dynamitin subunit of dynactin in DRG neurons. In addition, ATP level decreased significantly in ACR-treated DRG neurons. Our findings indicate that ACR exposure retards slow axonal transport of NF-M, and suggest that the increase of neurofilament cargoes, motor proteins, dynamitin of dynactin, and the inadequate ATP supply contribute to the ACR-induced retardation of slow axonal transport. PMID:26721510

  17. EFFECTS OF HYPOTHERMIA ON THE IN VIVO MEASUREMENT OF RAPID AXONAL TRANSPORT IN THE RAT: A CAUTIONARY NOTE

    Science.gov (United States)

    Rapid axonal transport of glycoproteins was examined in the retinofugal projections of hypothermic and normothermic adult male Long-Evans hooded rats previously receiving intraocular injections of (3H)fucose. The amount of retinal fucosylation appeared normal in the hypothermic a...

  18. Axonal transport of rubidium and thallium in the olfactory nerve of mice

    International Nuclear Information System (INIS)

    Following intranasal administration of radioactive 86Rb+ and 201Tl+ in mice, we observed this direct transport via the olfactory nerve pathway. The 86RbCl and 201TlCl solutions were administered to two groups of mice, the unilateral intranasal and intravenous administration groups. After sacrifice, their heads were divided into the right and left side, which were then subdivided into seven parts; the nasal mucosa and brain regions were separated. Following the unilateral intranasal administration, uptake after 6 h by the olfactory bulb was significantly higher on the ipsilateral side (86Rb, 0.7 %dose; 201Tl, 0.5 %dose) than on the contralateral side (86Rb, 0.08 %dose; 201Tl, 0.15 %dose). Moreover, the 86Rb and 201Tl that accumulated in the olfactory bulb were gradually transported to other brain regions of the olfactory tract, the telencephalon and the diencephalon on the side corresponding to the nostril used for administration. Significant differences were observed between the right and left side of the brain regions 6 and 12 h after administration. Further, 201Tl autoradiography clearly showed striped patterns of dense accumulation, localized in the region around the glomerular layer and granule cell layer of the olfactory bulb and around the olfactory cortex. These results provide clear evidence of axonal transport via the olfactory nerve pathway, from nasal cavity to the olfactory bulb, as well as to the olfactory cortex through the synaptic junctions. The olfactory transport of the 86Rb+ and 201Tl+ is thought to represent the behavior of K+ in the olfactory system

  19. Increased slow transport in axons of regenerating newt limbs after a nerve conditioning lesion made prior to amputation

    International Nuclear Information System (INIS)

    The first part of this study shows that axonal density is constant in the limb stump of the next proximal to the area of traumatic nerve degeneration caused by limb amputation. The results of the second part of this work reveal that a nerve conditioning lesion made two weeks prior to amputation is associated with accelerated limb regeneration and that this accelerated limb regeneration is accompanied by an earlier arrival of axons. This is the first demonstration of naturally occurring limb regeneration being enhanced. In this study SCb cytoskeletal proteins were identified and measured using SDS-PAGE and liquid scintillation counting. Proteins were measured at 7, 14, 21, and 28 days after 35S-methionine injection and the normal rate of SCb transport determined to be 0.19 mm/day. A single axotomy does not enhance the rate of SCb transport but does increase the amount of labeled SCb proteins that are transported. When a conditioning lesion is employed prior to limb amputation and SCb proteins are measured at 7, 14, and 21 days after injection, there is a twofold acceleration in the rate of SCb transport and an increase in the amount of SCb proteins transported in conditioned axons

  20. Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons

    Institute of Scientific and Technical Information of China (English)

    Xu-Qiao Chen; BinWang; Chengbiao Wu; Jin Pan; Bo Yuan; Yuan-Yuan Su; Xing-Yu Jiang; Xu Zhang; Lan Bao

    2012-01-01

    Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals.However,the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood.Here,we report that the signals of the purinergic (P)2X3 receptor,an ATP-gated ion channel are retrogradely transported in dorsal root ganglion (DRG) neuron axons.We found that Rab5,a small GTPase,controls the early sorting of P2X3 receptors into endosomes,while Rab7 mediates the fast retrograde transport of P2X3 receptors.Intraplantar injection and axonal application into the microfluidic chamber of α,β-methylene-ATP (α,β-MeATP),a P2X selective agonist,enhanced the endocytosis and retrograde transport of P2X3 receptors.The α,β-MeATP-induced Ca2+ influx activated a pathway comprised of protein kinase C,rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK),which associated with endocytic P2X3 receptors to form signaling endosomes.Disruption of the lipid rafts abolished the α,β-MeATP-induced ERK phosphorylation,endocytosis and retrograde transport of P2X3 receptors.Furthermore,treatment of peripheral axons with α,β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability.Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α,β-MeATP-induced retrograde signals.These results indicate that P2X3 receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels.

  1. BODY TEMPERATURE-DEPENDENT AND INDEPENDENT ACTIONS OF CHLORDIMEFORM ON VISUAL EVOKED POTENTIALS AND AXONAL TRANSPORT IN OPTIC SYSTEM OF RAT

    Science.gov (United States)

    Pattern reversal evoked potentials (PREPs), flash evoked potentials (FEPs), optic nerve axonal transport, and body temperature were measured in hooded rats treated with either saline or the formamidine insecticide/acaricide, chlordimeform (CDM). Rats receiving CDM had low body te...

  2. Renal transport and drug interactions of immunosuppressants

    OpenAIRE

    El-Sheikh, Azza Ali Kamel

    2008-01-01

    Immunosuppressants are drugs that are used to treat inflammatory diseases, organ transplantation rejection, and cancer. These drugs are given to patients as single drugs, in combination, or together with other medications to treat accompanying diseases. Several severe side effects may result due to drug-drug interactions. It is thus important to understand the underlying mechanisms to avoid unnecessary toxicities. A number of immunosuppressants depend on the renal transporter proteins for the...

  3. The RNA binding and transport proteins staufen and fragile X mental retardation protein are expressed by rat primary afferent neurons and localize to peripheral and central axons.

    Science.gov (United States)

    Price, T J; Flores, C M; Cervero, F; Hargreaves, K M

    2006-09-15

    Neuronal proteins have been traditionally viewed as being derived solely from the soma; however, accumulating evidence indicates that dendritic and axonal sites are capable of a more autonomous role in terms of new protein synthesis. Such extra-somal translation allows for more rapid, on-demand regulation of neuronal structure and function than would otherwise be possible. While mechanisms of dendritic RNA transport have been elucidated, it remains unclear how RNA is trafficked into the axon for this purpose. Primary afferent neurons of the dorsal root (DRG) and trigeminal (TG) ganglia have among the longest axons in the neuraxis and such axonal protein synthesis would be advantageous, given the greater time involved for protein trafficking to occur via axonal transport. Therefore, we hypothesized that these primary sensory neurons might express proteins involved in RNA transport. Rat DRG and TG neurons expressed staufen (stau) 1 and 2 (detected at the mRNA level) and stau2 and fragile x mental retardation protein (FMRP; detected at the protein level). Stau2 mRNA was also detected in human TG neurons. Stau2 and FMRP protein were localized to the sciatic nerve and dorsal roots by immunohistochemistry and to dorsal roots by Western blot. Stau2 and FMRP immunoreactivities colocalized with transient receptor potential channel type 1 immunoreactivity in sensory axons of the sciatic nerve and dorsal root, suggesting that these proteins are being transported into the peripheral and central terminals of nociceptive sensory axons. Based on these findings, we propose that stau2 and FMRP proteins are attractive candidates to subserve RNA transport in sensory neurons, linking somal transcriptional events to axonal translation. PMID:16809002

  4. Transporters and drug-drug interactions: important determinants of drug disposition and effects.

    Science.gov (United States)

    König, Jörg; Müller, Fabian; Fromm, Martin F

    2013-07-01

    Uptake and efflux transporters determine plasma and tissue concentrations of a broad variety of drugs. They are localized in organs such as small intestine, liver, and kidney, which are critical for drug absorption and elimination. Moreover, they can be found in important blood-tissue barriers such as the blood-brain barrier. Inhibition or induction of drug transporters by coadministered drugs can alter pharmacokinetics and pharmacodynamics of the victim drugs. This review will summarize in particular clinically observed drug-drug interactions attributable to inhibition or induction of intestinal export transporters [P-glycoprotein (P-gp), breast cancer resistance protein (BCRP)], to inhibition of hepatic uptake transporters [organic anion transporting polypeptides (OATPs)], or to inhibition of transporter-mediated [organic anion transporters (OATs), organic cation transporter 2 (OCT2), multidrug and toxin extrusion proteins (MATEs), P-gp] renal secretion of xenobiotics. Available data on the impact of nutrition on transport processes as well as genotype-dependent, transporter-mediated drug-drug interactions will be discussed. We will also present and discuss data on the variable extent to which information on the impact of transporters on drug disposition is included in summaries of product characteristics of selected countries (SPCs). Further work is required regarding a better understanding of the role of the drug metabolism-drug transport interplay for drug-drug interactions and on the extrapolation of in vitro findings to the in vivo (human) situation. PMID:23686349

  5. Concentration dependence of rapid axonal transport: a study of the transport kinetics of [35S]methionine-labeled protein in postganglionic sympathetic fibers of the bullfrog

    International Nuclear Information System (INIS)

    The kinetics of transport of radiolabeled proteins in sympathetic axons of the bullfrog sciatic nerve were examined after injection of [35S]methionine into the S9 sympathetic ganglion. Under resting conditions at 20 degrees C, the fastest moving material was carried distally at 5.7 +/- 0.3 mm/hr. Various manipulations of temperature in the proximal part of the nerve were used to alter the amount of protein transported into the distal region, which was always kept at 20 degrees C. The velocity in this test region was found to increase to over 9 mm/hr when material that had accumulated at a cold block for 4 hr was released by rewarming. This acceleration was transient, and base line velocity was regained after 2 hr. In order to increase the local concentration of transported protein by a second method, the proximal part of several nerves was warmed to 28 degrees C. Maximal transport velocity in the 20 degrees C test region rose to 6.2 +/- 0.12 mm/hr. To decrease the local concentration of transported protein, the proximal part of other nerves was cooled to 15 degrees C. Maximal transport velocity in the 20 degrees C test region fell to 4.7 +/- 0.7 mm/hr. We conclude that there is a small but real tendency for the velocity of rapid axonal transport in this neural system to be positively related to the availability of material suitable for transport

  6. Making Transporter Models for Drug-Drug Interaction Prediction Mobile.

    Science.gov (United States)

    Ekins, Sean; Clark, Alex M; Wright, Stephen H

    2015-10-01

    The past decade has seen increased numbers of studies publishing ligand-based computational models for drug transporters. Although they generally use small experimental data sets, these models can provide insights into structure-activity relationships for the transporter. In addition, such models have helped to identify new compounds as substrates or inhibitors of transporters of interest. We recently proposed that many transporters are promiscuous and may require profiling of new chemical entities against multiple substrates for a specific transporter. Furthermore, it should be noted that virtually all of the published ligand-based transporter models are only accessible to those involved in creating them and, consequently, are rarely shared effectively. One way to surmount this is to make models shareable or more accessible. The development of mobile apps that can access such models is highlighted here. These apps can be used to predict ligand interactions with transporters using Bayesian algorithms. We used recently published transporter data sets (MATE1, MATE2K, OCT2, OCTN2, ASBT, and NTCP) to build preliminary models in a commercial tool and in open software that can deliver the model in a mobile app. In addition, several transporter data sets extracted from the ChEMBL database were used to illustrate how such public data and models can be shared. Predicting drug-drug interactions for various transporters using computational models is potentially within reach of anyone with an iPhone or iPad. Such tools could help prioritize which substrates should be used for in vivo drug-drug interaction testing and enable open sharing of models. PMID:26199424

  7. Drug Transport and Pharmacokinetics for Chemical Engineers

    Science.gov (United States)

    Simon, Laurent; Kanneganti, Kumud; Kim, Kwang Seok

    2010-01-01

    Experiments in continuous-stirred vessels were proposed to introduce methods in pharmacokinetics and drug transport to chemical engineering students. The activities can be incorporated into the curriculum to illustrate fundamentals learned in the classroom. An appreciation for the role of pharmacokinetics in drug discovery will also be gained…

  8. Polymers influencing transportability profile of drug.

    Science.gov (United States)

    Gaikwad, Vinod L; Bhatia, Manish S

    2013-10-01

    Drug release from various polymers is generally governed by the type of polymer/s incorporated in the formulation and mechanism of drug release from polymer/s. A single polymer may show one or more mechanisms of drug release out of which one mechanism is majorly followed for drug release. Some of the common mechanisms of drug release from polymers were, diffusion, swelling, matrix release, leaching of drug, etc. Mechanism or rate of drug release from a polymer or a combination of polymers can be predicted by using different computational methods or models. These models were capable of predicting drug release from its dosage form in advance without actual formulation and testing of drug release from dosage form. Quantitative structure-property relationship (QSPR) is an important tool used in the prediction of various physicochemical properties of actives as well as inactives. Since last several decades QSPR has been applied in new drug development for reducing the total number of drugs to be synthesized, as it involves a selection of the most desirable compound of interest. This technique was also applied in predicting in vivo performance of drug/s for various parameters. QSPR serves as a predictive tool to correlate structural descriptors of molecules with biological as well as physicochemical properties. Several researchers have contributed at different extents in this area to modify various properties of pharmaceuticals. The present review is focused on a study of different polymers that influence the transportability profiles of drugs along with the application of QSPR either to study different properties of polymers that regulate drug release or in predicting drug transportability from different polymer systems used in formulations. PMID:24227951

  9. Distal retinal ganglion cell axon transport loss and activation of p38 MAPK stress pathway following VEGF-A antagonism.

    Science.gov (United States)

    Foxton, R; Osborne, A; Martin, K R; Ng, Y-S; Shima, D T

    2016-01-01

    There is increasing evidence that VEGF-A antagonists may be detrimental to neuronal health following ocular administration. Here we investigated firstly the effects of VEGF-A neutralization on retinal neuronal survival in the Ins2(Akita) diabetic and JR5558 spontaneous choroidal neovascularization (CNV) mice, and then looked at potential mechanisms contributing to cell death. We detected elevated apoptosis in the ganglion cell layer in both these models following VEGF-A antagonism, indicating that even when vascular pathologies respond to treatment, neurons are still vulnerable to reduced VEGF-A levels. We observed that retinal ganglion cells (RGCs) seemed to be the cells most susceptible to VEGF-A antagonism, so we looked at anterograde transport in these cells, due to their long axons requiring optimal protein and organelle trafficking. Using cholera toxin B-subunit tracer studies, we found a distal reduction in transport in the superior colliculus following VEGF-A neutralization, which occurred prior to net RGC loss. This phenomenon of distal transport loss has been described as a feature of early pathological changes in glaucoma, Alzheimer's and Parkinson's disease models. Furthermore, we observed increased phosphorylation of p38 MAPK and downstream Hsp27 stress pathway signaling in the retinas from these experiments, potentially providing a mechanistic explanation for our findings. These experiments further highlight the possible risks of using VEGF-A antagonists to treat ocular neovascular disease, and suggest that VEGF-A may contribute to the maintenance and function of axonal transport in neurons of the retina. PMID:27148685

  10. Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance

    International Nuclear Information System (INIS)

    Anthracyclines and taxanes are commonly used in the treatment of breast cancer. However, tumor resistance to these drugs often develops, possibly due to overexpression of drug transporters. It remains unclear whether drug resistance in vitro occurs at clinically relevant doses of chemotherapy drugs and whether both the onset and magnitude of drug resistance can be temporally and causally correlated with the enhanced expression and activity of specific drug transporters. To address these issues, MCF-7 cells were selected for survival in increasing concentrations of doxorubicin (MCF-7DOX-2), epirubicin (MCF-7EPI), paclitaxel (MCF-7TAX-2), or docetaxel (MCF-7TXT). During selection cells were assessed for drug sensitivity, drug uptake, and the expression of various drug transporters. In all cases, resistance was only achieved when selection reached a specific threshold dose, which was well within the clinical range. A reduction in drug uptake was temporally correlated with the acquisition of drug resistance for all cell lines, but further increases in drug resistance at doses above threshold were unrelated to changes in cellular drug uptake. Elevated expression of one or more drug transporters was seen at or above the threshold dose, but the identity, number, and temporal pattern of drug transporter induction varied with the drug used as selection agent. The pan drug transporter inhibitor cyclosporin A was able to partially or completely restore drug accumulation in the drug-resistant cell lines, but had only partial to no effect on drug sensitivity. The inability of cyclosporin A to restore drug sensitivity suggests the presence of additional mechanisms of drug resistance. This study indicates that drug resistance is achieved in breast tumour cells only upon exposure to concentrations of drug at or above a specific selection dose. While changes in drug accumulation and the expression of drug transporters does occur at the threshold dose, the magnitude of resistance

  11. Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance

    Directory of Open Access Journals (Sweden)

    Veitch Zachary

    2008-11-01

    Full Text Available Abstract Background Anthracyclines and taxanes are commonly used in the treatment of breast cancer. However, tumor resistance to these drugs often develops, possibly due to overexpression of drug transporters. It remains unclear whether drug resistance in vitro occurs at clinically relevant doses of chemotherapy drugs and whether both the onset and magnitude of drug resistance can be temporally and causally correlated with the enhanced expression and activity of specific drug transporters. To address these issues, MCF-7 cells were selected for survival in increasing concentrations of doxorubicin (MCF-7DOX-2, epirubicin (MCF-7EPI, paclitaxel (MCF-7TAX-2, or docetaxel (MCF-7TXT. During selection cells were assessed for drug sensitivity, drug uptake, and the expression of various drug transporters. Results In all cases, resistance was only achieved when selection reached a specific threshold dose, which was well within the clinical range. A reduction in drug uptake was temporally correlated with the acquisition of drug resistance for all cell lines, but further increases in drug resistance at doses above threshold were unrelated to changes in cellular drug uptake. Elevated expression of one or more drug transporters was seen at or above the threshold dose, but the identity, number, and temporal pattern of drug transporter induction varied with the drug used as selection agent. The pan drug transporter inhibitor cyclosporin A was able to partially or completely restore drug accumulation in the drug-resistant cell lines, but had only partial to no effect on drug sensitivity. The inability of cyclosporin A to restore drug sensitivity suggests the presence of additional mechanisms of drug resistance. Conclusion This study indicates that drug resistance is achieved in breast tumour cells only upon exposure to concentrations of drug at or above a specific selection dose. While changes in drug accumulation and the expression of drug transporters does

  12. The multiple sclerosis drug fingolimod (FTY720) stimulates neuronal gene expression, axonal growth and regeneration.

    Science.gov (United States)

    Anastasiadou, Sofia; Knöll, Bernd

    2016-05-01

    Fingolimod (FTY720) is a new generation oral treatment for multiple sclerosis (MS). So far, FTY720 was mainly considered to target trafficking of immune cells but not brain cells such as neurons. Herein, we analyzed FTY720's potential to directly alter neuronal function. In CNS neurons, we identified a FTY720 governed gene expression response. FTY720 upregulated immediate early genes (IEGs) encoding for neuronal activity associated transcription factors such as c-Fos, FosB, Egr1 and Egr2 and induced actin cytoskeleton associated genes (actin isoforms, tropomyosin, calponin). Stimulation of primary neurons with FTY720 enhanced neurite growth and altered growth cone morphology. In accordance, FTY720 enhanced axon regeneration in mice upon facial nerve axotomy. We identified components of a FTY720 engaged signaling cascade including S1P receptors, G12/13G-proteins, RhoA-GTPases and the transcription factors SRF/MRTF. In summary, we uncovered a broader cellular and therapeutic operation mode of FTY720, suggesting beneficial FTY720 effects also on CNS neurons during MS therapy and for treatment of other neurodegenerative diseases requiring neuroprotective and neurorestorative processes. PMID:26980486

  13. Outsourcing CREB translation to axons to survive

    OpenAIRE

    Lin, Andrew C; Holt, Christine E.

    2008-01-01

    Nerve growth factor induces sensory neuron survival via retrograde signalling from the axon to the cell body. Local translation of the transcription factor CREB in the axon, followed by its transport to the nucleus, is involved in this process.

  14. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery.

    Science.gov (United States)

    Mazarakis, N D; Azzouz, M; Rohll, J B; Ellard, F M; Wilkes, F J; Olsen, A L; Carter, E E; Barber, R D; Baban, D F; Kingsman, S M; Kingsman, A J; O'Malley, K; Mitrophanous, K A

    2001-09-15

    In this report it is demonstrated for the first time that rabies-G envelope of the rabies virus is sufficient to confer retrograde axonal transport to a heterologous virus/vector. After delivery of rabies-G pseudotyped equine infectious anaemia virus (EIAV) based vectors encoding a marker gene to the rat striatum, neurons in regions distal from but projecting to the injection site, such as the dopaminergic neurons of the substantia nigra pars compacta, become transduced. This retrograde transport to appropriate distal neurons was also demonstrated after delivery to substantia nigra, hippocampus and spinal cord and did not occur when vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped vectors were delivered to these sites. In addition, peripheral administration of rabies-G pseudotyped vectors to the rat gastrocnemius muscle leads to gene transfer in motoneurons of lumbar spinal cord. In contrast the same vector pseudotyped with VSV-G transduced muscle cells surrounding the injection site, but did not result in expression in any cells in the spinal cord. Long-term expression was observed after gene transfer in the nervous system and a minimal immune response which, together with the possibility of non-invasive administration, greatly extends the utility of lentiviral vectors for gene therapy of human neurological disease. PMID:11590128

  15. Transporter-Mediated Drug–Drug Interactions with Oral Antidiabetic Drugs

    OpenAIRE

    Jörg König; Fromm, Martin F; Sabine Klatt

    2011-01-01

    Uptake transporters (e.g., members of the SLC superfamily of solute carriers) and export proteins (e.g., members of the ABC transporter superfamily) are important determinants for the pharmacokinetics of drugs. Alterations of drug transport due to concomitantly administered drugs that interfere with drug transport may alter the kinetics of drug substrates. In vitro and in vivo studies indicate that many drugs used for the treatment of metabolic disorders and cardiovascular diseases (e.g., ora...

  16. Analyzing ferrofluid transport for magnetic drug targeting

    International Nuclear Information System (INIS)

    Experimental and numerical investigations of magnetically induced localization of ferrofluid and its subsequent dispersion are performed in a forced flow. The ferrofluid accumulation behaves as a solid obstacle in the flow as the competing magnetic and fluid shear forces give rise to a rigidly bound core region followed by a washaway region at its wake. Results of the analysis provide meaningful information on ferrofluid transport for various magnetic drug targeting applications

  17. Analysis of the apparent biphasic axonal transport kinetics of fucosylated glycoproteins

    International Nuclear Information System (INIS)

    Following intraocular injection of [3H]fucose, the accumulation of transported radioactivity arriving at the superior colliculus peaks within a few hours and decays with a time course of hours. Then, over a period of several days, radioactivity again accumulates at the superior colliculus and then decays with a half-life of days. Such data have been interpreted as evidence for both a group of rapidly released, rapidly transported glycoproteins (first peak) and a group of slowly released but rapidly transported glycoproteins (second peak). This supposition was investigated by studying in more detail the metabolism of some individual fucosylated proteins in both the retina and superior colliculus. It was noted that much of the radioactivity incorporated in fucosylated glycoproteins at the retina was rapidly metabolized, while the remainder of the fucosylated moieties had a metabolic half-life on the order of days. In other experiments [35S]methionine was injected intraocularly, the metabolism in the retina was examined and a study was made of the kinetics of transport to the superior colliculus of the peptide backbone of these same individual proteins. In contrast to the two waves of accumulation of radioactivity from [3H]fucose, accumulation of radioactivity of the peptide backbone of the same glycoproteins was monophasic. The author's explanation of these data involves the presence of two types of fucose moieties on the peptides. One group of fucose moieties is labile and is lost from the peptide backbone over a period of hours. Other fucose moieties are approximately as metabolically stable as the peptide backbones to which they are attached. The actual peptide backbones of the glycoproteins are committed to rapid transport over a period of several days

  18. In vivo labelling and axonal transport of monoamine oxidase in the rat basal ganglia using radioactive pargyline

    International Nuclear Information System (INIS)

    The enzyme monoamine oxidase was labelled in the rat striatum or substantia nigra with locally injected radioactive pargyline. The binding was prevented by a pretreatment with non-radioactive pargyline, or with a combination of clorgyline and deprenyl. Most of the MAO labelled with 3H-pargyline was of the B-type, but also some MAO-A was labelled, as shown in rats pretreated with clorgyline or deprenyl separately. Seven days after the injection of (3H)-pargyline into the striatum a significant labelling was observed in the substantia nigra. This labelling was clorgyline sensitive, indicating type A MAO, and was not present when striatal neurons were destroyed with kainic acid. Labelling of the striatum following 3H-pargyline injection into the substantia nigra was also less in kainate intoxicated striata. Damage of nigral dopamine neurons with 6-hydroxydopmaine did not influence the distribution of the label. Thus by using 3H-pargyline, specific labelling and axonal transport of type A MAO in striatal neurons projecting to the substantia nigra was demonstrated. (Author)

  19. Thiazolidinediones promote axonal growth through the activation of the JNK pathway.

    Directory of Open Access Journals (Sweden)

    Rodrigo A Quintanilla

    Full Text Available The axon is a neuronal process involved in protein transport, synaptic plasticity, and neural regeneration. It has been suggested that their structure and function are profoundly impaired in neurodegenerative diseases. Previous evidence suggest that Peroxisome Proliferator-Activated Receptors-γ (PPARγ promote neuronal differentiation on various neuronal cell types. In addition, we demonstrated that activation of PPARγby thiazolidinediones (TZDs drugs that selectively activate PPARγ prevent neurite loss and axonal damage induced by amyloid-β (Aβ. However, the potential role of TZDs in axonal elongation and neuronal polarity has not been explored. We report here that the activation of PPARγ by TZDs promoted axon elongation in primary hippocampal neurons. Treatments with different TZDs significantly increased axonal growth and branching area, but no significant effects were observed in neurite elongation compared to untreated neurons. Treatment with PPARγ antagonist (GW 9662 prevented TZDs-induced axonal growth. Recently, it has been suggested that the c-Jun N-terminal kinase (JNK plays an important role regulating axonal growth and neuronal polarity. Interestingly, in our studies, treatment with TZDs induced activation of the JNK pathway, and the pharmacological blockage of this pathway prevented axon elongation induced by TZDs. Altogether, these results indicate that activation of JNK induced by PPARγactivators stimulates axonal growth and accelerates neuronal polarity. These novel findings may contribute to the understanding of the effects of PPARγ on neuronal differentiation and validate the use of PPARγ activators as therapeutic agents in neurodegenerative diseases.

  20. A temporal variation in nonneuronal protein synthesis in dorsal root ganglia and nerve and its significance to studies of axonal transport

    International Nuclear Information System (INIS)

    Protein synthesis and fast axonal transport were studied in vitro using dorsal root ganglia (DRG)-sciatic nerve preparations from the amphibian Xenopus laevis. It was observed that the rate of incorporation of [3H]leucine into protein in DRG and isolated segments of nerve began to increase 9 to 11 h after killing the animal, attaining at 13 to 17 h a maximum of 5- to 10-times preincrease (less than 9 h) values. At the same time as an increase in the rate of incorporation began, synthesis commenced in DRG and nerve exposed to cycloheximide (125 micrograms/ml). Whereas cycloheximide reduced fast axonal transport to 1 to 3% of control values in preparations maintained 20 to 24 h in vitro, cycloheximide reduced incorporation in DRG to only 80% of control values. N-terminal labeling studies showed that both the increased incorporation and cycloheximide-insensitive incorporation resulted from protein synthesis. Autoradiographic and incorporation studies indicated that nonneuronal cells situated in the ganglion capsule and perineural sheath of the nerve were responsible for both the increased incorporation and cycloheximide-insensitive synthesis. The findings have implications for the study of axonal transport

  1. Axonal PPARγ promotes neuronal regeneration after injury.

    Science.gov (United States)

    Lezana, Juan Pablo; Dagan, Shachar Y; Robinson, Ari; Goldstein, Ronald S; Fainzilber, Mike; Bronfman, Francisca C; Bronfman, Miguel

    2016-06-01

    PPARγ is a ligand-activated nuclear receptor best known for its involvement in adipogenesis and glucose homeostasis. PPARγ activity has also been associated with neuroprotection in different neurological disorders, but the mechanisms involved in PPARγ effects in the nervous system are still unknown. Here we describe a new functional role for PPARγ in neuronal responses to injury. We found both PPAR transcripts and protein within sensory axons and observed an increase in PPARγ protein levels after sciatic nerve crush. This was correlated with increased retrograde transport of PPARγ after injury, increased association of PPARγ with the molecular motor dynein, and increased nuclear accumulation of PPARγ in cell bodies of sensory neurons. Furthermore, PPARγ antagonists attenuated the response of sensory neurons to sciatic nerve injury, and inhibited axonal growth of both sensory and cortical neurons in culture. Thus, axonal PPARγ is involved in neuronal injury responses required for axonal regeneration. Since PPARγ is a major molecular target of the thiazolidinedione (TZD) class of drugs used in the treatment of type II diabetes, several pharmaceutical agents with acceptable safety profiles in humans are available. Our findings provide motivation and rationale for the evaluation of such agents for efficacy in central and peripheral nerve injuries. PMID:26446277

  2. Sorting of Dendritic and Axonal Vesicles at the Pre-axonal Exclusion Zone

    Directory of Open Access Journals (Sweden)

    Ginny G. Farías

    2015-11-01

    Full Text Available Polarized sorting of newly synthesized proteins to the somatodendritic and axonal domains of neurons occurs by selective incorporation into distinct populations of vesicular transport carriers. An unresolved issue is how the vesicles themselves are sorted to their corresponding neuronal domains. Previous studies concluded that the axon initial segment (AIS is an actin-based filter that selectively prevents passage of somatodendritic vesicles into the axon. We find, however, that most somatodendritic vesicles fail to enter the axon at a more proximal region in the axon hillock, herein referred to as the pre-axonal exclusion zone (PAEZ. Forced coupling of a somatodendritic cargo protein to an axonally directed kinesin is sufficient to drive transport of whole somatodendritic vesicles through the PAEZ toward the distal axon. Based on these findings, we propose that polarized sorting of transport vesicles occurs at the PAEZ and depends on the ability of the vesicles to acquire an appropriately directed microtubule motor.

  3. Effects of proton irradiation of the lumbar intumescence on intra-axonal transport of acetylcholine and cholinergic enzymes in rat sciatic nerve

    International Nuclear Information System (INIS)

    The content and intra-axonal transport of acetylcholine (ACh) and the cholinergic enzymes cholineacetyl-transferase (CAT) and ACh-esterase (AChE) in sciatic nerve were investigated in rats following single dose proton irradiation of the lumbar intumescence of the spinal cord with 60 Gy or 200 Gy. One, 7 or 30 days after irradiation nerve-crush operations were performed 12 hours before killing and the levels of ACh and enzyme activities in nerve segments relative to the crushes were estimated by biologic (ACh) to chemical (enzyme) methods. The results indicate that alterations in intra-neuronal dynamics of ACh and related enzymes are not a major cause for the development of neurologic symptoms of the motor system after irradiation, and that descending myelinated axons are of minor importance for the regulation of cholinergic substances in rat motor nerves. (Auth.)

  4. Coordinating gene expression and axon assembly to control axon growth: potential role of GSK3 signaling

    Directory of Open Access Journals (Sweden)

    Fengquan Zhou

    2012-02-01

    Full Text Available Axon growth requires coordinated regulation of gene expression in the neuronal soma, anterograde transport of synthesized raw materials along the axon, and assembly of cytoskeleton and membranes in the nerve growth cone. Glycogen synthase kinase 3 (GSK3 signaling has recently been shown to play key roles in regulation of axonal transport and cytoskeletal assembly during axon growth. GSK3 signaling is also known to regulate gene expression via controlling the functions of many transcription factors, suggesting that GSK3 may be an important regulator of gene transcription supporting axon growth. Here we will review signaling pathways that control local axon assembly at the growth cone and gene expression in the soma during developmental or regenerative axon growth and discuss the potential involvement of GSK3 signaling in these processes, with a particular focus on how GSK3 signaling modulates the function of axon growth-associated transcription factors.

  5. Axonal tubulin and axonal microtubules: biochemical evidence for cold stability

    OpenAIRE

    1984-01-01

    Nerve extracts containing tubulin labeled by axonal transport were analyzed by electrophoresis and differential extraction. We found that a substantial fraction of the tubulin in the axons of the retinal ganglion cell of guinea pigs is not solubilized by conventional methods for preparation of microtubules from whole brain. In two-dimensional polyacrylamide gel electrophoresis this cold-insoluble tubulin was biochemically distinct from tubulin obtained from whole brain microtubules prepared b...

  6. Isolation and analyses of axonal ribonucleoprotein complexes.

    Science.gov (United States)

    Doron-Mandel, Ella; Alber, Stefanie; Oses, Juan A; Medzihradszky, Katalin F; Burlingame, Alma L; Fainzilber, Mike; Twiss, Jeffery L; Lee, Seung Joon

    2016-01-01

    Cytoskeleton-dependent RNA transport and local translation in axons are gaining increased attention as key processes in the maintenance and functioning of neurons. Specific axonal transcripts have been found to play roles in many aspects of axonal physiology including axon guidance, axon survival, axon to soma communication, injury response and regeneration. This axonal transcriptome requires long-range transport that is achieved by motor proteins carrying transcripts as messenger ribonucleoprotein (mRNP) complexes along microtubules. Other than transport, the mRNP complex plays a major role in the generation, maintenance, and regulation of the axonal transcriptome. Identification of axonal RNA-binding proteins (RBPs) and analyses of the dynamics of their mRNPs are of high interest to the field. Here, we describe methods for the study of interactions between RNA and proteins in axons. First, we describe a protocol for identifying binding proteins for an RNA of interest by using RNA affinity chromatography. Subsequently, we discuss immunoprecipitation (IP) methods allowing the dissection of protein-RNA and protein-protein interactions in mRNPs under various physiological conditions. PMID:26794529

  7. Di/tri-peptide transporters as drug delivery targets

    DEFF Research Database (Denmark)

    Nielsen, C U; Brodin, Birger

    2003-01-01

    -dependent, and the transporters thus belong to the Proton-dependent Oligopeptide Transporter (POT)-family. The transporters are not drug targets per se, however due to their uniquely broad substrate specificity; they have proved to be relevant drug targets at the level of drug transport. Drug molecules such as...... oral active beta-lactam antibiotics, bestatin, prodrugs of aciclovir and ganciclovir have oral bioavailabilities, which largely are a result of their interaction with PepT1. In the last few years an increasing number of studies concerned with regulation of di/tri-peptide transporter capacity have...... the level of increased gene transcription. PepT1-mediated transport is up-regulated by short-term exposure to receptor agonists such as EGF, insulin, leptin, and clonidine, and down-regulated by VIP. Overall, the regulation of di/tri-peptide transport may be contributed to 1) changes in apical proton...

  8. Involvement of Drug Transporters in Organ Toxicity: The Fundamental Basis of Drug Discovery and Development.

    Science.gov (United States)

    Cheng, Yaofeng; El-Kattan, Ayman; Zhang, Yan; Ray, Adrian S; Lai, Yurong

    2016-04-18

    Membrane transporters play a pivotal role in many organs to maintain their normal physiological functions and contribute significantly to drug absorption, distribution, and elimination. Knowledge gained from gene modified animal models or human genetic disorders has demonstrated that interruption of the transporter activity can lead to debilitating diseases or organ toxicities. Herein we describe transporter associated diseases and organ toxicities resulting from transporter gene deficiency or functional inhibition in the liver, kidney, gastrointestinal tract (GIT), and central nervous system (CNS). While proposing additional transporters as targets for drug-induced organ toxicity, strategies and future perspectives are discussed for transporter risk assessment in drug discovery and development. PMID:26889774

  9. Renal transport and drug interactions of immunosuppressants

    NARCIS (Netherlands)

    El-Sheikh, Azza Ali Kamel

    2008-01-01

    Immunosuppressants are drugs that are used to treat inflammatory diseases, organ transplantation rejection, and cancer. These drugs are given to patients as single drugs, in combination, or together with other medications to treat accompanying diseases. Several severe side effects may result due to

  10. Effect of selected ABC-drug transporters and anticancer drug disposition in vitro and in vivo

    OpenAIRE

    Marchetti, S

    2013-01-01

    Studies described in the thesis that is lying in front of you aim to address the possible implications of selected ABC-drug transporters on the disposition of a number of important anticancer drugs. Although variability in drug disposition has been known for as long as pharmacological studies supported drug development and clinical therapeutics general molecular pharmacological concepts explaining the given interpatient variation in drug disposition have been lacking for many decades. Firm ex...

  11. Drug transport across the blood-brain barrier.

    Science.gov (United States)

    Pardridge, William M

    2012-11-01

    The blood-brain barrier (BBB) prevents the brain uptake of most pharmaceuticals. This property arises from the epithelial-like tight junctions within the brain capillary endothelium. The BBB is anatomically and functionally distinct from the blood-cerebrospinal fluid barrier at the choroid plexus. Certain small molecule drugs may cross the BBB via lipid-mediated free diffusion, providing the drug has a molecular weight hydrogen bonds. These chemical properties are lacking in the majority of small molecule drugs, and all large molecule drugs. Nevertheless, drugs can be reengineered for BBB transport, based on the knowledge of the endogenous transport systems within the BBB. Small molecule drugs can be synthesized that access carrier-mediated transport (CMT) systems within the BBB. Large molecule drugs can be reengineered with molecular Trojan horse delivery systems to access receptor-mediated transport (RMT) systems within the BBB. Peptide and antisense radiopharmaceuticals are made brain-penetrating with the combined use of RMT-based delivery systems and avidin-biotin technology. Knowledge on the endogenous CMT and RMT systems expressed at the BBB enable new solutions to the problem of BBB drug transport. PMID:22929442

  12. Neurofilament spacing, phosphorylation, and axon diameter in regenerating and uninjured lamprey axons.

    Science.gov (United States)

    Pijak, D S; Hall, G F; Tenicki, P J; Boulos, A S; Lurie, D I; Selzer, M E

    1996-05-13

    uncut GRAs but were also highly phosphorylated. Thus, in the lamprey, NF phosphorylation may not control axon diameter directly through electrorepulsive charges that increase NF sidearm extension and NF spacing. It is possible that phosphorylation of NFs normally influences axon diameter through indirect mechanisms, such as the slowing of NF transport and the formation of a stationary cytoskeletal lattice, as has been proposed by others. Such a mechanism could be overridden during regeneration, when a more compact, phosphorylated NF backbone might add mechanical stiffness that promotes the advance of the neurite tip within a restricted central nervous system environment. PMID:8744444

  13. Role of transporters in placental transfer of drugs

    International Nuclear Information System (INIS)

    Human placenta functions as an important transport organ that mediates the exchange of nutrients and metabolites between maternal and fetal circulations. This function is made possible because of the expression of a multitude of transport proteins in the placental syncytiotrophoblast with differential localization in the maternal-facing brush border membrane versus the fetal-facing basal membrane. Even though the physiological role of most of these transport proteins is to handle nutrients, many of them interact with xenobiotics and pharmacological agents. These transport proteins therefore play a critical role in the disposition of drugs across the maternal-fetal interface, with some transporters facilitating the entry of drugs from maternal circulation into fetal circulation whereas others preventing such entry by actively eliminating drugs from the placenta back into maternal circulation. The net result as to whether the placenta enhances the exposure of the developing fetus to drugs and xenobiotics or functions as a barrier to protect the fetus from such agents depends on the types of transporters expressed in the brush border membrane and basal membrane of the syncytiotrophoblast and on the functional mode of these transporters (influx versus efflux)

  14. Plant pleiotropic drug resistance transporters:Transport mechanism, gene expression, and function

    Institute of Scientific and Technical Information of China (English)

    Mohammed Nuruzzaman; Ru Zhang; Hong-Zhe Cao; Zhi-Yong Luo

    2014-01-01

    Pleiotropic drug resistance (PDR) transporters belonging to the ABCG subfamily of ATP-binding cassette (ABC) transporters are identified only in fungi and plants. Members of this family are expressed in plants in response to various biotic and abiotic stresses and transport a diverse array of molecules across membranes. Although their detailed transport mechanism is largely unknown, they play important roles in detoxification processes, preventing water loss, transport of phytohormones, and secondary metabolites. This review provides insights into transport mechanisms of plant PDR transporters, their expression profiles, and multitude functions in plants.

  15. Membrane Drug Transporters and Chemoresistance in Human Pancreatic Carcinoma

    International Nuclear Information System (INIS)

    Pancreatic cancer ranks among the tumors most resistant to chemotherapy. Such chemoresistance of tumors can be mediated by various cellular mechanisms including dysregulated apoptosis or ineffective drug concentration at the intracellular target sites. In this review, we highlight recent advances in experimental chemotherapy underlining the role of cellular transporters in drug resistance. Such contribution to the chemoresistant phenotype of tumor cells or tissues can be conferred both by uptake and export transporters, as demonstrated by in vivo and in vitro data. Our studies used human pancreatic carcinoma cells, cells stably transfected with human transporter cDNAs, or cells in which a specific transporter was knocked down by RNA interference. We have previously shown that 5-fluorouracil treatment affects the expression profile of relevant cellular transporters including multidrug resistance proteins (MRPs), and that MRP5 (ABCC5) influences chemoresistance of these tumor cells. Similarly, cell treatment with the nucleoside drug gemcitabine or a combination of chemotherapeutic drugs can variably influence the expression pattern and relative amount of uptake and export transporters in pancreatic carcinoma cells or select for pre-existing subpopulations. In addition, cytotoxicity studies with MRP5-overexpressing or MRP5-silenced cells demonstrate a contribution of MRP5 also to gemcitabine resistance. These data may lead to improved strategies of future chemotherapy regimens using gemcitabine and/or 5-fluorouracil

  16. Effects of renal failure on drug transport and metabolism.

    Science.gov (United States)

    Sun, Hong; Frassetto, Lynda; Benet, Leslie Z

    2006-01-01

    Renal failure not only alters the renal elimination, but also the non-renal disposition of drugs that are extensively metabolized by the liver. Although reduced metabolic enzyme activity in some cases can be responsible for the reduced drug clearance, alterations in the transporter systems may also be involved in the process. With the development of renal failure, the renal secretion of organic ions mediated by organic anion transporters (OATs) and organic cation transporters (OCTs) is decreased. 3-Carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) and other organic anionic uremic toxins may directly inhibit the renal excretion of various drugs and endogenous organic acids by competitively inhibiting OATs. In addition, the expression of OAT1 and OCT2 was reduced in chronic renal failure (CRF) rats. Renal failure also impairs the liver uptake of drugs and organic anions, such as bromosulphophthalein (BSP), indocyanine green (ICG), and thyroxine, where organic anion transport polypeptides (OATPs) are the major transporters. Most previous studies have been done in animals or cell culture, very often in rat models, but these are presumed to reflect the presentation of advanced renal disease in humans as well. Recent studies demonstrate that the uremic toxins CMPF and indoxyl sulfate (IS) can directly inhibit rOatp2 and hOATP-C in hepatocytes. The protein content of the liver uptake transporters Oatp1, 2, and 4 were significantly decreased in CRF rats. Decreased activity of the intestinal efflux transporter, P-glycoprotein (P-gp), was also observed in CRF rats, with no significant change of protein content, suggesting that uremic toxins may suppress P-gp function. However, increased protein levels of multidrug resistance-associated protein (MRP) 2 in the kidney and MRP3 in the liver were found in CRF rats, suggesting an adaptive response that may serve as a protective mechanism. Increases in drug areas under the curve (AUCs) in subjects with advanced renal disease

  17. Drug Transport and Metabolism in Rat and Human Intestine

    OpenAIRE

    Berggren, Sofia

    2006-01-01

    One of the aims of this thesis was to investigate the involvement of efflux proteins, such as the P-glycoprotein (Pgp), in the drug transport in different regions of the rat and the human intestine. The intestinal extrusion of intracellularly formed CYP3A4 metabolites, including whether this extrusion might be mediated by Pgp, was also studied. The model drugs used were local anaesthetics (LA), which have been evaluated for inflammatory bowel disease, such as ropivacaine, lidocaine and bupiva...

  18. Localization of Axonal Motor Molecules Machinery in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Fulvio Florenzano

    2012-04-01

    Full Text Available Axonal transport and neuronal survival depend critically on active transport and axon integrity both for supplying materials and communication to different domains of the cell body. All these actions are executed through cytoskeleton, transport and regulatory elements that appear to be disrupted in neurodegenerative diseases. Motor-driven transport both supplies and clears distal cellular portions with proteins and organelles. This transport is especially relevant in projection and motor neurons, which have long axons to reach the farthest nerve endings. Thus, any disturbance of axonal transport may have severe consequences for neuronal function and survival. A growing body of literature indicates the presence of alterations to the motor molecules machinery, not only in expression levels and phosphorylation, but also in their subcellular distribution within populations of neurons, which are selectively affected in the course of neurodegenerative diseases. The implications of this altered subcellular localization and how this affects axon survival and neuronal death still remain poorly understood, although several hypotheses have been suggested. Furthermore, cytoskeleton and transport element localization can be selectively disrupted in some disorders suggesting that specific loss of the axonal functionality could be a primary hallmark of the disorder. This can lead to axon degeneration and neuronal death either directly, through the functional absence of essential axonal proteins, or indirectly, through failures in communication among different cellular domains. This review compares the localization of cytoskeleton and transport elements in some neurodegenerative disorders to ask what aspects may be essential for axon survival and neuronal death.

  19. Computing along the axon

    Institute of Scientific and Technical Information of China (English)

    Chen Haiming; Tseren-Onolt Ishdorj; Gheorghe Pǎun

    2007-01-01

    A special form of spiking neural P systems, called axon P systems, corresponding to the activity of Ranvier nodes of neuron axon, is considered and a class of SN-like P systems where the computation is done along the axon is introduced and their language generative power is investigated.

  20. Designing Novel Nanoformulations Targeting Glutamate Transporter Excitatory Amino Acid Transporter 2: Implications in Treating Drug Addiction

    OpenAIRE

    Rao, PSS; Yallapu, Murali M.; Sari, Youssef; Fisher, Paul B.; Kumar, Santosh

    2015-01-01

    Chronic drug abuse is associated with elevated extracellular glutamate concentration in the brain reward regions. Deficit of glutamate clearance has been identified as a contributing factor that leads to enhanced glutamate concentration following extended drug abuse. Importantly, normalization of glutamate level through induction of glutamate transporter 1 (GLT1)/ excitatory amino acid transporter 2 (EAAT2) expression has been described in several in vivo studies. GLT1 upregulators including ...

  1. Macroscopic Modeling of In Vivo Drug Transport in Electroporated Tissue.

    Science.gov (United States)

    Boyd, Bradley; Becker, Sid

    2016-03-01

    This study develops a macroscopic model of mass transport in electroporated biological tissue in order to predict the cellular drug uptake. The change in the macroscopic mass transport coefficient is related to the increase in electrical conductivity resulting from the applied electric field. Additionally, the model considers the influences of both irreversible electroporation (IRE) and the transient resealing of the cell membrane associated with reversible electroporation. Two case studies are conducted to illustrate the applicability of this model by comparing transport associated with two electrode arrangements: side-by-side arrangement and the clamp arrangement. The results show increased drug transmission to viable cells is possible using the clamp arrangement due to the more uniform electric field. PMID:26720199

  2. Axonal transport of labelled proteins and increased functional activity in sciatic nerve of the frog Rana hexadactyla in vitro

    International Nuclear Information System (INIS)

    In vitro speed of fast moving labelled protein fraction was investigated in the lumbar 8 nerve of R.hexadactyla during normal and electrical stimulation conditions. 3H-leucine labelled oroteins moved in a proximo-distal direction at a speed of 144 mm/day at 25 deg C. No change was observed in the rate of proteins transported in stimulated nerves but the amount of protein bound radioactivity increased over stimulation. In ligature experiments, amount of labelled proteins accumulating at a ligature was higher in stimulated nerves. Electrical stimulation of nerve resulted in an increase in protein synthetic rate in the respective ganglion. (author)

  3. Hepatic drug transporters and nuclear receptors: Regulation by therapeutic agents

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The canalicular membrane represents the excretory pole of hepatocytes. Bile is an important route of elimina-tion of potentially toxic endo- and xenobiotics (including drugs and toxins), mediated by the major canalicular transporters: multidrug resistance protein 1 (MDR1, ABCB1), also known as P-glycoprotein, multidrug re-sistance-associated protein 2 (MRP2, ABCC2), and the breast cancer resistance protein (BCRP, ABCG2). Their activities depend on regulation of expression and proper localization at the canalicular membrane, as regulated by transcriptional and post-transcriptional events, re-spectively. At transcriptional level, specific nuclear re-ceptors (NR)s modulated by ligands, co-activators and co-repressors, mediate the physiological requirements of these transporters. This complex system is also re-sponsible for alterations occurring in specific liver pa-thologies. We briefly describe the major Class Ⅱ NRs, pregnane X receptor (PXR) and constitutive androstane receptor (CAR), and their role in regulating expression of multidrug resistance proteins. Several therapeutic agents regulate the expression of relevant drug trans-porters through activation/inactivation of these NRs. We provide some representative examples of the action of therapeutic agents modulating liver drug transporters, which in addition, involve CAR or PXR as mediators.

  4. Motor Axon Pathfinding

    OpenAIRE

    Bonanomi, Dario; Pfaff, Samuel L

    2010-01-01

    Motor neurons are functionally related, but represent a diverse collection of cells that show strict preferences for specific axon pathways during embryonic development. In this article, we describe the ligands and receptors that guide motor axons as they extend toward their peripheral muscle targets. Motor neurons share similar guidance molecules with many other neuronal types, thus one challenge in the field of axon guidance has been to understand how the vast complexity of brain connection...

  5. Influence of dietary substances on intestinal drug metabolism and transport.

    Science.gov (United States)

    Won, Christina S; Oberlies, Nicholas H; Paine, Mary F

    2010-11-01

    Successful delivery of promising new chemical entities via the oral route is rife with challenges, some of which cannot be explained or foreseen during drug development. Further complicating an already multifaceted problem is the obvious, yet often overlooked, effect of dietary substances on drug disposition and response. Some dietary substances, particularly fruit juices, have been shown to inhibit biochemical processes in the intestine, leading to altered pharmacokinetic (PK), and potentially pharmacodynamic (PD), outcomes. Inhibition of intestinal CYP3Amediated metabolism is the major mechanism by which fruit juices, including grapefruit juice, enhances systemic exposure to new and already marketed drugs. Inhibition of intestinal non-CYP3A enzymes and apically-located transport proteins represent recently identified mechanisms that can alter PK and PD. Several fruit juices have been shown to inhibit these processes in vitro, but some interactions have not translated to the clinic. The lack of in vitroin vivo concordance is due largely to a lack of rigorous methods to elucidate causative ingredients prior to clinical testing. Identification of specific components and underlying mechanisms is challenging, as dietary substances frequently contain multiple, often unknown, bioactive ingredients that vary in composition and bioactivity. A translational research approach, combining expertise from clinical pharmacologists and natural products chemists, is needed to develop robust models describing PK/PD relationships between a given dietary substance and drug of interest. Validation of these models through well-designed clinical trials would facilitate development of common practice guidelines for managing drug-dietary substance interactions appropriately. PMID:21189136

  6. The Use of Transporter Probe Drug Cocktails for the Assessment of Transporter-Based Drug-Drug Interactions in a Clinical Setting-Proposal of a Four Component Transporter Cocktail.

    Science.gov (United States)

    Ebner, Thomas; Ishiguro, Naoki; Taub, Mitchell E

    2015-09-01

    Probe drug cocktails are used clinically to assess the potential for drug-drug interactions (DDIs), and in particular, DDIs resulting from coadministration of substrates and inhibitors of cytochrome P450 enzymes. However, a probe drug cocktail has not been identified to assess DDIs involving inhibition of drug transporters. We propose a cocktail consisting of the following substrates to explore the potential for DDIs caused by inhibition of key transporters: digoxin (P-glycoprotein, P-gp), rosuvastatin (breast cancer resistance protein, BCRP; organic anion transporting polypeptides, OATP), metformin (organic cation transporter, OCT; multidrug and toxin extrusion transporters, MATE), and furosemide (organic anion transporter, OAT). Furosemide was evaluated in vitro, and is a substrate of OAT1 and OAT3, with Km values of 38.9 and 21.5 μM, respectively. Furosemide was also identified as a substrate of BCRP, OATP1B1, and OATP1B3. Furosemide inhibited BCRP (50% inhibition of drug transport: 170 μM), but did not inhibit OATP1B1, OATP1B3, OCT2, MATE1, and MATE2-K at concentrations below 300 μM, and P-gp at concentrations below 2000 μM. Conservative approaches for the estimation of the likelihood of in vivo DDIs indicate a remote chance of in vivo transporter inhibition by these probe drugs when administered at low single oral doses. This four component probe drug cocktail is therefore proposed for clinical evaluation. PMID:25981193

  7. HIV-1 Alters Intestinal Expression of Drug Transporters and Metabolic Enzymes: Implications for Antiretroviral Drug Disposition.

    Science.gov (United States)

    Kis, Olena; Sankaran-Walters, Sumathi; Hoque, M Tozammel; Walmsley, Sharon L; Dandekar, Satya; Bendayan, Reina

    2016-05-01

    This study investigated the effects of HIV-1 infection and antiretroviral therapy (ART) on the expression of intestinal drug efflux transporters, i.e., P-glycoprotein (Pgp), multidrug resistance-associated proteins (MRPs), and breast cancer resistance protein (BCRP), and metabolic enzymes, such as cytochrome P450s (CYPs), in the human upper intestinal tract. Intestinal biopsy specimens were obtained from HIV-negative healthy volunteers, ART-naive HIV-positive (HIV(+)) subjects, and HIV(+) subjects receiving ART (10 in each group). Intestinal tissue expression of drug transporters and metabolic enzymes was examined by microarray, real-time quantitative reverse transcription-PCR (qPCR), and immunohistochemistry analyses. Microarray analysis demonstrated significantly lower expression of CYP3A4 and ABCC2/MRP2 in the HIV(+) ART-naive group than in uninfected subjects. qPCR analysis confirmed significantly lower expression of ABCC2/MRP2 in ART-naive subjects than in the control group, while CYP3A4 and ABCG2/BCRP showed a trend toward decreased expression. Protein expression of MRP2 and BCRP was also significantly lower in the HIV(+) naive group than in the control group and was partially restored to baseline levels in HIV(+) subjects receiving ART. In contrast, gene and protein expression of ABCB1/Pgp was significantly increased in HIV(+) subjects on ART relative to HIV(+) ART-naive subjects. These data demonstrate that the expression of drug-metabolizing enzymes and efflux transporters is significantly altered in therapy-naive HIV(+) subjects and in those receiving ART. Since CYP3A4, Pgp, MRPs, and BCRP metabolize or transport many antiretroviral drugs, their altered expression with HIV infection may negatively impact drug pharmacokinetics in HIV(+) subjects. This has clinical implications when using data from healthy volunteers to guide ART. PMID:26902756

  8. Defective lysosomal proteolysis and axonal transport are early pathogenic events that worsen with age leading to increased APP metabolism and synaptic Abeta in transgenic APP/PS1 hippocampus

    Directory of Open Access Journals (Sweden)

    Torres Manuel

    2012-11-01

    Full Text Available Abstract Background Axonal pathology might constitute one of the earliest manifestations of Alzheimer disease. Axonal dystrophies were observed in Alzheimer’s patients and transgenic models at early ages. These axonal dystrophies could reflect the disruption of axonal transport and the accumulation of multiple vesicles at local points. It has been also proposed that dystrophies might interfere with normal intracellular proteolysis. In this work, we have investigated the progression of the hippocampal pathology and the possible implication in Abeta production in young (6 months and aged (18 months PS1(M146L/APP(751sl transgenic mice. Results Our data demonstrated the existence of a progressive, age-dependent, formation of axonal dystrophies, mainly located in contact with congophilic Abeta deposition, which exhibited tau and neurofilament hyperphosphorylation. This progressive pathology was paralleled with decreased expression of the motor proteins kinesin and dynein. Furthermore, we also observed an early decrease in the activity of cathepsins B and D, progressing to a deep inhibition of these lysosomal proteases at late ages. This lysosomal impairment could be responsible for the accumulation of LC3-II and ubiquitinated proteins within axonal dystrophies. We have also investigated the repercussion of these deficiencies on the APP metabolism. Our data demonstrated the existence of an increase in the amyloidogenic pathway, which was reflected by the accumulation of hAPPfl, C99 fragment, intracellular Abeta in parallel with an increase in BACE and gamma-secretase activities. In vitro experiments, using APPswe transfected N2a cells, demonstrated that any imbalance on the proteolytic systems reproduced the in vivo alterations in APP metabolism. Finally, our data also demonstrated that Abeta peptides were preferentially accumulated in isolated synaptosomes. Conclusion A progressive age-dependent cytoskeletal pathology along with a reduction of

  9. Determinants of axonal regeneration

    OpenAIRE

    Frisén, J

    1997-01-01

    Axons often regrow to their targets and lost functions may be restored after an injury in the peripheral nervous system. In contrast, axonal regeneration is generally very limited after injuries in the central nervous system, and functional impairment is usually permanent. The regenerative capacity depends on intrinsic neuronal factors as weil as the interaction of neurons with other cells. Glial cells may, in different situations, either support or inhibit axo...

  10. Recent advances in the understanding of the interaction of antidepressant drugs with serotonin and norepinephrine transporters

    DEFF Research Database (Denmark)

    Andersen, Jacob; Kristensen, Anders Skov; Bang-Andersen, Benny;

    2009-01-01

    The biogenic monoamine transporters are integral membrane proteins that perform active transport of extracellular dopamine, serotonin and norepinephrine into cells. These transporters are targets for therapeutic agents such as antidepressants, as well as addictive substances such as cocaine and...... antidepressant drugs that act on the serotonin and/or the norepinephrine transporters. Specifically, we focus on structure-activity relationships of these drugs with emphasis on relationships between their molecular properties and the current knowledge of transporter structure....

  11. Expression of Genes for Drug Transporters in the Human Female Genital Tract and Modulatory Effect of Antiretroviral Drugs.

    Directory of Open Access Journals (Sweden)

    Karolin Hijazi

    Full Text Available Anti-retroviral (ARV -based microbicides are one of the strategies pursued to prevent HIV-1 transmission. Delivery of ARV drugs to subepithelial CD4+ T cells at concentrations for protection is likely determined by drug transporters expressed in the cervicovaginal epithelium. To define the role of drug transporters in mucosal disposition of topically applied ARV-based microbicides, these must be tested in epithelial cell line-based biopharmaceutical assays factoring the effect of relevant drug transporters. We have characterised gene expression of influx and efflux drug transporters in a panel of cervicovaginal cell lines and compared this to expression in cervicovaginal tissue. We also investigated the effect of dapivirine, darunavir and tenofovir, currently at advanced stages of microbicides development, on expression of drug transporters in cell lines. Expression of efflux ABC transporters in cervical tissue was best represented in HeLa, Ect1/E6E7 and End1/E6E7 cell lines. Expression of influx OCT and ENT transporters in ectocervix matched expression in Hela while expression of influx SLCO transporters in vagina was best reflected in VK2/E6E7 cell line. Stimulation with darunavir and dapivirine upregulated MRP transporters, including MRP5 involved in transport of tenofovir. Dapivirine also significantly downregulated tenofovir substrate MRP4 in cervical cell lines. Treatment with darunavir and dapivirine showed no significant effect on expression of BCRP, MRP2 and P-glycoprotein implicated in efflux of different ARV drugs. Darunavir strongly induced expression in most cell lines of CNT3 involved in cell uptake of nucleotide/nucleoside analogue reverse transcriptase inhibitors and SLCO drug transporters involved in cell uptake of protease inhibitors. This study provides insight into the suitability of cervicovaginal cell lines for assessment of ARV drugs in transport kinetics studies. The modulatory effect of darunavir and dapivirine on

  12. In vitro assessment of drug-drug interaction potential of boceprevir associated with drug metabolizing enzymes and transporters.

    Science.gov (United States)

    Chu, Xiaoyan; Cai, Xiaoxin; Cui, Donghui; Tang, Cuyue; Ghosal, Anima; Chan, Grace; Green, Mitchell D; Kuo, Yuhsin; Liang, Yuexia; Maciolek, Cheri M; Palamanda, Jairam; Evers, Raymond; Prueksaritanont, Thomayant

    2013-03-01

    The inhibitory effect of boceprevir (BOC), an inhibitor of hepatitis C virus nonstructural protein 3 protease was evaluated in vitro against a panel of drug-metabolizing enzymes and transporters. BOC, a known substrate for cytochrome P450 (P450) CYP3A and aldo-ketoreductases, was a reversible time-dependent inhibitor (k(inact) = 0.12 minute(-1), K(I) = 6.1 µM) of CYP3A4/5 but not an inhibitor of other major P450s, nor of UDP-glucuronosyltransferases 1A1 and 2B7. BOC showed weak to no inhibition of breast cancer resistance protein (BCRP), P-glycoprotein (Pgp), or multidrug resistance protein 2. It was a moderate inhibitor of organic anion transporting polypeptide (OATP) 1B1 and 1B3, with an IC(50) of 18 and 4.9 µM, respectively. In human hepatocytes, BOC inhibited CYP3A-mediated metabolism of midazolam, OATP1B-mediated hepatic uptake of pitavastatin, and both the uptake and metabolism of atorvastatin. The inhibitory potency of BOC was lower than known inhibitors of CYP3A (ketoconazole), OATP1B (rifampin), or both (telaprevir). BOC was a substrate for Pgp and BCRP but not for OATP1B1, OATP1B3, OATP2B1, organic cation transporter, or sodium/taurocholate cotransporting peptide. Overall, our data suggest that BOC has the potential to cause pharmacokinetic interactions via inhibition of CYP3A and CYP3A/OATP1B interplay, with the interaction magnitude lower than those observed with known potent inhibitors. Conversely, pharmacokinetic interactions of BOC, either as a perpetrator or victim, via other major P450s and transporters tested are less likely to be of clinical significance. The results from clinical drug-drug interaction studies conducted thus far are generally supportive of these conclusions. PMID:23293300

  13. Involvement of drug transporters in the synergistic action of FOLFOX combination chemotherapy

    OpenAIRE

    Theile, Dirk; Grebhardt, Sina; Haefeli, Walter Emil; Weiss, Johanna

    2009-01-01

    Abstract FOLFOX is a cytostatic drug combination for adjuvant treatment of colorectal cancer (CRC) consisting of 5-fluorouracil (5-FU), leucovorin, and oxaliplatin. The mechanism of synergistic interaction of these drugs is poorly understood and little is known concerning the role of drug transporters and the impact of oxaliplatin metabolites oxalate and dichloro-diaminocyclohexane platinum. We therefore investigated the influence of FOLFOX-components on drug transporter expression...

  14. Protein phosphorylation: Localization in regenerating optic axons

    International Nuclear Information System (INIS)

    A number of axonal proteins display changes in phosphorylation during goldfish optic nerve regeneration. (1) To determine whether the phosphorylation of these proteins was closely linked to their synthesis in the retinal ganglion cell body, cycloheximide was injected intraocularly into goldfish whose optic nerves had been regenerating for 3 weeks. Cycloheximide reduced the incorporation of [3H]proline and 32P orthophosphate into total nerve protein by 84% and 46%, respectively. Of the 20 individual proteins examined, 17 contained less than 15% of the [3H]proline label measured in corresponding controls, whereas 18 proteins contained 50% or more of the 32P label, suggesting that phosphorylation was largely independent of synthesis. (2) To determine whether the proteins were phosphorylated in the ganglion cell axons, axonal transport of proteins was blocked by intraocular injection of vincristine. Vincristine reduced [3H]proline labeling of total protein by 88% and 32P labeling by 49%. Among the individual proteins [3H]proline labeling was reduced by 90% or more in 18 cases but 32P labeling was reduced only by 50% or less. (3) When 32P was injected into the cranial cavity near the ends of the optic axons, all of the phosphoproteins were labeled more intensely in the optic tract than in the optic nerve. These results suggest that most of the major phosphoproteins that undergo changes in phosphorylation in the course of regeneration are phosphorylated in the optic axons

  15. Multiple Drugs Compete for Transport via the Plasmodium falciparum Chloroquine Resistance Transporter at Distinct but Interdependent Sites*

    OpenAIRE

    Bellanca, Sebastiano; Summers, Robert L.; Meyrath, Max; Dave, Anurag; Nash, Megan N.; Dittmer, Martin; Sanchez, Cecilia P.; Stein, Wilfred D; Martin, Rowena E.; Lanzer, Michael

    2014-01-01

    Mutations in the “chloroquine resistance transporter” (PfCRT) are a major determinant of drug resistance in the malaria parasite Plasmodium falciparum. We have previously shown that mutant PfCRT transports the antimalarial drug chloroquine away from its target, whereas the wild-type form of PfCRT does not. However, little is understood about the transport of other drugs via PfCRT or the mechanism by which PfCRT recognizes different substrates. Here we show that mutant PfCRT also transports qu...

  16. Polarized location of SLC and ABC drug transporters in monolayer-cultured human hepatocytes.

    Science.gov (United States)

    Le Vee, Marc; Jouan, Elodie; Noel, Gregory; Stieger, Bruno; Fardel, Olivier

    2015-08-01

    Human hepatocytes cultured in a monolayer configuration represent a well-established in vitro model in liver toxicology, notably used in drug transporter studies. Polarized status of drug transporters, i.e., their coordinated location at sinusoidal or canalicular membranes, remains however incompletely documented in these cultured hepatocytes. The present study was therefore designed to analyze transporter expression and location in such cells. Most of drug transporters were first shown to be present at notable mRNA levels in monolayer-cultured human hepatocytes. Cultured human hepatocytes, which morphologically exhibited bile canaliculi-like structures, were next demonstrated, through immunofluorescence staining, to express the influx transporters organic anion transporting polypeptide (OATP) 1B1, OATP2B1 and organic cation transporter (OCT) 1 and the efflux transporter multidrug resistance-associated protein (MRP) 3 at their sinusoidal pole. In addition, the efflux transporters P-glycoprotein and MRP2 were detected at the canalicular pole of monolayer-cultured human hepatocytes. Moreover, canalicular secretion of reference substrates for the efflux transporters bile salt export pump, MRP2 and P-glycoprotein as well as sinusoidal drug transporter activities were observed. This polarized and functional expression of drug transporters in monolayer-cultured human hepatocytes highlights the interest of using this human in vitro cell model in xenobiotic transport studies. PMID:25862123

  17. Neurofilament gene expression: a major determinant of axonal caliber

    International Nuclear Information System (INIS)

    Within the wide spectrum of axonal diameters occurring in mammalian nerve fibers, each class of neurons has a relatively restricted range of axonal calibers. The control of caliber has functional significance because diameter is the principal determinant of conduction velocity in myelinated nerve fibers. Previous observations support the hypothesis that neurofilaments (NF) are major intrinsic determinants of axonal caliber in large myelinated nerve fibers. Following interruption of axons (axotomy) by crushing or cutting a peripheral nerve, caliber is reduced in the proximal axonal stumps, which extend from the cell bodies to the site of axotomy. This reduction in axonal caliber in the proximal stumps is associated with a selective diminution in the amount of NF protein undergoing slow axonal transport in these axons, with a decrease in axonal NF content, and with reduced conduction velocity. The present report demonstrates that changes in axonal caliber after axotomy correlate with a selective alteration in NF gene expression. Hybridization with specific cDNAs was used to measure levels of mRNA encoding the 68-kDa neurofilament protein (NF68), β-tubulin, and actin in lumbar sensory neurons of rat at various times after crushing the sciatic nerve. Between 4 and 42 days after axotomy by nerve crush, the levels of NF68 mRNA were reduced 2- to 3-fold. At the same times, the levels of tubulin and actin mRNAs were increased several-fold. These findings support the hypothesis that the expression of a single set of neuron-specific genes (encoding NF) directly determines axonal caliber, a feature neuronal morphology with important consequences for physiology and behavior

  18. Structural specificity of mucosal-cell transport and metabolism of peptide drugs: implication for oral peptide drug delivery

    Science.gov (United States)

    Bai, J. P.; Amidon, G. L.

    1992-01-01

    The brush border membrane of intestinal mucosal cells contains a peptide carrier system with rather broad substrate specificity and various endo- and exopeptidase activities. Small peptide (di-/tripeptide)-type drugs with or without an N-terminal alpha-amino group, including beta-lactam antibiotics and angiotensin-converting enzyme (ACE) inhibitors, are transported by the peptide transporter. Polypeptide drugs are hydrolyzed by brush border membrane proteolytic enzymes to di-/tripeptides and amino acids. Therefore, while the intestinal brush border membrane has a carrier system facilitating the absorption of di-/tripeptide drugs, it is a major barrier limiting oral availability of polypeptide drugs. In this paper, the specificity of peptide transport and metabolism in the intestinal brush border membrane is reviewed.

  19. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls

    KAUST Repository

    Hossain, Shaolie S.

    2011-08-20

    The majority of heart attacks occur when there is a sudden rupture of atherosclerotic plaque, exposing prothrombotic emboli to coronary blood flow, forming clots that can cause blockages of the arterial lumen. Diseased arteries can be treated with drugs delivered locally to vulnerable plaques. The objective of this work was to develop a computational tool-set to support the design and analysis of a catheter-based nanoparticulate drug delivery system to treat vulnerable plaques and diffuse atherosclerosis. A threedimensional mathematical model of coupled mass transport of drug and drug-encapsulated nanoparticles was developed and solved numerically utilizing isogeometric finite element analysis. Simulations were run on a patient-specific multilayered coronary artery wall segment with a vulnerable plaque and the effect of artery and plaque inhomogeneity was analyzed. The method captured trends observed in local drug delivery and demonstrated potential for optimizing drug design parameters, including delivery location, nanoparticle surface properties, and drug release rate. © Springer-Verlag 2011.

  20. Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design

    Science.gov (United States)

    Ishikawa, Toshihisa; Tamura, Ai; Saito, Hikaru; Wakabayashi, Kanako; Nakagawa, Hiroshi

    2005-10-01

    In the post-genome-sequencing era, emerging genomic technologies are shifting the paradigm for drug discovery and development. Nevertheless, drug discovery and development still remain high-risk and high-stakes ventures with long and costly timelines. Indeed, the attrition of drug candidates in preclinical and development stages is a major problem in drug design. For at least 30% of the candidates, this attrition is due to poor pharmacokinetics and toxicity. Thus, pharmaceutical companies have begun to seriously re-evaluate their current strategies of drug discovery and development. In that light, we propose that a transport mechanism-based design might help to create new, pharmacokinetically advantageous drugs, and as such should be considered an important component of drug design strategy. Performing enzyme- and/or cell-based drug transporter, interaction tests may greatly facilitate drug development and allow the prediction of drug-drug interactions. We recently developed methods for high-speed functional screening and quantitative structure-activity relationship analysis to study the substrate specificity of ABC transporters and to evaluate the effect of genetic polymorphisms on their function. These methods would provide a practical tool to screen synthetic and natural compounds, and these data can be applied to the molecular design of new drugs. In this review article, we present an overview on the genetic polymorphisms of human ABC transporter ABCG2 and new camptothecin analogues that can circumvent AGCG2-associated multidrug resistance of cancer.

  1. ABC Transporters and their Role in Nucleoside and Nucleotide Drug Resistance

    OpenAIRE

    Fukuda, Yu; Schuetz, John D.

    2012-01-01

    ATP-binding cassette (ABC) transporters confer drug resistance against a wide range of chemotherapeutic agents, including nucleoside and nucleotide based drugs. While nucleoside based drugs have been used for many years in the treatment of solid and hematological malignancies as well as viral and autoimmune diseases, the potential contribution of ABC transporters has only recently been recognized. This neglect is likely because activation of nucleoside derivatives require an initial carrier-m...

  2. Assessment of drug metabolism enzyme and transporter pharmacogenetics in drug discovery and early development: perspectives of the I-PWG.

    Science.gov (United States)

    Brian, William; Tremaine, Larry M; Arefayene, Million; de Kanter, Ruben; Evers, Raymond; Guo, Yingying; Kalabus, James; Lin, Wen; Loi, Cho-Ming; Xiao, Guangqing

    2016-04-01

    Genetic variants of drug metabolism enzymes and transporters can result in high pharmacokinetic and pharmacodynamic variability, unwanted characteristics of efficacious and safe drugs. Ideally, the contributions of these enzymes and transporters to drug disposition can be predicted from in vitro experiments and in silico modeling in discovery or early development, and then be utilized during clinical development. Recently, regulatory agencies have provided guidance on the preclinical investigation of pharmacogenetics, for application to clinical drug development. This white paper summarizes the results of an industry survey conducted by the Industry Pharmacogenomics Working Group on current practice and challenges with using in vitro systems and in silico models to understand pharmacogenetic causes of variability in drug disposition. PMID:27045656

  3. Prediction of transport, pharmacokinetics, and effect of drugs

    OpenAIRE

    Hammann, Felix

    2009-01-01

    Prediction and modulation of pharmacokinetics and the effects of drugs is a major concern in drug discovery, drug safety, and clinical practice. The projects in this thesis span the entire range of levels upon which these issues can be explored, ranging from in silico to in vivo evaluations and molecular, cellular, organ, and systemic phenomena. Drug discovery has come a long way, from a mostly serendipitous endeavor to the highly focused process in today’s global pharmaceutical companies, wh...

  4. Ultrasound radiation force transport of drugs in tumors

    OpenAIRE

    Sun, Xianhua

    2013-01-01

    Chemotherapy effectiveness not only depends on drug penetration extent in target tissues or tumor cells, but also depends on drug suppression extent by the normal tissues and cells. Ultrasound acts as an important role to meet this requirement in drug delivery of chemotherapy in recent years. The popular methods are micro bubbles and HIFU (high intensity focused ultrasound). In this thesis, we developed a method using ultrasound radiation force to ?push? the drug penetrate into tumor cells. ...

  5. RLIP76, a non-ABC transporter, and drug resistance in epilepsy

    OpenAIRE

    Awasthi Yogesh C; Cucullo Luca; Singhal Sharad S; Fazio Vince; Hallene Kerri L; Awasthi Sanjay; Dini Gabriele; Janigro Damir

    2005-01-01

    Abstract Background Permeability of the blood-brain barrier is one of the factors determining the bioavailability of therapeutic drugs and resistance to chemically different antiepileptic drugs is a consequence of decreased intracerebral accumulation. The ABC transporters, particularly P-glycoprotein, are known to play a role in antiepileptic drug extrusion, but are not by themselves sufficient to fully explain the phenomenon of drug-resistant epilepsy. Proteomic analyses of membrane protein ...

  6. Structural Basis for Induction of Peripheral Neuropathy by Microtubule-Targeting Cancer Drugs.

    Science.gov (United States)

    Smith, Jennifer A; Slusher, Barbara S; Wozniak, Krystyna M; Farah, Mohamed H; Smiyun, Gregoriy; Wilson, Leslie; Feinstein, Stuart; Jordan, Mary Ann

    2016-09-01

    Peripheral neuropathy is a serious, dose-limiting side effect of cancer treatment with microtubule-targeting drugs. Symptoms present in a "stocking-glove" distribution, with longest nerves affected most acutely, suggesting a length-dependent component to the toxicity. Axonal transport of ATP-producing mitochondria along neuronal microtubules from cell body to synapse is crucial to neuronal function. We compared the effects of the drugs paclitaxel and ixabepilone that bind along the lengths of microtubules and the drugs eribulin and vincristine that bind at microtubule ends, on mitochondrial trafficking in cultured human neuronal SK-N-SH cells and on axonal transport in mouse sciatic nerves. Antiproliferative concentrations of paclitaxel and ixabepilone significantly inhibited the anterograde transport velocity of mitochondria in neuronal cells, whereas eribulin and vincristine inhibited transport only at significantly higher concentrations. Confirming these observations, anterogradely transported amyloid precursor protein accumulated in ligated sciatic nerves of control and eribulin-treated mice, but not in paclitaxel-treated mice, indicating that paclitaxel inhibited anterograde axonal transport, whereas eribulin did not. Electron microscopy of sciatic nerves of paclitaxel-treated mice showed reduced organelle accumulation proximal to the ligation consistent with inhibition of anterograde (kinesin based) transport by paclitaxel. In contrast, none of the drugs significantly affected retrograde (dynein based) transport in neuronal cells or mouse nerves. Collectively, these results suggest that paclitaxel and ixabepilone, which bind along the lengths and stabilize microtubules, inhibit kinesin-based axonal transport, but not dynein-based transport, whereas the microtubule-destabilizing drugs, eribulin and vincristine, which bind preferentially to microtubule ends, have significantly less effect on all microtubule-based axonal transport. Cancer Res; 76(17); 5115-23.

  7. Brain gangliosides in axon-myelin stability and axon regeneration

    OpenAIRE

    Schnaar, Ronald L.

    2009-01-01

    Gangliosides, sialic acid-bearing glycosphingolipids, are expressed at high abundance and complexity in the brain. Altered ganglioside expression results in neural disorders, including seizures and axon degeneration. Brain gangliosides function, in part, by interacting with a ganglioside-binding lectin, myelin-associated glycoprotein (MAG). MAG, on the innermost wrap of the myelin sheath, binds to gangliosides GD1a and GT1b on axons. MAG-ganglioside binding ensures optimal axon-myelin cell-ce...

  8. Microfluidic control of axonal guidance

    Science.gov (United States)

    Gu, Ling; Black, Bryan; Ordonez, Simon; Mondal, Argha; Jain, Ankur; Mohanty, Samarendra

    2014-10-01

    The precision of axonal pathfinding and the accurate formation of functional neural circuitry are crucial for an organism during development as well as during adult central and peripheral nerve regeneration. While chemical cues are believed to be primarily responsible for axonal pathfinding, we hypothesize that forces due to localized fluid flow may directly affect neuronal guidance during early organ development. Here, we report direct evidence of fluid flow influencing axonal migration, producing turning angles of up to 90°. Microfluidic flow simulations indicate that an axon may experience significant bending force due to cross-flow, which may contribute to the observed axonal turning. This method of flow-based guidance was successfully used to fasciculate one advancing axon onto another, showcasing the potential of this technique to be used for the formation of in vitro neuronal circuits.

  9. Membrane turnover and receptor trafficking in regenerating axons.

    Science.gov (United States)

    Hausott, Barbara; Klimaschewski, Lars

    2016-02-01

    Peripheral axonal regeneration requires surface-expanding membrane addition. The continuous incorporation of new membranes into the axolemma allows the pushing force of elongating microtubules to drive axonal growth cones forwards. Hence, a constant supply of membranes and cytoskeletal building blocks is required, often for many weeks. In human peripheral nerves, axonal tips may be more than 1 m away from the neuronal cell body. Therefore, in the initial phase of regeneration, membranes are derived from pre-existing vesicles or synthesised locally. Only later stages of axonal regeneration are supported by membranes and proteins synthesised in neuronal cell bodies, considering that the fastest anterograde transport mechanisms deliver cargo at 20 cm/day. Whereas endocytosis and exocytosis of membrane vesicles are balanced in intact axons, membrane incorporation exceeds membrane retrieval during regeneration to compensate for the loss of membranes distal to the lesion site. Physiological membrane turnover rates will not be established before the completion of target reinnervation. In this review, the current knowledge on membrane traffic in axonal outgrowth is summarised, with a focus on endosomal vesicles as the providers of membranes and carriers of growth factor receptors required for initiating signalling pathways to promote the elongation and branching of regenerating axons in lesioned peripheral nerves. PMID:26222895

  10. Glycolysis Inhibition Inactivates ABC Transporters to Restore Drug Sensitivity in Malignant Cells

    OpenAIRE

    Ayako Nakano; Daisuke Tsuji; Hirokazu Miki; Qu Cui; Salah Mohamed El Sayed; Akishige Ikegame; Asuka Oda; Hiroe Amou; Shingen Nakamura; Takeshi Harada; Shiro Fujii; Kumiko Kagawa; Kyoko Takeuchi; Akira Sakai; Shuji Ozaki

    2011-01-01

    Cancer cells eventually acquire drug resistance largely via the aberrant expression of ATP-binding cassette (ABC) transporters, ATP-dependent efflux pumps. Because cancer cells produce ATP mostly through glycolysis, in the present study we explored the effects of inhibiting glycolysis on the ABC transporter function and drug sensitivity of malignant cells. Inhibition of glycolysis by 3-bromopyruvate (3BrPA) suppressed ATP production in malignant cells, and restored the retention of daunorubic...

  11. ATP-Binding-Cassette Transporters in Biliary Efflux and Drug-Induced Liver Injury

    OpenAIRE

    Pedersen, Jenny M.

    2013-01-01

    Membrane transport proteins are known to influence the absorption, distribution, metabolism, excretion and toxicity (ADMET) of drugs. At the onset of this thesis work, only a few structure-activity models, in general describing P-glycoprotein (Pgp/ABCB1) interactions, were developed using small datasets with little structural diversity. In this thesis, drug-transport protein interactions were explored using large, diverse datasets representing the chemical space of orally administered registe...

  12. Photoactivatable Drug-Caged Fluorophore Conjugate Allows Direct Quantification of Intracellular Drug Transport

    OpenAIRE

    Agasti, Sarit S.; Laughney, Ashley M.; Kohler, Rainer H.; Weissleder, Ralph

    2013-01-01

    We report here a method that utilizes photoactivatable drug-caged fluorophore conjugate to quantify intracellular drug trafficking processes at single cell resolution. Photoactivation is performed in labeled cellular compartments to visualize intracellular drug exchange at physiologic conditions, without the need for washing, facilitating its translation to in vivo cancer models.

  13. Assembly & Transport Mechanism of Tripartite Drug Efflux Systems

    OpenAIRE

    Misra, Rajeev; Bavro, Vassiliy N

    2009-01-01

    Multidrug efflux (MDR) pumps remove a variety of compounds from the cell into the external environment. There are five different classes of MDR pumps in bacteria, and quite often a single bacterial species expresses multiple classes of pumps. Although under normal circumstances MDR pumps confer low-level intrinsic resistance to drugs, the presence of drugs and mutations in regulatory genes lead to high level expression of MDR pumps that can pose problems with therapeutic treatments. This revi...

  14. Drug transport across the blood–brain barrier

    OpenAIRE

    Pardridge, William M.

    2012-01-01

    The blood–brain barrier (BBB) prevents the brain uptake of most pharmaceuticals. This property arises from the epithelial-like tight junctions within the brain capillary endothelium. The BBB is anatomically and functionally distinct from the blood–cerebrospinal fluid barrier at the choroid plexus. Certain small molecule drugs may cross the BBB via lipid-mediated free diffusion, providing the drug has a molecular weight

  15. INFLUENCE OF DIETARY SUBSTANCES ON INTESTINAL DRUG METABOLISM AND TRANSPORT

    OpenAIRE

    Won, Christina S.; Oberlies, Nicholas H.; Paine, Mary F.

    2010-01-01

    Successful delivery of promising new chemical entities via the oral route is rife with challenges, some of which cannot be explained or foreseen during drug development. Further complicating an already multifaceted problem is the obvious, yet often overlooked, effect of dietary substances on drug disposition and response. Some dietary substances, particularly fruit juices, have been shown to inhibit biochemical processes in the intestine, leading to altered pharmacokinetic (PK), and potential...

  16. Alteration of human hepatic drug transporter activity and expression by cigarette smoke condensate.

    Science.gov (United States)

    Sayyed, Katia; Vee, Marc Le; Abdel-Razzak, Ziad; Jouan, Elodie; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier

    2016-07-01

    Smoking is well-known to impair pharmacokinetics, through inducing expression of drug metabolizing enzymes. In the present study, we demonstrated that cigarette smoke condensate (CSC) also alters activity and expression of hepatic drug transporters, which are now recognized as major actors of hepatobiliary elimination of drugs. CSC thus directly inhibited activities of sinusoidal transporters such as OATP1B1, OATP1B3, OCT1 and NTCP as well as those of canalicular transporters like P-glycoprotein, MRP2, BCRP and MATE1, in hepatic transporters-overexpressing cells. CSC similarly counteracted constitutive OATP, NTCP and OCT1 activities in human highly-differentiated hepatic HepaRG cells. In parallel, CSC induced expression of BCRP at both mRNA and protein level in HepaRG cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B1, OATP2B1, OAT2, NTCP, OCT1 and BSEP, and enhanced that of MRP4. Such changes in transporter gene expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin, a reference activator of the aryl hydrocarbon receptor (AhR) pathway, and were counteracted, for some of them, by siRNA-mediated AhR silencing. This suggests that CSC alters hepatic drug transporter levels via activation of the AhR cascade. Importantly, drug transporter expression regulations as well as some transporter activity inhibitions occurred for a range of CSC concentrations similar to those required for inducing drug metabolizing enzymes and may therefore be hypothesized to be relevant for smokers. Taken together, these data established human hepatic transporters as targets of cigarette smoke, which could contribute to known alteration of pharmacokinetics and some liver adverse effects caused by smoking. PMID:27450509

  17. Effects of chronic kidney disease and uremia on hepatic drug metabolism and transport.

    Science.gov (United States)

    Yeung, Catherine K; Shen, Danny D; Thummel, Kenneth E; Himmelfarb, Jonathan

    2014-03-01

    The pharmacokinetics of non-renally cleared drugs in patients with chronic kidney disease is often unpredictable. Some of this variability may be due to alterations in the expression and activity of extra renal drug-metabolizing enzymes and transporters, primarily localized in the liver and intestine. Studies conducted in rodent models of renal failure have shown decreased mRNA and protein expression of many members of the cytochrome P450 enzyme (CYP) gene family and the ATP-binding cassette (ABC) and solute carrier (SLC) gene families of drug transporters. Uremic toxins interfere with transcriptional activation, cause downregulation of gene expression mediated by proinflammatory cytokines, and directly inhibit the activity of the cytochrome P450s and drug transporters. While much has been learned about the effects of kidney disease on non-renal drug disposition, important questions remain regarding the mechanisms of these effects, as well as the interplay between drug-metabolizing enzymes and drug transporters in the uremic milieu. In this review, we have highlighted the existing gaps in our knowledge and understanding of the impact of chronic kidney disease on non-renal drug clearance, and identified areas of opportunity for future research. PMID:24132209

  18. 75 FR 49850 - Procedures for Transportation Workplace Drug and Alcohol Testing Programs

    Science.gov (United States)

    2010-08-16

    ... training of and procedures used by Medical Review Officers. The changes are intended to create consistency... specified drugs. The Department's Procedures echo this requirement.'' (53 FR 47002, Nov. 21, 1988; emphasis... Office of the Secretary 49 CFR Part 40 RIN 2105-AD95 Procedures for Transportation Workplace Drug...

  19. Ex vivo preparations of human tissue for drug metabolism, toxicity and transport

    NARCIS (Netherlands)

    Groothuis, Genoveva

    2012-01-01

    Before new drugs are allowed on the market, their safety and metabolite profile should be extensively tested, as often reactive metabolites are the ultimate toxicant. The exposure of the target cell to the drug and its metabolites is determined by the expression levels of the transporters and the me

  20. Intestinal transport of gentamicin with a novel, glycosteroid drug transport agent

    Science.gov (United States)

    Axelrod, H. R.; Kim, J. S.; Longley, C. B.; Lipka, E.; Amidon, G. L.; Kakarla, R.; Hui, Y. W.; Weber, S. J.; Choe, S.; Sofia, M. J.

    1998-01-01

    PURPOSE: The objective was to investigate the ability of a glycosteroid (TC002) to increase the oral bioavailability of gentamicin. METHODS: Admixtures of gentamicin and TC002 were administered to the rat ileum by injection and to dogs by ileal or jejunal externalized ports, or PO. Bioavailability of gentamicin was determined by HPLC. 3H-TC002 was injected via externalized cannulas into rat ileum or jejunum, or PO and its distribution and elimination was determined. The metabolism of TC002 in rats was evaluated by solid phase extraction and HPLC analysis of plasma, urine and feces following oral or intestinal administration. RESULTS: The bioavailability of gentamicin was substantially increased in the presence of TC002 in both rats and dogs. The level of absorption was dependent on the concentration of TC002 and site of administration. Greatest absorption occurred following ileal orjejunal administration. TC002 was significantly more efficacious than sodium taurocholate, but similar in cytotoxicity. TC002 remained primarily in the GI tract following oral or intestinal administration and cleared rapidly from the body. It was only partly metabolized in the GI tract, but was rapidly and completely converted to its metabolite in plasma and urine. CONCLUSIONS: TC002 shows promise as a new drug transport agent for promoting intestinal absorption of polar molecules such as gentamicin.

  1. Schisandra chinensis regulates drug metabolizing enzymes and drug transporters via activation of Nrf2-mediated signaling pathway

    Directory of Open Access Journals (Sweden)

    He JL

    2014-12-01

    Full Text Available Jin-Lian He,1 Zhi-Wei Zhou,2,3 Juan-Juan Yin,2 Chang-Qiang He,1 Shu-Feng Zhou,2,3 Yang Yu1 1College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China Abstract: Drug metabolizing enzymes (DMEs and drug transporters are regulated via epigenetic, transcriptional, posttranscriptional, and translational and posttranslational modifications. Phase I and II DMEs and drug transporters play an important role in the disposition and detoxification of a large number of endogenous and exogenous compounds. The nuclear factor (erythroid-derived 2-like 2 (Nrf2 is a critical regulator of a variety of important cytoprotective genes that are involved in disposition and detoxification of xenobiotics. Schisandra chinensis (SC is a commonly used traditional Chinese herbal medicine that has been primarily used to protect the liver because of its potent antioxidative and anti-inflammatory activities. SC can modulate some DMEs and drug transporters, but the underlying mechanisms are unclear. In this study, we aimed to explore the role of Nrf2 in the regulatory effect of SC extract (SCE on selected DMEs and drug transporters in human hepatocellular liver carcinoma cell line (HepG2 cells. The results showed that SCE, schisandrin A, and schisandrin B significantly increased the expression of NAD(PH: Nicotinamide Adenine Dinucleotide Phosphate-oxidase or:quinone oxidoreductase 1, heme oxygenase-1, glutamate–cysteine ligase, and glutathione S-transferase A4 at both transcriptional and posttranscriptional levels. Incubation of HepG2 cells with SCE resulted in a significant

  2. Effects of Microparticulate Drug Delivery Systems : Tissue Responses and Transcellular Transport

    OpenAIRE

    Ragnarsson, Eva

    2005-01-01

    Over the past decade, the development of macromolecular drugs based on peptides, proteins and nucleic acids has increased the interest in microparticulate drug delivery, i.e., the delivery of drug systems in the nanometer and micrometer ranges. However, little is known so far about the effect that microparticulate systems have on various tissues after administration. Additionally, the knowledge of mechanisms responsible for the uptake and transport of microparticles across the human intestine...

  3. Interaction Potential of the Multitargeted Receptor Tyrosine Kinase Inhibitor Dovitinib with Drug Transporters and Drug Metabolising Enzymes Assessed in Vitro

    Directory of Open Access Journals (Sweden)

    Johanna Weiss

    2014-12-01

    Full Text Available Dovitinib (TKI-258 is under development for the treatment of diverse cancer entities. No published information on its pharmacokinetic drug interaction potential is available. Thus, we assessed its interaction with important drug metabolising enzymes and drug transporters and its efficacy in multidrug resistant cells in vitro. P-glycoprotein (P-gp, MDR1, ABCB1 inhibition was evaluated by calcein assay, inhibition of breast cancer resistance protein (BCRP, ABCG2 by pheophorbide A efflux, and inhibition of organic anion transporting polypeptides (OATPs by 8-fluorescein-cAMP uptake. Inhibition of cytochrome P450 3A4, 2C19, and 2D6 was assessed by using commercial kits. Induction of transporters and enzymes was quantified by real-time RT-PCR. Possible aryl hydrocarbon receptor (AhR activating properties were assessed by a reporter gene assay. Substrate characteristics were evaluated by growth inhibition assays in cells over-expressing P-gp or BCRP. Dovitinib weakly inhibited CYP2C19, CYP3A4, P-gp and OATPs. The strongest inhibition was observed for BCRP (IC50 = 10.3 ± 4.5 μM. Among the genes investigated, dovitinib only induced mRNA expression of CYP1A1, CYP1A2, ABCC3 (coding for multidrug resistance-associated protein 3, and ABCG2 and suppressed mRNA expression of some transporters and drug metabolising enzymes. AhR reporter gene assay demonstrated that dovitinib is an activator of this nuclear receptor. Dovitinib retained its efficacy in cell lines over-expressing P-gp or BCRP. Our analysis indicates that dovitinib will most likely retain its efficacy in tumours over-expressing P-gp or BCRP and gives first evidence that dovitinib might act as a perpetrator drug in pharmacokinetic drug–drug interactions.

  4. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies.

    Science.gov (United States)

    Li, Wen; Zhang, Han; Assaraf, Yehuda G; Zhao, Kun; Xu, Xiaojun; Xie, Jinbing; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-07-01

    Multidrug resistance is a key determinant of cancer chemotherapy failure. One of the major causes of multidrug resistance is the enhanced efflux of drugs by membrane ABC transporters. Targeting ABC transporters projects a promising approach to eliminating or suppressing drug resistance in cancer treatment. To reveal the functional mechanisms of ABC transporters in drug resistance, extensive studies have been conducted from identifying drug binding sites to elucidating structural dynamics. In this review article, we examined the recent crystal structures of ABC proteins to depict the functionally important structural elements, such as domains, conserved motifs, and critical amino acids that are involved in ATP-binding and drug efflux. We inspected the drug-binding sites on ABC proteins and the molecular mechanisms of various substrate interactions with the drug binding pocket. While our continuous battle against drug resistance is far from over, new approaches and technologies have emerged to push forward our frontier. Most recent developments in anti-MDR strategies include P-gp inhibitors, RNA-interference, nano-medicines, and delivering combination strategies. With the advent of the 'Omics' era - genomics, epigenomics, transcriptomics, proteomics, and metabolomics - these disciplines play an important role in fighting the battle against chemoresistance by further unraveling the molecular mechanisms of drug resistance and shed light on medical therapies that specifically target MDR. PMID:27449595

  5. The lymph lipid precursor pool is a key determinant of intestinal lymphatic drug transport.

    Science.gov (United States)

    Trevaskis, Natalie L; Porter, Christopher J H; Charman, William N

    2006-02-01

    The influence of the size and turnover kinetics of the enterocyte-based lymph lipid precursor pool (LLPP) on intestinal lymphatic drug transport has been examined. Mesenteric lymph duct-cannulated rats were infused intraduodenally with low (2-5 mg/h) or high (20 mg/h) lipid-dose formulations containing 100 microg/h halofantrine (Hf, a model drug) and 1 microCi/h (14)C-oleic acid (OA) (as a marker for lipid transport) until steady-state rates of lipid(dX(L)/dt)(ss) and drug (dD(L)/dt)(ss) transport in lymph were obtained. After 5 h, the infusion was changed to formulations of the same composition but excluding (14)C-OA and Hf, allowing calculation of the first order rate constants describing turnover of lipid (K(X)) and drug (K(D)) from the LLPP into the lymph from the washout kinetics. The mass of lipid (X(LP)) and drug (D(LP)) in the LLPP was also determined. Biliary-lipid output was determined in a separate group of rats that had been infused with the same formulations. The results indicate that after administration of high lipid doses, lymphatic drug transport is dependent on the mass of exogenous lipid available in the LLPP and the rate of lipid pool turnover into the lymph. In contrast, after administration of low lipid doses, biliary-derived endogenous lipids are most likely to be the primary drivers of drug incorporation into the LLPP and lymph. Therefore, the LLPP size and composition seem to be major determinants of lymphatic drug transport, and formulation components, which increase lipid pool size, may therefore enhance lymphatic drug transport. PMID:16249368

  6. Binding and inhibition of drug transport proteins by heparin: a potential drug transporter modulator capable of reducing multidrug resistance in human cancer cells.

    Science.gov (United States)

    Chen, Yunliang; Scully, Michael; Petralia, Gloria; Kakkar, Ajay

    2014-01-01

    A major problem in cancer treatment is the development of resistance to chemotherapeutic agents, multidrug resistance (MDR), associated with increased activity of transmembrane drug transporter proteins which impair cytotoxic treatment by rapidly removing the drugs from the targeted cells. Previously, it has been shown that heparin treatment of cancer patients undergoing chemotherapy increases survival. In order to determine whether heparin is capable reducing MDR and increasing the potency of chemotherapeutic drugs, the cytoxicity of a number of agents toward four cancer cell lines (a human enriched breast cancer stem cell line, two human breast cancer cell lines, MCF-7 and MDA-MB-231, and a human lung cancer cell line A549) was tested in the presence or absence of heparin. Results demonstrated that heparin increased the cytotoxicity of a range of chemotherapeutic agents. This effect was associated with the ability of heparin to bind to several of the drug transport proteins of the ABC and non ABC transporter systems. Among the ABC system, heparin treatment caused significant inhibition of the ATPase activity of ABCG2 and ABCC1, and of the efflux function observed as enhanced intracellular accumulation of specific substrates. Doxorubicin cytoxicity, which was enhanced by heparin treatment of MCF-7 cells, was found to be under the control of one of the major non-ABC transporter proteins, lung resistance protein (LRP). LRP was also shown to be a heparin-binding protein. These findings indicate that heparin has a potential role in the clinic as a drug transporter modulator to reduce multidrug resistance in cancer patients. PMID:24253450

  7. Drug-Drug Interaction Studies of Cardiovascular Drugs Involving P-Glycoprotein, an Efflux Transporter, on the Pharmacokinetics of Edoxaban, an Oral Factor Xa Inhibitor

    OpenAIRE

    Mendell, Jeanne; Zahir, Hamim; Matsushima, Nobuko; Noveck, Robert; Lee, Frank; Chen, Shuquan; Zhang, George; Shi, Minggao

    2013-01-01

    Background Edoxaban, an oral direct factor Xa inhibitor, is in development for thromboprophylaxis, including prevention of stroke and systemic embolism in patients with atrial fibrillation (AF). P-glycoprotein (P-gp), an efflux transporter, modulates absorption and excretion of xenobiotics. Edoxaban is a P-gp substrate, and several cardiovascular (CV) drugs have the potential to inhibit P-gp and increase drug exposure. Objective To assess the potential pharmacokinetic interactions of edoxaban...

  8. Riboflavin transport in the central nervous system. Characterization and effects of drugs.

    OpenAIRE

    Spector, R

    1980-01-01

    The relationship of riboflavin transport to the transport of other substances including drugs in rabbit choroid plexus, the anatomical locus of the blood-cerebrospinal fluid barrier, and brain cells were studied in vivo and in vitro. In vitro, the ability of rabbit choroid plexus to transport riboflavin from the medium (cerebrospinal fluid surface) through the choroid plexus epithelial cells into the extracellular and vascular spaces of the choroid plexus was documented using fluorescence mic...

  9. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus

    OpenAIRE

    Yu, Fang; De Luca, Vincenzo

    2013-01-01

    The presence of biologically active monoterpenoid indole alkaloids (MIAs) on the leaf surfaces of medicinally important Catharanthus roseus has led to questions about the secretion processes involved and their prevalence within MIA-producing species of plants. This report shows that a transporter closely related to those involved in cuticle assembly in plants and belonging to the pleiotropic drug resistance family of ATP-binding cassette transporters is specialized for transport of the MIA ca...

  10. Substrate-specific effects of pirinixic acid derivatives on ABCB1-mediated drug transport.

    Science.gov (United States)

    Michaelis, Martin; Rothweiler, Florian; Wurglics, Mario; Aniceto, Natália; Dittrich, Michaela; Zettl, Heiko; Wiese, Michael; Wass, Mark; Ghafourian, Taravat; Schubert-Zsilavecz, Manfred; Cinatl, Jindrich

    2016-03-01

    Pirinixic acid derivatives, a new class of drug candidates for a range of diseases, interfere with targets including PPARα, PPARγ, 5-lipoxygenase (5-LO), and microsomal prostaglandin and E2 synthase-1 (mPGES1). Since 5-LO, mPGES1, PPARα, and PPARγ represent potential anti-cancer drug targets, we here investigated the effects of 39 pirinixic acid derivatives on prostate cancer (PC-3) and neuroblastoma (UKF-NB-3) cell viability and, subsequently, the effects of selected compounds on drug-resistant neuroblastoma cells. Few compounds affected cancer cell viability in low micromolar concentrations but there was no correlation between the anti-cancer effects and the effects on 5-LO, mPGES1, PPARα, or PPARγ. Most strikingly, pirinixic acid derivatives interfered with drug transport by the ATP-binding cassette (ABC) transporter ABCB1 in a drug-specific fashion. LP117, the compound that exerted the strongest effect on ABCB1, interfered in the investigated concentrations of up to 2μM with the ABCB1-mediated transport of vincristine, vinorelbine, actinomycin D, paclitaxel, and calcein-AM but not of doxorubicin, rhodamine 123, or JC-1. In silico docking studies identified differences in the interaction profiles of the investigated ABCB1 substrates with the known ABCB1 binding sites that may explain the substrate-specific effects of LP117. Thus, pirinixic acid derivatives may offer potential as drug-specific modulators of ABCB1-mediated drug transport. PMID:26887049

  11. Dietary Isoflavones as Modulators of Drug Metabolizing Enzymes and Transporters: Effect on Prescription Medicines.

    Science.gov (United States)

    Taneja, Isha; Raju, Kanumuri Siva Rama; Wahajuddin, Muhammad

    2016-07-29

    Isoflavones are the most widely consumed phytoestrogens. Besides being a dietary constituent, their consumption has been increasing in the form of herbal supplements and as promising alternatives to hormonal replacement therapy, in conjunction with prescription medicines. Isoflavones are extensively metabolized by phase I and II enzymes and are substrates of drug transporters. At high concentrations isoflavones may interact with drug metabolizing enzymes and drug transporters and modulate their activity, thus, altering the absorption, metabolism, distribution, excretion and toxicity profile of the co-administered drugs. This review summarizes the up-to-date literature of isoflavone-drug interactions giving insight into the possible mechanisms of interactions, in vitro-in vivo correlation and their implications on clinical outcomes. PMID:26561312

  12. Inhibition of kinesin-5 improves regeneration of injured axons by a novel microtubule-based mechanism

    Institute of Scientific and Technical Information of China (English)

    Peter W. Baas; Andrew J. Matamoros

    2015-01-01

    Microtubules have been identiifed as a powerful target for augmenting regeneration of injured adult axons in the central nervous system. Drugs that stabilize microtubules have shown some promise, but there are concerns that abnormally stabilizing microtubules may have only limited beneifts for regeneration, while at the same time may be detrimental to the normal work that microtubules perform for the axon. Kinesin-5 (also called kif11 or Eg5), a molecular motor protein best known for its crucial role in mitosis, acts as a brake on microtubule movements by other motor proteins in the axon. Drugs that inhibit kinesin-5, originally developed to treat cancer, result in greater mobility of microtubules in the axon and an overall shift in the forces on the microtubule array. As a result, the axon grows faster, retracts less, and more readily enters environments that are inhibitory to axonal regeneration. Thus, drugs that inhibit kinesin-5 offer a novel microtubule-based means to boost axonal regeneration without the concerns that ac-company abnormal stabilization of the microtubule array. Even so, inhibiting kinesin-5 is not without its own caveats, such as potential problems with navigation of the regenerating axon to its target, as well as morphological effects on dendrites that could affect learning and memory if the drugs reach the brain.

  13. Regulation of drug transporter expression by oncostatin M in human hepatocytes.

    Science.gov (United States)

    Le Vee, Marc; Jouan, Elodie; Stieger, Bruno; Lecureur, Valérie; Fardel, Olivier

    2011-08-01

    The cytokine oncostatin M (OSM) is a member of the interleukin (IL)-6 family, known to down-regulate expression of drug metabolizing cytochromes P-450 in human hepatocytes. The present study was designed to determine whether OSM may also impair expression of sinusoidal and canalicular drug transporters, which constitute important determinants of drug hepatic clearance. Exposure of primary human hepatocytes to OSM down-regulated mRNA levels of major sinusoidal solute carrier (SLC) influx transporters, including sodium-taurocholate co-transporting polypeptide (NTCP), organic anion transporting polypeptide (OATP) 1B1, OATP1B3, OATP2B1, organic cation transporter 1 and organic anion transporter 2. OSM also repressed mRNA expressions of ATP binding cassette (ABC) efflux transporters such as multidrug resistance protein (MRP) 2/ABCC2 and breast cancer resistance protein/ABCG2, without however impairing those of multidrug resistance gene 1/P-glycoprotein/ABCB1, MRP3/ABCC3, MRP4/ABCC4 and bile salt export pump/ABCB11. The cytokine concomitantly reduced NTCP, OATP1B1, OATP2B1 and ABCG2 protein expression and NTCP and OATP transport activities. OSM effects towards transporters were found to be dose-dependent and highly correlated with those of IL-6, but not with those of other inflammatory cytokines such as tumor necrosis factor-α or interferon-γ. In addition, OSM-mediated repression of some transporters such as NTCP, OATP1B1 and OATP2B1, was counteracted by knocking-down expression of the type II OSM receptor subunits through siRNA transfection. This OSM-mediated down-regulation of drug SLC transporters and ABCG2 in human hepatocytes may contribute to alterations of pharmacokinetics in patients suffering from diseases associated with increased production of OSM. PMID:21570956

  14. The Role of Drug Transporters in the Kidney: Lessons from Tenofovir

    Directory of Open Access Journals (Sweden)

    Darren Michael Moss

    2014-11-01

    Full Text Available Tenofovir disoproxil fumarate, the prodrug of nucleotide reverse transcriptase inhibitor tenofovir, shows high efficacy and relatively low toxicity in HIV patients. However, long-term kidney toxicity is now acknowledged as a modest but significant risk for tenofovir-containing regimens, and continuous use of tenofovir in HIV therapy is currently under question by practitioners and researchers. Co-morbidities (hepatitis C, diabetes, low body weight, older age, concomitant administration of potentially nephrotoxic drugs, low CD4 count, and duration of therapy are all risk factors associated with tenofovir-associated tubular dysfunction. Tenofovir is predominantly eliminated via the proximal tubules of the kidney, therefore drug transporters expressed in renal proximal tubule cells are believed to influence tenofovir plasma concentration and toxicity in the kidney. We review here the current evidence that the actions, pharmacogenetics and drug interactions of drug transporters are relevant factors for tenofovir-associated tubular dysfunction. The use of creatinine and novel biomarkers for kidney damage, and the role that drug transporters play in biomarker disposition, is discussed. The lessons learnt from investigating the role of transporters in tenofovir kidney elimination and toxicity can be utilised for future drug development and clinical management programs.

  15. Axon-glia interaction and membrane traffic in myelin formation

    Directory of Open Access Journals (Sweden)

    Robin eWhite

    2014-01-01

    Full Text Available In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialised glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarisation followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasising the central role of the Src-family kinase Fyn during CNS myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of PLP (proteolipid protein transport by SNARE proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.

  16. Excitatory amino acid transporters as potential drug targets

    DEFF Research Database (Denmark)

    Bunch, Lennart; Erichsen, Mette Navy; Jensen, Anders Asbjørn

    2009-01-01

    BACKGROUND: Excitatory amino acid transporters (EAATs) are transmembrane proteins responsible for the uptake of (S)-glutamate (Glu) from the synaptic cleft, thereby terminating the glutamatergic neurotransmitter signal. Today five subtypes have been identified. Except for EAAT2, their individual ...... and detailed understanding of EAATs be obtained. Thus we encourage collaboration between organic chemists and molecular pharmacologists, who, together, may pave the way for new EAAT ligands of importance....

  17. Synthesis of uniform cyclodextrin thioethers to transport hydrophobic drugs

    Directory of Open Access Journals (Sweden)

    Lisa F. Becker

    2014-12-01

    Full Text Available Methyl and ethyl thioether groups were introduced at all primary positions of α-, β-, and γ-cyclodextrin by nucleophilic displacement reactions starting from the corresponding per-(6-deoxy-6-bromocyclodextrins. Further modification of all 2-OH positions by etherification with iodo terminated triethylene glycol monomethyl ether (and tetraethylene glycol monomethyl ether, respectively furnished water-soluble hosts. Especially the β-cyclodextrin derivatives exhibit very high binding potentials towards the anaesthetic drugs sevoflurane and halothane. Since the resulting inclusion compounds are highly soluble in water at temperatures ≤37 °C they are good candidates for new aqueous dosage forms which would avoid inhalation anaesthesia.

  18. Distribution of genetic polymorphisms of genes encoding drug metabolizing enzymes & drug transporters - a review with Indian perspective

    Directory of Open Access Journals (Sweden)

    Gurusamy Umamaheswaran

    2014-01-01

    Full Text Available Phase I and II drug metabolizing enzymes (DME and drug transporters are involved in the absorption, distribution, metabolism as well as elimination of many therapeutic agents, toxins and various pollutants. Presence of genetic polymorphisms in genes encoding these proteins has been associated with marked inter-individual variability in their activity that could result in variation in drug response, toxicity as well as in disease predisposition. The emergent field pharmacogenetics and pharmacogenomics (PGx is a promising discipline, as it predicts disease risk, selection of proper medication with regard to response and toxicity, and appropriate drug dosage guidance based on an individual′s genetic make-up. Consequently, genetic variations are essential to understand the ethnic differences in disease occurrence, development, prognosis, therapeutic response and toxicity. For that reason, it is necessary to establish the normative frequency of these genes in a particular population before unraveling the genotype-phenotype associations. Although a fair amount of allele frequency data are available in Indian populations, the existing pharmacogenetic data have not been compiled into a database. This review was intended to compile the normative frequency distribution of the variants of genes encoding DMEs (CYP450s, TPMT, GSTs, COMT, SULT1A1, NAT2 and UGTs and transporter proteins (MDR1, OCT1 and SLCO1B1 with Indian perspective.

  19. [Role of ABC efflux transporters in the oral bioavailability and drug-induced intestinal toxicity].

    Science.gov (United States)

    Yokooji, Tomoharu

    2013-01-01

    The gastrointestinal tract is the organ that absorbs nutrients and water from foods and drinks. This organ is often exposed to various harmful xenobiotics, and therefore possesses various detoxification/barrier systems, including metabolizing enzymes and efflux transporters. Intestinal epithelial cells express ATP-binding cassette (ABC) efflux transporters such as P-glycoprotein, multidrug resistance-associated proteins (MRPs) and breast cancer resistance protein, in addition to various solute carrier (SLC) influx transporters. These transporters are expressed site- and membrane-specifically in enterocytes, which affects the bioavailability of ingested substrate drugs. Expression and/or function of transporters can be modulated by various compounds, including therapeutic drugs, herbal products, some foods, and by disease states. The modulation of transporters could cause unexpectedly higher or lower blood concentrations, marked inter- and intra-individual variations in pharmacokinetics, and unreliable pharmacological actions in association with toxicities of substrates. Recently, we found that hyperbilirubinemia, which occurs in some disease states, increased intestinal accumulation and toxicity of methotrexate, an MRP substrate, because of the suppression of MRP function by high plasma concentrations of conjugated bilirubin. We also attempted to ameliorate the intestinal toxicity of irinotecan hydrochloride by modulating the hepatic and intestinal functions of MRP2. This review summarizes our findings regarding the role of ABC transporters, especially MRPs, in oral bioavailability and in drug-induced intestinal toxicity. Our approach to treat intestinal toxicity using an MRP2 modulator is also described. PMID:23811769

  20. Mechanism of coupling drug transport reactions located in two different membranes

    Directory of Open Access Journals (Sweden)

    Helen I. Zgurskaya

    2015-02-01

    Full Text Available Gram- negative bacteria utilize a diverse array of multidrug transporters to pump toxic compounds out of cells. Some transporters together with periplasmic membrane fusion proteins (MFPs and outer membrane channels assemble trans-envelope complexes that expel multiple antibiotics across outer membranes of Gram-negative bacteria and into the external medium. Others further potentiate this efflux by pumping drugs across the inner membrane into the periplasm. Together these transporters create a powerful network of efflux that protect bacteria against a broad range of antimicrobial agents. This review is focused on the mechanism of coupling transport reactions located in two different membranes of Gram-negative bacteria. Using a combination of biochemical, genetic and biophysical approaches we have reconstructed the sequence of events leading to the assembly of trans-envelope drug efflux complexes and characterized the roles of periplasmic and outer membrane proteins in this process. Our recent data suggest a critical step in the activation of intermembrane efflux pumps, which is controlled by MFPs. We propose that the reaction cycles of transporters are tightly coupled to the assembly of the trans-envelope complexes. Transporters and MFPs exist in the inner membrane as dormant complexes. The activation of complexes is triggered by MFP binding to the outer membrane channel, which leads to a conformational change in the membrane proximal domain of MFP needed for stimulation of transporters. The activated MFP-transporter complex engages the outer membrane channel to expel substrates across the outer membrane. The recruitment of the channel is likely triggered by binding of effectors (substrates to MFP or MFP-transporter complexes. This model together with recent structural and functional advances in the field of drug efflux provides a fairly detailed understanding of the mechanism of drug efflux across the two membranes.

  1. Regulation of human hepatic drug transporter activity and expression by diesel exhaust particle extract.

    Directory of Open Access Journals (Sweden)

    Marc Le Vee

    Full Text Available Diesel exhaust particles (DEPs are common environmental air pollutants primarily affecting the lung. DEPs or chemicals adsorbed on DEPs also exert extra-pulmonary effects, including alteration of hepatic drug detoxifying enzyme expression. The present study was designed to determine whether organic DEP extract (DEPe may target hepatic drug transporters that contribute in a major way to drug detoxification. Using primary human hepatocytes and transporter-overexpressing cells, DEPe was first shown to strongly inhibit activities of the sinusoidal solute carrier (SLC uptake transporters organic anion-transporting polypeptides (OATP 1B1, 1B3 and 2B1 and of the canalicular ATP-binding cassette (ABC efflux pump multidrug resistance-associated protein 2, with IC50 values ranging from approximately 1 to 20 μg/mL and relevant to environmental exposure situations. By contrast, 25 μg/mL DEPe failed to alter activities of the SLC transporter organic cation transporter (OCT 1 and of the ABC efflux pumps P-glycoprotein and bile salt export pump (BSEP, whereas it only moderately inhibited those of sodium taurocholate co-transporting polypeptide and of breast cancer resistance protein (BCRP. Treatment by 25 μg/mL DEPe was next demonstrated to induce expression of BCRP at both mRNA and protein level in cultured human hepatic cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B3, OATP2B1, OCT1 and BSEP. Such changes in transporter expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a reference activator of the aryl hydrocarbon receptor (AhR pathway. This suggests that DEPe, which is enriched in known ligands of AhR like polycyclic aromatic hydrocarbons, alters drug transporter expression via activation of the AhR cascade. Taken together, these data established human hepatic transporters as targets of organic chemicals containing in DEPs, which may contribute

  2. Effects of Uremic Toxins on Transport and Metabolism of Different Biopharmaceutics Drug Disposition Classification System (BDDCS) Xenobiotics

    OpenAIRE

    Reyes, Maribel; Benet, Leslie Z.

    2011-01-01

    Chronic kidney disease (CKD) is recognized to cause pharmacokinetic changes in renally excreted drugs; however, pharmacokinetic changes are also reported for drugs that are non-renally eliminated. Few studies have investigated how uremic toxins may affect drug transporters and metabolizing enzymes and how these may result in pharmacokinetic/metabolic changes in CKD. Here, we investigated the effects of uremic toxins and human uremic serum on the transport of the prototypical transporter subst...

  3. Effects of chronic kidney disease and uremia on hepatic drug metabolism and transport

    OpenAIRE

    Yeung, Catherine K.; Shen, Danny D.; Thummel, Kenneth E; Himmelfarb, Jonathan

    2013-01-01

    The pharmacokinetics of non-renally cleared drugs in patients with chronic kidney disease is often unpredictable. Some of this variability may be due to alterations in the expression and activity of extra-renal drug metabolizing enzymes and transporters, primarily localized in the liver and intestine. Studies conducted in rodent models of renal failure have shown decreased mRNA and protein expression of many members of the cytochrome P450 enzyme (CYP) gene family and the ATP-Binding Cassette ...

  4. Modulation of a Schistosoma mansoni multidrug transporter by the antischistosomal drug praziquantel

    OpenAIRE

    Kasinathan, Ravi S.; Goronga, Tinopiwa; Messerli, Shanta M.; Webb, Thomas R.; Greenberg, Robert M.

    2010-01-01

    P-glycoprotein (Pgp) is an ATP-dependent efflux pump involved in transport of xenobiotics from cells that, when overexpressed, can mediate multidrug resistance in mammalian cells. Pgp may be a candidate target for new anthelmintics, as it plays critical roles in normal cell physiology, in removal of drugs from cells, and potentially in the development of drug resistance. Schistosomes are parasitic flatworms that cause schistosomiasis, which affects hundreds of millions of people worldwide. He...

  5. Multifunctional superparamagnetic nanoparticles for enhanced drug transport in cystic fibrosis

    Science.gov (United States)

    Armijo, Leisha M.; Brandt, Yekaterina I.; Rivera, Antonio C.; Cook, Nathaniel C.; Plumley, John B.; Withers, Nathan J.; Kopciuch, Michael; Smolyakov, Gennady A.; Huber, Dale L.; Smyth, Hugh D.; Osinski, Marek

    2012-10-01

    Iron oxide colloidal nanoparticles (ferrofluids) are investigated for application in the treatment of cystic fibrosis lung infections, the leading cause of mortality in cystic fibrosis patients. We investigate the use of iron oxide nanoparticles to increase the effectiveness of administering antibiotics through aerosol inhalation using two mechanisms: directed particle movement in the presence of an inhomogeneous static external magnetic field and magnetic hyperthermia. Magnetic hyperthermia is an effective method for decreasing the viscosity of the mucus and biofilm, thereby enhancing drug, immune cell, and antibody penetration to the affected area. Iron oxide nanoparticles of various sizes and morphologies were synthesized and tested for specific losses (heating power). Nanoparticles in the superparamagnetic to ferromagnetic size range exhibited excellent heating power. Additionally, iron oxide / zinc selenide core/shell nanoparticles were prepared, in order to enable imaging of the iron oxide nanoparticles. We also report on synthesis and characterization of MnSe/ZnSeS alloyed quantum dots.

  6. Stereocomplex micelle from nonlinear enantiomeric copolymers efficiently transports antineoplastic drug

    Science.gov (United States)

    Wang, Jixue; Shen, Kexin; Xu, Weiguo; Ding, Jianxun; Wang, Xiaoqing; Liu, Tongjun; Wang, Chunxi; Chen, Xuesi

    2015-05-01

    Nanoscale polymeric micelles have attracted more and more attention as a promising nanocarrier for controlled delivery of antineoplastic drugs. Herein, the doxorubicin (DOX)-loaded poly(D-lactide)-based micelle (PDM/DOX), poly(L-lactide)-based micelle (PLM/DOX), and stereocomplex micelle (SCM/DOX) from the equimolar mixture of the enantiomeric four-armed poly(ethylene glycol)-polylactide (PEG-PLA) copolymers were successfully fabricated. In phosphate-buffered saline (PBS) at pH 7.4, SCM/DOX exhibited the smallest hydrodynamic diameter ( D h) of 90 ± 4.2 nm and the slowest DOX release compared with PDM/DOX and PLM/DOX. Moreover, PDM/DOX, PLM/DOX, and SCM/DOX exhibited almost stable D hs of around 115, 105, and 90 nm at above normal physiological condition, respectively, which endowed them with great potential in controlled drug delivery. The intracellular DOX fluorescence intensity after the incubation with the laden micelles was different degrees weaker than that incubated with free DOX · HCl within 12 h, probably due to the slow DOX release from micelles. As the incubation time reached to 24 h, all the cells incubated with the laden micelles, especially SCM/DOX, demonstrated a stronger intracellular DOX fluorescence intensity than free DOX · HCl-cultured ones. More importantly, all the DOX-loaded micelles, especially SCM/DOX, exhibited potent antineoplastic efficacy in vitro, excellent serum albumin-tolerance stability, and satisfactory hemocompatibility. These encouraging data indicated that the loading micelles from nonlinear enantiomeric copolymers, especially SCM/DOX, might be promising in clinical systemic chemotherapy through intravenous injection.

  7. Olfactory nerve transport of macromolecular drugs to the brain. A problem in olfactory impaired patients

    International Nuclear Information System (INIS)

    Nasal administration of macromolecular drugs (including peptides and nanoparticles) has the potential to enable drug delivery system beyond the blood brain barrier (BBB) via olfactory nerve transport. Basic research on drug deliver systems to the brain via nasal administration has been well reported. Insulin-like growth factor-I (IGF-I) is associated with the development and growth of the central nervous system. Clinical application of IGF-I with nasal administration is intended to enable drug delivery to brain through the BBB. Uptake of IGF-I in the olfactory bulb and central nervous system increased according to the dosage of nasally administered IGF-I in normal ICR mice, however IGF-I uptake in the trigeminal nerve remained unchanged. Olfactory nerve transport is important for the delivery of nasally administered IGF-I to the brain in vivo. Because a safe olfactory nerve tracer has not been clinically available, olfactory nerve transport has not been well studied in humans. Nasal thallium-201 (201Tl) administration has been safely used to assess the direct pathway to the brain via the nose in healthy volunteers with a normal olfactory threshold. 201Tl olfactory nerve transport has recently been shown to decrease in patients with hyposmia. The olfactory nerve transport function in patients with olfactory disorders will be determined using 201Tl olfacto-scintigraphy for the exclusion of candidates in a clinical trial to assess the usefulness of nasal administration of IGF-I. (author)

  8. Local translation and directional steering in axons

    OpenAIRE

    Lin, Andrew C; Holt, Christine E.

    2007-01-01

    The assembly of functional neural circuits in the developing brain requires neurons to extend axons to the correct targets. This in turn requires the navigating tips of axons to respond appropriately to guidance cues present along the axonal pathway, despite being cellular ‘outposts' far from the soma. Work over the past few years has demonstrated a critical role for local translation within the axon in this process in vitro, making axon guidance another process that requires spatially locali...

  9. POTENT INHIBITORS OF HUMAN ORGANIC ANION TRANSPORTERS 1 AND 3 FROM CLINICAL DRUG LIBRARIES: DISCOVERY AND MOLECULAR CHARACTERIZATION

    OpenAIRE

    Duan, Peng; Li, Shanshan; Ai, Ni; Hu, Longqin; Welsh, William J.; You, Guofeng

    2012-01-01

    Transporter-mediated drug-drug interactions in the kidney dramatically influence the pharmacokinetics and other clinical effects of drugs. Human organic anion transporters 1 (hOAT1) and 3 (hOAT3) are the major transporters in the basolateral membrane of kidney proximal tubules, mediating the rate-limiting step in the elimination of a broad spectrum of drugs. In the present study, we screened two clinical drug libraries against hOAT1 and hOAT3. Of the 727 compounds screened, 92 compounds inhib...

  10. Protein kinase C-dependent regulation of human hepatic drug transporter expression.

    Science.gov (United States)

    Mayati, Abdullah; Le Vee, Marc; Moreau, Amélie; Jouan, Elodie; Bucher, Simon; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier

    2015-12-15

    Hepatic drug transporters are now recognized as major actors of hepatobiliary elimination of drugs. Characterization of their regulatory pathways is therefore an important issue. In this context, the present study was designed to analyze the potential regulation of human hepatic transporter expression by protein kinase C (PKC) activation. Treatment by the reference PKC activator phorbol 12-myristate 13-acetate (PMA) for 48h was shown to decrease mRNA expression of various sinusoidal transporters, including OATP1B1, OATP2B1, NTCP, OCT1 and MRP3, but to increase that of OATP1B3, whereas mRNA expression of canalicular transporters was transiently enhanced (MDR1), decreased (BSEP and MRP2) or unchanged (BCRP) in human hepatoma HepaRG cells. The profile of hepatic transporter mRNA expression changes in PMA-treated HepaRG cells was correlated to that found in PMA-exposed primary human hepatocytes and was similarly observed in response to the PKC-activating marketed drug ingenol mebutate. It was associated with concomitant repression of OATP1B1 and OATP2B1 protein expression and reduction of OATP, OCT1, NTCP and MRP2 activity. The use of chemical PKC inhibitors further suggested a contribution of novel PKCs isoforms to PMA-mediated regulations of transporter mRNA expression. PMA was finally shown to cause epithelial-mesenchymal transition (EMT) in HepaRG cells and exposure to various additional EMT inducers, i.e., hepatocyte growth factor, tumor growth factor-β1 or the HNF4α inhibitor BI6015, led to transporter expression alterations highly correlated to those triggered by PMA. Taken together, these data highlight PKC-dependent regulation of human hepatic drug transporter expression, which may be closely linked to EMT triggered by PKC activation. PMID:26462574

  11. Fruit juice inhibition of uptake transport: a new type of food–drug interaction

    OpenAIRE

    Bailey, David G

    2010-01-01

    A new type of interaction in which fruit juices diminish oral drug bioavailability through inhibition of uptake transport is the focus of this review. The discovery was based on an opposite to anticipated finding when assessing the possibility of grapefruit juice increasing oral fexofenadine bioavailability in humans through inhibition of intestinal MDR1-mediated efflux transport. In follow-up investigations, grapefruit or orange juice at low concentrations potentially and selectively inhibit...

  12. Signaled drug delivery and transport across the blood-brain barrier.

    Science.gov (United States)

    Hinow, Peter; Radunskaya, Ami; Mackay, Sean M; Reynolds, John N J; Schroeder, Morgan; Tan, Eng Wui; Tucker, Ian G

    2016-09-01

    We use a mathematical model to describe the delivery of a drug to a specific region of the brain. The drug is carried by liposomes that can release their cargo by application of focused ultrasound (US). Thereupon, the drug is absorbed through the endothelial cells that line the brain capillaries and form the physiologically important blood-brain barrier (BBB). We present a compartmental model of a capillary that is able to capture the complex binding and transport processes the drug undergoes in the blood plasma and at the BBB. We apply this model to the delivery of levodopa (L-dopa, used to treat Parkinson's disease) and doxorubicin (an anticancer agent). The goal is to optimize the delivery of drug while at the same time minimizing possible side effects of the US. PMID:26572864

  13. Role of the Drug Transporter ABCC3 in Breast Cancer Chemoresistance

    Science.gov (United States)

    Balaji, Sai A.; Udupa, Nayanabhirama; Chamallamudi, Mallikarjuna Rao; Gupta, Vaijayanti; Rangarajan, Annapoorni

    2016-01-01

    Increased expression of ABC-family of transporters is associated with chemotherapy failure. Although the drug transporters ABCG2, ABCB1 and ABCC1 have been majorly implicated in cancer drug resistance, recent studies have associated ABCC3 with multi drug resistance and poor clinical response. In this study, we have examined the expression of ABCC3 in breast cancers and studied its role in drug resistance and stemness of breast cancer cells in comparison with the more studied ABCC1. We observed that similar to ABCC1, the transcripts levels of ABCC3 was significantly high in breast cancers compared to adjacent normal tissue. Importantly, expression of both transporters was further increased in chemotherapy treated patient samples. Consistent with this, we observed that treatment of breast cancer cell lines with anti-cancer agents increased their mRNA levels of both ABCC1 and ABCC3. Further, similar to knockdown of ABCC1, knockdown of ABCC3 also significantly increased the retention of chemotherapeutic drugs in breast cancer cells and rendered them more chemo-sensitive. Interestingly, ABCC1 and ABCC3 knockdown cells also showed reduction in the expression of stemness genes, while ABCC3 knockdown additionally led to a reduction in the CD44high/CD24low breast cancer stem-like subpopulation. Consistent with this, their ability to form primary tumours was compromised. Importantly, down-modulation of ABCC3 rendered these cells increasingly susceptible to doxorubicin in xenograft mice models in vivo. Thus, our study highlights the importance of ABCC3 transporters in drug resistance to chemotherapy in the context of breast cancer. Further, these results suggest that combinatorial inhibition of these transporters together with standard chemotherapy can reduce therapy-induced resistance in breast cancer. PMID:27171227

  14. 75 FR 8528 - Procedures for Transportation Workplace Drug and Alcohol Testing Programs

    Science.gov (United States)

    2010-02-25

    ... Department published a Federal Register notice [71 FR 49383] to update the MIS form and its accompanying... Office of the Secretary 49 CFR Part 40 RIN OST 2105-AD84 Procedures for Transportation Workplace Drug and... Purpose In compliance with the Paperwork Reduction Act of 1995, Public Law 104-13, (44 U.S.C. 3501 et...

  15. Binding of the Multimodal Antidepressant Drug Vortioxetine to the Human Serotonin Transporter

    DEFF Research Database (Denmark)

    Andersen, Jacob; Ladefoged, Lucy Kate; Wang, Danyang;

    2015-01-01

    Selective inhibitors of the human serotonin transporter (hSERT) have been first-line treatment against depression for several decades. Recently, vortioxetine was approved as a new therapeutic option for the treatment of depression. Vortioxetine represents a new class of antidepressant drugs...

  16. 75 FR 5722 - Procedures for Transportation Workplace Drug and Alcohol Testing Programs

    Science.gov (United States)

    2010-02-04

    ... Office of the Secretary 49 CFR Part 40 RIN 2105-AD95 Procedures for Transportation Workplace Drug and... procedures dealing with laboratory testing of urine specimens. Some of the proposed changes will also affect the roles and standards applying to collectors and Medical Review Officers. The proposed changes...

  17. ROLE OF TRANSPORTERS IN THE DISTRIBUTION OF PLATINUM-BASED DRUGS

    Directory of Open Access Journals (Sweden)

    Saliha eHarrach

    2015-04-01

    Full Text Available Platinum derivatives used as chemotherapeutic drugs such as cisplatin and oxaliplatin have a potent antitumor activity. However, severe side effects such as nephro-, oto-, and neurotoxicity are associated with their use. Effects and side effects of platinum-based drugs are in part caused by their transporter-mediated uptake in target and non target cells. In this mini review, the transport systems involved in cellular handling of platinum derivatives are illustrated, focusing on transporters for cisplatin. The copper transporter 1 seems to be of particular importance for cisplatin uptake in tumor cells, while the organic cation transporter (OCT 2, due to its specific organ distribution, may play a major role in the development of undesired cisplatin side effects. In polarized cells, e.g. in renal proximal tubule cells, apically expressed transporters, such as multidrug and toxin extrusion protein 1, mediate secretion of cisplatin and in this way contribute to the control of its toxic effects. Specific inhibition of cisplatin uptake transporters such as the OCTs may be an attractive therapeutic option to reduce its toxicity, without impairing its antitumor efficacy.

  18. Glycolysis inhibition inactivates ABC transporters to restore drug sensitivity in malignant cells.

    Directory of Open Access Journals (Sweden)

    Ayako Nakano

    Full Text Available Cancer cells eventually acquire drug resistance largely via the aberrant expression of ATP-binding cassette (ABC transporters, ATP-dependent efflux pumps. Because cancer cells produce ATP mostly through glycolysis, in the present study we explored the effects of inhibiting glycolysis on the ABC transporter function and drug sensitivity of malignant cells. Inhibition of glycolysis by 3-bromopyruvate (3BrPA suppressed ATP production in malignant cells, and restored the retention of daunorubicin or mitoxantrone in ABC transporter-expressing, RPMI8226 (ABCG2, KG-1 (ABCB1 and HepG2 cells (ABCB1 and ABCG2. Interestingly, although side population (SP cells isolated from RPMI8226 cells exhibited higher levels of glycolysis with an increased expression of genes involved in the glycolytic pathway, 3BrPA abolished Hoechst 33342 exclusion in SP cells. 3BrPA also disrupted clonogenic capacity in malignant cell lines including RPMI8226, KG-1, and HepG2. Furthermore, 3BrPA restored cytotoxic effects of daunorubicin and doxorubicin on KG-1 and RPMI8226 cells, and markedly suppressed subcutaneous tumor growth in combination with doxorubicin in RPMI8226-implanted mice. These results collectively suggest that the inhibition of glycolysis is able to overcome drug resistance in ABC transporter-expressing malignant cells through the inactivation of ABC transporters and impairment of SP cells with enhanced glycolysis as well as clonogenic cells.

  19. Metformin and cimetidine: Physiologically based pharmacokinetic modelling to investigate transporter mediated drug-drug interactions.

    Science.gov (United States)

    Burt, H J; Neuhoff, S; Almond, L; Gaohua, L; Harwood, M D; Jamei, M; Rostami-Hodjegan, A; Tucker, G T; Rowland-Yeo, K

    2016-06-10

    Metformin is used as a probe for OCT2 mediated transport when investigating possible DDIs with new chemical entities. The aim of the current study was to investigate the ability of physiologically-based pharmacokinetic (PBPK) models to simulate the effects of OCT and MATE inhibition by cimetidine on metformin kinetics. PBPK models were developed, incorporating mechanistic kidney and liver sub-models for metformin (OCT and MATE substrate) and a mechanistic kidney sub-model for cimetidine. The models were used to simulate inhibition of the MATE1, MATE2-K, OCT1 and OCT2 mediated transport of metformin by cimetidine. Assuming competitive inhibition and using cimetidine Ki values determined in vitro, the predicted metformin AUC ratio was 1.0 compared to an observed value of 1.46. The observed AUC ratio could only be recovered with this model when the cimetidine Ki for OCT2 was decreased 1000-fold or the Ki's for both OCT1 and OCT2 were decreased 500-fold. An alternative description of metformin renal transport by OCT1 and OCT2, incorporating electrochemical modulation of the rate of metformin uptake together with 8-18-fold decreases in cimetidine Ki's for OCTs and MATEs, allowed recovery of the extent of the observed effect of cimetidine on metformin AUC. While the final PBPK model has limitations, it demonstrates the benefit of allowing for the complexities of passive permeability combined with active cellular uptake modulated by an electrochemical gradient and active efflux. PMID:27019345

  20. Proteomic analysis for the impact of hypercholesterolemia on expressions of hepatic drug transporters and metabolizing enzymes.

    Science.gov (United States)

    Liu, Yan; Pu, Qiang-Hong; Wu, Ming-Jun; Yu, Chao

    2016-10-01

    1. Our objective is to investigate the alterations of hepatic drug transporters and metabolizing enzymes in hypercholesterolemia. Male Sprague-Dawley rats were fed high-cholesterol chows for 8 weeks to induce hypercholesterolemia. Protein levels of hepatic drug transporters and metabolizing enzymes were analyzed by iTRAQ labeling coupled with LC TRIPLE-TOF. 2. Total 239 differentially expressed proteins were identified using proteomic analysis. Among those, protein levels of hepatic drug transporters (MRP2, ABCD3, OAT2, SLC25A12, SCL38A3, SLC2A2 and SLC25A5) and metabolizing enzymes (CYP2B3, CYP2C7, CYP2C11, CYP2C13, CYP4A2 and UGT2B) were markedly reduced, but the levels of CYP2C6 and CYP2E1 were increased in hypercholesterolemia group compared to control. Decreased expressions of drug transporters MRP2 and OAT2 were further confirmed by real time quantitative PCR (RT-qPCR) and western blot. 3. Ingenuity pathway analysis revealed that these differentially expressed proteins were regulated by various signaling pathways including nuclear receptors and inflammatory cytokines. One of the nuclear receptor candidates, liver X receptor alpha (LXRα), was further validated by RT-qPCR and western blot. Additionally, LXRα agonist T0901317 rescued the reduced expressions of MRP2 and OAT2 in HepG2 cells in hypercholesterolemic serum treatment. 4. Our present results indicated that hypercholesterolemia affected the expressions of various drug transporters and metabolizing enzymes in liver via nuclear receptors pathway. Especially, decreased function of LXRα contributes to the reduced expressions of MRP2 and OAT2. PMID:26887802

  1. Completely assembled virus particles detected by transmission electron microscopy in proximal and mid-axons of neurons infected with herpes simplex virus type 1, herpes simplex virus type 2 and pseudorabies virus

    International Nuclear Information System (INIS)

    The morphology of alphaherpesviruses during anterograde axonal transport from the neuron cell body towards the axon terminus is controversial. Reports suggest that transport of herpes simplex virus type 1 (HSV-1) nucleocapsids and envelope proteins occurs in separate compartments and that complete virions form at varicosities or axon termini (subassembly transport model), while transport of a related alphaherpesvirus, pseudorabies virus (PRV) occurs as enveloped capsids in vesicles (assembled transport model). Transmission electron microscopy of proximal and mid-axons of primary superior cervical ganglion (SCG) neurons was used to compare anterograde axonal transport of HSV-1, HSV-2 and PRV. SCG cell bodies were infected with HSV-1 NS and 17, HSV-2 2.12 and PRV Becker. Fully assembled virus particles were detected intracellularly within vesicles in proximal and mid-axons adjacent to microtubules after infection with each virus, indicating that assembled virions are transported anterograde within axons for all three alphaherpesviruses.

  2. Role of Human Organic Cation Transporter 1 (hOCT1) Polymorphisms in Lamivudine (3TC) Uptake and Drug-Drug Interactions

    Science.gov (United States)

    Arimany-Nardi, Cristina; Minuesa, Gerard; Keller, Thorsten; Erkizia, Itziar; Koepsell, Hermann; Martinez-Picado, Javier; Pastor-Anglada, Marçal

    2016-01-01

    Lamivudine (3TC), a drug used in the treatment of HIV infection, needs to cross the plasma membrane to exert its therapeutic action. Human Organic cation transporter 1 (hOCT1), encoded by the SLC22A1 gene, is the transporter responsible for its uptake into target cells. As SLC22A1 is a highly polymorphic gene, the aim of this study was to determine how SNPs in the OCT1-encoding gene affected 3TC internalization and its interaction with other co-administered drugs. HEK293 cells stably transfected with either the wild type form or the polymorphic variants of hOCT1 were used to perform kinetic and drug-drug interaction studies. Protein co-immunoprecipitation was used to assess the impact of selected polymorphic cysteines on the oligomerization of the transporter. Results showed that 3TC transport efficiency was reduced in all polymorphic variants tested (R61C, C88R, S189L, M420del, and G465R). This was not caused by lack of oligomerization in case of variants located at the transporter extracellular loop (R61C and C88R). Drug-drug interaction measurements showed that co-administered drugs [abacavir (ABC), zidovudine (AZT), emtricitabine (FTC), tenofovir diproxil fumarate (TDF), efavirenz (EFV) and raltegravir (RAL)], differently inhibited 3TC uptake depending upon the polymorphic variant analyzed. These data highlight the need for accurate analysis of drug transporter polymorphic variants of clinical relevance, because polymorphisms can impact on substrate (3TC) translocation but even more importantly they can differentially affect drug-drug interactions at the transporter level. PMID:27445813

  3. Role of Human Organic Cation Transporter 1 (hOCT1) Polymorphisms in Lamivudine (3TC) Uptake and Drug-Drug Interactions.

    Science.gov (United States)

    Arimany-Nardi, Cristina; Minuesa, Gerard; Keller, Thorsten; Erkizia, Itziar; Koepsell, Hermann; Martinez-Picado, Javier; Pastor-Anglada, Marçal

    2016-01-01

    Lamivudine (3TC), a drug used in the treatment of HIV infection, needs to cross the plasma membrane to exert its therapeutic action. Human Organic cation transporter 1 (hOCT1), encoded by the SLC22A1 gene, is the transporter responsible for its uptake into target cells. As SLC22A1 is a highly polymorphic gene, the aim of this study was to determine how SNPs in the OCT1-encoding gene affected 3TC internalization and its interaction with other co-administered drugs. HEK293 cells stably transfected with either the wild type form or the polymorphic variants of hOCT1 were used to perform kinetic and drug-drug interaction studies. Protein co-immunoprecipitation was used to assess the impact of selected polymorphic cysteines on the oligomerization of the transporter. Results showed that 3TC transport efficiency was reduced in all polymorphic variants tested (R61C, C88R, S189L, M420del, and G465R). This was not caused by lack of oligomerization in case of variants located at the transporter extracellular loop (R61C and C88R). Drug-drug interaction measurements showed that co-administered drugs [abacavir (ABC), zidovudine (AZT), emtricitabine (FTC), tenofovir diproxil fumarate (TDF), efavirenz (EFV) and raltegravir (RAL)], differently inhibited 3TC uptake depending upon the polymorphic variant analyzed. These data highlight the need for accurate analysis of drug transporter polymorphic variants of clinical relevance, because polymorphisms can impact on substrate (3TC) translocation but even more importantly they can differentially affect drug-drug interactions at the transporter level. PMID:27445813

  4. Transport of peptidomimetic drugs by the intestinal Di/tri-peptide transporter, PepT1

    DEFF Research Database (Denmark)

    Brodin, Birger; Nielsen, Carsten Uhd; Steffansen, Bente;

    2002-01-01

    The apical membrane of small intestinal enterocytes possess an uptake system for di- and tripeptides. The physiological function of the system is to transport small peptides resulting from digestion of dietary protein. Moreover, due to the broad substrate specificity of the system, it is also...

  5. Specificity of drug transport mediated by CaMDR1: a major facilitator of Candida albicans

    Indian Academy of Sciences (India)

    Avmeet Kohli; Vinita Gupta; Shankarling Krishnamurthy; Seyed E Hasnain; Rajendra Prasad

    2001-09-01

    CaMDR1 encodes a major facilitator superfamily (MFS) protein in Candida albicans whose expression has been linked to azole resistance and which is frequently encountered in this human pathogenic yeast. In this report we have overexpressed CaMdr1p in Sf9 insect cells and demonstrated for the first time that it can mediate methotrexate (MTX) and fluconazole (FLC) transport. MTX appeared to be a better substrate for CaMdr1p among these two tested drugs. Due to severe toxicity of these drugs to insect cells, further characterization of CaMdr1p as a drug transporter could not be done with this system. Therefore, as an alternative, CaMdr1p and Cdr1p, which is an ABC protein (ATP binding cassette) also involved in azole resistance in C. albicans, were independently expressed in a common hypersensitive host JG436 of Saccharomyces cerevisiae. This allowed a better comparison between the functionality of the two export pumps. We observed that while both FLC and MTX are effluxed by CaMdr1p, MTX appeared to be a poor substrate for Cdr1p. JG436 cells expressing Cdr1p thus conferred resistance to other antifungal drugs but remained hypersensitive to MTX. Since MTX is preferentially transported by CaMdr1p, it can be used for studying the function of this MFS protein.

  6. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development.

    Science.gov (United States)

    Bailo, Rebeca; Bhatt, Apoorva; Aínsa, José A

    2015-08-01

    Tuberculosis is still a major health problem worldwide and one of the main causes of death by a single infectious agent. Only few drugs are really effective to treat tuberculosis, hence, the emergence of multiple, extensively, and totally drug resistant bacilli compromises the already difficult antituberculosis treatments. Given the persistent global burden of tuberculosis, it is crucial to understand the underlying mechanisms required for the pathogenicity of Mycobacterium tuberculosis (Mtb), the causal agent of tuberculosis, in order to pave the way for developing better drugs and strategies to treat and prevent tuberculosis. The exclusive mycobacterial cell wall lipids such as trehalose monomycolate and dimycolate (TMM, TDM), phthiocerol dimycocerosate (PDIM), sulpholipid-1 (SL-1), diacyl trehalose (DAT), and pentacyl trehalose (PAT), among others, are known to play an important role in pathogenesis; thus, proteins responsible for their transport are potential virulence factors. MmpL and MmpS proteins mediate transport of important cell wall lipids across the mycobacterial membrane. In Mtb, MmpL3, MmpL7 and MmpL8 transport TMM, PDIM and SL-1 respectively. The translocation of DAT and biosynthesis of PAT is likely due to MmpL10. MmpL and MmpS proteins are involved in other processes such as drug efflux (MmpL5 and MmpL7), siderophore export (MmpL4/MmpS4 and MmpL5/MmpS5), and heme uptake (MmpL3 and MmpL11). Altogether, these proteins can be regarded as new potential targets for antituberculosis drug development. We will review recent advances in developing inhibitors of MmpL proteins, in the challenging context of targeting membrane proteins and the future prospects for potential antituberculosis drug candidates. PMID:25986884

  7. Axon density and axon orientation dispersion in children born preterm

    NARCIS (Netherlands)

    Kelly, Claire E.; Thompson, Deanne K.; Chen, Jian; Leemans, Alexander; Adamson, Christopher L.; Inder, Terrie E.; Cheong, Jeanie L Y; Doyle, Lex W.; Anderson, Peter J.

    2016-01-01

    Background Very preterm birth (VPT, <32 weeks' gestation) is associated with altered white matter fractional anisotropy (FA), the biological basis of which is uncertain but may relate to changes in axon density and/or dispersion, which can be measured using Neurite Orientation Dispersion and Density

  8. Pharmacogenomic association study on the role of drug metabolizing, drug transporters and drug target gene polymorphisms in drug-resistant epilepsy in a north Indian population

    OpenAIRE

    Ritu Kumari; Ram Lakhan; Garg, R. K.; Kalita, J; Misra, U K; Balraj Mittal

    2011-01-01

    Background: In epilepsy, in spite of the best possible medications and treatment protocols, approximately one-third of the patients do not respond adequately to anti-epileptic drugs. Such interindividual variations in drug response are believed to result from genetic variations in candidate genes belonging to multiple pathways. Materials and Methods: In the present pharmacogenetic analysis, a total of 402 epilepsy patients were enrolled. Of them, 128 were diagnosed as multiple drug-resist...

  9. Axon damage and repair in multiple sclerosis.

    OpenAIRE

    Perry, V.H.; Anthony, D. C.

    1999-01-01

    It is well known that within long-standing multiple sclerosis (MS) lesions there is axonal loss but whether it is an early or late event has been more difficult to establish. The use of immunocytochemical methods that reveal axonal end-bulbs is a valuable approach to investigating acute axonal injury in human pathological material. The application of these techniques to multiple sclerosis tissue reveals evidence of axonal injury in acute lesions; the distribution of the end-bulbs in acute and...

  10. Transporter protein and drug-conjugated gold nanoparticles capable of bypassing the blood-brain barrier.

    Science.gov (United States)

    Zhang, Yanhua; Walker, Janelle Buttry; Minic, Zeljka; Liu, Fangchao; Goshgarian, Harry; Mao, Guangzhao

    2016-01-01

    Drug delivery to the central nervous system (CNS) is challenging due to the inability of many drugs to cross the blood-brain barrier (BBB). Here, we show that wheat germ agglutinin horse radish peroxidase (WGA-HRP) chemically conjugated to gold nanoparticles (AuNPs) can be transported to the spinal cord and brainstem following intramuscular injection into the diaphragm of rats. We synthesized and determined the size and chemical composition of a three-part nanoconjugate consisting of WGA-HRP, AuNPs, and drugs for the treatment of diaphragm paralysis associated with high cervical spinal cord injury (SCI). Upon injection into the diaphragm muscle of rats, we show that the nanoconjugate is capable of delivering the drug at a much lower dose than the unconjugated drug injected systemically to effectively induce respiratory recovery in rats following SCI. This study not only demonstrates a promising strategy to deliver drugs to the CNS bypassing the BBB but also contributes a potential nanotherapy for the treatment of respiratory muscle paralysis resulted from cervical SCI. PMID:27180729

  11. Modeling and Simulation of Intracellular Drug Transport and Disposition Pathways with Virtual Cell

    OpenAIRE

    Baik, Jason; Rosania, Gus R.

    2013-01-01

    The development of computational approaches for modeling the spatiotemporal dynamics of intracellular, small molecule drug concentrations has become an increasingly important area of pharmaceutical research. For systems pharmacology, the system dynamics of subcellular transport can be coupled to downstream pharmacological effects on biochemical pathways that impact cell structure and function. Here, we demonstrate how a widely used systems biology modeling package – Virtual Cell – can also be...

  12. Electrically enhanced microextraction for highly selective transport of three β-blocker drugs.

    Science.gov (United States)

    Seidi, Shahram; Yamini, Yadollah; Rezazadeh, Maryam

    2011-12-15

    Facilitated transport of three β-blocker drugs including atenolol (ATE), betaxolol (BET) and propranolol (PRO) was investigated under electrical field across a supported liquid membrane (SLM) using phosphoric acid derivatives as selective ion carriers, dissolved in 2-nitro phenyl octyl ether (NPOE). In the presence of di-(2-ethylhexyl) phosphate (DEHP) and tris-(2-ethylhexyl) phosphate (TEHP) in the membrane phase, the three β-blockers showed completely different transport behaviors which enabled highly selective separation of the drugs. Each β-blocker migrated from 3 mL of sample solutions, through a thin layer of specific organic solvent immobilized in the pores of a porous hollow fiber, and into a 15 μL acidic aqueous acceptor solution present inside the lumen of the fiber. The influences of fundamental parameters affecting the transport of target drugs including type of ion carrier for selective separation of each drug and its concentration in the membrane phase, extraction voltage, time of transport, pH of donor and acceptor phases, stirring speed of donor phase and salt effect were studied and optimized. After microextraction process, the extracts were analyzed by high-performance liquid chromatography with ultraviolet detection. Under optimal conditions, ATE was selectively extracted from different saliva samples with recovery of 37%, which corresponded to preconcentration factor of 74. A good linearity was achieved for calibration curve with a coefficient of determination higher than 0.997. Limits of detection and intra-day precision (n=3) were less than 2 μg L(-1) and 8.8%, respectively. PMID:21856103

  13. Fruit juice inhibition of uptake transport: a new type of food–drug interaction

    Science.gov (United States)

    Bailey, David G

    2010-01-01

    A new type of interaction in which fruit juices diminish oral drug bioavailability through inhibition of uptake transport is the focus of this review. The discovery was based on an opposite to anticipated finding when assessing the possibility of grapefruit juice increasing oral fexofenadine bioavailability in humans through inhibition of intestinal MDR1-mediated efflux transport. In follow-up investigations, grapefruit or orange juice at low concentrations potentially and selectively inhibited in vitro OATP1A2-mediated uptake compared with MDR1-caused efflux substrate transport. These juices at high volume dramatically depressed oral fexofenadine bioavailability. Grapefruit was the representative juice to characterize the interaction subsequently. A volume–effect relationship study using a normal juice amount halved average fexofenadine absorption. Individual variability and reproducibility data indicated the clinical interaction involved direct inhibition of intestinal OATP1A2. Naringin was a major causal component suggesting that other flavonoids in fruits and vegetables might also produce the effect. Duration of juice clinical inhibition of fexofenadine absorption lasted more than 2 h but less than 4 h indicating the interaction was avoidable with appropriate interval of time between juice and drug consumption. Grapefruit juice lowered the oral bioavailability of several medications transported by OATP1A2 (acebutolol, celiprolol, fexofenadine, talinolol, L-thyroxine) while orange juice did the same for others (atenolol, celiprolol, ciprofloxacin, fexofenadine). Juice clinical inhibition of OATP2B1 was unresolved while that of OATP1B1 seemed unlikely. The interaction between grapefruit juice and etoposide also seemed relevant. Knowledge of both affected uptake transporter and drug hydrophilicity assisted prediction of the clinical interaction with grapefruit or orange juice. PMID:21039758

  14. Pharmacokinetic Evaluation of a Drug Transporter Cocktail Consisting of Digoxin, Furosemide, Metformin, and Rosuvastatin.

    Science.gov (United States)

    Stopfer, P; Giessmann, T; Hohl, K; Sharma, A; Ishiguro, N; Taub, M E; Zimdahl-Gelling, H; Gansser, D; Wein, M; Ebner, T; Müller, F

    2016-09-01

    This article reports the clinical investigation of a probe drug cocktail containing substrates of key drug transporters. Single oral doses of 0.25 mg digoxin (P-gp), 5 mg furosemide (OAT1 and OAT3), 500 mg metformin (OCT2, MATE1, and MATE2-K), and 10 mg rosuvastatin (OATP1B1, OATP1B3, and BCRP) were administered separately or as a cocktail in a randomized six-period crossover trial in 24 healthy male volunteers. As a cocktail, relative bioavailabilities of digoxin and metformin and furosemide AUC0-tz were similar to separate dosing. However, when administered as a cocktail the Cmax of furosemide was 19.1% lower and the Cmax and AUC0-tz of rosuvastatin were 38.6% and 43.4% higher, respectively. In addition, the effects of increased doses of metformin or furosemide on the cocktail were investigated in 11 and 12 subjects, respectively. The cocktail explored in this trial has the potential to be used for the in vivo screening of transporter-mediated drug-drug interactions. © 2016 American Society for Clinical Pharmacology and Therapeutics. PMID:27256812

  15. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xiao [School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan (China); Schluesener, Hermann J, E-mail: mornsmile@yahoo.com [Institute of Brain Research, University of Tuebingen, Calwerstrasse 3, D-72076, Tuebingen (Germany)

    2010-03-12

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  16. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    Science.gov (United States)

    Chen, Xiao; Schluesener, Hermann J.

    2010-03-01

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  17. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    International Nuclear Information System (INIS)

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  18. Expression of human solute carrier family transporters in skin: possible contributor to drug-induced skin disorders

    OpenAIRE

    Ryoichi Fujiwara; Saya Takenaka; Mitsuhiro Hashimoto; Tomoya Narawa; Tomoo Itoh

    2014-01-01

    Solute carrier (SLC) transporters play important roles in absorption and disposition of drugs in cells; however, the expression pattern of human SLC transporters in the skin has not been determined. In the present study, the expression patterns of 28 human SLC transporters were determined in the human skin. Most of the SLC transporter family members were either highly or moderately expressed in the liver, while their expression was limited in the skin and small intestine. Treatment of human k...

  19. Glucose Modulation Induces Lysosome Formation and Increases Lysosomotropic Drug Sequestration via the P-Glycoprotein Drug Transporter.

    Science.gov (United States)

    Seebacher, Nicole A; Lane, Darius J R; Jansson, Patric J; Richardson, Des R

    2016-02-19

    Pgp is functional on the plasma membrane and lysosomal membrane. Lysosomal-Pgp can pump substrates into the organelle, thereby trapping certain chemotherapeutics (e.g. doxorubicin; DOX). This mechanism serves as a "safe house" to protect cells against cytotoxic drugs. Interestingly, in contrast to DOX, lysosomal sequestration of the novel anti-tumor agent and P-glycoprotein (Pgp) substrate, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), induces lysosomal membrane permeabilization. This mechanism of lysosomal-Pgp utilization enhances cytotoxicity to multidrug-resistant cells. Consequently, Dp44mT has greater anti-tumor activity in drug-resistant relative to non-Pgp-expressing tumors. Interestingly, stressors in the tumor microenvironment trigger endocytosis for cell signaling to assist cell survival. Hence, this investigation examined how glucose variation-induced stress regulated early endosome and lysosome formation via endocytosis of the plasma membrane. Furthermore, the impact of glucose variation-induced stress on resistance to DOX was compared with Dp44mT and its structurally related analogue, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC). These studies showed that glucose variation-induced stress-stimulated formation of early endosomes and lysosomes. In fact, through the process of fluid-phase endocytosis, Pgp was redistributed from the plasma membrane to the lysosomal membrane via early endosome formation. This lysosomal-Pgp actively transported the Pgp substrate, DOX, into the lysosome where it became trapped as a result of protonation at pH 5. Due to increased lysosomal DOX trapping, Pgp-expressing cells became more resistant to DOX. In contrast, cytotoxicity of Dp44mT and DpC was potentiated due to more lysosomes containing functional Pgp under glucose-induced stress. These thiosemicarbazones increased lysosomal membrane permeabilization and cell death. This mechanism has critical implications for drug-targeting in

  20. Human intraretinal myelination: Axon diameters and axon/myelin thickness ratios

    Science.gov (United States)

    FitzGibbon, Thomas; Nestorovski, Zoran

    2013-01-01

    Purpose: Human intraretinal myelination of ganglion cell axons occurs in about 1% of the population. We examined myelin thickness and axon diameter in human retinal specimens containing myelinated retinal ganglion cell axons. Materials and Methods: Two eyes containing myelinated patches were prepared for electron microscopy. Two areas were examined in one retina and five in the second retina. Measurements were compared to normal retinal and optic nerve samples and the rabbit retina, which normally contains myelinated axons. Measurements were made using a graphics tablet. Results: Mean axon diameter of myelinated axons at all locations were significantly larger than unmyelinated axons (P ≤ 0.01). Myelinated axons within the patches were significantly larger than axons within the optic nerve (P < 0.01). The relationship between axon diameter/fiber diameter (the G-ratio) seen in the retinal sites differed from that in the nerve. G-ratios were higher and myelin thickness was positively correlated to axon diameter (P < 0.01) in the retina but negatively correlated to axon diameter in the nerve (P < 0.001). Conclusion: Intraretinally myelinated axons are larger than non-myelinated axons from the same population and suggests that glial cells can induce diameter changes in retinal axons that are not normally myelinated. This effect is more dramatic on intraretinal axons compared with the normal transition zone as axons enter the optic nerve and these changes are abnormal. Whether intraretinal myelin alters axonal conduction velocity or blocks axonal conduction remains to be clarified and these issues may have different clinical outcomes. PMID:24212308

  1. Dopamine transporter imaging with [{sup 123}I]FP-CIT SPECT: potential effects of drugs

    Energy Technology Data Exchange (ETDEWEB)

    Booij, Jan [University of Amsterdam, Department of Nuclear Medicine, Academic Medical Center, Amsterdam (Netherlands); Kemp, Paul [Southampton University Hospitals Trust, Department of Nuclear Medicine, Southampton (United Kingdom)

    2008-02-15

    [{sup 123}I]N-{omega}-fluoropropyl-2{beta}-carbomethoxy-3{beta}-{l_brace}4-iodophenyl{r_brace}nortropane ([{sup 123}I]FP-CIT) single photon emission computed tomography (SPECT) is a frequently and routinely used technique to detect or exclude dopaminergic degeneration by imaging the dopamine transporter (DAT) in parkinsonian and demented patients. This technique is also used in scientific studies in humans, as well as in preclinical studies to assess the availability of DAT binding in the striatum. In routine clinical studies, but also in scientific studies, patients are frequently on medication and sometimes even use drugs of abuse. Moreover, in preclinical studies, animals will be anesthetized. Prescribed drugs, drugs of abuse, and anesthetics may influence the visual interpretation and/or quantification of [{sup 123}I]FP-CIT SPECT scans. Here, we discuss the basic principle of how drugs and anesthetics might influence the visual interpretation and/or quantification of [{sup 123}I]FP-CIT SPECT scans. We also review drugs which are likely to have a significant influence on the visual interpretation and/or quantification of [{sup 123}I]FP-CIT SPECT scans. Additionally, we discuss the evidence as to whether frequently prescribed drugs in parkinsonian and demented patients may have an influence on the visual interpretation and/or quantification of [{sup 123}I]FP-CIT SPECT scans. Finally, we discuss our recommendations as to which drugs should be ideally withdrawn before performing a [{sup 123}I]FP-CIT SPECT scan for routine clinical purposes. The decision to withdraw any medication must always be made by the specialist in charge of the patient's care and taking into account the pros and cons of doing so. (orig.)

  2. Dopamine transporter imaging with [123I]FP-CIT SPECT: potential effects of drugs

    International Nuclear Information System (INIS)

    [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-{4-iodophenyl}nortropane ([123I]FP-CIT) single photon emission computed tomography (SPECT) is a frequently and routinely used technique to detect or exclude dopaminergic degeneration by imaging the dopamine transporter (DAT) in parkinsonian and demented patients. This technique is also used in scientific studies in humans, as well as in preclinical studies to assess the availability of DAT binding in the striatum. In routine clinical studies, but also in scientific studies, patients are frequently on medication and sometimes even use drugs of abuse. Moreover, in preclinical studies, animals will be anesthetized. Prescribed drugs, drugs of abuse, and anesthetics may influence the visual interpretation and/or quantification of [123I]FP-CIT SPECT scans. Here, we discuss the basic principle of how drugs and anesthetics might influence the visual interpretation and/or quantification of [123I]FP-CIT SPECT scans. We also review drugs which are likely to have a significant influence on the visual interpretation and/or quantification of [123I]FP-CIT SPECT scans. Additionally, we discuss the evidence as to whether frequently prescribed drugs in parkinsonian and demented patients may have an influence on the visual interpretation and/or quantification of [123I]FP-CIT SPECT scans. Finally, we discuss our recommendations as to which drugs should be ideally withdrawn before performing a [123I]FP-CIT SPECT scan for routine clinical purposes. The decision to withdraw any medication must always be made by the specialist in charge of the patient's care and taking into account the pros and cons of doing so. (orig.)

  3. Local protein synthesis in neuronal axons: why and how we study

    OpenAIRE

    Kim, Eunjin; Jung, Hosung

    2015-01-01

    Adaptive brain function and synaptic plasticity rely on dynamic regulation of local proteome. One way for the neuron to introduce new proteins to the axon terminal is to transport those from the cell body, which had long been thought as the only source of axonal proteins. Another way, which is the topic of this review, is synthesizing proteins on site by local mRNA translation. Recent evidence indicates that the axon stores a reservoir of translationally silent mRNAs and regulates their expre...

  4. Targeting the Plasmodium vivax equilibrative nucleoside transporter 1 (PvENT1 for antimalarial drug development

    Directory of Open Access Journals (Sweden)

    Roman Deniskin

    2016-04-01

    Full Text Available Infection with Plasmodium falciparum and vivax cause most cases of malaria. Emerging resistance to current antimalarial medications makes new drug development imperative. Ideally a new antimalarial drug should treat both falciparum and vivax malaria. Because malaria parasites are purine auxotrophic, they rely on purines imported from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs. Thus, the purine import transporters represent a potential target for antimalarial drug development. For falciparum parasites the primary purine transporter is the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1. Recently we identified potent PfENT1 inhibitors with nanomolar IC50 values using a robust, yeast-based high throughput screening assay. In the current work we characterized the Plasmodium vivax ENT1 (PvENT1 homologue and its sensitivity to the PfENT1 inhibitors. We expressed a yeast codon-optimized PvENT1 gene in Saccharomyces cerevisiae. PvENT1-expressing yeast imported both purines ([3H]adenosine and pyrimidines ([3H]uridine, whereas wild type (fui1Δ yeast did not. Based on radiolabel substrate uptake inhibition experiments, inosine had the lowest IC50 (3.8 μM, compared to guanosine (14.9 μM and adenosine (142 μM. For pyrimidines, thymidine had an IC50 of 183 μM (vs. cytidine and uridine; mM range. IC50 values were higher for nucleobases compared to the corresponding nucleosides; hypoxanthine had a 25-fold higher IC50 than inosine. The archetypal human ENT1 inhibitor 4-nitrobenzylthioinosine (NBMPR had no effect on PvENT1, whereas dipyridamole inhibited PvENT1, albeit with a 40 μM IC50, a 1000-fold less sensitive than human ENT1 (hENT1. The PfENT1 inhibitors blocked transport activity of PvENT1 and the five known naturally occurring non-synonymous single nucleotide polymorphisms (SNPs with similar IC50 values. Thus, the PfENT1 inhibitors also target PvENT1. This implies that development of novel

  5. Drug transport mechanism of P-glycoprotein monitored by single molecule fluorescence resonance energy transfer

    Science.gov (United States)

    Ernst, S.; Verhalen, B.; Zarrabi, N.; Wilkens, S.; Börsch, M.

    2011-03-01

    In this work we monitor the catalytic mechanism of P-glycoprotein (Pgp) using single-molecule fluorescence resonance energy transfer (FRET). Pgp, a member of the ATP binding cassette family of transport proteins, is found in the plasma membrane of animal cells where it is involved in the ATP hydrolysis driven export of hydrophobic molecules. When expressed in the plasma membrane of cancer cells, the transport activity of Pgp can lead to the failure of chemotherapy by excluding the mostly hydrophobic drugs from the interior of the cell. Despite ongoing effort, the catalytic mechanism by which Pgp couples MgATP binding and hydrolysis to translocation of drug molecules across the lipid bilayer is poorly understood. Using site directed mutagenesis, we have introduced cysteine residues for fluorescence labeling into different regions of the nucleotide binding domains (NBDs) of Pgp. Double-labeled single Pgp molecules showed fluctuating FRET efficiencies during drug stimulated ATP hydrolysis suggesting that the NBDs undergo significant movements during catalysis. Duty cycle-optimized alternating laser excitation (DCO-ALEX) is applied to minimize FRET artifacts and to select the appropriate molecules. The data show that Pgp is a highly dynamic enzyme that appears to fluctuate between at least two major conformations during steady state turnover.

  6. Quantifying mechanical force in axonal growth and guidance

    Directory of Open Access Journals (Sweden)

    Ahmad Ibrahim Mahmoud Athamneh

    2015-09-01

    Full Text Available Mechanical force plays a fundamental role in neuronal development, physiology, and regeneration. In particular, research has shown that force is involved in growth cone-mediated axonal growth and guidance as well as stretch-induced elongation when an organism increases in size after forming initial synaptic connections. However, much of the details about the exact role of force in these fundamental processes remain unknown. In this review, we highlight (1 standing questions concerning the role of mechanical force in axonal growth and guidance and (2 different experimental techniques used to quantify forces in axons and growth cones. We believe that satisfying answers to these questions will require quantitative information about the relationship between elongation, forces, cytoskeletal dynamics, axonal transport, signaling, substrate adhesion, and stiffness contributing to directional growth advance. Furthermore, we address why a wide range of force values have been reported in the literature, and what these values mean in the context of neuronal mechanics. We hope that this review will provide a guide for those interested in studying the role of force in development and regeneration of neuronal networks.

  7. Transport efficiency in transdermal drug delivery: What is the role of fluid microstructure?

    Science.gov (United States)

    Liuzzi, Roberta; Carciati, Antonio; Guido, Stefano; Caserta, Sergio

    2016-03-01

    Interaction of microstructured fluids with skin is ubiquitous in everyday life, from the use of cosmetics, lotions, and drugs, to personal care with detergents or soaps. The formulation of microstructured fluids is crucial for the control of the transdermal transport. In biomedical applications transdermal delivery is an efficient approach, alternative to traditional routes like oral and parenteral administration, for local release of drugs. Poor skin permeability, mainly due to its outer layer, which acts as the first barrier against the entry of external compounds, greatly limits the applicability of transdermal delivery. In this review, we focus on recent studies on the improvement of skin transport efficiency by using microemulsions (ME). Quantitative techniques, which are able to investigate both skin morphology and penetration processes, are also reviewed. ME are increasingly used as transdermal systems due to their low preparation cost, stability and high bioavailability. ME may act as penetration enhancers for many active principles, but ME microstructure should be chosen appropriately considering several factors such as ratio and type of ingredients and physic-chemical properties of the active components. ME microstructure is strongly affected by the flow conditions applied during processing, or during spreading and rubbing onto skin. Although the role played by ME microstructure has been generally recognized, the skin transport mechanisms associated with different ME microstructures are still to be elucidated and further investigations are required to fully exploit the potential of ME in transdermal delivery. PMID:26799505

  8. Early phenotype expression of cortical neurons: evidence that a subclass of migrating neurons have callosal axons.

    OpenAIRE

    Schwartz, M. L.; Rakic, P.; Goldman-Rakic, P. S.

    1991-01-01

    The use of [3H]thymidine labeling in combination with various axonal transport tracers has revealed that a subset of migrating neurons in the fetal monkey cerebrum issue axons to the opposite cerebral hemisphere while still migrating to their final positions in the cortical plate. Other cortical neurons with the same "birthdate" (i.e., that underwent their last round of DNA synthesis on the same day) are not retrogradely labeled by tracer injections of the opposite hemisphere. These findings ...

  9. Endotoxin-Mediated Downregulation of Hepatic Drug Transporters in HIV-1 Transgenic Rats.

    Science.gov (United States)

    Ghoneim, Ragia H; Piquette-Miller, Micheline

    2016-05-01

    Altered expression of drug transporters and metabolic enzymes is known to occur in infection-induced inflammation. We hypothesize that in human immunodeficiency virus (HIV)-infected individuals, further alteration could occur as a result of augmented inflammation. The HIV-1 transgenic (Tg) rat is used to simulate HIV pathologies associated with the presence of HIV viral proteins. Therefore, the objective of this study was to examine the effect of endotoxin administration on the gene expression of drug transporters in the liver of HIV-Tg rats. Male and female HIV-Tg and wild-type (WT) littermates were injected with 5 mg/kg endotoxin or saline (n= 7-9/group). Eighteen hours later, rats were euthanized and tissues were collected. Quantitative real-time polymerase chain reaction and Western blot analysis were used to measure hepatic gene and protein expression, respectively, and enzyme-linked immunosorbent assay was used to measure serum cytokine levels. Although an augmented inflammatory response was seen in HIV-Tg rats, similar endotoxin- mediated downregulation of Abcb1a, Abcc2, Abcg2, Abcb11, Slco1a1, Slco1a2, Slco1b2, Slc10a1, Slc22a1, Cyp3a2, and Cyp3a9 gene expression was seen in the HIV-Tg and WT groups. A significantly greater endotoxin- mediated downregulation of Ent1/Slc29a1 was seen in female HIV-Tg rats. Basal expression of inflammatory mediators was not altered in the HIV-Tg rat; likewise, the basal expression of most transporters was not significantly different between HIV-Tg and WT rats. Our findings suggest that hepatobiliary clearances of endogenous and exogenous substrates are altered in the HIV-Tg rat after endotoxin exposure. This is of particular importance because HIV-infected individuals frequently present with bacterial or viral infections, which are a potential source for drug-disease interactions. PMID:26977098

  10. Adjudin disrupts spermatogenesis by targeting drug transporters: Lesson from the breast cancer resistance protein (BCRP).

    Science.gov (United States)

    Qian, Xiaojing; Cheng, Yan-Ho; Jenardhanan, Pranitha; Mruk, Dolores D; Mathur, Premendu P; Xia, Weiliang; Silvestrini, Bruno; Cheng, C Yan

    2013-04-01

    For non-hormonal male contraceptives that exert their effects in the testis locally instead of via the hypothalamic-pituitary-testicular axis, such as adjudin that disrupts germ cell adhesion, a major hurdle in their development is to improve their bioavailability so that they can be efficiently delivered to the seminiferous epithelium by transporting across the blood-testis barrier (BTB). If this can be done, it would widen the gap between their efficacy and general toxicity. However, Sertoli cells that constitute the BTB, peritubular myoid cells in the tunica propria, germ cells at different stages of their development, as well as endothelial cells that constitute the microvessels in the interstitium are all equipped with multiple drug transporters, most notably efflux drug transporters, such as P-glycoprotein, multidrug resistance-related protein 1 (MRP1) and breast cancer resistance protein (BCRP) that can actively prevent drugs (e.g., adjudin) from entering the seminiferous epithelium to exert their effects. Recent studies have shown that BCRP is highly expressed by endothelial cells of the microvessels in the interstitium in the testis and also peritubular myoid cells in tunica propria even though it is absent from Sertoli cells at the site of the BTB. Furthermore, BCRP is also expressed spatiotemporally by Sertoli cells and step 19 spermatids in the rat testis and stage-specifically, limiting to stage VII‒VIII of the epithelial cycle, and restricted to the apical ectoplasmic specialization [apical ES, a testis-specific F-actin-rich adherens junction (AJ)]. Interestingly, adjudin was recently shown to be capable of downregulating BCRP expression at the apical ES. In this Opinion article, we critically discuss the latest findings on BCRP; in particular, we provide some findings utilizing molecular modeling to define the interacting domains of BCRP with adjudin. Based on this information, it is hoped that the next generation of adjudin analogs to be

  11. Targeted axonal import (TAxI) peptide delivers functional proteins into spinal cord motor neurons after peripheral administration.

    Science.gov (United States)

    Sellers, Drew L; Bergen, Jamie M; Johnson, Russell N; Back, Heidi; Ravits, John M; Horner, Philip J; Pun, Suzie H

    2016-03-01

    A significant unmet need in treating neurodegenerative disease is effective methods for delivery of biologic drugs, such as peptides, proteins, or nucleic acids into the central nervous system (CNS). To date, there are no operative technologies for the delivery of macromolecular drugs to the CNS via peripheral administration routes. Using an in vivo phage-display screen, we identify a peptide, targeted axonal import (TAxI), that enriched recombinant bacteriophage accumulation and delivered protein cargo into spinal cord motor neurons after intramuscular injection. In animals with transected peripheral nerve roots, TAxI delivery into motor neurons after peripheral administration was inhibited, suggesting a retrograde axonal transport mechanism for delivery into the CNS. Notably, TAxI-Cre recombinase fusion proteins induced selective recombination and tdTomato-reporter expression in motor neurons after intramuscular injections. Furthermore, TAxI peptide was shown to label motor neurons in the human tissue. The demonstration of a nonviral-mediated delivery of functional proteins into the spinal cord establishes the clinical potential of this technology for minimally invasive administration of CNS-targeted therapeutics. PMID:26888285

  12. Vitamin K2 in Electron Transport System: Are Enzymes Involved in Vitamin K2 Biosynthesis Promising Drug Targets?

    Directory of Open Access Journals (Sweden)

    Eeshwaraiah Begari

    2010-03-01

    Full Text Available Aerobic and anaerobic respiratory systemsallow cells to transport the electrons to terminal electron acceptors. The quinone (ubiquinone or menaquinone pool is central to the electron transport chain. In the majority of Gram-positive bacteria, vitamin K2 (menaquinone is the sole quinone in the electron transport chain, and thus, the bacterial enzymes catalyzing the synthesis of menaquinone are potential targets for the development of novel antibacterial drugs. This manuscript reviews the role of vitamin K in bacteria and humans, and especially emphasizes on recent aspects of menaquinones in bacterial electron transport chain and on discoveries of inhibitor molecules targeting bacterial electron transport systems for new antibacterial agents.

  13. Vitamin K2 in Electron Transport System: Are Enzymes Involved in Vitamin K2 Biosynthesis Promising Drug Targets?

    OpenAIRE

    Eeshwaraiah Begari; Michio Kurosu

    2010-01-01

    Aerobic and anaerobic respiratory systemsallow cells to transport the electrons to terminal electron acceptors. The quinone (ubiquinone or menaquinone) pool is central to the electron transport chain. In the majority of Gram-positive bacteria, vitamin K2 (menaquinone) is the sole quinone in the electron transport chain, and thus, the bacterial enzymes catalyzing the synthesis of menaquinone are potential targets for the development of novel antibacterial drugs. This manuscript reviews the rol...

  14. Molecular Characterization of Resistance-Nodulation-Division Transporters from Solvent- and Drug-Resistant Bacteria in Petroleum-Contaminated Soil

    OpenAIRE

    Meguro, Norika; Kodama, Yumiko; Gallegos, Maria-Trinidad; Watanabe, Kazuya

    2005-01-01

    PCR assays for analyzing resistance-nodulation-division transporters from solvent- and drug-resistant bacteria in soil were developed. Sequence analysis of amplicons showed that the PCR successfully retrieved transporter gene fragments from soil. Most of the genes retrieved from petroleum-contaminated soils formed a cluster (cluster PCS) that was distantly related to known transporter genes. Competitive PCR showed that the abundance of PCS genes is increased in petroleum-contaminated soil.

  15. Intragenic Suppressing Mutations Correct the Folding and Intracellular Traffic of Misfolded Mutants of Yor1p, a Eukaryotic Drug Transporter*

    OpenAIRE

    Pagant, Silvere; Halliday, John J.; Kougentakis, Christos; Miller, Elizabeth A.

    2010-01-01

    ATP-binding cassette (ABC) transporters play pivotal physiological roles in substrate transport across membranes, and defective assembly of these proteins can cause severe disease associated with improper drug or ion flux. The yeast protein Yor1p is a useful model to study the biogenesis of ABC transporters; deletion of a phenylalanine residue in the first nucleotide-binding domain (NBD1) causes misassembly and retention in the endoplasmic reticulum (ER) of the resulting protein Yor1p-ΔF670, ...

  16. Precursor and mature NGF live tracking: one versus many at a time in the axons.

    Science.gov (United States)

    De Nadai, Teresa; Marchetti, Laura; Di Rienzo, Carmine; Calvello, Mariantonietta; Signore, Giovanni; Di Matteo, Pierluigi; Gobbo, Francesco; Turturro, Sabrina; Meucci, Sandro; Viegi, Alessandro; Beltram, Fabio; Luin, Stefano; Cattaneo, Antonino

    2016-01-01

    The classical view of nerve growth factor (NGF) action in the nervous system is linked to its retrograde axonal transport. However, almost nothing is known on the trafficking properties of its unprocessed precursor proNGF, characterized by different and generally opposite biological functions with respect to its mature counterpart. Here we developed a strategy to fluorolabel both purified precursor and mature neurotrophins (NTs) with a controlled stoichiometry and insertion site. Using a single particle tracking approach, we characterized the axonal transport of proNGF versus mature NGF in living dorsal root ganglion neurons grown in compartmentalized microfluidic devices. We demonstrate that proNGF is retrogradely transported as NGF, but with a lower flux and a different distribution of numbers of neurotrophins per vesicle. Moreover, exploiting a dual-color labelling technique, we analysed the transport of both NT forms when simultaneously administered to the axon tips. PMID:26829890

  17. Axon degeneration and PGC-1α-mediated protection in a zebrafish model of α-synuclein toxicity

    Directory of Open Access Journals (Sweden)

    Kelley C. O’Donnell

    2014-05-01

    Full Text Available α-synuclein (aSyn expression is implicated in neurodegenerative processes, including Parkinson’s disease (PD and dementia with Lewy bodies (DLB. In animal models of these diseases, axon pathology often precedes cell death, raising the question of whether aSyn has compartment-specific toxic effects that could require early and/or independent therapeutic intervention. The relevance of axonal pathology to degeneration can only be addressed through longitudinal, in vivo monitoring of different neuronal compartments. With current imaging methods, dopaminergic neurons do not readily lend themselves to such a task in any vertebrate system. We therefore expressed human wild-type aSyn in zebrafish peripheral sensory neurons, which project elaborate superficial axons that can be continuously imaged in vivo. Axonal outgrowth was normal in these neurons but, by 2 days post-fertilization (dpf, many aSyn-expressing axons became dystrophic, with focal varicosities or diffuse beading. Approximately 20% of aSyn-expressing cells died by 3 dpf. Time-lapse imaging revealed that focal axonal swelling, but not overt fragmentation, usually preceded cell death. Co-expressing aSyn with a mitochondrial reporter revealed deficits in mitochondrial transport and morphology even when axons appeared overtly normal. The axon-protective protein Wallerian degeneration slow (WldS delayed axon degeneration but not cell death caused by aSyn. By contrast, the transcriptional coactivator PGC-1α, which has roles in the regulation of mitochondrial biogenesis and reactive-oxygen-species detoxification, abrogated aSyn toxicity in both the axon and the cell body. The rapid onset of axonal pathology in this system, and the relatively moderate degree of cell death, provide a new model for the study of aSyn toxicity and protection. Moreover, the accessibility of peripheral sensory axons will allow effects of aSyn to be studied in different neuronal compartments and might have utility in

  18. In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma.

    Directory of Open Access Journals (Sweden)

    Susanna J E Veringa

    Full Text Available Pediatric high-grade gliomas (pHGG, including diffuse intrinsic pontine gliomas (DIPG, are the leading cause of cancer-related death in children. While it is clear that surgery (if possible, and radiotherapy are beneficial for treatment, the role of chemotherapy for these tumors is still unclear. Therefore, we performed an in vitro drug screen on primary glioma cells, including three DIPG cultures, to determine drug sensitivity of these tumours, without the possible confounding effect of insufficient drug delivery. This screen revealed a high in vitro cytotoxicity for melphalan, doxorubicine, mitoxantrone, and BCNU, and for the novel, targeted agents vandetanib and bortezomib in pHGG and DIPG cells. We subsequently determined the expression of the drug efflux transporters P-gp, BCRP1, and MRP1 in glioma cultures and their corresponding tumor tissues. Results indicate the presence of P-gp, MRP1 and BCRP1 in the tumor vasculature, and expression of MRP1 in the glioma cells themselves. Our results show that pediatric glioma and DIPG tumors per se are not resistant to chemotherapy. Treatment failure observed in clinical trials, may rather be contributed to the presence of drug efflux transporters that constitute a first line of drug resistance located at the blood-brain barrier or other resistance mechanism. As such, we suggest that alternative ways of drug delivery may offer new possibilities for the treatment of pediatric high-grade glioma patients, and DIPG in particular.

  19. Uptake of NO-releasing drugs by the P2 nucleoside transporter in trypanosomes

    Directory of Open Access Journals (Sweden)

    L. Soulère

    1999-11-01

    Full Text Available Nitric oxide (NO· has been identified as a principal regulatory molecule of the immune system and the major cytotoxic mediator of activated immune cells. NO· can also react rapidly with a variety of biological species, particularly with the superoxide radical anion O2·- at almost diffusion-limited rates to form peroxynitrite anion (ONOO-. ONOO- and its proton-catalyzed decomposition products are capable of oxidizing a great diversity of biomolecules and can act as a source of toxic hydroxyl radicals. As a consequence, a strategy for the development of molecules with potential trypanocidal activities could be developed to increase the concentration of nitric oxide in the parasites through NO·-releasing compounds. In this way, the rate of formation of peroxynitrite from NO· and O2·- would be faster than the rate of dismutation of superoxide radicals by superoxide dismutases which constitute the primary antioxidant enzymatic defense system in trypanosomes. The adenosine transport systems of parasitic protozoa, which are also in certain cases implicated in the selective uptake of active drugs such as melarsoprol or pentamidine, could be exploited to specifically target these NO·-releasing compounds inside the parasites. In this work, we present the synthesis, characterization and biological evaluation of a series of molecules that contain both a group which would specifically target these drugs inside the parasites via the purine transporter, and an NO·-donor group that would exert a specific pharmacological effect by increasing NO level, and thus the peroxynitrite concentration inside the parasite.

  20. Fruit juice, organic anion transporting polypeptides, and drug interactions in psychiatry.

    Science.gov (United States)

    Andrade, Chittaranjan

    2014-11-01

    Organic anion transporting polypeptides (OATPs) are a group of membrane transport proteins that facilitate the influx of endogenous and exogenous substances across biological membranes. OATPs are found in enterocytes and hepatocytes and in brain, kidney, and other tissues. In enterocytes, OATPs facilitate the gastrointestinal absorption of certain orally administered drugs. Fruit juices such as grapefruit juice, orange juice, and apple juice contain substances that are OATP inhibitors. These fruit juices diminish the gastrointestinal absorption of certain antiallergen, antibiotic, antihypertensive, and β-blocker drugs. While there is no evidence, so far, that OATP inhibition affects the absorption of psychotropic medications, there is no room for complacency because the field is still nascent and because the necessary studies have not been conducted. Patients should therefore err on the side of caution, taking their medications at least 4 hours distant from fruit juice intake. Doing so is especially desirable with grapefruit juice, orange juice, and apple juice; with commercial fruit juices in which OATP-inhibiting substances are likely to be present in higher concentrations; with calcium-fortified fruit juices; and with medications such as atenolol and fexofenadine, the absorption of which is substantially diminished by concurrent fruit juice intake. PMID:25470100

  1. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus.

    Science.gov (United States)

    Yu, Fang; De Luca, Vincenzo

    2013-09-24

    The Madagascar periwinkle (Catharanthus roseus) is highly specialized for the biosynthesis of many different monoterpenoid indole alkaloids (MIAs), many of which have powerful biological activities. Such MIAs include the commercially important chemotherapy drugs vinblastine, vincristine, and other synthetic derivatives that are derived from the coupling of catharanthine and vindoline. However, previous studies have shown that biosynthesis of these MIAs involves extensive movement of metabolites between specialized internal leaf cells and the leaf epidermis that require the involvement of unknown secretory processes for mobilizing catharanthine to the leaf surface and vindoline to internal leaf cells. Spatial separation of vindoline and catharanthine provides a clear explanation for the low levels of dimers that accumulate in intact plants. The present work describes the molecular cloning and functional identification of a unique catharanthine transporter (CrTPT2) that is expressed predominantly in the epidermis of young leaves. CrTPT2 gene expression is activated by treatment with catharanthine, and its in planta silencing redistributes catharanthine to increase the levels of catharanthine-vindoline drug dimers in the leaves. Phylogenetic analysis shows that CrTPT2 is closely related to a key transporter involved in cuticle assembly in plants and that may be unique to MIA-producing plant species, where it mediates secretion of alkaloids to the plant surface. PMID:24019465

  2. Optimized Hepatocyte-Like Cells with Functional Drug Transporters Directly-Reprogrammed from Mouse Fibroblasts and their Potential in Drug Disposition and Toxicology

    Directory of Open Access Journals (Sweden)

    Zhi-Tao Wu

    2016-05-01

    Full Text Available Background/Aims: To develop a suitable hepatocyte-like cell model that could be a substitute for primary hepatocytes with essential transporter expression and functions. Induced hepatocyte-like (iHep cells directly reprogrammed from mice fibroblast cells were fully characterized. Methods: Naïve iHep cells were transfected with nuclear hepatocyte factor 4 alpha (Hnf4α and treated with selected small molecules. Sandwich cultured configuration was applied. The mRNA and protein expression of transporters were determined by Real Time PCR and confocal. The functional transporters were estimated by drug biliary excretion measurement. The inhibition of bile acid efflux transporters by cholestatic drugs were assessed. Results: The expression and function of p-glycoprotein (P-gp, bile salt efflux pump (Bsep, multidrug resistance-associated protein 2 (Mrp2, Na+-dependent taurocholate cotransporting polypeptide (Ntcp, and organic anion transporter polypedtides (Oatps in iHep cells were significantly improved after transfection of hepatocyte nuclear factor 4 alpha (Hnf4α and treatment with selected inducers. In vitro intrinsic biliary clearances (CLb,int of optimized iHep cells for rosuvastatin, methotrexate, d8-TCA (deuterium-labeled sodium taurocholate acid and DPDPE ([D-Pen2,5] enkephalin hydrate correlated well with that of sandwich-cultured primary mouse hepatocytes (SCMHs (r2 = 0.984. Cholestatic drugs were evaluated and the results were compared well with primary mice hepatocytes. Conclusion: The optimized iHep cells expressed functional drug transporters and were comparable to primary mice hepatocytes. This study suggested direct reprogramming could provide a potential alternative to primary hepatocytes for drug candidate hepatobiliary disposition and hepatotoxicity screening.

  3. AxonSeg: Open Source Software for Axon and Myelin Segmentation and Morphometric Analysis.

    Science.gov (United States)

    Zaimi, Aldo; Duval, Tanguy; Gasecka, Alicja; Côté, Daniel; Stikov, Nikola; Cohen-Adad, Julien

    2016-01-01

    Segmenting axon and myelin from microscopic images is relevant for studying the peripheral and central nervous system and for validating new MRI techniques that aim at quantifying tissue microstructure. While several software packages have been proposed, their interface is sometimes limited and/or they are designed to work with a specific modality (e.g., scanning electron microscopy (SEM) only). Here we introduce AxonSeg, which allows to perform automatic axon and myelin segmentation on histology images, and to extract relevant morphometric information, such as axon diameter distribution, axon density and the myelin g-ratio. AxonSeg includes a simple and intuitive MATLAB-based graphical user interface (GUI) and can easily be adapted to a variety of imaging modalities. The main steps of AxonSeg consist of: (i) image pre-processing; (ii) pre-segmentation of axons over a cropped image and discriminant analysis (DA) to select the best parameters based on axon shape and intensity information; (iii) automatic axon and myelin segmentation over the full image; and (iv) atlas-based statistics to extract morphometric information. Segmentation results from standard optical microscopy (OM), SEM and coherent anti-Stokes Raman scattering (CARS) microscopy are presented, along with validation against manual segmentations. Being fully-automatic after a quick manual intervention on a cropped image, we believe AxonSeg will be useful to researchers interested in large throughput histology. AxonSeg is open source and freely available at: https://github.com/neuropoly/axonseg. PMID:27594833

  4. Evaluation of Ketoconazole and Its Alternative Clinical CYP3A4/5 Inhibitors as Inhibitors of Drug Transporters: The In Vitro Effects of Ketoconazole, Ritonavir, Clarithromycin, and Itraconazole on 13 Clinically-Relevant Drug Transporters.

    Science.gov (United States)

    Vermeer, Lydia M M; Isringhausen, Caleb D; Ogilvie, Brian W; Buckley, David B

    2016-03-01

    Ketoconazole is a potent CYP3A4/5 inhibitor and, until recently, recommended by the Food and Drug Administration (FDA) and the European Medicines Agency as a strong CYP3A4/5 inhibitor in clinical drug-drug interaction (DDI) studies. Ketoconazole sporadically causes liver injury or adrenal insufficiency. Because of this, the FDA and European Medicines Agency recommended suspension of ketoconazole use in DDI studies in 2013. The FDA specifically recommended use of clarithromycin or itraconazole as alternative strong CYP3A4/5 inhibitors in clinical DDI studies, but many investigators have also used ritonavir as an alternative. Although the effects of these clinical CYP3A4/5 inhibitors on other CYPs are largely established, reports on the effects on the broad range of drug transporter activities are sparse. In this study, the inhibitory effects of ketoconazole, clarithromycin, ritonavir, and itraconazole (and its CYP3A4-inhibitory metabolites, hydroxy-, keto-, and N-desalkyl itraconazole) toward 13 drug transporters (OATP1B1, OATP1B3, OAT1, OAT3, OCT1, OCT2, MATE1, MATE2-K, P-gp, BCRP, MRP2, MRP3, and BSEP) were systematically assessed in transporter-expressing HEK-293 cell lines or membrane vesicles. In vitro findings were translated into clinical context with the basic static model approaches outlined by the FDA in its 2012 draft guidance on DDIs. The results indicate that, like ketoconazole, the alternative clinical CYP3A4/5 inhibitors ritonavir, clarithromycin, and itraconazole each have unique transporter inhibition profiles. None of the alternatives to ketoconazole provided a clean inhibition profile toward the 13 drug transporters evaluated. The results provide guidance for the selection of clinical CYP3A4/5 inhibitors when transporters are potentially involved in a victim drug's pharmacokinetics. PMID:26668209

  5. Axonal regeneration through arterial grafts.

    OpenAIRE

    Anderson, P. N.; Turmaine, M.

    1986-01-01

    The left common peroneal nerves of adult inbred mice were severed and allowed to regenerate through the lumina of Y-shaped tubes comprising grafts of abdominal aorta and its bifurcation. Very little regeneration took place within the grafts unless the distal nerve stump was inserted into one limb of the Y-tube. Using syngeneic grafts virtually all the axons regenerating through the lumen grew down the limb of the Y-tube containing the distal nerve. Using non-syngeneic grafts, however, a subst...

  6. Identification of a novel topoisomerase inhibitor effective in cells overexpressing drug efflux transporters.

    Directory of Open Access Journals (Sweden)

    Walid Fayad

    Full Text Available BACKGROUND: Natural product structures have high chemical diversity and are attractive as lead structures for discovery of new drugs. One of the disease areas where natural products are most frequently used as therapeutics is oncology. METHOD AND FINDINGS: A library of natural products (NCI Natural Product set was screened for compounds that induce apoptosis of HCT116 colon carcinoma cells using an assay that measures an endogenous caspase-cleavage product. One of the apoptosis-inducing compounds identified in the screen was thaspine (taspine, an alkaloid from the South American tree Croton lechleri. The cortex of this tree is used for medicinal purposes by tribes in the Amazonas basin. Thaspine was found to induce conformational activation of the pro-apoptotic proteins Bak and Bax, mitochondrial cytochrome c release and mitochondrial membrane permeabilization in HCT116 cells. Analysis of the gene expression signature of thaspine-treated cells suggested that thaspine is a topoisomerase inhibitor. Inhibition of both topoisomerase I and II was observed using in vitro assays, and thaspine was found to have a reduced cytotoxic effect on a cell line with a mutated topoisomerase II enzyme. Interestingly, in contrast to the topoisomerase II inhibitors doxorubicin, etoposide and mitoxantrone, thaspine was cytotoxic to cell lines overexpressing the PgP or MRP drug efflux transporters. We finally show that thaspine induces wide-spread apoptosis in colon carcinoma multicellular spheroids and that apoptosis is induced in two xenograft mouse models in vivo. CONCLUSIONS: The alkaloid thaspine from the cortex of Croton lechleri is a dual topoisomerase inhibitor effective in cells overexpressing drug efflux transporters and induces wide-spread apoptosis in multicellular spheroids.

  7. Modeling of drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls to treat vulnerable plaques

    KAUST Repository

    Hossain, Shaolie S.

    2010-01-01

    The main objective of this work is to develop computational tools to support the design of a catheter-based local drug delivery system that uses nanoparticles as drug carriers in order to treat vulnerable plaques and diffuse atherosclerotic disease.

  8. Active transmembrane drug transport in microgravity: a validation study using an ABC transporter model [v1; ref status: indexed, http://f1000r.es/41n

    Directory of Open Access Journals (Sweden)

    Sergi Vaquer

    2014-08-01

    Full Text Available Abstract Microgravity has been shown to influence the expression of ABC (ATP-Binding Cassette transporters in bacteria, fungi and mammals, but also to modify the activity of certain cellular components with structural and functional similarities to ABC transporters. Changes in activity of ABC transporters could lead to important metabolic disorders and undesired pharmacological effects during spaceflights. However, no current means exist to study the functionality of these transporters in microgravity. To this end, a Vesicular Transport Assay® (Solvo Biotechnology, Hungary was adapted to evaluate multi-drug resistance-associated protein 2 (MRP2 trans-membrane estradiol-17-β-glucuronide (E17βG transport activity, when activated by adenosine-tri-phosphate (ATP during parabolic flights. Simple diffusion, ATP-independent transport and benzbromarone inhibition were also evaluated. A high accuracy engineering system was designed to perform, monitor and synchronize all procedures. Samples were analysed using a validated high sensitivity drug detection protocol. Experiments were performed in microgravity during parabolic flights, and compared to 1g on ground results using identical equipment and procedures in all cases. Our results revealed that sufficient equipment accuracy and analytical sensitivity were reached to detect transport activity in both gravitational conditions. Additionally, transport activity levels of on ground samples were within commercial transport standards, proving the validity of the methods and equipment used. MRP2 net transport activity was significantly reduced in microgravity, so was signal detected in simple diffusion samples. Ultra-structural changes induced by gravitational stress upon vesicle membranes or transporters could explain the current results, although alternative explanations are possible. Further research is needed to provide a conclusive answer in this regard. Nevertheless, the present validated technology

  9. Axonal interferon responses and alphaherpesvirus neuroinvasion

    Science.gov (United States)

    Song, Ren

    Infection by alphaherpesviruses, including herpes simplex virus (HSV) and pseudorabies virus (PRV), typically begins at a peripheral epithelial surface and continues into the peripheral nervous system (PNS) that innervates this tissue. Inflammatory responses are induced at the infected peripheral site prior to viral invasion of the PNS. PNS neurons are highly polarized cells with long axonal processes that connect to distant targets. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which include type I interferon (e.g. IFNbeta) and type II interferon (i.e. IFNgamma). IFNbeta can be produced by all types of cells, while IFNgamma is secreted by some specific types of immune cells. And both types of IFN induce antiviral responses in surrounding cells that express the IFN receptors. The fundamental question is how do PNS neurons respond to the inflammatory milieu experienced only by their axons. Axons must act as potential front-line barriers to prevent PNS infection and damage. Using compartmented cultures that physically separate neuron axons from cell bodies, I found that pretreating isolated axons with IFNbeta or IFNgamma significantly diminished the number of HSV-1 and PRV particles moving from axons to the cell bodies in an IFN receptor-dependent manner. Furthermore, I found the responses in axons are activated differentially by the two types of IFNs. The response to IFNbeta is a rapid, axon-only response, while the response to IFNgamma involves long distance signaling to the PNS cell body. For example, exposing axons to IFNbeta induced STAT1 phosphorylation (p-STAT1) only in axons, while exposure of axons to IFNgamma induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated IFNgamma-, but not IFNbeta-mediated antiviral effects. Proteomic analysis of IFNbeta- or IFNgamma-treated axons identified several differentially regulated proteins. Therefore

  10. Transmembrane transport of steviol glucuronide and its potential interaction with selected drugs and natural compounds.

    Science.gov (United States)

    Wang, Meiyu; Qi, Huixin; Li, Jiajun; Xu, Yunting; Zhang, Hongjian

    2015-12-01

    Steviol glucuronide (SVG) is the major metabolite derived from steviol, the aglycone of stevioside and rebaudioside A. After the ingestion of stevioside and rebaudioside A, SVG is formed and excreted into the urine in humans. In the present study, transporter mediated efflux and uptake of SVG was investigated in order to understand molecular mechanisms underlying its renal clearance. Results showed that SVG was not a substrate of efflux transporters BCRP, MRP2, MATE1 or P-gp. In contrast, OAT3 played a predominant role in the uptake of SVG in comparison to OATP1B1, OATP1B3, or OATP2B1. Quercetin, telmisartan, diclofenac, and mulberrin displayed a relatively strong inhibition against OAT3 mediated uptake of SVG with IC50 values of 1.8, 2.9, 8.0, and 10.0 μM, respectively. Because OAT3 is a major uptake transporter in the kidney, inhibition of OAT3 activity may alter SVG's renal clearance by drugs and natural compounds that are used concomitantly with stevia leaf extracts. PMID:26525112

  11. Uptake of nerve growth factor along peripheral and spinal axons of primary sensory neurons

    International Nuclear Information System (INIS)

    To investigate the distribution of nerve growth factor (NGF) receptors on peripheral and central axons, [125I]NGF was injected into the sciatic nerve or spinal cord of adult rats. Accumulation of [125I]NGF in lumbar dorsal root ganglia was monitored by gamma emission counting and radioautography. [125I]NGF, injected endoneurially in small quantities, was taken into sensory axons by a saturable process and was transported retrogradely to their cell bodies at a maximal rate of 2.5 to 7.5 mm/hr. Because very little [125I]NGF reached peripheral terminals, the results were interpreted to indicate that receptors for NGF are present on nonterminal segments of sensory axons. The specificity and high affinity of NGF uptake were illustrated by observations that negligible amounts of gamma activity accumulated in lumbar dorsal root ganglia after comparable intraneural injection of [125I] cytochrome C or [125I]oxidized NGF. Similar techniques were used to demonstrate avid internalization and retrograde transport of [125I]NGF by intraspinal axons arising from dorsal root ganglia. Following injection of [125I]NGF into lumbar or cervical regions of the spinal cord, neuronal perikarya were clearly labeled in radioautographs of lumbar dorsal root ganglia. Sites for NGF uptake on primary sensory neurons in the adult rat are not restricted to peripheral axon terminals but are extensively distributed along both peripheral and central axons. Receptors on axons provide a mechanism whereby NGF supplied by glia could influence neuronal maintenance or axonal regeneration

  12. Lack of Interactions Between an Antisense Oligonucleotide with 2'-O-(2-Methoxyethyl) Modifications and Major Drug Transporters.

    Science.gov (United States)

    Yu, Rosie Z; Warren, Mark S; Watanabe, Tanya; Nichols, Brandon; Jahic, Mirza; Huang, Jane; Burkey, Jennifer; Geary, Richard S; Henry, Scott P; Wang, Yanfeng

    2016-04-01

    ISIS 141923 is a model compound of 2'-O-(2-methoxyethyl) (2'-MOE) modified antisense oligonucleotides (ASOs). The purpose of this study is to determine whether ISIS 141923 is a substrate or an inhibitor against a panel of nine major uptake or efflux drug transporters, namely breast cancer resistance protein (BCRP), P-glycoprotein (P-gp), organic anion transporter (OAT)1, OAT3, organic cation transporter (OCT)1, OCT2, organic anion transporting polypeptide 1B (OATP1B)1, OATP1B3, and bile salt export pump (BSEP), in vitro. The uptake test system for transporters in the solute carrier (SLC) family (OAT1, OAT3, OCT1, OCT2, OATP1B1, and OATP1B3) was studied in Madin-Darby canine kidney (MDCK)-II cells transfected to express the transporters of interest. BCRP was studied using carcinoma colon-2 (Caco-2) cells with endogenously expressed BCRP. P-gp transporter was studied in MDCK-multi-drug resistance 1 (MDR1) cells, while BSEP was studied using Spodoptera frugiperda 9 (Sf9) membrane vesicles containing human BSEP. The ISIS 141293 concentrations evaluated were 10 and 100 μM for the substrate and inhibition study, respectively. Cellular uptake of ISIS 141923 was analyzed using a high performance liquid chromatography-mass spectrometry method, while concentrations of known substrates (used as positive controls) of each transporters evaluated were determined by radiometric detection. At 10 μM ISIS 141923, there was no significant transporter-mediated uptake of ISIS 141923 (P > 0.05) in the SLC family, and the efflux ratios were not above 2.0 for either BCRP or P-gp. Therefore, no transporter-mediated uptake of ISIS 141923 was observed by any of the nine transporters studied. At 100 μM ISIS 141923, the % inhibition was in the range of -16.0% to 19.0% for the nine transporters evaluated. Therefore, ISIS 141923 is not considered as an inhibitor of the nine transporters studied. Overall, the results from this study suggest that it is unlikely that ISIS 141923 or similar 2

  13. Nerve growth factor released from a novel PLGA nerve conduit can improve axon growth

    Science.gov (United States)

    Lin, Keng-Min; Shea, Jill; Gale, Bruce K.; Sant, Himanshu; Larrabee, Patti; Agarwal, Jay

    2016-04-01

    Nerve injury can occur due to penetrating wounds, compression, traumatic stretch, and cold exposure. Despite prompt repair, outcomes are dismal. In an attempt to help resolve this challenge, in this work, a poly-lactic-co-glycolic acid (PLGA) nerve conduit with associated biodegradable drug reservoir was designed, fabricated, and tested. Unlike current nerve conduits, this device is capable of fitting various clinical scenarios by delivering different drugs without reengineering the whole system. To demonstrate the potential of this device for nerve repair, a series of experiments were performed using nerve growth factor (NGF). First, an NGF dosage curve was developed to determine the minimum NGF concentration for optimal axonal outgrowth on chick dorsal root ganglia (DRG) cells. Next, PLGA devices loaded with NGF were evaluated for sustained drug release and axon growth enhancement with the released drug. A 20 d in vitro release test was conducted and the nerve conduit showed the ability to meet and maintain the minimum NGF requirement determined previously. Bioactivity assays of the released NGF showed that drug released from the device between the 15th and 20th day could still promote axon growth (76.6-95.7 μm) in chick DRG cells, which is in the range of maximum growth. These novel drug delivery conduits show the ability to deliver NGF at a dosage that efficiently promotes ex vivo axon growth and have the potential for in vivo application to help bridge peripheral nerve gaps.

  14. Nerve growth factor released from a novel PLGA nerve conduit can improve axon growth

    International Nuclear Information System (INIS)

    Nerve injury can occur due to penetrating wounds, compression, traumatic stretch, and cold exposure. Despite prompt repair, outcomes are dismal. In an attempt to help resolve this challenge, in this work, a poly-lactic-co-glycolic acid (PLGA) nerve conduit with associated biodegradable drug reservoir was designed, fabricated, and tested. Unlike current nerve conduits, this device is capable of fitting various clinical scenarios by delivering different drugs without reengineering the whole system. To demonstrate the potential of this device for nerve repair, a series of experiments were performed using nerve growth factor (NGF). First, an NGF dosage curve was developed to determine the minimum NGF concentration for optimal axonal outgrowth on chick dorsal root ganglia (DRG) cells. Next, PLGA devices loaded with NGF were evaluated for sustained drug release and axon growth enhancement with the released drug. A 20 d in vitro release test was conducted and the nerve conduit showed the ability to meet and maintain the minimum NGF requirement determined previously. Bioactivity assays of the released NGF showed that drug released from the device between the 15th and 20th day could still promote axon growth (76.6–95.7 μm) in chick DRG cells, which is in the range of maximum growth. These novel drug delivery conduits show the ability to deliver NGF at a dosage that efficiently promotes ex vivo axon growth and have the potential for in vivo application to help bridge peripheral nerve gaps. (paper)

  15. Recapitulation of complex transport and action of drugs at the tumor microenvironment using tumor-microenvironment-on-chip.

    Science.gov (United States)

    Han, Bumsoo; Qu, Chunjing; Park, Kinam; Konieczny, Stephen F; Korc, Murray

    2016-09-28

    Targeted delivery aims to selectively distribute drugs to targeted tumor tissues but not to healthy tissues. This can address many clinical challenges by maximizing the efficacy but minimizing the toxicity of anti-cancer drugs. However, a complex tumor microenvironment poses various barriers hindering the transport of drugs and drug delivery systems. New tumor models that allow for the systematic study of these complex environments are highly desired to provide reliable test beds to develop drug delivery systems for targeted delivery. Recently, research efforts have yielded new in vitro tumor models, the so called tumor-microenvironment-on-chip, that recapitulate certain characteristics of the tumor microenvironment. These new models show benefits over other conventional tumor models, and have the potential to accelerate drug discovery and enable precision medicine. However, further research is warranted to overcome their limitations and to properly interpret the data obtained from these models. In this article, key features of the in vivo tumor microenvironment that are relevant to drug transport processes for targeted delivery were discussed, and the current status and challenges for developing in vitro transport model systems were reviewed. PMID:26688098

  16. Axon reflexes in human cold exposed fingers

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ducharme, M.B.

    2000-01-01

    Exposure of fingers to severe cold induces cold induced vasodilation (CIVD). The mechanism of CIVD is still debated. The original theory states that an axon reflex causes CIVD. To test this hypothesis, axon reflexes were evoked by electrical stimulation of the middle fingers of hands immersed in wat

  17. Cable energy function of cortical axons.

    Science.gov (United States)

    Ju, Huiwen; Hines, Michael L; Yu, Yuguo

    2016-01-01

    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na(+)-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na(+)-counting method severely underestimates energy cost in the cable model by 20-70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship. PMID:27439954

  18. Cable energy function of cortical axons

    Science.gov (United States)

    Ju, Huiwen; Hines, Michael L.; Yu, Yuguo

    2016-01-01

    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na+-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na+-counting method severely underestimates energy cost in the cable model by 20–70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship. PMID:27439954

  19. Neuronal Development: SAD Kinases Make Happy Axons

    OpenAIRE

    Xing, Lei; Newbern, Jason M.; Snider, William D

    2013-01-01

    The polarity proteins LKB1 and SAD-A/B are key regulators of axon specification in the developing cerebral cortex. Recent studies now show that this mechanism cannot be generalized to other classes of neurons: instead, SAD-A/B functions downstream of neurotrophin signaling in sensory neurons to mediate a later stage of axon development — arborization in the target field.

  20. Early events in axon/dendrite polarization.

    Science.gov (United States)

    Cheng, Pei-lin; Poo, Mu-ming

    2012-01-01

    Differentiation of axons and dendrites is a critical step in neuronal development. Here we review the evidence that axon/dendrite formation during neuronal polarization depends on the intrinsic cytoplasmic asymmetry inherited by the postmitotic neuron, the exposure of the neuron to extracellular chemical factors, and the action of anisotropic mechanical forces imposed by the environment. To better delineate the functions of early signals among a myriad of cellular components that were shown to influence axon/dendrite formation, we discuss their functions by distinguishing their roles as determinants, mediators, or modulators and consider selective degradation of these components as a potential mechanism for axon/dendrite polarization. Finally, we examine whether these early events of axon/dendrite formation involve local autocatalytic activation and long-range inhibition, as postulated by Alan Turing for the morphogenesis of patterned biological structure. PMID:22715881

  1. Intestinal drug transport via the proton-coupled amino acid transporter PAT1 (SLC36A1) is inhibited by Gly-X(aa) dipeptides

    DEFF Research Database (Denmark)

    Frølund, Sidsel; Langthaler, Louise; Kall, Morten A; Holm, René; Nielsen, Carsten Uhd

    2012-01-01

    -Sar as substrates of the amino acid transporter PAT1. The aim of the present study is to investigate if other Gly-containing dipeptides interact with PAT1, and whether they can inhibit PAT1 mediated drug absorption, in vitro and in vivo. The in vitro methods included two-electrode voltage clamp...

  2. Cell-Penetrating, Guanidinium-Rich Oligophosphoesters: Effective and Versatile Molecular Transporters for Drug and Probe Delivery.

    Science.gov (United States)

    McKinlay, Colin J; Waymouth, Robert M; Wender, Paul A

    2016-03-16

    The design, synthesis, and biological evaluation of a new family of highly effective cell-penetrating molecular transporters, guanidinium-rich oligophosphoesters, are described. These unique transporters are synthesized in two steps, irrespective of oligomer length, by the organocatalytic ring-opening polymerization (OROP) of 5-membered cyclic phospholane monomers followed by oligomer deprotection. Varying the initiating alcohol results in a wide variety of cargo attachment strategies for releasable or nonreleasable transporter applications. Initiation of oligomerization with a fluorescent probe produces, upon deprotection, a transporter-probe conjugate that is shown to readily enter multiple cell lines in a dose-dependent manner. These new transporters are superior in cell uptake to previously studied guanidinium-rich oligocarbonates and oligoarginines, showing over 2-fold higher uptake than the former and 6-fold higher uptake than the latter. Initiation with a protected thiol gives, upon deprotection, thiol-terminated transporters which can be thiol-click conjugated to a variety of probes, drugs and other cargos as exemplified by the conjugation and delivery of the model probe fluorescein-maleimide and the medicinal agent paclitaxel (PTX) into cells. Of particular significance given that drug resistance is a major cause of chemotherapy failure, the PTX-transporter conjugate, designed to evade Pgp export and release free PTX after cell entry, shows efficacy against PTX-resistant ovarian cancer cells. Collectively this study introduces a new and highly effective class of guanidinium-rich cell-penetrating transporters and methodology for their single-step conjugation to drugs and probes, and demonstrates that the resulting drug/probe-conjugates readily enter cells, outperforming previously reported guanidinium-rich oligocarbonates and peptide transporters. PMID:26900771

  3. SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury.

    Science.gov (United States)

    Johnson, Victoria E; Stewart, William; Weber, Maura T; Cullen, D Kacy; Siman, Robert; Smith, Douglas H

    2016-01-01

    Diffuse axonal injury (DAI) is a common feature of severe traumatic brain injury (TBI) and may also be a predominant pathology in mild TBI or "concussion". The rapid deformation of white matter at the instant of trauma can lead to mechanical failure and calcium-dependent proteolysis of the axonal cytoskeleton in association with axonal transport interruption. Recently, a proteolytic fragment of alpha-II spectrin, "SNTF", was detected in serum acutely following mild TBI in patients and was prognostic for poor clinical outcome. However, direct evidence that this fragment is a marker of DAI has yet to be demonstrated in either humans following TBI or in models of mild TBI. Here, we used immunohistochemistry (IHC) to examine for SNTF in brain tissue following both severe and mild TBI. Human severe TBI cases (survival <7d; n = 18) were compared to age-matched controls (n = 16) from the Glasgow TBI archive. We also examined brains from an established model of mild TBI at 6, 48 and 72 h post-injury versus shams. IHC specific for SNTF was compared to that of amyloid precursor protein (APP), the current standard for DAI diagnosis, and other known markers of axonal pathology including non-phosphorylated neurofilament-H (SMI-32), neurofilament-68 (NF-68) and compacted neurofilament-medium (RMO-14) using double and triple immunofluorescent labeling. Supporting its use as a biomarker of DAI, SNTF immunoreactive axons were observed at all time points following both human severe TBI and in the model of mild TBI. Interestingly, SNTF revealed a subpopulation of degenerating axons, undetected by the gold-standard marker of transport interruption, APP. While there was greater axonal co-localization between SNTF and APP after severe TBI in humans, a subset of SNTF positive axons displayed no APP accumulation. Notably, some co-localization was observed between SNTF and the less abundant neurofilament subtype markers. Other SNTF positive axons, however, did not co-localize with any

  4. Mass Spectrometry-Based Targeted Proteomics as a Tool to Elucidate the Expression and Function of Intestinal Drug Transporters

    OpenAIRE

    Oswald, Stefan; Gröer, Christian; Drozdzik, Marek; Siegmund, Werner

    2013-01-01

    Intestinal transporter proteins affect the oral bioavailability of many drugs in a significant manner. In order to estimate or predict their impact on oral drug absorption, data on their intestinal expression levels are needed. So far, predominantly mRNA expression data are available which are not necessarily correlated with the respective protein content. All available protein data were assessed by immunoblotting techniques such as Western blotting which both possess a number of limitations ...

  5. Drug Efflux Transporters Are Overexpressed in Short-Term Tamoxifen-Induced MCF7 Breast Cancer Cells.

    Science.gov (United States)

    Krisnamurti, Desak Gede Budi; Louisa, Melva; Anggraeni, Erlia; Wanandi, Septelia Inawati

    2016-01-01

    Tamoxifen is the first line drug used in the treatment of estrogen receptor-positive (ER+) breast cancer. The development of multidrug resistance (MDR) to tamoxifen remains a major challenge in the treatment of cancer. One of the mechanisms related to MDR is decrease of drug influx via overexpression of drug efflux transporters such as P-glycoprotein (P-gp/MDR1), multidrug resistance associated protein (MRP), or BCRP (breast cancer resistance protein). We aimed to investigate whether the sensitivity of tamoxifen to the cells is maintained through the short period and whether the expressions of several drug efflux transporters have been upregulated. We exposed MCF7 breast cancer cells with tamoxifen 1 μM for 10 passages (MCF7 (T)). The result showed that MCF7 began to lose their sensitivity to tamoxifen from the second passage. MCF7 (T) also showed a significant increase in all transporters examined compared with MCF7 parent cells. The result also showed a significant increase of CC50 in MCF7 (T) compared to that in MCF7 (97.54 μM and 3.04 μM, resp.). In conclusion, we suggest that the expression of several drug efflux transporters such as P-glycoprotein, MRP2, and BCRP might be used and further studied as a marker in the development of tamoxifen resistance. PMID:26981116

  6. Sodium glucose co-transporter inhibitors - A new class of old drugs.

    Science.gov (United States)

    Malhotra, Aneeta; Kudyar, Surbhi; Gupta, Anil K; Kudyar, Rattan P; Malhotra, Pavan

    2015-01-01

    Sodium glucose co-transporter (SGLT) inhibitors are a new class of drugs which are used in the pharmacotherapy of Type-II diabetes, which happens to be a major risk factor for developing both micro as well as macro-vascular complications. These drugs inhibit the glucose reabsorption by inhibiting SGLT, which exhibits a novel and promising mechanism of action by promoting the urinary glucose excretion hence providing a basis of therapeutic intervention. Results of SGLT-II inhibitors are very encouraging as there is a significant elevation of GLP-1 level, which forms the basis of relevance in treatment of diabetes. It targets the HbA1C and keeps a check on its levels. It also exerts other positive benefits such as weight loss, reduction in blood glucose levels, reduction in blood pressure and improvement in insulin resistance and β-cell dysfunction: All contributing to effective glycemic control. SGLT inhibition will develop as effective modality as it has the capability of inhibiting reabsorption of greater percentage of filtered glucose load. PMID:26539362

  7. Clinical Pharmacokinetic, Pharmacodynamic, and Drug-Drug Interaction Profile of Canagliflozin, a Sodium-Glucose Co-transporter 2 Inhibitor.

    Science.gov (United States)

    Devineni, Damayanthi; Polidori, David

    2015-10-01

    The sodium-glucose co-transporter 2 (SGLT2) inhibitors represent novel therapeutic approaches in the management of type 2 diabetes mellitus; they act on kidneys to decrease the renal threshold for glucose (RTG) and increase urinary glucose excretion (UGE). Canagliflozin is an orally active, reversible, selective SGLT2 inhibitor. Orally administered canagliflozin is rapidly absorbed achieving peak plasma concentrations in 1-2 h. Dose-proportional systemic exposure to canagliflozin has been observed over a wide dose range (50-1600 mg) with an oral bioavailability of 65 %. Canagliflozin is glucuronidated into two inactive metabolites, M7 and M5 by uridine diphosphate-glucuronosyltransferase (UGT) 1A9 and UGT2B4, respectively. Canagliflozin reaches steady state in 4 days, and there is minimal accumulation observed after multiple dosing. Approximately 60 % and 33 % of the administered dose is excreted in the feces and urine, respectively. The half-life of orally administered canagliflozin 100 or 300 mg in healthy participants is 10.6 and 13.1 h, respectively. No clinically relevant differences are observed in canagliflozin exposure with respect to age, race, sex, and body weight. The pharmacokinetics of canagliflozin remains unaffected by mild or moderate hepatic impairment. Systemic exposure to canagliflozin is increased in patients with renal impairment relative to those with normal renal function; however, the efficacy is reduced in patients with renal impairment owing to the reduced filtered glucose load. Canagliflozin did not show clinically relevant drug interactions with metformin, glyburide, simvastatin, warfarin, hydrochlorothiazide, oral contraceptives, probenecid, and cyclosporine, while co-administration with rifampin modestly reduced canagliflozin plasma concentrations and thus may necessitate an appropriate monitoring of glycemic control. Canagliflozin increases UGE and suppresses RTG in a dose-dependent manner, thereby lowering the plasma glucose

  8. Flavonoid-mediated inhibition of intestinal ABC transporters may affect the oral bioavailability of drugs, food-borne toxic compounds and bioactive ingredients

    NARCIS (Netherlands)

    Brand, W.; Schutte, M.E.; Bladeren, van P.J.; Rietjens, I.M.C.M.

    2006-01-01

    The transcellular transport of ingested food ingredients across the intestinal epithelial barrier is an important factor determining bioavailability upon oral intake. This transcellular transport of many chemicals, food ingredients, drugs or toxic compounds over the intestinal epithelium can be high

  9. Dysregulated axonal RNA translation in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Yasuda, Kyota; Mili, Stavroula

    2016-09-01

    Amyotrophic lateral sclerosis (ALS) is an adult-onset motor neuron disease that has been associated with a diverse array of genetic changes. Prominent among these are mutations in RNA-binding proteins (RBPs) or repeat expansions that give rise to toxic RNA species. RBPs are additionally central components of pathologic aggregates that constitute a disease hallmark, suggesting that dysregulation of RNA metabolism underlies disease progression. In the context of neuronal physiology, transport of RNAs and localized RNA translation in axons are fundamental to neuronal survival and function. Several lines of evidence suggest that axonal RNA translation is a central process perturbed by various pathogenic events associated with ALS. Dysregulated translation of specific RNA groups could underlie feedback effects that connect and reinforce disease manifestations. Among such candidates are RNAs encoding proteins involved in the regulation of microtubule dynamics. Further understanding of axonally dysregulated RNA targets and of the feedback mechanisms they induce could provide useful therapeutic insights. WIREs RNA 2016, 7:589-603. doi: 10.1002/wrna.1352 For further resources related to this article, please visit the WIREs website. PMID:27038103

  10. Ion channels and transporters in the development of drug resistance in cancer cells

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Lambert, Ian Henry

    2014-01-01

    Multi-drug resistance (MDR) to chemotherapy is the major challenge in the treatment of cancer. MDR can develop by numerous mechanisms including decreased drug uptake, increased drug efflux and the failure to undergo drug-induced apoptosis. Evasion of drug-induced apoptosis through modulation of ion...

  11. Extra-neurohypophyseal axonal projections from individual vasopressin-containing magnocellular neurons in rat hypothalamus

    Directory of Open Access Journals (Sweden)

    Fernando Jauregui Huerta

    2015-10-01

    Full Text Available Conventional neuroanatomical, immunohistochemical techniques and electrophysiological recording, as well as in vitro labeling methods may fail to detect long range extra-neurohypophyseal-projecting axons from vasopressin (AVP-containing magnocellular neurons (magnocells in the hypothalamic paraventricular nucleus (PVN. Here, we used in vivo extracellular recording, juxtacellular labeling, post hoc anatomo-immunohistochemical analysis and camera lucida reconstruction to address this question. We demonstrate that all well-labeled AVP immunopositive neurons inside the PVN possess main axons joining the tract of Greving and multi-axon-like processes, as well as axonal collaterals branching very near to the somata, which project to extra-neurohypophyseal regions. The detected regions in this study include the medial and lateral preoptical area, suprachiasmatic nucleus, lateral habenula, medial and central amygdala and the conducting systems, such as stria medullaris, the fornix and the internal capsule. Expression of vesicular glutamate transporter 2 was observed in axon-collaterals. These results, in congruency with several previous reports in the literature, provided unequivocal evidence that AVP magnocells have an uncommon feature of possessing multiple axon-like processes emanating from somata or proximal dendrites. Furthermore, the long-range non-neurohypophyseal projections are more common than an “occasional” phenomenon as previously thought.

  12. Enzyme- and transporter-mediated beverage-drug interactions: An update on fruit juices and green tea.

    Science.gov (United States)

    An, Guohua; Mukker, Jatinder Kaur; Derendorf, Hartmut; Frye, Reginald F

    2015-12-01

    Beverage-drug interactions have remained an active area of research and have been the subject of extensive investigations in the past 2 decades. The known mechanisms of clinically relevant beverage-drug interactions include modulation of the activity of cytochrome P450 (CYP) 3A and organic anion-transporting polypeptide (OATP). For CYP3A-mediated beverage-drug interaction, the in vivo CYP3A inhibitory effect is limited to grapefruit juice (GFJ), which increases the bioavailability of several orally administered drugs that undergo extensive first-pass metabolism via enteric CYP3A. In contrast, clinically significant OATP-mediated beverage-drug interactions have been observed with not only GFJ but also orange juice, apple juice, and, most recently, green tea. Fruit juices and green tea are all a mixture of a large number of constituents. The investigation of specific constituent(s) responsible for the enzyme and/or transporter inhibition remains an active area of research, and many new findings have been obtained on this subject in the past several years. This review highlights the multiple mechanisms through which beverages can alter drug disposition and provides an update on the new findings of beverage-drug interactions, with a focus on fruit juices and green tea. PMID:26095990

  13. Relationship between rate of drug uptake in brain and behavioral pharmacology of monoamine transporter inhibitors in rhesus monkeys.

    Science.gov (United States)

    Kimmel, Heather L; Negus, S Stevens; Wilcox, Kristin M; Ewing, Sarah B; Stehouwer, Jeffrey; Goodman, Mark M; Votaw, John R; Mello, Nancy K; Carroll, F Ivy; Howell, Leonard L

    2008-09-01

    Although inhibition of dopamine transporters (DAT) and the subsequent increase in dopamine clearly play a role in the effects of psychomotor stimulants, the reinforcing effectiveness of DAT inhibitors varies. Previous studies suggest that pharmacokinetic and pharmacodynamic properties of these drugs account for this variability. The present studies compared the time course and behavioral effects of five phenyltropane analogs of cocaine with high affinity for DAT and varying time courses of action in rhesus monkeys. The rate of drug uptake in putamen was measured using positron emission tomography neuroimaging. The rank order of the time to peak drug uptake was cocaineCocaine and all five analogs fully substituted for the cocaine cue in animals trained to discriminate cocaine from saline. All of the drugs were self-administered under a progressive-ratio schedule of drug self-administration and reinstated previously extinguished self-administration maintained under a second-order schedule. The time to peak drug uptake corresponded closely with the time to peak discriminative stimulus effects, and there was a trend for the time of peak drug uptake to correspond negatively with the peak number of drug infusions. Collectively, these results indicate that the rate of drug entry in brain can play an important role in the behavioral pharmacology of psychomotor stimulants. PMID:18468667

  14. Miro, MCU, and calcium: bridging our understanding of mitochondrial movement in axons

    Directory of Open Access Journals (Sweden)

    Karen Chang

    2013-09-01

    Full Text Available Neurons are extremely polarized structures with long axons and dendrites, which require proper distribution of mitochondria and maintenance of mitochondrial dynamics for neuronal functions and survival. Indeed, recent studies show that various neurological disorders are linked to mitochondrial transport in neurons. Mitochondrial anterograde transport is believed to deliver metabolic energy to synaptic terminals where energy demands are high, while mitochondrial retrograde transport is required to repair or remove damaged mitochondria in axons. It has been suggested that Ca2+ plays a key role in regulating mitochondrial transport by altering the configuration of mitochondrial protein, miro. However, molecular mechanisms that regulate mitochondrial transport in neurons still are not well characterized. In this review, we will discuss the roles of miro in mitochondrial transport and how the recently identified components of the mitochondrial calcium uniporter add to our current model of mitochondrial mobility regulation.

  15. Recommendations to enable drug development for inherited neuropathies: Charcot-Marie-Tooth and Giant Axonal Neuropathy [v2; ref status: indexed, http://f1000r.es/3am

    Directory of Open Access Journals (Sweden)

    Lori Sames

    2014-04-01

    Full Text Available Approximately 1 in 2500 Americans suffer from Charcot-Marie-Tooth (CMT disease. The underlying disease mechanisms are unique in most forms of CMT, with many point mutations on various genes causing a toxic accumulation of misfolded proteins. Symptoms of the disease often present within the first two decades of life, with CMT1A patients having reduced compound muscle and sensory action potentials, slow nerve conduction velocities, sensory loss, progressive distal weakness, foot and hand deformities, decreased reflexes, bilateral foot drop and about 5% become wheelchair bound. In contrast, the ultra-rare disease Giant Axonal Neuropathy (GAN is frequently described as a recessively inherited condition that results in progressive nerve death. GAN usually appears in early childhood and progresses slowly as neuronal injury becomes more severe and leads to death in the second or third decade. There are currently no treatments for any of the forms of CMTs or GAN. We suggest that further clinical studies should analyse electrical impedance myography as an outcome measure for CMT. Further, additional quality of life (QoL assessments for these CMTs are required, and we need to identify GAN biomarkers as well as develop new genetic testing panels for both diseases. We propose that using the Global Registry of Inherited Neuropathy (GRIN could be useful for many of these studies. Patient advocacy groups and professional organizations (such as the Hereditary Neuropathy Foundation (HNF, Hannah's Hope Fund (HHF, The Neuropathy Association (TNA and the American Association of Neuromuscular and Electrodiagnostic Medicine (AANEM can play a central role in educating clinicians and patients. Undertaking these studies will assist in the correct diagnosis of disease recruiting patients for clinical studies, and will ultimately improve the endpoints for clinical trials. By addressing obstacles that prevent industry investment in various forms of inherited neuropathies

  16. Recommendations to enable drug development for inherited neuropathies: Charcot-Marie-Tooth and Giant Axonal Neuropathy [v1; ref status: indexed, http://f1000r.es/33n

    Directory of Open Access Journals (Sweden)

    Lori Sames

    2014-04-01

    Full Text Available Approximately 1 in 2500 Americans suffer from Charcot-Marie-Tooth (CMT disease. The underlying disease mechanisms are unique in most forms of CMT, with many point mutations on various genes causing a toxic accumulation of misfolded proteins. Symptoms of the disease often present within the first two decades of life, with CMT1A patients having reduced compound muscle and sensory action potentials, slow nerve conduction velocities, sensory loss, progressive distal weakness, foot and hand deformities, decreased reflexes, bilateral foot drop and about 5% become wheelchair bound. In contrast, the ultra-rare disease Giant Axonal Neuropathy (GAN is frequently described as a recessively inherited condition that results in progressive nerve death. GAN usually appears in early childhood and progresses slowly as neuronal injury becomes more severe and leads to death in the second or third decade. There are currently no treatments for any of the forms of CMTs or GAN. We suggest that further clinical studies should analyse electrical impedance myography as an outcome measure for CMT. Further, additional quality of life (QoL assessments for these CMTs are required, and we need to identify GAN biomarkers as well as develop new genetic testing panels for both diseases. We propose that using the Global Registry of Inherited Neuropathy (GRIN could be useful for many of these studies. Patient advocacy groups and professional organizations (such as the Hereditary Neuropathy Foundation (HNF, Hannah's Hope Fund (HHF, The Neuropathy Association (TNA and the American Association of Neuromuscular and Electrodiagnostic Medicine (AANEM can play a central role in educating clinicians and patients. Undertaking these studies will assist in the correct diagnosis of disease recruiting patients for clinical studies, and will ultimately improve the endpoints for clinical trials. By addressing obstacles that prevent industry investment in various forms of inherited neuropathies

  17. Quantification of Drug Transport Function across the MultipleResistance-Associated Protein 2 (Mrp2 in Rat Livers

    Directory of Open Access Journals (Sweden)

    Pierre Bonnaventure

    2014-12-01

    Full Text Available To understand the transport function of drugs across the canalicular membrane of hepatocytes, it would be important to measure concentrations in hepatocytes and bile. However, these concentration gradients are rarely provided. The aim of the study is then to measure these concentrations and define parameters to quantify the canalicular transport of drugs through the multiple resistance associated-protein 2 (Mrp2 in entire rat livers. Besides drug bile excretion rates, we measured additional parameters to better define transport function across Mrp2: (1 Concentration gradients between hepatocyte and bile concentrations over time; and (2 a unique parameter (canalicular concentration ratio that represents the slope of the non-linear regression curve between hepatocyte and bile concentrations. This information was obtained in isolated rat livers perfused with gadobenate dimeglumine (BOPTA and mebrofenin (MEB, two hepatobiliary drugs used in clinical liver imaging. Interestingly, despite different transport characteristics including excretion rates into bile and hepatocyte clearance into bile, BOPTA and MEB have a similar canalicular concentration ratio. In contrast, the ratio was null when BOPTA was not excreted in bile in hepatocytes lacking Mrp2. The canalicular concentration ratio is more informative than bile excretion rates because it is independent of time, bile flows, and concentrations perfused in portal veins. It would be interesting to apply such information in human liver imaging where hepatobiliary compounds are increasingly investigated.

  18. 运毒行为的刑法适用%The Application of Criminal Law to Drug Transportation

    Institute of Scientific and Technical Information of China (English)

    刘湘廉; 谢海燕

    2011-01-01

    For the drug transportation, a defendant should be convicted according to the contents of his mens rea. This method can distinguish transporting from drug smuggling and trafficking, what's more, it can also draw a distinction between illegally possessing and transporting drugs. A complete crime may be determined according to the degree of achieving criminal intention of an offender. And other issues involved in drug transporting may be solved. For example, it contributes to differentiate between inchoate crimes (such as criminal preparation and attempt) and completed crimes.%对运输行为按行为人主观罪过的内容来定罪,既解决了运输毒品罪与走私毒品罪、贩卖毒品罪的区别,又解决了非法持有毒品罪与运输毒品罪的区别问题。按行为人犯罪意图的实现程度来认定犯罪的结束形态,可以解决运输毒品行为的犯罪预备、未遂与既遂问题。

  19. Targeted drug delivery systems 6: Intracellular bioreductive activation, uptake and transport of an anticancer drug delivery system across intestinal Caco-2 cell monolayers.

    Science.gov (United States)

    Gharat, L; Taneja, R; Weerapreeyakul, N; Rege, B; Polli, J; Chikhale, P J

    2001-05-21

    We demonstrate transport across, intracellular accumulation and bioreductive activation of a conformationally constrained, anticancer drug delivery system (the CH(3)-TDDS) using Caco-2 cell monolayers (CCMs) as an in vitro model of the human intestinal mucosa. Reverse-phase High Performance Liquid Chromatography (HPLC) coupled with UV detection was used to detect CH(3)-TDDS, the bioreduction product (lactone) and the released drug (melphalan methyl ester; MME). Upon incubation of the CH(3)-TDDS with the apical (AP) surface of 21-day-old CCM, we observed rapid decrease in the AP concentration of the CH(3)-TDDS (60%/hr) as a result of cellular uptake. Rapid intracellular accumulation of the CH(3)-TDDS was followed by bioreductive activation to deplete the cellular levels of CH(3)-TDDS. The drug part (MME) and lactone, as well as CH(3)-TDDS, were detected in the basolateral (BL) chamber. Intracellular Caco-2 levels of TDDS and lactone were also detectable. Bioreductive activation of the CH(3)-TDDS was additionally confirmed by formation of lactone after incubation of the CH(3)-TDDS in the presence of freshly prepared Caco-2 cell homogenates. During transport studies of melphalan or MME alone (as control), the intact drug was not detected in the intracellular compartment or in the BL chamber. These observations demonstrate that CH(3)-TDDS has potential for improving intestinal delivery of MME. TDDS could be useful in facilitating oral absorption of MME as well as the oral delivery of other agents. PMID:11337161

  20. Synthesis and characterization of a BODIPY conjugate of the BCR-ABL kinase inhibitor Tasigna® (Nilotinib): Evidence for transport of Tasigna® and its fluorescent derivative by ABC drug transporters

    OpenAIRE

    Shukla, Suneet; Skoumbourdis, Amanda P.; Walsh, Martin J.; Hartz, Anika M. S.; Fung, King Leung; Wu, Chung-pu; Gottesman, Michael M.; Bauer, Björn; Thomas, Craig J.; Suresh V Ambudkar

    2011-01-01

    Tasigna® (Nilotinib) is a recently approved BCR-ABL kinase inhibitor by the Food and Drug Administration, which is indicated for the treatment of drug-resistant chronic myelogenous leukemia (CML). The efflux of tyrosine kinase inhibitors by ATP-binding cassette (ABC) drug transporters, which actively pump these drugs out of cells utilizing ATP as an energy source, has been linked to the development of drug resistance in CML patients. We report here synthesis and characterization of a fluoresc...

  1. Endoplasmic reticulum sorting and kinesin-1 command the targeting of axonal GABAB receptors.

    Directory of Open Access Journals (Sweden)

    Viviana Valdés

    Full Text Available In neuronal cells the intracellular trafficking machinery controls the availability of neurotransmitter receptors at the plasma membrane, which is a critical determinant of synaptic strength. Metabotropic γ amino-butyric acid (GABA type B receptors (GABA(BRs are neurotransmitter receptors that modulate synaptic transmission by mediating the slow and prolonged responses to GABA. GABA(BRs are obligatory heteromers constituted by two subunits, GABA(BR1 and GABA(BR2. GABA(BR1a and GABA(BR1b are the most abundant subunit variants. GABA(BR1b is located in the somatodendritic domain whereas GABA(BR1a is additionally targeted to the axon. Sushi domains located at the N-terminus of GABA(BR1a constitute the only difference between both variants and are necessary and sufficient for axonal targeting. The precise targeting machinery and the organelles involved in sorting and transport have not been described. Here we demonstrate that GABA(BRs require the Golgi apparatus for plasma membrane delivery but that axonal sorting and targeting of GABA(BR1a operate in a pre-Golgi compartment. In the axon GABA(BR1a subunits are enriched in the endoplasmic reticulum (ER, and their dynamic behavior and colocalization with other secretory organelles like the ER-to-Golgi intermediate compartment (ERGIC suggest that they employ a local secretory route. The transport of axonal GABA(BR1a is microtubule-dependent and kinesin-1, a molecular motor of the kinesin family, determines axonal localization. Considering that progression of GABA(BRs through the secretory pathway is regulated by an ER retention motif our data contribute to understand the role of the axonal ER in non-canonical sorting and targeting of neurotransmitter receptors.

  2. Platination of the copper transporter ATP7A involved in anticancer drug resistance.

    Science.gov (United States)

    Calandrini, Vania; Arnesano, Fabio; Galliani, Angela; Nguyen, Trung Hai; Ippoliti, Emiliano; Carloni, Paolo; Natile, Giovanni

    2014-08-21

    The clinical efficacy of the widely used anticancer drug cisplatin is severely limited by the emergence of resistance. This is related to the drug binding to proteins such as the copper influx transporter Ctr1, the copper chaperone Atox1, and the copper pumps ATP7A and ATP7B. While the binding modes of cisplatin to the first two proteins are known, the structural determinants of platinated ATP7A/ATP7B are lacking. Here we investigate the interaction of cisplatin with the first soluble domain of ATP7A. First, we establish by ESI-MS and (1)H, (13)C, and (15)N NMR that, in solution, the adduct is a monomer in which the sulfur atoms of residues Cys19 and Cys22 are cis-coordinated to the [Pt(NH3)2](2+) moiety. Then, we carry out hybrid Car-Parrinello QM/MM simulations and computational spectroscopy calculations on a model adduct based on the NMR structure of the apo protein and featuring the experimentally determined binding mode of the metal ion. These calculations show quantitative agreement with CD spectra and (1)H, (13)C, and (15)N NMR chemical shifts, thus providing a quantitative molecular view of the 3D binding mode of cisplatin to ATP7A. Importantly, the same comparison rules out a variety of alternative models with different coordination modes, that we explored to test the robustness of the computational approach. Using this combined in silico-in vitro approach we provide here for the first time a quantitative 3D atomic view of the platinum binding to the first soluble domain of ATP7A. PMID:24983998

  3. Genetics Home Reference: giant axonal neuropathy

    Science.gov (United States)

    ... in giant axonal neuropathy: new insights into disease mechanisms. Muscle Nerve. 2012 Aug;46(2):246-56. ... with a qualified healthcare professional . About Genetics Home Reference Site Map Contact Us Selection Criteria for Links ...

  4. High-quality genotyping data from formalin-fixed, paraffin-embedded tissue on the drug metabolizing enzymes and transporters plus array

    NARCIS (Netherlands)

    Vos, H.I.; Straaten, T. van der; Coenen, M.J.H.; Flucke, U.E.; Loo, D.M.W.M. te; Guchelaar, H.J.

    2015-01-01

    The Affymetrix Drug Metabolizing Enzymes and Transporters (DMET) Plus array covers 1936 markers in 231 genes involved in drug metabolism and transport. Blood- and saliva-derived DNA works well on the DMET array, but the utility of DNA from FFPE tissue has not been reported for this array. As the abi

  5. The quorum-sensing molecule farnesol is a modulator of drug efflux mediated by ABC multidrug transporters and synergizes with drugs in Candida albicans.

    Science.gov (United States)

    Sharma, Monika; Prasad, Rajendra

    2011-10-01

    Overexpression of the CaCDR1-encoded multidrug efflux pump protein CaCdr1p (Candida drug resistance protein 1), belonging to the ATP binding cassette (ABC) superfamily of transporters, is one of the most prominent contributors of multidrug resistance (MDR) in Candida albicans. Thus, blocking or modulating the function of the drug efflux pumps represents an attractive approach in combating MDR. In the present study, we provide first evidence that the quorum-sensing molecule farnesol (FAR) is a specific modulator of efflux mediated by ABC multidrug transporters, such as CaCdr1p and CaCdr2p of C. albicans and ScPdr5p of Saccharomyces cerevisiae. Interestingly, FAR did not modulate the efflux mediated by the multidrug extrusion pump protein CaMdr1p, belonging to the major facilitator superfamily (MFS). Kinetic data revealed that FAR competitively inhibited rhodamine 6G efflux in CaCdr1p-overexpressing cells, with a simultaneous increase in an apparent K(m) without affecting the V(max) values and the ATPase activity. We also observed that when used in combination, FAR at a nontoxic concentration synergized with the drugs at their respective nonlethal concentrations, as was evident from their resistant clinical isolates of C. albicans. Our biochemical experiments revealed that the synergistic interaction of FAR with the drugs led to reactive oxygen species accumulation, which triggered early apoptosis, and that both could be partly reversed by the addition of an antioxidant. Collectively, FAR modulates drug extrusion mediated exclusively by ABC proteins and is synergistic to fluconazole (FLC), ketoconazole (KTC), miconazole (MCZ), and amphotericin (AMB). PMID:21768514

  6. Effect of the PPARα-activator gemfibrozil on whole blood drug transporter gene expression in humans

    OpenAIRE

    Miao, Zefeng Jr

    2014-01-01

    Gemfibrozil is a fibric acid derivative used in the treatment of dyslipidemia. It activates peroxisome proliferator activated receptor α (PPARα) and alters lipoprotein metabolism gene expression. PPARα may also regulate the expression of drug disposition genes (e.g., CYP3A4). The aim of this study was to investigate possible effects of gemfibrozil on drug transporter gene expression in human whole blood. In a randomized crossover study, 10 healthy volunteers took 600 mg gemfibrozil or p...

  7. A retrograde apoptotic signal originating in NGF-deprived distal axons of rat sympathetic neurons in compartmented cultures

    Institute of Scientific and Technical Information of China (English)

    Sue-Ann Mok; Karen Lund; Robert B Campenot

    2009-01-01

    Previous investigations of retrograde survival signaling by nerve growth factor (NGF) and other neurotrophins have supported diverse mechanisms, but all proposed mechanisms have in common the generation of survival sig-nals retrogradely transmitted to the neuronal cell bodies. We report the finding of a retrograde apoptotic signal in axons that is suppressed by local NGF signaling. NGF withdrawal from distal axons alone was sufficient to activate the pro-apoptotic transcription factor, c-jnn, in the cell bodies. Providing NGF directly to cell bodies, thereby restor-ing a source of NGF-induced survival signals, could not prevent c-jun activation caused by NGF withdrawal from the distal axons. This is evidence that c-jun is not activated due to loss of survival signals at the cell bodies. Moreover, blocking axonal transport with colchicine inhibited c-jun activation caused by NGF deprivation suggesting that a retrogradely transported pro-apoptotic signal, rather than loss of a retrogradely transported survival signal, caused c-jun activation. Additional experiments showed that activation of c-jun, pro-caspase-3 cleavage, and apoptosis were blocked by the protein kinase C inhibitors, rottlerin and chelerythrine, only when applied to distal axons suggesting that they block the axon-specific pro-apoptotic signal. The rottlerin-sensitive mechanism was found to regulate glyco-gen synthase kinase 3 (GSK3) activity. The effect of siRNA knockdown, and pharmacological inhibition of GSK3 sug-gests that GSK3 is required for apoptosis caused by NGF deprivation and may function as a retrograde carrier of the axon apoptotic signal. The existence of a retrograde death signaling system in axons that is suppressed by neurotro-phins has broad implications for neurodevelopment and for discovering treatments for neurodegenerative diseases and neurotrauma.

  8. Expression, regulation, and function of drug transporters in cervicovaginal tissues of a mouse model used for microbicide testing.

    Science.gov (United States)

    Zhou, Tian; Hu, Minlu; Pearlman, Andrew; Rohan, Lisa C

    2016-09-15

    P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance protein 4 (MRP4) are three efflux transporters that play key roles in the pharmacokinetics of antiretroviral drugs used in the pre-exposure prophylaxis of HIV sexual transmission. In this study, we investigated the expression, regulation, and function of these transporters in cervicovaginal tissues of a mouse model. Expression and regulation were examined using real-time RT-PCR and immunohistochemical staining, in the mouse tissues harvested at estrus and diestrus stages under natural cycling or after hormone synchronization. The three transporters were expressed at moderate to high levels compared to the liver. Transporter proteins were localized in various cell types in different tissue segments. Estrous cycle and exogenous hormone treatment affected transporter mRNA and protein expression, in a tissue- and transporter-dependent manner. Depo-Provera-synchronized mice were dosed vaginally or intraperitoneally with (3)H-TFV, with or without MK571 co-administration, to delineate the function of cervicovaginal Mrp4. Co-administration of MK571 significantly increased the concentration of vaginally-administered TFV in endocervix and vagina. MK571 increased the concentration of intraperitoneally-administered TFV in the cervicovaginal lavage and vagina by several fold. Overall, P-gp, Bcrp, and Mrp4 were positively expressed in mouse cervicovaginal tissues, and their expression can be regulated by the estrous cycle or by exogenous hormones. In this model, the Mrp4 transporter impacted TFV distribution in cervicovaginal tissues. PMID:27453435

  9. Pomalidomide: evaluation of cytochrome P450 and transporter-mediated drug-drug interaction potential in vitro and in healthy subjects.

    Science.gov (United States)

    Kasserra, Claudia; Assaf, Mahmoud; Hoffmann, Matthew; Li, Yan; Liu, Liangang; Wang, Xiaomin; Kumar, Gondi; Palmisano, Maria

    2015-02-01

    Pomalidomide offers an alternative for patients with relapsed/refractory multiple myeloma who have exhausted treatment options with lenalidomide and bortezomib. Little is known about pomalidomide's potential for drug-drug interactions (DDIs); as pomalidomide clearance includes hydrolysis and cytochrome P450 (CYP450)-mediated hydroxylation, possible DDIs via CYP450 and drug-transporter proteins were investigated in vitro and in a clinical study. In vitro pomalidomide was neither an inducer nor inhibitor of CYP450, nor an inhibitor of transporter proteins P glycoprotein (P-gp), BCRP, OAT1, OAT3, OCT2, OATP1B1, and OATP1B3. Oxidative metabolism of pomalidomide was predominately mediated by CYP1A2 and CYP3A4, and pomalidomide was shown to be a P-gp substrate. In healthy males, co-administration of oral (4 mg) pomalidomide with ketoconazole (CYP3A/P-gp inhibitor) or carbamazepine (CYP3A/P-gp inducer) did not result in clinically relevant changes in pomalidomide exposure. Co-administration of pomalidomide with fluvoxamine (CYP1A2 inhibitor) in the presence of ketoconazole approximately doubled pomalidomide exposure. Pomalidomide appears to have low potential for clinically relevant DDI and is unlikely to affect the clinical exposure of other drugs. Avoid co-administration of strong CYP1A2 inhibitors unless medically necessary. Pomalidomide dose should be reduced by 50% if co-administered with strong CYP1A2 inhibitors and strong CYP3A/P-gp inhibitors. PMID:25159194

  10. How Schwann Cells Sort Axons: New Concepts.

    Science.gov (United States)

    Feltri, M Laura; Poitelon, Yannick; Previtali, Stefano Carlo

    2016-06-01

    Peripheral nerves contain large myelinated and small unmyelinated (Remak) fibers that perform different functions. The choice to myelinate or not is dictated to Schwann cells by the axon itself, based on the amount of neuregulin I-type III exposed on its membrane. Peripheral axons are more important in determining the final myelination fate than central axons, and the implications for this difference in Schwann cells and oligodendrocytes are discussed. Interestingly, this choice is reversible during pathology, accounting for the remarkable plasticity of Schwann cells, and contributing to the regenerative potential of the peripheral nervous system. Radial sorting is the process by which Schwann cells choose larger axons to myelinate during development. This crucial morphogenetic step is a prerequisite for myelination and for differentiation of Remak fibers, and is arrested in human diseases due to mutations in genes coding for extracellular matrix and linkage molecules. In this review we will summarize progresses made in the last years by a flurry of reverse genetic experiments in mice and fish. This work revealed novel molecules that control radial sorting, and contributed unexpected ideas to our understanding of the cellular and molecular mechanisms that control radial sorting of axons. PMID:25686621

  11. Calpain activity promotes the sealing of severed giant axons

    OpenAIRE

    Godell, Christopher M.; Smyers, Mark E.; Eddleman, Christopher S.; Ballinger, Martis L.; Fishman, Harvey M.; Bittner, George D.

    1997-01-01

    A barrier (seal) must form at the cut ends of a severed axon if a neuron is to survive and eventually regenerate. Following severance of crayfish medial giant axons in physiological saline, vesicles accumulate at the cut end and form a barrier (seal) to ion and dye diffusion. In contrast, squid giant axons do not seal, even though injury-induced vesicles form after axonal transection and accumulate at cut axonal ends. Neither axon seals in Ca2+-free salines. The addition of calpain to the bat...

  12. Relationship between rate of drug uptake in brain and behavioral pharmacology of monoamine transporter inhibitors in rhesus monkeys

    OpenAIRE

    Kimmel, Heather L.; Negus, S. Stevens; Wilcox, Kristin M; Ewing, Sarah B.; Stehouwer, Jeffrey; Goodman, Mark M.; Votaw, John R.; Mello, Nancy K.; Carroll, F. Ivy; Howell, Leonard L.

    2008-01-01

    Although inhibition of dopamine transporters (DAT) and the subsequent increase in dopamine clearly play a role in the effects of psychomotor stimulants, the reinforcing effectiveness of DAT inhibitors varies. Previous studies suggest that pharmacokinetic and pharmacodynamic properties of these drugs account for this variability. The present studies compared the time-course and behavioral effects of five phenyltropane analogs of cocaine with high affinity for DAT and varying time courses of ac...

  13. Imaging axonal degeneration and repair in pre-clinical animal models of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Soumya S Yandamuri

    2016-05-01

    Full Text Available Multiple sclerosis (MS is a central nervous system (CNS disease characterized by chronic neuroinflammation, demyelination, and axonal damage. Infiltration of activated lymphocytes and myeloid cells are thought to be primarily responsible for white matter damage and axonopathy. Over time, this neurologic damage manifests clinically as debilitating motor and cognitive symptoms. Existing MS therapies focus on symptom relief and delay of disease progression through reduction of neuroinflammation. However, long-term strategies to remyelinate, protect, or regenerate axons have remained elusive, posing a challenge to treating progressive forms of MS. Preclinical mouse models and techniques such as immunohistochemistry, flow cytometry, and genomic and proteomic analysis have provided advances in our understanding of discrete time-points of pathology following disease induction. More recently, in vivo and in situ two-photon microscopy (2P has made it possible to visualize continuous real-time cellular behavior and structural changes occurring within the CNS during neuropathology. Research utilizing 2P imaging to study axonopathy in neuroinflammatory demyelinating disease has focused on five areas: (1 axonal morphologic changes (2 organelle transport and health, (3 relationship to inflammation, (4 neuronal excitotoxicity, and (5 regenerative therapies. 2P imaging may also be used to identify novel therapeutic targets via identification and clarification of dynamic cellular and molecular mechanisms of axonal regeneration and remyelination. Here, we review tools that have made 2P accessible for imaging neuropathologies and advances in our understanding of axonal degeneration and repair in preclinical models of demyelinating diseases.

  14. Microfluidic device for unidirectional axon growth

    Science.gov (United States)

    Malishev, E.; Pimashkin, A.; Gladkov, A.; Pigareva, Y.; Bukatin, A.; Kazantsev, V.; Mukhina, I.; Dubina, M.

    2015-11-01

    In order to better understand the communication and connectivity development of neuron networks, we designed microfluidic devices with several chambers for growing dissociated neuronal cultures from mice fetal hippocampus (E18). The chambers were connected with microchannels providing unidirectional axonal growth between “Source” and “Target” neural sub-networks. Experiments were performed in a hippocampal cultures plated in a poly-dimethylsiloxane (PDMS) microfluidic chip, aligned with a 60 microelectrode array (MEA). Axonal growth through microchannels was observed with brightfield, phase-contrast and fluorescence microscopy, and after 7 days in vitro electrical activity was recorded. Visual inspection and spike propagation analysis showed the predominant axonal growth in microchannels in a direction from “Source” to “Target”.

  15. Comparison of the Ability of Various Imaging Modalities (CT & Plain X- Ray in Detecting Drug Transport in Body Packers

    Directory of Open Access Journals (Sweden)

    Morteza Sanei

    2009-01-01

    Full Text Available "ndrugs within the human body. In our country due to vast common border with Afghanistan which is the biggest Opium producer in the world and has the second place in Heroine production, drug smuggling has potential national threat and besides it has a global impact as using our territory as the major smuggling route to the west. Furthermore, in recent years new generations of African smugglers of new types of drugs are using our country as a transit route to transport drugs to Europe or Africa. In this way handmade or automatically produced packets are swallowed, rectally or vaginally inserted, and then transported. The first choice modality is plain x-ray of the abdomen in upright and supine positions. Recently abdominal and pelvic CT without contrast has shown a great success rate in the detection of body packers with changing window modality to detect different types of drugs. "nMaterials and Methods: Plain x-ray and abdominal and pelvic CT without contrast were performed for 12 cases who confessed to drug packet ingestion. The presence, number and location of the packets were evaluated in different modalities and the density of the packets were also measured in Hounsfield units (HU. "nResults: The mean age of our cases was 28.2±5.9 years (range, 17-35 years. Eleven (91.6 % patients were male and only one case was female. All patients had characteristic findings in plain x-ray and also all packets were visualized in all patients "nConclusion: Plain x-ray has a distinctive position in detecting packets in intestines especially when oral contrast materials are used. It is cheaper and more accessible than CT, but using different Hounsfield units in CT windows can even characterize different types of drugs even before extracting them.  

  16. Diverse modes of axon elaboration in the developing neocortex.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The development of axonal arbors is a critical step in the establishment of precise neural circuits, but relatively little is known about the mechanisms of axonal elaboration in the neocortex. We used in vivo two-photon time-lapse microscopy to image axons in the neocortex of green fluorescent protein-transgenic mice over the first 3 wk of postnatal development. This period spans the elaboration of thalamocortical (TC and Cajal-Retzius (CR axons and cortical synaptogenesis. Layer 1 collaterals of TC and CR axons were imaged repeatedly over time scales ranging from minutes up to days, and their growth and pruning were analyzed. The structure and dynamics of TC and CR axons differed profoundly. Branches of TC axons terminated in small, bulbous growth cones, while CR axon branch tips had large growth cones with numerous long filopodia. TC axons grew rapidly in straight paths, with frequent interstitial branch additions, while CR axons grew more slowly along tortuous paths. For both types of axon, new branches appeared at interstitial sites along the axon shaft and did not involve growth cone splitting. Pruning occurred via retraction of small axon branches (tens of microns, at both CR and TC axons or degeneration of large portions of the arbor (hundreds of microns, for TC axons only. The balance between growth and retraction favored overall growth, but only by a slight margin. Given the identical layer 1 territory upon which CR and TC axons grow, the differences in their structure and dynamics likely reflect distinct intrinsic growth programs for axons of long projection neurons versus local interneurons.

  17. Automated Axon Counting in Rodent Optic Nerve Sections with AxonJ

    Science.gov (United States)

    Zarei, Kasra; Scheetz, Todd E.; Christopher, Mark; Miller, Kathy; Hedberg-Buenz, Adam; Tandon, Anamika; Anderson, Michael G.; Fingert, John H.; Abràmoff, Michael David

    2016-01-01

    We have developed a publicly available tool, AxonJ, which quantifies the axons in optic nerve sections of rodents stained with paraphenylenediamine (PPD). In this study, we compare AxonJ’s performance to human experts on 100x and 40x images of optic nerve sections obtained from multiple strains of mice, including mice with defects relevant to glaucoma. AxonJ produced reliable axon counts with high sensitivity of 0.959 and high precision of 0.907, high repeatability of 0.95 when compared to a gold-standard of manual assessments and high correlation of 0.882 to the glaucoma damage staging of a previously published dataset. AxonJ allows analyses that are quantitative, consistent, fully-automated, parameter-free, and rapid on whole optic nerve sections at 40x. As a freely available ImageJ plugin that requires no highly specialized equipment to utilize, AxonJ represents a powerful new community resource augmenting studies of the optic nerve using mice. PMID:27226405

  18. Multiple human isoforms of drug transporters contribute to the hepatic and renal transport of olmesartan, a selective antagonist of the angiotensin II AT1-receptor.

    Science.gov (United States)

    Yamada, Akihiro; Maeda, Kazuya; Kamiyama, Emi; Sugiyama, Daisuke; Kondo, Tsunenori; Shiroyanagi, Yoshiyuki; Nakazawa, Hayakazu; Okano, Teruo; Adachi, Masashi; Schuetz, John D; Adachi, Yasuhisa; Hu, Zhuohan; Kusuhara, Hiroyuki; Sugiyama, Yuichi

    2007-12-01

    Olmesartan, a novel angiotensin II AT1-receptor antagonist, is excreted into both bile and urine, with minimal metabolism. Because olmesartan is a hydrophilic anionic compound, some transporters could be involved in its hepatic and renal clearance. In this study, we characterized the role of human drug transporters in the pharmacokinetics of olmesartan and determined the contribution of each transporter to the overall clearance of olmesartan. Olmesartan was significantly taken up into human embryonic kidney 293 cells expressing organic anion-transporting polypeptide (OATP) 1B1, OATP1B3, organic anion transporter (OAT) 1, and OAT3. We also observed its saturable uptake into human hepatocytes and kidney slices. Estimated from the relative activity factor method and application of specific inhibitors, the relative contributions of OATP1B1 and OATP1B3 to the uptake of olmesartan in human hepatocytes were almost the same, whereas OAT3 was predominantly involved in its uptake in kidney slices. The vectorial transport of olmesartan was observed in OATP1B1/multidrug resistance-associated protein (MRP) 2 double transfectants, but not in OATP1B1/multidrug resistance (MDR) 1 and OATP1B1/breast cancer resistance protein (BCRP) transfectants. ATP-dependent transport into membrane vesicles expressing human MRP2 and MRP4 was clearly observed, with K(m) values of 14.9 and 26.2 microM, respectively, whereas the urinary excretion of olmesartan in Mrp4-knockout mice was not different from that of control mice. We also investigated the transcellular transport of olmesartan medoxomil, a prodrug of olmesartan. Vectorial basal-to-apical transport was observed in OATP1B1/MRP2, OATP1B1/MDR1 double, and OATP1B1/BCRP double transfectants, suggesting the possible involvement of MRP2, MDR1, and BCRP in the limit of intestinal absorption of olmesartan medoxomil. From these results, we suggest that multiple transporters make a significant contribution to the pharmacokinetics of olmesartan and

  19. Fluorination of an antiepileptic drug: A self supporting transporter by oxygen enrichment mechanism.

    Science.gov (United States)

    Natchimuthu, V; Amoros, J; Ravi, S

    2016-03-01

    Drug therapy of seizures involves producing high levels of antiepileptic drugs in the blood. Drug must enter the brain by crossing from the blood into the brain tissue, called a transvascular route (TVR). Even before the drug can reach the brain tissue, factors such as systemic toxicity, macrophage phagocytises and reduction in oxygen content limit the success of this TVR. Encapsulating the drug within a nano scale delivering system, synthesising drugs with low molecular weight are the best mechanisms to deliver the drug to the brain. But through this article, we have explored a possibility of attaching a molecule 4-(trifluoromethyl) benzoic acid (TFMBA), that possess more number of fluorine atom, to benzodiazepine (BDZ) resulting in an ionic salt (S)-(+)-2,3-dihydro-1H-pyrrolo[2,1-c][1,4]benzodiazepine5,11(10H,11aH)-dione with 4-(trifluoromethyl)benzoic acid. By this way, reducing the toxicity of BDZ than the conventional anti-epileptic drugs (AEDs), increasing the solubility, reducing the melting point, enriching the TVR with excess oxygen content with the support of fluorine. With all these important prerequisites fulfilled, the drug along with the attached molecule is expected to travel more comfortably through the TVR without any external support than any other conventional AEDs. FTIR, (1)H NMR, (13)C NMR, HRMS spectroscopy, HRTEM and In vitro cytotoxicity analysis supports this study. PMID:26708322

  20. MSC p43 required for axonal development in motor neurons

    Science.gov (United States)

    Zhu, Xiaodong; Liu, Yang; Yin, Yanqing; Shao, Aiyun; Zhang, Bo; Kim, Sunghoon; Zhou, Jiawei

    2009-01-01

    Neuron connectivity and correct neural function largely depend on axonal integrity. Neurofilaments (NFs) constitute the main cytoskeletal network maintaining the structural integrity of neurons and exhibit dynamic changes during axonal and dendritic growth. However, the mechanisms underlying axonal development and maintenance remain poorly understood. Here, we identify that multisynthetase complex p43 (MSC p43) is essential for NF assembly and axon maintenance. The MSC p43 protein was predominantly expressed in central neurons and interacted with NF light subunit in vivo. Mice lacking MSC p43 exhibited axon degeneration in motor neurons, defective neuromuscular junctions, muscular atrophy, and motor dysfunction. Furthermore, MSC p43 depletion in mice caused disorganization of the axonal NF network. Mechanistically, MSC p43 is required for maintaining normal phosphorylation levels of NFs. Thus, MSC p43 is indispensable in maintaining axonal integrity. Its dysfunction may underlie the NF disorganization and axon degeneration associated with motor neuron degenerative diseases. PMID:19717447

  1. Evaluation of drug-drug interaction between henagliflozin, a novel sodium-glucose co-transporter 2 inhibitor, and metformin in healthy Chinese males.

    Science.gov (United States)

    Wang, Liupeng; Wu, Chunyong; Shen, Lu; Liu, Haiyan; Chen, Ying; Liu, Fang; Wang, Youqun; Yang, Jin

    2016-08-01

    1. Henagliflozin is a novel sodium-glucose transporter 2 inhibitor and presents a complementary therapy to metformin for patients with T2DM due to its insulin-independent mechanism of action. This study evaluated the potential pharmacokinetic drug-drug interaction between henagliflozin and metformin in healthy Chinese male subjects. 2. In open-label, single-center, single-arm, two-period, three-treatment self-control study, 12 subjects received 25 mg henagliflozin, 1000 mg metformin or the combination. Lack of PK interaction was defined as the ratio of geometric means and 90% confidence interval (CI) for combination: monotherapy being within the range of 0.80-1.25. 3. Co-administration of henagliflozin with metformin had no effect on henagliflozin area under the plasma concentration-time curve (AUC0-24) (GRM: 1.08; CI: 1.05, 1.10) and peak plasma concentration (Cmax) (GRM: 0.99; CI: 0.92, 1.07). Reciprocally, co-administration of metformin with henagliflozin had no clinically significant on metformin AUC0-24 (GRM: 1.09, CI: 1.02, 1.16) although there was an 11% increase in metformin Cmax (GRM 1.12; CI 1.02, 1.23). All monotherapies and combination therapy were well tolerated. 4. Henagliflozin can be co-administered with metformin without dose adjustment of either drug. PMID:26608671

  2. Functions of axon guidance molecules in synapse formation

    OpenAIRE

    Chen, Shih-Yu; Cheng, Hwai-Jong

    2009-01-01

    Axon guidance and synapse formation are important developmental events for establishing a functional neuronal circuitry. These two related cellular processes occur in a coordinated fashion but previous studies from multiple model organisms seemed to suggest that axon guidance and synapse formation are mediated by distinct molecular cues. Thus, axon guidance molecules are responsible for guiding the navigating axon toward its target area, while other adhesion or ligand-receptor molecules speci...

  3. Drug membrane transporters and CYP3A4 are affected by hypericin, hyperforin or aristoforin in colon adenocarcinoma cells.

    Science.gov (United States)

    Šemeláková, M; Jendželovský, R; Fedoročko, P

    2016-07-01

    Our previous results have shown that the combination of hypericin-mediated photodynamic therapy (HY-PDT) at sub-optimal dose with hyperforin (HP) (compounds of Hypericum sp.), or its stable derivative aristoforin (AR) stimulates generation of reactive oxygen species (ROS) leading to antitumour activity. This enhanced oxidative stress evoked the need for an explanation for HY accumulation in colon cancer cells pretreated with HP or AR. Generally, the therapeutic efficacy of chemotherapeutics is limited by drug resistance related to the overexpression of drug efflux transporters in tumour cells. Therefore, the impact of non-activated hypericin (HY), HY-PDT, HP and AR on cell membrane transporter systems (Multidrug resistance-associated protein 1-MRP1/ABCC1, Multidrug resistance-associated protein 2-MRP2/ABCC2, Breast cancer resistance protein - BCRP/ABCG2, P-glycoprotein-P-gp/ABCC1) and cytochrome P450 3A4 (CYP3A4) was evaluated. The different effects of the three compounds on their expression, protein level and activity was determined under specific PDT light (T0+, T6+) or dark conditions (T0- T6-). We found that HP or AR treatment affected the protein levels of MRP2 and P-gp, whereas HP decreased MRP2 and P-gp expression mostly in the T0+ and T6+ conditions, while AR decreased MRP2 in T0- and T6+. Moreover, HY-PDT treatment induced the expression of MRP1. Our data demonstrate that HP or AR treatment in light or dark PDT conditions had an inhibitory effect on the activity of individual membrane transport proteins and significantly decreased CYP3A4 activity in HT-29 cells. We found that HP or AR significantly affected intracellular accumulation of HY in HT-29 colon adenocarcinoma cells. These results suggest that HY, HP and AR might affect the efficiency of anti-cancer drugs, through interaction with membrane transporters and CYP3A4. PMID:27261575

  4. Transport rankings of non-steroidal antiinflammatory drugs across blood-brain barrier in vitro models.

    Directory of Open Access Journals (Sweden)

    Iveta Novakova

    Full Text Available The aim of this work was to conduct a comprehensive study about the transport properties of NSAIDs across the blood-brain barrier (BBB in vitro. Transport studies with celecoxib, diclofenac, ibuprofen, meloxicam, piroxicam and tenoxicam were accomplished across Transwell models based on cell line PBMEC/C1-2, ECV304 or primary rat brain endothelial cells. Single as well as group substance studies were carried out. In group studies substance group compositions, transport medium and serum content were varied, transport inhibitors verapamil and probenecid were added. Resulted permeability coefficients were compared and normalized to internal standards diazepam and carboxyfluorescein. Transport rankings of NSAIDs across each model were obtained. Single substance studies showed similar rankings as corresponding group studies across PBMEC/C1-2 or ECV304 cell layers. Serum content, glioma conditioned medium and inhibitors probenecid and verapamil influenced resulted permeability significantly. Basic differences of transport properties of the investigated NSAIDs were similar comparing all three in vitro BBB models. Different substance combinations in the group studies and addition of probenecid and verapamil suggested that transporter proteins are involved in the transport of every tested NSAID. Results especially underlined the importance of same experimental conditions (transport medium, serum content, species origin, cell line for proper data comparison.

  5. Morphometry of Axons in Optic Nerves of Siamese's Twins

    Institute of Scientific and Technical Information of China (English)

    Xinzu Gu; Zhenping Zhang; Qi Lin; Jiongji Liang; Wenyu Lu; Xiulan Ye; A A Sadun

    2002-01-01

    Purpose: To observe the development of optic nerve, we examined four optic nerves from Siameses Twins by absolute counts of axons.Methods: Mean axon diameter, mean axon density, totally axonal population and optic nerve area were noted for each optic nerve. The mean axon diameter and the mean axon density were compared between paraxial (inner sectors)and cortical (outer sectors)areas of the nerves.Results: More myelinated axons were seen in the inner sectors as compared to the outer sectors(average 11 axons/1 000 μm2 in inner sectors and 34 axons/l 000 μm2 in outer sectors( P=0. 036) . The myelinated fibers were also smaller(63 microns) in the outer sectors as compared to the inner sectors(72 microns) ( P = 0. 001 ). The average cross sectors area for the four 40 week stage optical nerves of Siamese Twins was 3.32 × 103 as compared to 1 million axons for 32-week-old normals.Conclusion: Our finding of fewer axonal number and small myelinated fibers in the Siamese Twins suggests hypoplasia. Myelination was more abnormal in the paraxial optic nerve than that in the peripheral sectors, suggesting anomalous development of optic nerve peripherally and delayed developnent centrally. Axonal density is higher in inner sectors than that in outer sectors, suggesting delayed development of the outer nerve sector.

  6. Electrokinetic confinement of axonal growth for dynamically configurable neural networks.

    Science.gov (United States)

    Honegger, Thibault; Scott, Mark A; Yanik, Mehmet F; Voldman, Joel

    2013-02-21

    Axons in the developing nervous system are directed via guidance cues, whose expression varies both spatially and temporally, to create functional neural circuits. Existing methods to create patterns of neural connectivity in vitro use only static geometries, and are unable to dynamically alter the guidance cues imparted on the cells. We introduce the use of AC electrokinetics to dynamically control axonal growth in cultured rat hippocampal neurons. We find that the application of modest voltages at frequencies on the order of 10(5) Hz can cause developing axons to be stopped adjacent to the electrodes while axons away from the electric fields exhibit uninhibited growth. By switching electrodes on or off, we can reversibly inhibit or permit axon passage across the electrodes. Our models suggest that dielectrophoresis is the causative AC electrokinetic effect. We make use of our dynamic control over axon elongation to create an axon-diode via an axon-lock system that consists of a pair of electrode 'gates' that either permit or prevent axons from passing through. Finally, we developed a neural circuit consisting of three populations of neurons, separated by three axon-locks to demonstrate the assembly of a functional, engineered neural network. Action potential recordings demonstrate that the AC electrokinetic effect does not harm axons, and Ca(2+) imaging demonstrated the unidirectional nature of the synaptic connections. AC electrokinetic confinement of axonal growth has potential for creating configurable, directional neural networks. PMID:23314575

  7. Spatial temperature gradients guide axonal outgrowth

    Science.gov (United States)

    Black, Bryan; Vishwakarma, Vivek; Dhakal, Kamal; Bhattarai, Samik; Pradhan, Prabhakar; Jain, Ankur; Kim, Young-Tae; Mohanty, Samarendra

    2016-07-01

    Formation of neural networks during development and regeneration after injury depends on accuracy of axonal pathfinding, which is primarily believed to be influenced by chemical cues. Recently, there is growing evidence that physical cues can play crucial role in axonal guidance. However, detailed mechanism involved in such guidance cues is lacking. By using weakly-focused near-infrared continuous wave (CW) laser microbeam in the path of an advancing axon, we discovered that the beam acts as a repulsive guidance cue. Here, we report that this highly-effective at-a-distance guidance is the result of a temperature field produced by the near-infrared laser light absorption. Since light absorption by extracellular medium increases when the laser wavelength was red shifted, the threshold laser power for reliable guidance was significantly lower in the near-infrared as compared to the visible spectrum. The spatial temperature gradient caused by the near-infrared laser beam at-a-distance was found to activate temperature-sensitive membrane receptors, resulting in an influx of calcium. The repulsive guidance effect was significantly reduced when extracellular calcium was depleted or in the presence of TRPV1-antagonist. Further, direct heating using micro-heater confirmed that the axonal guidance is caused by shallow temperature-gradient, eliminating the role of any non-photothermal effects.

  8. Early cellular signaling responses to axonal injury

    Directory of Open Access Journals (Sweden)

    Wang Ai

    2009-03-01

    Full Text Available Abstract Background We have used optic nerve injury as a model to study early signaling events in neuronal tissue following axonal injury. Optic nerve injury results in the selective death of retinal ganglion cells (RGCs. The time course of cell death takes place over a period of days with the earliest detection of RGC death at about 48 hr post injury. We hypothesized that in the period immediately following axonal injury, there are changes in the soma that signal surrounding glia and neurons and that start programmed cell death. In the current study, we investigated early changes in cellular signaling and gene expression that occur within the first 6 hrs post optic nerve injury. Results We found evidence of cell to cell signaling within 30 min of axonal injury. We detected differences in phosphoproteins and gene expression within the 6 hrs time period. Activation of TNFα and glutamate receptors, two pathways that can initiate cell death, begins in RGCs within 6 hrs following axonal injury. Differential gene expression at 6 hrs post injury included genes involved in cytokine, neurotrophic factor signaling (Socs3 and apoptosis (Bax. Conclusion We interpret our studies to indicate that both neurons and glia in the retina have been signaled within 30 min after optic nerve injury. The signals are probably initiated by the RGC soma. In addition, signals activating cellular death pathways occur within 6 hrs of injury, which likely lead to RGC degeneration.

  9. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse.

    Science.gov (United States)

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2016-08-01

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune

  10. Proline modulates the Trypanosoma cruzi resistance to reactive oxygen species and drugs through a novel D, L-proline transporter.

    Directory of Open Access Journals (Sweden)

    Melisa Sayé

    Full Text Available Trypanosoma cruzi, the etiological agent of Chagas' disease, has a metabolism largely based on the consumption of glucose and proline. This amino acid is essential for host cells infection and intracellular differentiation. In this work we identified a proline transporter (TcAAAP069 by yeasts complementation assays and overexpression in Trypanosoma cruzi epimastigotes. TcAAAP069 is mono-specific for proline but presents an unusual feature; the lack of stereospecificity, because it is competitively inhibited by the D- enantiomer. Parasites overexpressing TcAAAP069 have an increased intracellular proline concentration, 2.6-fold higher than controls, as a consequence of a higher proline transport rate. Furthermore, augmented proline concentration correlates with an improved resistance to trypanocidal drugs and also to reactive oxygen species including hydrogen peroxide and nitric oxide, emulating natural physiological situations. The IC50s for nifurtimox, benznidazole, H2O2 and NO. were 125%, 68%, 44% and 112% higher than controls, respectively. Finally, proline metabolism generates a higher concentration (48% of ATP in TcAAAP069 parasites. Since proline participates on essential energy pathways, stress and drug resistance responses, these results provide a novel target for the development of new drugs for the treatments for Chagas' disease.

  11. Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain

    OpenAIRE

    Larsen, Camilla; Shy, Diana; Spindler, Shana R; Fung, Siaumin; Pereanu, Wayne; Younossi -Hartenstein, Amelia; Hartenstein, Volker

    2009-01-01

    The Drosophila central brain is composed of approximately 100 paired lineages, with most lineages comprising 100–150 neurons. Most lineages have a number of important characteristics in common. Typically, neurons of a lineage stay together as a coherent cluster and project their axons into a coherent bundle visible from late embryo to adult. Neurons born during the embryonic period form the primary axon tracts (PATs) that follow stereotyped pathways in the neuropile. Apoptotic cell death remo...

  12. Herb-Drug Pharmacokinetic Interactions: Transport and Metabolism of Indinavir in the Presence of Selected Herbal Products

    Directory of Open Access Journals (Sweden)

    Carlemi Calitz

    2015-12-01

    Full Text Available Patients receiving anti-retroviral drug treatment are sometimes simultaneously taking herbal remedies, which may result in pharmacokinetic herb-drug interactions. This study aimed to determine if pharmacokinetic interactions exist between selected commercially available herbal products (i.e., Linctagon Forte®, Viral Choice® and Canova® and indinavir in terms of in vitro transport and metabolism. Bi-directional transport of indinavir was evaluated across Caco-2 cell monolayers in the presence and absence of the selected herbal products and verapamil (positive control. Metabolism of indinavir was determined in LS180 cells in the presence and absence of the selected herbal products as well as ketoconazole (positive control. The secretory transport of indinavir increased in a concentration dependent way in the presence of Linctagon Forte® and Viral Choice® when compared to that of indinavir alone. Canova® only slightly affected the efflux of indinavir compared to that of the control group. There was a pronounced inhibition of the metabolism of indinavir in LS180 cells over the entire concentration range for all the herbal products investigated in this study. These in vitro pharmacokinetic interactions indicate the selected herbal products may affect indinavir’s bioavailability, but the clinical significance needs to be confirmed with in vivo studies before final conclusions can be made.

  13. Herb-Drug Pharmacokinetic Interactions: Transport and Metabolism of Indinavir in the Presence of Selected Herbal Products.

    Science.gov (United States)

    Calitz, Carlemi; Gouws, Chrisna; Viljoen, Joe; Steenekamp, Jan; Wiesner, Lubbe; Abay, Efrem; Hamman, Josias

    2015-01-01

    Patients receiving anti-retroviral drug treatment are sometimes simultaneously taking herbal remedies, which may result in pharmacokinetic herb-drug interactions. This study aimed to determine if pharmacokinetic interactions exist between selected commercially available herbal products (i.e., Linctagon Forte(®), Viral Choice(®) and Canova(®)) and indinavir in terms of in vitro transport and metabolism. Bi-directional transport of indinavir was evaluated across Caco-2 cell monolayers in the presence and absence of the selected herbal products and verapamil (positive control). Metabolism of indinavir was determined in LS180 cells in the presence and absence of the selected herbal products as well as ketoconazole (positive control). The secretory transport of indinavir increased in a concentration dependent way in the presence of Linctagon Forte(®) and Viral Choice(®) when compared to that of indinavir alone. Canova(®) only slightly affected the efflux of indinavir compared to that of the control group. There was a pronounced inhibition of the metabolism of indinavir in LS180 cells over the entire concentration range for all the herbal products investigated in this study. These in vitro pharmacokinetic interactions indicate the selected herbal products may affect indinavir's bioavailability, but the clinical significance needs to be confirmed with in vivo studies before final conclusions can be made. PMID:26690396

  14. Speciifc effects of c-Jun NH2-terminal kinase-interacting protein 1 in neuronal axons

    Institute of Scientific and Technical Information of China (English)

    Shu Tang; Qiang Wen; Xiao-jian Zhang; Quan-cheng Kan

    2016-01-01

    c-Jun NH2-terminal kinase (JNK)-interacting protein 3 plays an important role in brain-derived neurotrophic factor/tropomyosin-related kinase B (TrkB) anterograde axonal transport. It remains unclear whether JNK-interacting protein 1 mediates similar effects, or whether JNK-interacting protein 1 affects the regulation of TrkB anterograde axonal transport. In this study, we isolated rat embryonic hippocampus and cultured hippocampal neuronsin vitro. Coimmunoprecipitation results demonstrated that JNK-interacting protein 1 formed TrkB com-plexesin vitro andin vivo. Immunocytochemistry results showed that when JNK-interacting protein 1 was highly expressed, the distribution of TrkB gradually increased in axon terminals. However, the distribution of TrkB reduced in axon terminals after knocking out JNK-interact-ing protein 1. In addition, there were differences in distribution of TrkB after JNK-interacting protein 1 was knocked out compared with not. However, knockout of JNK-interacting protein 1 did not affect the distribution of TrkB in dendrites. These ifndings conifrm that JNK-inter-acting protein 1 can interact with TrkB in neuronal cells, and can regulate the transport of TrkB in axons, but not in dendrites.

  15. White-matter astrocytes, axonal energy metabolism, and axonal degeneration in multiple sclerosis

    Science.gov (United States)

    Cambron, Melissa; D'Haeseleer, Miguel; Laureys, Guy; Clinckers, Ralph; Debruyne, Jan; De Keyser, Jacques

    2012-01-01

    In patients with multiple sclerosis (MS), a diffuse axonal degeneration occurring throughout the white matter of the central nervous system causes progressive neurologic disability. The underlying mechanism is unclear. This review describes a number of pathways by which dysfunctional astrocytes in MS might lead to axonal degeneration. White-matter astrocytes in MS show a reduced metabolism of adenosine triphosphate-generating phosphocreatine, which may impair the astrocytic sodium potassium pump and lead to a reduced sodium-dependent glutamate uptake. Astrocytes in MS white matter appear to be deficient in β2 adrenergic receptors, which are involved in stimulating glycogenolysis and suppressing inducible nitric oxide synthase (NOS2). Glutamate toxicity, reduced astrocytic glycogenolysis leading to reduced lactate and glutamine production, and enhanced nitric oxide (NO) levels may all impair axonal mitochondrial metabolism, leading to axonal degeneration. In addition, glutamate-mediated oligodendrocyte damage and impaired myelination caused by a decreased production of N-acetylaspartate by axonal mitochondria might also contribute to axonal loss. White-matter astrocytes may be considered as a potential target for neuroprotective MS therapies. PMID:22214904

  16. THE LACTOCOCCAL LMRP GENE ENCODES A PROTON MOTIVE FORCE-DEPENDENT DRUG TRANSPORTER

    OpenAIRE

    Bolhuis, H.; Poelarends, G. J.; van Veen, H W; Poolman, B; Driessen, A.J.M.; Konings, W N

    1995-01-01

    To genetically dissect the drug extrusion systems of Lactococcus lactis, a chromosomal. DNA library was made in Escherichia coli and recombinant strains were selected for resistance to high concentrations of ethidium bromide. Recombinant strains were found to be resistant not only to ethidium bromide but also to daunomycin and tetraphenylphosphonium. The drug resistance is conferred by the lmrP gene, which encodes a hydrophobic polypeptide of 408 amino acid residues with 12 putative membrane-...

  17. Mislocalization of neuronal mitochondria reveals regulation of Wallerian degeneration and NMNAT/WLDS-mediated axon protection independent of axonal mitochondria

    OpenAIRE

    Kitay, Brandon M.; McCormack, Ryan; Wang, Yunfang; Tsoulfas, Pantelis; Zhai, R. Grace

    2013-01-01

    Axon degeneration is a common and often early feature of neurodegeneration that correlates with the clinical manifestations and progression of neurological disease. Nicotinamide mononucleotide adenylytransferase (NMNAT) is a neuroprotective factor that delays axon degeneration following injury and in models of neurodegenerative diseases suggesting a converging molecular pathway of axon self-destruction. The underlying mechanisms have been under intense investigation and recent reports suggest...

  18. AxonQuant: A Microfluidic Chamber Culture-Coupled Algorithm That Allows High-Throughput Quantification of Axonal Damage

    Directory of Open Access Journals (Sweden)

    Yang Li

    2014-02-01

    Full Text Available Published methods for imaging and quantitatively analyzing morphological changes in neuronal axons have serious limitations because of their small sample sizes, and their time-consuming and nonobjective nature. Here we present an improved microfluidic chamber design suitable for fast and high-throughput imaging of neuronal axons. We developed the AxonQuant algorithm, which is suitable for automatic processing of axonal imaging data. This microfluidic chamber-coupled algorithm allows calculation of an ‘axonal continuity index' that quantitatively measures axonal health status in a manner independent of neuronal or axonal density. This method allows quantitative analysis of axonal morphology in an automatic and nonbiased manner. Our method will facilitate large-scale high-throughput screening for genes or therapeutic compounds for neurodegenerative diseases involving axonal damage. When combined with imaging technologies utilizing different gene markers, this method will provide new insights into the mechanistic basis for axon degeneration. Our microfluidic chamber culture-coupled AxonQuant algorithm will be widely useful for studying axonal biology and neurodegenerative disorders. © 2014 S. Karger AG, Basel

  19. Quantitative analysis of microtubule transport in growing nerve processes

    DEFF Research Database (Denmark)

    Ma*, Ytao; Shakiryanova*, Dinara; Vardya, Irina;

    2004-01-01

    translocation of MT plus ends in the axonal shaft by expressing GFP-EB1 in Xenopus embryo neurons in culture. Formal quantitative analysis of MT assembly/disassembly indicated that none of the MTs in the axonal shaft were rapidly transported. Our results suggest that transport of axonal MTs is not required for...... delivery of newly synthesized tubulin to the growing nerve processes. Udgivelsesdato: 2004...

  20. How to distinguish between the vacuum cleaner and flippase mechanisms of the LmrA multi-drug transporter in Lactococcus lactis

    NARCIS (Netherlands)

    Hofmeyr, JHS; Rohwer, JM; Snoep, JL; Westerhoff, HV; Konings, WN

    2002-01-01

    A numerical model of the LmrA multi-drug transport system of Lactococcus lactis is used to explore the possibility of distinguishing experimentally between two putative transport mechanisms, i.e., the vacuum-cleaner and the flippase mechanisms. This comparative model also serves as an example of num

  1. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter.

    Science.gov (United States)

    Petersen, Ines; Gabryszewski, Stanislaw J; Johnston, Geoffrey L; Dhingra, Satish K; Ecker, Andrea; Lewis, Rebecca E; de Almeida, Mariana Justino; Straimer, Judith; Henrich, Philipp P; Palatulan, Eugene; Johnson, David J; Coburn-Flynn, Olivia; Sanchez, Cecilia; Lehane, Adele M; Lanzer, Michael; Fidock, David A

    2015-07-01

    The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria. PMID:25898991

  2. Axon Membrane Skeleton Structure is Optimized for Coordinated Sodium Propagation

    CERN Document Server

    Zhang, Yihao; Li, He; Tzingounis, Anastasios V; Lykotrafitis, George

    2016-01-01

    Axons transmit action potentials with high fidelity and minimal jitter. This unique capability is likely the result of the spatiotemporal arrangement of sodium channels along the axon. Super-resolution microscopy recently revealed that the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under entropic tension. Sodium channels also exhibit a periodic distribution pattern, as they bind to ankyrin G, which associates with spectrin. Here, we elucidate the relationship between the axon membrane skeleton structure and the function of the axon. By combining cytoskeletal dynamics and continuum diffusion modeling, we show that spectrin filaments under tension minimize the thermal fluctuations of sodium channels and prevent overlap of neighboring channel trajectories. Importantly, this axon skeletal arrangement allows for a highly reproducible band-like activation of sodium channels leading to coordinated sodium propagation along the axon.

  3. Axon position within the corpus callosum determines contralateral cortical projection.

    Science.gov (United States)

    Zhou, Jing; Wen, Yunqing; She, Liang; Sui, Ya-Nan; Liu, Lu; Richards, Linda J; Poo, Mu-Ming

    2013-07-16

    How developing axons in the corpus callosum (CC) achieve their homotopic projection to the contralateral cortex remains unclear. We found that axonal position within the CC plays a critical role in this projection. Labeling of nearby callosal axons in mice showed that callosal axons were segregated in an orderly fashion, with those from more medial cerebral cortex located more dorsally and subsequently projecting to more medial contralateral cortical regions. The normal axonal order within the CC was grossly disturbed when semaphorin3A/neuropilin-1 signaling was disrupted. However, the order in which axons were positioned within the CC still determined their contralateral projection, causing a severe disruption of the homotopic contralateral projection that persisted at postnatal day 30, when the normal developmental refinement of contralateral projections is completed in wild-type (WT) mice. Thus, the orderly positioning of axons within the CC is a primary determinant of how homotopic interhemispheric projections form in the contralateral cortex. PMID:23812756

  4. Paclitaxel causes degeneration of both central and peripheral axon branches of dorsal root ganglia in mice

    OpenAIRE

    Tasnim, Aniqa; Rammelkamp, Zoe; Slusher, Amy B.; Wozniak, Krystyna; Slusher, Barbara S.; Farah, Mohamed H.

    2016-01-01

    Background Peripheral neuropathy is a common and dose-limiting side effect of many cancer chemotherapies. The taxane agents, including paclitaxel (Taxol®), are effective chemotherapeutic drugs but cause degeneration of predominantly large myelinated afferent sensory fibers of the peripheral nervous system in humans and animal models. Dorsal root ganglia (DRG) neurons are sensory neurons that have unipolar axons each with two branches: peripheral and central. While taxane agents induce degener...

  5. Association of drug transporter expression with mortality and progression-free survival in stage IV head and neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Rolf Warta

    Full Text Available Drug transporters such as P-glycoprotein (ABCB1 have been associated with chemotherapy resistance and are considered unfavorable prognostic factors for survival of cancer patients. Analyzing mRNA expression levels of a subset of drug transporters by quantitative reverse transcription polymerase chain reaction (qRT-PCR or protein expression by tissue microarray (TMA in tumor samples of therapy naïve stage IV head and neck squamous cell carcinoma (HNSCC (qRT-PCR, n = 40; TMA, n = 61, this in situ study re-examined the significance of transporter expression for progression-free survival (PFS and overall survival (OS. Data from The Cancer Genome Atlas database was used to externally validate the respective findings (n = 317. In general, HNSCC tended to lower expression of drug transporters compared to normal epithelium. High ABCB1 mRNA tumor expression was associated with both favorable progression-free survival (PFS, p = 0.0357 and overall survival (OS, p = 0.0535. Similar results were obtained for the mRNA of ABCC1 (MRP1, multidrug resistance-associated protein 1; PFS, p = 0.0183; OS, p = 0.038. In contrast, protein expression of ATP7b (copper transporter ATP7b, mRNA expression of ABCG2 (BCRP, breast cancer resistance protein, ABCC2 (MRP2, and SLC31A1 (hCTR1, human copper transporter 1 did not correlate with survival. Cluster analysis however revealed that simultaneous high expression of SLC31A1, ABCC2, and ABCG2 indicates poor survival of HNSCC patients. In conclusion, this study militates against the intuitive dogma where high expression of drug efflux transporters indicates poor survival, but demonstrates that expression of single drug transporters might indicate even improved survival. Prospectively, combined analysis of the 'transportome' should rather be performed as it likely unravels meaningful data on the impact of drug transporters on survival of patients with HNSCC.

  6. Dimethyl Fumarate Ameliorates Lewis Rat Experimental Autoimmune Neuritis and Mediates Axonal Protection.

    Directory of Open Access Journals (Sweden)

    Kalliopi Pitarokoili

    Full Text Available Dimethyl fumarate is an immunomodulatory and neuroprotective drug, approved recently for the treatment of relapsing-remitting multiple sclerosis. In view of the limited therapeutic options for human acute and chronic polyneuritis, we used the animal model of experimental autoimmune neuritis in the Lewis rat to study the effects of dimethyl fumarate on autoimmune inflammation and neuroprotection in the peripheral nervous system.Experimental autoimmune neuritis was induced by immunization with the neuritogenic peptide (amino acids 53-78 of P2 myelin protein. Preventive treatment with dimethyl fumarate given at 45 mg/kg twice daily by oral gavage significantly ameliorated clinical neuritis by reducing demyelination and axonal degeneration in the nerve conduction studies. Histology revealed a significantly lower degree of inflammatory infiltrates in the sciatic nerves. In addition, we detected a reduction of early signs of axonal degeneration through a reduction of amyloid precursor protein expressed in axons of the peripheral nerves. This reduction correlated with an increase of nuclear factor (erythroid derived 2-related factor 2 positive axons, supporting the neuroprotective potential of dimethyl fumarate. Furthermore, nuclear factor (erythroid derived 2-related factor 2 expression in Schwann cells was only rarely detected and there was no increase of Schwann cells death during EAN.We conclude that immunomodulatory and neuroprotective dimethyl fumarate may represent an innovative therapeutic option in human autoimmune neuropathies.

  7. Motor axon synapses on renshaw cells contain higher levels of aspartate than glutamate.

    Directory of Open Access Journals (Sweden)

    Dannette S Richards

    Full Text Available Motoneuron synapses on spinal cord interneurons known as Renshaw cells activate nicotinic, AMPA and NMDA receptors consistent with co-release of acetylcholine and excitatory amino acids (EAA. However, whether these synapses express vesicular glutamate transporters (VGLUTs capable of accumulating glutamate into synaptic vesicles is controversial. An alternative possibility is that these synapses release other EAAs, like aspartate, not dependent on VGLUTs. To clarify the exact EAA concentrated at motor axon synapses we performed a quantitative postembedding colloidal gold immunoelectron analysis for aspartate and glutamate on motor axon synapses (identified by immunoreactivity to the vesicular acetylcholine transporter; VAChT contacting calbindin-immunoreactive (-IR Renshaw cell dendrites. The results show that 71% to 80% of motor axon synaptic boutons on Renshaw cells contained aspartate immunolabeling two standard deviations above average neuropil labeling. Moreover, VAChT-IR synapses on Renshaw cells contained, on average, aspartate immunolabeling at 2.5 to 2.8 times above the average neuropil level. In contrast, glutamate enrichment was lower; 21% to 44% of VAChT-IR synapses showed glutamate-IR two standard deviations above average neuropil labeling and average glutamate immunogold density was 1.7 to 2.0 times the neuropil level. The results were not influenced by antibody affinities because glutamate antibodies detected glutamate-enriched brain homogenates more efficiently than aspartate antibodies detecting aspartate-enriched brain homogenates. Furthermore, synaptic boutons with ultrastructural features of Type I excitatory synapses were always labeled by glutamate antibodies at higher density than motor axon synapses. We conclude that motor axon synapses co-express aspartate and glutamate, but aspartate is concentrated at higher levels than glutamate.

  8. Inhibitory Potential of Antifungal Drugs on ATP-Binding Cassette Transporters P-Glycoprotein, MRP1 to MRP5, BCRP, and BSEP.

    Science.gov (United States)

    Lempers, Vincent J C; van den Heuvel, Jeroen J M W; Russel, Frans G M; Aarnoutse, Rob E; Burger, David M; Brüggemann, Roger J; Koenderink, Jan B

    2016-06-01

    Inhibition of ABC transporters is a common mechanism underlying drug-drug interactions (DDIs). We determined the inhibitory potential of antifungal drugs currently used for invasive fungal infections on ABC transporters P-glycoprotein (P-gp), MRP1 to MRP5, BCRP, and BSEP in vitro Membrane vesicles isolated from transporter-overexpressing HEK 293 cells were used to investigate the inhibitory potential of antifungal drugs (250 μM) on transport of model substrates. Concentration-inhibition curves were determined if transport inhibition was >60%. Fifty percent inhibitory concentrations (IC50s) for P-gp and BCRP were both 2 μM for itraconazole, 5 and 12 μM for hydroxyitraconazole, 3 and 6 μM for posaconazole, and 3 and 11 μM for isavuconazole, respectively. BSEP was strongly inhibited by itraconazole and hydroxyitraconazole (3 and 17 μM, respectively). Fluconazole and voriconazole did not inhibit any transport for >60%. Micafungin uniquely inhibited all transporters, with strong inhibition of MRP4 (4 μM). Anidulafungin and caspofungin showed strong inhibition of BCRP (7 and 6 μM, respectively). Amphotericin B only weakly inhibited BCRP-mediated transport (127 μM). Despite their wide range of DDIs, azole antifungals exhibit selective inhibition on efflux transporters. Although echinocandins display low potential for clinically relevant DDIs, they demonstrate potent in vitro inhibitory activity. This suggests that inhibition of ABC transporters plays a crucial role in the inexplicable (non-cytochrome P450-mediated) DDIs with antifungal drugs. PMID:27001813

  9. 77 FR 60318 - Procedures for Transportation Workplace Drug and Alcohol Testing Programs: 6-acetylmorphine (6-AM...

    Science.gov (United States)

    2012-10-03

    ... which was published at 77 FR 26471 on May 4, 2012 is adopted as a final rule without change. Issued on... Department published its final rule to harmonize with many aspects of the revised Department of Health and... a person uses the illicit drug heroin. Prior to the October 1, 2010, rulemaking, both the HHS...

  10. Precision-cut intestinal slices : alternative model for drug transport, metabolism, and toxicology research

    NARCIS (Netherlands)

    Li, Ming; de Graaf, Inge A M; Groothuis, Geny M M

    2016-01-01

    INTRODUCTION: The absorption, distribution, metabolism, excretion and toxicity (ADME-tox) processes of drugs are of importance and require preclinical investigation intestine in addition to the liver. Various models have been developed for prediction of ADME-tox in the intestine. In this review, pre

  11. Neuronal and non-neuronal GABA transporters as targets for antiepileptic drugs

    DEFF Research Database (Denmark)

    Madsen, Karsten K; White, H Steve; Schousboe, Arne

    2010-01-01

    Epileptic seizure activity is associated with an imbalance between excitatory and inhibitory synaptic activities. The latter is mediated by GABA, and several currently used antiepileptic drugs target entities of the GABAergic synapse such as the receptors or the inactivation mechanism consisting ...

  12. The ABCG2 Efflux Transporter in the Mammary Gland Mediates Veterinary Drug Secretion across the Blood-Milk Barrier into Milk of Dairy Cows.

    Science.gov (United States)

    Mahnke, Hanna; Ballent, Mariana; Baumann, Sven; Imperiale, Fernanda; von Bergen, Martin; Lanusse, Carlos; Lifschitz, Adrian L; Honscha, Walther; Halwachs, Sandra

    2016-05-01

    In human and mice ATP-binding cassette efflux transporter ABCG2 represents the main route for active drug transport into milk. However, there is no detailed information on the role of ABCG2 in drug secretion and accumulation in milk of dairy animals. We therefore examined ABCG2-mediated drug transport in the bovine mammary gland by parallel pharmacokinetic studies in lactating Jersey cows and in vitro flux studies using the anthelmintic drug monepantel (MNP) as representative bovine ABCG2 (bABCG2) drug substrate. Animals received MNP (Zolvix, Novartis Animal Health Inc.) once (2.5 mg/kg per os) and the concentrations of MNP and the active MNP metabolite MNPSO2were assessed by high-performance liquid chromatography. Compared with the parent drug MNP, we detected higher MNPSO2plasma concentrations (expressed as area under the concentration-versus-time curve). Moreover, we observed MNPSO2excretion into milk of dairy cows with a high milk-to-plasma ratio of 6.75. In mechanistic flux assays, we determined a preferential time-dependent basolateral-to-apical (B > A) MNPSO2transport across polarized Madin-Darby canine kidney II cells-bABCG2 monolayers using liquid chromatography coupled with tandem mass spectrometry analysis. The B > A MNPSO2transport was significantly inhibited by the ABCG2 inhibitor fumitremorgin C in bABCG2- but not in mock-transduced MDCKII cells. Additionally, the antibiotic drug enrofloxacin, the benzimidazole anthelmintic oxfendazole and the macrocyclic lactone anthelmintic moxidectin caused a reduction in the MNPSO2(B > A) net efflux. Altogether, this study indicated that therapeutically relevant drugs like the anthelmintic MNP represent substrates of the bovine mammary ABCG2 transporter and may thereby be actively concentrated in dairy milk. PMID:26956640

  13. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite's food vacuole and alter drug sensitivities.

    Science.gov (United States)

    Pulcini, Serena; Staines, Henry M; Lee, Andrew H; Shafik, Sarah H; Bouyer, Guillaume; Moore, Catherine M; Daley, Daniel A; Hoke, Matthew J; Altenhofen, Lindsey M; Painter, Heather J; Mu, Jianbing; Ferguson, David J P; Llinás, Manuel; Martin, Rowena E; Fidock, David A; Cooper, Roland A; Krishna, Sanjeev

    2015-01-01

    Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, are the major determinant of chloroquine resistance in this lethal human malaria parasite. Here, we describe P. falciparum lines subjected to selection by amantadine or blasticidin that carry PfCRT mutations (C101F or L272F), causing the development of enlarged food vacuoles. These parasites also have increased sensitivity to chloroquine and some other quinoline antimalarials, but exhibit no or minimal change in sensitivity to artemisinins, when compared with parental strains. A transgenic parasite line expressing the L272F variant of PfCRT confirmed this increased chloroquine sensitivity and enlarged food vacuole phenotype. Furthermore, the introduction of the C101F or L272F mutation into a chloroquine-resistant variant of PfCRT reduced the ability of this protein to transport chloroquine by approximately 93 and 82%, respectively, when expressed in Xenopus oocytes. These data provide, at least in part, a mechanistic explanation for the increased sensitivity of the mutant parasite lines to chloroquine. Taken together, these findings provide new insights into PfCRT function and PfCRT-mediated drug resistance, as well as the food vacuole, which is an important target of many antimalarial drugs. PMID:26420308

  14. Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Venturi Vittorio

    2009-09-01

    Full Text Available Abstract Background Burkholderia cenocepacia are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND efflux pumps in the genome of B. cenocepacia J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear. Results To investigate the contribution of efflux pumps to intrinsic drug resistance of B. cenocepacia J2315, we deleted 3 operons encoding the putative RND transporters RND-1, RND-3, and RND-4 containing the genes BCAS0591-BCAS0593, BCAL1674-BCAL1676, and BCAL2822-BCAL2820. Each deletion included the genes encoding the RND transporter itself and those encoding predicted periplasmic proteins and outer membrane pores. In addition, the deletion of rnd-3 also included BCAL1672, encoding a putative TetR regulator. The B. cenocepacia rnd-3 and rnd-4 mutants demonstrated increased sensitivity to inhibitory compounds, suggesting an involvement of these proteins in drug resistance. Moreover, the rnd-3 and rnd-4 mutants demonstrated reduced accumulation of N-acyl homoserine lactones in the growth medium. In contrast, deletion of the rnd-1 operon had no detectable phenotypes under the conditions assayed. Conclusion Two of the three inactivated RND efflux pumps in B. cenocepacia J2315 contribute to the high level of intrinsic resistance of this strain to some antibiotics and other inhibitory compounds. Furthermore, these efflux systems also mediate accumulation in the growth medium of quorum sensing molecules that have been shown to contribute to infection. A systematic study of RND efflux systems in B. cenocepacia is required to provide a full picture of intrinsic antibiotic resistance in this opportunistic

  15. Polyspecific drug and steroid clearance by an organic anion transporter of mammalian liver

    NARCIS (Netherlands)

    Bossuyt, [No Value; Muller, M; Hagenbuch, B; Meier, PJ

    1996-01-01

    An organic anion-transporting polypeptide that mediates sodium-independent uptake of negatively charged sulfobromophthalein and bile salts has recently been cloned from rat liver (Jacquemin et al., 1994). In this study we have extended the substrate specificity studies to neutral and positively char

  16. Flozins, inhibitors of type 2 renal sodium-glucose co-transporter – not only antihyperglycemic drugs

    Directory of Open Access Journals (Sweden)

    Mizerski Grzegorz

    2015-09-01

    Full Text Available The kidneys play a crucial role in the regulation of the carbohydrate metabolism. In normal physiological conditions, the glucose that filters through the renal glomeruli is subsequently nearly totally reabsorbed in the proximal renal tubules. Two transporters are engaged in this process: sodium-glucose co-transporter type 1 (SGLT1, and sodium-glucose co-transporter type type 2 (SGLT2 - this being located in the luminal membrane of the renal tubular epithelial cells. It was found that the administration of dapagliflozin, a selective SGLT2 inhibitor, in patients with type 2 diabetes, is associated with the reduction of HbA1c concentration by 0.45-1.11%. Additional benefits from the treatment with dapagliflozin are the reduction of arterial blood pressure and a permanent reduction of body weight. This outcome is related to the effect of osmotic diuresis and to the considerable loss of the glucose load by way of urine excretion. Dapagliflozin may be successfully applied in type 2 diabetes monotherapy, as well as in combined therapy (including insulin, where it is equally effective as other oral anti-diabetic drugs. Of note: serious adverse effects of dapagliflozin administration are rarely observed. What is more, episodes of severe hypoglycaemia related with the treatment occur only sporadically, most often in the course of diabetes polytherapy. The most frequent effects of the SGLT2 inhibitors are inseparably associated with the mechanism of their action (the glucuretic effect, and cover urogenital infections with a mild clinical course. At present, clinical trials are being continued of the administration of several subsequent drugs from this group, the most advanced of these being the use of canagliflozin and empagliflozin.

  17. Identification of a Novel Topoisomerase Inhibitor Effective in Cells Overexpressing Drug Efflux Transporters

    OpenAIRE

    Walid Fayad; Mårten Fryknäs; Slavica Brnjic; Maria Hägg Olofsson; Rolf Larsson; Stig Linder

    2009-01-01

    BACKGROUND: Natural product structures have high chemical diversity and are attractive as lead structures for discovery of new drugs. One of the disease areas where natural products are most frequently used as therapeutics is oncology. METHOD AND FINDINGS: A library of natural products (NCI Natural Product set) was screened for compounds that induce apoptosis of HCT116 colon carcinoma cells using an assay that measures an endogenous caspase-cleavage product. One of the apoptosis-inducing comp...

  18. Role of membrane transport in hepatotoxicity and pathogenesis of drug-induced cholestasis

    OpenAIRE

    Stieger, Bruno; Kullak-Ublick, Gerd A.

    2013-01-01

    Drug-induced liver injury is an important clinical entity, which can be grouped into cholestatic liver injury, hepatocellular liver injury, and mixed liver injury. Cholestatic liver injury is characterized by a reduction in bile flow and the retention within hepatocytes of cholephilic compounds such as bile salts that cause hepatotoxicity. Bile salts are taken up by hepatocytes in a largely sodium-dependent manner and to a lesser extent in a sodium-independent manner. The former process is...

  19. Transport

    International Nuclear Information System (INIS)

    Transport is one of the major causes of environmental damage in Austria. Energy consumption, pollutants emissions, noise emissions, use of surfaces, sealing of surfaces, dissection of ecosystems and impact on landscape are the most significant environmental impacts caused by it. An overview of the transport development of passengers and freight in Austria is presented. Especially the energy consumption growth, carbon dioxide and nitrogen oxide emissions by type of transport, and the emissions development (HC, particle and carbon monoxide) of goods and passengers transport are analyzed covering the years 1980 - 1999. The health cost resulting from transport-related air pollution in Austria is given and measures to be taken for an effective control of the transport sector are mentioned. Figs. 8, Table 1. (nevyjel)

  20. The C-terminal domains of NF-H and NF-M subunits maintain axonal neurofilament content by blocking turnover of the stationary neurofilament network.

    Directory of Open Access Journals (Sweden)

    Mala V Rao

    Full Text Available Newly synthesized neurofilaments or protofilaments are incorporated into a highly stable stationary cytoskeleton network as they are transported along axons. Although the heavily phosphorylated carboxyl-terminal tail domains of the heavy and medium neurofilament (NF subunits have been proposed to contribute to this process and particularly to stability of this structure, their function is still obscure. Here we show in NF-H/M tail deletion [NF-(H/M(tailΔ] mice that the deletion of both of these domains selectively lowers NF levels 3-6 fold along optic axons without altering either rates of subunit synthesis or the rate of slow axonal transport of NF. Pulse labeling studies carried out over 90 days revealed a significantly faster rate of disappearance of NF from the stationary NF network of optic axons in NF-(H/M(tailΔ mice. Faster NF disappearance was accompanied by elevated levels of NF-L proteolytic fragments in NF-(H/M(tailΔ axons. We conclude that NF-H and NF-M C-terminal domains do not normally regulate NF transport rates as previously proposed, but instead increase the proteolytic resistance of NF, thereby stabilizing the stationary neurofilament cytoskeleton along axons.

  1. Genetic polymorphisms and function of the organic anion-transporting polypeptide 1A2 and its clinical relevance in drug disposition.

    Science.gov (United States)

    Zhou, Yinhui; Yuan, Jingjing; Li, Zhisong; Wang, Zhongyu; Cheng, Dan; Du, Yingying; Li, Wenlu; Kan, Quancheng; Zhang, Wei

    2015-01-01

    The solute carrier organic anion-transporting polypeptides (OATPs) are a family of transporter proteins that have been extensively recognized as key determinants of absorption, distribution, metabolism and excretion of various drugs because of their broad substrate specificity and wide tissue distribution as well as the involvement of drug-drug interaction. Human OATP1A2 is a drug uptake transporter known for its broad substrate specificity, including many drugs in clinical use. OATP1A2 expression has been detected in the intestine, liver, brain and kidney. A considerable number of single nucleotide polymorphisms have been found for the OATP1A2 gene. A number of studies have shown that the cellular uptake and pharmacokinetic behavior of some drugs may be impaired in the case of certain OATP1A2 variants. Interestingly, some studies show that the mRNA expression of OATP1A2 is nearly 10-fold higher in breast cancer compared with adjacent healthy breast tissues. This review is, therefore, focused on the genetic polymorphisms, function and clinical relevance of OATP1A2 as well as on the substrates transported by it. PMID:25924632

  2. Focal axonal swellings and associated ultrastructural changes attenuate conduction velocity in central nervous system axons: a computer modeling study.

    Science.gov (United States)

    Kolaric, Katarina V; Thomson, Gemma; Edgar, Julia M; Brown, Angus M

    2013-08-01

    The constancy of action potential conduction in the central nervous system (CNS) relies on uniform axon diameter coupled with fidelity of the overlying myelin providing high-resistance, low capacitance insulation. Whereas the effects of demyelination on conduction have been extensively studied/modeled, equivalent studies on the repercussions for conduction of axon swelling, a common early pathological feature of (potentially reversible) axonal injury, are lacking. The recent description of experimentally acquired morphological and electrical properties of small CNS axons and oligodendrocytes prompted us to incorporate these data into a computer model, with the aim of simulating the effects of focal axon swelling on action potential conduction. A single swelling on an otherwise intact axon, as occurs in optic nerve axons of Cnp1 null mice caused a small decrease in conduction velocity. The presence of single swellings on multiple contiguous internodal regions (INR), as likely occurs in advanced disease, caused qualitatively similar results, except the dimensions of the swellings required to produce equivalent attenuation of conduction were significantly decreased. Our simulations of the consequences of metabolic insult to axons, namely, the appearance of multiple swollen regions, accompanied by perturbation of overlying myelin and increased axolemmal permeability, contained within a single INR, revealed that conduction block occurred when the dimensions of the simulated swellings were within the limits of those measured experimentally, suggesting that multiple swellings on a single axon could contribute to axonal dysfunction, and that increased axolemmal permeability is the decisive factor that promotes conduction block. PMID:24303138

  3. Early ultrastructural defects of axons and axon-glia junctions in mice lacking expression of Cnp1.

    Science.gov (United States)

    Edgar, Julia M; McLaughlin, Mark; Werner, Hauke B; McCulloch, Mailis C; Barrie, Jennifer A; Brown, Angus; Faichney, Andrew Blyth; Snaidero, Nicolas; Nave, Klaus-Armin; Griffiths, Ian R

    2009-12-01

    Most axons in the central nervous system (CNS) are surrounded by a multilayered myelin sheath that promotes fast, saltatory conduction of electrical impulses. By insulating the axon, myelin also shields the axoplasm from the extracellular milieu. In the CNS, oligodendrocytes provide support for the long-term maintenance of myelinated axons, independent of the myelin sheath. Here, we use electron microscopy and morphometric analyses to examine the evolution of axonal and oligodendroglial changes in mice deficient in 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and in mice deficient in both CNP and proteolipid protein (PLP/DM20). We show that CNP is necessary for the formation of a normal inner tongue process of oligodendrocytes that myelinate small diameter axons. We also show that axonal degeneration in Cnp1 null mice is present very early in postnatal life. Importantly, compact myelin formed by transplanted Cnp1 null oligodendrocytes induces the same degenerative changes in shiverer axons that normally are dysmyelinated but structurally intact. Mice deficient in both CNP and PLP develop a more severe axonal phenotype than either single mutant, indicating that the two oligodendroglial proteins serve distinct functions in supporting the myelinated axon. These observations support a model in which the trophic functions of oligodendrocytes serve to offset the physical shielding of axons by myelin membranes. PMID:19459211

  4. A global approach to a transport system for radioactive waste-case study: radioactive drugs

    International Nuclear Information System (INIS)

    For the year 1984 in France: radionuclides in unsealed sources, used in medical circles represent 4812 Ci (4812 x 37 GBq) of which 80% for Technetium 99 m alone. The market for these products has expanded greatly in fifteen years, by at least a factor of 6. the parcels are in the number of at least 200 000 of which 120 000 parcels are A labelled containing radiopharmaceutical preparations administered in vivo and radiochemical preparations used in vitro or in research. the users are few in number, 375 in all, of whom 127 are Departments of Nuclear Medicine who are the principal users; deliveries are very regular and are made along some large axes. transport accidents are extremely rare. the dosimetric data of workers are of a quality and equivalent of the collective dose for workers is in the order of 0.42 h.Sv; furthermore this equivalent of the collective dose has been recognisably the same for 15 years despite the increases in personnel and production; within the present framework of regulations concerning transport of the parcels, radioprotection of workers depends on the ethics of the suppliers. The drivers, who transport radioactive parcels only are regularly exposed to more than 10 mSv per year and the study of this group of workers should be a priority. The distribution of the doses received by packers in the large transit centres is not known. The equivalent of the collective public dose, due to the transport of these unsealed sources for medical use must be between 0.01 h.Sv and 0.1 h.Sv

  5. Microemulsions containing long-chain oil ethyl oleate improve the oral bioavailability of piroxicam by increasing drug solubility and lymphatic transportation simultaneously.

    Science.gov (United States)

    Xing, Qiao; Song, Jia; You, Xiuhua; Xu, Dongling; Wang, Kexin; Song, Jiaqi; Guo, Qin; Li, Pengyu; Wu, Chuanbin; Hu, Haiyan

    2016-09-25

    Drug solubility and lymphatic transport enhancements are two main pathways to improve drug oral bioavailability for microemulsions. However, it is not easy to have both achieved simultaneously because excipients used for improving lymphatic transport were usually insufficient in forming microemulsions and solubilizing drugs. Our research is to explore whether ethyl oleate, an oil effective in developing microemulsions with desired solubilizing capability, could increase bioavailability to a higher extent by enhancing lymphatic transport. As a long-chain oil, ethyl oleate won larger microemulsion area than short-chain tributyrin and medium-chain GTCC. In contrast, long-chain soybean oil failed to prepare microemulsions. The solubility of piroxicam in ethyl oleate microemulsions (ME-C) increased by about 30 times than in water. ME-C also won significantly higher AUC0-t compared with tributyrin microemulsions (ME-A) and GTCC microemulsions (ME-B). Oral bioavailability in ME-C decreased by 38% after lymphatic transport was blocked by cycloheximide, severer than those in ME-A and ME-B (8% and 34%). These results suggest that improving lymphatic transport and solubility simultaneously might be a novel strategy to increase drug oral bioavailability to a higher extent than increasing solubility only. Ethyl oleate is a preferred oil candidate due to its integrated advantages of high solubilizing capability, large microemulsion area and effective lymphatic transport. PMID:27473280

  6. Identification and functional characterization of Penicillium marneffei pleiotropic drug resistance transporters ABC1 and ABC2.

    Science.gov (United States)

    Panapruksachat, Siribun; Iwatani, Shun; Oura, Takahiro; Vanittanakom, Nongnuch; Chindamporn, Ariya; Niimi, Kyoko; Niimi, Masakazu; Lamping, Erwin; Cannon, Richard D; Kajiwara, Susumu

    2016-07-01

    Penicilliosis caused by the dimorphic fungus Penicillium marneffei is an endemic, AIDS-defining illness and, after tuberculosis and cryptococcosis, the third most common opportunistic infection of AIDS patients in tropical Southeast Asia. Untreated, patients have poor prognosis; however, primary amphotericin B treatment followed by prolonged itraconazole prophylaxis is effective. To identify ATP-binding cassette (ABC) transporters that may play a role in potential multidrug resistance of P. marneffei, we identified and classified all 46 P. marneffei ABC transporters from the genome sequence. PmABC1 and PmABC2 were most similar to the archetype Candida albicans multidrug efflux pump gene CDR1. P. marneffei Abc1p (PmAbc1p) was functionally expressed in Saccharomyces cerevisiae, although at rather low levels, and correctly localized to the plasma membrane, causing cells to be fourfold to eightfold more resistant to azoles and many other xenobiotics than untransformed cells. P. marneffei Abc2p (PmAbc2p) was expressed at similarly low levels, but it had no efflux activity and did not properly localize to the plasma membrane. Interestingly, PmAbc1p mislocalized and lost its transport activity when cells were shifted to 37 °C. We conclude that expression of PmAbc1p in S. cerevisiae confers resistance to several xenobiotics indicating that PmAbc1p may be a multidrug efflux pump. PMID:26782644

  7. Dynamics of axon fasciculation in the presence of neuronal turnover

    CERN Document Server

    Chaudhuri, Debasish; Mohanty, P K; Zapotocky, Martin

    2008-01-01

    We formulate and characterize a model aiming to describe the formation of fascicles of axons mediated by contact axon-axon interactions. The growing axons are represented as interacting directed random walks in two spatial dimensions. To mimic axonal turnover in the mammalian olfactory system, the random walkers are injected and removed at specified rates. In the dynamical steady state, the position-dependent distribution of fascicle sizes obeys a scaling law. We identify several distinct time scales that emerge from the dynamics, are sensitive functions of the microscopic parameters of the model, and can exceed the average axonal lifetime by orders of magnitude. We discuss our findings in terms of an analytically tractable, effective model of fascicle dynamics.

  8. P-Glycoprotein (Abcb1) is involved in absorptive drug transport in skin

    OpenAIRE

    Ito, Katsuaki; Nguyen, Hai Thien; Kato, Yukio; Wakayama, Tomohiko; Kubo, Yoshiyuki; Iseki, Shoichi; Tsuji, Akira

    2008-01-01

    The purpose of the present study was to investigate the role of P-glycoprotein (P-gp) in drug disposition in skin. The distribution of P-gp substrates (rhodamine 123 and itraconazole) to the skin after administration from the epidermal side was lower in P-gp gene knockout (mdr1a/1b-/-) mice than that in wild-type mice. Coadministration of propranolol, a P-gp inhibitor, decreased the distribution of itraconazole to the skin in wild-type mice, but not in mdr1a/1b-/- mice. These results suggest ...

  9. P-Glycoprotein (Abcb1) is involved in absorptive drug transport in skin

    OpenAIRE

    Ito, Katsuaki; Nguyen, Hai Thien; Kato, Yukio; Wakayama, Tomohiko; Kubo, Yoshiyuki; Iseki, Shoichi; Tsuji, Akira

    2008-01-01

    The purpose of the present study was to investigate the role of P-glycoprotein (P-gp) in drug disposition in skin. The distribution of P-gp substrates (rhodamine 123 and itraconazole) to the skin after administration from the epidermal side was lower in P-gp gene knockout (mdr1a/1b-/- ) mice than that in wild-type mice. Coadministration of propranolol, a P-gp inhibitor, decreased the distribution of itraconazole to the skin in wild-type mice, but not in mdr1a/1b-/- mice. These results suggest...

  10. Dysregulation of the Axonal Trafficking of Nuclear-encoded Mitochondrial mRNA alters Neuronal Mitochondrial Activity and Mouse Behavior

    OpenAIRE

    Kar, Amar N.; Sun, Ching-Yu; Reichard, Kathryn; Gervasi, Noreen M.; Pickel, James; Nakazawa, Kazu; Gioio, Anthony E.; Kaplan, Barry B.

    2013-01-01

    Local translation of nuclear-encoded mitochondrial mRNAs is essential for mitochondrial activity, yet there is little insight into the role that axonal trafficking of these transcripts play in neuronal function and behavior. Previously, we identified a 38 nucleotide stem-loop structure (zipcode) in the 3′ untranslated region of the Cytochrome C oxidase IV (COXIV) mRNA that directs the transport of a reporter mRNA to the axon of superior cervical ganglion neurons (SCG). Over-expression of a ch...

  11. Axonal Protein Synthesis and the Regulation of Local Mitochondrial Function

    OpenAIRE

    2009-01-01

    Axons and presynaptic nerve terminals of both invertebrate and mammalian SCG neurons contain a heterogeneous population of nuclear-encoded mitochondrial mRNAs and a local cytosolic protein synthetic system. Nearly one quarter of the total protein synthesized in these structural/functional domains of the neuron is destined for mitochondria. Acute inhibition of axonal protein synthesis markedly reduces the functional activity of mitochondria. The blockade of axonal protein into mitochondria had...

  12. Axonal protein synthesis and the regulation of local mitochondrial function

    OpenAIRE

    Kaplan, B.B.; Gioio, A.E.; Hillefors, M.; Aschrafi, A.

    2009-01-01

    Axons and presynaptic nerve terminals of both invertebrate and mammalian SCG neurons contain a heterogeneous population of nuclear-encoded mitochondrial mRNAs and a local cytosolic protein synthetic system. Nearly one quarter of the total protein synthesized in these structural/functional domains of the neuron is destined for mitochondria. Acute inhibition of axonal protein synthesis markedly reduces the functional activity of mitochondria. The blockade of axonal protein into mitochondria had...

  13. Action potentials reliably invade axonal arbors of rat neocortical neurons

    OpenAIRE

    Cox, Charles L.; Denk, Winfried; Tank, David W.; Svoboda, Karel

    2000-01-01

    Neocortical pyramidal neurons have extensive axonal arborizations that make thousands of synapses. Action potentials can invade these arbors and cause calcium influx that is required for neurotransmitter release and excitation of postsynaptic targets. Thus, the regulation of action potential invasion in axonal branches might shape the spread of excitation in cortical neural networks. To measure the reliability and extent of action potential invasion into axonal arbors, we have used two-photon...

  14. Axon diameter mapping in crossing fibers with diffusion MRI

    DEFF Research Database (Denmark)

    Zhang, Hui; Dyrby, Tim B; Alexander, Daniel C

    2011-01-01

    tissue than measures derived from diffusion tensor imaging. Most existing techniques for axon diameter mapping assume a single axon orientation in the tissue model, which limits their application to only the most coherently oriented brain white matter, such as the corpus callosum, where the single...... technique by establishing reasonable axon diameter indices in the crossing region at the interface of the cingulum and the corpus callosum....

  15. Axon target matching in the developing visual system

    OpenAIRE

    Osterhout, Jessica A.

    2015-01-01

    The central nervous system (CNS) is made up of trillions of connections between specific sets of highly specialized neurons. How each individual neuron finds and connects to the correct synaptic partner remains an important and unresolved issue in neuroscience. Using the mouse visual system as a model I probed the cellular and molecular mechanisms that govern one of the key steps leading to CNS development: axon target matching. Axon target matching is the process by which axons to find and i...

  16. Axon Regeneration in the Peripheral and Central Nervous Systems

    OpenAIRE

    Huebner, Eric A.; Strittmatter, Stephen M

    2009-01-01

    Axon regeneration in the mature mammalian central nervous system (CNS) is extremely limited after injury. Consequently, functional deficits persist after spinal cord injury (SCI), traumatic brain injury, stroke, and related conditions that involve axonal disconnection. This situation differs from that in the mammalian peripheral nervous system (PNS), where long- distance axon regeneration and substantial functional recovery can occur in the adult. Both extracellular molecules and the intrinsi...

  17. Myelin sheath survival after guanethidine-induced axonal degeneration

    OpenAIRE

    1992-01-01

    Membrane-membrane interactions between axons and Schwann cells are required for initial myelin formation in the peripheral nervous system. However, recent studies of double myelination in sympathetic nerve have indicated that myelin sheaths continue to exist after complete loss of axonal contact (Kidd, G. J., and J. W. Heath. 1988. J. Neurocytol. 17:245-261). This suggests that myelin maintenance may be regulated either by diffusible axonal factors or by nonaxonal mechanisms. To test these hy...

  18. Low plasma membrane expression of the miltefosine transport complex renders Leishmania braziliensis refractory to the drug.

    Science.gov (United States)

    Sánchez-Cañete, María P; Carvalho, Luís; Pérez-Victoria, F Javier; Gamarro, Francisco; Castanys, Santiago

    2009-04-01

    Miltefosine (hexadecylphosphocholine, MLF) is the first oral drug with recognized efficacy against both visceral and cutaneous leishmaniasis. However, some clinical studies have suggested that MLF shows significantly less efficiency against the cutaneous leishmaniasis caused by Leishmania braziliensis. In this work, we have determined the cellular and molecular basis for the natural MLF resistance observed in L. braziliensis. Four independent L. braziliensis clinical isolates showed a marked decrease in MLF sensitivity that was due to their inability to internalize the drug. MLF internalization in the highly sensitive L. donovani species requires at least two proteins in the plasma membrane, LdMT, a P-type ATPase involved in phospholipid translocation, and its beta subunit, LdRos3. Strikingly, L. braziliensis parasites showed highly reduced levels of this MLF translocation machinery at the plasma membrane, mainly because of the low expression levels of the beta subunit, LbRos3. Overexpression of LbRos3 induces increased MLF sensitivity not only in L. braziliensis promastigotes but also in intracellular amastigotes. These results further highlight the importance of the MLF translocation machinery in determining MLF potency and point toward the development of protocols to routinely monitor MLF susceptibility in geographic areas where L. braziliensis might be prevalent. PMID:19188379

  19. Axonal autophagy during regeneration of the rat sciatic nerve

    Institute of Scientific and Technical Information of China (English)

    Kangrong Lu; Zhongxian Piao; Zhenxi Liu; Weiwang Gu; Wanshan Wang; Nngjie Piao

    2008-01-01

    BACKGROUND: The removal of degenerated axonal debris during Wallerian degeneration is very important for nerve regeneration. However, the mechanism by which debris is removed is not been completely understood. Considerable controversy remains as to the clearance pathway and cells that are involved. OBJECTIVE: To investigate axonal autophagy during removal of degenerated axonal debris by transecting the sciatic nerve in a rat Wallerian degeneration model.DESIGN, TIME AND SETTING: Experimental neuropathological analysis. The experiment was conducted at the Laboratory Animal Service Center of the Southern Medical University between January and June 2005. MATERIALS: Fifty-four adult, Wistar rats of either sex, weighing 180-250 g, were obtained from the Laboratory Animal Service Center of the Southern Medical University. Animals were randomly divided into nine groups of six rats. METHODS: Wallerian degeneration was induced by transecting the rat sciatic nerve, and tissue samples from the distal stump were obtained 0.2, 0.4, 1, 2, 3, 4, 7, 10, and 15 days post-transection. Ultrathin sections were prepared for electron microscopy to study ultrastructure and enzyme cytochemistry staining. MAIN OUTCOME MEASURES: Ultrastructure (axon body, autophagic body, and cystoskeleton) of axons and myelin sheaths observed with electron microscopy; acidic phosphatase activity detected by Gomori staining using electron microscopy. RESULTS: The major changes of degenerating axons after transection were axoplasm swelling and separation of axons from their myelin sheath between five hours and two days post-transection. At four days post-transection, the axoplasm condensed and axons were completely separated from the myelin sheath, forming dissociative axon bodies. Vacuoles of different sizes formed in axons during the early phase after lesion. Larger dissociative axon bodies were formed when the axons were completely separated from the myelin sheath during a late phase. The axolemma

  20. The transporter-mediated cellular uptake of pharmaceutical drugs is based on their metabolite-likeness and not on their bulk biophysical properties: Towards a systems pharmacology

    Directory of Open Access Journals (Sweden)

    Douglas B. Kell

    2015-12-01

    Full Text Available Several recent developments are brought together: (i the new availability of a consensus, curated human metabolic network reconstruction (Recon2, approximately a third of whose steps are represented by transporters, (ii the recognition that most successful (marketed drugs, as well as natural products, bear significant similarities to the metabolites in Recon2, (iii the recognition that to get into and out of cells such drugs hitchhike on the transporters that are part of normal intermediary metabolism, and the consequent recognition that for intact biomembrane Phospholipid Bilayer diffusion Is Negligible (PBIN, and (iv the consequent recognition that we need to exploit this and to use more phenotypic assays to understand how drugs affect cells and organisms. I show in particular that lipophilicity is a very poor predictor of drug permeability, and that we need to (and can bring together our knowledge of both pharmacology and systems biology modelling into a new systems pharmacology.

  1. Regulation of myelin genes implicated in psychiatric disorders by functional activity in axons

    Directory of Open Access Journals (Sweden)

    Philip R Lee

    2009-06-01

    Full Text Available Myelination is a highly dynamic process that continues well into adulthood in humans. Several recent gene expression studies have found abnormal expression of genes involved in myelination in the prefrontal cortex of brains from patients with schizophrenia and other psychiatric illnesses. Defects in myelination could contribute to the pathophysiology of psychiatric illness by impairing information processing as a consequence of altered impulse conduction velocity and synchrony between cortical regions carrying out higher level cognitive functions. Myelination can be altered by impulse activity in axons and by environmental experience. Psychiatric illness is treated by psychotherapy, behavioral modification, and drugs affecting neurotransmission, raising the possibility that myelinating glia may not only contribute to such disorders, but that activity-dependent effects on myelinating glia could provide one of the cellular mechanisms contributing to the therapeutic effects of these treatments. This review examines evidence showing that genes and gene networks important for myelination can be regulated by functional activity in axons.

  2. Numerical simulation of the tumor interstitial fluid transport: Consideration of drug delivery mechanism.

    Science.gov (United States)

    Moghadam, Mohammad Charjouei; Deyranlou, Amin; Sharifi, Alireza; Niazmand, Hamid

    2015-09-01

    The interstitial fluid transport plays an important role in terms of its effect on the delivery of therapeutic agents to the cancerous organs. In this study, a comprehensive numerical simulation of the interstitial fluid transport establishing 3D models of tumor and normal tissue is accomplished. Different shapes of solid tumors and their surrounding normal tissues are selected, by employing the porous media model and incorporating Darcy's model and Starling's law. Besides, effects of the tumor radius, normal tissue size, tissue hydraulic conductivity and necrotic core are investigated on the interstitial fluid pressure (IFP) and interstitial fluid velocity (IFV). Generally, results suggest that the configurations of the tumor and surrounding normal tissue affect IFP and IFV distributions inside the interstitium, which are much more pronounced for various configuration of the tumor. Furthermore, findings demonstrate that larger tumors are more prone for producing elevated IFP comparing with the smaller ones and impress both IFP and IFV dramatically. Nevertheless, normal tissue size has less impact on IFP and IFV, until its volume ratio to the tumor remains greater than unity; conversely, for the values lower than unity the variations become more significant. Finally, existence of necrotic core and its location in the tumor interstitium alters IFP and IFV patterns and increases IFV, considerably. PMID:26122936

  3. Focal axonal swellings and associated ultrastructural changes attenuate conduction velocity in central nervous system axons: a computer modeling study

    OpenAIRE

    Kolaric, Katarina V; Thomson, Gemma; Edgar, Julia M; Brown, Angus M.

    2013-01-01

    The constancy of action potential conduction in the central nervous system (CNS) relies on uniform axon diameter coupled with fidelity of the overlying myelin providing high-resistance, low capacitance insulation. Whereas the effects of demyelination on conduction have been extensively studied/modeled, equivalent studies on the repercussions for conduction of axon swelling, a common early pathological feature of (potentially reversible) axonal injury, are lacking. The recent description of ex...

  4. Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain.

    Science.gov (United States)

    Larsen, Camilla; Shy, Diana; Spindler, Shana R; Fung, Siaumin; Pereanu, Wayne; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2009-11-15

    The Drosophila central brain is composed of approximately 100 paired lineages, with most lineages comprising 100-150 neurons. Most lineages have a number of important characteristics in common. Typically, neurons of a lineage stay together as a coherent cluster and project their axons into a coherent bundle visible from late embryo to adult. Neurons born during the embryonic period form the primary axon tracts (PATs) that follow stereotyped pathways in the neuropile. Apoptotic cell death removes an average of 30-40% of primary neurons around the time of hatching. Secondary neurons generated during the larval period form secondary axon tracts (SATs) that typically fasciculate with their corresponding primary axon tract. SATs develop into the long fascicles that interconnect the different compartments of the adult brain. Structurally, we distinguish between three types of lineages: PD lineages, characterized by distinct, spatially separate proximal and distal arborizations; C lineages with arborizations distributed continuously along the entire length of their tract; D lineages that lack proximal arborizations. Arborizations of many lineages, in particular those of the PD type, are restricted to distinct neuropile compartments. We propose that compartments are "scaffolded" by individual lineages, or small groups thereof. Thereby, the relatively small number of primary neurons of each primary lineage set up the compartment map in the late embryo. Compartments grow during the larval period simply by an increase in arbor volume of primary neurons. Arbors of secondary neurons form within or adjacent to the larval compartments, resulting in smaller compartment subdivisions and additional, adult specific compartments. PMID:19538956

  5. MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drags as judged by interference with nucleotide trapping

    OpenAIRE

    Smith, A.J.; van Helvoort, A.; van Meer, G; Szabó, K.; Welker, E; Szakács, G; Váradi, A; Sarkadi, B.; Borst, P

    2000-01-01

    The human MDR3 gene is a member of the multidrug resistance (MDR) gene family. The MDR3 P-glycoprotein is a transmembrane protein that translocates phosphatidylcholine. The MDR1 P-glycoprotein related transports cytotoxic drugs. Its overexpression can make cells resistant to a variety of drugs. Attempts to show that MDR3 P-glycoprotein can cause MDR have been unsuccessful thus far. Here, we report an increased directional transport of several MDR1 P-glycoprotein substrates, such as digoxin, p...

  6. Sequence and gene expression of chloroquine resistance transporter (pfcrt in the association of in vitro drugs resistance of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Bray Patrick G

    2011-02-01

    Full Text Available Abstract Background Plasmodium falciparum chloroquine resistance (CQR transporter protein (PfCRT is known to be the important key of CQR. Recent studies have definitively demonstrated a link between mutations in the gene pfcrt and resistance to chloroquine in P. falciparum. Although these mutations are predictive of chloroquine resistance, they are not quantitatively predictive of the degree of resistance. Methods In this study, a total of 95 recently adapted P. falciparum isolates from Thailand were included in the analysis. Parasites were characterized for their drug susceptibility phenotypes and genotypes with respect to pfcrt. From the original 95 isolates, 20 were selected for complete pfcrt sequence analysis. Results Almost all of the parasites characterized carried the previously reported mutations K76T, A220S, Q271E, N326S, I356T and R371I. On complete sequencing, isolates were identified with novel mutations at K76A and E198K. There was a suggestion that parasites carrying E198K were less resistant than those that did not. In addition, pfcrt and pfmdr1 gene expression were investigated by real-time PCR. No relationship between the expression level of either of these genes and response to drug was observed. Conclusion Data from the present study suggest that other genes must contribute to the degree of resistance once the resistance phenotype is established through mutations in pfcrt.

  7. Effect of lyophilized grapefruit juice on P-glycoprotein-mediated drug transport in-vitro and in-vivo.

    Science.gov (United States)

    Ahmed, Iman S; Hassan, Mariame A; Kondo, Takashi

    2015-03-01

    The administration of grapefruit juice (GFJ) has been postulated to inhibit the activity of P-glycoprotein (P-gp) transport system and thus can enhance the uptake of substrate drugs. However, for various reasons, the results obtained have been always swaying between confirmation and refutation. This study aims at re-evaluating the effect of lyophilized freshly-prepared grapefruit juice (LGFJ) prepared from the whole peeled fruit on P-gp activity using the model drug doxorubicin (DOX) in-vitro and timolol maleate (TM) in-vivo. Human uterine sarcoma MES-SA/DX5v cells, grown under nanomolar concentration of DOX and highly expressing P-gp, were used as model cells for in-vitro studies whereas white New Zealand male rabbits were used for in-vivo studies. Results showed that the accumulation of DOX in MES-SA/DX5v cells was increased by 18.3 ± 2.0% in presence of LGFJ compared to control experiments. Results from in-vivo absorption studies showed that the relative oral bioavailability of TM ingested with LGFJ was significantly higher by 70% and 43% compared to the oral bioavailability of TM ingested with saline and a commercial GFJ, respectively. This study as such confirms the inhibitory effects of LGFJ on P-gp efflux proteins and highlights the superiority of using lyophilized freshly prepared juices over the commercially available juices in research studies. Also, the results call for further studies to assess the possibility of co-administrating LGFJ with anti-cancer agents to modulate multidrug resistance in their cellular environment or incorporating LGFJ in solid dosage forms to improve oral bioavailability of drugs. PMID:24303901

  8. The linker region of breast cancer resistance protein ABCG2 is critical for coupling of ATP-dependent drug transport.

    Science.gov (United States)

    Macalou, S; Robey, R W; Jabor Gozzi, G; Shukla, S; Grosjean, I; Hegedus, T; Ambudkar, S V; Bates, S E; Di Pietro, A

    2016-05-01

    The ATP-binding cassette (ABC) transporters of class G display a different domain organisation than P-glycoprotein/ABCB1 and bacterial homologues with a nucleotide-binding domain preceding the transmembrane domain. The linker region connecting these domains is unique and its function and structure cannot be predicted. Sequence analysis revealed that the human ABCG2 linker contains a LSGGE sequence, homologous to the canonical C-motif/ABC signature present in all ABC nucleotide-binding domains. Predictions of disorder and of secondary structures indicated that this C2-sequence was highly mobile and located between an α-helix and a loop similarly to the C-motif. Point mutations of the two first residues of the C2-sequence fully abolished the transport-coupled ATPase activity, and led to the complete loss of cell resistance to mitoxantrone. The interaction with potent, selective and non-competitive, ABCG2 inhibitors was also significantly altered upon mutation. These results suggest an important mechanistic role for the C2-sequence of the ABCG2 linker region in ATP binding and/or hydrolysis coupled to drug efflux. PMID:26708291

  9. Tivantinib (ARQ 197) exhibits antitumor activity by directly interacting with tubulin and overcomes ABC transporter-mediated drug resistance.

    Science.gov (United States)

    Aoyama, Aki; Katayama, Ryohei; Oh-Hara, Tomoko; Sato, Shigeo; Okuno, Yasushi; Fujita, Naoya

    2014-12-01

    Tivantinib (ARQ197) was first reported as a highly selective inhibitor of c-MET and is currently being investigated in a phase III clinical trial. However, as recently reported by us and another group, tivantinib showed cytotoxic activity independent of cellular c-MET status and also disrupted microtubule dynamics. To investigate if tivantinib exerts its cytotoxic activity by disrupting microtubules, we quantified polymerized tubulin in cells and xenograft tumors after tivantinib treatment. Consistent with our previous report, tivantinib reduced tubulin polymerization in cells and in mouse xenograft tumors in vivo. To determine if tivantinib directly binds to tubulin, we performed an in vitro competition assay. Tivantinib competitively inhibited colchicine but not vincristine or vinblastine binding to purified tubulin. These results imply that tivantinib directly binds to the colchicine binding site of tubulin. To predict the binding mode of tivantinib with tubulin, we performed computer simulation of the docking pose of tivantinib with tubulin using GOLD docking program. Computer simulation predicts tivantinib fitted into the colchicine binding pocket of tubulin without steric hindrance. Furthermore, tivantinib showed similar IC50 values against parental and multidrug-resistant cells. In contrast, other microtubule-targeting drugs, such as vincristine, paclitaxel, and colchicine, could not suppress the growth of cells overexpressing ABC transporters. Moreover, the expression level of ABC transporters did not correlate with the apoptosis-inducing ability of tivantinib different from other microtubule inhibitor. These results suggest that tivantinib can overcome ABC transporter-mediated multidrug-resistant tumor cells and is potentially useful against various tumors. PMID:25313010

  10. Peripheral nerve: from the microscopic functional unit of the axon to the biomechanically loaded macroscopic structure.

    Science.gov (United States)

    Topp, Kimberly S; Boyd, Benjamin S

    2012-01-01

    Peripheral nerves are composed of motor and sensory axons, associated ensheathing Schwann cells, and organized layers of connective tissues that are in continuity with the tissues of the central nervous system. Nerve fiber anatomy facilitates conduction of electrical impulses to convey information over a distance, and the length of these polarized cells necessitates regulated axonal transport of organelles and structural proteins for normal cell function. Nerve connective tissues serve a protective function as the limb is subjected to the stresses of myriad limb positions and postures. Thus, the tissues are uniquely arranged to control the local nerve fiber environment and modulate physical stresses. In this brief review, we describe the microscopic anatomy and physiology of peripheral nerve and the biomechanical properties that enable nerve to withstand the physical stresses of everyday life. PMID:22133662

  11. Predicting P-Glycoprotein-Mediated Drug Transport Based On Support Vector Machine and Three-Dimensional Crystal Structure of P-glycoprotein

    OpenAIRE

    Bikadi, Zsolt; Hazai, Istvan; Malik, David; Jemnitz, Katalin; Veres, Zsuzsa; Hari, Peter; Ni, Zhanglin; Loo, Tip W.; Clarke, David M.; Hazai, Eszter; Mao, Qingcheng

    2011-01-01

    Human P-glycoprotein (P-gp) is an ATP-binding cassette multidrug transporter that confers resistance to a wide range of chemotherapeutic agents in cancer cells by active efflux of the drugs from cells. P-gp also plays a key role in limiting oral absorption and brain penetration and in facilitating biliary and renal elimination of structurally diverse drugs. Thus, identification of drugs or new molecular entities to be P-gp substrates is of vital importance for predicting the pharmacokinetics,...

  12. TRANSFECTED MDCK CELL LINE WITH ENHANCED EXPRESSION OF CYP3A4 AND P-GLYCOPROTEIN AS A MODEL TO STUDY THEIR ROLE IN DRUG TRANSPORT AND METABOLISM

    OpenAIRE

    Kwatra, Deep; Budda, Balasubramanyam; Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Ashim K. Mitra

    2012-01-01

    The aim of this study was to characterize and utilize MDCK cell line expressing CYP3A4 and P-glycoprotein as an in vitro model for evaluating drug-herb and drug-drugs of abuse interactions. MDCK cell line simultaneously expressing P-gp and CYP3A4 (MMC) was developed and characterized by using expression and activity studies. Cellular transport study of 200 μM cortisol was performed to determine their combined activity. The study was carried across MDCK-WT, MDCK-MDR1 and MMC cell lines. Simila...

  13. NDE1 and GSK3β Associate with TRAK1 and Regulate Axonal Mitochondrial Motility: Identification of Cyclic AMP as a Novel Modulator of Axonal Mitochondrial Trafficking.

    Science.gov (United States)

    Ogawa, Fumiaki; Murphy, Laura C; Malavasi, Elise L V; O'Sullivan, Shane T; Torrance, Helen S; Porteous, David J; Millar, J Kirsty

    2016-05-18

    Mitochondria are essential for neuronal function, providing the energy required to power neurotransmission, and fulfilling many important additional roles. In neurons, mitochondria must be efficiently transported to sites, including synapses, where their functions are required. Neurons, with their highly elongated morphology, are consequently extremely sensitive to defective mitochondrial trafficking which can lead to neuronal ill-health/death. We recently demonstrated that DISC1 associates with mitochondrial trafficking complexes where it associates with the core kinesin and dynein adaptor molecule TRAK1. We now show that the DISC1 interactors NDE1 and GSK3β also associate robustly with TRAK1 and demonstrate that NDE1 promotes retrograde axonal mitochondrial movement. GSK3β is known to modulate axonal mitochondrial motility, although reports of its actual effect are conflicting. We show that, in our system, GSK3β promotes anterograde mitochondrial transport. Finally, we investigated the influence of cAMP elevation upon mitochondrial motility, and found a striking increase in mitochondrial motility and retrograde movement. DISC1, NDE1, and GSK3β are implicated as risk factors for major mental illness. Our demonstration that they function together within mitochondrial trafficking complexes suggests that defective mitochondrial transport may be a contributory disease mechanism in some cases of psychiatric disorder. PMID:26815013

  14. New insights into mRNA trafficking in axons

    NARCIS (Netherlands)

    Gumy, Laura; Katrukha, Eugene; Kapitein, Lukas; Hoogenraad, Casper

    2014-01-01

    In recent years, it has been demonstrated that mRNAs localize to axons of young and mature central and peripheral nervous system neurons in culture and in vivo. Increasing evidence is supporting a fundamental role for the local translation of these mRNAs in neuronal function by regulating axon growt

  15. Axonal accumulation of synaptic markers in APP transgenic Drosophila depends on the NPTY motif and is paralleled by defects in synaptic plasticity

    DEFF Research Database (Denmark)

    Rusu, Patricia; Jansen, Anna; Soba, Peter;

    2007-01-01

    Alzheimer's disease (AD) is characterized by neurofibrillary tangles and extracellular plaques, which consist mainly of beta-amyloid derived from the beta-amyloid precursor protein (APP). An additional feature of AD is axonopathy, which might contribute to impairment of cognitive functions....... Specifically, axonal transport defects have been reported in AD animal models, including mice and flies that overexpress APP and tau. Here we demonstrate that the APP-induced traffic jam of vesicles in peripheral nerves of Drosophila melanogaster larvae depends on the four residues NPTY motif in the APP...... intracellular domain. Furthermore, heterologous expression of Fe65 and JIP1b, scaffolding proteins interacting with the NPTY motif, also perturb axonal transport. Together, these data indicate that JIP1b or Fe65 may be involved in the APP-induced axonal transport defect. Moreover, we have characterized...

  16. Restoration of Visual Function by Enhancing Conduction in Regenerated Axons.

    Science.gov (United States)

    Bei, Fengfeng; Lee, Henry Hing Cheong; Liu, Xuefeng; Gunner, Georgia; Jin, Hai; Ma, Long; Wang, Chen; Hou, Lijun; Hensch, Takao K; Frank, Eric; Sanes, Joshua R; Chen, Chinfei; Fagiolini, Michela; He, Zhigang

    2016-01-14

    Although a number of repair strategies have been shown to promote axon outgrowth following neuronal injury in the mammalian CNS, it remains unclear whether regenerated axons establish functional synapses and support behavior. Here, in both juvenile and adult mice, we show that either PTEN and SOCS3 co-deletion, or co-overexpression of osteopontin (OPN)/insulin-like growth factor 1 (IGF1)/ciliary neurotrophic factor (CNTF), induces regrowth of retinal axons and formation of functional synapses in the superior colliculus (SC) but not significant recovery of visual function. Further analyses suggest that regenerated axons fail to conduct action potentials from the eye to the SC due to lack of myelination. Consistent with this idea, administration of voltage-gated potassium channel blockers restores conduction and results in increased visual acuity. Thus, enhancing both regeneration and conduction effectively improves function after retinal axon injury. PMID:26771493

  17. Receptor Tyrosine Kinases: Molecular Switches Regulating CNS Axon Regeneration

    Directory of Open Access Journals (Sweden)

    Vasanthy Vigneswara

    2012-01-01

    Full Text Available The poor or lack of injured adult central nervous system (CNS axon regeneration results in devastating consequences and poor functional recovery. The interplay between the intrinsic and extrinsic factors contributes to robust inhibition of axon regeneration of injured CNS neurons. The insufficient or lack of trophic support for injured neurons is considered as one of the major obstacles contributing to their failure to survive and regrow their axons after injury. In the CNS, many of the signalling pathways associated with neuronal survival and axon regeneration are regulated by several classes of receptor tyrosine kinases (RTK that respond to a variety of ligands. This paper highlights and summarises the most relevant recent findings pertinent to different classes of the RTK family of molecules, with a particular focus on elucidating their role in CNS axon regeneration.

  18. SnoN facilitates axonal regeneration after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Jiun L Do

    Full Text Available Adult CNS neurons exhibit a reduced capacity for growth compared to developing neurons, due in part to downregulation of growth-associated genes as development is completed. We tested the hypothesis that SnoN, an embryonically regulated transcription factor that specifies growth of the axonal compartment, can enhance growth in injured adult neurons. In vitro, SnoN overexpression in dissociated adult DRG neuronal cultures significantly enhanced neurite outgrowth. Moreover, TGF-β1, a negative regulator of SnoN, inhibited neurite outgrowth, and SnoN over-expression overcame this inhibition. We then examined whether SnoN influenced axonal regeneration in vivo: indeed, expression of a mutant form of SnoN resistant to degradation significantly enhanced axonal regeneration following cervical spinal cord injury, despite peri-lesional upregulation of TGF-β1. Thus, a developmental mechanism that specifies extension of the axonal compartment also promotes axonal regeneration after adult CNS injury.

  19. Inhibition of Human Hepatic Bile Acid Transporters by Tolvaptan and Metabolites: Contributing Factors to Drug-Induced Liver Injury?

    Science.gov (United States)

    Slizgi, Jason R; Lu, Yang; Brouwer, Kenneth R; St Claire, Robert L; Freeman, Kimberly M; Pan, Maxwell; Brock, William J; Brouwer, Kim L R

    2016-01-01

    Tolvaptan is a vasopressin V(2)-receptor antagonist that has shown promise in treating Autosomal Dominant Polycystic Kidney Disease (ADPKD). Tolvaptan was, however, associated with liver injury in some ADPKD patients. Inhibition of bile acid transporters may be contributing factors to drug-induced liver injury. In this study, the ability of tolvaptan and two metabolites, DM-4103 and DM-4107, to inhibit human hepatic transporters (NTCP, BSEP, MRP2, MRP3, and MRP4) and bile acid transport in sandwich-cultured human hepatocytes (SCHH) was explored. IC(50) values were determined for tolvaptan, DM-4103 and DM-4107 inhibition of NTCP (∼41.5, 16.3, and 95.6 μM, respectively), BSEP (31.6, 4.15, and 119 μM, respectively), MRP2 (>50, ∼51.0, and >200 μM, respectively), MRP3 (>50, ∼44.6, and 61.2 μM, respectively), and MRP4 (>50, 4.26, and 37.9 μM, respectively). At the therapeutic dose of tolvaptan (90 mg), DM-4103 exhibited a C(max)/IC(50) value >0.1 for NTCP, BSEP, MRP2, MRP3, and MRP4. Tolvaptan accumulation in SCHH was extensive and not sodium-dependent; intracellular concentrations were ∼500 μM after a 10-min incubation duration with tolvaptan (15 μM). The biliary clearance of taurocholic acid (TCA) decreased by 43% when SCHH were co-incubated with tolvaptan (15 μM) and TCA (2.5 μM). When tolvaptan (15 μM) was co-incubated with 2.5 μM of chenodeoxycholic acid, taurochenodeoxycholic acid, or glycochenodeoxycholic acid in separate studies, the cellular accumulation of these bile acids increased by 1.30-, 1.68-, and 2.16-fold, respectively. Based on these data, inhibition of hepatic bile acid transport may be one of the biological mechanisms underlying tolvaptan-associated liver injury in patients with ADPKD. PMID:26507107

  20. Amino Acid transporters in cancer and their relevance to "glutamine addiction": novel targets for the design of a new class of anticancer drugs.

    Science.gov (United States)

    Bhutia, Yangzom D; Babu, Ellappan; Ramachandran, Sabarish; Ganapathy, Vadivel

    2015-05-01

    Tumor cells have an increased demand for amino acids because of their rapid proliferation rate. In addition to their need in protein synthesis, several amino acids have other roles in supporting cancer growth. There are approximately two-dozen amino acid transporters in humans, and tumor cells must upregulate one or more of these transporters to satisfy their demand for amino acids. If the transporters that specifically serve this purpose in tumor cells are identified, they can be targeted for the development of a brand new class of anticancer drugs; the logical basis of such a strategy would be to starve the tumor cells of an important class of nutrients. To date, four amino acid transporters have been found to be expressed at high levels in cancer: SLC1A5, SLC7A5, SLC7A11, and SLC6A14. Their induction occurs in a cancer type-specific manner with a direct or indirect involvement of the oncogene c-Myc. Further, these transporters are functionally coupled, thus maximizing their ability to promote cancer growth and chemoresistance. Progress has been made in preclinical studies, exploiting these transporters as drug targets in cancer therapy. These transporters also show promise in development of new tumor-imaging probes and in tumor-specific delivery of appropriately designed chemotherapeutic agents. PMID:25855379

  1. Brain injury tolerance limit based on computation of axonal strain.

    Science.gov (United States)

    Sahoo, Debasis; Deck, Caroline; Willinger, Rémy

    2016-07-01

    Traumatic brain injury (TBI) is the leading cause of death and permanent impairment over the last decades. In both the severe and mild TBIs, diffuse axonal injury (DAI) is the most common pathology and leads to axonal degeneration. Computation of axonal strain by using finite element head model in numerical simulation can enlighten the DAI mechanism and help to establish advanced head injury criteria. The main objective of this study is to develop a brain injury criterion based on computation of axonal strain. To achieve the objective a state-of-the-art finite element head model with enhanced brain and skull material laws, was used for numerical computation of real world head trauma. The implementation of new medical imaging data such as, fractional anisotropy and axonal fiber orientation from Diffusion Tensor Imaging (DTI) of 12 healthy patients into the finite element brain model was performed to improve the brain constitutive material law with more efficient heterogeneous anisotropic visco hyper-elastic material law. The brain behavior has been validated in terms of brain deformation against Hardy et al. (2001), Hardy et al. (2007), and in terms of brain pressure against Nahum et al. (1977) and Trosseille et al. (1992) experiments. Verification of model stability has been conducted as well. Further, 109 well-documented TBI cases were simulated and axonal strain computed to derive brain injury tolerance curve. Based on an in-depth statistical analysis of different intra-cerebral parameters (brain axonal strain rate, axonal strain, first principal strain, Von Mises strain, first principal stress, Von Mises stress, CSDM (0.10), CSDM (0.15) and CSDM (0.25)), it was shown that axonal strain was the most appropriate candidate parameter to predict DAI. The proposed brain injury tolerance limit for a 50% risk of DAI has been established at 14.65% of axonal strain. This study provides a key step for a realistic novel injury metric for DAI. PMID:27038501

  2. Intestinal transporters for endogenic and pharmaceutical organic anions: The challenges of deriving in-vitro kinetic parameters for the prediction of clinically relevant drug-drug interactions

    DEFF Research Database (Denmark)

    Grandvuinet, Anne Sophie; Vestergaard, Henrik Tang; Rapin, Nicolas;

    2012-01-01

    the apical sodium-dependent bile acid transporter (ASBT), the breast cancer resistance protein (BCRP), the monocarboxylate transporters (MCT) 1, MCT3-5, the multidrug resistance associated proteins (MRP) 1-6, the organic anion transporting polypetides (OATP) 2B1, 1A2, 3A1 and 4A1, and the organic...

  3. Understanding the structure, dynamics, and mass transport properties of self assembling peptide hydrogels for injectable, drug delivery applications

    Science.gov (United States)

    Branco, Monica Cristina

    hydrogels as a function of peptide sequence and concentration. Changes in nanoscale dynamics and structure inherently lead to substantial differences in bulk properties, such as the elastic modulus and network mesh size. Learning how the material properties of the gels influence the transport rate of therapeutics through the hydrogel is essential to the development of delivery vehicles. The remainder of the thesis focuses on correlating the mesh sizes of MAX1 and MAX8 gels to the diffusion and mass transport properties of model dextran and protein probes. Here, work is centered on how peptide charge and concentration, as well as probe structure, in particular hydrodynamic diameter and charge, dictate the temporal release of model probes from the peptide hydrogels. Experiments include self diffusion studies and bulk release experiments with model dextrans and proteins from gels before and after syringe delivery. Overall, this thesis will demonstrate the importance of understanding material properties from the nanoscale up to the macroscale for application based design. With this approach, better and specific development of self-assembling peptide materials can be achieved, allowing for the rational engineering of peptide sequences to form hydrogels appropriate for specific drug delivery applications.

  4. Combined phylogeny and neighborhood analysis of the evolution of the ABC transporters conferring multiple drug resistance in hemiascomycete yeasts

    Directory of Open Access Journals (Sweden)

    Goffeau André

    2009-10-01

    Full Text Available Abstract Background Pleiotropic Drug Resistant transporters (PDR are members of the ATP-Binding Cassette (ABC subfamily which export antifungals and other xenobiotics in fungi and plants. This subfamily of transmembrane transporters has nine known members in Saccharomyces cerevisiae. We have analyzed the complex evolution of the pleiotropic drug resistance proteins (Pdrp subfamily where gene duplications and deletions occur independently in individual genomes. This study was carried out on 62 Pdrp from nine hemiascomycetous species, seven of which span 6 of the 14 clades of the Saccharomyces complex while the two others species, Debaryomyces hansenii and Yarrowia lipolytica, are further apart from an evolutive point of view. Results Combined phylogenetic and neighborhood analyses enabled us to identify five Pdrp clusters in the Saccharomyces complex. Three of them comprise orthologs of the Pdrp sensu stricto, Pdr5p, Pdr10p, Pdr12p, Pdr15p, Snq2p and YNR070wp. The evolutive pathway of the orthologs of Snq2 and YNR070w is particularly complex due to a tandem gene array in Eremothecium gossypii, Kluyveromyces lactis and Saccharomyces (Lachancea kluyveri. This pathway and different cases of duplications and deletions were clarified by using a neighborhood analysis based on synteny. For the two distant species, Yarrowia lipolytica and Debaryomyces hansenii, no neighborhood evidence is available for these clusters and many homologs of Pdr5 and Pdr15 are phylogenetically assigned to species-based clusters. Two other clusters comprise the orthologs of the sensu lato Pdrp, Aus1p/Pdr11p and YOL075cp respectively. The evolutionary pathway of these clusters is simpler. Nevertheless, orthologs of these genes are missing in some species. Conclusion Numerous duplications were traced among the Hemiascomycetous Pdrp studied. The role of the Whole Genome Duplication (WGD is sorted out and our analyses confirm the common ancestrality of Pdr5p and Pdr15p. A tandem

  5. Antidiabetic drugs restore abnormal transport of amyloid-β across the blood-brain barrier and memory impairment in db/db mice.

    Science.gov (United States)

    Chen, Fang; Dong, Rong Rong; Zhong, Kai Long; Ghosh, Arijit; Tang, Su Su; Long, Yan; Hu, Mei; Miao, Ming Xing; Liao, Jian Min; Sun, Hong Bing; Kong, Ling Yi; Hong, Hao

    2016-02-01

    Previous studies have shown significant changes in amyloid-β (Aβ) transport across the blood-brain barrier (BBB) under diabetic conditions with hypoinsulinemia, which is involved in diabetes-associated cognitive impairment. Present study employed db/db mice with hyperinsulinemia to investigate changes in Aβ transport across the BBB, hippocampal synaptic plasticity, and restorative effects of antidiabetic drugs. Our results showed that db/db mice exhibited similar changes in Aβ transport across the BBB to that of insulin-deficient mice. Chronic treatment of db/db mice with antidiabetic drugs such as metformin, glibenclamide and insulin glargine significantly decreased Aβ influx across the BBB determined by intra-arterial infusion of (125)I-Aβ(1-40), and expression of the receptor for advanced glycation end products (RAGE) participating in Aβ influx. Insulin glargine, but not, metformin or glibenclamide increased Aβ efflux across the BBB determined by stereotaxic intra-cerebral infusion of (125)I-Aβ(1-40), and expression of the low-density lipoprotein receptor related protein 1 (LRP1) participating in Aβ efflux. Moreover, treatment with these drugs significantly decreased hippocampal Aβ(1-40) or Aβ(1-42) and inhibited neuronal apoptosis. The drugs also ameliorated memory impairment confirmed by improved performance on behavioral tasks. However, insulin glargine or glibenclamide, but not metformin, restored hippocampal synaptic plasticity characterized by enhancing in vivo long-term potentiation (LTP). Further study found that these three drugs significantly restrained NF-κB, but only insulin glargine enhanced peroxisome proliferator-activated receptor γ (PPARγ) activity at the BBB in db/db mice. Our data indicate that the antidiabetic drugs can partially restore abnormal Aβ transport across the BBB and memory impairment under diabetic context. PMID:26211973

  6. Characterization of Ocular Iontophoretic Drug Transport of Ionic and Non-ionic Compounds in Isolated Rabbit Cornea and Conjunctiva.

    Science.gov (United States)

    Sekijima, Hidehisa; Ehara, Junya; Hanabata, Yusuke; Suzuki, Takumi; Kimura, Soichiro; Lee, Vincent H L; Morimoto, Yasunori; Ueda, Hideo

    2016-06-01

    Ocular iontophoresis (IP) in isolated rabbit cornea and conjunctiva was examined in terms of transport enhancement, tissue viability and integrity using electrophysiological parameters by the Ussing-type chamber technique. Lidocaine hydrochloride (LC, a cationic compound), sodium benzoate (BA, anionic compound), and fluorescein isothiocyanate labeled dextran (molecular weight 4400 Da, FD-4, hydrophilic large compound) were used as model permeants. Direct electric current was applied at 0.5-5.0 mA/cm(2) for the cornea and 0.5-20 mA/cm(2) for the conjunctiva for 30 min. LC and BA fluxes across the cornea and conjunctiva were significantly increased by the application of electric current up to 2.3- and 2.5-fold and 4.0- and 3.4-fold, respectively, and returned to their baseline level on stopping the current. Furthermore, a much higher increase by IP application was obtained for the FD-4 transport. The increased FD-4 flux in the conjunctiva returned to baseline on stopping the current, whereas the flux in the cornea was sustained at a higher level after stopping the current. The transepithelial electric resistance of the cornea and conjunctiva was lowered by electric current application but fully recovered after stopping the current up to 2.0 mA/cm(2) for the cornea and 10 mA/cm(2) for the conjunctiva, suggesting that the corneal and conjunctival viability and integrity are maintained even after application of these current densities. These results indicate that ocular IP may be a useful non-invasive technique to achieve drug delivery of hydrophilic large molecules into the eyes. PMID:27040754

  7. Prolyl Isomerase Pin1 Regulates Axon Guidance by Stabilizing CRMP2A Selectively in Distal Axons

    Czech Academy of Sciences Publication Activity Database

    Balaštík, Martin; Zhou, X.Z.; Alberich-Jorda, Meritxell; Weissová, Romana; Žiak, Jakub; Pazyra-Murphy, M.F.; Cosker, K.E.; Machoňová, Olga; Kozmiková, Iryna; Chen, CH.; Pastorino, L.; Asara, J.M.; Cole, A.; Sutherland, C.; Segal, R. A.; Lu, K.P.

    2015-01-01

    Roč. 13, č. 4 (2015), s. 812-828. ISSN 2211-1247 R&D Projects: GA MŠk(CZ) LK11213; GA MŠk LK21307; GA ČR GA15-03796S; GA MŠk LO1419 Institutional support: RVO:68378050 Keywords : Pin1 * axon guidance * Semaphorin 3A Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.358, year: 2014

  8. Clinical features of diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To analyze the mechanism of diffuse axonal injury (DAI) and study the relationship between DAI and brain concussion, brain contusion, and primary brain stem injury.Methods: The clinical data and iconographic characteristics of 56 patients with DAI were analyzed retrospectively.Results: Traffic accidents were the main cause of DAI. Among the 56 cases, 34 were injured for at least twice, and 71.43% of the patients were complicated with contusion.Conclusions: It is considered that DAI is a common pattern of primary brain injury, which is often underestimated. And DAI includes cerebral concussion and primary brain injury, and is often complicated by cerebral cortex contusion. Therefore, it is very simple and practical to divide primary brain injuries into local and diffuse injuries.

  9. The impact of Organic Anion-Transporting Polypeptides (OATPs) on disposition and toxicity of antitumor drugs: Insights from knockout and humanized mice.

    Science.gov (United States)

    Durmus, Selvi; van Hoppe, Stéphanie; Schinkel, Alfred H

    2016-07-01

    It is now widely accepted that organic anion-transporting polypeptides (OATPs), especially members of the OATP1A/1B family, can have a major impact on the disposition and elimination of a variety of endogenous molecules and drugs. Owing to their prominent expression in the sinusoidal plasma membrane of hepatocytes, OATP1B1 and OATP1B3 play key roles in the hepatic uptake and plasma clearance of a multitude of structurally diverse anti-cancer and other drugs. Here, we present a thorough assessment of the currently available OATP1A and OATP1B knockout and transgenic mouse models as key tools to study OATP functions in vivo. We discuss recent studies using these models demonstrating the importance of OATPs, primarily in the plasma and hepatic clearance of anticancer drugs such as taxanes, irinotecan/SN-38, methotrexate, doxorubicin, and platinum compounds. We further discuss recent work on OATP-mediated drug-drug interactions in these mouse models, as well as on the role of OATP1A/1B proteins in the phenomenon of hepatocyte hopping, an efficient and flexible way of liver detoxification for both endogenous and exogenous substrates. Interestingly, glucuronide conjugates of both the heme breakdown product bilirubin and the protein tyrosine kinase-targeted anticancer drug sorafenib are strongly affected by this process. The clinical relevance of variation in OATP1A/1B activity in patients has been previously revealed by the effects of polymorphic variants and drug-drug interactions on drug toxicity. The development of in vivo tools to study OATP1A/1B functions has greatly advanced our mechanistic understanding of their functional role in drug pharmacokinetics, and their implications for therapeutic efficacy and toxic side effects of anticancer and other drug treatments. PMID:27449599

  10. The Complexities of Interpreting Reversible Elevated Serum Creatinine Levels in Drug Development: Does a Correlation with Inhibition of Renal Transporters Exist?

    Science.gov (United States)

    Chu, Xiaoyan; Bleasby, Kelly; Chan, Grace Hoyee; Nunes, Irene; Evers, Raymond

    2016-09-01

    In humans, creatinine is formed by a multistep process in liver and muscle and eliminated via the kidney by a combination of glomerular filtration and active transport. Based on current evidence, creatinine can be taken up into renal proximal tubule cells by the basolaterally localized organic cation transporter 2 (OCT2) and the organic anion transporter 2, and effluxed into the urine by the apically localized multidrug and toxin extrusion protein 1 (MATE1) and MATE2K. Drug-induced elevation of serum creatinine (SCr) and/or reduced creatinine renal clearance is routinely used as a marker for acute kidney injury. Interpretation of elevated SCr can be complex, because such increases can be reversible and explained by inhibition of renal transporters involved in active secretion of creatinine or other secondary factors, such as diet and disease state. Distinction between these possibilities is important from a drug development perspective, as increases in SCr can result in the termination of otherwise efficacious drug candidates. In this review, we discuss the challenges associated with using creatinine as a marker for kidney damage. Furthermore, to evaluate whether reversible changes in SCr can be predicted prospectively based on in vitro transporter inhibition data, an in-depth in vitro-in vivo correlation (IVIVC) analysis was conducted for 16 drugs with in-house and literature in vitro transporter inhibition data for OCT2, MATE1, and MATE2K, as well as total and unbound maximum plasma concentration (Cmax and Cmax,u) data measured in the clinic. PMID:26825641

  11. Role of MRP Transporters in Regulating Antimicrobial Drug Inefficacy and Oxidative Stress-induced Pathogenesis during HIV-1 and TB Infections

    Directory of Open Access Journals (Sweden)

    Upal eRoy

    2015-09-01

    Full Text Available Multi-Drug Resistance Proteins (MRPs are members of the ATP binding cassette (ABC drug-efflux transporter superfamily. MRPs are known to regulate the efficacy of a broad range of anti-retroviral drugs (ARV used in highly active antiretroviral therapy (HAART and antibacterial agents used in Tuberculus Bacilli (TB therapy. Due to their role in efflux of glutathione (GSH conjugated drugs, MRPs can also regulate cellular oxidative stress, which may contribute to both HIV and/or TB pathogenesis. This review focuses on the characteristics, functional expression, and modulation of known members of the MRP family in HIV infected cells exposed to ARV drugs and discusses their known role in drug-inefficacy in HIV/TB-induced dysfunctions. Currently, nine members of the MRP family (MRP1-MRP9 have been identified, with MRP1 and MRP2 being the most extensively studied. Details of the other members of this family have not been known until recently, but differential expression has been documented in inflammatory tissues. Researchers have found that the distribution, function and reactivity of members of MRP family vary in different types of lymphocytes and macrophages, and are differentially expressed at the basal and apical surfaces of both endothelial and epithelial cells. Therefore, the prime objective of this review is to delineate the role of MRP transporters in HAART and TB therapy and their potential in precipitating cellular dysfunctions manifested in these chronic infectious diseases. We also provide an overview of different available options and novel experimental strategies that are being utilized to overcome the drug resistance and disease pathogenesis mediated by these membrane transporters.

  12. Gene-gene-environment interactions between drugs, transporters, receptors, and metabolizing enzymes: Statins, SLCO1B1, and CYP3A4 as an example.

    Science.gov (United States)

    Sadee, Wolfgang

    2013-09-01

    Pharmacogenetic biomarker tests include mostly specific single gene-drug pairs, capable of accounting for a portion of interindividual variability in drug response and toxicity. However, multiple genes are likely to contribute, either acting independently or epistatically, with the CYP2C9-VKORC1-warfarin test panel, an example of a clinically used gene-gene-dug interaction. I discuss here further instances of gene-gene-drug interactions, including a proposed dynamic effect on statin therapy by genetic variants in both a transporter (SLCO1B1) and a metabolizing enzyme (CYP3A4) in liver cells, the main target site where statins block cholesterol synthesis. These examples set a conceptual framework for developing diagnostic panels involving multiple gene-drug combinations. PMID:23436703

  13. Astrocyte scar formation aids central nervous system axon regeneration.

    Science.gov (United States)

    Anderson, Mark A; Burda, Joshua E; Ren, Yilong; Ao, Yan; O'Shea, Timothy M; Kawaguchi, Riki; Coppola, Giovanni; Khakh, Baljit S; Deming, Timothy J; Sofroniew, Michael V

    2016-04-14

    Transected axons fail to regrow in the mature central nervous system. Astrocytic scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or ablating chronic astrocytic scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. By contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocytic scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth-supporting molecules. Our findings show that contrary to the prevailing dogma, astrocyte scar formation aids rather than prevents central nervous system axon regeneration. PMID:27027288

  14. 浅议运输毒品犯罪中的推定明知%On the Knowing Presumption in Drug Transportation Offences

    Institute of Scientific and Technical Information of China (English)

    高素云

    2011-01-01

    运输毒品与贩卖毒品同样具有严重的社会危害性,运输毒品的行为人绝大多数在被抓获以后都要为自己的行为辩解。怎样判定行为人的"明知",就成为办理此类案件的重要乃至关键环节。文章根据刑法理论,结合司法实践,对运输毒品犯罪中的推定明知进行探讨。%Drug transportation and drug trafficking are both harmful to society.Most offenders of drug transportation will justify them after arrested.How to judge the actors' knowing is the key sector for handling such cases.The paper discussed the knowing presumption in drug transportation offences based on criminal theory and judicial practice.

  15. Drug: D03528 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D03528 Drug Citicoline sodium (USAN); CerAxon (TN) C14H25N4O11P2. Na 510.0893 510.3058 D03528.gi ... OANALEPTICS N06B PSYCHOSTIMULANTS, AGENTS USED FOR ADHD ... AND NOOTROPICS N06BX Other psychostimulants and no ...

  16. Intra-axonal myosin and actin in nerve regeneration.

    Science.gov (United States)

    McQuarrie, Irvine G; Lund, Linda M

    2009-10-01

    A focused review of sciatic nerve regeneration in the rat model, based on research conducted by the authors, is presented. We examine structural proteins carried distally in the axon by energy-requiring motor enzymes, using protein chemistry and molecular biology techniques in combination with immunohistochemistry. Relevant findings from other laboratories are cited and discussed. The general conclusion is that relatively large amounts of actin and tubulin are required to construct a regenerating axon and that these materials mainly originate in the parent axon. The motor enzymes that carry these proteins forward as macromolecules include kinesin and dynein but probably also include myosin. PMID:19927086

  17. Axon guidance and neuronal migration research in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Proper migration of neuronal somas and axonal growth cones to designated locations in the developing brain is essential for the assembly of functional neuronal circuits.Rapid progress in research of axon guidance and neuronal migration has been made in the last twenty years.Chinese researchers began their exploration in this field ten years ago and have made significant contributions in clarifying the signal transduction of axon guidance and neuronal migration.Several unique experimental approaches,including the migration assay of single isolated neurons in response to locally delivered guidance cues,have been developed by Chinese neuroscientists to investigate the molecular machinery underlying these guidance events.

  18. Differential modulation of the expression of important drug metabolising enzymes and transporters by endothelin-1 receptor antagonists ambrisentan and bosentan in vitro.

    Science.gov (United States)

    Weiss, Johanna; Herzog, Melanie; Haefeli, Walter Emil

    2011-06-25

    The safety and effectiveness of drugs used to treat chronic diseases critically depend on their propensity to interact with co-administered drugs. Induction of enzymes and drug transporters involved in the clearance and distribution of drugs may critically reduce exposure with their substrates and thus lead to nonresponse. We therefore investigated the impact of the endothelin-1 receptor antagonists bosentan and ambrisentan on the expression of relevant human efflux and uptake transporters and on phase 1 and phase 2 enzymes. LS180 adenocarcinoma cells were treated for four days with bosentan or ambrisentan (1-50 μM), the positive control rifampicin, or medium only (negative control). For evaluation of bosentan also HuH-7 human hepatoma cells were used and treated similarly. Gene expression was quantified at the mRNA level by real-time reverse transcription polymerase chain reaction and for some genes also at the protein level by western blot analysis. Comparable to rifampicin, bosentan was a moderate to strong inductor for all cytochrome P450 isozymes and ATP-binding cassette transporters tested, and it also induced organic anion transporting polypeptides. 50 μM bosentan up-regulated e.g. CYP3A4 8.5-fold, ABCB1 5.1-fold, and ABCB11 1.9-fold at the mRNA level in LS180 cells. In HuH-7 cells induction was much less pronounced (e.g. CYP3A4 1.9-fold for bosentan). In contrast, ambrisentan only weakly induced some of the genes investigated in LS180 cells. These findings corroborate the in vivo finding that bosentan is much more prone to drug interactions than ambrisentan. PMID:21501604

  19. The transport of anti-HIV drugs across blood-CNS interfaces: summary of current knowledge and recommendations for further research.

    Science.gov (United States)

    Varatharajan, Lavanya; Thomas, Sarah A

    2009-05-01

    The advent of highly active antiretroviral therapy (HAART), which constitutes HIV protease inhibitors, nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors and nucleotide reverse transcriptase inhibitors, has dramatically reduced the morbidity and mortality associated with human immunodeficiency virus (HIV) infection in resource-rich countries. However, this disease still kills several million people each year. Though the reason for therapeutic failure is multi-factorial, an important concern is the treatment and control of HIV within the central nervous system (CNS). Due to the restricted entry of anti-HIV drugs, the brain is thought to form a viral sanctuary site. This not only results in virological resistance, but also is often associated with the development of complications such as HIV-associated dementia. The CNS delivery of anti-HIV drugs is limited by the blood-brain and blood-CSF interfaces due to a combination of restricted paracellular movement, powerful metabolic enzymes and numerous transporters including members of the ATP binding cassette (ABC) and solute carrier (SLC) superfamilies. A better appreciation of the transporters present at the brain barriers will prove a valuable milestone in understanding the limited brain penetration of anti-HIV drugs in HIV and also aid the development of new anti-HIV drugs and drug combinations, with enhanced efficacy in the CNS. This review aims to summarise current knowledge on the transport of anti-HIV drugs across the blood-brain barrier and the choroid plexus, as well as provide recommendations for future research. PMID:19176219

  20. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice.

    Science.gov (United States)

    Brzozowska, Natalia; Li, Kong M; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S; Arnold, Jonathon C

    2016-01-01

    Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b (-∕-)), Bcrp knockout (Abcg2 (-∕-)), combined P-gp/Bcrp knockout (Abcb1a/b (-∕-) Abcg2 (-∕-)) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders. PMID:27257556

  1. Genetics Home Reference: autosomal recessive axonal neuropathy with neuromyotonia

    Science.gov (United States)

    ... neuromyotonia is a disorder that affects the peripheral nerves. Peripheral nerves connect the brain and spinal cord to muscles ... caused by damage to a particular part of peripheral nerves called axons , which are the extensions of nerve ...

  2. Internodal function in normal and regenerated mammalian axons

    DEFF Research Database (Denmark)

    Moldovan, M; Krarup, C

    2007-01-01

    AIM: Following Wallerian degeneration, peripheral myelinated axons have the ability to regenerate and, given a proper pathway, establish functional connections with targets. In spite of this capacity, the clinical outcome of nerve regeneration remains unsatisfactory. Early studies have found that...

  3. Syndecan Promotes Axon Regeneration by Stabilizing Growth Cone Migration

    Directory of Open Access Journals (Sweden)

    Tyson J. Edwards

    2014-07-01

    Full Text Available Growth cones facilitate the repair of nervous system damage by providing the driving force for axon regeneration. Using single-neuron laser axotomy and in vivo time-lapse imaging, we show that syndecan, a heparan sulfate (HS proteoglycan, is required for growth cone function during axon regeneration in C. elegans. In the absence of syndecan, regenerating growth cones form but are unstable and collapse, decreasing the effective growth rate and impeding regrowth to target cells. We provide evidence that syndecan has two distinct functions during axon regeneration: (1 a canonical function in axon guidance that requires expression outside the nervous system and depends on HS chains and (2 an intrinsic function in growth cone stabilization that is mediated by the syndecan core protein, independently of HS. Thus, syndecan is a regulator of a critical choke point in nervous system repair.

  4. Treadmill Training Promotes Axon Regeneration in Injured Peripheral Nerves

    OpenAIRE

    Sabatier, Manning J.; Redmon, Natalie; Schwartz, Gail; English, Arthur W.

    2008-01-01

    Physical activity after spinal cord injury promotes improvements in motor function, but its effects following peripheral nerve injury are less clear. Although axons in peripheral nerves are known to regenerate better than those in the CNS, methods of accelerating regeneration are needed due to the slow overall rate of growth. Therefore we studied the effect of two weeks of treadmill locomotion on the growth of regenerating axons in peripheral nerves following injury. The common fibular nerves...

  5. Fcγ receptor-mediated inflammation inhibits axon regeneration.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Anti-glycan/ganglioside antibodies are the most common immune effectors found in patients with Guillain-Barré Syndrome, which is a peripheral autoimmune neuropathy. We previously reported that disease-relevant anti-glycan autoantibodies inhibited axon regeneration, which echo the clinical association of these antibodies and poor recovery in Guillain-Barré Syndrome. However, the specific molecular and cellular elements involved in this antibody-mediated inhibition of axon regeneration are not previously defined. This study examined the role of Fcγ receptors and macrophages in the antibody-mediated inhibition of axon regeneration. A well characterized antibody passive transfer sciatic nerve crush and transplant models were used to study the anti-ganglioside antibody-mediated inhibition of axon regeneration in wild type and various mutant and transgenic mice with altered expression of specific Fcγ receptors and macrophage/microglia populations. Outcome measures included behavior, electrophysiology, morphometry, immunocytochemistry, quantitative real-time PCR, and western blotting. We demonstrate that the presence of autoantibodies, directed against neuronal/axonal cell surface gangliosides, in the injured mammalian peripheral nerves switch the proregenerative inflammatory environment to growth inhibitory milieu by engaging specific activating Fcγ receptors on recruited monocyte-derived macrophages to cause severe inhibition of axon regeneration. Our data demonstrate that the antibody orchestrated Fcγ receptor-mediated switch in inflammation is one mechanism underlying inhibition of axon regeneration. These findings have clinical implications for nerve repair and recovery in antibody-mediated immune neuropathies. Our results add to the complexity of axon regeneration in injured peripheral and central nervous systems as adverse effects of B cells and autoantibodies on neural injury and repair are increasingly recognized.

  6. Modality-Specific Axonal Regeneration: Towards selective regenerative neural interfaces

    Directory of Open Access Journals (Sweden)

    Mario I Romero

    2011-10-01

    Full Text Available Regenerative peripheral nerve interfaces have been proposed as viable alternatives for the natural control of robotic prosthetic devices. However, sensory and motor axons at the neural interface are of mixed submodality types, which difficult the specific recording from motor axons and the eliciting of precise sensory modalities through selective stimulation. Here we evaluated the possibility of using type-specific neurotrophins to preferentially entice the regeneration of defined axonal populations from transected peripheral nerves into separate compartments. Segregation of mixed sensory fibers from dorsal root ganglion neurons was evaluated in vitro by compartmentalized diffusion delivery of nerve growth factor (NGF and neurotrophin-3 (NT-3, to preferentially entice the growth of TrkA+ nociceptive and TrkC+ proprioceptive subsets of sensory neurons, respectively. The average axon length in the NGF channel increased 2.5 fold compared to that in saline or NT-3, whereas the number of branches increased 3 fold in the NT-3 channels. These results were confirmed using a 3-D “Y”-shaped in vitro assay showing that the arm containing NGF was able to entice a 5-fold increase in axonal length of unbranched fibers. To address if such segregation can be enticed in vivo, a “Y”-shaped tubing was used to allow regeneration of the transected adult rat sciatic nerve into separate compartments filled with either NFG or NT-3. A significant increase in the number of CGRP+ pain fibers were attracted towards the sural nerve, while N-52+ large diameter axons were observed in the tibial and NT-3 compartments. This study demonstrates the guided enrichment of sensory axons in specific regenerative chambers, and supports the notion that neurotrophic factors can be used to segregate sensory and perhaps motor axons in separate peripheral interfaces.

  7. Axonal integrity predicts cortical reorganisation following cervical injury

    OpenAIRE

    Freund, P.; Wheeler-Kingshott, C.A.; Nagy, Z.; Gorgoraptis, N.; N. Weiskopf; Friston, K.; Thompson, A J; Hutton, C.

    2012-01-01

    Background Traumatic spinal cord injury (SCI) leads to disruption of axonal architecture and macroscopic tissue loss with impaired information flow between the brain and spinal cord—the presumed basis of ensuing clinical impairment. Objective The authors used a clinically viable, multimodal MRI protocol to quantify the axonal integrity of the cranial corticospinal tract (CST) and to establish how microstructural white matter changes in the CST are related to cross-sectional spinal cord area a...

  8. Axonal neuropathy associated with monoclonal gammopathy of undetermined significance

    OpenAIRE

    GORSON, K.; Ropper, A.

    1997-01-01

    OBJECTIVE—The neuropathy associated with monoclonal gammopathy of undetermined significance (MGUS) is typically a predominantly demyelinating process that may have additional features of axonal degeneration. Sixteen patients with MGUS and a pure or predominantly axonal neuropathy are reported and compared with 20 consecutive patients with demyelinating neuropathy and MGUS who were seen during the same period.
METHODS—Retrospective review of a consecutive series of patients w...

  9. Changes in prefrontal axons may disrupt the network in autism

    OpenAIRE

    Zikopoulos, Basilis; Barbas, Helen

    2010-01-01

    Neural communication is disrupted in autism by unknown mechanisms. Here we examined whether in autism there are changes in axons, which are the conduit for neural communication. We investigated single axons and their ultrastructure in the white matter of post-mortem human brain tissue below the anterior cingulate cortex (ACC), orbitofrontal (OFC), and lateral (LPFC) prefrontal cortices, which are associated with attention, social interactions, and emotions and have been consistently implicate...

  10. Axonal maintenance, glia, exosomes, and heat shock proteins

    OpenAIRE

    Michael Tytell; Lasek, Raymond J.; Harold Gainer

    2016-01-01

    Of all cellular specializations, the axon is especially distinctive because it is a narrow cylinder of specialized cytoplasm called axoplasm with a length that may be orders of magnitude greater than the diameter of the cell body from which it originates. Thus, the volume of axoplasm can be much greater than the cytoplasm in the cell body. This fact raises a logistical problem with regard to axonal maintenance. Many of the components of axoplasm, such as soluble proteins and cytoskeleton, are...

  11. THEORETICAL PRINCIPLES UNDERLYING OPTICAL STIMULATION OF MYELINATED AXONS EXPRESSING CHANNELRHODOPSIN-2

    OpenAIRE

    ARLOW, R. L.; FOUTZ, T. J.; MCINTYRE, C. C.

    2013-01-01

    Numerous clinical conditions can be treated by neuromodulation of the peripheral nervous system (PNS). Typical electrical PNS therapies activate large diameter axons at lower electrical stimulus thresholds than small diameter axons. However, recent animal experiments with peripheral optogenetic neural stimulation (PONS) of myelinated axons expressing channelrhodopsin-2 (ChR2) have shown that this technique activates small diameter axons at lower irradiances than large diameter axons. We hypot...

  12. Spinal irradiation does not inhibit distal axonal sprouting

    International Nuclear Information System (INIS)

    In an attempt to determine the relative importance of the nerve cell body and of the axon in initiating and controlling axonal regeneration, nerve cell bodies were irradiated and the ability of the distal axon to sprout was examined. Mice were subjected to either 25 or 50 Gray (Gy) of x-irradiation localized to the lumbar spinal cord. After times varying from 1 day to 6 months after irradiation, a sublethal dose of botulinum toxin (BoTx) was injected into the calf muscles of one leg. The soleus muscle was examined histologically after times varying from 1 week to 6 months after injection, and BoTx-induced ultraterminal axonal sprouting was assessed by the number of motor endplates showing sprouts, the length of the sprouts, and the long term endplate morphology. Apart from some irradiated subgroups having slightly shorter sprout lengths, no significant differences were found between irradiated and nonirradiated groups. The results suggest either that the processes in the nerve cell body responsible for initiating and supporting axonal growth are resistant to large doses of irradiation, or that growth regulatory mechanisms in the distal axon are under local control

  13. Dynamics of signal propagation and collision in axons

    Science.gov (United States)

    Follmann, Rosangela; Rosa, Epaminondas; Stein, Wolfgang

    2015-09-01

    Long-range communication in the nervous system is usually carried out with the propagation of action potentials along the axon of nerve cells. While typically thought of as being unidirectional, it is not uncommon for axonal propagation of action potentials to happen in both directions. This is the case because action potentials can be initiated at multiple "ectopic" positions along the axon. Two ectopic action potentials generated at distinct sites, and traveling toward each other, will collide. As neuronal information is encoded in the frequency of action potentials, action potential collision and annihilation may affect the way in which neuronal information is received, processed, and transmitted. We investigate action potential propagation and collision using an axonal multicompartment model based on the Hodgkin-Huxley equations. We characterize propagation speed, refractory period, excitability, and action potential collision for slow (type I) and fast (type II) axons. In addition, our studies include experimental measurements of action potential propagation in axons of two biological systems. Both computational and experimental results unequivocally indicate that colliding action potentials do not pass each other; they are reciprocally annihilated.

  14. The naphthoquinones, vitamin K3 and its structural analog plumbagin, are substrates of the multidrug resistance-linked ABC drug transporter ABCG2

    OpenAIRE

    Shukla, Suneet; Wu, Chung-Pu; Nandigama, Krishnamachary; Ambudkar, Suresh V.

    2007-01-01

    Vitamin K3 (Menadione; 2-methyl-1,4-naphthoquinone) is a structural precursor of vitamins K1 and K2 which are essential for blood clotting. The naturally occurring structural analog of this vitamin, plumbagin (5-hydroxy-menadione), is known to modulate cellular proliferation, apoptosis, carcinogenesis, and radioresistance. We, here, report that both vitamin K3 and plumbagin are substrates of the multidrug resistance-linked ATP binding cassette (ABC) drug transporter, ABCG2. Vitamin K3 and plu...

  15. Risk Factors for Development of Cholestatic Drug-Induced Liver Injury: Inhibition of Hepatic Basolateral Bile Acid Transporters Multidrug Resistance-Associated Proteins 3 and 4

    OpenAIRE

    Köck, Kathleen; Ferslew, Brian C.; Netterberg, Ida; Yang, Kyunghee; Urban, Thomas J.; Swaan, Peter W.; Stewart, Paul W.; Brouwer, Kim L.R.

    2014-01-01

    Impaired hepatic bile acid export may contribute to development of cholestatic drug-induced liver injury (DILI). The multidrug resistance-associated proteins (MRP) 3 and 4 are postulated to be compensatory hepatic basolateral bile acid efflux transporters when biliary excretion by the bile salt export pump (BSEP) is impaired. BSEP inhibition is a risk factor for cholestatic DILI. This study aimed to characterize the relationship between MRP3, MRP4, and BSEP inhibition and cholestatic potentia...

  16. Dipeptidomimetic ketomethylene isosteres as pro-moieties for drug transport via the human intestinal di-/tripeptide transporter hPEPT1

    DEFF Research Database (Denmark)

    Våbenø, Jon; Nielsen, Carsten Uhd; Ingebrigtsen, Truls; Lejon, Tore; Steffansen, Bente; Luthman, Kristina

    2004-01-01

    stability, the affinity for the di-/tripeptide transporter hPEPT1, and the transepithelial transport properties of the model prodrugs were investigated. ValPsi[COCH(2)]Asp(OBn) was the compound with highest chemical stability in buffers at pH 6.0 and 7.4, with half-lives of 190 and 43 h, respectively. All...

  17. The synthesis and biodistribution of [(11)C]metformin as a PET probe to study hepatobiliary transport mediated by the multi-drug and toxin extrusion transporter 1 (MATE1) in vivo.

    Science.gov (United States)

    Hume, W Ewan; Shingaki, Tomotaka; Takashima, Tadayuki; Hashizume, Yoshinobu; Okauchi, Takashi; Katayama, Yumiko; Hayashinaka, Emi; Wada, Yasuhiro; Kusuhara, Hiroyuki; Sugiyama, Yuichi; Watanabe, Yasuyoshi

    2013-12-15

    In order to develop a new positron emission tomography (PET) probe to study hepatobiliary transport mediated by the multi-drug and toxin extrusion transporter 1 (MATE1), (11)C-labelled metformin was synthesized and then evaluated as a PET probe. [(11)C]Metformin ([(11)C]4) was synthesized in three steps, from [(11)C]methyl iodide. Evaluation by small animal PET of [(11)C]4 showed that there was increased concentrations of [(11)C]4 in the livers of mice pre-treated with pyrimethamine, a potential inhibitor of MATEs, inhibiting the hepatobiliary excretion of metformin. Radiometabolite analysis showed that [(11)C]4 was not degraded in vivo during the PET scan. Biodistribution studies were undertaken and the organ distributions were extrapolated into a standard human model. In conclusion, [(11)C]4 may be useful as a PET probe to non-invasively study the in vivo function of hepatobiliary transport and drug-drug interactions, mediated by MATE1 in future clinical investigations. PMID:24238901

  18. Ultrastructural observation of effect of moderate hypothermia on axonal damage in an animal model of diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    孙晓川; 唐文渊; 郑履平

    2002-01-01

    Objective: To investigate the effect of moderate hypothermia on responses of axonal cytoskeleton to axonal injury in the acute stage of injury. Methods: Of fifteen adult guinea pigs, twelve animals were subjected to stretch injury to the right optic nerves and divided into the normothermic group (n=6) in which the animal's core temperature was maintained at 36.0-37.5℃ and the hypothermia group (n=6) in which the core temperature was reduced to 32.0-32.5℃ after stretch injury. Remaining three animals sustained no injury to the right optic nerves and served as control group. Half of injured animals (n=3) of either normothermic group or hypothermic group were killed at either 2 hours or 4 hours after injury. The ultrastructural changes of axonal cytoskeleton of the right optic nerve fibers from the animals were examined under a transmission electron microscope and analyzed by quantitative analysis with a computer image analysis system. Results: At 2 hours after stretch injury, there was a significant reduction in the mean number of microtubules (P<0.001), and a significant increase in the mean intermicrotubule spacing (P<0.05 or P<0.01) in axons of all sizes in normothermic animals. The mean number of neurofilaments also decreased statistically (P<0.01) in large and medium subgroups of axons in the same experimental group at 2 hours. By 4 hours, the large subgroup of axons in normothermic animals still demonstrated a significant decline in the mean number of microtubules (P<0.01) and an increase in the mean intermicrotubule spacing (P<0.05), while the medium and small subgroups of axons displayed a significant increase in the mean number of neurofilaments (P<0.05) and reduction in the mean interneurofilament spacing (P<0.05). On the contrary, either the mean number of microtubules and the mean intermicrotubule spacing, or the mean number of neurofilaments and interneurofilament spacing in axons of all sizes in hypothermic stretch-injured animals was not

  19. Entecavir Interacts with Influx Transporters hOAT1, hCNT2, hCNT3, but Not with hOCT2: The Potential for Renal Transporter-Mediated Cytotoxicity and Drug-Drug Interactions

    Czech Academy of Sciences Publication Activity Database

    Mandíková, J.; Volková, M.; Pávek, P.; Navrátilová, L.; Hyršová, L.; Janeba, Zlatko; Pavlík, J.; Bárta, P.; Trejtnar, F.

    2016-01-01

    Roč. 6, Jan 5 (2016), 304/1-304/11. ISSN 1663-9812 Institutional support: RVO:61388963 Keywords : antivirals * nephrotoxicity * renal disposition * drug-drug interactions Subject RIV: CC - Organic Chemistry Impact factor: 3.802, year: 2014 http://journal.frontiersin.org/article/10.3389/fphar.2015.00304/full

  20. Chronic idiopathic axonal neuropathy and pain, treated with the endogenous lipid mediator palmitoylethanolamide: a case collection

    Directory of Open Access Journals (Sweden)

    Keppel Hesselink JM

    2013-09-01

    Full Text Available J M Keppel Hesselink Faculty of Medicine, University Witten/Herdecke, Germany Abstract: Chronic idiopathic axonal polyneuropathy is a frequent diagnosis in patients suffering from idiopathic polyneuropathy and neuropathic pain. No guidelines exist on how to treat these patients. To date, there are no results available from randomized clinical trials, and mostly classical neuropathic analgesics are prescribed, such as amitriptyline and gabapentine. However, the usefulness of these drugs is limited, as many patients remain in pain despite treatment, or suffer debilitating side effects. Palmitoylethanolamide (PEA is a new analgesic compound, tested in more than 4,000 patients in various clinical trials in a variety of patients suffering from various neuropathic pain states. It is available in Europe and the USA as a food supplement under the brand name PeaPure, and it is available for medical purposes in Italy and Spain under brand names Normast and Pelvilen. We present a case series of seven patients with an electrophysiological confirmed diagnosis of chronic idiopathic axonal polyneuropathy, suffering from neuropathic pains, mostly refractory to previous analgesics. In all these patients, PEA reduced pain significantly, without side effects. PEA can be administered in addition to other analgesics, without negative drug–drug interactions, or can be used as a stand-alone analgesic. Due to a favorable ratio between efficacy and safety, PEA should be considered more often as a treatment for neuropathic pain. Keywords: CIAP, polyneuropathy, treatment, neuropathic

  1. Axonal synapses utilize multiple synaptic ribbons in the mammalian retina.

    Directory of Open Access Journals (Sweden)

    Hong-Lim Kim

    Full Text Available In the mammalian retina, bipolar cells and ganglion cells which stratify in sublamina a of the inner plexiform layer (IPL show OFF responses to light stimuli while those that stratify in sublamina b show ON responses. This functional relationship between anatomy and physiology is a key principle of retinal organization. However, there are at least three types of retinal neurons, including intrinsically photosensitive retinal ganglion cells (ipRGCs and dopaminergic amacrine cells, which violate this principle. These cell types have light-driven ON responses, but their dendrites mainly stratify in sublamina a of the IPL, the OFF sublayer. Recent anatomical studies suggested that certain ON cone bipolar cells make axonal or ectopic synapses as they descend through sublamina a, thus providing ON input to cells which stratify in the OFF sublayer. Using immunoelectron microscopy with 3-dimensional reconstruction, we have identified axonal synapses of ON cone bipolar cells in the rabbit retina. Ten calbindin ON cone bipolar axons made en passant ribbon synapses onto amacrine or ganglion dendrites in sublamina a of the IPL. Compared to the ribbon synapses made by bipolar terminals, these axonal ribbon synapses were characterized by a broad postsynaptic element that appeared as a monad and by the presence of multiple short synaptic ribbons. These findings confirm that certain ON cone bipolar cells can provide ON input to amacrine and ganglion cells whose dendrites stratify in the OFF sublayer via axonal synapses. The monadic synapse with multiple ribbons may be a diagnostic feature of the ON cone bipolar axonal synapse in sublamina a. The presence of multiple ribbons and a broad postsynaptic density suggest these structures may be very efficient synapses. We also identified axonal inputs to ipRGCs with the architecture described above.

  2. Antidepressant drugs transactivate TrkB neurotrophin receptors in the adult rodent brain independently of BDNF and monoamine transporter blockade.

    Directory of Open Access Journals (Sweden)

    Tomi Rantamäki

    Full Text Available BACKGROUND: Antidepressant drugs (ADs have been shown to activate BDNF (brain-derived neurotrophic factor receptor TrkB in the rodent brain but the mechanism underlying this phenomenon remains unclear. ADs act as monoamine reuptake inhibitors and after prolonged treatments regulate brain bdnf mRNA levels indicating that monoamine-BDNF signaling regulate AD-induced TrkB activation in vivo. However, recent findings demonstrate that Trk receptors can be transactivated independently of their neurotrophin ligands. METHODOLOGY: In this study we examined the role of BDNF, TrkB kinase activity and monoamine reuptake in the AD-induced TrkB activation in vivo and in vitro by employing several transgenic mouse models, cultured neurons and TrkB-expressing cell lines. PRINCIPAL FINDINGS: Using a chemical-genetic TrkB(F616A mutant and TrkB overexpressing mice, we demonstrate that ADs specifically activate both the maturely and immaturely glycosylated forms of TrkB receptors in the brain in a TrkB kinase dependent manner. However, the tricyclic AD imipramine readily induced the phosphorylation of TrkB receptors in conditional bdnf⁻/⁻ knock-out mice (132.4±8.5% of control; P = 0.01, indicating that BDNF is not required for the TrkB activation. Moreover, using serotonin transporter (SERT deficient mice and chemical lesions of monoaminergic neurons we show that neither a functional SERT nor monoamines are required for the TrkB phosphorylation response induced by the serotonin selective reuptake inhibitors fluoxetine or citalopram, or norepinephrine selective reuptake inhibitor reboxetine. However, neither ADs nor monoamine transmitters activated TrkB in cultured neurons or cell lines expressing TrkB receptors, arguing that ADs do not directly bind to TrkB. CONCLUSIONS: The present findings suggest that ADs transactivate brain TrkB receptors independently of BDNF and monoamine reuptake blockade and emphasize the need of an intact tissue context for the

  3. Clinically relevant genetic variants of drug-metabolizing enzyme and transporter genes detected in Thai children and adolescents with autism spectrum disorder

    Science.gov (United States)

    Medhasi, Sadeep; Pasomsub, Ekawat; Vanwong, Natchaya; Ngamsamut, Nattawat; Puangpetch, Apichaya; Chamnanphon, Montri; Hongkaew, Yaowaluck; Limsila, Penkhae; Pinthong, Darawan; Sukasem, Chonlaphat

    2016-01-01

    Single-nucleotide polymorphisms (SNPs) among drug-metabolizing enzymes and transporters (DMETs) influence the pharmacokinetic profile of drugs and exhibit intra- and interethnic variations in drug response in terms of efficacy and safety profile. The main objective of this study was to assess the frequency of allelic variants of drug absorption, distribution, metabolism, and elimination-related genes in Thai children and adolescents with autism spectrum disorder. Blood samples were drawn from 119 patients, and DNA was extracted. Genotyping was performed using the DMET Plus microarray platform. The allele frequencies of the DMET markers were generated using the DMET Console software. Thereafter, the genetic variations of significant DMET genes were assessed. The frequencies of SNPs across the genes coding for DMETs were determined. After filtering the SNPs, 489 of the 1,931 SNPs passed quality control. Many clinically relevant SNPs, including CYP2C19*2, CYP2D6*10, CYP3A5*3, and SLCO1B1*5, were found to have frequencies similar to those in the Chinese population. These data are important for further research to investigate the interpatient variability in pharmacokinetics and pharmacodynamics of drugs in clinical practice. PMID:27110117

  4. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas

    Science.gov (United States)

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.

    1998-01-01

    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  5. Regulation of Microtubule Dynamics in Axon Regeneration: Insights from C. elegans [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Ngang Heok Tang

    2016-04-01

    Full Text Available The capacity of an axon to regenerate is regulated by its external environment and by cell-intrinsic factors. Studies in a variety of organisms suggest that alterations in axonal microtubule (MT dynamics have potent effects on axon regeneration. We review recent findings on the regulation of MT dynamics during axon regeneration, focusing on the nematode Caenorhabditis elegans. In C. elegans the dual leucine zipper kinase (DLK promotes axon regeneration, whereas the exchange factor for Arf6 (EFA-6 inhibits axon regeneration. Both DLK and EFA-6 respond to injury and control axon regeneration in part via MT dynamics. How the DLK and EFA-6 pathways are related is a topic of active investigation, as is the mechanism by which EFA-6 responds to axonal injury. We evaluate potential candidates, such as the MT affinity-regulating kinase PAR-1/MARK, in regulation of EFA-6 and axonal MT dynamics in regeneration.

  6. Effect of Intestinal Flora on Protein Expression of Drug-Metabolizing Enzymes and Transporters in the Liver and Kidney of Germ-Free and Antibiotics-Treated Mice.

    Science.gov (United States)

    Kuno, Takuya; Hirayama-Kurogi, Mio; Ito, Shingo; Ohtsuki, Sumio

    2016-08-01

    Dysbiosis (alteration of intestinal flora) is associated with various host physiologies, including diseases. The purpose of this study was to clarify the effect of dysbiosis on protein expression levels in mouse liver and kidney by quantitative proteomic analysis, focusing in particular on drug-metabolizing enzymes and transporters in order to investigate the potential impact of dysbiosis on drug pharmacokinetics. Germ-free (GF) mice and antibiotics-treated mice were used as dysbiosis models. Expression levels of 825 and 357 proteins were significantly changed in the liver and kidney, respectively, of GF mice (vs specific-pathogen-free mice), while 306 and 178 proteins, respectively, were changed in antibiotics-treated mice (vs vehicle controls). Among them, 52 and 16 drug-metabolizing enzyme and transporter proteins were significantly changed in the liver and kidney, respectively, of GF mice, while 25 and 8, respectively were changed in antibiotics-treated mice. Expression of mitochondrial proteins was also changed in the liver and kidney of both model mice. In GF mice, Oatp1a1 was decreased in both the liver and kidney, while Sult1a1 and two Cyp enzymes were increased and Gstp1, four Cyp enzymes, three Ces enzymes, Bcrp1, and Oct1 were decreased in the liver. In antibiotics-treated mice, Cyp51a1 was increased and three Cyp enzymes, Bcrp1, and Bsep were decreased in the liver. Notably, the expression of Cyp2b10 and Cyp3a11 was greatly decreased in the liver of both models. Cyp2b activity in the liver microsomal fraction was also decreased. Our results indicate that dysbiosis changes the protein expression of multiple drug-metabolizing enzymes and transporters in the liver and kidney and may alter pharmacokinetics in the host. PMID:27376980

  7. Flozins, inhibitors of type 2 renal sodium-glucose co-transporter – not only antihyperglycemic drugs

    OpenAIRE

    Mizerski Grzegorz; Kicinski Pawel; Jaroszynski Andrzej

    2015-01-01

    The kidneys play a crucial role in the regulation of the carbohydrate metabolism. In normal physiological conditions, the glucose that filters through the renal glomeruli is subsequently nearly totally reabsorbed in the proximal renal tubules. Two transporters are engaged in this process: sodium-glucose co-transporter type 1 (SGLT1), and sodium-glucose co-transporter type type 2 (SGLT2) - this being located in the luminal membrane of the renal tubular epithelial cells. It was found that the a...

  8. Functional complexity of the axonal growth cone: a proteomic analysis.

    Directory of Open Access Journals (Sweden)

    Adriana Estrada-Bernal

    Full Text Available The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥ 99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions.

  9. A novel technique using hydrophilic polymers to promote axonal fusion

    Institute of Scientific and Technical Information of China (English)

    Ravinder Bamba; D Colton Riley; Nathaniel D Kelm; Mark D Does; Richard D Dortch; Wesley P hTayer

    2016-01-01

    The management of traumatic peripheral nerve injury remains a considerable concern for clinicians. With minimal innovations in surgical technique and a limited number of specialists trained to treat peripheral nerve injury, outcomes of surgical intervention have been unpredictable. The inability to manipulate the pathophysiology of nerve injury (i.e., Wallerian degeneration) has left scientists and clinicians depending on the slow and lengthy process of axonal regeneration (~1 mm/day). When axons are severed, the endings undergo calcium-mediated plasmalemmal sealing, which limits the ability of the axon to be primarily re-paired. Polythethylene glycol (PEG) in combination with a bioengineered process overcomes the inability to fuse axons. The mechanism for PEG axonal fusion is not clearly understood, but multiple studies have shown that a providing a calcium-free environment is essential to the process known as PEG fusion. The proposed mechanism is PEG-induced lipid bilayer fusion by removing the hydration barrier surrounding the axolemma and reducing the activation energy required for membrane fusion to occur. This review highlights PEG fusion, its past and current studies, and future directions in PEG fusion.

  10. Highly effective photonic cue for repulsive axonal guidance.

    Directory of Open Access Journals (Sweden)

    Bryan J Black

    Full Text Available In vivo nerve repair requires not only the ability to regenerate damaged axons, but most importantly, the ability to guide developing or regenerating axons along paths that will result in functional connections. Furthermore, basic studies in neuroscience and neuro-electronic interface design require the ability to construct in vitro neural circuitry. Both these applications require the development of a noninvasive, highly effective tool for axonal growth-cone guidance. To date, a myriad of technologies have been introduced based on chemical, electrical, mechanical, and hybrid approaches (such as electro-chemical, optofluidic flow and photo-chemical methods. These methods are either lacking in desired spatial and temporal selectivity or require the introduction of invasive external factors. Within the last fifteen years however, several attractive guidance cues have been developed using purely light based cues to achieve axonal guidance. Here, we report a novel, purely optical repulsive guidance technique that uses low power, near infrared light, and demonstrates the guidance of primary goldfish retinal ganglion cell axons through turns of up to 120 degrees and over distances of ∼90 µm.

  11. Subtypes of GABAergic neurons project axons in the neocortex

    Directory of Open Access Journals (Sweden)

    Shigeyoshi Higo

    2009-11-01

    Full Text Available γ-aminobutyric acid (GABAergic neurons in the neocortex have been regarded as interneurons and speculated to modulate the activity of neurons locally. Recently, however, several experiments revealed that neuronal nitric oxide synthase (nNOS-positive GABAergic neurons project cortico-cortically with long axons. In this study, we illustrate Golgi-like images of the nNOS-positive GABAergic neurons using a nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d reaction and follow the emanating axon branches in cat brain sections. These axon branches projected cortico-cortically with other non-labeled arcuate fibers, contra-laterally via the corpus callosum and anterior commissure. The labeled fibers were not limited to the neocortex but found also in the fimbria of the hippocampus. In order to have additional information on these GABAergic neuron projections, we investigated green fluorescent protein (GFP-labeled GABAergic neurons in GAD67-Cre knock-in / GFP Cre-reporter mice. GFP-labeled axons emanate densely, especially in the fimbria, a small number in the anterior commissure, and very sparsely in the corpus callosum. These two different approaches confirm that not only nNOS-positive GABAergic neurons but also other subtypes of GABAergic neurons project long axons in the cerebral cortex and are in a position to be involved in information processing.

  12. Superiority of the S,S conformation in diverse pharmacological processes: Intestinal transport and entry inhibition activity of novel anti-HIV drug lead.

    Science.gov (United States)

    Fanous, Joseph; Swed, Avi; Joubran, Salim; Hurevich, Mattan; Britan-Rosich, Elena; Kotler, Moshe; Gilon, Chaim; Hoffman, Amnon

    2015-11-30

    Chirality is an important aspect in many pharmacological processes including drug transport and metabolism. The current investigation examined the stereospecific transport and entry inhibitory activity of four diastereomers derived from a small (macrocyclic) molecule that has two chiral centers. These molecules were designed to mimic the interaction between CD4 and gp120 site of HIV-1 and thereby to function as entry inhibitor(s). Intestinal permeability was assessed by ex-vivo model using excised rat intestine mounted in side-by-side diffusion chambers. The entry inhibitory activity was monitored using indicator HeLa-CD4-LTR-beta-gal cells (MAGI assay). The (S/S) diastereomer, named CG-1, exhibited superiority in both unrelated tested biological processes: (I) high transport through the intestine and (II) entry inhibition activity (in the low μM range). The permeability screening revealed a unique transporter-mediated absorption pathway of CG-1, suggesting a significant role of the molecule's conformation on the mechanism of intestinal absorption. Here we highlight that only the S,S enantiomer (CG-1) has both (I) promising anti HIV-1 entry inhibitory properties and (II) high transporter mediated intestinal permeability. Hence we suggest preference in pharmacological processes to the S,S conformation. This report augments the knowledge regarding stereoselectivity in receptor mediated and protein-protein interaction processes. PMID:26392249

  13. Hernandezine, a Bisbenzylisoquinoline Alkaloid with Selective Inhibitory Activity against Multidrug-Resistance-Linked ATP-Binding Cassette Drug Transporter ABCB1.

    Science.gov (United States)

    Hsiao, Sung-Han; Lu, Yu-Jen; Yang, Chun-Chiao; Tuo, Wei-Cherng; Li, Yan-Qing; Huang, Yang-Hui; Hsieh, Chia-Hung; Hung, Tai-Ho; Wu, Chung-Pu

    2016-08-26

    The overexpression of ATP-binding cassette (ABC) drug transporter ABCB1 (P-glycoprotein, MDR1) is the most studied mechanism of multidrug resistance (MDR), which remains a major obstacle in clinical cancer chemotherapy. Consequently, resensitizing MDR cancer cells by inhibiting the efflux function of ABCB1 has been considered as a potential strategy to overcome ABCB1-mediated MDR in cancer patients. However, the task of developing a suitable modulator of ABCB1 has been hindered mostly by the lack of selectivity and high intrinsic toxicity of candidate compounds. Considering the wide range of diversity and relatively nontoxic nature of natural products, developing a potential modulator of ABCB1 from natural sources is particularly valuable. Through screening of a large collection of purified bioactive natural products, hernandezine was identified as a potent and selective reversing agent for ABCB1-mediated MDR in cancer cells. Experimental data demonstrated that the bisbenzylisoquinoline alkaloid hernandezine is selective for ABCB1, effectively inhibits the transport function of ABCB1, and enhances drug-induced apoptosis in cancer cells. More importantly, hernandezine significantly resensitizes ABCB1-overexpressing cancer cells to multiple chemotherapeutic drugs at nontoxic, nanomolar concentrations. Collectively, these findings reveal that hernandezine has great potential to be further developed into a novel reversal agent for combination therapy in MDR cancer patients. PMID:27504669

  14. Analysis of the effect of the bovine adenosine triphosphate-binding cassette transporter G2 single nucleotide polymorphism Y581S on transcellular transport of veterinary drugs using new cell culture models.

    Science.gov (United States)

    Real, R; González-Lobato, L; Baro, M F; Valbuena, S; de la Fuente, A; Prieto, J G; Alvarez, A I; Marques, M M; Merino, G

    2011-12-01

    In commercial dairy production, the risk of drug residues and environmental pollutants in milk from ruminants has become an outstanding problem. One of the main determinants of active drug secretion into milk is the ATP-binding cassette transporter G2/breast cancer resistance protein (ABCG2/BCRP). It is located in several organs associated with drug absorption, metabolism, and excretion, and its expression is highly induced during lactation in the mammary gland of ruminants, mice, and humans. As a consequence, potential contamination of milk could expose suckling infants to xenotoxins. In cows, a SNP for this protein affecting quality and quantity of milk production has been described previously (Y581S). In this study, our main purpose was to determine whether this polymorphism has an effect on transcellular transport of veterinary drugs because this could alter substrate pharmacokinetics and milk residues. We stably expressed the wild-type bovine ABCG2 and the Y581S variant in Madin-Darby canine kidney epithelial cells (MDCKII) and MEF3.8 cell lines generating cell models in which the functionality of the bovine transporter could be addressed. Functional studies confirmed the greater functional activity in mitoxantrone accumulation assays for the Y581S variant with a greater relative V(MAX) value (P = 0.040) and showed for the first time that the Y581S variant presents greater transcellular transport of the model ABCG2 substrate nitrofurantoin (P = 0.024) and of 3 veterinary antibiotics, the fluoroquinolone agents enrofloxacin (P = 0.035), danofloxacin (P = 0.001), and difloxacin (P = 0.008), identified as new substrates of the bovine ABCG2. In addition, the inhibitory effect of the macrocyclic lactone ivermectin on the activity of wild-type bovine ABCG2 and the Y581S variant was also confirmed, showing a greater inhibitory potency on the wild-type protein at all the concentrations tested (5 μM, P = 0.017; 10 μM, P = 0.001; 25 μM, P = 0.008; and 50 μM, P = 0

  15. Organic anion and cation SLC22 "drug" transporter (Oat1, Oat3, and Oct1 regulation during development and maturation of the kidney proximal tubule.

    Directory of Open Access Journals (Sweden)

    Thomas F Gallegos

    Full Text Available Proper physiological function in the pre- and post-natal proximal tubule of the kidney depends upon the acquisition of selective permeability, apical-basolateral epithelial polarity and the expression of key transporters, including those involved in metabolite, toxin and drug handling. Particularly important are the SLC22 family of transporters, including the organic anion transporters Oat1 (originally identified as NKT and Oat3 as well as the organic cation transporter Oct1. In ex vivo cultures of metanephric mesenchyme (MM; the embryonic progenitor tissue of the nephron Oat function was evident before completion of nephron segmentation and corresponded with the maturation of tight junctions as measured biochemically by detergent extractability of the tight junction protein, ZO-1. Examination of available time series microarray data sets in the context of development and differentiation of the proximal tubule (derived from both in vivo and in vitro/ex vivo developing nephrons allowed for correlation of gene expression data to biochemically and functionally defined states of development. This bioinformatic analysis yielded a network of genes with connectivity biased toward Hnf4α (but including Hnf1α, hyaluronic acid-CD44, and notch pathways. Intriguingly, the Oat1 and Oat3 genes were found to have strong temporal co-expression with Hnf4α in the cultured MM supporting the notion of some connection between the transporters and this transcription factor. Taken together with the ChIP-qPCR finding that Hnf4α occupies Oat1, Oat3, and Oct1 proximal promoters in the in vivo differentiating rat kidney, the data suggest a network of genes with Hnf4α at its center plays a role in regulating the terminal differentiation and capacity for drug and toxin handling by the nascent proximal tubule of the kidney.

  16. Hurdles with using in vitro models to predict human blood-brain barrier drug permeability: a special focus on transporters and metabolizing enzymes.

    Science.gov (United States)

    Shawahna, Ramzi; Decleves, Xavier; Scherrmann, Jean-Michel

    2013-01-01

    The penetration of drugs into the human brain through the blood-brain barrier (BBB) is a major obstacle limiting the development of successful neuropharmaceuticals. This restricted permeability is due to the delicate intercellular junctions, efflux transporters and metabolizing enzymes present at the BBB. The pharmaceutical industry and academic research relies heavily on permeability studies conducted in animals and in vitro models of the BBB. This text reviews the available animal and in vitro BBB models with special emphasis on the situation in freshly isolated human brain microvessels and the unique tightness between brain endothelial cells, drug transport pathways and metabolic capacity. We first outline the delicate structure of the intercellular junctions and the particular interaction between the brain endothelial cells and other components of the neurovascular unit. We then examine the differences in transporters and metabolizing enzymes between species and in vitro systems and those found in isolated brain microvessels. Finally, we review the possibilities of benchmarking in vitro models of the BBB in terms of gene and protein expression. PMID:23215812

  17. Mutation of G234 amino acid residue in candida albicans drug-resistance-related protein Rta2p is associated with fluconazole resistance and dihydrosphingosine transport.

    Science.gov (United States)

    Zhang, Shi-Qun; Miao, Qi; Li, Li-Ping; Zhang, Lu-Lu; Yan, Lan; Jia, Yu; Cao, Yong-Bing; Jiang, Yuan-Ying

    2015-01-01

    Widespread and repeated use of azoles has led to the rapid development of drug resistance in Candida albicans. Our previous study found Rta2p, a membrane protein with 7 transmembrane domains, was involved in calcineurin-mediated azole resistance and sphingoid long-chain base release in C. albicans. Conserved amino acids in the transmembrane domain of Rta2p were subjected to site-directed mutagenesis. The sensitivity of C. albicans to fluconazole in vitro was examined by minimum inhibitory concentration and killing assay, and the therapeutic efficacy of fluconazole in vivo was performed by systemic mice candidiasis model. Furthermore, dihydrosphingosine transport activity was detected by NBD labeled D-erythro-dihydrosphingosine uptake and release assay, and the sensitivity to sphingolipid biosynthesis inhibitors. We successfully constructed 14 mutant strains of Rta2p, screened them by minimum inhibitory concentration and found Ca(2+) did not completely induce fluconazole resistance with G158E and G234S mutations. Furthermore, we confirmed that G234S mutant enhanced the therapeutic efficacy of fluconazole against systemic candidiasis and significantly increased the accumulation of dihydrosphingosine by decreasing its release. However, G158E mutant didn't affect drug therapeutic efficacy in vivo and dihydrosphingosine transport in C. albicans. G234 of Rta2p in C. albicans is crucial in calcineurin-mediated fluconazole resistance and dihydrosphingosine transport. PMID:26220356

  18. Use of Cassette Dosing in Sandwich-Cultured Rat and Human Hepatocytes to Identify Drugs that Inhibit Bile Acid Transport

    OpenAIRE

    Kristina K Wolf; Vora, Sapana; Webster, Lindsey O.; Generaux, Grant T.; Polli, Joseph W; Brouwer, Kim L.R.

    2009-01-01

    Hepatocellular accumulation of bile acids due to inhibition of the canalicular bile salt export pump (BSEP/ABCB11) is one proposed mechanism of drug-induced liver injury (DILI). Some hepatotoxic compounds also are potent inhibitors of bile acid uptake by Na+-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1). This study used a cassette dosing approach in rat and human sandwich-cultured hepatocytes (SCH) to determine whether known or suspected hepatotoxic drugs inhibit bile acid ...

  19. Involvement of SARA in Axon and Dendrite Growth.

    Science.gov (United States)

    Arias, Cristina Isabel; Siri, Sebastián Omar; Conde, Cecilia

    2015-01-01

    SARA (Smad Anchor for Receptor Activation) plays a crucial role in Rab5-mediated endocytosis in cell lines localizing to early endosomes where it regulates morphology and function. Here, we analyzed the role of SARA during neuronal development and tested whether it functions as a regulator of endocytic trafficking of selected axonal and membrane proteins. Suppression of SARA perturbs the appearance of juxtanuclear endocytic recycling compartments and the neurons show long axons with large growth cones. Furthermore, surface distribution of the cell adhesion molecule L1 in axons and the fusion of vesicles containing transferring receptor (TfR) in dendrites were increased in neurons where SARA was silenced. Conversely, SARA overexpression generated large early endosomes and reduced neurite outgrowth. Taken together, our findings suggest a significant contribution of SARA to key aspects of neuronal development, including neurite formation. PMID:26405814

  20. Neurofilament proteins in axonal regeneration and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Haitao Wang; Minfei Wu; Chuanjun Zhan; Enyuan Ma; Maoguang Yang; Xiaoyu Yang; Yingpu Li

    2012-01-01

    Neurofilament protein is a component of the mature neuronal cytoskeleton, and it interacts with the zygosome, which is mediated by neurofilament-related proteins. Neurofilament protein regulates enzyme function and the structure of linker proteins. In addition, neurofilament gene expression plays an important role in nervous system development. Previous studies have shown that neurofilament gene transcriptional regulation is crucial for neurofilament protein expression, especially in axonal regeneration and degenerative diseases. Post-transcriptional regulation increased neurofilament protein gene transcription during axonal regeneration, ultimately resulting in a pattern of neurofilament protein expression. An expression imbalance of post-transcriptional regulatory proteins and other disorders could lead to amyotrophic lateral sclerosis or other neurodegenerative diseases. These findings indicated that after transcription, neurofilament protein regulated expression of related proteins and promoted regeneration of damaged axons, suggesting that regulation disorders could lead to neurodegenerative diseases.

  1. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    Energy Technology Data Exchange (ETDEWEB)

    Menelaou, Evdokia; Paul, Latoya T. [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Perera, Surangi N. [Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States); Svoboda, Kurt R., E-mail: svobodak@uwm.edu [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States)

    2015-04-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  2. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions

    OpenAIRE

    Chandra Prakash; Baltazar Zuniga; Chung Seog Song; Shoulei Jiang; Jodie Cropper; Sulgi Park; Bandana Chatterjee

    2015-01-01

    Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X receptor) and CAR (constitutive androstane receptor), and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D recep...

  3. [A clinical and pathological study of diffuse axonal injury].

    Science.gov (United States)

    Nakazawa, S; Kobayashi, S; Yokota, H; Shimura, T

    1989-03-01

    There is increasing evidence from human and experimental studies that the most important factor governing the outcome in head injury is the severity of diffuse axonal injuries. The authors have experienced 18 cases of severe diffuse axonal injury which showed post-traumatic coma for more than 24 hours and CT findings resembling those of shearing injuries of the cerebral white matter such as have been presented by Zimmerman et al. (1978). The consciousness levels on admission were 6 or less on the Glasgow Coma Scale and all cases were shown clinically to have primary brain stem injury. The main type of head trauma resulted from road traffic accidents (83%). Skull fractures were found in only 5 cases (28%). These findings suggested that acceleration/deceleration injury produce in the patients severe diffuse axonal injury. Initial ICP was below 20 mmHg in 11 cases out of 13 (85%). Parenchymal small hemorrhagic lesions of initial CT were basal ganglia (7 cases), corpus callosum (4 cases), pons (4 cases), midbrain (3 cases) and thalamus (2 cases). Extraparenchymal hemorrhagic lesions included intraventricular hemorrhage (6 cases) and subarachnoid hemorrhage (6 cases). Two autopsied cases of severe diffuse axonal injury (acute case and chronic case) showed remarkable congestion and edema in the deep part of the frontal white matter. Microscopic examination revealed marked axonal degeneration including axonal retraction ball in the corpus callosum, in the internal capsule and in the white matter of the brain stem. Glasgow Outcome Scale of the 18 patients at 3 months after the trauma made us concerned that no patients indicated good recovery or even only moderate disability.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2770962

  4. Axon-glial interactions in the central nervous system

    OpenAIRE

    Butt, Arthur; Bay, Virginia

    2011-01-01

    Axon-glial interactions are critical for brain information transmission and processing. In the CNS, this is a function of the major types of glia – astrocytes, oligodendrocytes and novel NG2-glia. This special issue of the Journal of Anatomy comprises contributions arising from a symposium entitled ‘Axon-glial interactions in the CNS’, held at the University of Portsmouth, UK in July 2010. The aim of the special issue is to bring together an international group of experts to demonstrate the c...

  5. A chloride channel in rat and human axons

    OpenAIRE

    Strupp, Michael; Grafe, Peter

    1991-01-01

    Current recordings from single chloride channels were obtained from excised and cell-attached patches of rat and human axons. In rat axons the channels showed an outwardly rectifying current-voltage relationship with a slope conductance of 33 pS at negative membrane potentials and 65 pS at positive potentials (symmetrical 150 mM CsCl). They were measurably for cations (PNa/PCs/PCl=0.1/0.2/1). Channel currents were independent of cytoplasmatic calcium concentration. Inactivation was not observ...

  6. Tuning the orchestra: transcriptional pathways controlling axon regeneration

    Directory of Open Access Journals (Sweden)

    Andrea Tedeschi

    2012-01-01

    Full Text Available Trauma in the adult mammalian central nervous system leads to irreversible structural and functional impairment due to failed regeneration attempts. In contrast, neurons in the peripheral nervous system exhibit a greater regenerative ability. It has been proposed that an orchestrated sequence of transcriptional events controlling the expression of specific sets of genes may be the underlying basis of an early cell-autonomous regenerative response. Understanding whether transcriptional fine tuning, in parallel with strategies aimed at counteracting extrinsic impediments promotes axon re-growth following central nervous system injuries represents an exciting challenge for future studies. Transcriptional pathways controlling axon regeneration are presented and discussed in this review.

  7. Quantitative Rationalization of Gemfibrozil Drug Interactions: Consideration of Transporters-Enzyme Interplay and the Role of Circulating Metabolite Gemfibrozil 1-O-β-Glucuronide.

    Science.gov (United States)

    Varma, Manthena V S; Lin, Jian; Bi, Yi-an; Kimoto, Emi; Rodrigues, A David

    2015-07-01

    Gemfibrozil has been suggested as a sensitive cytochrome P450 2C8 (CYP2C8) inhibitor for clinical investigation by the U.S. Food and Drug Administration and the European Medicines Agency. However, gemfibrozil drug-drug interactions (DDIs) are complex; its major circulating metabolite, gemfibrozil 1-O-β-glucuronide (Gem-Glu), exhibits time-dependent inhibition of CYP2C8, and both parent and metabolite also behave as moderate inhibitors of organic anion transporting polypeptide 1B1 (OATP1B1) in vitro. Additionally, parent and metabolite also inhibit renal transport mediated by OAT3. Here, in vitro inhibition data for gemfibrozil and Gem-Glu were used to assess their impact on the pharmacokinetics of several victim drugs (including rosiglitazone, pioglitazone, cerivastatin, and repaglinide) by employing both static mechanistic and dynamic physiologically based pharmacokinetic (PBPK) models. Of the 48 cases evaluated using the static models, about 75% and 98% of the DDIs were predicted within 1.5- and 2-fold of the observed values, respectively, when incorporating the interaction potential of both gemfibrozil and its 1-O-β-glucuronide. Moreover, the PBPK model was able to recover the plasma profiles of rosiglitazone, pioglitazone, cerivastatin, and repaglinide under control and gemfibrozil treatment conditions. Analyses suggest that Gem-Glu is the major contributor to the DDIs, and its exposure needed to bring about complete inactivation of CYP2C8 is only a fraction of that achieved in the clinic after a therapeutic gemfibrozil dose. Overall, the complex interactions of gemfibrozil can be quantitatively rationalized, and the learnings from this analysis can be applied in support of future predictions of gemfibrozil DDIs. PMID:25941268

  8. Chloroquine Transport in Plasmodium falciparum II: Analysis of PfCRT Mediated Drug Transport Using Proteoliposomes and a Fluorescent Chloroquine Probe

    OpenAIRE

    Paguio, Michelle F.; Cabrera, Mynthia; Roepe, Paul D.

    2009-01-01

    Mutations in the PfCRT protein cause chloroquine resistance (CQR) and earlier studies from our laboratory using plasma membrane inside-out vesicles (ISOV) prepared from yeast expressing recombinant PfCRT [Zhang, H., et al. (2004) Biochemistry 43, 8290–8296] suggested that the putative transporter mediates downhill facilitated diffusion of charged chloroquine (CQ). However, more recent experiments with a fluorescent CQ probe (NBD-CQ) presented in the accompanying paper [Cabrera, M., et al. (20...

  9. Networks of Polarized Actin Filaments in the Axon Initial Segment Provide a Mechanism for Sorting Axonal and Dendritic Proteins

    Directory of Open Access Journals (Sweden)

    Kaori Watanabe

    2012-12-01

    Full Text Available Trafficking of proteins specifically to the axonal or somatodendritic membrane allows neurons to establish and maintain polarized compartments with distinct morphology and function. Diverse evidence suggests that an actin-dependent vesicle filter within the axon initial segment (AIS plays a critical role in polarized trafficking; however, no distinctive actin-based structures capable of comprising such a filter have been found within the AIS. Here, using correlative light and scanning electron microscopy, we visualized networks of actin filaments several microns wide within the AIS of cortical neurons in culture. Individual filaments within these patches are predominantly oriented with their plus ends facing toward the cell body, consistent with models of filter selectivity. Vesicles carrying dendritic proteins are much more likely to stop in regions occupied by the actin patches than in other regions, indicating that the patches likely prevent movement of dendritic proteins to the axon and thereby act as a vesicle filter.

  10. Multi-Drug Resistance Transporters and a Mechanism-Based Strategy for Assessing Risks of Pesticide Combinations to Honey Bees.

    Science.gov (United States)

    Guseman, Alex J; Miller, Kaliah; Kunkle, Grace; Dively, Galen P; Pettis, Jeffrey S; Evans, Jay D; vanEngelsdorp, Dennis; Hawthorne, David J

    2016-01-01

    Annual losses of honey bee colonies remain high and pesticide exposure is one possible cause. Dangerous combinations of pesticides, plant-produced compounds and antibiotics added to hives may cause or contribute to losses, but it is very difficult to test the many combinations of those compounds that bees encounter. We propose a mechanism-based strategy for simplifying the assessment of combinations of compounds, focusing here on compounds that interact with xenobiotic handling ABC transporters. We evaluate the use of ivermectin as a model substrate for these transporters. Compounds that increase sensitivity of bees to ivermectin may be inhibiting key transporters. We show that several compounds commonly encountered by honey bees (fumagillin, Pristine, quercetin) significantly increased honey bee mortality due to ivermectin and significantly reduced the LC50 of ivermectin suggesting that they may interfere with transporter function. These inhibitors also significantly increased honey bees sensitivity to the neonicotinoid insecticide acetamiprid. This mechanism-based strategy may dramatically reduce the number of tests needed to assess the possibility of adverse combinations among pesticides. We also demonstrate an in vivo transporter assay that provides physical evidence of transporter inhibition by tracking the dynamics of a fluorescent substrate of these transporters (Rhodamine B) in bee tissues. Significantly more Rhodamine B remains in the head and hemolymph of bees pretreated with higher concentrations of the transporter inhibitor verapamil. Mechanism-based strategies for simplifying the assessment of adverse chemical interactions such as described here could improve our ability to identify those combinations that pose significantly greater risk to bees and perhaps improve the risk assessment protocols for honey bees and similar sensitive species. PMID:26840460

  11. Membrane potential dynamics of axons in cultured hippocampal neurons probed by second-harmonic-generation imaging

    Science.gov (United States)

    Nuriya, Mutsuo; Yasui, Masato

    2010-03-01

    The electrical properties of axons critically influence the nature of communication between neurons. However, due to their small size, direct measurement of membrane potential dynamics in intact and complex mammalian axons has been a challenge. Furthermore, quantitative optical measurements of axonal membrane potential dynamics have not been available. To characterize the basic principles of somatic voltage signal propagation in intact axonal arbors, second-harmonic-generation (SHG) imaging is applied to cultured mouse hippocampal neurons. When FM4-64 is applied extracellularly to dissociated neurons, whole axonal arbors are visualized by SHG imaging. Upon action potential generation by somatic current injection, nonattenuating action potentials are recorded in intact axonal arbors. Interestingly, however, both current- and voltage-clamp recordings suggest that nonregenerative subthreshold somatic voltage changes at the soma are poorly conveyed to these axonal sites. These results reveal the nature of membrane potential dynamics of cultured hippocampal neurons, and further show the possibility of SHG imaging in physiological investigations of axons.

  12. Axon diameter and intra-axonal volume fraction of the corticospinal tract in idiopathic normal pressure hydrocephalus measured by q-space imaging.

    Directory of Open Access Journals (Sweden)

    Kouhei Kamiya

    Full Text Available PURPOSE: Previous studies suggest that compression and stretching of the corticospinal tract (CST potentially cause treatable gait disturbance in patients with idiopathic normal pressure hydrocephalus (iNPH. Measurement of axon diameter with diffusion MRI has recently been used to investigate microstructural alterations in neurological diseases. In this study, we investigated alterations in the axon diameter and intra-axonal fraction of the CST in iNPH by q-space imaging (QSI analysis. METHODS: Nineteen patients with iNPH and 10 age-matched controls were recruited. QSI data were obtained with a 3-T system by using a single-shot echo planar imaging sequence with the diffusion gradient applied parallel to the antero-posterior axis. By using a two-component low-q fit model, the root mean square displacements of intra-axonal space ( =  axon diameter and intra-axonal volume fraction of the CST were calculated at the levels of the internal capsule and body of the lateral ventricle, respectively. RESULTS: Wilcoxon's rank-sum test revealed a significant increase in CST intra-axonal volume fraction at the paraventricular level in patients (p<0.001, whereas no significant difference was observed in the axon diameter. At the level of the internal capsule, neither axon diameter nor intra-axonal volume fraction differed significantly between the two groups. CONCLUSION: Our results suggest that in patients with iNPH, the CST does not undergo irreversible axonal damage but is rather compressed and/or stretched owing to pressure from the enlarged ventricle. These analyses of axon diameter and intra-axonal fraction yield insights into microstructural alterations of the CST in iNPH.

  13. Synapses formed by identified retinogeniculate axons during the segregation of eye input.

    OpenAIRE

    Campbell, G; Shatz, C J

    1992-01-01

    The synaptic organization of identified retinogeniculate axons was studied during the prenatal development of eye-specific layers in the LGN of the cat. During this period, retinogeniculate axons undergo stereotyped morphological changes. Retinogeniculate axons originating from one eye and passing through LGN territory destined to be solely innervated by the other eye (inappropriate territory) initially give rise to many side branches. As the eye-specific layers emerge, these axons elaborate ...

  14. Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the "Advanced Dissolution, Absorption, Metabolism (ADAM)" model.

    Science.gov (United States)

    Darwich, A S; Neuhoff, S; Jamei, M; Rostami-Hodjegan, A

    2010-11-01

    Bioavailability of orally administered drugs can be influenced by a number of factors including release from the formulation, dissolution, stability in the gastrointestinal (GI) environment, permeability through the gut wall and first-pass gut wall and hepatic metabolism. Although there are various enzymes in the gut wall which may contribute to gut first pass metabolism, Cytochrome P450 (CYP) 3A has been shown to play a major role. The efflux transporter P-glycoprotein (P-gp; MDR1/ABCB1) is the most extensively studied drug efflux transporter in the gut and might have a significant role in the regulation of GI absorption. Although not every CYP3A substrate will have a high extent of gut wall first-pass extraction, being a substrate for the enzyme increases the likelihood of a higher first-pass extraction. Similarly, being a P-gp substrate does not necessarily pose a problem with the gut wall absorption however it may reduce bioavailability in some cases (e.g. when drug has low passive permeability). An on-going debate has focused on the issue of the interplay between CYP3A and P-gp such that high affinity to P-gp increases the exposure of drug to CYP3A through repeated cycling via passive diffusion and active efflux, decreasing the fraction of drug that escapes first pass gut metabolism (F(G)). The presence of P-gp in the gut wall and the high affinity of some CYP3A substrates to this transporter are postulated to reduce the potential for saturating the enzymes, thus increasing gut wall first-pass metabolism for compounds which otherwise would have saturated CYP3A. Such inferences are based on assumptions in the modelling of oral drug absorption. These models should be as mechanistic as possible and tractable using available in vitro and in vivo information. We review, through simulation, this subject and examine the interplay between gut wall metabolism and efflux transporters by studying the fraction of dose absorbed into enterocytes (F(a)) and F(G) via

  15. Pharmacological effects of dopaminergic drugs on in vivo binding of [99mTc]TRODAT-1 to the central dopamine transporters in rats

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate the influence of drugs competing for the dopamine transporter (DAT) or changing intra- and/or extracellular dopamine levels on the binding of a novel technetium-99m labeled tropane derivative, technetium, [2-[[2-[[[3-(4-chloro-phenyl)-8-methyl-8-azabicyclo[3, 2, 1]oct-2-yl]methyl] (2-mercaptoethyl)amino]ethyl]amino]ethanethiolato(3)]-oxo-[1R-(exo-exo)]-, [99mTc]TRODAT-1, to DAT. This paper describes the further characterization of [99mTc]TRODAT-1 binding sites in rats under conditions which may exist in patients receiving various drug treatments. All experiments were carried out using an i.v. injection of [99mTc]TRODAT-1 into male Sprague-Dawley rats. The biodistribution studies were performed in the presence of drugs which compete for the binding site. Additionally, the influence of dopamine receptor agonists, such as apomorphine and (+)bromocriptine, on biodistribution was tested. It is likely that a low dose of l-DOPA (normally needed in the treatment of Parkinson's disease) will not affect the results on [99mTc]TRODAT-1 single-photon emission tomographic (SPET) imaging studies. In conclusion, the results clearly demonstrate the specificity of [99mTc]TRODAT-1 binding to DAT in vivo. Competition for [99mTc]TRODAT-1 binding was observed only with drug treatment that significantly increases dopamine levels or actively competes for binding at DAT. The results suggest that prior knowledge of whether patients are receiving various drug treatments may assist in the interpretation of DAT status as assessed by SPET imaging studies using [99mTc]TRODAT-1. (orig.)

  16. Pharmacological effects of dopaminergic drugs on in vivo binding of [{sup 99m}Tc]TRODAT-1 to the central dopamine transporters in rats

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, S.H.J.; Kung, M.P.; Ploessl, K.; Meegalla, S.K. [Department of Radiology, University of Pennsylvania, Philadelphia (United States); Kung, H.F. [Department of Radiology, University of Pennsylvania, Philadelphia (United States)]|[Department of Pharmacology, University of Pennsylvania, Philadelphia (United States)

    1998-01-01

    The purpose of this study was to investigate the influence of drugs competing for the dopamine transporter (DAT) or changing intra- and/or extracellular dopamine levels on the binding of a novel technetium-99m labeled tropane derivative, technetium, [2-[[2-[[[3-(4-chloro- phenyl)-8-methyl-8-azabicyclo[3, 2, 1]oct-2-yl]methyl] (2-mercaptoethyl)amino]ethyl]amino]ethanethiolato(3)]-oxo-[1R-(exo-exo)]-, [{sup 99m}Tc]TRODAT-1, to DAT. This paper describes the further characterization of [{sup 99m}Tc]TRODAT-1 binding sites in rats under conditions which may exist in patients receiving various drug treatments. All experiments were carried out using an i.v. injection of [{sup 99m}Tc]TRODAT-1 into male Sprague-Dawley rats. The biodistribution studies were performed in the presence of drugs which compete for the binding site. Additionally, the influence of dopamine receptor agonists, such as apomorphine and (+)bromocriptine, on biodistribution was tested. It is likely that a low dose of l-DOPA (normally needed in the treatment of Parkinson`s disease) will not affect the results on [{sup 99m}Tc]TRODAT-1 single-photon emission tomographic (SPET) imaging studies. In conclusion, the results clearly demonstrate the specificity of [{sup 99m}Tc]TRODAT-1 binding to DAT in vivo. Competition for [{sup 99m}Tc]TRODAT-1 binding was observed only with drug treatment that significantly increases dopamine levels or actively competes for binding at DAT. The results suggest that prior knowledge of whether patients are receiving various drug treatments may assist in the interpretation of DAT status as assessed by SPET imaging studies using [{sup 99m}Tc]TRODAT-1. (orig.) With 4 figs., 1 tab., 73 refs.

  17. Difference in trafficking of brain-derived neurotrophic factor between axons and dendrites of cortical neurons, revealed by live-cell imaging

    Directory of Open Access Journals (Sweden)

    Kohara Keigo

    2005-06-01

    Full Text Available Abstract Background Brain-derived neurotrophic factor (BDNF, which is sorted into a regulated secretory pathway of neurons, is supposed to act retrogradely through dendrites on presynaptic neurons or anterogradely through axons on postsynaptic neurons. Depending on which is the case, the pattern and direction of trafficking of BDNF in dendrites and axons are expected to be different. To address this issue, we analyzed movements of green fluorescent protein (GFP-tagged BDNF in axons and dendrites of living cortical neurons by time-lapse imaging. In part of the experiments, the expression of BDNF tagged with cyan fluorescent protein (CFP was compared with that of nerve growth factor (NGF tagged with yellow fluorescent protein (YFP, to see whether fluorescent protein-tagged BDNF is expressed in a manner specific to this neurotrophin. Results We found that BDNF tagged with GFP or CFP was expressed in a punctated manner in dendrites and axons in about two-thirds of neurons into which plasmid cDNAs had been injected, while NGF tagged with GFP or YFP was diffusely expressed even in dendrites in about 70% of the plasmid-injected neurons. In neurons in which BDNF-GFP was expressed as vesicular puncta in axons, 59 and 23% of the puncta were moving rapidly in the anterograde and retrograde directions, respectively. On the other hand, 64% of BDNF-GFP puncta in dendrites did not move at all or fluttered back and forth within a short distance. The rest of the puncta in dendrites were moving relatively smoothly in either direction, but their mean velocity of transport, 0.47 ± 0.23 (SD μm/s, was slower than that of the moving puncta in axons (0.73 ± 0.26 μm/s. Conclusion The present results show that the pattern and velocity of the trafficking of fluorescence protein-tagged BDNF are different between axons and dendrites, and suggest that the anterograde transport in axons may be the dominant stream of BDNF to release sites.

  18. Differential Axonal Projection of Mitral and Tufted Cells in the Mouse Main Olfactory System

    Directory of Open Access Journals (Sweden)

    Shin Nagayama

    2010-09-01

    Full Text Available In the past decade, much has been elucidated regarding the functional organization of the axonal connection of olfactory sensory neurons to olfactory bulb (OB glomeruli. However, the manner in which projection neurons of the OB process odorant input and send this information to higher brain centers remains unclear. Here, we report long-range, large-scale tracing of the axonal projection patterns of OB neurons using two-photon microscopy. Tracer injection into a single glomerulus demonstrated widely distributed mitral/tufted cell axonal projections on the lateroventral surface of the mouse brain, including the anterior/posterior piriform cortex (PC and olfactory tubercle (OT. We noted two distinct groups of labeled axons: PC-orienting axons and OT-orienting axons. Each group occupied distinct parts of the lateral olfactory tract. PC-orienting axons projected axon collaterals to a wide area of the PC but only a few collaterals to the OT. OT-orienting axons densely projected axon collaterals primarily to the anterolateral OT (alOT. Different colored dye injections into the superficial and deep portions of the OB external plexiform layer revealed that the PC-orienting axon populations originated in presumed mitral cells and the OT-orienting axons in presumed tufted cells. These data suggest that although mitral and tufted cells receive similar odor signals from a shared glomerulus, they process the odor information in different ways and send their output to different higher brain centers via the PC and alOT.

  19. Traction Force and Tension Fluctuations During Axon Growth

    Directory of Open Access Journals (Sweden)

    Jamison ePolackwich

    2015-10-01

    Full Text Available Actively generated mechanical forces play a central role in axon growthand guidance, but the mechanisms that underly force generation andregulation in growing axons remain poorly understood. We reportmeasurements of the dynamics of traction stresses from growth cones ofactively advancing axons from postnatal rat DRG neurons. By tracking themovement of the growth cone and analyzing the traction stress field froma reference frame that moves with it, we are able to show that there isa clear and consistent average stress field that underlies the complexspatial stresses present at any one time. The average stress field hasstrong maxima on the sides of the growth cone, directed inward towardthe growth cone neck. This pattern represents a contractile stresscontained within the growth cone, and a net force that is balanced bythe axon tension. Using high time-resolution measurements of the growthcone traction stresses, we show that the stress field is composed offluctuating local stress peaks, with a large number peaks that live fora short time, a population of peaks whose lifetime distribution followsan exponential decay, and a small number of very long-lived peaks. Weshow that the high time-resolution data also reveal that the tensionappears to vary randomly over short time scales, roughly consistent withthe lifetime of the stress peaks, suggesting that the tensionfluctuations originate from stochastic adhesion dynamics.

  20. Model of fasciculation and sorting in mixed populations of axons

    Czech Academy of Sciences Publication Activity Database

    Chaudhuri, D.; Borowski, P.; Zápotocký, Martin

    2011-01-01

    Roč. 84, č. 2 (2011), e021908. ISSN 1539-3755 R&D Projects: GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : axon guidance * neurogenesis * mathematical model Subject RIV: FH - Neurology Impact factor: 2.255, year: 2011

  1. Spectrins in axonal cytoskeletons: Dynamics revealed by extensions and fluctuations

    Science.gov (United States)

    Lai, Lipeng; Cao, Jianshu

    2014-07-01

    The macroscopic properties, the properties of individual components, and how those components interact with each other are three important aspects of a composited structure. An understanding of the interplay between them is essential in the study of complex systems. Using axonal cytoskeleton as an example system, here we perform a theoretical study of slender structures that can be coarse-grained as a simple smooth three-dimensional curve. We first present a generic model for such systems based on the fundamental theorem of curves. We use this generic model to demonstrate the applicability of the well-known worm-like chain (WLC) model to the network level and investigate the situation when the system is stretched by strong forces (weakly bending limit). We specifically studied recent experimental observations that revealed the hitherto unknown periodic cytoskeleton structure of axons and measured the longitudinal fluctuations. Instead of focusing on single molecules, we apply analytical results from the WLC model to both single molecule and network levels and focus on the relations between extensions and fluctuations. We show how this approach introduces constraints to possible local dynamics of the spectrin tetramers in the axonal cytoskeleton and finally suggests simple but self-consistent dynamics of spectrins in which the spectrins in one spatial period of axons fluctuate in-sync.

  2. PTEN inhibition and axon regeneration and neural repair

    Institute of Scientific and Technical Information of China (English)

    Yosuke Ohtake; Umar Hayat; Shuxin Li

    2015-01-01

    The intrinsic growth ability of all the neurons declines during development although some may grow better than others. Numerous intracellular signaling proteins and transcription factors have been shown to regulate the intrinsic growth capacity in mature neurons. Among them, PI3 kinase/Akt pathway is important for controlling axon elongation. As a negative regulator of this pathway, the tumor suppressor phosphatase and tensin homolog (PTEN) appears critical to con-trol the regenerative ability of young and adult neurons. This review will focus on recent research progress in axon regeneration and neural repair by PTEN inhibition and therapeutic potential of blocking this phosphatase for neurological disorders. Inhibition of PTEN by deletion in con-ditional knockout mice, knockdown by short-hairpin RNA, or blockade by pharmacological approaches, including administration of selective PTEN antagonist peptides, stimulates various degrees of axon regrowth in juvenile or adult rodents with central nervous system injuries. Im-portantly, post-injury PTEN suppression could enhance axonal growth and functional recovery in adult central nervous system after injury.

  3. A Study on "Subjective Knowing" Factors in Drug Trafficking and Transporting Crimes%贩卖运输毒品罪的明知要素研究

    Institute of Scientific and Technical Information of China (English)

    梁春香

    2012-01-01

    就贩卖、运输毒品罪而言,“明知”是成立该罪主观故意的构成要素,是行为人主观罪过产生的基础。研究贩卖、运输毒品罪的明知要素,成为厘清学界认识、解决司法难题的迫切需要。从理论与实践相结合的角度,论述了贩卖、运输毒品罪“明知”的内容,对贩卖、运输毒品罪的认识错误,贩卖、运输毒品罪“明知”认定的困惑和“明知”推定。%As to drug trafficking and transporting crimes, "Subjective Knowing" is a constitutive element of subjec- tive deliberate, and also is the foundation of subjective faults. To study the "Subjective Knowing" factors in drug trafficking and transporting crimes is an urgent need to clarify the academic reorganization and to solve legal difficul- ties. From the perspective of theory and practice combination, this article mainly discusses the contents of the "Sub- jective Knowing" factors, the current situation of "Subjective Knowing" determination and the presumption.

  4. β₂-adrenergic receptors protect axons during energetic stress but do not influence basal glio-axonal lactate shuttling in mouse white matter.

    Science.gov (United States)

    Laureys, G; Valentino, M; Demol, F; Zammit, C; Muscat, R; Cambron, M; Kooijman, R; De Keyser, J

    2014-09-26

    In vitro studies have demonstrated that β2-adrenergic receptor activation stimulates glycogen degradation in astrocytes, generating lactate as a potential energy source for neurons. Using in vivo microdialysis in mouse cerebellar white matter we demonstrate continuous axonal lactate uptake and glial-axonal metabolic coupling of glutamate/lactate exchange. However, this physiological lactate production was not influenced by activation (clenbuterol) or blocking (ICI 118551) of β2-adrenergic receptors. In two-photon imaging experiments on ex vivo mouse corpus callosum subjected to aglycemia, β2-adrenergic activation rescued axons, whereas inhibition of axonal lactate uptake by α-cyano-4-hydroxycinnamic acid (4-CIN) was associated with severe axonal loss. Our results suggest that axonal protective effects of glial β2-adrenergic receptor activation are not mediated by enhanced lactate production. PMID:25064060

  5. Folic acid-conjugated graphene oxide as a transporter of chemotherapeutic drug and siRNA for reversal of cancer drug resistance

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiufen; Feng, Fuli; Wang, Yinsong; Yang, Xiaoying, E-mail: yangxiaoying@tijmu.edu.cn; Duan, Hongquan [Tianjin Medical University, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Basic Medical Research Center, School of Pharmacy (China); Chen, Yongshen, E-mail: yschen99@nankai.edu.cn [College of Chemistry, Nankai University, Center for Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry (China)

    2013-10-15

    Functionalized graphene oxide (GO) with folic acid-conjugated chitosan oligosaccharide (FACO) containing quaternary ammonium groups (GO-FACO{sup +}) was successfully prepared. The formation and composition of GO-FACO{sup +} were confirmed by FTIR, UV-Vis, AFM, TGA, and zeta-potential. Cell experiments show that cellular uptake of fluorescein FAM-labeled DNA sequence (FAM-DNA) delivered by GO-FACO{sup +} exhibits higher efficiency in doxorubicin chloride (Dox)-resistant MCF-7 human breast cancer cells (MCF-7/Dox) with folate receptor overexpressed than that delivered by chitosan oligosaccharide (CO)-functionalized graphene oxides (GO-CO{sup +}) without folic acid modification and in human lung cancer A549 cells with folate receptor negatively expressed. The loading efficiency of Dox on GO-FACO{sup +} was 568.4 {mu}g mg{sup -1} at the initial Dox concentration of 0.5 mg mL{sup -1}, and in vitro release of Dox showed strong pH dependence. MDR1 siRNA transfected by GO-FACO{sup +} could efficiently knockdown the MDR1 mRNA and P-gp expression levels in MCF-7/Dox cells. GO-FACO{sup +} shows no obvious toxicity even at 500 {mu}g mL{sup -1}. The sequential deliveries of MDR1 siRNA and Dox by GO-FACO{sup +} exhibited much higher cytotoxicity against MCF-7/Dox cells than only delivery of Dox by GO-FACO{sup +} when Dox concentration is lower than 25 {mu}g mL{sup -1}, while excess 80 % cells were killed in the two cases when Dox concentration is higher than 30 {mu}g mL{sup -1}. Taken together, this functionalized GO has potential applications for targeted intracellular delivery of anti-tumor drugs and genes.

  6. Lipids, curvature stress, and the action of lipid prodrugs: free fatty acids and lysolipid enhancement of drug transport across liposomal membranes.

    Science.gov (United States)

    Jespersen, Henrik; Andersen, Jonas H; Ditzel, Henrik J; Mouritsen, Ole G

    2012-01-01

    Molecular shape and its impact on bilayer curvature stress are powerful concepts for describing the effects of lipids and fatty acids on fundamental membrane properties, such as passive permeability and derived properties like drug transport across liposomal membranes. We illustrate these relationships by studying the effects of fatty acids and lysolipids on the permeation of a potent anti-cancer drug, doxorubicin, across the bilayer of a liposome in which the drug is encapsulated. Using a simple fluorescence assay, we have systematically studied the passive permeation of doxorubicin across liposomal membranes in different lipid phases: the solid-ordered phase (DPPC bilayers), the liquid-disordered phase (POPC lipid bilayers), and the liquid-ordered phase induced by high levels of cholesterol (DOPC + cholesterol lipid bilayers). The effect of different free fatty acids (FA) and lysolipids (LL), separately and in combination, on permeability was assessed to elucidate the possible mechanism of phospholipase A(2)-triggered release in cancer tissue of liposomal doxorubicin formulations. In all cases, FAs applied separately lead to significant enhancement of permeability, most pronounced in liquid-disordered bilayers and less pronounced in solid and solid-ordered bilayers. LLs applied separately had only a marginal effect on permeability. FA and LL applied in combination lead to a synergistic enhancement of permeability in solid bilayers, whereas in liquid-disordered bilayers, the combined effect suppressed the otherwise strong permeability enhancement due to the FAs. PMID:21839138

  7. IH activity is increased in populations of slow versus fast motor axons of the rat.

    Directory of Open Access Journals (Sweden)

    Chad eLorenz

    2014-09-01

    Full Text Available Much is known about the electrophysiological variation in motoneuron somata across different motor units. However comparatively less is known about electrophysiological variation in motor axons and how this could impact function or electrodiagnosis in healthy or diseased states. We performed nerve excitability testing on two groups of motor axons in Sprague-Dawley rats that are known to differ significantly in their chronic daily activity patterns and in the relative proportion of motor unit types: one group innervating the soleus (slow motor axons and the other group innervating the tibialis anterior (fast motor axons muscles. We found that slow motor axons have significantly larger accommodation compared to fast motor axons upon application of a 100 ms hyperpolarizing conditioning stimulus that is 40% of axon threshold (Z = 3.24, p = 0.001 or 20% of axon threshold (Z = 2.67, p = 0.008. Slow motor axons had larger accommodation to hyperpolarizing currents in the current-threshold measurement (-80% Z = 3.07, p = 0.002; -90% Z = 2.98, p = 0.003. In addition, we found that slow motor axons have a significantly smaller rheobase than fast motor axons (Z = -1.99, p = 0.047 accompanied by a lower threshold in stimulus-response curves. The results provide evidence that slow motor axons have greater activity of the hyperpolarization-activated inwardly rectifying cation conductance (IH than fast motor axons. It is possible that this difference between fast and slow axons is caused by an adaptation to their chronic differences in daily activity patterns, and that this adaptation might have a functional effect on the motor unit. Moreover, these findings indicate that slow and fast motor axons may react differently to pathological conditions.

  8. White matter involvement after TBI: Clues to axon and myelin repair capacity.

    Science.gov (United States)

    Armstrong, Regina C; Mierzwa, Amanda J; Marion, Christina M; Sullivan, Genevieve M

    2016-01-01

    Impact-acceleration forces to the head cause traumatic brain injury (TBI) with damage in white matter tracts comprised of long axons traversing the brain. White matter injury after TBI involves both traumatic axonal injury (TAI) and myelin pathology that evolves throughout the post-injury time course. The axon response to initial mechanical forces and secondary insults follows the process of Wallerian degeneration, which initiates as a potentially reversible phase of intra-axonal damage and proceeds to an irreversible phase of axon fragmentation. Distal to sites of axon disconnection, myelin sheaths remain for prolonged periods, which may activate neuroinflammation and inhibit axon regeneration. In addition to TAI, TBI can cause demyelination of intact axons. These evolving features of axon and myelin pathology also represent opportunities for repair. In experimental TBI, demyelinated axons exhibit remyelination, which can serve to both protect axons and facilitate recovery of function. Myelin remodeling may also contribute to neuroplasticity. Efficient clearance of myelin debris is a potential target to attenuate the progression of chronic pathology. During the early phase of Wallerian degeneration, interventions that prevent the transition from reversible damage to axon disconnection warrant the highest priority, based on the poor regenerative capacity of axons in the CNS. Clinical evaluation of TBI will need to address the challenge of accurately detecting the extent and stage of axon damage. Distinguishing the complex white matter changes associated with axons and myelin is necessary for interpreting advanced neuroimaging approaches and for identifying a broader range of therapeutic opportunities to improve outcome after TBI. PMID:25697845

  9. Axonal regeneration and development of de novo axons from distal dendrites of adult feline commissural interneurons after a proximal axotomy

    DEFF Research Database (Denmark)

    Fenrich, Keith K; Skelton, Nicole; MacDermid, Victoria E;

    2007-01-01

    Following proximal axotomy, several types of neurons sprout de novo axons from distal dendrites. These processes may represent a means of forming new circuits following spinal cord injury. However, it is not know whether mammalian spinal interneurons, axotomized as a result of a spinal cord injur...

  10. No change of dopamine transporter density in basal ganglia after risperidone treatment in drug-naive children with Tourette's disorder

    International Nuclear Information System (INIS)

    Tourette's disorder (TD), which is characterized by multiple waxing and waning motor tics and one or more vocal tics, is known to be associated with abnormalities in the dopaminergic system. To testify our hypothesis that risperidone would improve tic symptoms of TD patients through the change of the dopaminergic system, we measured the DAT densities between drug-naive children with TD and normal children investigated the DAT density before and after treatment with risperidone in drug-naive children with TD, using lodine-123 labelled N-(3-iodopropen-2-yl)-2beta-carbomethoxy-3beta-(4-chlorophenyl) tropane(I-123 IPT) single photon emission computed tomography (SPECT). I-123 IPT SPECT imaging and Yale Global Tic Severity Scale-Korean version (YGTSS-K) for assessing the tic symptom severity were carried out before and after treatment with risperidone for 8 weeks in eight drug-naive children with TD. Eight normal children also underwent SPECT imaging 2 hours after an intravenous administration of I-123 IPT and carried out both quantitative and qualitative analyses using the obtained SPECT data, which were reconstructed for the assessment of the specific/non-specific DAT binding ratio in the basal ganglia. The drug-naive children with TD had a significantly greater increase in the specific/nonspecific DAT binding ratio of both basal ganglia compared with the normal children. However, no significant difference in the specific/nonspecific DAT binding ratio of the basal ganglia before and after treatment with riperidone in children with TD was not found, although tic symptoms were significantly improved with risperidone. These findings suggest that DAT densities are directly associated with the pathophysiology of TD, however, that the effect of risperidone on tic symptoms in children with TD is not attributed to the change of dopaminergic system

  11. Alterations of mitochondrial dynamics allow retrograde propagation of locally initiated axonal insults.

    Science.gov (United States)

    Lassus, Benjamin; Magifico, Sebastien; Pignon, Sandra; Belenguer, Pascale; Miquel, Marie-Christine; Peyrin, Jean-Michel

    2016-01-01

    In chronic neurodegenerative syndromes, neurons progressively die through a generalized retraction pattern triggering retrograde axonal degeneration toward the cell bodies, which molecular mechanisms remain elusive. Recent observations suggest that direct activation of pro-apoptotic signaling in axons triggers local degenerative events associated with early alteration of axonal mitochondrial dynamics. This raises the question of the role of mitochondrial dynamics on both axonal vulnerability stress and their implication in the spreading of damages toward unchallenged parts of the neuron. Here, using microfluidic chambers, we assessed the consequences of interfering with OPA1 and DRP1 proteins on axonal degeneration induced by local application of rotenone. We found that pharmacological inhibition of mitochondrial fission prevented axonal damage induced by rotenone, in low glucose conditions. While alteration of mitochondrial dynamics per se did not lead to spontaneous axonal degeneration, it dramatically enhanced axonal vulnerability to rotenone, which had no effect in normal glucose conditions, and promoted retrograde spreading of axonal degeneration toward the cell body. Altogether, our results suggest a mitochondrial priming effect in axons as a key process of axonal degeneration. In the context of neurodegenerative diseases, like Parkinson's and Alzheimer's, mitochondria fragmentation could hasten neuronal death and initiate spatial dispersion of locally induced degenerative events. PMID:27604820

  12. The role of T-cadherin in axonal pathway formation in neocortical circuits.

    Science.gov (United States)

    Hayano, Yuki; Zhao, Hong; Kobayashi, Hiroaki; Takeuchi, Kosei; Norioka, Shigemi; Yamamoto, Nobuhiko

    2014-12-01

    Cortical efferent and afferent fibers are arranged in a stereotyped pattern in the intermediate zone (IZ). Here, we studied the mechanism of axonal pathway formation by identifying a molecule that is expressed in a subset of cortical axons in the rat. We found that T-cadherin (T-cad), a member of the cadherin family, is expressed in deep-layer cell axons projecting to subcortical structures, but not in upper layer callosal axons projecting to the contralateral cortex. Ectopic expression of T-cad in upper layer cells induced axons to project toward subcortical structures via the upper part of the IZ. Moreover, the axons of deep-layer cells in which T-cad expression was suppressed by RNAi projected towards the contralateral cortex via an aberrant route. These results suggest that T-cad is involved in axonal pathway formation in the developing cortex. PMID:25468941

  13. Multi-Drug Resistance Transporters and a Mechanism-Based Strategy for Assessing Risks of Pesticide Combinations to Honey Bees

    OpenAIRE

    Guseman, Alex J.; Kaliah Miller; Grace Kunkle; Dively, Galen P.; Jeffrey S Pettis; Evans, Jay D.; Dennis vanEngelsdorp; Hawthorne, David J.

    2016-01-01

    Annual losses of honey bee colonies remain high and pesticide exposure is one possible cause. Dangerous combinations of pesticides, plant-produced compounds and antibiotics added to hives may cause or contribute to losses, but it is very difficult to test the many combinations of those compounds that bees encounter. We propose a mechanism-based strategy for simplifying the assessment of combinations of compounds, focusing here on compounds that interact with xenobiotic handling ABC transporte...

  14. Neuropathological changes of rabbit spinal motor neurons induced by retrograde axonal aluminum-uptake

    International Nuclear Information System (INIS)

    To examine pathological changes of spinal motor neurons induced by subepineurial injection of 10-500 μ1 of 2% AlCl3 solution into a sciatic nerve of rabbits, histometric studies of chromatolytic neurons, spheroids/globules and degenerative neurons in the both lumbar anterior gray horn tissues was undertaken using routine and immunochemical staining methods. All these neuronal changes were reactive to the antineurofilament antibody (SM1). Except chromatolytic neurons, the appearance of spheroids/globules and degenerative neurons were significantly dose-responsive to the volume of injected 2% AlCl3 solution. In this acute experiments, it is suggested that Al may primarily cause a disturbance of neurofilament transport in proximal axons, consequently leading to neurofibrillary degeneration of neurons. (author)

  15. NMR investigations of the conformation of new cyclodextrin-based amphiphilic transporters for hydrophobic drugs: molecular lollipops

    Science.gov (United States)

    Bellanger, Nathalie; Perly, Bruno

    1992-10-01

    Amphiphilic compounds, obtained by grafting aliphatic acids onto a modified cyclodextrin, have been synthesized and studied by solution NMR. The large chain-length dependence of the NMR spectra in aqueous media is explained by the possible formation of auto-inclusion complexes. This process has been evidenced by extensive NMR experiments and by competition with potential guests. This new class of molecules ("lollipops") provides important information for the optimization of a design for amphiphilic transporters to be included in organized phases such as micelles or liposomes.

  16. Axonal degeneration affects muscle density in older men and women.

    Science.gov (United States)

    Lauretani, Fulvio; Bandinelli, Stefania; Bartali, Benedetta; Di Iorio, Angelo; Giacomini, Vittoria; Corsi, Anna Maria; Guralnik, Jack M; Ferrucci, Luigi

    2006-08-01

    Using data from InCHIANTI, a prospective population-based survey of older persons, we examined the relationship of peroneal nerve conduction velocity (NCV, a measure of nerve myelination) and compound muscle action potential (CMAP, a measure of axonal degeneration) with calf muscle mass and density, two complementary measures of sarcopenia. NCV and CMAP were assessed by surface electroneurography of the right peroneal nerve conducted in 1162 participants, 515 men and 647 women, age 21-96 years, free of major neurological diseases. Cross-sectional muscle area and calf muscle density were measured using peripheral quantitative computerized tomography (pQCT). Both nerve and muscle parameters declined with age although in most cases the decline was not linear. In both sexes, CMAP, but not NCV, was independently and significantly associated with calf muscle density. These findings suggest that intrinsic changes in the muscle tissue are partially caused by a reduction in the number of motor axons. PMID:16085338

  17. Missed connections: photoreceptor axon seeks target neuron for synaptogenesis.

    Science.gov (United States)

    Astigarraga, Sergio; Hofmeyer, Kerstin; Treisman, Jessica E

    2010-08-01

    Extending axons must choose the appropriate synaptic target cells in order to assemble functional neural circuitry. The axons of the Drosophila color-sensitive photoreceptors R7 and R8 project as a single fascicle from each ommatidium, but their terminals are segregated into distinct layers within their target region. Recent studies have begun to reveal the molecular mechanisms that establish this projection pattern. Both homophilic adhesion molecules and specific ligand-receptor interactions make important contributions to stabilizing R7 and R8 terminals in the appropriate target layers. These cell recognition molecules are regulated by the same transcription factors that control R7 and R8 cell fates. Autocrine and repulsive signaling mechanisms prevent photoreceptor terminals from encroaching on their neighbors, preserving the spatial resolution of visual information. PMID:20434326

  18. Bazooka mediates secondary axon morphology in Drosophila brain lineages

    OpenAIRE

    Hartenstein Volker; Spindler Shana R

    2011-01-01

    Abstract In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that mul...

  19. Giant axonal neuropathy: observations on a further patient.

    OpenAIRE

    Donaghy, M; Brett, E M; Ormerod, I E; King, R H; Thomas, P. K.

    1988-01-01

    A further child with giant axonal neuropathy (GAN), abnormally curly hair and consanguineous parents is described. Of the 19 patients with GAN so far reported in the literature, six, including the present patient, have resulted from consanguineous marriages. This makes autosomal recessive inheritance of GAN highly probable. Our patient also exhibited cerebellar ataxia and signs of pyramidal tract damage; magnetic resonance brain imaging demonstrated abnormalities within the cerebellar and cer...

  20. Craniocerebral trauma. Magnetic resonance imaging of diffuse axonal injury

    International Nuclear Information System (INIS)

    Acceleration-deceleration rotational brain trauma is a common cause of disability or death in young adults and often leads to a focal destruction of axons. The resulting pathology, axonal shear injury is referred to as diffuse axonal injury (DAI). The DAI-associated lesions occur bilaterally, are widely dispersed and have been observed in the surface and deep white matter. They are found near to and far from the impact site. When DAI is clinically suspected, magnetic resonance imaging (MRI) is the method of choice for further clarification, especially in patients where cranial computed tomography (CT) is inconspicuous. To investigate the presence of DAI after traumatic brain injury (TBI), a multimodal MRI approach is applied including the common structural and also functional imaging sequences. For structural MRI, fluid-attenuated inversion recovery (FLAIR) weighted and susceptibility contrast imaging (SWI) are the sequences mainly used. The SWI technique is extremely sensitive to blood breakdown products, which appear as small signal voids at three locations, at the gray-white interface, in the corpus callosum and in the brain stem. Functional MRI comprises a group of constantly developing techniques that have great potential in optimal evaluation of the white matter in patients after craniocerebral trauma. These imaging techniques allow the visualization of changes associated with shear injuries, such as functional impairment of axons and decreased blood flow and abnormal metabolic activity of the brain parts affected. The multimodal MRI approach in patients with DAI results in a more detailed and differentiated representation of the underlying pathophysiological changes of the injured nerve tracts and helps to improve the diagnostic and prognostic accuracy of MRI. When DAI is suspected multimodal MRI should be performed as soon as possible after craniocerebral injury. (orig.)

  1. Estimating neuronal connectivity from axonal and dendritic density fields

    Directory of Open Access Journals (Sweden)

    Jaap evan Pelt

    2013-11-01

    Full Text Available Neurons innervate space by extending axonal and dendritic arborizations. When axons and dendrites come in close proximity of each other, synapses between neurons can be formed. Neurons vary greatly in their morphologies and synaptic connections with other neurons. The size and shape of the arborizations determine the way neurons innervate space. A neuron may therefore be characterized by the spatial distribution of its axonal and dendritic 'mass'. A population mean 'mass' density field of a particular neuron type can be obtained by averaging over the individual variations in neuron geometries. Connectivity in terms of candidate synaptic contacts between neurons can be determined directly on the basis of their arborizations but also indirectly on the basis of their density fields. To decide when a candidate synapse can be formed, we previously developed a criterion defining that axonal and dendritic line pieces should cross in 3D and have an orthogonal distance less than a threshold value. In this paper, we developed new methodology for applying this criterion to density fields. We show that estimates of the number of contacts between neuron pairs calculated from their density fields are fully consistent with the number of contacts calculated from the actual arborizations. However, the estimation of the connection probability and the expected number of contacts per connection cannot be calculated directly from density fields, because density fields do not carry anymore the correlative structure in the spatial distribution of synaptic contacts. Alternatively, these two connectivity measures can be estimated from the expected number of contacts by using empirical mapping functions. The neurons used for the validation studies were generated by our neuron simulator NETMORPH. An example is given of the estimation of average connectivity and Euclidean pre- and postsynaptic distance distributions in a network of neurons represented by their population

  2. Abnormal Corticospinal Excitability in Traumatic Diffuse Axonal Brain Injury

    OpenAIRE

    Bernabeu, Montse; Demirtas-Tatlidede, Asli; Opisso, Eloy; Lopez, Raquel; Tormos, Jose Mª; Pascual-Leone, Alvaro

    2009-01-01

    This study aimed to investigate the cortical motor excitability characteristics in diffuse axonal injury (DAI) due to severe traumatic brain injury (TBI). A variety of excitatory and inhibitory transcranial magnetic stimulation (TMS) paradigms were applied to primary motor cortices of 17 patients and 11 healthy controls. The parameters of testing included resting motor threshold (MT), motor evoked potential (MEP) area under the curve, input-output curves, MEP variability, and silent period (S...

  3. Voluntary exercise increases axonal regeneration from sensory neurons

    OpenAIRE

    Molteni, Raffaella; Zheng, Jun-Qi; Ying, Zhe; Gómez-Pinilla, Fernando; Twiss, Jeffery L

    2004-01-01

    Recent advances in understanding the role of neurotrophins on activity-dependent plasticity have provided insight into how behavior can affect specific aspects of neuronal biology. We present evidence that voluntary exercise can prime adult dorsal root ganglion neurons for increased axonal regeneration through a neurotrophin-dependent mechanism. Dorsal root ganglion neurons showed an increase in neurite outgrowth when cultured from animals that had undergone 3 or 7 days of exercise compared w...

  4. Adult motor axons preferentially reinnervate predegenerated muscle nerve

    OpenAIRE

    M. Abdullah; O'Daly, A.; A Vyas; Rohde, C.; Brushart, T.M.

    2013-01-01

    Preferential motor reinnervation (PMR) is the tendency for motor axons regenerating after repair of mixed nerve to reinnervate muscle nerve and/or muscle rather than cutaneous nerve or skin. PMR may occur in response to the peripheral nerve pathway alone in juvenile rats (Brushart, 1993; Redett et al., 2005), yet the ability to identify and respond to specific pathway markers is reportedly lost in adults (Uschold et al., 2007). The experiments reported here evaluate the relative roles of path...

  5. White matter microstructure from nonparametric axon diameter distribution mapping.

    Science.gov (United States)

    Benjamini, Dan; Komlosh, Michal E; Holtzclaw, Lynne A; Nevo, Uri; Basser, Peter J

    2016-07-15

    We report the development of a double diffusion encoding (DDE) MRI method to estimate and map the axon diameter distribution (ADD) within an imaging volume. A variety of biological processes, ranging from development to disease and trauma, may lead to changes in the ADD in the central and peripheral nervous systems. Unlike previously proposed methods, this ADD experimental design and estimation framework employs a more general, nonparametric approach, without a priori assumptions about the underlying form of the ADD, making it suitable to analyze abnormal tissue. In the current study, this framework was used on an ex vivo ferret spinal cord, while emphasizing the way in which the ADD can be weighted by either the number or the volume of the axons. The different weightings, which result in different spatial contrasts, were considered throughout this work. DDE data were analyzed to derive spatially resolved maps of average axon diameter, ADD variance, and extra-axonal volume fraction, along with a novel sub-micron restricted structures map. The morphological information contained in these maps was then used to segment white matter into distinct domains by using a proposed k-means clustering algorithm with spatial contiguity and left-right symmetry constraints, resulting in identifiable white matter tracks. The method was validated by comparing histological measures to the estimated ADDs using a quantitative similarity metric, resulting in good agreement. With further acquisition acceleration and experimental parameters adjustments, this ADD estimation framework could be first used preclinically, and eventually clinically, enabling a wide range of neuroimaging applications for improved understanding of neurodegenerative pathologies and assessing microstructural changes resulting from trauma. PMID:27126002

  6. Antidepressant-like drug effects in juvenile and adolescent mice in the tail suspension test: Relationship with hippocampal serotonin and norepinephrine transporter expression and function.

    Directory of Open Access Journals (Sweden)

    Nathan C Mitchell

    2013-10-01

    Full Text Available Depression is a major health problem for which most patients are not effectively treated. This problem is further compounded in children and adolescents where only two antidepressants [both selective serotonin reuptake inhibitors (SSRIs] are currently approved for clinical use. Mouse models provide tools to identify mechanisms that might account for poor treatment response to antidepressants. However, there are few studies in adolescent mice and none in juvenile mice. The tail suspension test (TST is commonly used to assay for antidepressant-like effects of drugs in adult mice. Here we show that the TST can also be used to assay antidepressant-like effects of drugs in C57Bl/6 mice aged 21 (juvenile and 28 (adolescent days post-partum (P. We found that the magnitude of antidepressant-like response to the SSRI escitalopram was less in P21 mice than in P28 or adult mice. The smaller antidepressant response of juveniles was not related to either maximal binding (Bmax or affinity (Kd for [3H]citalopram binding to the serotonin transporter (SERT in hippocampus, which did not vary significantly among ages. Magnitude of antidepressant-like response to the tricyclic desipramine was similar among ages, as were Bmax and Kd values for [3H]nisoxetine binding to the norepinephrine transporter (NET in hippocampus. Together, these findings suggest that juvenile mice are less responsive to the antidepressant-like effects of escitalopram than adults, but that this effect is not due to delayed maturation of SERT in hippocampus. Showing that the TST is a relevant behavioral assay of antidepressant-like activity in juvenile and adolescent mice sets the stage for future studies of the mechanisms underlying the antidepressant response in these young populations.

  7. Rapid Method To Determine Intracellular Drug Concentrations in Cellular Uptake Assays: Application to Metformin in Organic Cation Transporter 1-Transfected Human Embryonic Kidney 293 Cells.

    Science.gov (United States)

    Chien, Huan-Chieh; Zur, Arik A; Maurer, Tristan S; Yee, Sook Wah; Tolsma, John; Jasper, Paul; Scott, Dennis O; Giacomini, Kathleen M

    2016-03-01

    Because of the importance of intracellular unbound drug concentrations in the prediction of in vivo concentrations that are determinants of drug efficacy and toxicity, a number of assays have been developed to assess in vitro unbound concentrations of drugs. Here we present a rapid method to determine the intracellular unbound drug concentrations in cultured cells, and we apply the method along with a mechanistic model to predict concentrations of metformin in subcellular compartments of stably transfected human embryonic kidney 293 (HEK293) cells. Intracellular space (ICS) was calculated by subtracting the [(3)H]-inulin distribution volume (extracellular space, ECS) from the [(14)C]-urea distribution volume (total water space, TWS). Values obtained for intracellular space (mean ± S.E.M.; μl/10(6) cells) of monolayers of HEK cells (HEK-empty vector [EV]) and cells overexpressing human organic cation transporter 1 (HEK-OCT1), 1.21± 0.07 and 1.25±0.06, respectively, were used to determine the intracellular metformin concentrations. After incubation of the cells with 5 µM metformin, the intracellular concentrations were 26.4 ± 7.8 μM and 268 ± 11.0 μM, respectively, in HEK-EV and HEK-OCT1. In addition, intracellular metformin concentrations were lower in high K(+) buffer (140 mM KCl) compared with normal K(+) buffer (5.4 mM KCl) in HEK-OCT1 cells (54.8 ± 3.8 μM and 198.1 ± 11.2 μM, respectively; P < 0.05). Our mechanistic model suggests that, depending on the credible range of assumed physiologic values, the positively charged metformin accumulates to particularly high levels in endoplasmic reticulum and/or mitochondria. This method together with the computational model can be used to determine intracellular unbound concentrations and to predict subcellular accumulation of drugs in other complex systems such as primary cells. PMID:26700958

  8. Clinically relevant genetic variants of drug-metabolizing enzyme and transporter genes detected in Thai children and adolescents with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Medhasi S

    2016-04-01

    Full Text Available Sadeep Medhasi,1–3 Ekawat Pasomsub,4 Natchaya Vanwong,1,2 Nattawat Ngamsamut,5 Apichaya Puangpetch,1,2 Montri Chamnanphon,1,2 Yaowaluck Hongkaew,1,2 Penkhae Limsila,5 Darawan Pinthong,3 Chonlaphat Sukasem1,2 1Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; 2Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; 3Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand; 4Division of Virology, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; 5Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital, Department of Mental Health Services, Ministry of Public Health, Samut Prakarn, Thailand Abstract: Single-nucleotide polymorphisms (SNPs among drug-metabolizing enzymes and transporters (DMETs influence the pharmacokinetic profile of drugs and exhibit intra- and interethnic variations in drug response in terms of efficacy and safety profile. The main objective of this study was to assess the frequency of allelic variants of drug absorption, distribution, metabolism, and elimination-related genes in Thai children and adolescents with autism spectrum disorder. Blood samples were drawn from 119 patients, and DNA was extracted. Genotyping was performed using the DMET Plus microarray platform. The allele frequencies of the DMET markers were generated using the DMET Console software. Thereafter, the genetic variations of significant DMET genes were assessed. The frequencies of SNPs across the genes coding for DMETs were determined. After filtering the SNPs, 489 of the 1,931 SNPs passed quality control. Many clinically relevant SNPs, including CYP2C19*2, CYP2D6*10, CYP3A5*3, and SLCO1B1*5, were found to have frequencies similar to those in the Chinese

  9. The anti-epileptic drug substance vigabatrin inhibits taurine transport in intestinal and renal cell culture models

    DEFF Research Database (Denmark)

    Plum, Jakob Munk; Nøhr, Martha Kampp; Hansen, Steen H;

    2014-01-01

    , such evidence does not preclude the involvement of other transporters. The aim of the present study was, therefore, to investigate if vigabatrin interacts with taurine transport. The uptake of taurine was measured in intestinal human Caco-2 and canine MDCK cell monolayers in the absence or presence of...... amino acids such as GABA and vigabatrin. Vigabatrin inhibits the uptake of taurine in Caco-2 and MDCK cells to 34±3 and 53±2%, respectively, at a concentration of 30mM. In Caco-2 cells the uptake of vigabatrin under neutral pH conditions is concentration-dependent and saturable with a Km-value of 27m......M (logKm is 1.43±0.09). In conclusion, the present study shows that vigabatrin was able to inhibit the uptake of taurine in intestinal and renal cell culture models. Furthermore, uptake of vigabatrin in Caco-2 cells under neutral pH conditions was concentration-dependent and saturable and suggesting that...

  10. A quantitative description of QX222 blockade of sodium channels in squid axons.

    Science.gov (United States)

    Starmer, C F; Yeh, J Z; Tanguy, J

    1986-04-01

    The interaction of QX222, a quaternary ammonium derivative of lidocaine, with the Na channel was studied in internally perfused squid axons under voltage-clamped conditions. A use-dependent block was observed in response to repetitive depolarizing pulses. The time constant for block development and the steady state level of the block were increased with increasing frequency of stimulation from 0.1 to 10 Hz. Use-dependent block can be viewed as a net increase in the drug incorporation into Na channels with successive pulses. That is, net drug uptake by Na channels occurs during the depolarizing phase and net drug release occurs during the interpulse interval. The observed uptake rate of use-dependent block is shown to be a linear combination of the uptake rates associated with the depolarizing and resting potentials. Also, the steady state fraction of blocked channels is shown to be a linear combination of the state-dependent blockade equilibria. Drug-channel interactions are assumed to be dependent on gated control of the diffusion path between drug pool and the interior channel binding site. Drug ingress to the binding site can be inhibited by the channel gates (receptor guarding), while drug bound to the channel may become trapped by closure of the channel gates (trapping). On the basis of these assumptions, a simple procedure is proposed for estimating apparent rate constants governing the drug-channel binding reactions for two cases of channel blockade. The estimated forward (k) and backward (1) rate constants are: 2.45 x I05 M-1 s- and 0.23 x 103 s-1, respectively, for k and I for the case when the drug is trapped by both activation and inactivation gates, and 3.58 x 105 M-l s-l and 4.15 x 10-3 S-l for the case when the drug is not trapped. While these two schemes make a similar prediction with respect to the resulting uptake rates, their prediction of the steady state level of block differs. The observed steady state level of block could quantitatively be

  11. Retinal glia promote dorsal root ganglion axon regeneration.

    Directory of Open Access Journals (Sweden)

    Barbara Lorber

    Full Text Available Axon regeneration in the adult central nervous system (CNS is limited by several factors including a lack of neurotrophic support. Recent studies have shown that glia from the adult rat CNS, specifically retinal astrocytes and Müller glia, can promote regeneration of retinal ganglion cell axons. In the present study we investigated whether retinal glia also exert a growth promoting effect outside the visual system. We found that retinal glial conditioned medium significantly enhanced neurite growth and branching of adult rat dorsal root ganglion neurons (DRG in culture. Furthermore, transplantation of retinal glia significantly enhanced regeneration of DRG axons past the dorsal root entry zone after root crush in adult rats. To identify the factors that mediate the growth promoting effects of retinal glia, mass spectrometric analysis of retinal glial conditioned medium was performed. Apolipoprotein E and secreted protein acidic and rich in cysteine (SPARC were found to be present in high abundance, a finding further confirmed by western blotting. Inhibition of Apolipoprotein E and SPARC significantly reduced the neuritogenic effects of retinal glial conditioned medium on DRG in culture, suggesting that Apolipoprotein E and SPARC are the major mediators of this regenerative response.

  12. EEG functional connectivity, axon delays and white matter disease

    Science.gov (United States)

    Nunez, Paul L.; Srinivasan, Ramesh; Fields, R. Douglas

    2016-01-01

    Objective Both structural and functional brain connectivities are closely linked to white matter disease. We discuss several such links of potential interest to neurologists, neurosurgeons, radiologists, and non-clinical neuroscientists. Methods Treatment of brains as genuine complex systems suggests major emphasis on the multi-scale nature of brain connectivity and dynamic behavior. Cross-scale interactions of local, regional, and global networks are apparently responsible for much of EEG's oscillatory behaviors. Finite axon propagation speed, often assumed to be infinite in local network models, is central to our conceptual framework. Results Myelin controls axon speed, and the synchrony of impulse traffic between distant cortical regions appears to be critical for optimal mental performance and learning. Results Several experiments suggest that axon conduction speed is plastic, thereby altering the regional and global white matter connections that facilitate binding of remote local networks. Conclusions Combined EEG and high resolution EEG can provide distinct multi-scale estimates of functional connectivity in both healthy and diseased brains with measures like frequency and phase spectra, covariance, and coherence. Significance White matter disease may profoundly disrupt normal EEG coherence patterns, but currently these kinds of studies are rare in scientific labs and essentially missing from clinical environments. PMID:24815984

  13. Axonal Dysfunction Precedes Motor Neuronal Death in Amyotrophic Lateral Sclerosis.

    Directory of Open Access Journals (Sweden)

    Yuta Iwai

    Full Text Available Wide-spread fasciculations are a characteristic feature in amyotrophic lateral sclerosis (ALS, suggesting motor axonal hyperexcitability. Previous excitability studies have shown increased nodal persistent sodium conductances and decreased potassium currents in motor axons of ALS patients, both of the changes inducing hyperexcitability. Altered axonal excitability potentially contributes to motor neuron death in ALS, but the relationship of the extent of motor neuronal death and abnormal excitability has not been fully elucidated. We performed multiple nerve excitability measurements in the median nerve at the wrist of 140 ALS patients and analyzed the relationship of compound muscle action potential (CMAP amplitude (index of motor neuronal loss and excitability indices, such as strength-duration time constant, threshold electrotonus, recovery cycle and current-threshold relationships. Compared to age-matched normal controls (n = 44, ALS patients (n = 140 had longer strength-duration time constant (SDTC: a measure of nodal persistent sodium current; p 5mV. Regression analyses showed that SDTC (R = -0.22 and depolarizing threshold electrotonus (R = -0.22 increased with CMAP decline. These findings suggest that motor nerve hyperexcitability occurs in the early stage of the disease, and precedes motor neuronal loss in ALS. Modulation of altered ion channel function could be a treatment option for ALS.

  14. Axonal Dysfunction Precedes Motor Neuronal Death in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Iwai, Yuta; Shibuya, Kazumoto; Misawa, Sonoko; Sekiguchi, Yukari; Watanabe, Keisuke; Amino, Hiroshi; Kuwabara, Satoshi

    2016-01-01

    Wide-spread fasciculations are a characteristic feature in amyotrophic lateral sclerosis (ALS), suggesting motor axonal hyperexcitability. Previous excitability studies have shown increased nodal persistent sodium conductances and decreased potassium currents in motor axons of ALS patients, both of the changes inducing hyperexcitability. Altered axonal excitability potentially contributes to motor neuron death in ALS, but the relationship of the extent of motor neuronal death and abnormal excitability has not been fully elucidated. We performed multiple nerve excitability measurements in the median nerve at the wrist of 140 ALS patients and analyzed the relationship of compound muscle action potential (CMAP) amplitude (index of motor neuronal loss) and excitability indices, such as strength-duration time constant, threshold electrotonus, recovery cycle and current-threshold relationships. Compared to age-matched normal controls (n = 44), ALS patients (n = 140) had longer strength-duration time constant (SDTC: a measure of nodal persistent sodium current; p CMAP (> 5mV). Regression analyses showed that SDTC (R = -0.22) and depolarizing threshold electrotonus (R = -0.22) increased with CMAP decline. These findings suggest that motor nerve hyperexcitability occurs in the early stage of the disease, and precedes motor neuronal loss in ALS. Modulation of altered ion channel function could be a treatment option for ALS. PMID:27383069

  15. Sensory axon-derived neuregulin-1 is required for axoglial signaling and normal sensory function but not for long-term axon maintenance

    DEFF Research Database (Denmark)

    Fricker, F.R.; Zhu, N.; Tsantoulas, C.;

    2009-01-01

    " pockets. The total number of axons in the sural nerve was unchanged, but a greater proportion was unmyelinated. In addition, we observed large-diameter axons that were in a 1:1 relationship with Schwann cells, surrounded by a basal lamina but not myelinated. There was no evidence of DRG or Schwann cell...

  16. Pharmacophore Modeling of Nilotinib as an Inhibitor of ATP-Binding Cassette Drug Transporters and BCR-ABL Kinase Using a Three-Dimensional Quantitative Structure–Activity Relationship Approach

    OpenAIRE

    Shukla, Suneet; Kouanda, Abdul; Silverton, Latoya; Talele, Tanaji T.; Suresh V Ambudkar

    2014-01-01

    Nilotinib (Tasigna) is a tyrosine kinase inhibitor approved by the FDA to treat chronic phase chronic myeloid leukemia patients. It is also a transport substrate of the ATP-binding cassette (ABC) drug efflux transporters ABCB1 (P-glycoprotein, P-gp) and ABCG2 (BCRP), which may have an effect on the pharmacokinetics and toxicity of this drug. The goal of this study was to identify pharmacophoric features of nilotinib in order to potentially develop specific inhibitors of BCR-ABL kinase with mi...

  17. Fetzima (levomilnacipran), a drug for major depressive disorder as a dual inhibitor for human serotonin transporters and beta-site amyloid precursor protein cleaving enzyme-1.

    Science.gov (United States)

    Rizvi, Syed Mohd Danish; Shaikh, Sibhghatulla; Khan, Mahiuddin; Biswas, Deboshree; Hameed, Nida; Shakil, Shazi

    2014-01-01

    Pharmacological management of Major Depressive Disorder includes the use of serotonin reuptake inhibitors which targets serotonin transporters (SERT) to increase the synaptic concentrations of serotonin. Beta-site amyloid precursor protein cleaving enzyme-1 (BACE-1) is responsible for amyloid β plaque formation. Hence it is an interesting target for Alzheimer's disease (AD) therapy. This study describes molecular interactions of a new Food and Drug Administration approved antidepressant drug named 'Fetzima' with BACE-1 and SERT. Fetzima is chemically known as levomilnacipran. The study has explored a possible link between the treatment of Depression and AD. 'Autodock 4.2' was used for docking study. The free energy of binding (ΔG) values for 'levomilnacipran-SERT' interaction and 'levomilnacipran-BACE1' interaction were found to be -7.47 and -8.25 kcal/mol, respectively. Levomilnacipran was found to interact with S438, known to be the most important amino acid residue of serotonin binding site of SERT during 'levomilnacipran-SERT' interaction. In the case of 'levomilnacipran-BACE1' interaction, levomilnacipran interacted with two very crucial aspartic acid residues of BACE-1, namely, D32 and D228. These residues are accountable for the cleavage of amyloid precursor protein and the subsequent formation of amyloid β plaques in AD brain. Hence, Fetzima (levomilnacipran) might act as a potent dual inhibitor of SERT and BACE-1 and expected to form the basis of a future dual therapy against depression and AD. It is an established fact that development of AD is associated with Major Depressive Disorder. Therefore, the design of new BACE-1 inhibitors based on antidepressant drug scaffolds would be particularly beneficial. PMID:25345508

  18. Axon Degeneration Gated by Retrograde Activation of Somatic Pro-apoptotic Signaling.

    Science.gov (United States)

    Simon, David J; Pitts, Jason; Hertz, Nicholas T; Yang, Jing; Yamagishi, Yuya; Olsen, Olav; Tešić Mark, Milica; Molina, Henrik; Tessier-Lavigne, Marc

    2016-02-25

    During development, sensory axons compete for limiting neurotrophic support, and local neurotrophin insufficiency triggers caspase-dependent axon degeneration. The signaling driving axon degeneration upon local deprivation is proposed to reside within axons. Our results instead support a model in which, despite the apoptotic machinery being present in axons, the cell body is an active participant in gating axonal caspase activation and axon degeneration. Loss of trophic support in axons initiates retrograde activation of a somatic pro-apoptotic pathway, which, in turn, is required for distal axon degeneration via an anterograde pro-degenerative factor. At a molecular level, the cell body is the convergence point of two signaling pathways whose integrated action drives upregulation of pro-apoptotic Puma, which, unexpectedly, is confined to the cell body. Puma then overcomes inhibition by pro-survival Bcl-xL and Bcl-w and initiates the anterograde pro-degenerative program, highlighting the role of the cell body as an arbiter of large-scale axon removal. PMID:26898330

  19. Regulation of action potential waveforms by axonal GABAA receptors in cortical pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Yang Xia

    Full Text Available GABAA receptors distributed in somatodendritic compartments play critical roles in regulating neuronal activities, including spike timing and firing pattern; however, the properties and functions of GABAA receptors at the axon are still poorly understood. By recording from the cut end (bleb of the main axon trunk of layer -5 pyramidal neurons in prefrontal cortical slices, we found that currents evoked by GABA iontophoresis could be blocked by picrotoxin, indicating the expression of GABAA receptors in axons. Stationary noise analysis revealed that single-channel properties of axonal GABAA receptors were similar to those of somatic receptors. Perforated patch recording with gramicidin revealed that the reversal potential of the GABA response was more negative than the resting membrane potential at the axon trunk, suggesting that GABA may hyperpolarize the axonal membrane potential. Further experiments demonstrated that the activation of axonal GABAA receptors regulated the amplitude and duration of action potentials (APs and decreased the AP-induced Ca2+ transients at the axon. Together, our results indicate that the waveform of axonal APs and the downstream Ca2+ signals are modulated by axonal GABAA receptors.

  20. Irregular geometries in normal unmyelinated axons: a 3D serial EM analysis.

    Science.gov (United States)

    Greenberg, M M; Leitao, C; Trogadis, J; Stevens, J K

    1990-12-01

    Axons have generally been represented as straight cylinders. It is not at all uncommon for anatomists to take single cross-sections of an axonal bundle, and from the axonal diameter compute expected conduction velocities. This assumes that each cross-section represents a slice through a perfect cylinder. We have examined the three-dimensional geometry of 98 central and peripheral unmyelinated axons, using computer-assisted serial electron microscopy. These reconstructions reveal that virtually all unmyelinated axons have highly irregular axial shapes consisting of periodic varicosities. The varicosities were, without exception, filled with membranous organelles frequently including mitochondria, and have obligatory volumes similar to that described in other neurites. The mitochondria make contact with microtubules, while the other membraneous organelles were frequently found free floating in the cytoplasm. We conclude that unmyelinated axons are fundamentally varicose structures created by the presence of organelles, and that an axon's calibre is dynamic in both space and time. These irregular axonal geometries raise serious doubts about standard two dimensional morphometric analysis and suggest that electrical properties may be more heterogeneous than expected from single section data. These results also suggest that the total number of microtubules contained in an axon, rather than its single section diameter, may prove to be a more accurate predictor of properties such as conduction velocity. Finally, these results offer an explanation for a number of pathological changes that have been described in unmyelinated axons. PMID:2292722

  1. Soluble axoplasm enriched from injured CNS axons reveals the early modulation of the actin cytoskeleton.

    Directory of Open Access Journals (Sweden)

    Patrick Garland

    Full Text Available Axon injury and degeneration is a common consequence of diverse neurological conditions including multiple sclerosis, traumatic brain injury and spinal cord injury. The molecular events underlying axon degeneration are poorly understood. We have developed a novel method to enrich for axoplasm from rodent optic nerve and characterised the early events in Wallerian degeneration using an unbiased proteomics screen. Our detergent-free method draws axoplasm into a dehydrated hydrogel of the polymer poly(2-hydroxyethyl methacrylate, which is then recovered using centrifugation. This technique is able to recover axonal proteins and significantly deplete glial contamination as confirmed by immunoblotting. We have used iTRAQ to compare axoplasm-enriched samples from naïve vs injured optic nerves, which has revealed a pronounced modulation of proteins associated with the actin cytoskeleton. To confirm the modulation of the actin cytoskeleton in injured axons we focused on the RhoA pathway. Western blotting revealed an augmentation of RhoA and phosphorylated cofilin in axoplasm-enriched samples from injured optic nerve. To investigate the localisation of these components of the RhoA pathway in injured axons we transected axons of primary hippocampal neurons in vitro. We observed an early modulation of filamentous actin with a concomitant redistribution of phosphorylated cofilin in injured axons. At later time-points, RhoA is found to accumulate in axonal swellings and also colocalises with filamentous actin. The actin cytoskeleton is a known sensor of cell viability across multiple eukaryotes, and our results suggest a similar role for the actin cytoskeleton following axon injury. In agreement with other reports, our data also highlights the role of the RhoA pathway in axon degeneration. These findings highlight a previously unexplored area of axon biology, which may open novel avenues to prevent axon degeneration. Our method for isolating CNS axoplasm

  2. Synthesis and evaluation of radiolabeled analogs of the antidepressant drug zimelidine as potential SPECT-ligands for the serotonin transporter

    International Nuclear Information System (INIS)

    Z-3-(4-bromophenyl)-N,N-dimethyl-3-(3-pyridinyl)-2-propen-1-amine or zimelidine (ZIM) and its first metabolite nor-zimelidine, were radioiodinated via a nonisotopic exchange, using the Cu(I)-assisted nucleophilic labeling method. To evaluate their potential as SPECT ligands for the serotonin transporter (SERT), the biodistribution of both ligands was determined and pretreatment 'blocking' studies performed. Both radioligands demonstrated a good brain penetration of 0.8-1% ID/g, stable after 60 min., p.i., and a brain/blood ratio of up to 3. In vivo brain distribution did not reveal specific binding. Blocking studies by pretreatment with a known SERT ligand, had minor influence on the uptake of [123I]I-ZIM, between the several isolated brain regions. It may therefore be concluded that [123I]I-ZIM and [123I]I-nor-ZIM do not appear to be promising SPECT ligands for the SERT

  3. Transport properties and association behaviour of the zwitterionic drug 5-aminolevulinic acid in water. A precision conductometric study.

    Science.gov (United States)

    Merclin, Nadia; Beronius, Per

    2004-02-01

    The behavior of the hydrochloride salt of 5-aminolevulinic acid (ALA-HCl) with respect to transport properties and dissociation in aqueous solution at 25 degrees C has been studied using precision conductometry within the concentration range 0.24-5.17mM. The conductivity data are interpreted according to elaborated conductance theory. The carboxyl group appears to be, in practice, undissociated. The dissociation constant, K(a), of the NH(3)(+) form of the amino acid molecules is determined to 6.78x10(-5) (molarity scale); pK(a)=4.17. The limiting molar conductivity of the ALA-H(+) ion, lambda(0)=33.5cm(2)Omega(-1)mol(-1); electric mobility u=3.47x10(-4)cm(2)V(-1)s(-1), is close to the electric mobilites of the acetate and benzoic ions. PMID:14757508

  4. Quantitative and Mechanistic Assessment of Model Lipophilic Drugs in Micellar Solutions in the Transport Kinetics Across MDR1-MDCK Cell Monolayers.

    Science.gov (United States)

    Ho, Norman F H; Nielsen, James; Peterson, Michelle; Burton, Philip S

    2016-02-01

    An approach to characterizing P-glycoprotein (Pgp) interaction potential for sparingly water-soluble compounds was developed using bidirectional transport kinetics in MDR1-MDCK cell monolayers. Paclitaxel, solubilized in a dilute polysorbate 80 (PS80) micellar solution, was used as a practical example. Although the passage of paclitaxel across the cell monolayer was initially governed by the thermodynamic activity of the micelle-solubilized drug solution, Pgp inhibition was sustained by the thermodynamic activity (i.e., critical micelle concentration) of the PS80 micellar solution bathing the apical (ap) membrane. The mechanistic understanding of the experimental strategies and treatment of data was supported by a biophysical model expressed in the form of transport events occurring at the ap and basolateral (bl) membranes in series whereas the vectorial directions of the transcellular kinetics were accommodated. The derived equations permitted the stepwise quantitative delineation of the Pgp efflux activity (inhibited and uninhibited by PS80) and the passive permeability coefficient of the ap membrane, the passive permeability at the bl membrane and, finally, the distinct coupling of these with efflux pump activity to identify the rate-determining steps and mechanisms. The Jmax/KM(∗) for paclitaxel was in the order of 10(-4) cm/s and the ap- and bl-membrane passive permeability coefficients were asymmetric, with bl-membrane permeability significantly greater than ap. PMID:26869435

  5. P-glycoprotein mediated efflux limits the transport of the novel anti-Parkinson's disease candidate drug FLZ across the physiological and PD pathological in vitro BBB models.

    Directory of Open Access Journals (Sweden)

    Qian Liu

    Full Text Available FLZ, a novel anti-Parkinson's disease (PD candidate drug, has shown poor blood-brain barrier (BBB penetration based on the pharmacokinetic study using rat brain. P-glycoprotein (P-gp and breast cancer resistance protein (BCRP are two important transporters obstructing substrates entry into the CNS as well as in relation to PD neuropathology. However, it is unclear whether P-gp and BCRP are involved in low BBB permeability of FLZ and what the differences of FLZ brain penetration are between normal and Parkinson's conditions. For this purpose, in vitro BBB models mimicking physiological and PD pathological-related BBB properties were constructed by C6 astroglial cells co-cultured with primary normal or PD rat cerebral microvessel endothelial cells (rCMECs and in vitro permeability experiments of FLZ were carried out. High transepithelial electrical resistance (TEER and low permeability for sodium fluorescein (NaF confirmed the BBB functionality of the two models. Significantly greater expressions of P-gp and BCRP were detected in PD rCMECs associated with the lower in vitro BBB permeability of FLZ in pathological BBB model compared with physiological model. In transport studies only P-gp blocker effectively inhibited the efflux of FLZ, which was consistent with the in vivo permeability data. This result was also confirmed by ATPase assays, suggesting FLZ is a substrate for P-gp but not BCRP. The present study first established in vitro BBB models reproducing PD-related changes of BBB functions in vivo and demonstrated that poor brain penetration of FLZ and low BBB permeability were due to the P-gp transport.

  6. Synthesis and evaluation of radiolabeled analogs of the antidepressant drug zimelidine as potential SPECT-ligands for the serotonin transporter

    Energy Technology Data Exchange (ETDEWEB)

    Eersels, Jos L.H. E-mail: jeersels@rnc.vu.nl; Klok, Rob P.; Verbeek, Joost; Jonker, Allard J.; Herscheid, Jacobus D.M

    2004-07-01

    Z-3-(4-bromophenyl)-N,N-dimethyl-3-(3-pyridinyl)-2-propen-1-amine or zimelidine (ZIM) and its first metabolite nor-zimelidine, were radioiodinated via a nonisotopic exchange, using the Cu(I)-assisted nucleophilic labeling method. To evaluate their potential as SPECT ligands for the serotonin transporter (SERT), the biodistribution of both ligands was determined and pretreatment 'blocking' studies performed. Both radioligands demonstrated a good brain penetration of 0.8-1% ID/g, stable after 60 min., p.i., and a brain/blood ratio of up to 3. In vivo brain distribution did not reveal specific binding. Blocking studies by pretreatment with a known SERT ligand, had minor influence on the uptake of [{sup 123}I]I-ZIM, between the several isolated brain regions. It may therefore be concluded that [{sup 123}I]I-ZIM and [{sup 123}I]I-nor-ZIM do not appear to be promising SPECT ligands for the SERT.

  7. Trafifc lights for axon growth:proteoglycans and their neuronal receptors

    Institute of Scientific and Technical Information of China (English)

    Yingjie Shen

    2014-01-01

    Axon growth is a central event in the development and post-injury plasticity of the nervous system. Growing axons encounter a wide variety of environmental instructions. Much like trafifc lights in controlling the migrating axons, chondroitin sulfate proteoglycans (CSPGs) and hepa-ran sulfate proteoglycans (HSPGs) often lead to“stop”and“go”growth responses in the axons, respectively. Recently, the LAR family and NgR family molecules were identified as neuronal receptors for CSPGs and HSPGs. These discoveries provided molecular tools for further study of mechanisms underlying axon growth regulation. More importantly, the identiifcation of these proteoglycan receptors offered potential therapeutic targets for promoting post-injury axon re-generation.

  8. Coculture of elongated neuron axon with poly (D, L-lactide-co-glycolide) biomembrane in vitro

    Institute of Scientific and Technical Information of China (English)

    程飚; 陈峥嵘

    2004-01-01

    Objective: To elongate human nerve axon in culture and search for suitable support matrices for peripheral nervous system transplantation.Methods: Human embryo cortical neuronal cells,seeded on poly ( D, L-lactide-co-glycolide ) ( PLGA )membrane scaffolds, were elongated with a self-made neuro-axon extending device. The growth and morphological changes of neuron axons were observed to measure axolemmal permeability after elongation.Neurofilament protein was stained by immunohistochemical technique.Results: Human embryo neuron axon could be elongated and cultured on the PLGA membrane and retain their normal form and function.Conclusions: Three dimensional scaffolds with elongated neuron axon have the basic characteristics of artificial nerves, indicating a fundemental theory of nerve repair with elongated neuron axon.

  9. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination.

    Science.gov (United States)

    Lappe-Siefke, Corinna; Goebbels, Sandra; Gravel, Michel; Nicksch, Eva; Lee, John; Braun, Peter E; Griffiths, Ian R; Nave, Klaus-Armin

    2003-03-01

    Myelination of axons by oligodendrocytes enables rapid impulse propagation in the central nervous system. But long-term interactions between axons and their myelin sheaths are poorly understood. Here we show that Cnp1, which encodes 2',3'-cyclic nucleotide phosphodiesterase in oligodendrocytes, is essential for axonal survival but not for myelin assembly. In the absence of glial cyclic nucleotide phosphodiesterase, mice developed axonal swellings and neurodegeneration throughout the brain, leading to hydrocephalus and premature death. But, in contrast to previously studied myelin mutants, the ultrastructure, periodicity and physical stability of myelin were not altered in these mice. Genetically, the chief function of glia in supporting axonal integrity can thus be completely uncoupled from its function in maintaining compact myelin. Oligodendrocyte dysfunction, such as that in multiple sclerosis lesions, may suffice to cause secondary axonal loss. PMID:12590258

  10. X11/Mint Genes Control Polarized Localization of Axonal Membrane Proteins in Vivo

    OpenAIRE

    Garrett G Gross; Lone, G. Mohiddin; Leung, Lok Kwan; Hartenstein, Volker; Guo, Ming

    2013-01-01

    Mislocalization of axonal proteins can result in misassembly and/or miswiring of neural circuits, causing disease. To date, only a handful of genes that control polarized localization of axonal membrane proteins have been identified. Here we report that Drosophila X11/Mint proteins are required for targeting several proteins, including human amyloid precursor protein (APP) and Drosophila APP-like protein (APPL), to axonal membranes and for their exclusion from dendrites of the mushroom body i...

  11. Actin turnover is required to prevent axon retraction driven by endogenous actomyosin contractility

    OpenAIRE

    Gallo, Gianluca; Yee, Hal F.; Letourneau, Paul C.

    2002-01-01

    Growth cone motility and guidance depend on the dynamic reorganization of filamentous actin (F-actin). In the growth cone, F-actin undergoes turnover, which is the exchange of actin subunits from existing filaments. However, the function of F-actin turnover is not clear. We used jasplakinolide (jasp), a cell-permeable macrocyclic peptide that inhibits F-actin turnover, to study the role of F-actin turnover in axon extension. Treatment with jasp caused axon retraction, demonstrating that axon ...

  12. Directional specificity and patterning of sensory axons in trigeminal ganglion–whisker pad cocultures

    OpenAIRE

    Gunhan-Agar, Emine; Haeberle, Adam; Erzurumlu, Reha S.

    2000-01-01

    In the rodent trigeminal pathway, trigeminal axons invade the developing whisker pad from a caudal to rostral direction. We investigated directional specificity of embryonic day (E). 15 rat trigeminal axons within this peripheral target field using explant cocultures. E15 trigeminal axons readily grow into the same age whisker pad explants and form follicle-related patterns along a caudal to rostral direction. They also can grow into this target from its lateral aspects. In contrast, they are...

  13. Differential Effects of NGF and NT-3 on Embryonic Trigeminal Axon Growth Patterns

    OpenAIRE

    Ulupinar, Emel; Jacquin, Mark F.; Erzurumlu, Reha S.

    2000-01-01

    We examined the effects of neurotrophins nerve growth factor (NGF) and neurotrophin-3 (NT-3) on trigeminal axon growth patterns. Embryonic (E13–15) wholemount explants of the rat trigeminal pathway including the whisker pads, trigeminal ganglia, and brainstem were cultured in serum-free medium (SFM) or SFM supplemented with NGF or NT-3 for 3 days. Trigeminal axon growth patterns were analyzed with the use of lipophilic tracer DiI. In wholemount cultures grown in SFM, trigeminal axon projectio...

  14. RNA Sequence Reveals Mouse Retinal Transcriptome Changes Early after Axonal Injury

    OpenAIRE

    Yasuda, Masayuki; Tanaka, Yuji; Ryu, Morin; Tsuda, Satoru; Nakazawa, Toru

    2014-01-01

    Glaucoma is an ocular disease characterized by progressive retinal ganglion cell (RGC) death caused by axonal injury. However, the underlying mechanisms involved in RGC death remain unclear. In this study, we investigated changes in the transcriptome profile following axonal injury in mice (C57BL/6) with RNA sequencing (RNA-seq) technology. The experiment group underwent an optic nerve crush (ONC) procedure to induce axonal injury in the right eye, and the control group underwent a sham proce...

  15. Roles of NAD in Protection of Axon against Degeneration via SIRT1 Pathways.

    Science.gov (United States)

    Zhang, Jing; Guo, Wei-Hua; Qi, Xiao-Xia; Li, Gui-Bao; Hu, Yan-Lai; Wu, Qi; Ding, Zhao-Xi; Li, Hong-Yu; Hao, Jing; Sun, Jin-Hao

    2016-04-30

    Axonal degeneration is a common pathological change of neurogenical disease which often arises before the neuron death. But it had not found any effective method to protect axon from degeneration. In this study we intended to confirm the protective effect of nicotinamide adenine dinucleotide (NAD), investigate the optimal administration dosage and time of NAD, and identify the relationship between silence signal regulating factor 1 (SIRT1) and axonal degeneration. An axonal degeneration model was established using dorsal root ganglion (DRG) neurons injured by vincristine to observe the protective effects of NAD to the injured axons. In addition, the potential contribution of the SIRT1 in axonal degeneration was also investigated. Through the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, immunochemistry staining, axons counting and length measuring, transmission electron microscope (TEM) observation, we demonstrated that NAD played an important role in preventing axonal degeneration. Further study revealed that the expression of SIRT1 and phosphorylated Akt1 (p-Akt1) was up-regulated when NAD was added into the culturing medium. Taking together, our results demonstrated that NAD might delay the axonal degeneration through SIRT1/Akt1 pathways. PMID:27080463

  16. MicroRNA-210 promotes sensory axon regeneration of adult mice in vivo and in vitro.

    Science.gov (United States)

    Hu, Yi-Wen; Jiang, Jing-Jing; Yan-Gao; Wang, Rui-Ying; Tu, Guan-Jun

    2016-05-27

    Axon regeneration as a critical step in nerve repairing and remodeling after peripheral nerve injury relies on regulation of gene expression. MicroRNAs are emerging to be important epigenetic regulators of gene expression to control axon regeneration. Here we used a novel in vivo electroporation approach to transfect microRNA-210 (miR-210) or siRNAs to adult mice dorsal root ganglion (DRG) neurons, measured the axon length 3days after sciatic nerve crush or dissociated DRG cultures in vitro to detect the effect of miR-210 in sensory axon regeneration. Importantly, we found that miR-210 overexpression could promote sensory axon regeneration and inhibit apoptsosis by ephrin-A3 (EFNA3). In addition, inhibition of endogenous miR-210 in DRG neurons impaired axon regeneration in vitro and in vivo, the regulatory effect of miR-210 was mediated by increased expression of EFNA3 because downregulation of EFNA3 fully rescued axon regeneration. We thus demonstrate that miR-210 is a new physiological regulator of sensory axon regeneration, and EFNA3 may be the functional target of miR-210. We conclude that miR-210 may play an important role in sensory axon regeneration. PMID:27102143

  17. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury

    Institute of Scientific and Technical Information of China (English)

    Christian Witzel; Werner Reutter; G Bjrn Stark; Georgios Koulaxouzidis

    2015-01-01

    Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modiifed in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp) increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the inlfuence of systemic ManNProp application using a speciifc in vivo mouse model. Using mice expressing axonal lfuorescent proteins, we quantiifed the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow lfuorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg) or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection). ManNProp signiifcantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm;P<0.005) and the number of arborizing axons (21%vs. 16%;P=0.008) 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoen-gineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.

  18. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Christian Witzel

    2015-01-01

    Full Text Available Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modified in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the influence of systemic ManNProp application using a specific in vivo mouse model. Using mice expressing axonal fluorescent proteins, we quantified the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow fluorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection. ManNProp significantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm; P < 0.005 and the number of arborizing axons (21% vs. 16% P = 0.008 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoengineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.

  19. Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay

    DEFF Research Database (Denmark)

    Colak, Dilek; Ji, Sheng-Jian; Porse, Bo T; Jaffrey, Samie R

    2013-01-01

    show that Robo3.2, a receptor for the Slit family of guidance cues, is synthesized locally within axons of commissural neurons. Robo3.2 translation is induced by floor-plate-derived signals as axons cross the spinal cord midline. Robo3.2 is also a predicted target of the nonsense-mediated mRNA decay...... (NMD) pathway. We find that NMD regulates Robo3.2 synthesis by inducing the degradation of Robo3.2 transcripts in axons that encounter the floor plate. Commissural neurons deficient in NMD proteins exhibit aberrant axonal trajectories after crossing the midline, consistent with misregulation of Robo3...

  20. Permissive Schwann cell graft/spinal cord interfaces for axon regeneration.

    Science.gov (United States)

    Williams, Ryan R; Henao, Martha; Pearse, Damien D; Bunge, Mary Bartlett

    2015-01-01

    The transplantation of autologous Schwann cells (SCs) to repair the injured spinal cord is currently being evaluated in a clinical trial. In support, this study determined properties of spinal cord/SC bridge interfaces that enabled regenerated brainstem axons to cross them, possibly leading to improvement in rat hindlimb movement. Fluid bridges of SCs and Matrigel were placed in complete spinal cord transections. Compared to pregelled bridges of SCs and Matrigel, they improved regeneration of brainstem axons across the rostral interface. The regenerating brainstem axons formed synaptophysin(+) bouton-like terminals and contacted MAP2A(+) dendrites at the caudal interface. Brainstem axon regeneration was directly associated with glial fibrillary acidic protein (GFAP(+)) astrocyte processes that elongated into the SC bridge. Electron microscopy revealed that axons, SCs, and astrocytes were enclosed together within tunnels bounded by a continuous basal lamina. Neuroglycan (NG2) expression was associated with these tunnels. One week after injury, the GFAP(+) processes coexpressed nestin and brain lipid-binding protein, and the tips of GFAP(+)/NG2(+) processes extended into the bridges together with the regenerating brainstem axons. Both brainstem axon regeneration and number of GFAP(+) processes in the bridges correlated with improvement in hindlimb locomotion. Following SCI, astrocytes may enter a reactive state that prohibits axon regeneration. Elongation of astrocyte processes into SC bridges, however, and formation of NG2(+) tunnels enable brainstem axon regeneration and improvement in function. It is important for spinal cord repair to define conditions that favor elongation of astrocytes into lesions/transplants. PMID:24152553