WorldWideScience

Sample records for axonal transport defects

  1. The genetics of axonal transport and axonal transport disorders.

    Directory of Open Access Journals (Sweden)

    Jason E Duncan

    2006-09-01

    Full Text Available Neurons are specialized cells with a complex architecture that includes elaborate dendritic branches and a long, narrow axon that extends from the cell body to the synaptic terminal. The organized transport of essential biological materials throughout the neuron is required to support its growth, function, and viability. In this review, we focus on insights that have emerged from the genetic analysis of long-distance axonal transport between the cell body and the synaptic terminal. We also discuss recent genetic evidence that supports the hypothesis that disruptions in axonal transport may cause or dramatically contribute to neurodegenerative diseases.

  2. Neurofilament Polymer Transport in Axons

    OpenAIRE

    Yan, Yanping; Brown, Anthony

    2005-01-01

    Neurofilament proteins are known to be transported along axons by slow axonal transport, but the form in which they move is controversial. In previous studies on cultured rat sympathetic neurons, we found that green fluorescent protein-tagged neurofilament proteins move predominantly in the form of filamentous structures, and we proposed that these structures are single neurofilament polymers. In the present study, we have tested this hypothesis by using a rapid perfusion technique to capture...

  3. Mitochondrial Transport and Docking in Axons

    OpenAIRE

    Cai, Qian; Sheng, Zu-Hang

    2009-01-01

    Proper transport and distribution of mitochondria in axons and at synapses are critical for the normal physiology of neurons. Mitochondria in axons display distinct motility patterns and undergo saltatory and bidirectional movement, where mitochondria frequently stop, start moving again, and change direction. While approximately one-third of axonal mitochondria are mobile in mature neurons, a large proportion remains stationary. Their net movement is significantly influenced by recruitment to...

  4. Dynamics of mitochondrial transport in axons

    Directory of Open Access Journals (Sweden)

    Robert Francis Niescier

    2016-05-01

    Full Text Available The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

  5. Dynamics of Mitochondrial Transport in Axons.

    Science.gov (United States)

    Niescier, Robert F; Kwak, Sang Kyu; Joo, Se Hun; Chang, Karen T; Min, Kyung-Tai

    2016-01-01

    The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons. PMID:27242435

  6. Axonal transport of ribonucleoprotein particles (vaults).

    Science.gov (United States)

    Li, J Y; Volknandt, W; Dahlstrom, A; Herrmann, C; Blasi, J; Das, B; Zimmermann, H

    1999-01-01

    RNA was previously shown to be transported into both dendritic and axonal compartments of nerve cells, presumably involving a ribonucleoprotein particle. In order to reveal potential mechanisms of transport we investigated the axonal transport of the major vault protein of the electric ray Torpedo marmorata. This protein is the major protein component of a ribonucleoprotein particle (vault) carrying a non-translatable RNA and has a wide distribution in the animal kingdom. It is highly enriched in the cholinergic electromotor neurons and similar in size to synaptic vesicles. The axonal transport of vaults was investigated by immunofluorescence, using the anti-vault protein antibody as marker, and cytofluorimetric scanning, and was compared to that of the synaptic vesicle membrane protein SV2 and of the beta-subunit of the F1-ATPase as a marker for mitochondria. Following a crush significant axonal accumulation of SV2 proximal to the crush could first be observed after 1 h, that of mitochondria after 3 h and that of vaults after 6 h, although weekly fluorescent traces of accumulations of vault protein were observed in the confocal microscope as early as 3 h. Within the time-period investigated (up to 72 h) the accumulation of all markers increased continuously. Retrograde accumulations also occurred, and the immunofluorescence for the retrograde component, indicating recycling, was weaker than that for the anterograde component, suggesting that more than half of the vaults are degraded within the nerve terminal. High resolution immunofluorescence revealed a granular structure-in accordance with the biochemical characteristics of vaults. Of interest was the observation that the increase of vault immunoreactivity proximal to the crush accelerated with time after crushing, while that of SV2-containing particles appeared to decelerate, indicating that the crush procedure with time may have induced perikaryal alterations in the production and subsequent export to the axon

  7. Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Fang Cheng

    2012-06-01

    Full Text Available Abstract Background Reactive oxygen species (ROS released by microglia and other inflammatory cells can cause axonal degeneration. A reduction in axonal transport has also been implicated as a cause of axonal dystrophies and neurodegeneration, but there is a paucity of experimental data concerning the effects of ROS on axonal transport. We used live cell imaging to examine the effects of hydrogen peroxide on the axonal transport of mitochondria and Golgi-derived vesicles in cultured rat hippocampal neurons. Results Hydrogen peroxide rapidly inhibited axonal transport, hours before any detectable changes in mitochondrial morphology or signs of axonal degeneration. Mitochondrial transport was affected earlier and was more severely inhibited than the transport of Golgi-derived vesicles. Anterograde vesicle transport was more susceptible to peroxide inhibition than retrograde transport. Axonal transport partially recovered following removal of hydrogen peroxide and local application of hydrogen peroxide inhibited transport, suggesting that the effects were not simply a result of nerve cell death. Sodium azide, an ATP synthesis blocker, had similar effects on axonal transport, suggesting that ATP depletion may contribute to the transport inhibition due to hydrogen peroxide. Conclusions These results indicate that inhibition of axonal transport is an early consequence of exposure to ROS and may contribute to subsequent axonal degeneration.

  8. Synaptic Democracy and Vesicular Transport in Axons

    Science.gov (United States)

    Bressloff, Paul C.; Levien, Ethan

    2015-04-01

    Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".

  9. Non-Cell-Autonomous Regulation of Retrograde Motoneuronal Axonal Transport in an SBMA Mouse Model

    Science.gov (United States)

    Halievski, Katherine; Kemp, Michael Q.; Breedlove, S. Marc; Miller, Kyle E.

    2016-01-01

    Abstract Defects in axonal transport are seen in motoneuronal diseases, but how that impairment comes about is not well understood. In spinal bulbar muscular atrophy (SBMA), a disorder linked to a CAG/polyglutamine repeat expansion in the androgen receptor (AR) gene, the disease-causing AR disrupts axonal transport by acting in both a cell-autonomous fashion in the motoneurons themselves, and in a non-cell-autonomous fashion in muscle. The non-cell-autonomous mechanism is suggested by data from a unique “myogenic” transgenic (TG) mouse model in which an AR transgene expressed exclusively in skeletal muscle fibers triggers an androgen-dependent SBMA phenotype, including defects in retrograde transport. However, motoneurons in this TG model retain the endogenous AR gene, leaving open the possibility that impairments in transport in this model also depend on ARs in the motoneurons themselves. To test whether non-cell-autonomous mechanisms alone can perturb retrograde transport, we generated male TG mice in which the endogenous AR allele has the testicular feminization mutation (Tfm) and, consequently, is nonfunctional. Males carrying the Tfm allele alone show no deficits in motor function or axonal transport, with or without testosterone treatment. However, when Tfm males carrying the myogenic transgene (Tfm/TG) are treated with testosterone, they develop impaired motor function and defects in retrograde transport, having fewer retrogradely labeled motoneurons and deficits in endosomal flux based on time-lapse video microscopy of living axons. These findings demonstrate that non-cell-autonomous disease mechanisms originating in muscle are sufficient to induce defects in retrograde transport in motoneurons. PMID:27517091

  10. Defective lysosomal proteolysis and axonal transport are early pathogenic events that worsen with age leading to increased APP metabolism and synaptic Abeta in transgenic APP/PS1 hippocampus

    Directory of Open Access Journals (Sweden)

    Torres Manuel

    2012-11-01

    Full Text Available Abstract Background Axonal pathology might constitute one of the earliest manifestations of Alzheimer disease. Axonal dystrophies were observed in Alzheimer’s patients and transgenic models at early ages. These axonal dystrophies could reflect the disruption of axonal transport and the accumulation of multiple vesicles at local points. It has been also proposed that dystrophies might interfere with normal intracellular proteolysis. In this work, we have investigated the progression of the hippocampal pathology and the possible implication in Abeta production in young (6 months and aged (18 months PS1(M146L/APP(751sl transgenic mice. Results Our data demonstrated the existence of a progressive, age-dependent, formation of axonal dystrophies, mainly located in contact with congophilic Abeta deposition, which exhibited tau and neurofilament hyperphosphorylation. This progressive pathology was paralleled with decreased expression of the motor proteins kinesin and dynein. Furthermore, we also observed an early decrease in the activity of cathepsins B and D, progressing to a deep inhibition of these lysosomal proteases at late ages. This lysosomal impairment could be responsible for the accumulation of LC3-II and ubiquitinated proteins within axonal dystrophies. We have also investigated the repercussion of these deficiencies on the APP metabolism. Our data demonstrated the existence of an increase in the amyloidogenic pathway, which was reflected by the accumulation of hAPPfl, C99 fragment, intracellular Abeta in parallel with an increase in BACE and gamma-secretase activities. In vitro experiments, using APPswe transfected N2a cells, demonstrated that any imbalance on the proteolytic systems reproduced the in vivo alterations in APP metabolism. Finally, our data also demonstrated that Abeta peptides were preferentially accumulated in isolated synaptosomes. Conclusion A progressive age-dependent cytoskeletal pathology along with a reduction of

  11. In vivo imaging of axonal transport using MRI: aging and Alzheimer's disease

    International Nuclear Information System (INIS)

    MRI using manganese as a trans-synaptic axonal tracing agent can unveil dynamics of axonal transport in living subjects. We use this technology to test the hypotheses if impaired axonal transport is a significant pathophysiological process in aging and early Alzheimer's disease (AD) and in part accounting for ''selective vulnerability'' of projection neurons in AD. To allow quantitative assessment of axonal transport in vivo, we developed voxel-based statistical mapping technology as well as a tracer kinetic modeling method based on mass transport for manganese-enhanced MRI to estimate axonal transport rates in aging rats and AD transgenic mice. These techniques demonstrated manganese-enhanced signal changes in axonal projections of the olfactory tract and decreased axonal transport rates in rodent models of aging and AD. Altered axonal transport may be a critical pathophysiological process in aging and AD. Manganese-enhanced MRI provides exciting opportunities for the investigations of altered axonal transport in AD and related disorders. (orig.)

  12. Axonal Transport and Neurodegeneration: How Marine Drugs Can Be Used for the Development of Therapeutics

    Science.gov (United States)

    White, Joseph A.; Banerjee, Rupkatha; Gunawardena, Shermali

    2016-01-01

    Unlike virtually any other cells in the human body, neurons are tasked with the unique problem of transporting important factors from sites of synthesis at the cell bodies, across enormous distances, along narrow-caliber projections, to distally located nerve terminals in order to maintain cell viability. As a result, axonal transport is a highly regulated process whereby necessary cargoes of all types are packaged and shipped from one end of the neuron to the other. Interruptions in this finely tuned transport have been linked to many neurodegenerative disorders including Alzheimer’s (AD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS) suggesting that this pathway is likely perturbed early in disease progression. Therefore, developing therapeutics targeted at modifying transport defects could potentially avert disease progression. In this review, we examine a variety of potential compounds identified from marine aquatic species that affect the axonal transport pathway. These compounds have been shown to function in microtubule (MT) assembly and maintenance, motor protein control, and in the regulation of protein degradation pathways, such as the autophagy-lysosome processes, which are defective in many degenerative diseases. Therefore, marine compounds have great potential in developing effective treatment strategies aimed at early defects which, over time, will restore transport and prevent cell death. PMID:27213408

  13. Axonal accumulation of synaptic markers in APP transgenic Drosophila depends on the NPTY motif and is paralleled by defects in synaptic plasticity

    DEFF Research Database (Denmark)

    Rusu, Patricia; Jansen, Anna; Soba, Peter;

    2007-01-01

    Alzheimer's disease (AD) is characterized by neurofibrillary tangles and extracellular plaques, which consist mainly of beta-amyloid derived from the beta-amyloid precursor protein (APP). An additional feature of AD is axonopathy, which might contribute to impairment of cognitive functions....... Specifically, axonal transport defects have been reported in AD animal models, including mice and flies that overexpress APP and tau. Here we demonstrate that the APP-induced traffic jam of vesicles in peripheral nerves of Drosophila melanogaster larvae depends on the four residues NPTY motif in the APP...... intracellular domain. Furthermore, heterologous expression of Fe65 and JIP1b, scaffolding proteins interacting with the NPTY motif, also perturb axonal transport. Together, these data indicate that JIP1b or Fe65 may be involved in the APP-induced axonal transport defect. Moreover, we have characterized...

  14. Slowing of the axonal transport of neurofilament proteins during development

    International Nuclear Information System (INIS)

    We examined age-dependent changes in neurofilament transport in motor axons of the rat sciatic nerve. SDS-PAGE and gel fluorography confirmed that the distribution of labeled neurofilament triplet protein coincides with the major slow component a (SCa) wave in these neurons. The velocity of neurofilament transport was calculated on the basis of the location of the 50th percentile of radioactivity in this wave 33 days after motor neurons were labeled by the intraspinal administration of [3H]leucine and [3H]lysine. Overall, the velocity fell from 1.95 mm/day at 3 weeks of age to 1.12 mm/day at 20 weeks. Between 3 and 10 weeks, it fell at a 6-fold higher rate (0.096 mm/day/week) than between 10 and 20 weeks (0.016 mm/day/week). We also found a marked change in the shape of the slow component wave during development. It appeared to consist of several overlapping peaks moving at slightly different velocities in animals 10 weeks of age or less as compared to a single slower moving peak at 20 weeks. We propose that the velocity of slow axonal transport reflects the level of maturation of the neuron, and that the presence of several overlapping peaks of transported radioactivity in the sciatic nerve of younger animals reflects the presence of several populations of motor axons at different stages of development. We also discuss the relationship between changes in the velocity of neurofilament transport and alterations in the composition of the cytoskeleton that occur as the axon grows in caliber during postnatal development

  15. Axonal Transport Impairment in Chemotherapy-Induced Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Gabriella Nicolini

    2015-08-01

    Full Text Available Chemotherapy-Induced Peripheral Neuropathy (CIPN is a dose-limiting side effect of several antineoplastic drugs which significantly reduces patients’ quality of life. Although different molecular mechanisms have been investigated, CIPN pathobiology has not been clarified yet. It has largely been recognized that Dorsal Root Ganglia are the main targets of chemotherapy and that the longest nerves are the most damaged, together with fast axonal transport. Indeed, this bidirectional cargo-specific transport has a pivotal role in neuronal function and its impairment is involved in several neurodegenerative and neurodevelopmental diseases. Literature data demonstrate that, despite different mechanisms of action, all antineoplastic agents impair the axonal trafficking to some extent and the severity of the neuropathy correlates with the degree of damage on this bidirectional transport. In this paper, we will examine the effect of the main old and new chemotherapeutic drug categories on axonal transport, with the aim of clarifying their potential mechanisms of action, and, if possible, of identifying neuroprotective strategies, based on the knowledge of the alterations induced by each drugs.

  16. Tau phosphorylation affects its axonal transport and degradation

    OpenAIRE

    Rodríguez-Martín, Teresa; Cuchillo-Ibáñez, Inmaculada; Noble, Wendy; Nyenya, Fanon; Anderton, Brian H; Hanger, Diane P.

    2013-01-01

    Phosphorylated forms of microtubule-associated protein tau accumulate in neurofibrillary tangles in Alzheimer's disease. To investigate the effects of specific phosphorylated tau residues on its function, wild type or phosphomutant tau was expressed in cells. Elevated tau phosphorylation decreased its microtubule binding and bundling, and increased the number of motile tau particles, without affecting axonal transport kinetics. In contrast, reducing tau phosphorylation enhanced the amount of ...

  17. Serine biosynthesis and transport defects.

    Science.gov (United States)

    El-Hattab, Ayman W

    2016-07-01

    l-serine is a non-essential amino acid that is biosynthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, l-serine is a potent neurotrophic factor and a precursor of a number of essential compounds including phosphatidylserine, sphingomyelin, glycine, and d-serine. Serine biosynthesis defects result from impairments of PGDH, PSAT, or PSP leading to systemic serine deficiency. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately, infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, the childhood disease with intellectual disability. A serine transport defect resulting from deficiency of the ASCT1, the main transporter for serine in the central nervous system, has been recently described in children with neurological manifestations that overlap with those observed in serine biosynthesis defects. l-serine therapy may be beneficial in preventing or ameliorating symptoms in serine biosynthesis and transport defects, if started before neurological damage occurs. Herein, we review serine metabolism and transport, the clinical, biochemical, and molecular aspects of serine biosynthesis and transport defects, the mechanisms of these diseases, and the potential role of serine therapy. PMID:27161889

  18. Automated kymograph analysis for profiling axonal transport of secretory granules.

    Science.gov (United States)

    Mukherjee, Amit; Jenkins, Brian; Fang, Cheng; Radke, Richard J; Banker, Gary; Roysam, Badrinath

    2011-06-01

    This paper describes an automated method to profile the velocity patterns of small organelles (BDNF granules) being transported along a selected section of axon of a cultured neuron imaged by time-lapse fluorescence microscopy. Instead of directly detecting the granules as in conventional tracking, the proposed method starts by generating a two-dimensional spatio-temporal map (kymograph) of the granule traffic along an axon segment. Temporal sharpening during the kymograph creation helps to highlight granule movements while suppressing clutter due to stationary granules. A voting algorithm defined over orientation distribution functions is used to refine the locations and velocities of the granules. The refined kymograph is analyzed using an algorithm inspired from the minimum set cover framework to generate multiple motion trajectories of granule transport paths. The proposed method is computationally efficient, robust to significant levels of noise and clutter, and can be used to capture and quantify trends in transport patterns quickly and accurately. When evaluated on a collection of image sequences, the proposed method was found to detect granule movement events with 94% recall rate and 82% precision compared to a time-consuming manual analysis. Further, we present a study to evaluate the efficacy of velocity profiling by analyzing the impact of oxidative stress on granule transport in which the fully automated analysis correctly reproduced the biological conclusion generated by manual analysis. PMID:21330183

  19. In vivo imaging of axonal transport using MRI: aging and Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Minoshima, Satoshi [University of Washington, Departments of Radiology and Bioengineering, 1959 N.E. Pacific Street, RR215, Box 357115, Seattle, WA (United States); Cross, Donna [University of Washington, Department of Radiology, 1959 N.E. Pacific Street, RR215, Box 357115, Seattle, WA (United States)

    2008-03-15

    MRI using manganese as a trans-synaptic axonal tracing agent can unveil dynamics of axonal transport in living subjects. We use this technology to test the hypotheses if impaired axonal transport is a significant pathophysiological process in aging and early Alzheimer's disease (AD) and in part accounting for ''selective vulnerability'' of projection neurons in AD. To allow quantitative assessment of axonal transport in vivo, we developed voxel-based statistical mapping technology as well as a tracer kinetic modeling method based on mass transport for manganese-enhanced MRI to estimate axonal transport rates in aging rats and AD transgenic mice. These techniques demonstrated manganese-enhanced signal changes in axonal projections of the olfactory tract and decreased axonal transport rates in rodent models of aging and AD. Altered axonal transport may be a critical pathophysiological process in aging and AD. Manganese-enhanced MRI provides exciting opportunities for the investigations of altered axonal transport in AD and related disorders. (orig.)

  20. Riluzole protects against glutamate-induced slowing of neurofilament axonal transport.

    LENUS (Irish Health Repository)

    Stevenson, Alison

    2009-04-24

    Riluzole is the only drug approved for the treatment of amyotrophic lateral sclerosis (ALS) but its precise mode of action is not properly understood. Damage to axonal transport of neurofilaments is believed to be part of the pathogenic mechanism in ALS and this has been linked to defective glutamate handling and increased phosphorylation of neurofilament side-arm domains. Here, we show that riluzole protects against glutamate-induced slowing of neurofilament transport. Protection is associated with decreased neurofilament side-arm phosphorylation and inhibition of the activities of two neurofilament kinases, ERK and p38 that are activated in ALS. Thus, the anti-glutamatergic properties of riluzole include protection against glutamate-induced changes to neurofilament phosphorylation and transport.

  1. Regeneration of motor axons in the rat sciatic nerve studied by labeling with axonally transported radioactive proteins

    International Nuclear Information System (INIS)

    Labeling regenerating axons with axonally transported radioactive proteins provides information about the location of the entire range of axons from the fastest growing ones to those which are trapped in the scar. This technique has been used to study the regeneration of motor axons in the rat sciatic nerve after a crush lesion. From 2 to 14 days after the crush the lumbar spinal cord was exposed by laminectomy and multiple injections of [3H]proline were made stereotactically in the ventral horn. Twenty-four hours later the nerves were removed and the distribution of radioactivity along the nerve was measured by liquid scintillation counting. There was a peak of radioactivity in the regenerating axons distal to the crush due to an accumulation of label in the tips of these axons. After a delay of 3.2 +- 0.2 (S.E.) days, this peak advanced down the nerve at a rate of 3.0 +- 0.1 (S.E.) mm/day. The leading edge of this peak, which marks the location of the endings of the most rapidly growing labeled fibers, moved down the nerve at a rate of 4.4 +- 0.2 mm/day after a delay of 2.1 +- 0.2 days; this is the same time course as that of the most rapidly regenerating sensory axons in the rat sciatic nerve, measured by the pinch test. Another peak of radioactivity at the crush site, presumed to represent the ends of unregenerated axons or misdirected sprouts, declined rapidly during the first week, and more slowly thereafter. (Auth.)

  2. Axonal Transport Proteomics Reveals Mobilization of Translation Machinery to the Lesion Site in Injured Sciatic Nerve*

    OpenAIRE

    Michaelevski, Izhak; Medzihradszky, Katalin F.; Lynn, Aenoch; Burlingame, Alma L.; Fainzilber, Mike

    2009-01-01

    Investigations of the molecular mechanisms underlying responses to nerve injury have highlighted the importance of axonal transport systems. To obtain a comprehensive view of the protein ensembles associated with axonal transport in injured axons, we analyzed the protein compositions of axoplasm concentrated at ligatures following crush injury of rat sciatic nerve. LC-MS/MS analyses of iTRAQ-labeled peptides from axoplasm distal and proximal to the ligation sites revealed protein ensembles tr...

  3. Early ultrastructural defects of axons and axon-glia junctions in mice lacking expression of Cnp1.

    Science.gov (United States)

    Edgar, Julia M; McLaughlin, Mark; Werner, Hauke B; McCulloch, Mailis C; Barrie, Jennifer A; Brown, Angus; Faichney, Andrew Blyth; Snaidero, Nicolas; Nave, Klaus-Armin; Griffiths, Ian R

    2009-12-01

    Most axons in the central nervous system (CNS) are surrounded by a multilayered myelin sheath that promotes fast, saltatory conduction of electrical impulses. By insulating the axon, myelin also shields the axoplasm from the extracellular milieu. In the CNS, oligodendrocytes provide support for the long-term maintenance of myelinated axons, independent of the myelin sheath. Here, we use electron microscopy and morphometric analyses to examine the evolution of axonal and oligodendroglial changes in mice deficient in 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and in mice deficient in both CNP and proteolipid protein (PLP/DM20). We show that CNP is necessary for the formation of a normal inner tongue process of oligodendrocytes that myelinate small diameter axons. We also show that axonal degeneration in Cnp1 null mice is present very early in postnatal life. Importantly, compact myelin formed by transplanted Cnp1 null oligodendrocytes induces the same degenerative changes in shiverer axons that normally are dysmyelinated but structurally intact. Mice deficient in both CNP and PLP develop a more severe axonal phenotype than either single mutant, indicating that the two oligodendroglial proteins serve distinct functions in supporting the myelinated axon. These observations support a model in which the trophic functions of oligodendrocytes serve to offset the physical shielding of axons by myelin membranes. PMID:19459211

  4. Axonal transport of proteoglycans to the goldfish optic tectum

    International Nuclear Information System (INIS)

    The study addressed the question of whether 35SO4 labeled molecules that have been delivered to the goldfish optic nerve terminals by rapid axonal transport include soluble proteoglycans. For analysis, tectal homogenates were subfractionated into a soluble fraction (soluble after centrifugation at 105,000 g), a lysis fraction (soluble after treatment with hypotonic buffer followed by centrifugation at 105,000 g) and a final 105,000 g pellet fraction. The soluble fraction contained 25.7% of incorporated radioactivity and upon DEAE chromatography was resolved into a fraction of sulfated glycoproteins eluting at 0-0.32 M NaCl and containing 39.5% of total soluble label and a fraction eluting at 0.32-0.60 M NaCl containing 53.9% of soluble label. This latter fraction was included on columns of Sepharose CL-6B with or without 4 M guanidine and after pronase digestion was found to have 51% of its radioactivity contained in the glycosaminoglycans (GAGs) heparan sulfate and chondroitin (4 or 6) sulfate in the ratio of 70% to 30%. Mobility of both intact proteoglycans and constituent GAGs on Sepharose CL-6B indicated a size distribution that is smaller than has been observed for proteoglycans and GAGs from cultured neuronal cell lines. Similar analysis of lysis fraction, containing 11.5% of incorporated 35SO4, showed a mixture of heparan sulfate and chondroitin sulfate containing proteoglycans, apparent free heparan sulfate and few, if any, sulfated glycoproteins. Overall, the results support the hypothesis that soluble proteoglycans are among the molecules axonally transported in the visual system

  5. DIRECT MEASUREMENT OF FAST AXONAL ORGANELLE TRANSPORT IN THE SCIATIC NERVE OF RATS TREATED WITH ACRYLAMIDE

    Science.gov (United States)

    The effects of acrylamide on fast axonal transport have been measured primarily using the indirect methods of isotope or enzyme accumulation. e report the first direct evaluation of the effects of sub-chronic acrylamide dosing (150, 300 or 500 mg/kg total dose) on the fast axonal...

  6. RETROGRADE AXONAL TRANSPORT OF PHOSPHOINOSITIDES AFTER INTRANEURAL INJECTION OF [3H]MYO-INOSITOL INTO THE RAT SCIATIC NERVE

    Science.gov (United States)

    Although autoradiography has demonstrated local incorporation of [3H]inositol into axonal phospholipids after intraneural injection (Gould, 1976; Gould et at., 1987b), retrograde axonal transport of phosphatidylinositol has only been demonstrated after injection of lipid precurso...

  7. In vivo axonal transport deficits in a mouse model of fronto-temporal dementia

    Directory of Open Access Journals (Sweden)

    Tabassum Majid

    2014-01-01

    Discussion: In our study, we identified the presence of age-dependent axonal transport deficits beginning at 3 months of age in rTg4510 mice. We correlated these deficits at 3 months to the presence of hyperphosphorylated tau in the brain and the presence within the olfactory epithelium. We observed tau pathology not only in the soma of these neurons but also within the axons and processes of these neurons. Our characterization of axonal transport in this tauopathy model provides a functional time point that can be used for future therapeutic interventions.

  8. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease

    OpenAIRE

    Chu, Yaping; Morfini, Gerardo A.; Langhamer, Lori B.; He, Yinzhen; Brady, Scott T.; KORDOWER, JEFFREY H.

    2012-01-01

    The progressive loss of the nigrostriatal pathway is a distinguishing feature of Parkinson’s disease. As terminal field loss seems to precede cell body loss, we tested whether alterations of axonal transport motor proteins would be early features in Parkinson’s disease. There was a decline in axonal transport motor proteins in sporadic Parkinson’s disease that preceded other well-known nigral cell-related pathology such as phenotypic downregulation of dopamine. Reductions in conventional kine...

  9. Quantification of Retrograde Axonal Transport in the Rat Optic Nerve by Fluorogold Spectrometry

    OpenAIRE

    van Oterendorp, Christian; Sgouris, Stavros; Bach, Michael; Martin, Gottfried; Biermann, Julia; Jordan, Jens F.; Lagrèze, Wolf A

    2012-01-01

    Purpose Disturbed axonal transport is an important pathogenic factor in many neurodegenerative diseases, such as glaucoma, an eye disease characterised by progressive atrophy of the optic nerve. Quantification of retrograde axonal transport in the optic nerve usually requires labour intensive histochemical techniques or expensive equipment for in vivo imaging. Here, we report on a robust alternative method using Fluorogold (FG) as tracer, which is spectrometrically quantified in retinal tissu...

  10. Neurofilament subunit (NFL) head domain phosphorylation regulates axonal transport of neurofilaments.

    LENUS (Irish Health Repository)

    Yates, Darran M

    2009-04-01

    Neurofilaments are the intermediate filaments of neurons and are synthesised in neuronal cell bodies and then transported through axons. Neurofilament light chain (NFL) is a principal component of neurofilaments, and phosphorylation of NFL head domain is believed to regulate the assembly of neurofilaments. However, the role that NFL phosphorylation has on transport of neurofilaments is poorly understood. To address this issue, we monitored axonal transport of phosphorylation mutants of NFL. We mutated four known phosphorylation sites in NFL head domain to either preclude phosphorylation, or mimic permanent phosphorylation. Mutation to preclude phosphorylation had no effect on transport but mutation of three sites to mimic permanent phosphorylation inhibited transport. Mutation of all four sites together to mimic permanent phosphorylation proved especially potent at inhibiting transport and also disrupted neurofilament assembly. Our results suggest that NFL head domain phosphorylation is a regulator of neurofilament axonal transport.

  11. Axonal transport and incorporation of radioactivity after injection of N-[3H]acetyl-D-mannosamine into rat mesencephalon

    International Nuclear Information System (INIS)

    A study has been performed to demonstrate the possibility of incorporation of sialic acid into nerve endings of the rubrospinal tract after antegrade axonal transport. Young adult rats received injections of N-[3H]acetyl-D-mannosamine into the red nucleus and axonal transport of the tritiated compounds along the axons of afferent and efferent connections of the red nucleus was studied and the transported material was analysed. Light microscopic autoradiography and biochemical methods were used. (Auth./C.F.)

  12. Effects of p-xylene inhalation on axonal transport in the rat retinal ganglion cells

    International Nuclear Information System (INIS)

    Although the solvent xylene is suspected of producing nervous system dysfunction in animals and humans, little is known regarding the neurochemical consequences of xylene inhalation. The intent of this study was to determine the effect of intermittent, acute, and subchronic p-xylene exposure on the axonal transport of proteins and glycoproteins within the rat retinofugal tract. A number of different exposure regimens were tested ranging from 50 ppm for a single 6-hr exposure to 1600 ppm 6 hr/day, 5 days/week, for a total of 8 exposure days. Immediately following removal from the inhalation chambers rats were injected intraocularly with [35S]methionine and [3H]fucose (to label retinal proteins and glycoproteins, respectively) and the axonal transport of labeled macromolecules to axons (optic nerve and optic tract) and nerve endings (lateral geniculate body and superior colliculus) was examined 20 hr after precursor injection. Only relatively severe exposure regimens (i.e., 800 or 1600 ppm 6 hr/day, 5 days/week, for 1.5 weeks) produced significant reductions in axonal transport; there was a moderate reduction in the axonal transport of 35S-labeled proteins in the 800-ppm-treated group which was more widespread in the 1600 ppm-treated group. Transport of 3H-labeled glycoproteins was less affected. Assessment of retinal metabolism immediately after isotope injection indicated that the rate of precursor uptake was not reduced in either treatment group. Furthermore, rapid transport was still substantially reduced in animals exposed to 1600 ppm p-xylene and allowed a 13-day withdrawal period. These data indicate that p-xylene inhalation decreases rapid axonal transport supplied to the projections of the rat retinal ganglion cells immediately after cessation of inhalation exposure and that this decreased transport is still apparent 13 days after the last exposure

  13. Tri-partite complex for axonal transport drug delivery achieves pharmacological effect

    Directory of Open Access Journals (Sweden)

    Frederickson Martyn

    2010-01-01

    Full Text Available Abstract Background Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior. Results We developed chemical synthesis methodologies for assembling these tripartite complexes using a variety of axonal transport facilitators including nerve growth factor, wheat germ agglutinin, and synthetic facilitators derived from phage display work. Loading of up to 100 drug molecules per complex was achieved. Conjugation methods were used that allowed the drugs to be released in active form inside the cell body after transport. Intramuscular and intradermal injection proved effective for introducing pharmacologically effective doses into selected populations of CNS neurons. Pharmacological efficacy with gabapentin in a paw withdrawal latency model revealed a ten fold increase in half life and a 300 fold decrease in necessary dose relative to systemic administration for gabapentin when the drug was delivered by axonal transport using the tripartite vehicle. Conclusion Specific targeting of selected subpopulations of CNS neurons for drug delivery by axonal

  14. Reduced axonal transport in Parkinson's disease cybrid neurites is restored by light therapy

    Directory of Open Access Journals (Sweden)

    De Taboada Luis

    2009-06-01

    Full Text Available Abstract Background It has been hypothesized that reduced axonal transport contributes to the degeneration of neuronal processes in Parkinson's disease (PD. Mitochondria supply the adenosine triphosphate (ATP needed to support axonal transport and contribute to many other cellular functions essential for the survival of neuronal cells. Furthermore, mitochondria in PD tissues are metabolically and functionally compromised. To address this hypothesis, we measured the velocity of mitochondrial movement in human transmitochondrial cybrid "cytoplasmic hybrid" neuronal cells bearing mitochondrial DNA from patients with sporadic PD and disease-free age-matched volunteer controls (CNT. The absorption of low level, near-infrared laser light by components of the mitochondrial electron transport chain (mtETC enhances mitochondrial metabolism, stimulates oxidative phosphorylation and improves redox capacity. PD and CNT cybrid neuronal cells were exposed to near-infrared laser light to determine if the velocity of mitochondrial movement can be restored by low level light therapy (LLLT. Axonal transport of labeled mitochondria was documented by time lapse microscopy in dopaminergic PD and CNT cybrid neuronal cells before and after illumination with an 810 nm diode laser (50 mW/cm2 for 40 seconds. Oxygen utilization and assembly of mtETC complexes were also determined. Results The velocity of mitochondrial movement in PD cybrid neuronal cells (0.175 +/- 0.005 SEM was significantly reduced (p Conclusion The results from this study support our proposal that axonal transport is reduced in sporadic PD and that a single, brief treatment with near-infrared light can restore axonal transport to control levels. These results are the first demonstration that LLLT can increase axonal transport in model human dopaminergic neuronal cells and they suggest that LLLT could be developed as a novel treatment to improve neuronal function in patients with PD.

  15. Improvement of cobalt-transport in axons by complexing agents.

    Science.gov (United States)

    Gallyas, F; Lénárd, L; Lázár, G

    1978-09-01

    The use of the cobalt technique is limited by the fact that cobaltous ions travel within axons for a shorter distance than do other intracellular markers. In the present experiments different organic cobaltous complexes were tested in the rat's sciatic nerve. Cobaltous complexes containing ornithine, threonine, lysine or Girard's reagent travelled two or three times further than did the cobaltous ions alone. Using the lysine complex in the frog's visual system, very fine terminals were observed which have never been demonstrated with other techniques. The possible use of other metal complexes as intracellular markers are also discussed. PMID:19605220

  16. Effect of MSH/ACTH peptides on fast axonal transport in intact and regenerating sciatic nerves

    International Nuclear Information System (INIS)

    Fast axonal transport was examined in intact rats treated with ACTH 4-10 or ACTH 4-9 (ORG 2766), hypophysectomized rats, adrenalectomized rats, and in ACTH 4-10 treated rats with crushed regenerating sciatic nerves by injecting 3H-leucine into the ventral horn region of the spinal cord. The distance traveled by the transported activity along the sciatic nerve and the rate of fast axonal transport were not significantly altered as a result of treatment with ACTH 4-10, ACTH 4-9 (ORG 2766), hypophysectomy, or adrenalectomy. Treatment with ACTH 4-9 (ORG 2766) at concentrations of 1 μg/Kg /day and 10 μg/Kg/day caused significant reductions (62% and 64% respectively) in the crest height of the fast axonal transport curve as compared to 0.9% saline treated control animals. No significant differences were found in comparing the distance, rate, slope, or crest height of ACTH 4-10 treated animals with crushed regenerating (7 or 14d) sciatic nerves to control animals. In the group of animals in days, the amount of radiolabeled activity was significantly increased in the ACTH 4-10 treated animals as compared to control animals. The results indicate that during regeneration the peptide acts to prolong the initially high levels of synthetic activity which occur in regenerating axons

  17. LOCALLY SYNTHESIZED PHOSPHATIDYCHOLINE, BUT NOT PROTEIN, UNDERGOES RAPID RETROGRADE AXONAL TRANSPORT IN THE RAT SCIATIC NERVE

    Science.gov (United States)

    Retrograde axonal transport of phosphatidylcholine (PC) in the sciatic nerve has been demonstrated only after injection of lipid precursors into the cell body regions (Armstrong et al. 1985). icroinjection of [methyl-3H]choline into the sciatic nerve results in extensive incorpor...

  18. Fast axonal transport of labeled proteins in motoneurons of exercise-trained rats

    International Nuclear Information System (INIS)

    In this study, the fast orthograde axonal transport of radiolabeled proteins was measured to determine the effects of endurance-running training on transport velocity and amounts of transported proteins in rat sciatic motoneurons. Female rats were subjected to a progressive running-training program for 10-12 wk. Twenty-four hours after the last training session, rats underwent right L4-L5 dorsal root ganglionectomy. The next day, 20 microCi of [3H]leucine was injected bilaterally in the vicinity of the motoneuronal cell bodies supplying the sciatic nerve, to study axonal transport parameters. Results showed that peak and average transport velocities of labeled proteins were significantly (P less than 0.05) increased by 22 and 29%, respectively, in the deafferented nerves of the runners as compared with controls. Moreover, the amount of total transported protein-bound radioactivity was increased in both left (40%) and right (37%) sciatic nerves of the runners. An exhaustive exercise session reduced (P less than 0.05) peak displacement (8%) and total transported protein-bound radioactivity (36%) in the sciatic nerves of control rats, whereas no changes were noticed in trained animals. The data suggest that chronic endurance running induces significant adaptations in the fast axonal transport of labeled proteins

  19. Axonal transport of enzymes and labeled proteins in experimental axonopathy induced by p-bromophenylacetylurea

    International Nuclear Information System (INIS)

    Axonal transport was studied by several techniques in the sciatic nerves of adult male Sprague-Dawley rats with neuropathy induced by treatment with p-bromophenylacetylurea (BPAU) in dimethylsulfoxide solution. Control rats were treated with solvent alone. BPAU, 200 mg/kg, induced severe muscle weakness in the hindlimbs, beginning after a latent period of 1 week and progressing to near total paralysis by 2 weeks. Axonal transport of the endogenous transmitter enzymes, acetylcholinesterase, dopamine-β-hydroxylase and choline acetyltransferase, was normal at both 2 and 15 days after administration of BPAU, as judged by the accumulation of enzyme activity above and below a set of double ligatures on the sciatic nerve. The velocity of fast anterograde transport of [35S]methionine labeled protein was also unaffected by BPAU. However, 4 abnormalities of transport were detected in BPAU treated rats. These abnormalities are discussed. (Auth.)

  20. A comparative quantitative assessment of axonal and dendritic mRNA transport in maturing hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Gunja K Pathak

    Full Text Available Translation of mRNA in axons and dendrites enables a rapid supply of proteins to specific sites of localization within the neuron. Distinct mRNA-containing cargoes, including granules and mitochondrial mRNA, are transported within neuronal projections. The distributions of these cargoes appear to change during neuronal development, but details on the dynamics of mRNA transport during these transitions remain to be elucidated. For this study, we have developed imaging and image processing methods to quantify several transport parameters that can define the dynamics of RNA transport and localization. Using these methods, we characterized the transport of mitochondrial and non-mitochondrial mRNA in differentiated axons and dendrites of cultured hippocampal neurons varying in developmental maturity. Our results suggest differences in the transport profiles of mitochondrial and non-mitochondrial mRNA, and differences in transport parameters at different time points, and between axons and dendrites. Furthermore, within the non-mitochondrial mRNA pool, we observed two distinct populations that differed in their fluorescence intensity and velocity. The net axonal velocity of the brighter pool was highest at day 7 (0.002±0.001 µm/s, mean ± SEM, raising the possibility of a presynaptic requirement for mRNA during early stages of synapse formation. In contrast, the net dendritic velocity of the brighter pool increased steadily as neurons matured, with a significant difference between day 12 (0.0013±0.0006 µm/s and day 4 (-0.003±0.001 µm/s suggesting a postsynaptic role for mRNAs in more mature neurons. The dim population showed similar trends, though velocities were two orders of magnitude higher than of the bright particles. This study provides a baseline for further studies on mRNA transport, and has important implications for the regulation of neuronal plasticity during neuronal development and in response to neuronal injury.

  1. The myriad roles of Miro in the nervous system: axonal transport of mitochondria and beyond

    OpenAIRE

    Lee, Kyu-Sun; Lu, Bingwei

    2014-01-01

    Mitochondrial rho GTPase (Miro) is a mitochondrial outer membrane protein containing two GTPase domains and two helix-loop-helix Ca2+-binding domains called EF hands. Pioneering genetic studies in Drosophila first revealed a key function of Miro in regulating the axonal transport of mitochondria, during which Miro forms a multi-protein transport complex with Milton and Kinesin heavy chain (KHC) to link trafficking mitochondria with the microtubule (MT) cytoskeleton. Recent studies showed that...

  2. The Myriad Roles of Miro in the Nervous System: Axonal Transport of Mitochondria and Beyond

    OpenAIRE

    Bingwei Lu

    2014-01-01

    Mitochondrial rho GTPase (Miro) is a mitochondrial outer membrane protein containing two GTPase domains and two helix-loop-helix Ca2+-binding domains called EF hands. Pioneering genetic studies in Drosophila first revealed a key function of Miro in regulating the axonal transport of mitochondria, during which Miro forms a multi-protein transport complex with Milton and Kinesin heavy chain (KHC) to link trafficking mitochondria with the microtubule cytoskeleton. Recent studies showed that thro...

  3. 4S RNA is transported axonally in normal and regenerating axons of the sciatic nerves of rats

    International Nuclear Information System (INIS)

    Experiments were designed to determine if following injection of [3H]uridine into the lumbar spinal cord of the rat, [3H]RNA could be demonstrated within axons of the sciatic nerve, and if 4S RNA is the predominant predominant RNA species present in these axons. (Auth.)

  4. Assessment of retinal ganglion cell damage in glaucomatous optic neuropathy: Axon transport, injury and soma loss.

    Science.gov (United States)

    Nuschke, Andrea C; Farrell, Spring R; Levesque, Julie M; Chauhan, Balwantray C

    2015-12-01

    Glaucoma is a disease characterized by progressive axonal pathology and death of retinal ganglion cells (RGCs), which causes structural changes in the optic nerve head and irreversible vision loss. Several experimental models of glaucomatous optic neuropathy (GON) have been developed, primarily in non-human primates and, more recently and commonly, in rodents. These models provide important research tools to study the mechanisms underlying glaucomatous damage. Moreover, experimental GON provides the ability to quantify and monitor risk factors leading to RGC loss such as the level of intraocular pressure, axonal health and the RGC population. Using these experimental models we are able to gain a better understanding of GON, which allows for the development of potential neuroprotective strategies. Here we review the advantages and disadvantages of the relevant and most often utilized methods for evaluating axonal degeneration and RGC loss in GON. Axonal pathology in GON includes functional disruption of axonal transport (AT) and structural degeneration. Horseradish peroxidase (HRP), rhodamine-B-isothiocyanate (RITC) and cholera toxin-B (CTB) fluorescent conjugates have proven to be effective reporters of AT. Also, immunohistochemistry (IHC) for endogenous AT-associated proteins is often used as an indicator of AT function. Similarly, structural degeneration of axons in GON can be investigated via changes in the activity and expression of key axonal enzymes and structural proteins. Assessment of axonal degeneration can be measured by direct quantification of axons, qualitative grading, or a combination of both methods. RGC loss is the most frequently quantified variable in studies of experimental GON. Retrograde tracers can be used to quantify RGC populations in rodents via application to the superior colliculus (SC). In addition, in situ IHC for RGC-specific proteins is a common method of RGC quantification used in many studies. Recently, transgenic mouse models

  5. Calsyntenin-1 shelters APP from proteolytic processing during anterograde axonal transport

    Directory of Open Access Journals (Sweden)

    Martin Steuble

    2012-06-01

    Endocytosis of amyloid-β precursor protein (APP is thought to represent the major source of substrate for the production of the amyloidogenic Aβ peptide by the β-secretase BACE1. The irreversible nature of proteolytic cleavage implies the existence of an efficient replenishment route for APP from its sites of synthesis to the cell surface. We recently found that APP exits the trans-Golgi network in intimate association with calsyntenin-1, a transmembrane cargo-docking protein for Kinesin-1-mediated vesicular transport. Here we characterized the function of calsyntenin-1 in neuronal APP transport using selective immunoisolation of intracellular trafficking organelles, immunocytochemistry, live-imaging, and RNAi. We found that APP is co-transported with calsyntenin-1 along axons to early endosomes in the central region of growth cones in carriers that exclude the α-secretase ADAM10. Intriguingly, calsyntenin-1/APP organelles contained BACE1, suggesting premature cleavage of APP along its anterograde path. However, we found that APP contained in calsyntenin-1/APP organelles was stable. We further analyzed vesicular trafficking of APP in cultured hippocampal neurons, in which calsyntenin-1 was reduced by RNAi. We found a markedly increased co-localization of APP and ADAM10 in axons and growth cones, along with increased proteolytic processing of APP and Aβ secretion in these neurons. This suggested that the reduced capacity for calsyntenin-1-dependent APP transport resulted in mis-sorting of APP into additional axonal carriers and, therefore, the premature encounter of unprotected APP with its ectodomain proteases. In combination, our results characterize calsyntenin-1/APP organelles as carriers for sheltered anterograde axonal transport of APP.

  6. Disruption of mitochondrial DNA replication in Drosophila increases mitochondrial fast axonal transport in vivo.

    Directory of Open Access Journals (Sweden)

    Rehan M Baqri

    Full Text Available Mutations in mitochondrial DNA polymerase (pol gamma cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol gamma leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol gamma deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol gamma-alpha mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases.

  7. Pharmacological characterization of axonally transported (125I)-alpha-bungatoxin binding sites in rat sciatic nerve

    International Nuclear Information System (INIS)

    The authors attempt to label the putative receptors as they are axonally transported in peripheral nerves. With the use of an innovative autoradiographic technique, this approach as enabled the investigation of the pharmacological properties of the toxin-binding site interaction. The tissue sections from adult male rat sciatic nerves were incubated for 60 min at room temperature in phosphate buffer saline containing 2 nM I 125-alpha-BuTX with or without displacer. A bright field micrograph as well as dark field autoradiograph is illustrated of a ligated (12 hr.) rat sciatic nerve section incubated with I 125-alpha-BuTX. If one presumes that axonally transported I 125-alpha-BuTX binding sites correspond to receptors whose destination is the presynaptic membrane, then the data presented in this study may provide a pharmacological basis for differentiating pre- and postsynaptic sites of action of cholinergic drugs on the mammalian neuromuscular junction

  8. Axon Transport and Neuropathy: Relevant Perspectives on the Etiopathogenesis of Familial Dysautonomia.

    Science.gov (United States)

    Tourtellotte, Warren G

    2016-03-01

    Peripheral neuropathies are highly prevalent and are most often associated with chronic disease, side effects from chemotherapy, or toxic-metabolic abnormalities. Neuropathies are less commonly caused by genetic mutations, but studies of the normal function of mutated proteins have identified particular vulnerabilities that often implicate mitochondrial dynamics and axon transport mechanisms. Hereditary sensory and autonomic neuropathies are a group of phenotypically related diseases caused by monogenic mutations that primarily affect sympathetic and sensory neurons. Here, I review evidence to indicate that many genetic neuropathies are caused by abnormalities in axon transport. Moreover, in hereditary sensory and autonomic neuropathies. There may be specific convergence on gene mutations that disrupt nerve growth factor signaling, upon which sympathetic and sensory neurons critically depend. PMID:26724390

  9. Berberine Attenuates Axonal Transport Impairment and Axonopathy Induced by Calyculin A in N2a Cells

    OpenAIRE

    Xiaofeng Liu; Jie Zhou; Morad Dirhem Naji Abid; Huanhuan Yan; Hao Huang; Limin Wan; Zuohua Feng; Juan Chen

    2014-01-01

    Berberine is a primary component of the most functional extracts of Coptidis rhizome used in traditional Chinese medicine for centuries. Recent reports indicate that Berberine has the potential to prevent and treat Alzheimer's disease (AD). The previous studies reported that Calyculin A (CA) impaired the axonal transport in neuroblastoma-2a (N2a) cells. Berberine attenuated tau hyperphosphorylation and cytotoxicity induced by CA. Our study aimed at investigating the effects of Berberine on th...

  10. Analysis of axonal transport and molecular chaperones during neurodegeneration in drosophila

    OpenAIRE

    Sinadinos, Christopher

    2010-01-01

    Neuronal dysfunction and cell death occurs during neurodegeneration. Animal models that express human disease genes and show neurodegenerative-like pathologies are widely used to study particular molecular systems in early neurodegenerative changes. Axonal transport (AT) is perturbed in several prevalent neurodegenerative diseases. The development of a Huntington’s Disease (HD) model in Drosophila melanogaster larvae is described, in which disease gene expression is directed to motor neurons ...

  11. Release of axonally transported material from an in vitro amphibian sciatic nerve preparation

    International Nuclear Information System (INIS)

    The rapid axonal transport of a pulse of [35S]methionine-labelled material was used to study the release of transported material from amphibian nerve maintained in vitro. Following creation of a moving pulse of activity in a dorsal root ganglion-sciatic nerve preparation, the ganglion was removed and the nerve placed in a three-compartment tray, the section of nerve in the middle compartment containing no truncated branches (unbranched section). All three compartments were filled with a saline solution that in some studies contained nonradioactive methionine (1.0 mmol/L). Analysis of studies in which nonradioactive methionine was absent revealed that labelled material appeared in the bathing solution of the end compartments that contained truncated branches, but not in the solution of the middle (unbranched) compartment. The quantity of label released in the branched compartments was approximately 6% of that remaining in the corresponding section of nerve following an 18-20 h incubation period. However, when nonradioactive methionine was present, all compartments showed an additional activity in the bathing solution of approximately 10% of that remaining in the nerve. In another study in which a position-sensitive detector of ionizing radiation was used to monitor progress of the pulse, it was found that activity did not enter the bathing solution of a compartment prior to the pulse of activity. It is concluded that in the absence of methionine from the bathing solution, axonally transported material is released only from regions of nerve that contain severed axons; however, the presence of methionine allows transported material to be released from nerve containing intact axons. Ultrafiltration studies and thin-layer chromatography revealed the majority of material released to be of low-molecular weight (less than 30,000 daltons) and not free [35S]methionine

  12. Quantification of retrograde axonal transport in the rat optic nerve by fluorogold spectrometry.

    Directory of Open Access Journals (Sweden)

    Christian van Oterendorp

    Full Text Available PURPOSE: Disturbed axonal transport is an important pathogenic factor in many neurodegenerative diseases, such as glaucoma, an eye disease characterised by progressive atrophy of the optic nerve. Quantification of retrograde axonal transport in the optic nerve usually requires labour intensive histochemical techniques or expensive equipment for in vivo imaging. Here, we report on a robust alternative method using Fluorogold (FG as tracer, which is spectrometrically quantified in retinal tissue lysate. METHODS: To determine parameters reflecting the relative FG content of a sample FG was dissolved in retinal lysates at different concentrations and spectra were obtained. For validation in vivo FG was injected uni- or bilaterally into the superior colliculus (SC of Sprague Dawley rats. The retinal lysate was analysed after 3, 5 and 7 days to determine the time course of FG accumulation in the retina (n = 15. In subsequent experiments axona transport was impaired by optic nerve crush (n = 3, laser-induced ocular hypertension (n = 5 or colchicine treatment to the SC (n = 10. RESULTS: Spectrometry at 370 nm excitation revealed two emission peaks at 430 and 610 nm. We devised a formula to calculate the relative FG content (c(FG, from the emission spectrum. c(FG is proportional to the real FG concentration as it corrects for variations of retinal protein concentration in the lysate. After SC injection, c(FG monotonously increases with time (p = 0.002. Optic nerve axonal damage caused a significant decrease of c(FG (crush p = 0.029; hypertension p = 0.025; colchicine p = 0.006. Lysates are amenable to subsequent protein analysis. CONCLUSIONS: Spectrometrical FG detection in retinal lysates allows for quantitative assessment of retrograde axonal transport using standard laboratory equipment. It is faster than histochemical techniques and may also complement morphological in vivo analyses.

  13. Demyelination induces transport of ribosome-containing vesicles from glia to axons: evidence from animal models and MS patient brains.

    Science.gov (United States)

    Shakhbazau, Antos; Schenk, Geert J; Hay, Curtis; Kawasoe, Jean; Klaver, Roel; Yong, V Wee; Geurts, Jeroen J G; van Minnen, Jan

    2016-06-01

    Glial cells were previously proven capable of trafficking polyribosomes to injured axons. However, the occurrence of such transfer in the general pathological context, such as demyelination-related diseases, needs further evidence. Since this may be a yet unidentified universal contributor to axonal survival, we study putative glia-axonal ribosome transport in response to demyelination in animal models and patients in both peripheral and central nervous system. In the PNS we investigate whether demyelination in a rodent model has the potential to induce ribosome transfer. We also probe the glia-axonal ribosome supply by implantation of transgenic Schwann cells engineered to produce fluorescent ribosomes in the same demyelination model. We furthermore examine the presence of axonal ribosomes in mouse experimental autoimmune encephalomyelitis (EAE), a well-established model for multiple sclerosis (MS), and in human MS autopsy brain material. We provide evidence for increased axonal ribosome content in a pharmacologically demyelinated sciatic nerve, and demonstrate that at least part of these ribosomes originate in the transgenic Schwann cells. In the CNS one of the hallmarks of MS is demyelination, which is associated with severe disruption of oligodendrocyte-axon interaction. Here, we provide evidence that axons from spinal cords of EAE mice, and in the MS human brain contain an elevated amount of axonal ribosomes compared to controls. Our data provide evidence that increased axonal ribosome content in pathological axons is at least partly due to glia-to-axon transfer of ribosomes, and that demyelination in the PNS and in the CNS is one of the triggers capable to initiate this process. PMID:27115494

  14. Transport properties of 2D graphene containing structural defects

    OpenAIRE

    Lherbier, Aurelien; Dubois, Simon M. -M.; Declerck, Xavier; Niquet, Yann-Michel; Roche, Stephan; Charlier, Jean-Christophe

    2012-01-01

    We propose an extensive report on the simulation of electronic transport in 2D graphene in presence of structural defects. Amongst the large variety of such defects in sp$^2$ carbon-based materials, we focus on the Stone-Wales defect and on two divacancy-type reconstructed defects. First, based on ab initio calculations, a tight-binding model is derived to describe the electronic structure of these defects. Then, semiclassical transport properties including the elastic mean free paths, mobili...

  15. Axonal transport of cadmium in the olfactory nerve of the pike

    International Nuclear Information System (INIS)

    109Cd2+ was applied in the olfactory chambers of pikes (Esox lucius) and the dynamics of the axoplasmic flow of the metal was determined in the olfactory nerves by gamma spectrometry and autoradiography. The results showed that the 109Cd2+ is transported at a constant rate along the olfactory nerves. The profile of the 109Cd2+ in the nerves showed a wave front of transported metal followed by a saddle region. When the nasal chambers were washed 2 hr after application of the 109Cd2+ well-defined transport peaks for the metal were seen in the olfactory axons. The maximal velocity for the transport of 109Cd2+, which corresponds to the movement of the wave front, was 2.38±0.10 mm/hr (mean±S.E.) at the experimental temperature (10 deg. C). The average velocity for the transport of the 109Cd2+, which corresponds to the peak apex movement of the wave, was 2.18±0.05 mm/hr (mean ±S.E.) at 10 deg. C. The tranported 109Cd2+ was strongly accumulated in the anterior parts of the olfactory bulbs, whereas in other brain areas the levels of the metal remained low. Autoradiography of a pike exposed to 109Cd2+ via the water showed a strong labelling in the receptor-cell-containing olfactory rosettes, whereas other structures in the olfactory chambers were only weakly labelled. The accumulation and axonal transport in the olfactory neurons may be noxious and constitute an important component in the toxicology of cadmium in fish, and this may apply also to some other heavy metals. (author)

  16. Ndel1-derived peptides modulate bidirectional transport of injected beads in the squid giant axon

    Directory of Open Access Journals (Sweden)

    Michal Segal

    2012-01-01

    Bidirectional transport is a key issue in cellular biology. It requires coordination between microtubule-associated molecular motors that work in opposing directions. The major retrograde and anterograde motors involved in bidirectional transport are cytoplasmic dynein and conventional kinesin, respectively. It is clear that failures in molecular motor activity bear severe consequences, especially in the nervous system. Neuronal migration may be impaired during brain development, and impaired molecular motor activity in the adult is one of the hallmarks of neurodegenerative diseases leading to neuronal cell death. The mechanisms that regulate or coordinate kinesin and dynein activity to generate bidirectional transport of the same cargo are of utmost importance. We examined how Ndel1, a cytoplasmic dynein binding protein, may regulate non-vesicular bidirectional transport. Soluble Ndel1 protein, Ndel1-derived peptides or control proteins were mixed with fluorescent beads, injected into the squid giant axon, and the bead movements were recorded using time-lapse microscopy. Automated tracking allowed for extraction and unbiased analysis of a large data set. Beads moved in both directions with a clear bias to the anterograde direction. Velocities were distributed over a broad range and were typically slower than those associated with fast vesicle transport. Ironically, the main effect of Ndel1 and its derived peptides was an enhancement of anterograde motion. We propose that they may function primarily by inhibition of dynein-dependent resistance, which suggests that both dynein and kinesin motors may remain engaged with microtubules during bidirectional transport.

  17. The Myriad Roles of Miro in the Nervous System: Axonal Transport of Mitochondria and Beyond

    Directory of Open Access Journals (Sweden)

    Bingwei Lu

    2014-10-01

    Full Text Available Mitochondrial rho GTPase (Miro is a mitochondrial outer membrane protein containing two GTPase domains and two helix-loop-helix Ca2+-binding domains called EF hands. Pioneering genetic studies in Drosophila first revealed a key function of Miro in regulating the axonal transport of mitochondria, during which Miro forms a multi-protein transport complex with Milton and Kinesin heavy chain (KHC to link trafficking mitochondria with the microtubule cytoskeleton. Recent studies showed that through binding to the EF hands of Miro and causing conformational changes of Miro and alteration of protein-protein interactions within the transport complex, Ca2+ can alter the engagement of mitochondria with the microtubule (MT/kinesin network, offering one mechanism to match mitochondrial distribution with neuronal activity. Despite the importance of the Miro/Milton/Kinesin complex in regulating mitochondrial transport in metazoans, not all components of the transport complex are conserved in lower organisms, and transport-independent functions of Miro are emerging. Here we review the diverse functions of the evolutionarily conserved Miro proteins that are relevant to the development, maintenance, and functioning of the nervous system and discuss the potential contribution of Miro dysfunction to the pathogenesis of diseases of the nervous system.

  18. Quantitative measurements and modeling of cargo–motor interactions during fast transport in the living axon

    International Nuclear Information System (INIS)

    The kinesins have long been known to drive microtubule-based transport of sub-cellular components, yet the mechanisms of their attachment to cargo remain a mystery. Several different cargo-receptors have been proposed based on their in vitro binding affinities to kinesin-1. Only two of these—phosphatidyl inositol, a negatively charged lipid, and the carboxyl terminus of the amyloid precursor protein (APP-C), a trans-membrane protein—have been reported to mediate motility in living systems. A major question is how these many different cargo, receptors and motors interact to produce the complex choreography of vesicular transport within living cells. Here we describe an experimental assay that identifies cargo–motor receptors by their ability to recruit active motors and drive transport of exogenous cargo towards the synapse in living axons. Cargo is engineered by derivatizing the surface of polystyrene fluorescent nanospheres (100 nm diameter) with charged residues or with synthetic peptides derived from candidate motor receptor proteins, all designed to display a terminal COOH group. After injection into the squid giant axon, particle movements are imaged by laser-scanning confocal time-lapse microscopy. In this report we compare the motility of negatively charged beads with APP-C beads in the presence of glycine-conjugated non-motile beads using new strategies to measure bead movements. The ensuing quantitative analysis of time-lapse digital sequences reveals detailed information about bead movements: instantaneous and maximum velocities, run lengths, pause frequencies and pause durations. These measurements provide parameters for a mathematical model that predicts the spatiotemporal evolution of distribution of the two different types of bead cargo in the axon. The results reveal that negatively charged beads differ from APP-C beads in velocity and dispersion, and predict that at long time points APP-C will achieve greater progress towards the presynaptic

  19. Acrylamide Retards the Slow Axonal Transport of Neurofilaments in Rat Cultured Dorsal Root Ganglia Neurons and the Corresponding Mechanisms.

    Science.gov (United States)

    An, Lihong; Li, Guozhen; Si, Jiliang; Zhang, Cuili; Han, Xiaoying; Wang, Shuo; Jiang, Lulu; Xie, Keqin

    2016-05-01

    Chronic acrylamide (ACR) exposure induces peripheral-central axonopathy in occupational workers and laboratory animals, but the underlying mechanisms remain unclear. In this study, we first investigated the effects of ACR on slow axonal transport of neurofilaments in cultured rat dorsal root ganglia (DRG) neurons through live-cell imaging approach. Then for the underlying mechanisms exploration, the protein level of neurofilament subunits, motor proteins kinesin and dynein, and dynamitin subunit of dynactin in DRG neurons were assessed by western blotting and the concentrations of ATP was detected using ATP Assay Kit. The results showed that ACR treatment results in a dose-dependent decrease of slow axonal transport of neurofilaments. Furthermore, ACR intoxication significantly increases the protein levels of the three neurofilament subunits (NF-L, NF-M, NF-H), kinesin, dynein, and dynamitin subunit of dynactin in DRG neurons. In addition, ATP level decreased significantly in ACR-treated DRG neurons. Our findings indicate that ACR exposure retards slow axonal transport of NF-M, and suggest that the increase of neurofilament cargoes, motor proteins, dynamitin of dynactin, and the inadequate ATP supply contribute to the ACR-induced retardation of slow axonal transport. PMID:26721510

  20. EFFECTS OF HYPOTHERMIA ON THE IN VIVO MEASUREMENT OF RAPID AXONAL TRANSPORT IN THE RAT: A CAUTIONARY NOTE

    Science.gov (United States)

    Rapid axonal transport of glycoproteins was examined in the retinofugal projections of hypothermic and normothermic adult male Long-Evans hooded rats previously receiving intraocular injections of (3H)fucose. The amount of retinal fucosylation appeared normal in the hypothermic a...

  1. Complete Loss of Netrin-1 Results in Embryonic Lethality and Severe Axon Guidance Defects without Increased Neural Cell Death

    Directory of Open Access Journals (Sweden)

    Jenea M. Bin

    2015-08-01

    Full Text Available Netrin-1 regulates cell migration and adhesion during the development of the nervous system, vasculature, lung, pancreas, muscle, and mammary gland. It is also proposed to function as a dependence ligand that inhibits apoptosis; however, studies disagree regarding whether netrin-1 loss-of-function mice exhibit increased cell death. Furthermore, previously studied netrin-1 loss-of-function gene-trap mice express a netrin-1-β-galactosidase protein chimera with potential for toxic gain-of-function effects, as well as a small amount of wild-type netrin-1 protein. To unambiguously assess loss of function, we generated netrin-1 floxed and netrin-1 null mouse lines. Netrin-1−/− mice die earlier and exhibit more severe axon guidance defects than netrin-1 gene-trap mice, revealing that complete loss of function is more severe than previously reported. Netrin-1−/− embryos also exhibit increased expression of the netrin receptors DCC and neogenin that are proposed dependence receptors; however, increased apoptosis was not detected, inconsistent with netrin-1 being an essential dependence receptor ligand in the embryonic spinal cord.

  2. Axonal transport of rubidium and thallium in the olfactory nerve of mice

    International Nuclear Information System (INIS)

    Following intranasal administration of radioactive 86Rb+ and 201Tl+ in mice, we observed this direct transport via the olfactory nerve pathway. The 86RbCl and 201TlCl solutions were administered to two groups of mice, the unilateral intranasal and intravenous administration groups. After sacrifice, their heads were divided into the right and left side, which were then subdivided into seven parts; the nasal mucosa and brain regions were separated. Following the unilateral intranasal administration, uptake after 6 h by the olfactory bulb was significantly higher on the ipsilateral side (86Rb, 0.7 %dose; 201Tl, 0.5 %dose) than on the contralateral side (86Rb, 0.08 %dose; 201Tl, 0.15 %dose). Moreover, the 86Rb and 201Tl that accumulated in the olfactory bulb were gradually transported to other brain regions of the olfactory tract, the telencephalon and the diencephalon on the side corresponding to the nostril used for administration. Significant differences were observed between the right and left side of the brain regions 6 and 12 h after administration. Further, 201Tl autoradiography clearly showed striped patterns of dense accumulation, localized in the region around the glomerular layer and granule cell layer of the olfactory bulb and around the olfactory cortex. These results provide clear evidence of axonal transport via the olfactory nerve pathway, from nasal cavity to the olfactory bulb, as well as to the olfactory cortex through the synaptic junctions. The olfactory transport of the 86Rb+ and 201Tl+ is thought to represent the behavior of K+ in the olfactory system

  3. Increased slow transport in axons of regenerating newt limbs after a nerve conditioning lesion made prior to amputation

    International Nuclear Information System (INIS)

    The first part of this study shows that axonal density is constant in the limb stump of the next proximal to the area of traumatic nerve degeneration caused by limb amputation. The results of the second part of this work reveal that a nerve conditioning lesion made two weeks prior to amputation is associated with accelerated limb regeneration and that this accelerated limb regeneration is accompanied by an earlier arrival of axons. This is the first demonstration of naturally occurring limb regeneration being enhanced. In this study SCb cytoskeletal proteins were identified and measured using SDS-PAGE and liquid scintillation counting. Proteins were measured at 7, 14, 21, and 28 days after 35S-methionine injection and the normal rate of SCb transport determined to be 0.19 mm/day. A single axotomy does not enhance the rate of SCb transport but does increase the amount of labeled SCb proteins that are transported. When a conditioning lesion is employed prior to limb amputation and SCb proteins are measured at 7, 14, and 21 days after injection, there is a twofold acceleration in the rate of SCb transport and an increase in the amount of SCb proteins transported in conditioned axons

  4. Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons

    Institute of Scientific and Technical Information of China (English)

    Xu-Qiao Chen; BinWang; Chengbiao Wu; Jin Pan; Bo Yuan; Yuan-Yuan Su; Xing-Yu Jiang; Xu Zhang; Lan Bao

    2012-01-01

    Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals.However,the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood.Here,we report that the signals of the purinergic (P)2X3 receptor,an ATP-gated ion channel are retrogradely transported in dorsal root ganglion (DRG) neuron axons.We found that Rab5,a small GTPase,controls the early sorting of P2X3 receptors into endosomes,while Rab7 mediates the fast retrograde transport of P2X3 receptors.Intraplantar injection and axonal application into the microfluidic chamber of α,β-methylene-ATP (α,β-MeATP),a P2X selective agonist,enhanced the endocytosis and retrograde transport of P2X3 receptors.The α,β-MeATP-induced Ca2+ influx activated a pathway comprised of protein kinase C,rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK),which associated with endocytic P2X3 receptors to form signaling endosomes.Disruption of the lipid rafts abolished the α,β-MeATP-induced ERK phosphorylation,endocytosis and retrograde transport of P2X3 receptors.Furthermore,treatment of peripheral axons with α,β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability.Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α,β-MeATP-induced retrograde signals.These results indicate that P2X3 receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels.

  5. BODY TEMPERATURE-DEPENDENT AND INDEPENDENT ACTIONS OF CHLORDIMEFORM ON VISUAL EVOKED POTENTIALS AND AXONAL TRANSPORT IN OPTIC SYSTEM OF RAT

    Science.gov (United States)

    Pattern reversal evoked potentials (PREPs), flash evoked potentials (FEPs), optic nerve axonal transport, and body temperature were measured in hooded rats treated with either saline or the formamidine insecticide/acaricide, chlordimeform (CDM). Rats receiving CDM had low body te...

  6. The RNA binding and transport proteins staufen and fragile X mental retardation protein are expressed by rat primary afferent neurons and localize to peripheral and central axons.

    Science.gov (United States)

    Price, T J; Flores, C M; Cervero, F; Hargreaves, K M

    2006-09-15

    Neuronal proteins have been traditionally viewed as being derived solely from the soma; however, accumulating evidence indicates that dendritic and axonal sites are capable of a more autonomous role in terms of new protein synthesis. Such extra-somal translation allows for more rapid, on-demand regulation of neuronal structure and function than would otherwise be possible. While mechanisms of dendritic RNA transport have been elucidated, it remains unclear how RNA is trafficked into the axon for this purpose. Primary afferent neurons of the dorsal root (DRG) and trigeminal (TG) ganglia have among the longest axons in the neuraxis and such axonal protein synthesis would be advantageous, given the greater time involved for protein trafficking to occur via axonal transport. Therefore, we hypothesized that these primary sensory neurons might express proteins involved in RNA transport. Rat DRG and TG neurons expressed staufen (stau) 1 and 2 (detected at the mRNA level) and stau2 and fragile x mental retardation protein (FMRP; detected at the protein level). Stau2 mRNA was also detected in human TG neurons. Stau2 and FMRP protein were localized to the sciatic nerve and dorsal roots by immunohistochemistry and to dorsal roots by Western blot. Stau2 and FMRP immunoreactivities colocalized with transient receptor potential channel type 1 immunoreactivity in sensory axons of the sciatic nerve and dorsal root, suggesting that these proteins are being transported into the peripheral and central terminals of nociceptive sensory axons. Based on these findings, we propose that stau2 and FMRP proteins are attractive candidates to subserve RNA transport in sensory neurons, linking somal transcriptional events to axonal translation. PMID:16809002

  7. Concentration dependence of rapid axonal transport: a study of the transport kinetics of [35S]methionine-labeled protein in postganglionic sympathetic fibers of the bullfrog

    International Nuclear Information System (INIS)

    The kinetics of transport of radiolabeled proteins in sympathetic axons of the bullfrog sciatic nerve were examined after injection of [35S]methionine into the S9 sympathetic ganglion. Under resting conditions at 20 degrees C, the fastest moving material was carried distally at 5.7 +/- 0.3 mm/hr. Various manipulations of temperature in the proximal part of the nerve were used to alter the amount of protein transported into the distal region, which was always kept at 20 degrees C. The velocity in this test region was found to increase to over 9 mm/hr when material that had accumulated at a cold block for 4 hr was released by rewarming. This acceleration was transient, and base line velocity was regained after 2 hr. In order to increase the local concentration of transported protein by a second method, the proximal part of several nerves was warmed to 28 degrees C. Maximal transport velocity in the 20 degrees C test region rose to 6.2 +/- 0.12 mm/hr. To decrease the local concentration of transported protein, the proximal part of other nerves was cooled to 15 degrees C. Maximal transport velocity in the 20 degrees C test region fell to 4.7 +/- 0.7 mm/hr. We conclude that there is a small but real tendency for the velocity of rapid axonal transport in this neural system to be positively related to the availability of material suitable for transport

  8. Defect engineering of the electronic transport through cuprous oxide interlayers

    Science.gov (United States)

    Fadlallah, Mohamed M.; Eckern, Ulrich; Schwingenschlögl, Udo

    2016-06-01

    The electronic transport through Au–(Cu2O)n–Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work.

  9. Defect engineering of the electronic transport through cuprous oxide interlayers

    KAUST Repository

    Fadlallah, Mohamed M.

    2016-06-03

    The electronic transport through Au–(Cu2O)n–Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work.

  10. Distal retinal ganglion cell axon transport loss and activation of p38 MAPK stress pathway following VEGF-A antagonism.

    Science.gov (United States)

    Foxton, R; Osborne, A; Martin, K R; Ng, Y-S; Shima, D T

    2016-01-01

    There is increasing evidence that VEGF-A antagonists may be detrimental to neuronal health following ocular administration. Here we investigated firstly the effects of VEGF-A neutralization on retinal neuronal survival in the Ins2(Akita) diabetic and JR5558 spontaneous choroidal neovascularization (CNV) mice, and then looked at potential mechanisms contributing to cell death. We detected elevated apoptosis in the ganglion cell layer in both these models following VEGF-A antagonism, indicating that even when vascular pathologies respond to treatment, neurons are still vulnerable to reduced VEGF-A levels. We observed that retinal ganglion cells (RGCs) seemed to be the cells most susceptible to VEGF-A antagonism, so we looked at anterograde transport in these cells, due to their long axons requiring optimal protein and organelle trafficking. Using cholera toxin B-subunit tracer studies, we found a distal reduction in transport in the superior colliculus following VEGF-A neutralization, which occurred prior to net RGC loss. This phenomenon of distal transport loss has been described as a feature of early pathological changes in glaucoma, Alzheimer's and Parkinson's disease models. Furthermore, we observed increased phosphorylation of p38 MAPK and downstream Hsp27 stress pathway signaling in the retinas from these experiments, potentially providing a mechanistic explanation for our findings. These experiments further highlight the possible risks of using VEGF-A antagonists to treat ocular neovascular disease, and suggest that VEGF-A may contribute to the maintenance and function of axonal transport in neurons of the retina. PMID:27148685

  11. Intercalary bone segment transport in treatment of segmental tibial defects

    International Nuclear Information System (INIS)

    Objective: To evaluate the results and complications of intercalary bone segment transport in the treatment of segmental tibial defects. Design: This is a retrospective analysis of patients with segmental tibial defects who were treated with intercalary bone segment transport method. Place and Duration of Study: The study was carried out at Combined Military Hospital, Rawalpindi from September 1997 to April 2001. Subjects and methods: Thirteen patients were included in the study who had developed tibial defects either due to open fractures with bone loss or subsequent to bone debridement of infected non unions. The mean bone defect was 6.4 cms and there were eight associated soft tissue defects. Locally made unilateral 'Naseer-Awais' (NA) fixator was used for bone segment transport. The distraction was done at the rate of 1mm/day after 7-10 days of osteotomy. The patients were followed-up fortnightly during distraction and monthly thereafter. The mean follow-up duration was 18 months. Results: The mean time in external fixation was 9.4 months. The mean healing index' was 1.47 months/cm. Satisfactory union was achieved in all cases. Six cases (46.2%) required bone grafting at target site and in one of them grafting was required at the level of regeneration as well. All the wounds healed well with no residual infection. There was no residual leg length discrepancy of more than 20 mm nd one angular deformity of more than 5 degrees. The commonest complication encountered was pin track infection seen in 38% of Shanz Screws applied. Loosening occurred in 6.8% of Shanz screws, requiring re-adjustment. Ankle joint contracture with equinus deformity and peroneal nerve paresis occurred in one case each. The functional results were graded as 'good' in seven, 'fair' in four, and 'poor' in two patients. Overall, thirteen patients had 31 (minor/major) complications with a ratio of 2.38 complications per patient. To treat the bone defects and associated complications, a mean of 3

  12. Defective fluid transport by cystic fibrosis airway epithelia.

    OpenAIRE

    Smith, J.J.; Karp, P H; Welsh, M J

    1994-01-01

    Cystic fibrosis (CF) airway epithelia exhibit defective transepithelial electrolyte transport: cAMP-stimulated Cl- secretion is abolished because of the loss of apical membrane cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels, and amiloride-sensitive Na+ absorption is increased two- to threefold because of increased amiloride-sensitive apical Na+ permeability. These abnormalities are thought to alter respiratory tract fluid, thereby contributing to airway disease, the m...

  13. Outsourcing CREB translation to axons to survive

    OpenAIRE

    Lin, Andrew C; Holt, Christine E.

    2008-01-01

    Nerve growth factor induces sensory neuron survival via retrograde signalling from the axon to the cell body. Local translation of the transcription factor CREB in the axon, followed by its transport to the nucleus, is involved in this process.

  14. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery.

    Science.gov (United States)

    Mazarakis, N D; Azzouz, M; Rohll, J B; Ellard, F M; Wilkes, F J; Olsen, A L; Carter, E E; Barber, R D; Baban, D F; Kingsman, S M; Kingsman, A J; O'Malley, K; Mitrophanous, K A

    2001-09-15

    In this report it is demonstrated for the first time that rabies-G envelope of the rabies virus is sufficient to confer retrograde axonal transport to a heterologous virus/vector. After delivery of rabies-G pseudotyped equine infectious anaemia virus (EIAV) based vectors encoding a marker gene to the rat striatum, neurons in regions distal from but projecting to the injection site, such as the dopaminergic neurons of the substantia nigra pars compacta, become transduced. This retrograde transport to appropriate distal neurons was also demonstrated after delivery to substantia nigra, hippocampus and spinal cord and did not occur when vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped vectors were delivered to these sites. In addition, peripheral administration of rabies-G pseudotyped vectors to the rat gastrocnemius muscle leads to gene transfer in motoneurons of lumbar spinal cord. In contrast the same vector pseudotyped with VSV-G transduced muscle cells surrounding the injection site, but did not result in expression in any cells in the spinal cord. Long-term expression was observed after gene transfer in the nervous system and a minimal immune response which, together with the possibility of non-invasive administration, greatly extends the utility of lentiviral vectors for gene therapy of human neurological disease. PMID:11590128

  15. Atomistic simulations of divacancy defects in armchair graphene nanoribbons: Stability, electronic structure, and electron transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Zeng, Hui, E-mail: zenghui@yangtzeu.edu.cn [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Wei, Jianwei [College of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China); Li, Biao; Xu, Dahai [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China)

    2014-01-17

    Using the first principles calculations associated with nonequilibrium Green's function, we have studied the electronic structures and quantum transport properties of defective armchair graphene nanoribbon (AGNR) in the presence of divacancy defects. The triple pentagon–triple heptagon (555–777) defect in the defective AGNR is energetically more favorable than the pentagon–octagon–pentagon (5–8–5) defect. Our calculated results reveal that both 5–8–5-like defect and 555–777-like defect in AGNR could improve the electron transport. It is anticipated that defective AGNRs can exhibit large range variations in transport behaviors, which are strongly dependent on the distributions of the divacancy defect.

  16. Analysis of the apparent biphasic axonal transport kinetics of fucosylated glycoproteins

    International Nuclear Information System (INIS)

    Following intraocular injection of [3H]fucose, the accumulation of transported radioactivity arriving at the superior colliculus peaks within a few hours and decays with a time course of hours. Then, over a period of several days, radioactivity again accumulates at the superior colliculus and then decays with a half-life of days. Such data have been interpreted as evidence for both a group of rapidly released, rapidly transported glycoproteins (first peak) and a group of slowly released but rapidly transported glycoproteins (second peak). This supposition was investigated by studying in more detail the metabolism of some individual fucosylated proteins in both the retina and superior colliculus. It was noted that much of the radioactivity incorporated in fucosylated glycoproteins at the retina was rapidly metabolized, while the remainder of the fucosylated moieties had a metabolic half-life on the order of days. In other experiments [35S]methionine was injected intraocularly, the metabolism in the retina was examined and a study was made of the kinetics of transport to the superior colliculus of the peptide backbone of these same individual proteins. In contrast to the two waves of accumulation of radioactivity from [3H]fucose, accumulation of radioactivity of the peptide backbone of the same glycoproteins was monophasic. The author's explanation of these data involves the presence of two types of fucose moieties on the peptides. One group of fucose moieties is labile and is lost from the peptide backbone over a period of hours. Other fucose moieties are approximately as metabolically stable as the peptide backbones to which they are attached. The actual peptide backbones of the glycoproteins are committed to rapid transport over a period of several days

  17. In vivo labelling and axonal transport of monoamine oxidase in the rat basal ganglia using radioactive pargyline

    International Nuclear Information System (INIS)

    The enzyme monoamine oxidase was labelled in the rat striatum or substantia nigra with locally injected radioactive pargyline. The binding was prevented by a pretreatment with non-radioactive pargyline, or with a combination of clorgyline and deprenyl. Most of the MAO labelled with 3H-pargyline was of the B-type, but also some MAO-A was labelled, as shown in rats pretreated with clorgyline or deprenyl separately. Seven days after the injection of (3H)-pargyline into the striatum a significant labelling was observed in the substantia nigra. This labelling was clorgyline sensitive, indicating type A MAO, and was not present when striatal neurons were destroyed with kainic acid. Labelling of the striatum following 3H-pargyline injection into the substantia nigra was also less in kainate intoxicated striata. Damage of nigral dopamine neurons with 6-hydroxydopmaine did not influence the distribution of the label. Thus by using 3H-pargyline, specific labelling and axonal transport of type A MAO in striatal neurons projecting to the substantia nigra was demonstrated. (Author)

  18. A temporal variation in nonneuronal protein synthesis in dorsal root ganglia and nerve and its significance to studies of axonal transport

    International Nuclear Information System (INIS)

    Protein synthesis and fast axonal transport were studied in vitro using dorsal root ganglia (DRG)-sciatic nerve preparations from the amphibian Xenopus laevis. It was observed that the rate of incorporation of [3H]leucine into protein in DRG and isolated segments of nerve began to increase 9 to 11 h after killing the animal, attaining at 13 to 17 h a maximum of 5- to 10-times preincrease (less than 9 h) values. At the same time as an increase in the rate of incorporation began, synthesis commenced in DRG and nerve exposed to cycloheximide (125 micrograms/ml). Whereas cycloheximide reduced fast axonal transport to 1 to 3% of control values in preparations maintained 20 to 24 h in vitro, cycloheximide reduced incorporation in DRG to only 80% of control values. N-terminal labeling studies showed that both the increased incorporation and cycloheximide-insensitive incorporation resulted from protein synthesis. Autoradiographic and incorporation studies indicated that nonneuronal cells situated in the ganglion capsule and perineural sheath of the nerve were responsible for both the increased incorporation and cycloheximide-insensitive synthesis. The findings have implications for the study of axonal transport

  19. Sorting of Dendritic and Axonal Vesicles at the Pre-axonal Exclusion Zone

    Directory of Open Access Journals (Sweden)

    Ginny G. Farías

    2015-11-01

    Full Text Available Polarized sorting of newly synthesized proteins to the somatodendritic and axonal domains of neurons occurs by selective incorporation into distinct populations of vesicular transport carriers. An unresolved issue is how the vesicles themselves are sorted to their corresponding neuronal domains. Previous studies concluded that the axon initial segment (AIS is an actin-based filter that selectively prevents passage of somatodendritic vesicles into the axon. We find, however, that most somatodendritic vesicles fail to enter the axon at a more proximal region in the axon hillock, herein referred to as the pre-axonal exclusion zone (PAEZ. Forced coupling of a somatodendritic cargo protein to an axonally directed kinesin is sufficient to drive transport of whole somatodendritic vesicles through the PAEZ toward the distal axon. Based on these findings, we propose that polarized sorting of transport vesicles occurs at the PAEZ and depends on the ability of the vesicles to acquire an appropriately directed microtubule motor.

  20. Effects of proton irradiation of the lumbar intumescence on intra-axonal transport of acetylcholine and cholinergic enzymes in rat sciatic nerve

    International Nuclear Information System (INIS)

    The content and intra-axonal transport of acetylcholine (ACh) and the cholinergic enzymes cholineacetyl-transferase (CAT) and ACh-esterase (AChE) in sciatic nerve were investigated in rats following single dose proton irradiation of the lumbar intumescence of the spinal cord with 60 Gy or 200 Gy. One, 7 or 30 days after irradiation nerve-crush operations were performed 12 hours before killing and the levels of ACh and enzyme activities in nerve segments relative to the crushes were estimated by biologic (ACh) to chemical (enzyme) methods. The results indicate that alterations in intra-neuronal dynamics of ACh and related enzymes are not a major cause for the development of neurologic symptoms of the motor system after irradiation, and that descending myelinated axons are of minor importance for the regulation of cholinergic substances in rat motor nerves. (Auth.)

  1. Coordinating gene expression and axon assembly to control axon growth: potential role of GSK3 signaling

    Directory of Open Access Journals (Sweden)

    Fengquan Zhou

    2012-02-01

    Full Text Available Axon growth requires coordinated regulation of gene expression in the neuronal soma, anterograde transport of synthesized raw materials along the axon, and assembly of cytoskeleton and membranes in the nerve growth cone. Glycogen synthase kinase 3 (GSK3 signaling has recently been shown to play key roles in regulation of axonal transport and cytoskeletal assembly during axon growth. GSK3 signaling is also known to regulate gene expression via controlling the functions of many transcription factors, suggesting that GSK3 may be an important regulator of gene transcription supporting axon growth. Here we will review signaling pathways that control local axon assembly at the growth cone and gene expression in the soma during developmental or regenerative axon growth and discuss the potential involvement of GSK3 signaling in these processes, with a particular focus on how GSK3 signaling modulates the function of axon growth-associated transcription factors.

  2. Axonal tubulin and axonal microtubules: biochemical evidence for cold stability

    OpenAIRE

    1984-01-01

    Nerve extracts containing tubulin labeled by axonal transport were analyzed by electrophoresis and differential extraction. We found that a substantial fraction of the tubulin in the axons of the retinal ganglion cell of guinea pigs is not solubilized by conventional methods for preparation of microtubules from whole brain. In two-dimensional polyacrylamide gel electrophoresis this cold-insoluble tubulin was biochemically distinct from tubulin obtained from whole brain microtubules prepared b...

  3. Transient carnitine transport defect with cholestatic jaundice: report of one case in a premature baby

    OpenAIRE

    Hyun-Seok Cho; Young Kwang Choo; Hong Jin Lee; hyeon-Soo Lee

    2012-01-01

    Carnitine (?#11112;ydroxy-?#15220;rimethylaminobutyric acid) is involved in the transport of long-chain fatty acids into the mitochondrial matrix and the removal of potentially toxic acylcarnitine esters. Transient carnitine transport defect is a rare condition in newborns reported in 1/90,000 live births. In this paper, we describe a case of transient carnitine transport defect found in a premature baby who had prolonged cholestatic jaundice and poor weight gain, and who responded dramat...

  4. Multiscale Defect Formation and Transport in Materials in Extreme Environments

    Science.gov (United States)

    Seif, Dariush

    In this dissertation, we develop computational models of point defect formation and transport in spatially heterogeneous stress and temperature fields. To accomplish this, first an atomistically-based description of point defects is developed using a combination of molecular statics calculations and continuum elasticity theory. This enables an accurate representation of point defect strain fields and their interaction energies in various strain fields. The continuum representation has been found to be accurate to within several percent of the atomistic calculations and was successfully tested against highly accurate first principles calculations in a published study. Using the described point defect representation, we have performed calculations of the dislocation bias factor for irradiated metals, using a spatially-resolved rate theory solution we developed based on the finite element method. The flexibility of the model is fully exploited, leading to calculations with heightened resolution; accounting for the spatially-dependent, energetically favorable SIA orientations, one-dimensional diffusion mechanisms near the dislocation core, and full anisotropic elasticity. Our results for iron have shown that the effects of preferred SIA orientations should not be ignored near the dislocation core. Implementing minimum energy SIA configurations in iron decreases repulsive interactions and increases absorption, ultimately leading to much larger bias factors. On the other hand, we also find the use of anisotropic elasticity in the calculations to decrease bias factors by 45% compared to those obtained using the isotropic formulation. An anisotropic implementation of the dislocation strain fields, however, gives larger interaction energy gradients, leading to increased drift diffusion and larger bias (12% and 6% increase in Fe and Cu, respectively). Following the rapid transient stage of helium-vacancy cluster (bubble) nucleation under irradiation, the bubble growth phase

  5. Isolation and analyses of axonal ribonucleoprotein complexes.

    Science.gov (United States)

    Doron-Mandel, Ella; Alber, Stefanie; Oses, Juan A; Medzihradszky, Katalin F; Burlingame, Alma L; Fainzilber, Mike; Twiss, Jeffery L; Lee, Seung Joon

    2016-01-01

    Cytoskeleton-dependent RNA transport and local translation in axons are gaining increased attention as key processes in the maintenance and functioning of neurons. Specific axonal transcripts have been found to play roles in many aspects of axonal physiology including axon guidance, axon survival, axon to soma communication, injury response and regeneration. This axonal transcriptome requires long-range transport that is achieved by motor proteins carrying transcripts as messenger ribonucleoprotein (mRNP) complexes along microtubules. Other than transport, the mRNP complex plays a major role in the generation, maintenance, and regulation of the axonal transcriptome. Identification of axonal RNA-binding proteins (RBPs) and analyses of the dynamics of their mRNPs are of high interest to the field. Here, we describe methods for the study of interactions between RNA and proteins in axons. First, we describe a protocol for identifying binding proteins for an RNA of interest by using RNA affinity chromatography. Subsequently, we discuss immunoprecipitation (IP) methods allowing the dissection of protein-RNA and protein-protein interactions in mRNPs under various physiological conditions. PMID:26794529

  6. Final report. Defects and transport in mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, R{umlt u}diger

    2001-12-13

    New results on the point defect chemistry of (Ni{sub x}Fe{sub 1-x}){sub 3-delta}O{sub 4} and on the cation tracer diffusion in this spinel solid solution are presented and discussed. The equation system for the defect chemistry of perovskites of the type A{sub 1-x}B{sub 1+x}O{sub 3-delta} have been worked out and used to derive Kr{umlt o}ger-Vink diagrams. The deviation from stoichiometry, delta, in LA{sub 1-x}Mn{sub 1+x}O{sub 3-delta} has been measured at 1100, 1200, and 1300 degrees Celsius as a function of the oxygen activity and the composition variable x. At high and low oxygen activities, the data were fit by taking into account the electrostatic interaction between the charge defects by making use of the Debye H{umlt u}ckel theory.

  7. Oxide-based protonic conductors: Point defects and transport properties

    DEFF Research Database (Denmark)

    Bonanos, N.

    , hydrogen pumps, fuel cells, etc. The extent to which protonic defects form depends mainly on the partial pressure of water vapour, temperature and basicity of the constituent oxides, while their mobility depends, among other factors, on the metal-oxygen bond length and bond energy. The defect equilibria...... that determine the protonic concentrations are considered, with emphasis on the regime of low oxygen partial pressure. The measurement of the thermoelectric power (TEP) and of the H+/D+ isotope effect in conductivity are discussed as a means of characterising the conduction process. (C) 2001 Elsevier...

  8. Oxide-based protonic conductors: Point defects and transport properties

    DEFF Research Database (Denmark)

    Bonanos, N.

    2001-01-01

    , hydrogen pumps, fuel cells, etc. The extent to which protonic defects form depends mainly on the partial pressure of water vapour, temperature and basicity of the constituent oxides, while their mobility depends, among other factors, on the metal-oxygen bond length and bond energy. The defect equilibria...... that determine the protonic concentrations are considered, with emphasis on the regime of low oxygen partial pressure. The measurement of the thermoelectric power (TEP) and of the H+/D+ isotope effect in conductivity are discussed as a means of characterising the conduction process. (C) 2001 Elsevier...

  9. Revealing origin of quasi-one dimensional current transport in defect rich two dimensional materials

    DEFF Research Database (Denmark)

    Lotz, Mikkel Rønne; Boll, Mads; Hansen, Ole;

    2014-01-01

    conductors with an increasing amount of line-shaped defects. Clear 2D and 1D signatures are observed at low and high defect densities, respectively, and current density plots reveal the presence of current channels or branches in defect configurations yielding 1D current transport. A strong correlation is...... found between the density filling factor and the simulation yield, the fraction of cases with 1D transport and the mean sheet conductance. The upper transition limit is shown to agree with the percolation threshold for sticks. Finally, the conductance of a square sample evaluated with macroscopic edge...

  10. Low temperature transport spectroscopy of defects using Schottky-barrier MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Calvet, L.E., E-mail: laurie.calvet@u-psud.f [Institut d' Electronique Fondamentale-CNRS UMR 8622, Universite Paris-Sud, 91405 Orsay (France); Meshkov, G.A. [Department of Physics, M.V. Lomonosov Moscow State University, Leninskie gori, Moscow 119992 (Russian Federation); Strupiechonski, E.; Toubestani, D. [Institut d' Electronique Fondamentale-CNRS UMR 8622, Universite Paris-Sud, 91405 Orsay (France); Snyder, J.P. [Independent Consultant, Bloomington, MN 55425 (United States); Fortuna, F. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse-CNRS UMR 8609, Universite Paris-Sud, 91405 Orsay (France); Wernsdorfer, W. [Institut Neel, CNRS, BP 166, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France)

    2009-12-15

    An overview of our technique to explore single defects in silicon using a novel transistor geometry, the Schottky barrier MOSFET, is described. In this device the doped source and drain regions of a conventional MOSFET are replaced with metallic contacts. At low temperatures electron transport is dominated by direct tunneling through the space charge region formed next to the metal/semiconductor interface. If single impurities or defects are present in this region, transport reveals resonant tunneling peaks that allow investigations of the magnetic field dependence and excited states. Here we discuss different experiments where we have on separate occasions observed defects that may be related to Pt, B and Tb.

  11. Low temperature transport spectroscopy of defects using Schottky-barrier MOSFETs

    International Nuclear Information System (INIS)

    An overview of our technique to explore single defects in silicon using a novel transistor geometry, the Schottky barrier MOSFET, is described. In this device the doped source and drain regions of a conventional MOSFET are replaced with metallic contacts. At low temperatures electron transport is dominated by direct tunneling through the space charge region formed next to the metal/semiconductor interface. If single impurities or defects are present in this region, transport reveals resonant tunneling peaks that allow investigations of the magnetic field dependence and excited states. Here we discuss different experiments where we have on separate occasions observed defects that may be related to Pt, B and Tb.

  12. Defect states and disorder in charge transport in semiconductor nanowires

    OpenAIRE

    Ko, Dongkyun; Zhao, X. W.; Reddy, Kongara M.; Restrepo, O. D.; Mishra, R; Beloborodov, I. S.; Trivedi, Nandini; Padture, Nitin P.; W. Windl; Yang, F. Y.; Johnston-Halperin, E.

    2011-01-01

    We present a comprehensive investigation into disorder-mediated charge transport in InP nanowires in the statistical doping regime. At zero gate voltage transport is well described by the space charge limited current model and Efros-Shklovskii variable range hopping, but positive gate voltage (electron accumulation) reveals a previously unexplored regime of nanowire charge transport that is not well described by existing theory. The ability to continuously tune between these regimes provides ...

  13. Peroxisome deficiency but not the defect in ether lipid synthesis causes activation of the innate immune system and axonal loss in the central nervous system

    Directory of Open Access Journals (Sweden)

    Bottelbergs Astrid

    2012-03-01

    Full Text Available Abstract Background Mice with peroxisome deficiency in neural cells (Nestin-Pex5−/− develop a neurodegenerative phenotype leading to motor and cognitive disabilities and early death. Major pathologies at the end stage of disease include severe demyelination, axonal degeneration and neuroinflammation. We now investigated the onset and progression of these pathological processes, and their potential interrelationship. In addition, the putative role of oxidative stress, the impact of plasmalogen depletion on the neurodegenerative phenotype, and the consequences of peroxisome elimination in the postnatal period were studied. Methods Immunohistochemistry in association with gene expression analysis was performed on Nestin-Pex5−/− mice to document demyelination, axonal damage and neuroinflammation. Also Gnpat−/− mice, with selective plasmalogen deficiency and CMV-Tx-Pex5−/− mice, with tamoxifen induced generalized loss of peroxisomes were analysed. Results Activation of the innate immune system is a very early event in the pathological process in Nestin-Pex5−/− mice which evolves in chronic neuroinflammation. The complement factor C1q, one of the earliest up regulated transcripts, was expressed on neurons and oligodendrocytes but not on microglia. Transcripts of other pro- and anti-inflammatory genes and markers of phagocytotic activity were already significantly induced before detecting pathologies with immunofluorescent staining. Demyelination, macrophage activity and axonal loss co-occurred throughout the brain. As in patients with mild peroxisome biogenesis disorders who develop regressive changes, demyelination in cerebellum and brain stem preceded major myelin loss in corpus callosum of both Nestin-Pex5−/− and CMV-Tx-Pex5−/− mice. These lesions were not accompanied by generalized oxidative stress throughout the brain. Although Gnpat−/− mice displayed dysmyelination and Purkinje cell axon damage in cerebellum

  14. Transient carnitine transport defect with cholestatic jaundice: report of one case in a premature baby

    Directory of Open Access Journals (Sweden)

    Hyun-Seok Cho

    2012-02-01

    Full Text Available Carnitine (?#11112;ydroxy-?#15220;rimethylaminobutyric acid is involved in the transport of long-chain fatty acids into the mitochondrial matrix and the removal of potentially toxic acylcarnitine esters. Transient carnitine transport defect is a rare condition in newborns reported in 1/90,000 live births. In this paper, we describe a case of transient carnitine transport defect found in a premature baby who had prolonged cholestatic jaundice and poor weight gain, and who responded dramatically to oral carnitine supplementation.

  15. MSC p43 required for axonal development in motor neurons

    Science.gov (United States)

    Zhu, Xiaodong; Liu, Yang; Yin, Yanqing; Shao, Aiyun; Zhang, Bo; Kim, Sunghoon; Zhou, Jiawei

    2009-01-01

    Neuron connectivity and correct neural function largely depend on axonal integrity. Neurofilaments (NFs) constitute the main cytoskeletal network maintaining the structural integrity of neurons and exhibit dynamic changes during axonal and dendritic growth. However, the mechanisms underlying axonal development and maintenance remain poorly understood. Here, we identify that multisynthetase complex p43 (MSC p43) is essential for NF assembly and axon maintenance. The MSC p43 protein was predominantly expressed in central neurons and interacted with NF light subunit in vivo. Mice lacking MSC p43 exhibited axon degeneration in motor neurons, defective neuromuscular junctions, muscular atrophy, and motor dysfunction. Furthermore, MSC p43 depletion in mice caused disorganization of the axonal NF network. Mechanistically, MSC p43 is required for maintaining normal phosphorylation levels of NFs. Thus, MSC p43 is indispensable in maintaining axonal integrity. Its dysfunction may underlie the NF disorganization and axon degeneration associated with motor neuron degenerative diseases. PMID:19717447

  16. Enhanced tracer transport by the spiral defect chaos state of a convecting fluid

    OpenAIRE

    Chiam, K.-H.; Cross, M. C.; Greenside, H. S.; Fischer, P. F.

    2005-01-01

    To understand how spatiotemporal chaos may modify material transport, we use direct numerical simulations of the three-dimensional Boussinesq equations and of an advection-diffusion equation to study the transport of a passive tracer by the spiral defect chaos state of a convecting fluid. The simulations show that the transport is diffusive and is enhanced by the spatiotemporal chaos. The enhancement in tracer diffusivity follows two regimes. For large Peclet numbers (that is, small molecular...

  17. Transport-reaction model for defect and carrier behavior within displacement cascades in gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, William R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Myers, Samuel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-02-01

    A model is presented for recombination of charge carriers at displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers and defects within a representative spherically symmetric cluster. The initial radial defect profiles within the cluster were chosen through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Charging of the defects can produce high electric fields within the cluster which may influence transport and reaction of carriers and defects, and which may enhance carrier recombination through band-to-trap tunneling. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to pulsed neutron irradiation.

  18. Relationship between defect density and charge carrier transport in amorphous and microcrystalline silicon

    OpenAIRE

    Astakhov, O.; Carius, R.; F. Finger; Petrusenko, Y.; Borysenko, V.; Barankov, D.

    2009-01-01

    The influence of dangling-bond defects and the position of the Fermi level on the charge carrier transport properties in undoped and phosphorous doped thin-film silicon with structure compositions all the way from highly crystalline to amorphous is investigated. The dangling-bond density is varied reproducibly over several orders of magnitude by electron bombardment and subsequent annealing. The defects are investigated by electron-spin-resonance and photoconductivity spectroscopies. Comparin...

  19. Intracellular transport driven by cytoskeletal motors: General mechanisms and defects

    CERN Document Server

    Appert-Rolland, Cecile; Santen, Ludger

    2015-01-01

    Cells are strongly out-of-equilibrium systems driven by continuous energy supply. They carry out many vital functions requiring active transport of various ingredients and organelles, some being small, others being large. The cytoskeleton, composed of three types of filaments, determines the shape of the cell and plays a role in cell motion. It also serves as a road network for the so-called cytoskeletal motors. These molecules can attach to a cytoskeletal filament, perform directed motion, possibly carrying along some cargo, and then detach. It is a central issue to understand how intracellular transport driven by molecular motors is regulated, in particular because its breakdown is one of the signatures of some neuronal diseases like the Alzheimer. We give a survey of the current knowledge on microtubule based intracellular transport. We first review some biological facts obtained from experiments, and present some modeling attempts based on cellular automata. We start with background knowledge on the origi...

  20. Defect chemistry of ''BaCuO2''. Pt. 2. Transport properties and nature of defects

    International Nuclear Information System (INIS)

    The charge transport properties of ''BaCuO2'' with 88:90 (Ba:Cu) cation ratio were characterized by thermopower, electrical conductivity and ionic transport number measurements in a wide range of temperature and oxygen partial pressure conditions. The nature of carriers is always represented by small polarons due to self-trapping of the electronic holes generated by the oxygen non-stoichiometry equilibrium. Some anomalies in carrier mobility as a function of temperature are shown not to be related to incomplete ionization of oxygen atoms on interstitial sites (orig.)

  1. Revealing origin of quasi-one dimensional current transport in defect rich two dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Lotz, Mikkel R.; Boll, Mads; Bøggild, Peter; Petersen, Dirch H., E-mail: dirch.petersen@nanotech.dtu.dk [Center for Nanostructured Graphene (CNG), Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech Building 345 East, DK-2800 Kgs. Lyngby (Denmark); Hansen, Ole [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech Building 345 East, DK-2800 Kgs. Lyngby (Denmark); Danish National Research Foundation' s Center for Individual Nanoparticle Functionality (CINF), Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Kjær, Daniel [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech Building 345 East, DK-2800 Kgs. Lyngby (Denmark); CAPRES A/S, Scion-DTU, Building 373, DK-2800 Kgs. Lyngby (Denmark)

    2014-08-04

    The presence of defects in graphene have for a long time been recognized as a bottleneck for its utilization in electronic and mechanical devices. We recently showed that micro four-point probes may be used to evaluate if a graphene film is truly 2D or if defects in proximity of the probe will lead to a non-uniform current flow characteristic of lower dimensionality. In this work, simulations based on a finite element method together with a Monte Carlo approach are used to establish the transition from 2D to quasi-1D current transport, when applying a micro four-point probe to measure on 2D conductors with an increasing amount of line-shaped defects. Clear 2D and 1D signatures are observed at low and high defect densities, respectively, and current density plots reveal the presence of current channels or branches in defect configurations yielding 1D current transport. A strong correlation is found between the density filling factor and the simulation yield, the fraction of cases with 1D transport and the mean sheet conductance. The upper transition limit is shown to agree with the percolation threshold for sticks. Finally, the conductance of a square sample evaluated with macroscopic edge contacts is compared to the micro four-point probe conductance measurements and we find that the micro four-point probe tends to measure a slightly higher conductance in samples containing defects.

  2. Spin- and valley-polarized transport across line defects in monolayer MoS2

    Science.gov (United States)

    Pulkin, Artem; Yazyev, Oleg V.

    2016-01-01

    We address the ballistic transmission of charge carriers across ordered line defects in monolayer transition metal dichalcogenides. Our study reveals the presence of a transport gap driven by spin-orbit interactions, spin and valley filtering, both stemming from a simple picture of spin and momentum conservation, as well as the electron-hole asymmetry of charge-carrier transmission. Electronic transport properties of experimentally observed ordered line defects in monolayer MoS2, in particular, the vacancy lines and inversion domain boundaries, are further investigated using first-principles Green's function methodology. Our calculations demonstrate the possibility of achieving nearly complete spin polarization of charge carriers in nanoelectronic devices based on engineered periodic line defects in monolayer transition metal dichalcogenides, thus suggesting a practical scheme for all-electric control of spin transport.

  3. Neurofilament spacing, phosphorylation, and axon diameter in regenerating and uninjured lamprey axons.

    Science.gov (United States)

    Pijak, D S; Hall, G F; Tenicki, P J; Boulos, A S; Lurie, D I; Selzer, M E

    1996-05-13

    uncut GRAs but were also highly phosphorylated. Thus, in the lamprey, NF phosphorylation may not control axon diameter directly through electrorepulsive charges that increase NF sidearm extension and NF spacing. It is possible that phosphorylation of NFs normally influences axon diameter through indirect mechanisms, such as the slowing of NF transport and the formation of a stationary cytoskeletal lattice, as has been proposed by others. Such a mechanism could be overridden during regeneration, when a more compact, phosphorylated NF backbone might add mechanical stiffness that promotes the advance of the neurite tip within a restricted central nervous system environment. PMID:8744444

  4. Mutant Huntingtin, Abnormal Mitochondrial Dynamics, Defective Axonal Transport of Mitochondria, and Selective Synaptic Degeneration in Huntington’s Disease

    OpenAIRE

    Reddy, P. Hemachandra; Shirendeb, Ulziibat P.

    2011-01-01

    Huntington’s disease (HD) is a progressive, fatal neurodegenerative disease caused by an expanded polyglutamine repeats in the HD gene. HD is characterized by chorea, seizures, involuntary movements, dystonia, cognitive decline, intellectual impairment and emotional disturbances. Research into mutant huntingtin (Htt) and mitochondria has found that mutant Htt interacts with the mitochondrial protein dynamin-related protein 1 (Drp1), enhances GTPase Drp1 enzymatic activity, and causes excessiv...

  5. Electrical and electrothermal transport in InN: The roles of defects

    International Nuclear Information System (INIS)

    The transport properties of Mg doped and undoped InN films are studied with capacitance-voltage, thermopower, and Hall mobility measurements. A positive Seebeck coefficient is observed for Mg doped InN confirming p-type conductivity, though high doping and structural defect density can lead to n-type films. Transport measurements of undoped films are analyzed employing Rode's iterative Boltzmann equation method. Observed thermopower, Hall mobility, and dislocation density data for undoped films are consistent with calculations including the effects of charged line defect (donor-type dislocation) scattering.

  6. The impact of defect scattering on the quasi-ballistic transport of nanoscale conductors

    International Nuclear Information System (INIS)

    Using the Landauer approach for carrier transport, we analyze the impact of defects induced by ion irradiation on the transport properties of nanoscale conductors that operate in the quasi-ballistic regime. Degradation of conductance results from a reduction of carrier mean free path due to the introduction of defects in the conducting channel. We incorporate scattering mechanisms from radiation-induced defects into calculations of the transmission coefficient and present a technique for extracting modeling parameters from near-equilibrium transport measurements. These parameters are used to describe degradation in the transport properties of nanoscale devices using a formalism that is valid under quasi-ballistic operation. The analysis includes the effects of bandstructure and dimensionality on the impact of defect scattering and discusses transport properties of nanoscale devices from the diffusive to the ballistic limit. We compare calculations with recently published measurements of irradiated nanoscale devices such as single-walled carbon nanotubes, graphene, and deep-submicron Si metal-oxide-semiconductor field-effect transistors

  7. A γ-secretase inhibitor, but not a γ-secretase modulator, induced defects in BDNF axonal trafficking and signaling: evidence for a role for APP.

    Directory of Open Access Journals (Sweden)

    April M Weissmiller

    Full Text Available Clues to Alzheimer disease (AD pathogenesis come from a variety of different sources including studies of clinical and neuropathological features, biomarkers, genomics and animal and cellular models. An important role for amyloid precursor protein (APP and its processing has emerged and considerable interest has been directed at the hypothesis that Aβ peptides induce changes central to pathogenesis. Accordingly, molecules that reduce the levels of Aβ peptides have been discovered such as γ-secretase inhibitors (GSIs and modulators (GSMs. GSIs and GSMs reduce Aβ levels through very different mechanisms. However, GSIs, but not GSMs, markedly increase the levels of APP CTFs that are increasingly viewed as disrupting neuronal function. Here, we evaluated the effects of GSIs and GSMs on a number of neuronal phenotypes possibly relevant to their use in treatment of AD. We report that GSI disrupted retrograde axonal trafficking of brain-derived neurotrophic factor (BDNF, suppressed BDNF-induced downstream signaling pathways and induced changes in the distribution within neuronal processes of mitochondria and synaptic vesicles. In contrast, treatment with a novel class of GSMs had no significant effect on these measures. Since knockdown of APP by specific siRNA prevented GSI-induced changes in BDNF axonal trafficking and signaling, we concluded that GSI effects on APP processing were responsible, at least in part, for BDNF trafficking and signaling deficits. Our findings argue that with respect to anti-amyloid treatments, even an APP-specific GSI may have deleterious effects and GSMs may serve as a better alternative.

  8. Defect chemistry and electronic transport in low-κ dielectrics studied with electrically detected magnetic resonance

    Science.gov (United States)

    Mutch, Michael J.; Lenahan, Patrick M.; King, Sean W.

    2016-03-01

    Defect mediated electronic transport phenomena in low-κ dielectric films are of great technological interest for state-of-the-art and next generation microprocessors. At the present time, the leading low-κ interlayer dielectrics and etch-stop layers are based upon a-SiOC:H and a-SiCN:H, respectively. In this study, we utilize electrically detected magnetic resonance (EDMR), a derivative of electron paramagnetic resonance, to provide physical insight into electronic transport, as well as the nature and origin of defects in dense and porous a-SiOC:H and dense a-SiCN:H films. Resonance measurements are performed before and after the removal of sacrificial porogens via UV treatments to understand the role of specific defect centers in electronic transport in a-SiOC:H systems, and the nature of defects created by UV treatments. Unfortunately, a-SiOC:H and a-SiCN:H EDMR spectra are relatively broad and featureless. These featureless spectra are consistent with fairly complex a-SiOC:H and a-SiCN:H systems. We argue that physical insight may be gleaned from featureless spectra via multiple frequency EDMR. Baseline multiple frequency EDMR measurements are performed in a-Si:H and a-C:H to illustrate the nature of line broadening mechanisms of silicon and carbon related defects.

  9. Asymmetric energy transport in defected boron nitride nanoribbons: Implications for thermal rectification

    Directory of Open Access Journals (Sweden)

    Krishna Muralidharan

    2011-12-01

    Full Text Available Using molecular dynamics simulations, the thermal transport properties of boron nitride nanoribbons (BNNR containing geometrically-asymmetric triangular nano-vacancies were investigated. By suitably interpreting the time-evolution of spatially decomposed heat-current autocorrelation function in terms of phonon propagation characteristics, we have demonstrated the possibility of observing defect induced direction-dependent thermal transport in BNNR. This was further confirmed by appropriate analysis of direction dependent thermal diffusivity estimations in BNNR.

  10. Strong Coupling between Nanofluidic Transport and Interfacial Chemistry: How Defect Reactivity Controls Liquid-Solid Friction through Hydrogen Bonding.

    Science.gov (United States)

    Joly, Laurent; Tocci, Gabriele; Merabia, Samy; Michaelides, Angelos

    2016-04-01

    Defects are inevitably present in nanofluidic systems, yet the role they play in nanofluidic transport remains poorly understood. Here, we report ab initio molecular dynamics (AIMD) simulations of the friction of liquid water on defective graphene and boron nitride sheets. We show that water dissociates at certain defects and that these "reactive" defects lead to much larger friction than the "nonreactive" defects at which water molecules remain intact. Furthermore, we find that friction is extremely sensitive to the chemical structure of reactive defects and to the number of hydrogen bonds they can partake in with the liquid. Finally, we discuss how the insight obtained from AIMD can be used to quantify the influence of defects on friction in nanofluidic devices for water treatment and sustainable energy harvesting. Overall, we provide new insight into the role of interfacial chemistry on nanofluidic transport in real, defective systems. PMID:27012818

  11. Localization of Axonal Motor Molecules Machinery in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Fulvio Florenzano

    2012-04-01

    Full Text Available Axonal transport and neuronal survival depend critically on active transport and axon integrity both for supplying materials and communication to different domains of the cell body. All these actions are executed through cytoskeleton, transport and regulatory elements that appear to be disrupted in neurodegenerative diseases. Motor-driven transport both supplies and clears distal cellular portions with proteins and organelles. This transport is especially relevant in projection and motor neurons, which have long axons to reach the farthest nerve endings. Thus, any disturbance of axonal transport may have severe consequences for neuronal function and survival. A growing body of literature indicates the presence of alterations to the motor molecules machinery, not only in expression levels and phosphorylation, but also in their subcellular distribution within populations of neurons, which are selectively affected in the course of neurodegenerative diseases. The implications of this altered subcellular localization and how this affects axon survival and neuronal death still remain poorly understood, although several hypotheses have been suggested. Furthermore, cytoskeleton and transport element localization can be selectively disrupted in some disorders suggesting that specific loss of the axonal functionality could be a primary hallmark of the disorder. This can lead to axon degeneration and neuronal death either directly, through the functional absence of essential axonal proteins, or indirectly, through failures in communication among different cellular domains. This review compares the localization of cytoskeleton and transport elements in some neurodegenerative disorders to ask what aspects may be essential for axon survival and neuronal death.

  12. Computing along the axon

    Institute of Scientific and Technical Information of China (English)

    Chen Haiming; Tseren-Onolt Ishdorj; Gheorghe Pǎun

    2007-01-01

    A special form of spiking neural P systems, called axon P systems, corresponding to the activity of Ranvier nodes of neuron axon, is considered and a class of SN-like P systems where the computation is done along the axon is introduced and their language generative power is investigated.

  13. Evaluation of defects in RE123 superconductors from magnetic field mapping by transport current

    International Nuclear Information System (INIS)

    The magnetic field distributions caused by a transport current were evaluated for the detection of defects in a bulk conductor especially grain boundaries. In the magnetic field mapping of single domain samples, the strength of a magnetic field was constant along the current direction while it changed in the samples having grain boundaries which limited the transport current. This means that the existence of grain boundaries could be detected from the magnetic field mapping pattern induced by the transport current. In addition, the difference of Jc in the width direction could also be identified from the magnetic field mapping in the single domain sample

  14. Electronic transport properties in random one-dimensional chains containing mesoscopic-ring defects

    Science.gov (United States)

    Huang, X.

    1999-11-01

    We study the electronic transport properties in one-dimensional systems with two kinds of mesoscopic ring defects: squarelike mesoscopic ring (SMR) defects and siamese-twins-like mescoscopic ring (STMR) defects. By using the transfer-matrix method, the resonant energies (where the transmission coefficient T=1) are derived successfully for both system. For the one SMR defect system, two resonant energies are found as a function of the magnetic flux Φ threading the ring defect, while for the latter case, two magnetic-flux-dependent and one magnetic-flux-independent resonant energies are predicted in the system, furthermore, if Φ takes some specific values, one of the Φ-dependent resonant energies may be the same as the Φ-independent resonant energy. The word ``resonant'' is used to describe this situation. When a finite concentration of SMR or STMR defects are randomly embedded in a perfect chain, the numerical results confirm all the analytical predictions. Finally, for the ``resonant'' case, we show numerically a rather wide perfect transmission region which is almost ten times as wide as that of the ``unresonant'' case.

  15. Defect and transport properties of nanocrystalline CeO2-x

    International Nuclear Information System (INIS)

    It is shown that unique defect thermodynamics and transport properties result for oxides of a few nanometers crystallite size. Fully-dense CeO2-x polycrystals of ∼10 nm grain size were synthesized, and their electrical properties compared with those of samples coarsened from the same material. The nanocrystals showed reduced grain boundary resistance, 104 higher electronic conductivity, and less than one-half the heat of reduction of its coarse-grained counterpart. These properties are attributed to a dominant role of interfacial defect formation. copyright 1996 American Institute of Physics

  16. Transport mechanisms of uranium released to the coolant from fuel defects

    International Nuclear Information System (INIS)

    Fuel performance at domestic CANDU-600s, Point Lepreau and Gentilly, has been very good, with only a small number of fuel defects releasing uranium to the coolant. The in-core monitoring on these early fuel defects using the delayed neutron system, provides some insight into uranium transport mechanisms and how they influence signal trends. Better understanding of these mechanisms, will assist the station operator in responding to trend changes and will ultimately provide guidance in assigning removal priorities should several fuel defects occur simultaneously. The average delayed neutron signal of all channels is the key parameter for monitoring fuel performance in-core, and should be regarded as an early warning indicator of fuel performance problems

  17. The defect effects on the signal transport of an excitable soft cable

    Science.gov (United States)

    Liu, Tang-Yu; Chang, Cheng-Hung

    2013-03-01

    How a local perturbation affects a propagating wave traveling in a homogeneous medium is a general physics question widely investigated in condensed materials. Intuitively, one might expect that a perturbation would suppress the transport ability of the medium if it is quasi one dimensional. This is generically true as defects and impurities influence numerous non-excitable systems such as carbon nanotubes, nanowires and DNA double helixes. However, if the system is excitable, such as a neuron, a defect may generate a highly non-trivial dynamical behavior. In this paper, using the Hodgkin-Huxley model, we explored this diversity generated by locally non-uniform ion channel densities caused by toxins, diseases, environmental disorders or artificial manipulations. These channel density defects could induce several exotic behaviors, in contrast with the normal destructive role of defects in solid-state physics. They may behave as an electric signal generator exhibiting spontaneous or stimulated emissions, as well as trap, reflect, rectify, delay or extinguish propagating signals or be switched to different functions by a signal. Nonlinear analysis and phase diagrams were used to quantify this dynamical complexity. The results may contribute to research on signal manipulation in biotechnology, neuronal diseases and damages, channel distribution-related cell functions and defect dynamics in general excitable mathematical models.

  18. Axonal transport of labelled proteins and increased functional activity in sciatic nerve of the frog Rana hexadactyla in vitro

    International Nuclear Information System (INIS)

    In vitro speed of fast moving labelled protein fraction was investigated in the lumbar 8 nerve of R.hexadactyla during normal and electrical stimulation conditions. 3H-leucine labelled oroteins moved in a proximo-distal direction at a speed of 144 mm/day at 25 deg C. No change was observed in the rate of proteins transported in stimulated nerves but the amount of protein bound radioactivity increased over stimulation. In ligature experiments, amount of labelled proteins accumulating at a ligature was higher in stimulated nerves. Electrical stimulation of nerve resulted in an increase in protein synthetic rate in the respective ganglion. (author)

  19. Circumvention of defective neutral amino acid transport in Hartnup disease using tryptophan ethyl ester.

    OpenAIRE

    Jonas, A J; Butler, I J

    1989-01-01

    Tryptophan ethyl ester, a lipid-soluble tryptophan derivative, was used to bypass defective gastrointestinal neutral amino acid transport in a child with Hartnup disease. The child's baseline tryptophan concentrations in serum (20 +/- 6 microM) and cerebrospinal fluid (1.0 +/- 0.2 microM) were persistently less than 50% of normal values. Cerebrospinal fluid 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite, was also less than 50% of normal (21 +/- 2 ng/ml). Serum tryptophan concentr...

  20. Motor Axon Pathfinding

    OpenAIRE

    Bonanomi, Dario; Pfaff, Samuel L

    2010-01-01

    Motor neurons are functionally related, but represent a diverse collection of cells that show strict preferences for specific axon pathways during embryonic development. In this article, we describe the ligands and receptors that guide motor axons as they extend toward their peripheral muscle targets. Motor neurons share similar guidance molecules with many other neuronal types, thus one challenge in the field of axon guidance has been to understand how the vast complexity of brain connection...

  1. Defect chemistry and transport properties of BaxCe0.85M0.15O3-d

    OpenAIRE

    Wu, J.; Li, L. P.; Espinosa, W. T. P.; Haile, S. M.

    2004-01-01

    The site-incorporation mechanism of M3+ dopants into A2+B4+O3 perovskites controls the overall defect chemistry and thus their transport properties. For charge-balance reasons, incorporation onto the A2+-site would require the creation of negatively charged point defects (such as cation vacancies), whereas incorporation onto the B4+-site is accompanied by the generation of positively charged defects, typically oxygen vacancies. Oxygen-vacancy content, in turn, is relevant to proton-conducting...

  2. Automated Axon Counting in Rodent Optic Nerve Sections with AxonJ

    Science.gov (United States)

    Zarei, Kasra; Scheetz, Todd E.; Christopher, Mark; Miller, Kathy; Hedberg-Buenz, Adam; Tandon, Anamika; Anderson, Michael G.; Fingert, John H.; Abràmoff, Michael David

    2016-01-01

    We have developed a publicly available tool, AxonJ, which quantifies the axons in optic nerve sections of rodents stained with paraphenylenediamine (PPD). In this study, we compare AxonJ’s performance to human experts on 100x and 40x images of optic nerve sections obtained from multiple strains of mice, including mice with defects relevant to glaucoma. AxonJ produced reliable axon counts with high sensitivity of 0.959 and high precision of 0.907, high repeatability of 0.95 when compared to a gold-standard of manual assessments and high correlation of 0.882 to the glaucoma damage staging of a previously published dataset. AxonJ allows analyses that are quantitative, consistent, fully-automated, parameter-free, and rapid on whole optic nerve sections at 40x. As a freely available ImageJ plugin that requires no highly specialized equipment to utilize, AxonJ represents a powerful new community resource augmenting studies of the optic nerve using mice. PMID:27226405

  3. Circumvention of defective neutral amino acid transport in Hartnup disease using tryptophan ethyl ester.

    Science.gov (United States)

    Jonas, A J; Butler, I J

    1989-07-01

    Tryptophan ethyl ester, a lipid-soluble tryptophan derivative, was used to bypass defective gastrointestinal neutral amino acid transport in a child with Hartnup disease. The child's baseline tryptophan concentrations in serum (20 +/- 6 microM) and cerebrospinal fluid (1.0 +/- 0.2 microM) were persistently less than 50% of normal values. Cerebrospinal fluid 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite, was also less than 50% of normal (21 +/- 2 ng/ml). Serum tryptophan concentrations increased only modestly and briefly after an oral challenge with 200 mg/kg of oral L-tryptophan, reflecting the absorptive defect. An oral challenge with 200 mg/kg of tryptophan ethyl ester resulted in a prompt increase in serum tryptophan to a peak of 555 microM. Sustained treatment with 20 mg/kg q6h resulted in normalization of serum (66 +/- 15 microM) and cerebrospinal fluid tryptophan concentrations (mean = 2.3 microM). Cerebrospinal fluid 5-HIAA increased to more normal concentrations (mean = 33 ng/ml). No toxicity was observed over an 8-mo period of treatment, chronic diarrhea resolved, and body weight, which had remained unchanged for 7 mo before ester therapy, increased by approximately 26%. We concluded that tryptophan ethyl ester is effective at circumventing defective gastrointestinal neutral amino acid transport and may be useful in the treatment of Hartnup disease. PMID:2472426

  4. Width and defect effects on the electronic transport of zigzag MoS2 nanoribbons

    Science.gov (United States)

    An, Yipeng; Zhang, Mengjun; Da, Haixia; Fu, Zhaoming; Jiao, Zhaoyong; Liu, Zhiyong

    2016-06-01

    Using first-principles methods, we investigate the electronic transport properties of zigzag MoS2 nanoribbons (Z-MoS2NRs). The current–voltage (I–V) curves of Z-MoS2NRs show a negative differential resistive (NDR) effect, and are independent of nanoribbon width. The current flowing through the nanoribbon is mainly along the Mo-edge, with two different local current channels (Mo  →  Mo hop current and S  →  Mo  →  S bond current). The current will be suppressed when introducing a Mo vacancy-defect at the Mo-edge under low biases—while, under high biases, the current through the defected Z-MoS2NRs will increase a little, due to the other S-edge channel being opened.

  5. Electronic transport through a ladder nano structure in the presence of network defects

    International Nuclear Information System (INIS)

    The present research studied the electronic transport of an ideal infinite ladder nano structure in the presence/absence of network defects by using Green's function method at the tight-binding approximation. The network defects can be simulated by considering a finite ladder which is connected via two contacts to two similar infinite ladders. The results showed that the hopping energy of rungs determines the overlapping region of the ladder conductance channels. By increasing hopping energy of rungs, the allowed energy region of the ladder increases, while the overlapping region shrinks and eventually vanishes. Creation of branched bonds in the center ladder leads, through the system, to a harder electron tunneling. Moreover, the closer electron energy to the system gap edges leads to a better tunneling.

  6. NDE1 and GSK3β Associate with TRAK1 and Regulate Axonal Mitochondrial Motility: Identification of Cyclic AMP as a Novel Modulator of Axonal Mitochondrial Trafficking.

    Science.gov (United States)

    Ogawa, Fumiaki; Murphy, Laura C; Malavasi, Elise L V; O'Sullivan, Shane T; Torrance, Helen S; Porteous, David J; Millar, J Kirsty

    2016-05-18

    Mitochondria are essential for neuronal function, providing the energy required to power neurotransmission, and fulfilling many important additional roles. In neurons, mitochondria must be efficiently transported to sites, including synapses, where their functions are required. Neurons, with their highly elongated morphology, are consequently extremely sensitive to defective mitochondrial trafficking which can lead to neuronal ill-health/death. We recently demonstrated that DISC1 associates with mitochondrial trafficking complexes where it associates with the core kinesin and dynein adaptor molecule TRAK1. We now show that the DISC1 interactors NDE1 and GSK3β also associate robustly with TRAK1 and demonstrate that NDE1 promotes retrograde axonal mitochondrial movement. GSK3β is known to modulate axonal mitochondrial motility, although reports of its actual effect are conflicting. We show that, in our system, GSK3β promotes anterograde mitochondrial transport. Finally, we investigated the influence of cAMP elevation upon mitochondrial motility, and found a striking increase in mitochondrial motility and retrograde movement. DISC1, NDE1, and GSK3β are implicated as risk factors for major mental illness. Our demonstration that they function together within mitochondrial trafficking complexes suggests that defective mitochondrial transport may be a contributory disease mechanism in some cases of psychiatric disorder. PMID:26815013

  7. Charge transport model in solid-state avalanche amorphous selenium and defect suppression design

    Science.gov (United States)

    Scheuermann, James R.; Miranda, Yesenia; Liu, Hongyu; Zhao, Wei

    2016-01-01

    Avalanche amorphous selenium (a-Se) in a layer of High Gain Avalanche Rushing Photoconductor (HARP) is being investigated for its use in large area medical imagers. Avalanche multiplication of photogenerated charge requires electric fields greater than 70 V μm-1. For a-Se to withstand this high electric field, blocking layers are used to prevent the injection of charge carriers from the electrodes. Blocking layers must have a high injection barrier and deep trapping states to reduce the electric field at the interface. In the presence of a defect in the blocking layer, a distributed resistive layer (DRL) must be included into the structure to build up space charge and reduce the electric field in a-Se and the defect. A numerical charge transport model has been developed to optimize the properties of blocking layers used in various HARP structures. The model shows the incorporation of a DRL functionality into the p-layer can reduce dark current at a point defect by two orders of magnitude by reducing the field in a-Se to the avalanche threshold. Hole mobility in a DRL of ˜10-8 cm2 V-1 s-1 at 100 V μm-1 as demonstrated by the model can be achieved experimentally by varying the hole mobility of p-type organic or inorganic semiconductors through doping, e.g., using Poly(9-vinylcarbozole) doped with 1%-3% (by weight) of poly(3-hexylthiopene).

  8. Thermal transport in UO2 with defects and fission products by molecular dynamics simulations

    International Nuclear Information System (INIS)

    The importance of the thermal transport in nuclear fuel has motivated a wide range of experimental and modelling studies. In this report, the reduction of thermal transport in UO2 due to defects and fission products has been investigated using non-equilibrium MD simulations, with two sets of empirical potentials for studying the degregation of UO2 thermal conductivity including a Buckingham type interatomic potential and a recently developed EAM type interatomic potential. Additional parameters for U5+ and Zr4+ in UO2 have been developed for the EAM potential. The thermal conductivity results from MD simulations are then corrected for the spin-phonon scattering through Callaway model formulations. To validate the modelling results, comparison was made with experimental measurements on single crystal hyper-stoichiometric UO2+x samples.

  9. Effects of line defects on spin-dependent electronic transport of zigzag MoS2 nanoribbons

    International Nuclear Information System (INIS)

    The nonlinear spin-dependent transport properties in zigzag molybdenum-disulfide nanoribbons (ZMNRs) with line defects are investigated systematically using nonequilibrium Green’s function method combined with density functional theory. The results show that the line defects can enhance the electronic transfer ability of ZMNRs. The types and locations of the line defects are found critical in determining the spin polarization and the current-voltage (I-V) characteristics of the line defected ZMNRs. For the same defect type, the total currents of the ribbons with the line defects in the centers are lager than those on the edges. And for the same location, the total currents of the systems with the sulfur (S) line defect are larger than the according systems with the molybdenum (Mo) line defect. All the considered systems present magnetism properties. And in the S line defected systems, the spin reversal behaviors can be observed. In both the spin-up and spin-down states of the Mo line defected systems, there are obvious negative differential resistance behaviors. The mechanisms are proposed for these phenomena

  10. Effects of line defects on spin-dependent electronic transport of zigzag MoS{sub 2} nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin-Mei; Yang, Kai-Wei; Zhang, Dan; Ding, Jia-Feng; Xu, Hui, E-mail: xuhui@csu.edu.cn [Institute of Super-microstructure and Ultrafast Process in Advanced Materials & Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083 (China); Long, Meng-Qiu, E-mail: mqlong@csu.edu.cn [Institute of Super-microstructure and Ultrafast Process in Advanced Materials & Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083 (China); Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); Cui, Li-Ling [Institute of Super-microstructure and Ultrafast Process in Advanced Materials & Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083 (China); School of Science, Hunan University of Technology, Zhuzhou 412007 (China)

    2016-01-15

    The nonlinear spin-dependent transport properties in zigzag molybdenum-disulfide nanoribbons (ZMNRs) with line defects are investigated systematically using nonequilibrium Green’s function method combined with density functional theory. The results show that the line defects can enhance the electronic transfer ability of ZMNRs. The types and locations of the line defects are found critical in determining the spin polarization and the current-voltage (I-V) characteristics of the line defected ZMNRs. For the same defect type, the total currents of the ribbons with the line defects in the centers are lager than those on the edges. And for the same location, the total currents of the systems with the sulfur (S) line defect are larger than the according systems with the molybdenum (Mo) line defect. All the considered systems present magnetism properties. And in the S line defected systems, the spin reversal behaviors can be observed. In both the spin-up and spin-down states of the Mo line defected systems, there are obvious negative differential resistance behaviors. The mechanisms are proposed for these phenomena.

  11. Effects of line defects on spin-dependent electronic transport of zigzag MoS2 nanoribbons

    Directory of Open Access Journals (Sweden)

    Xin-Mei Li

    2016-01-01

    Full Text Available The nonlinear spin-dependent transport properties in zigzag molybdenum-disulfide nanoribbons (ZMNRs with line defects are investigated systematically using nonequilibrium Green’s function method combined with density functional theory. The results show that the line defects can enhance the electronic transfer ability of ZMNRs. The types and locations of the line defects are found critical in determining the spin polarization and the current-voltage (I-V characteristics of the line defected ZMNRs. For the same defect type, the total currents of the ribbons with the line defects in the centers are lager than those on the edges. And for the same location, the total currents of the systems with the sulfur (S line defect are larger than the according systems with the molybdenum (Mo line defect. All the considered systems present magnetism properties. And in the S line defected systems, the spin reversal behaviors can be observed. In both the spin-up and spin-down states of the Mo line defected systems, there are obvious negative differential resistance behaviors. The mechanisms are proposed for these phenomena.

  12. Pathogenic mutations causing glucose transport defects in GLUT1 transporter: The role of intermolecular forces in protein structure-function.

    Science.gov (United States)

    Raja, Mobeen; Kinne, Rolf K H

    2015-01-01

    Two families of glucose transporter - the Na(+)-dependent glucose cotransporter-1 (SGLT family) and the facilitated diffusion glucose transporter family (GLUT family) - play a crucial role in the translocation of glucose across the epithelial cell membrane. How genetic mutations cause life-threatening diseases like GLUT1-deficiency syndrome (GLUT1-DS) is not well understood. In this review, we have combined previous functional data with our in silico analyses of the bacterial homologue of GLUT members, XylE (an outward-facing, partly occluded conformation) and previously proposed GLUT1 homology model (an inward-facing conformation). A variety of native and mutant side chain interactions were modeled to highlight the potential roles of mutations in destabilizing protein-protein interaction hence triggering structural and functional defects. This study sets the stage for future studies of the structural properties that mediate GLUT1 dysfunction and further suggests that both SGLT and GLUT families share conserved domains that stabilize the transporter structure/function via a similar mechanism. PMID:25863194

  13. ARCN1 Mutations Cause a Recognizable Craniofacial Syndrome Due to COPI-Mediated Transport Defects.

    Science.gov (United States)

    Izumi, Kosuke; Brett, Maggie; Nishi, Eriko; Drunat, Séverine; Tan, Ee-Shien; Fujiki, Katsunori; Lebon, Sophie; Cham, Breana; Masuda, Koji; Arakawa, Michiko; Jacquinet, Adeline; Yamazumi, Yusuke; Chen, Shu-Ting; Verloes, Alain; Okada, Yuki; Katou, Yuki; Nakamura, Tomohiko; Akiyama, Tetsu; Gressens, Pierre; Foo, Roger; Passemard, Sandrine; Tan, Ene-Choo; El Ghouzzi, Vincent; Shirahige, Katsuhiko

    2016-08-01

    Cellular homeostasis is maintained by the highly organized cooperation of intracellular trafficking systems, including COPI, COPII, and clathrin complexes. COPI is a coatomer protein complex responsible for intracellular protein transport between the endoplasmic reticulum and the Golgi apparatus. The importance of such intracellular transport mechanisms is underscored by the various disorders, including skeletal disorders such as cranio-lenticulo-sutural dysplasia and osteogenesis imperfect, caused by mutations in the COPII coatomer complex. In this article, we report a clinically recognizable craniofacial disorder characterized by facial dysmorphisms, severe micrognathia, rhizomelic shortening, microcephalic dwarfism, and mild developmental delay due to loss-of-function heterozygous mutations in ARCN1, which encodes the coatomer subunit delta of COPI. ARCN1 mutant cell lines were revealed to have endoplasmic reticulum stress, suggesting the involvement of ER stress response in the pathogenesis of this disorder. Given that ARCN1 deficiency causes defective type I collagen transport, reduction of collagen secretion represents the likely mechanism underlying the skeletal phenotype that characterizes this condition. Our findings demonstrate the importance of COPI-mediated transport in human development, including skeletogenesis and brain growth. PMID:27476655

  14. Determinants of axonal regeneration

    OpenAIRE

    Frisén, J

    1997-01-01

    Axons often regrow to their targets and lost functions may be restored after an injury in the peripheral nervous system. In contrast, axonal regeneration is generally very limited after injuries in the central nervous system, and functional impairment is usually permanent. The regenerative capacity depends on intrinsic neuronal factors as weil as the interaction of neurons with other cells. Glial cells may, in different situations, either support or inhibit axo...

  15. Band-like transport in highly crystalline graphene films from defective graphene oxides

    Science.gov (United States)

    Negishi, R.; Akabori, M.; Ito, T.; Watanabe, Y.; Kobayashi, Y.

    2016-01-01

    The electrical transport property of the reduced graphene oxide (rGO) thin-films synthesized from defective GO through thermal treatment in a reactive ethanol environment at high temperature above 1000 °C shows a band-like transport with small thermal activation energy (Ea~10 meV) that occurs during high carrier mobility (~210 cm2/Vs). Electrical and structural analysis using X-ray absorption fine structure, the valence band photo-electron, Raman spectra and transmission electron microscopy indicate that a high temperature process above 1000 °C in the ethanol environment leads to an extraordinary expansion of the conjugated π-electron system in rGO due to the efficient restoration of the graphitic structure. We reveal that Ea decreases with the increasing density of states near the Fermi level due to the expansion of the conjugated π-electron system in the rGO. This means that Ea corresponds to the energy gap between the top of the valence band and the bottom of the conduction band. The origin of the band-like transport can be explained by the carriers, which are more easily excited into the conduction band due to the decreasing energy gap with the expansion of the conjugated π-electron system in the rGO. PMID:27364116

  16. Band-like transport in highly crystalline graphene films from defective graphene oxides

    Science.gov (United States)

    Negishi, R.; Akabori, M.; Ito, T.; Watanabe, Y.; Kobayashi, Y.

    2016-07-01

    The electrical transport property of the reduced graphene oxide (rGO) thin-films synthesized from defective GO through thermal treatment in a reactive ethanol environment at high temperature above 1000 °C shows a band-like transport with small thermal activation energy (Ea~10 meV) that occurs during high carrier mobility (~210 cm2/Vs). Electrical and structural analysis using X-ray absorption fine structure, the valence band photo-electron, Raman spectra and transmission electron microscopy indicate that a high temperature process above 1000 °C in the ethanol environment leads to an extraordinary expansion of the conjugated π-electron system in rGO due to the efficient restoration of the graphitic structure. We reveal that Ea decreases with the increasing density of states near the Fermi level due to the expansion of the conjugated π-electron system in the rGO. This means that Ea corresponds to the energy gap between the top of the valence band and the bottom of the conduction band. The origin of the band-like transport can be explained by the carriers, which are more easily excited into the conduction band due to the decreasing energy gap with the expansion of the conjugated π-electron system in the rGO.

  17. The metabolic basis for developmental disorders due to defective folate transport.

    Science.gov (United States)

    Desai, Ankuri; Sequeira, Jeffrey M; Quadros, Edward V

    2016-07-01

    Folates are essential in the intermediary metabolism of amino acids, synthesis of nucleotides and for maintaining methylation reactions. They are also linked to the production of neurotransmitters through GTP needed for the synthesis of tetrahydrobiopterin. During pregnancy, folate is needed for fetal development. Folate deficiency during this period has been linked to increased risk of neural tube defects. Disturbances of folate metabolism due to genetic abnormalities or the presence of autoantibodies to folate receptor alpha (FRα) can impair physiologic processes dependent on folate, resulting in a variety of developmental disorders including cerebral folate deficiency syndrome and autism spectrum disorders. Overall, adequate folate status has proven to be important during pregnancy as well as neurological development and functioning in neonates and children. Treatment with pharmacologic doses of folinic acid has led to reversal of some symptoms in many children diagnosed with cerebral folate deficiency syndrome and autism, especially in those positive for autoantibodies to FRα. Thus, as the brain continues to develop throughout fetal and infant life, it can be affected and become dysfunctional due to a defective folate transport contributing to folate deficiency. Treatment and prevention of these disorders can be achieved by identification of those at risk and supplementation with folinic acid. PMID:26924398

  18. Transport limits in defect-engineered LaAlO3/SrTiO3 bilayers.

    Science.gov (United States)

    Gunkel, Felix; Wicklein, Sebastian; Hoffmann-Eifert, Susanne; Meuffels, Paul; Brinks, Peter; Huijben, Mark; Rijnders, Guus; Waser, Rainer; Dittmann, Regina

    2015-01-21

    The electrical properties of the metallic interface in LaAlO3/SrTiO3 (LAO/STO) bilayers are investigated with focus on the role of cationic defects in thin film STO. Systematic growth-control of the STO thin film cation stoichiometry (defect-engineering) yields a relation between cationic defects in the STO layer and electronic properties of the bilayer-interface. Hall measurements reveal a stoichiometry-effect primarily on the electron mobility. The results indicate an enhancement of scattering processes in as-grown non-stoichiometric samples indicating an increased density of defects. Furthermore, we discuss the thermodynamic processes and defect-exchange reactions at the LAO/STO-bilayer interface determined in high temperature equilibrium. By quenching defined defect states from high temperature equilibrium, we finally connect equilibrium thermodynamics with room temperature transport. The results are consistent with the defect-chemistry model suggested for LAO/STO interfaces. Moreover, they reveal an additional healing process of extended defects in thin film STO. PMID:25469599

  19. Constructing recombinant replication-defective adenoviral vectors that express glucose transporter-1 through in vitro ligation

    Institute of Scientific and Technical Information of China (English)

    Fangcheng Li; Junliang Li; Ranyi Liu; Xinke Xu; Kaichang Yuan; Zhonghua Wu

    2008-01-01

    BACKGROUND: We constructed a homologous recombination bacterial method based on the pAdEasy system, a widely used system, for generating recombinant adenoviral vectors that express glucose transporter-1 (GLUT1) in rats.OBJECTIVE: This study was designed to investigate the feasibility of generating recombinant replication-defective adenoviral vectors that express GLUT1 in rats by in vitro ligation based on the Adeno-XTM system. DESIGN: An in vitro cell-based experiment. SETTING: This study was performed at the Linbaixin Medical Research Center of the Second Hospital Affiliated to Sun Yat-sen University and Central Laboratory for Prevention and Treatment of Tumor, Sun Yat-sen University between January and August 2004. MATERIALS: Male, adult, Sprague Dawley rats were used to extract total RNA from brain tissue. E. coli DH5?and human embryonic kidney 293 cells (HEK293 cells) used in the present study were cryo-preserved by the Second Hospital Affiliated to Sun Yat-sen University. Rabbit anti-rat GLUT1 polyclonal antibody (Chemicon, U.S.A.) and primers (Shanghai Boya Bioengineering Co., Ltd) were also used. METHODS: E1/E3-deleted replication-defective adenoviral vectors were used. Using in vitro ligation, the target gene was first sub-cloned into a shuttle vector plasmid to obtain the fragment containing target gene expression cassettes by enzyme digestion. Subsequently, the fragment was co-transformed with linearized adenoviral backbone vector into the E. coli strain. The recombinant adenoviral plasmid was transfected into HEK293 cells to assembly recombinant adenoviral vectors with replication capabilities. The procedure was repeated several times for recombinant adenoviral vectors amplification. MAIN OUTCOME MEASURES: Efficiency of recombinant adenoviral vectors to express the target gene was measured by gene and protein expression through polymerase chain reaction and Western Blot assays, respectively.RESULTS: Results demonstrated that recombinant adenoviral

  20. Protein phosphorylation: Localization in regenerating optic axons

    International Nuclear Information System (INIS)

    A number of axonal proteins display changes in phosphorylation during goldfish optic nerve regeneration. (1) To determine whether the phosphorylation of these proteins was closely linked to their synthesis in the retinal ganglion cell body, cycloheximide was injected intraocularly into goldfish whose optic nerves had been regenerating for 3 weeks. Cycloheximide reduced the incorporation of [3H]proline and 32P orthophosphate into total nerve protein by 84% and 46%, respectively. Of the 20 individual proteins examined, 17 contained less than 15% of the [3H]proline label measured in corresponding controls, whereas 18 proteins contained 50% or more of the 32P label, suggesting that phosphorylation was largely independent of synthesis. (2) To determine whether the proteins were phosphorylated in the ganglion cell axons, axonal transport of proteins was blocked by intraocular injection of vincristine. Vincristine reduced [3H]proline labeling of total protein by 88% and 32P labeling by 49%. Among the individual proteins [3H]proline labeling was reduced by 90% or more in 18 cases but 32P labeling was reduced only by 50% or less. (3) When 32P was injected into the cranial cavity near the ends of the optic axons, all of the phosphoproteins were labeled more intensely in the optic tract than in the optic nerve. These results suggest that most of the major phosphoproteins that undergo changes in phosphorylation in the course of regeneration are phosphorylated in the optic axons

  1. An analytical solution to contaminant transport through composite liners with geomembrane defects

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    To investigate the performance of landfill composite liner system,a one-dimensional model was developed for solute transport through composite liners containing geomembrane defects.An analytical solution to the model was obtained by the method of Laplace transformation.The results obtained by the presented solution agree well with those obtained by the numerical method.Results show that leachate head and construction quality of geomembrane(GM) have significant influences on the performance of the composite liners for heavy metal ions.The breakthrough time of lead decreases from 50 a to 19 a when the leachate head increases from 0.3 m to 10 m.It is also indicated that the contaminant mass flux of volatile organic compounds(VOCs) induced by leakage can not be neglected in case of poor construction quality of the landfill barrier system.It is shown that diffusion coefficient and partition coefficient of GM have great influences on solute transport through composite liners for VOCs.The breakthrough time of heavy metal ions will be greatly overestimated if the effects of diffusion and adsorption of clay and geosynthetic clay liner(GCL) are neglected.The composite liner consisting of a geomembrane and a GCL provides a poor barrier for VOCs.The presented analytical solution is relatively simple to apply and can be used for preliminary design of composite liners,evaluating experimental results,and verifying more complex numerical models.

  2. In-situ measurement of the heat transport in defect- engineered free-standing single-layer graphene.

    Science.gov (United States)

    Wang, Haidong; Kurata, Kosaku; Fukunaga, Takanobu; Takamatsu, Hiroshi; Zhang, Xing; Ikuta, Tatsuya; Takahashi, Koji; Nishiyama, Takashi; Ago, Hiroki; Takata, Yasuyuki

    2016-01-01

    Utilizing nanomachining technologies, it is possible to manipulate the heat transport in graphene by introducing different defects. However, due to the difficulty in suspending large-area single-layer graphene (SLG) and limited temperature sensitivity of the present probing methods, the correlation between the defects and thermal conductivity of SLG is still unclear. In this work, we developed a new method for fabricating micro-sized suspended SLG. Subsequently, a focused ion beam (FIB) was used to create nanohole defects in SLG and tune the heat transport. The thermal conductivity of the same SLG before and after FIB radiation was measured using a novel T-type sensor method on site in a dual-beam system. The nanohole defects decreased the thermal conductivity by about 42%. It was found that the smaller width and edge scrolling also had significant restriction on the thermal conductivity of SLG. Based on the calculation results through a lattice dynamics theory, the increase of edge roughness and stronger scattering on long-wavelength acoustic phonons are the main reasons for the reduction in thermal conductivity. This work provides reliable data for understanding the heat transport in a defective SLG membrane, which could help on the future design of graphene-based electrothermal devices. PMID:26906476

  3. In-situ measurement of the heat transport in defect- engineered free-standing single-layer graphene

    Science.gov (United States)

    Wang, Haidong; Kurata, Kosaku; Fukunaga, Takanobu; Takamatsu, Hiroshi; Zhang, Xing; Ikuta, Tatsuya; Takahashi, Koji; Nishiyama, Takashi; Ago, Hiroki; Takata, Yasuyuki

    2016-02-01

    Utilizing nanomachining technologies, it is possible to manipulate the heat transport in graphene by introducing different defects. However, due to the difficulty in suspending large-area single-layer graphene (SLG) and limited temperature sensitivity of the present probing methods, the correlation between the defects and thermal conductivity of SLG is still unclear. In this work, we developed a new method for fabricating micro-sized suspended SLG. Subsequently, a focused ion beam (FIB) was used to create nanohole defects in SLG and tune the heat transport. The thermal conductivity of the same SLG before and after FIB radiation was measured using a novel T-type sensor method on site in a dual-beam system. The nanohole defects decreased the thermal conductivity by about 42%. It was found that the smaller width and edge scrolling also had significant restriction on the thermal conductivity of SLG. Based on the calculation results through a lattice dynamics theory, the increase of edge roughness and stronger scattering on long-wavelength acoustic phonons are the main reasons for the reduction in thermal conductivity. This work provides reliable data for understanding the heat transport in a defective SLG membrane, which could help on the future design of graphene-based electrothermal devices.

  4. In-situ measurement of the heat transport in defect- engineered free-standing single-layer graphene

    Science.gov (United States)

    Wang, Haidong; Kurata, Kosaku; Fukunaga, Takanobu; Takamatsu, Hiroshi; Zhang, Xing; Ikuta, Tatsuya; Takahashi, Koji; Nishiyama, Takashi; Ago, Hiroki; Takata, Yasuyuki

    2016-01-01

    Utilizing nanomachining technologies, it is possible to manipulate the heat transport in graphene by introducing different defects. However, due to the difficulty in suspending large-area single-layer graphene (SLG) and limited temperature sensitivity of the present probing methods, the correlation between the defects and thermal conductivity of SLG is still unclear. In this work, we developed a new method for fabricating micro-sized suspended SLG. Subsequently, a focused ion beam (FIB) was used to create nanohole defects in SLG and tune the heat transport. The thermal conductivity of the same SLG before and after FIB radiation was measured using a novel T-type sensor method on site in a dual-beam system. The nanohole defects decreased the thermal conductivity by about 42%. It was found that the smaller width and edge scrolling also had significant restriction on the thermal conductivity of SLG. Based on the calculation results through a lattice dynamics theory, the increase of edge roughness and stronger scattering on long-wavelength acoustic phonons are the main reasons for the reduction in thermal conductivity. This work provides reliable data for understanding the heat transport in a defective SLG membrane, which could help on the future design of graphene-based electrothermal devices. PMID:26906476

  5. Neurofilament gene expression: a major determinant of axonal caliber

    International Nuclear Information System (INIS)

    Within the wide spectrum of axonal diameters occurring in mammalian nerve fibers, each class of neurons has a relatively restricted range of axonal calibers. The control of caliber has functional significance because diameter is the principal determinant of conduction velocity in myelinated nerve fibers. Previous observations support the hypothesis that neurofilaments (NF) are major intrinsic determinants of axonal caliber in large myelinated nerve fibers. Following interruption of axons (axotomy) by crushing or cutting a peripheral nerve, caliber is reduced in the proximal axonal stumps, which extend from the cell bodies to the site of axotomy. This reduction in axonal caliber in the proximal stumps is associated with a selective diminution in the amount of NF protein undergoing slow axonal transport in these axons, with a decrease in axonal NF content, and with reduced conduction velocity. The present report demonstrates that changes in axonal caliber after axotomy correlate with a selective alteration in NF gene expression. Hybridization with specific cDNAs was used to measure levels of mRNA encoding the 68-kDa neurofilament protein (NF68), β-tubulin, and actin in lumbar sensory neurons of rat at various times after crushing the sciatic nerve. Between 4 and 42 days after axotomy by nerve crush, the levels of NF68 mRNA were reduced 2- to 3-fold. At the same times, the levels of tubulin and actin mRNAs were increased several-fold. These findings support the hypothesis that the expression of a single set of neuron-specific genes (encoding NF) directly determines axonal caliber, a feature neuronal morphology with important consequences for physiology and behavior

  6. Microstructure defects mediated charge transport in Nb-doped epitaxial BaTiO3 thin films

    Science.gov (United States)

    Zhou, Jian; Jing, Xiaosai; Alexe, Marin; Dai, Jiyan; Qin, Minghui; Wu, Sujuan; Zeng, Min; Gao, Jinwei; Lu, Xubing; Liu, J.-M.

    2016-05-01

    Nb-doped BaTiO3 (BNTO) films were deposited on MgO substrates at different substrate temperatures by pulsed laser deposition. The temperature dependence of their resistivity, carrier mobility and carrier concentration were systematically investigated. It reveals that the BNTO films deposited at lower temperature show higher resistivity and lower carrier mobility, and only show semiconductor characteristics at measurement temperatures ranging from 10 to 400 K. There is a metal-semiconductor transition at about 20 K for the films grown at relatively higher temperature. The intrinsic mechanism responsible for the different charge transport behavior was revealed by microstructure studies. Low crystal quality and high density of microstructure defects, observed for BNTO films grown at low temperatures, are, in particular, massively affecting the charge transport behavior of the BNTO films. The mediated charge transport of the microstructure defects is dominated by the thermal excitation process.

  7. Abrogation of the twin arginine transport system in Salmonella enterica serovar Typhimurium leads to colonization defects during infection.

    Science.gov (United States)

    Reynolds, M Megan; Bogomolnaya, Lydia; Guo, Jinbai; Aldrich, Lindsay; Bokhari, Danial; Santiviago, Carlos A; McClelland, Michael; Andrews-Polymenis, Helene

    2011-01-01

    TatC (STM3975) is a highly conserved component of the Twin Arginine Transport (Tat) systems that is required for transport of folded proteins across the inner membrane in gram-negative bacteria. We previously identified a ΔtatC mutant as defective in competitive infections with wild type ATCC14028 during systemic infection of Salmonella-susceptible BALB/c mice. Here we confirm these results and show that the ΔtatC mutant is internalized poorly by cultured J774-A.1 mouse macrophages a phenotype that may be related to the systemic infection defect. This mutant is also defective for short-term intestinal and systemic colonization after oral infection of BALB/c mice and is shed in reduced numbers in feces from orally infected Salmonella-resistant (CBA/J) mice. We show that the ΔtatC mutant is highly sensitive to bile acids perhaps resulting in the defect in intestinal infection that we observe. Finally, the ΔtatC mutant has an unusual combination of motility phenotypes in Salmonella; it is severely defective for swimming motility but is able to swarm well. The ΔtatC mutant has a lower amount of flagellin on the bacterial surface during swimming motility but normal levels under swarming conditions. PMID:21298091

  8. Axonal PPARγ promotes neuronal regeneration after injury.

    Science.gov (United States)

    Lezana, Juan Pablo; Dagan, Shachar Y; Robinson, Ari; Goldstein, Ronald S; Fainzilber, Mike; Bronfman, Francisca C; Bronfman, Miguel

    2016-06-01

    PPARγ is a ligand-activated nuclear receptor best known for its involvement in adipogenesis and glucose homeostasis. PPARγ activity has also been associated with neuroprotection in different neurological disorders, but the mechanisms involved in PPARγ effects in the nervous system are still unknown. Here we describe a new functional role for PPARγ in neuronal responses to injury. We found both PPAR transcripts and protein within sensory axons and observed an increase in PPARγ protein levels after sciatic nerve crush. This was correlated with increased retrograde transport of PPARγ after injury, increased association of PPARγ with the molecular motor dynein, and increased nuclear accumulation of PPARγ in cell bodies of sensory neurons. Furthermore, PPARγ antagonists attenuated the response of sensory neurons to sciatic nerve injury, and inhibited axonal growth of both sensory and cortical neurons in culture. Thus, axonal PPARγ is involved in neuronal injury responses required for axonal regeneration. Since PPARγ is a major molecular target of the thiazolidinedione (TZD) class of drugs used in the treatment of type II diabetes, several pharmaceutical agents with acceptable safety profiles in humans are available. Our findings provide motivation and rationale for the evaluation of such agents for efficacy in central and peripheral nerve injuries. PMID:26446277

  9. Brain gangliosides in axon-myelin stability and axon regeneration

    OpenAIRE

    Schnaar, Ronald L.

    2009-01-01

    Gangliosides, sialic acid-bearing glycosphingolipids, are expressed at high abundance and complexity in the brain. Altered ganglioside expression results in neural disorders, including seizures and axon degeneration. Brain gangliosides function, in part, by interacting with a ganglioside-binding lectin, myelin-associated glycoprotein (MAG). MAG, on the innermost wrap of the myelin sheath, binds to gangliosides GD1a and GT1b on axons. MAG-ganglioside binding ensures optimal axon-myelin cell-ce...

  10. The effect of topological defects and oxygen adsorption on the electronic transport properties of single-walled carbon-nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Grujicic, M.; Cao, G.; Singh, R

    2003-04-30

    Ab initio density functional theory (DFT) calculations of the interactions between isolated infinitely-long semiconducting zig-zag (10, 0) or isolated infinitely-long metallic arm-chair (5, 5) single-walled carbon-nanotubes (SWCNTs) and single oxygen-molecules are carried out in order to determine the character of molecular-oxygen adsorption and its effect on electronic transport properties of these SWCNTs. A Green's function method combined with a nearest-neighbor tight-binding Hamiltonian in a non-orthogonal basis is used to compute the electrical conductance of SWCNTs and its dependence on the presence of topological defects in SWCNTs and of molecular-oxygen adsorbates. The computational results obtained show that in both semiconducting and metallic SWCNTs, oxygen-molecules are physisorbed to the defect-free nanotube walls, but when such walls contain topological defects, oxygen-molecules become strongly chemisorbed. In semiconducting (10, 0) SWCNTs, physisorbed O{sub 2}-molecules are found to significantly increase electrical conductance while the effect of 7-5-5-7 defects is practically annulled by chemisorbed O{sub 2}-molecules. In metallic (5, 5) SWCNTs, both O{sub 2} adsorbates and 7-5-5-7 defects are found to have a relatively small effect on electrical conductance of these nanotubes.

  11. Intracellular transport of low density lipoprotein-derived cholesterol is defective in Niemann-Pick type C fibroblasts

    International Nuclear Information System (INIS)

    Niemann-Pick disease type C (NPC) is characterized by substantial intracellular accumulation of unesterified cholesterol. The accumulation of unesterified cholesterol in NPC fibroblasts cultured with low density lipoprotein (LDL) appears to result from the inability of LDL to stimulate cholesterol esterification in addition to impaired LDL-mediated downregulation of LDL receptor activity and cellular cholesterol synthesis. Although a defect in cholesterol transport in NPC cells has been inferred from previous studies, no experiments have been reported that measure the intracellular movement of LDL-cholesterol specifically. We have used four approaches to assess intracellular cholesterol transport in normal and NPC cells and have determined the following: (a) mevinolin-inhibited NPC cells are defective in using LDL-cholesterol for growth. However, exogenously added mevalonate restores cell growth equally in normal and NPC cells; (b) the transport of LDL-derived [3H]cholesterol to the plasma membrane is slower in NPC cells, while the rate of appearance of [3H]acetate-derived, endogenously synthesized [3H]cholesterol at the plasma membrane is the same for normal and NPC cells; (c) in NPC cells, LDL-derived [3H]cholesterol accumulates in lysosomes to higher levels than normal, resulting in defective movement to other cell membranes; and (d) incubation of cells with LDL causes an increase in cholesterol content of NPC lysosomes that is threefold greater than that observed in normal lysosomes. Our results indicate that a cholesterol transport defect exists in NPC that is specific for LDL-derived cholesterol

  12. Microfluidic control of axonal guidance

    Science.gov (United States)

    Gu, Ling; Black, Bryan; Ordonez, Simon; Mondal, Argha; Jain, Ankur; Mohanty, Samarendra

    2014-10-01

    The precision of axonal pathfinding and the accurate formation of functional neural circuitry are crucial for an organism during development as well as during adult central and peripheral nerve regeneration. While chemical cues are believed to be primarily responsible for axonal pathfinding, we hypothesize that forces due to localized fluid flow may directly affect neuronal guidance during early organ development. Here, we report direct evidence of fluid flow influencing axonal migration, producing turning angles of up to 90°. Microfluidic flow simulations indicate that an axon may experience significant bending force due to cross-flow, which may contribute to the observed axonal turning. This method of flow-based guidance was successfully used to fasciculate one advancing axon onto another, showcasing the potential of this technique to be used for the formation of in vitro neuronal circuits.

  13. Membrane turnover and receptor trafficking in regenerating axons.

    Science.gov (United States)

    Hausott, Barbara; Klimaschewski, Lars

    2016-02-01

    Peripheral axonal regeneration requires surface-expanding membrane addition. The continuous incorporation of new membranes into the axolemma allows the pushing force of elongating microtubules to drive axonal growth cones forwards. Hence, a constant supply of membranes and cytoskeletal building blocks is required, often for many weeks. In human peripheral nerves, axonal tips may be more than 1 m away from the neuronal cell body. Therefore, in the initial phase of regeneration, membranes are derived from pre-existing vesicles or synthesised locally. Only later stages of axonal regeneration are supported by membranes and proteins synthesised in neuronal cell bodies, considering that the fastest anterograde transport mechanisms deliver cargo at 20 cm/day. Whereas endocytosis and exocytosis of membrane vesicles are balanced in intact axons, membrane incorporation exceeds membrane retrieval during regeneration to compensate for the loss of membranes distal to the lesion site. Physiological membrane turnover rates will not be established before the completion of target reinnervation. In this review, the current knowledge on membrane traffic in axonal outgrowth is summarised, with a focus on endosomal vesicles as the providers of membranes and carriers of growth factor receptors required for initiating signalling pathways to promote the elongation and branching of regenerating axons in lesioned peripheral nerves. PMID:26222895

  14. Pioneer Axon Navigation Is Controlled by AEX-3, a Guanine Nucleotide Exchange Factor for RAB-3 in Caenorhabditis elegans.

    Science.gov (United States)

    Bhat, Jaffar M; Hutter, Harald

    2016-07-01

    Precise and accurate axon tract formation is an essential aspect of brain development. This is achieved by the migration of early outgrowing axons (pioneers) allowing later outgrowing axons (followers) to extend toward their targets in the embryo. In Caenorhabditis elegans the AVG neuron pioneers the right axon tract of the ventral nerve cord, the major longitudinal axon tract. AVG is essential for the guidance of follower axons and hence organization of the ventral nerve cord. In an enhancer screen for AVG axon guidance defects in a nid-1/Nidogen mutant background, we isolated an allele of aex-3 aex-3 mutant animals show highly penetrant AVG axon navigation defects. These defects are dependent on a mutation in nid-1/Nidogen, a basement membrane component. Our data suggest that AEX-3 activates RAB-3 in the context of AVG axon navigation. aex-3 genetically acts together with known players of vesicular exocytosis: unc-64/Syntaxin, unc-31/CAPS, and ida-1/IA-2. Furthermore our genetic interaction data suggest that AEX-3 and the UNC-6/Netrin receptor UNC-5 act in the same pathway, suggesting AEX-3 might regulate the trafficking and/or insertion of UNC-5 at the growth cone to mediate the proper guidance of the AVG axon. PMID:27116976

  15. α-Tubulin Tyrosination and CLIP-170 Phosphorylation Regulate the Initiation of Dynein-Driven Transport in Neurons.

    Science.gov (United States)

    Nirschl, Jeffrey J; Magiera, Maria M; Lazarus, Jacob E; Janke, Carsten; Holzbaur, Erika L F

    2016-03-22

    Motor-cargo recruitment to microtubules is often the rate-limiting step of intracellular transport, and defects in this recruitment can cause neurodegenerative disease. Here, we use in vitro reconstitution assays with single-molecule resolution, live-cell transport assays in primary neurons, computational image analysis, and computer simulations to investigate the factors regulating retrograde transport initiation in the distal axon. We find that phosphorylation of the cytoskeletal-organelle linker protein CLIP-170 and post-translational modifications of the microtubule track combine to precisely control the initiation of retrograde transport. Computer simulations of organelle dynamics in the distal axon indicate that while CLIP-170 primarily regulates the time to microtubule encounter, the tyrosination state of the microtubule lattice regulates the likelihood of binding. These mechanisms interact to control transport initiation in the axon in a manner sensitive to the specialized cytoskeletal architecture of the neuron. PMID:26972003

  16. A novel mutation in the sodium/iodide symporter gene in the largest family with iodide transport defect.

    Science.gov (United States)

    Kosugi, S; Bhayana, S; Dean, H J

    1999-09-01

    We previously reported nine children with an autosomally recessive form of congenital hypothyroidism due to an iodide transport defect in a large Hutterite family with extensive consanguinity living in central Canada. Since the original report, we have diagnosed congenital hypothyroidism by newborn TSH screening in 9 additional children from the family. We performed direct sequencing of the PCR products of each NIS (sodium/iodide symporter) gene exon with flanking introns amplified from genomic DNA extracted from peripheral blood cells of the patients. We identified a novel NIS gene mutation, G395R (Gly395-->Arg; GGA-->AGA), in 10 patients examined in the present study. All of the parents tested were heterozygous for the mutation, suggesting that the patients were homozygous. The mutation was located in the 10th transmembrane helix. Expression experiments by transfection of the mutant NIS complimentary DNA into COS-7 cells showed no perchlorate-sensitive iodide uptake, confirming that the mutation is the direct cause of the iodide transport defect in these patients. A patient who showed an intermediate saliva/serum technetium ratio (14.0; normal, > or = 20) and was considered to have a partial or less severe defect in the previous report (IX-24) did not have a NIS gene mutation. It is now possible to use gene diagnostics of this unique NIS mutation to identify patients with congenital hypothyroidism due to an iodide transport defect in this family and to determine the carrier state of potential parents for genetic counseling and arranging rapid and early diagnosis of their infants. PMID:10487695

  17. Do Glut1 (glucose transporter type 1) defects exist in epilepsy patients responding to a ketogenic diet?

    Science.gov (United States)

    Becker, Felicitas; Schubert, Julian; Weckhuysen, Sarah; Suls, Arvid; Grüninger, Steffen; Korn-Merker, Elisabeth; Hofmann-Peters, Anne; Sperner, Jürgen; Cross, Helen; Hallmann, Kerstin; Elger, Christian E; Kunz, Wolfram S; Madeleyen, René; Lerche, Holger; Weber, Yvonne G

    2015-08-01

    In the recent years, several neurological syndromes related to defects of the glucose transporter type 1 (Glut1) have been descried. They include the glucose transporter deficiency syndrome (Glut1-DS) as the most severe form, the paroxysmal exertion-induced dyskinesia (PED), a form of spastic paraparesis (CSE) as well as the childhood (CAE) and the early-onset absence epilepsy (EOAE). Glut1, encoded by the gene SLC2A1, is the most relevant glucose transporter in the brain. All Glut1 syndromes respond well to a ketogenic diet (KD) and most of the patients show a rapid seizure control. Ketogenic Diet developed to an established treatment for other forms of pharmaco-resistant epilepsies. Since we were interested in the question if those patients might have an underlying Glut1 defect, we sequenced SLC2A1 in a cohort of 28 patients with different forms of pharmaco-resistant epilepsies responding well to a KD. Unfortunately, we could not detect any mutations in SLC2A1. The exact action mechanisms of KD in pharmaco-resistant epilepsy are not well understood, but bypassing the Glut1 transporter seems not to play an important role. PMID:26088884

  18. Axon-glia interaction and membrane traffic in myelin formation

    Directory of Open Access Journals (Sweden)

    Robin eWhite

    2014-01-01

    Full Text Available In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialised glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarisation followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasising the central role of the Src-family kinase Fyn during CNS myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of PLP (proteolipid protein transport by SNARE proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.

  19. Theoretical insights on the electro-thermal transport properties of monolayer MoS2 with line defects

    Science.gov (United States)

    Saha, Dipankar; Mahapatra, Santanu

    2016-04-01

    Two dimensional (2D) materials demonstrate several novel electrical, mechanical, and thermal properties which are quite distinctive to those of their bulk form. Among many others, one important potential application of the 2D material is its use in the field of energy harvesting. Owing to that, here we present a detailed study on electrical as well as thermal transport of monolayer MoS2, in quasi ballistic regime. Besides the perfect monolayer in its pristine form, we also consider various line defects which have been experimentally observed in mechanically exfoliated MoS2 samples. For calculating various parameters related to the electrical transmission, we employ the non-equilibrium Green's function-density functional theory combination. However, to obtain the phonon transmission, we take help of the parametrized Stillinger-Weber potential which can accurately delineate the inter-atomic interactions for the monolayer MoS2. Due to the presence of line defects, we observed significant reductions in both the charge carrier and the phonon transmissions through a monolayer MoS2 flake. Moreover, we also report a comparative analysis showing the temperature dependency of the thermoelectric figure of merit values, as obtained for the perfect as well as the other defective 2D samples.

  20. Thermal transport in UO2 with defects and fission products by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cooper, Michael William Donald [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lashley, Jason Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Byler, Darrin David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-14

    The importance of the thermal transport in nuclear fuel has motivated a wide range of experimental and modelling studies. In this report, the reduction of thermal transport in UO2 due to defects and fission products has been investigated using non-equilibrium MD simulations, with two sets of empirical potentials for studying the degregation of UO2 thermal conductivity including a Buckingham type interatomic potential and a recently developed EAM type interatomic potential. Additional parameters for U5+ and Zr4+ in UO2 have been developed for the EAM potential. The thermal conductivity results from MD simulations are then corrected for the spin-phonon scattering through Callaway model formulations. To validate the modelling results, comparison was made with experimental measurements on single crystal hyper-stoichiometric UO2+x samples.

  1. Tratamento da falha óssea parcial pelo transporte ósseo parietal Partial bone defect treatment using parietal bone transportation

    Directory of Open Access Journals (Sweden)

    Fabio Lucas Rodrigues

    2005-01-01

    Full Text Available OBJETIVO: Descrever a técnica de transporte ósseo parietal para tratamento de falha óssea parcial, e descrever o resultado clínico e radiográfico de uma série de pacientes tratados por esta técnica. CASUÍSTICA E MÉTODO: tratamos nove pacientes portadores de lesão óssea parcial, sendo seis localizada na tíbia e três no fêmur. Todos apresentavam lesão infectada, acompanhada de pseudo-artrose. O procedimento iniciou-se com estabilização do segmento ósseo com fixador externo, seguido de corticotomia parietal, em osso sadio adjacente à falha, para criar o fragmento que foi transportado. Este fragmento foi transfixado por fios olivados, que conectados às hastes sulcadas permitiam o transporte ósseo. Em dois pacientes os fragmentos utilizados eram de osso adjacente (fíbula, transportados para a tíbia em direção da tíbia. A latência, velocidade e ritmo de distração foram os preconizados por Ilizarov. RESULTADOS: a infecção e a pseudo-artrose foram curadas em todos os casos, com preenchimento da falha óssea. As complicações encontradas foram infecção nos orifícios dos fios na pele e regenerado hipotrófico. CONCLUSÃO: o tratamento da falha óssea parcial pelo transporte ósseo parietal determinou solução do processo infeccioso, com consolidação da pseudo-artrose e preenchimento da falha óssea.OBJECTIVE: This study describes the bone transportation technique for partial bone defect, and shows clinical and radiological results of a series of patients treated by using this method. MATERIAL AND METHODS: Nine patients with partial bone defect were treated (six tibia and three femur. Every patient had infection and nonunion. The initial procedure was to stabilize the bone, followed by a partial corticotomy on the healthy bone adjacent to the defect, in order to create a fragment to be distracted. This fragment was fixed by olive wires, which were conected to the thread rod. We used fibula transport for tibial lateral

  2. Characterizing defects and transport in Si nanowire devices using Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Si nanowires (NWs) integrated in a field effect transistor device structure are characterized using scanning electron (SEM), atomic force, and scanning Kelvin probe force (KPFM) microscopy. Reactive ion etching (RIE) and vapor–liquid–solid (VLS) growth were used to fabricate NWs between predefined electrodes. Characterization of Si NWs identified defects and/or impurities that affect the surface electronic structure. RIE NWs have defects that both SEM and KPFM analysis associate with a surface contaminant as well as defects that have a voltage dependent response indicating impurity states in the energy bandgap. In the case of VLS NWs, even after aqua regia, Au impurity levels are found to induce impurity states in the bandgap. KPFM data, when normalized to the oxide-capacitance response, also identify a subset of VLS NWs with poor electrical contact due to nanogaps and short circuits when NWs cross that is not observed in AFM images or in current–voltage measurements when NWs are connected in parallel across electrodes. The experiments and analysis presented outline a systematic method for characterizing a broad array of nanoscale systems under device operation conditions. (paper)

  3. The effect of atomic-scale defects and dopants on phosphorene electronic structure and quantum transport properties.

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Bezanilla, Alejandro

    2016-01-20

    By means of a multi-scale first-principles approach, a description of the local electronic structure of 2D and narrow phosphorene sheets with various types of modifications is presented. Firtly, a rational argument based on the geometry of the pristine and modified P network, and supported by the Wannier functions formalism is introduced to describe a hybridization model of the P atomic orbitals. Ab initio calculations show that non-isoelectronic foreign atoms form quasi-bound states at varying energy levels and create different polarization states depending on the number of valence electrons between P and the doping atom. The quantum transport properties of modified phosphorene ribbons are further described with great accuracy. The distortions on the electronic bands induced by the external species lead to strong backscattering effects on the propagating charge carriers. Depending on the energy of the charge carrier and the type of doping, the conduction may range from the diffusive to the localized regime. Interstitial defects at vacant sites lead to homogeneous transport fingerprints across different types of doping atoms. We suggest that the relatively low values of charge mobility reported in experimental measurements may have its origin in the presence of defects.

  4. Adenoviral gene transfer corrects the ion transport defect in the sinus epithelia of a porcine CF model.

    Science.gov (United States)

    Potash, Andrea E; Wallen, Tanner J; Karp, Philip H; Ernst, Sarah; Moninger, Thomas O; Gansemer, Nicholas D; Stoltz, David A; Zabner, Joseph; Chang, Eugene H

    2013-05-01

    Cystic fibrosis (CF) pigs spontaneously develop sinus and lung disease resembling human CF. The CF pig presents a unique opportunity to use gene transfer to test hypotheses to further understand the pathogenesis of CF sinus disease. In this study, we investigated the ion transport defect in the CF sinus and found that CF porcine sinus epithelia lack cyclic AMP (cAMP)-stimulated anion transport. We asked whether we could restore CF transmembrane conductance regulator gene (CFTR) current in the porcine CF sinus epithelia by gene transfer. We quantified CFTR transduction using an adenovirus expressing CFTR and green fluorescent protein (GFP). We found that as little as 7% of transduced cells restored 6% of CFTR current with 17-28% of transduced cells increasing CFTR current to 50% of non-CF levels. We also found that we could overcorrect cAMP-mediated current in non-CF epithelia. Our findings indicate that CF porcine sinus epithelia lack anion transport, and a relatively small number of cells expressing CFTR are required to rescue the ion transport phenotype. These studies support the use of the CF pig as a preclinical model for future gene therapy trials in CF sinusitis. PMID:23511247

  5. Amyloid β oligomers elicit mitochondrial transport defects and fragmentation in a time-dependent and pathway-specific manner.

    Science.gov (United States)

    Rui, Yanfang; Zheng, James Q

    2016-01-01

    Small oligomeric forms of amyloid-β (Aβ) are believed to be the culprit for declined brain functions in AD in part through their impairment of neuronal trafficking and synaptic functions. However, the precise cellular actions of Aβ oligomers and underlying mechanisms in neurons remain to be fully defined. Previous studies have identified mitochondria as a major target of Aβ toxicity contributing to early cognitive decline and memory loss in neurodegenerative diseases including Alzheimer's disease (AD). In this study, we report that Aβ oligomers acutely elicit distinct effects on the transport and integrity of mitochondria. We found that acute exposure of hippocampal neurons to Aβ oligomers from either synthetic peptides or AD brain homogenates selectively impaired fast transport of mitochondria without affecting the movement of late endosomes and lysosomes. Extended exposure of hipoocampal neurons to Aβ oligomers was found to result in mitochondrial fragmentation. While both mitochondrial effects induced by Aβ oligomers can be abolished by the inhibition of GSK3β, they appear to be independent from each other. Aβ oligomers impaired mitochondrial transport through HDAC6 activation whereas the fragmentation involved the GTPase Drp-1. These results show that Aβ oligomers can acutely disrupt mitochondrial transport and integrity in a time-dependent and pathway-specific manner. These findings thus provide new insights into Aβ-induced mitochondrial defects that may contribute to neuronal dysfunction and AD pathogenesis. PMID:27535553

  6. Local translation and directional steering in axons

    OpenAIRE

    Lin, Andrew C; Holt, Christine E.

    2007-01-01

    The assembly of functional neural circuits in the developing brain requires neurons to extend axons to the correct targets. This in turn requires the navigating tips of axons to respond appropriately to guidance cues present along the axonal pathway, despite being cellular ‘outposts' far from the soma. Work over the past few years has demonstrated a critical role for local translation within the axon in this process in vitro, making axon guidance another process that requires spatially locali...

  7. Cadmium-induced neural tube defects and fetal growth restriction: Association with disturbance of placental folate transport.

    Science.gov (United States)

    Zhang, Gui-Bin; Wang, Hua; Hu, Jun; Guo, Min-Yin; Wang, Ying; Zhou, Yan; Yu, Zhen; Fu, Lin; Chen, Yuan-Hua; Xu, De-Xiang

    2016-09-01

    Previous studies found that maternal Cd exposure on gestational day (GD)9 caused forelimb ectrodactyly and tail deformity, the characteristic malformations. The aim of the present study was to investigate whether maternal Cd exposure on GD8 induces fetal neural tube defects (NTDs). Pregnant mice were intraperitoneally injected with CdCl2 (2.5 or 5.0mg/kg) on GD8. Neither forelimb ectrodactyly nor tail deformity was observed in mice injected with CdCl2 on GD8. Instead, maternal Cd exposure on GD8 resulted in the incidence of NTDs. Moreover, maternal Cd exposure on GD8 resulted in fetal growth restriction. In addition, maternal Cd exposure on GD8 reduced placental weight and diameter. The internal space of maternal and fetal blood vessels in the labyrinth layer was decreased in the placentas of mice treated with CdCl2. Additional experiment showed that placental PCFT protein and mRNA, a critical folate transporter, was persistently decreased when dams were injected with CdCl2 on GD8. Correspondingly, embryonic folate content was markedly decreased in mice injected with CdCl2 on GD8, whereas Cd had little effect on folate content in maternal serum. Taken together, these results suggest that maternal Cd exposure during organogenesis disturbs transport of folate from maternal circulation to the fetuses through down-regulating placental folate transporters. PMID:27417525

  8. Identification of pristine and defective graphene nanoribbons by phonon signatures in the electron transport characteristics

    DEFF Research Database (Denmark)

    Christensen, Rasmus Bjerregaard; Frederiksen, Thomas; Brandbyge, Mads

    2015-01-01

    Inspired by recent experiments where electron transport was measured across graphene nanoribbons (GNRs) suspended between a metal surface and the tip of a scanning tunneling microscope [Koch, Nat. Nanotechnol.7, 713 (2012)], we present detailed first-principles simulations of inelastic electron t...

  9. Tritium suicide selection of mammalian cell mutants defective in the transport of neutral amino acids

    International Nuclear Information System (INIS)

    Mouse lymphocytic cells of the established line GF-14 were allowed to accumulate intracellular 3H-labeled aminoisobutyric acid (AIB), frozen and stored over liquid N2. After internal radiation had reduced survival to 1 in 104, survivors were plated and tested for their ability to transport AIB. Out of 200 clones tested, two (designated GF-17 and GF-18) were found to have reductions to 13 to 35% of the parent in the rate of transport of AIB, L-alanine, L-proline, and L-serine; GF-18 also showed significant reductions in the rate of transport of L-glutamate and DL-cysteine. Little or no change was observed for 10 other amino acids or for thymidine. Kinetic analyses revealed that the mutants were not altered in K/sub m/ for AIB uptake, but had V/sub max/ values approximately 20% the value of the parent strain, GF-14, suggesting that either the number of AIB transport sites or the turnover rate of the sites has been reduced in the two mutants

  10. Defects, stoichiometry, and electronic transport in SrTiO3-δ epilayers: A high pressure oxygen sputter deposition study

    Science.gov (United States)

    Ambwani, P.; Xu, P.; Haugstad, G.; Jeong, J. S.; Deng, R.; Mkhoyan, K. A.; Jalan, B.; Leighton, C.

    2016-08-01

    SrTiO3 is not only of enduring interest due to its unique dielectric, structural, and lattice dynamical properties, but is also the archetypal perovskite oxide semiconductor and a foundational material in oxide heterostructures and electronics. This has naturally focused attention on growth, stoichiometry, and defects in SrTiO3, one exciting recent development being such precisely stoichiometric defect-managed thin films that electron mobilities have finally exceeded bulk crystals. This has been achieved only by molecular beam epitaxy, however (and to a somewhat lesser extent pulsed laser deposition (PLD)), and numerous open questions remain. Here, we present a study of the stoichiometry, defects, and structure in SrTiO3 synthesized by a different method, high pressure oxygen sputtering, relating the results to electronic transport. We find that this form of sputter deposition is also capable of homoepitaxy of precisely stoichiometric SrTiO3, but only provided that substrate and target preparation, temperature, pressure, and deposition rate are carefully controlled. Even under these conditions, oxygen-vacancy-doped heteroepitaxial SrTiO3 films are found to have carrier density, mobility, and conductivity significantly lower than bulk. While surface depletion plays a role, it is argued from particle-induced X-ray emission (PIXE) measurements of trace impurities in commercial sputtering targets that this is also due to deep acceptors such as Fe at 100's of parts-per-million levels. Comparisons of PIXE from SrTiO3 crystals and polycrystalline targets are shown to be of general interest, with clear implications for sputter and PLD deposition of this important material.

  11. Study of point defects and matter transport in cubic face centered concentrated alloys

    International Nuclear Information System (INIS)

    It is shown that the second moment approximation to the tight binding method allows a functional to be set up which describes transition metals, noble metals and their alloys. It is assumed that the local electronic density of states is rectangular and that the width varies from site to site. It is then shown how the Monte Carlo method can be used to study order in solid solution with a large difference in size between components: atoms of different nature are exchanged and their neighbours are simultaneously displaced in accordance with the microscopic theory of elasticity. The phase diagram of the simulated alloys is then constructed. Experimental results are qualitatively well reproduced but transition temperatures are difficult to evaluate accurately because of a bad estimation of the vibration entropy. A local tendency towards ordering due to chemical effects is shown at the defect proximity. 40 figs., 100 refs

  12. Defective canalicular transport and toxicity of dietary ursodeoxycholic acid in the abcb11-/- mouse: transport and gene expression studies.

    Science.gov (United States)

    Wang, Renxue; Liu, Lin; Sheps, Jonathan A; Forrest, Dana; Hofmann, Alan F; Hagey, Lee R; Ling, Victor

    2013-08-15

    The bile salt export pump (BSEP), encoded by the abcb11 gene, is the major canalicular transporter of bile acids from the hepatocyte. BSEP malfunction in humans causes bile acid retention and progressive liver injury, ultimately leading to end-stage liver failure. The natural, hydrophilic, bile acid ursodeoxycholic acid (UDCA) is efficacious in the treatment of cholestatic conditions, such as primary biliary cirrhosis and cholestasis of pregnancy. The beneficial effects of UDCA include promoting bile flow, reducing hepatic inflammation, preventing apoptosis, and maintaining mitochondrial integrity in hepatocytes. However, the role of BSEP in mediating UDCA efficacy is not known. Here, we used abcb11 knockout mice (abcb11-/-) to test the effects of acute and chronic UDCA administration on biliary secretion, bile acid composition, liver histology, and liver gene expression. Acutely infused UDCA, or its taurine conjugate (TUDC), was taken up by the liver but retained, with negligible biliary output, in abcb11-/- mice. Feeding UDCA to abcb11-/- mice led to weight loss, retention of bile acids, elevated liver enzymes, and histological damage to the liver. Semiquantitative RT-PCR showed that genes encoding Mdr1a and Mdr1b (canalicular) as well as Mrp4 (basolateral) transporters were upregulated in abcb11-/- mice. We concluded that infusion of UDCA and TUDC failed to induce bile flow in abcb11-/- mice. UDCA fed to abcb11-/- mice caused liver damage and the appearance of biliary tetra- and penta-hydroxy bile acids. Supplementation with UDCA in the absence of Bsep caused adverse effects in abcb11-/- mice. PMID:23764895

  13. Thiazolidinediones promote axonal growth through the activation of the JNK pathway.

    Directory of Open Access Journals (Sweden)

    Rodrigo A Quintanilla

    Full Text Available The axon is a neuronal process involved in protein transport, synaptic plasticity, and neural regeneration. It has been suggested that their structure and function are profoundly impaired in neurodegenerative diseases. Previous evidence suggest that Peroxisome Proliferator-Activated Receptors-γ (PPARγ promote neuronal differentiation on various neuronal cell types. In addition, we demonstrated that activation of PPARγby thiazolidinediones (TZDs drugs that selectively activate PPARγ prevent neurite loss and axonal damage induced by amyloid-β (Aβ. However, the potential role of TZDs in axonal elongation and neuronal polarity has not been explored. We report here that the activation of PPARγ by TZDs promoted axon elongation in primary hippocampal neurons. Treatments with different TZDs significantly increased axonal growth and branching area, but no significant effects were observed in neurite elongation compared to untreated neurons. Treatment with PPARγ antagonist (GW 9662 prevented TZDs-induced axonal growth. Recently, it has been suggested that the c-Jun N-terminal kinase (JNK plays an important role regulating axonal growth and neuronal polarity. Interestingly, in our studies, treatment with TZDs induced activation of the JNK pathway, and the pharmacological blockage of this pathway prevented axon elongation induced by TZDs. Altogether, these results indicate that activation of JNK induced by PPARγactivators stimulates axonal growth and accelerates neuronal polarity. These novel findings may contribute to the understanding of the effects of PPARγ on neuronal differentiation and validate the use of PPARγ activators as therapeutic agents in neurodegenerative diseases.

  14. Completely assembled virus particles detected by transmission electron microscopy in proximal and mid-axons of neurons infected with herpes simplex virus type 1, herpes simplex virus type 2 and pseudorabies virus

    International Nuclear Information System (INIS)

    The morphology of alphaherpesviruses during anterograde axonal transport from the neuron cell body towards the axon terminus is controversial. Reports suggest that transport of herpes simplex virus type 1 (HSV-1) nucleocapsids and envelope proteins occurs in separate compartments and that complete virions form at varicosities or axon termini (subassembly transport model), while transport of a related alphaherpesvirus, pseudorabies virus (PRV) occurs as enveloped capsids in vesicles (assembled transport model). Transmission electron microscopy of proximal and mid-axons of primary superior cervical ganglion (SCG) neurons was used to compare anterograde axonal transport of HSV-1, HSV-2 and PRV. SCG cell bodies were infected with HSV-1 NS and 17, HSV-2 2.12 and PRV Becker. Fully assembled virus particles were detected intracellularly within vesicles in proximal and mid-axons adjacent to microtubules after infection with each virus, indicating that assembled virions are transported anterograde within axons for all three alphaherpesviruses.

  15. Vacancy Defect Reconstruction and its Effect on Electron Transport in Si-C Nanotubes

    Directory of Open Access Journals (Sweden)

    S. Choudhary

    2011-01-01

    Full Text Available We investigate the vacancy defect reconstruction and its effect on I-V characteristics in a (4, 0 zigzag and (5, 5 armchair silicon-carbide nanotubes (SiCNTs by applying self consistent non-equilibrium Green’s function formalism in combination with the density-functional theory to a two probe molecular junction constructed from SiCNTs. The results show that single vacancies and di-vacancies in SiCNTs have different reconstructions. A single vacancy when optimized, reconstructs into a 5-1DB configuration in both zigzag and armchair SiCNTs, and a di-vacancy reconstructs into a 5-8-5 configuration in zigzag and into a 5-2DB configuration in armchair SiCNTs. Introduction of vacancy increases the band gap of (4, 0 metallic SiCNT and decreases the bandgap of (5, 5 semiconducting SiCNT, bias voltage dependent current characteristic show reduction in overall current in metallic SiCNT and an increase in overall current in semiconducting SiCNT.

  16. A novel peculiar mutation in the sodium/iodide symporter gene in spanish siblings with iodide transport defect.

    Science.gov (United States)

    Kosugi, Shinji; Okamoto, Hiroomi; Tamada, Aiko; Sanchez-Franco, F

    2002-08-01

    Previously, we reported two Spanish siblings with congenital hypothyroidism due to total failure of iodide transport. These were the only cases reported to date who received long-term iodide treatment over 10 yr. We examined the sodium/iodide symporter (NIS) gene of these patients. A large deletion was observed by long and accurate PCR using primers derived from introns 2 and 7 of the NIS gene. PCR-direct sequencing revealed a deletion of 6192 bases spanning from exon 3 to intron 7 and an inverted insertion of a 431-base fragment spanning from exon 5 to intron 5 of the NIS gene. The patients were homozygous for the mutation, and their mother was heterozygous. In the mutant, deletion of exons 3-7 was suggested by analysis using programs to predict exon/intron organization, resulting in an in-frame 182-amino acid deletion from Met(142) in the fourth transmembrane domain to Gln(323) in the fourth exoplasmic loop. The mutant showed no iodide uptake activity when transfected into COS-7 cells, confirming that the mutation was the direct cause of the iodide transport defect in these patients. Further, the mutant NIS protein was synthesized, but not properly expressed, on the cell surface, but was mostly accumulated in the cytoplasm, suggesting impaired targeting to the plasma membrane. PMID:12161518

  17. Theoretical study of the role of metallic contacts in probing transport features of pure and defected graphene nanoribbons

    Directory of Open Access Journals (Sweden)

    La Magna Antonino

    2011-01-01

    Full Text Available Abstract Understanding the roles of disorder and metal/graphene interface on the electronic and transport properties of graphene-based systems is crucial for a consistent analysis of the data deriving from experimental measurements. The present work is devoted to the detailed study of graphene nanoribbon systems by means of self-consistent quantum transport calculations. The computational formalism is based on a coupled Schrödinger/Poisson approach that respects both chemistry and electrostatics, applied to pure/defected graphene nanoribbons (ideally or end-contacted by various fcc metals. We theoretically characterize the formation of metal-graphene junctions as well as the effects of backscattering due to the presence of vacancies and impurities. Our results evidence that disorder can infer significant alterations on the conduction process, giving rise to mobility gaps in the conductance distribution. Moreover, we show the importance of metal-graphene coupling that gives rise to doping-related phenomena and a degradation of conductance quantization characteristics.

  18. Axon density and axon orientation dispersion in children born preterm

    NARCIS (Netherlands)

    Kelly, Claire E.; Thompson, Deanne K.; Chen, Jian; Leemans, Alexander; Adamson, Christopher L.; Inder, Terrie E.; Cheong, Jeanie L Y; Doyle, Lex W.; Anderson, Peter J.

    2016-01-01

    Background Very preterm birth (VPT, <32 weeks' gestation) is associated with altered white matter fractional anisotropy (FA), the biological basis of which is uncertain but may relate to changes in axon density and/or dispersion, which can be measured using Neurite Orientation Dispersion and Density

  19. Effect of nonmagnetic defects on superconducting and transport properties of Ba(Fe1–xCoxAs)2 high-Tc superconductors

    International Nuclear Information System (INIS)

    The effect of nonmagnetic defects on superconducting and transport properties of Ba(Fe0.94Co0.06As)2 films is studied for obtaining information on the symmetry type of the order parameter for superconducting pnictides. Such defects are generated in the film by irradiation by He+ ions with an energy of 200 keV. It is found that a decrease in superconducting transition temperature Tc upon an increase in the concentration of nonmagnetic defects in this compound occurs much more slowly than predicted in the model assuming s±-wave symmetry of the order parameter. Joint analysis of the influence of nonmagnetic defects on the superconducting and magnetotransport properties of such films leads to the conclusion that superconductivity is completely suppressed in them after critical disorder is attained, which assumes the s++-wave symmetry

  20. Twin defects in thick stoichiometric lithium tantalate crystals prepared by a vapor transport equilibration method

    Science.gov (United States)

    Yang, Jinfeng; Sun, Jun; Xu, Jingjun; Li, Qinglian; Shang, Jifang; Zhang, Ling; Liu, Shiguo; Huang, Cunxin

    2016-01-01

    The twins were observed and investigated in vapor transport equilibration (VTE) treated lithium tantalate crystals by burying congruent lithium tantalate crystals (CLT) in a Li-rich polycrystalline powder. Twins and their etched patterns were observed under an optical polarizing microscope, and the geometry of the twins was discussed. Twin composition planes were the { 01 1 bar 2 } planes. The cause of twinning was analyzed and verified by experiment. The results indicate that the emergence of twins is due to sintering stress, which arises from sintered Li-rich polycrystalline powders at high temperature. 3.2 mm thick stoichiometric lithium tantalate (SLT) crystals without twins were obtained by setting corundum crucibles over the top of the crystals to make crystals free from the sintering stress. In addition, cracks were observed at the intersection of twin bands, and the stress caused by the dislocation pile-up was considered to be the reason for the formation of cracks.

  1. Effects of V-shaped edge defect and H-saturation on spin-dependent electronic transport of zigzag MoS2 nanoribbons

    International Nuclear Information System (INIS)

    Based on nonequilibrium Green's function in combination with density functional theory calculations, the spin-dependent electronic transport properties of one-dimensional zigzag molybdenum disulfide (MoS2) nanoribbons with V-shaped defect and H-saturation on the edges have been studied. Our results show that the spin-polarized transport properties can be found in all the considered zigzag MoS2 nanoribbons systems. The edge defects, especially the V-shaped defect on the Mo edge, and H-saturation on the edges can suppress the electronic transport of the systems. Also, the spin-filtering and negative differential resistance behaviors can be observed obviously. The mechanisms are proposed for these phenomena. - Highlights: • The spin-dependent electronic transport of zigzag MoS2 nanoribbons. • The effects of V-shaped edge defect and H-saturation. • The effects of spin-filter and negative differential resistance can be observed

  2. Axon damage and repair in multiple sclerosis.

    OpenAIRE

    Perry, V.H.; Anthony, D. C.

    1999-01-01

    It is well known that within long-standing multiple sclerosis (MS) lesions there is axonal loss but whether it is an early or late event has been more difficult to establish. The use of immunocytochemical methods that reveal axonal end-bulbs is a valuable approach to investigating acute axonal injury in human pathological material. The application of these techniques to multiple sclerosis tissue reveals evidence of axonal injury in acute lesions; the distribution of the end-bulbs in acute and...

  3. Human intraretinal myelination: Axon diameters and axon/myelin thickness ratios

    Science.gov (United States)

    FitzGibbon, Thomas; Nestorovski, Zoran

    2013-01-01

    Purpose: Human intraretinal myelination of ganglion cell axons occurs in about 1% of the population. We examined myelin thickness and axon diameter in human retinal specimens containing myelinated retinal ganglion cell axons. Materials and Methods: Two eyes containing myelinated patches were prepared for electron microscopy. Two areas were examined in one retina and five in the second retina. Measurements were compared to normal retinal and optic nerve samples and the rabbit retina, which normally contains myelinated axons. Measurements were made using a graphics tablet. Results: Mean axon diameter of myelinated axons at all locations were significantly larger than unmyelinated axons (P ≤ 0.01). Myelinated axons within the patches were significantly larger than axons within the optic nerve (P < 0.01). The relationship between axon diameter/fiber diameter (the G-ratio) seen in the retinal sites differed from that in the nerve. G-ratios were higher and myelin thickness was positively correlated to axon diameter (P < 0.01) in the retina but negatively correlated to axon diameter in the nerve (P < 0.001). Conclusion: Intraretinally myelinated axons are larger than non-myelinated axons from the same population and suggests that glial cells can induce diameter changes in retinal axons that are not normally myelinated. This effect is more dramatic on intraretinal axons compared with the normal transition zone as axons enter the optic nerve and these changes are abnormal. Whether intraretinal myelin alters axonal conduction velocity or blocks axonal conduction remains to be clarified and these issues may have different clinical outcomes. PMID:24212308

  4. Insulin binding and stimulation of hexose and amino acid transport by normal and receptor-defective human fibroblasts

    International Nuclear Information System (INIS)

    The authors analyzed insulin receptors in cells cultured from a sibship of related parents who had two offspring with severe insulin resistance (Leprechaunism). 124I-Insulin (1 ng/ml) binding to skin fibroblasts from the proband, mother, and father was 9, 60 and 62% of control cells, respectively, at equilibrium, Non-linear regression analysis, utilizing a two receptors model, of curvilinear Scatchard plots indicated a reduced number of high-affinity binding sites in both parents. Influx of L-Proline (System A), L-Serine (ASC) and L-Leucine (L) was similar in control and mutant cells. Similarly, during the depletion of intracellular amino acid pools, there was a release from transinhibition for System A and a decrease of transstimulation of Systems ASC and L in both cell lines. Surprisingly, insulin augmented, normally, A system influx with an ED50 = 70 ng/ml at 240C and 7 ng/ml at 370C. By contrast insulin failed to simulated 3-0-methyl-D-glucose influx into the proband's cells, while normal cells were stimulated 30% with an ED50 of 6 ng/ml. These results indicate that defective high-affinity insulin binding is inherited as an autosomal recessive trait; that general membrane functions are intact; that insulin regulates A system amino acid and hexose transport by two different mechanisms; and, that the latter mechanism is impaired by this family's receptor mutation

  5. A common W556S mutation in the LDL receptor gene of Danish patients with familial hypercholesterolemia encodes a transport-defective protein

    DEFF Research Database (Denmark)

    Jensen, H K; Holst, H; Jensen, L G;

    1997-01-01

    In a group of unrelated Danish patients with familial hypercholesterolemia (FH) we recently reported two common low-density lipoprotein (LDL) receptor mutations, W23X and W66G, accounting for 30% of the cases. In this study, we describe another common LDL receptor mutation, a G to C transition at c...... mutant protein in the endoplasmic reticulum. The transport-defective W556S mutation and the W23X and W66G mutations seem to account for about 40% of the LDL receptor defects in Danish families with FH....

  6. The Control of Electron Transport Related Defects in In Situ Fabricated Single Wall Carbon Nanotube Devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhixian [ORNL; Jin, Rongying [ORNL; Eres, Gyula [ORNL; Subedi, Alaska P [ORNL; Mandrus, David [ORNL

    2006-01-01

    Metallic single wall carbon nanotube devices were characterized using low temperature transport measurements to study how the growth conditions affect defect formation in carbon nanotubes. Suspended carbon nanotube devices were grown in situ by a molecular beam growth method on a pair of catalyst islands located on opposing Au electrodes fabricated by electron beam lithography. The authors present experimental evidence that defect formation in carbon nanotubes, in addition to the well known growth temperature dependence, is also affected by the nature and the composition of the carbon growth gases.

  7. KINETIC MONTE CARLO SIMULATIONS OF THE EFFECTS OF 1-D DEFECT TRANSPORT ON DEFECT REACTION KINETICS AND VOID LATTICE FORMATION DURING IRRADIATION

    International Nuclear Information System (INIS)

    Within the last decade molecular dynamics simulations of displacement cascades have revealed that glissile clusters of self-interstitial crowdions are formed directly in cascades. Also, under various conditions, a crowdion cluster can change its Burgers vector and glide along a different close-packed direction. In order to incorporate the migration properties of crowdion clusters into analytical rate theory models, it is necessary to describe the reaction kinetics of defects that migrate one-dimensionally with occasional changes in their Burgers vector. To meet this requirement, atomic-scale kinetic Monte Carlo (KMC) simulations have been used to study the defect reaction kinetics of one-dimensionally migrating crowdion clusters as a function of the frequency of direction changes, specifically to determine the sink strengths for such one-dimensionally migrating defects. The KMC experiments are used to guide the development of analytical expressions for use in reaction rate theories and especially to test their validity. Excellent agreement is found between the results of KMC experiments and the analytical expressions derived for the transition from one-dimensional to three-dimensional reaction kinetics. Furthermore, KMC simulations have been performed to investigate the significant role of crowdion clusters in the formation and stability of void lattices. The necessity for both one-dimensional migration and Burgers vectors changes for achieving a stable void lattice is demonstrated.

  8. Local protein synthesis in neuronal axons: why and how we study

    OpenAIRE

    Kim, Eunjin; Jung, Hosung

    2015-01-01

    Adaptive brain function and synaptic plasticity rely on dynamic regulation of local proteome. One way for the neuron to introduce new proteins to the axon terminal is to transport those from the cell body, which had long been thought as the only source of axonal proteins. Another way, which is the topic of this review, is synthesizing proteins on site by local mRNA translation. Recent evidence indicates that the axon stores a reservoir of translationally silent mRNAs and regulates their expre...

  9. gamma-Diketone neuropathy: axon atrophy and the role of cytoskeletal protein adduction.

    Science.gov (United States)

    LoPachin, Richard M; DeCaprio, Anthony P

    2004-08-15

    Multifocal giant neurofilamentous axonal swellings and secondary distal degeneration have been historically considered the hallmark features of gamma-diketone neuropathy. Accordingly, research conducted over the past 25 years has been directed toward discerning mechanisms of axonal swelling. However, this neuropathological convention has been challenged by recent observations that swollen axons were an exclusive product of long-term 2.5-hexanedione (HD) intoxication at lower daily dose-rates (e.g., 175 mg/kg/day); that is, higher HD dose-rates (e.g., 400 mg/kg/day) produced neurological deficits in the absence of axonal swellings. The observation that neurological toxicity can be expressed without axonal swelling suggests that this lesion is not an important pathophysiological event. Instead, several research groups have now shown that axon atrophy is prevalent in nervous tissues of laboratory animals intoxicated over a wide range of HD dose-rates. The well-documented nerve conduction defects associated with axon atrophy, in conjunction with the temporal correspondence between this lesion and the onset of neurological deficits, strongly suggest that atrophy has pathophysiological significance. In this commentary, we present evidence that supports a pathognomonic role for axon atrophy in gamma-diketone neuropathy and suggests that the functional consequences of this lesion mediate the corresponding neurological toxicity. Previous research has demonstrated that HD interacts with proteins via formation of pyrrole adducts. We therefore discuss the possibility that this chemical process is essential to the mechanism of atrophy. Evidence presented in this review suggests that "distal axonopathy" is an inaccurate classification and future nosological schemes should be based on the apparent primacy of axon atrophy. PMID:15289087

  10. Quantifying mechanical force in axonal growth and guidance

    Directory of Open Access Journals (Sweden)

    Ahmad Ibrahim Mahmoud Athamneh

    2015-09-01

    Full Text Available Mechanical force plays a fundamental role in neuronal development, physiology, and regeneration. In particular, research has shown that force is involved in growth cone-mediated axonal growth and guidance as well as stretch-induced elongation when an organism increases in size after forming initial synaptic connections. However, much of the details about the exact role of force in these fundamental processes remain unknown. In this review, we highlight (1 standing questions concerning the role of mechanical force in axonal growth and guidance and (2 different experimental techniques used to quantify forces in axons and growth cones. We believe that satisfying answers to these questions will require quantitative information about the relationship between elongation, forces, cytoskeletal dynamics, axonal transport, signaling, substrate adhesion, and stiffness contributing to directional growth advance. Furthermore, we address why a wide range of force values have been reported in the literature, and what these values mean in the context of neuronal mechanics. We hope that this review will provide a guide for those interested in studying the role of force in development and regeneration of neuronal networks.

  11. Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Y T [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Tian, W M [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Yu, X [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Cui, F Z [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Hou, S P [Beijing Institute of Neuroscience, Capital University of Medical Sciences, Beijing, 100054 (China); Xu, Q Y [Beijing Institute of Neuroscience, Capital University of Medical Sciences, Beijing, 100054 (China); Lee, In-Seop [Institute of Physics and Applied Physics, and Atomic-scale Surface Science Research Center, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2007-09-15

    A biocompatible hydrogel of hyaluronic acid with the neurite-promoting peptide sequence of IKVAV was synthesized. The characterization of the hydrogel shows an open porous structure and a large surface area available for cell interaction. Its ability to promote tissue repair and axonal regeneration in the lesioned rat cerebrum is also evaluated. After implantation, the polymer hydrogel repaired the tissue defect and formed a permissive interface with the host tissue. Axonal growth occurred within the microstructure of the network. Within 6 weeks the polymer implant was invaded by host-derived tissue, glial cells, blood vessels and axons. Such a hydrogel matrix showed the properties of neuron conduction. It has the potential to repair tissue defects in the central nervous system by promoting the formation of a tissue matrix and axonal growth by replacing the lost tissue.

  12. Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain

    Science.gov (United States)

    Wei, Y. T.; Tian, W. M.; Yu, X.; Cui, F. Z.; Hou, S. P.; Xu, Q. Y.; Lee, In-Seop

    2007-09-01

    A biocompatible hydrogel of hyaluronic acid with the neurite-promoting peptide sequence of IKVAV was synthesized. The characterization of the hydrogel shows an open porous structure and a large surface area available for cell interaction. Its ability to promote tissue repair and axonal regeneration in the lesioned rat cerebrum is also evaluated. After implantation, the polymer hydrogel repaired the tissue defect and formed a permissive interface with the host tissue. Axonal growth occurred within the microstructure of the network. Within 6 weeks the polymer implant was invaded by host-derived tissue, glial cells, blood vessels and axons. Such a hydrogel matrix showed the properties of neuron conduction. It has the potential to repair tissue defects in the central nervous system by promoting the formation of a tissue matrix and axonal growth by replacing the lost tissue.

  13. Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain

    International Nuclear Information System (INIS)

    A biocompatible hydrogel of hyaluronic acid with the neurite-promoting peptide sequence of IKVAV was synthesized. The characterization of the hydrogel shows an open porous structure and a large surface area available for cell interaction. Its ability to promote tissue repair and axonal regeneration in the lesioned rat cerebrum is also evaluated. After implantation, the polymer hydrogel repaired the tissue defect and formed a permissive interface with the host tissue. Axonal growth occurred within the microstructure of the network. Within 6 weeks the polymer implant was invaded by host-derived tissue, glial cells, blood vessels and axons. Such a hydrogel matrix showed the properties of neuron conduction. It has the potential to repair tissue defects in the central nervous system by promoting the formation of a tissue matrix and axonal growth by replacing the lost tissue

  14. Early phenotype expression of cortical neurons: evidence that a subclass of migrating neurons have callosal axons.

    OpenAIRE

    Schwartz, M. L.; Rakic, P.; Goldman-Rakic, P. S.

    1991-01-01

    The use of [3H]thymidine labeling in combination with various axonal transport tracers has revealed that a subset of migrating neurons in the fetal monkey cerebrum issue axons to the opposite cerebral hemisphere while still migrating to their final positions in the cortical plate. Other cortical neurons with the same "birthdate" (i.e., that underwent their last round of DNA synthesis on the same day) are not retrogradely labeled by tracer injections of the opposite hemisphere. These findings ...

  15. Visible-light photodecomposition of acetaldehyde by TiO2-coated gold nanocages: plasmon-mediated hot electron transport via defect states.

    Science.gov (United States)

    Kodiyath, Rajesh; Manikandan, Maidhily; Liu, Lequan; Ramesh, Gubbala V; Koyasu, Satoshi; Miyauchi, Masahiro; Sakuma, Yoshiki; Tanabe, Toyokazu; Gunji, Takao; Duy Dao, Thang; Ueda, Shigenori; Nagao, Tadaaki; Ye, Jinhua; Abe, Hideki

    2014-12-21

    Skeletal gold nanocages (Au NCs) are synthesized and coated with TiO2 layers (TiO2-Au NCs). The TiO2-Au NCs exhibit enhanced photodecomposition activity toward acetaldehyde under visible light (>400 nm) illumination because hot electrons are generated over the Au NCs by local surface plasmon resonance (LSPR) and efficiently transported across the metal/semiconductor interface via the defect states of TiO2. PMID:25357137

  16. Quantum transport in chemically functionalized graphene at high magnetic field: Defect-Induced Critical States and Breakdown of Electron-Hole Symmetry

    OpenAIRE

    Leconte, Nicolas; Ortmann, Frank; Cresti, Alessandro; Charlier, Jean-Christophe; Roche, Stephan

    2014-01-01

    Unconventional magneto-transport fingerprints in the quantum Hall regime (with applied magnetic field from one to several tens of Tesla) in chemically functionalized graphene are reported. Upon chemical adsorption of monoatomic oxygen (from 0.5% to few percents), the electron-hole symmetry of Landau levels is broken, while a double-peaked conductivity develops at low-energy, resulting from the formation of critical states conveyed by the random network of defects-induced impurity states. Scal...

  17. Development of fabrication technology for future fuel - Study on the defect structure and transport properties of doped U O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Han Il; Hong, Kug Sun; Lee, Jong Ho; Kang, Sun Ho; Lee, Jung Gun [Seoul National University, Seoul (Korea, Republic of)

    1995-08-01

    The objectives of this project is the study on the defect structure and transport properties on nuclear material to secure the nuclear energy as the substitute source of power. Through this study, we can analyse the effect of dopant in nuclear material thoroughly and further we can establish the basis for the proper processing. And also we can verify the coulometric titration method as a very useful method to characterise the nuclear material. 27 refs., 2 tabs., 7 figs. (author)

  18. Precursor and mature NGF live tracking: one versus many at a time in the axons.

    Science.gov (United States)

    De Nadai, Teresa; Marchetti, Laura; Di Rienzo, Carmine; Calvello, Mariantonietta; Signore, Giovanni; Di Matteo, Pierluigi; Gobbo, Francesco; Turturro, Sabrina; Meucci, Sandro; Viegi, Alessandro; Beltram, Fabio; Luin, Stefano; Cattaneo, Antonino

    2016-01-01

    The classical view of nerve growth factor (NGF) action in the nervous system is linked to its retrograde axonal transport. However, almost nothing is known on the trafficking properties of its unprocessed precursor proNGF, characterized by different and generally opposite biological functions with respect to its mature counterpart. Here we developed a strategy to fluorolabel both purified precursor and mature neurotrophins (NTs) with a controlled stoichiometry and insertion site. Using a single particle tracking approach, we characterized the axonal transport of proNGF versus mature NGF in living dorsal root ganglion neurons grown in compartmentalized microfluidic devices. We demonstrate that proNGF is retrogradely transported as NGF, but with a lower flux and a different distribution of numbers of neurotrophins per vesicle. Moreover, exploiting a dual-color labelling technique, we analysed the transport of both NT forms when simultaneously administered to the axon tips. PMID:26829890

  19. Axon degeneration and PGC-1α-mediated protection in a zebrafish model of α-synuclein toxicity

    Directory of Open Access Journals (Sweden)

    Kelley C. O’Donnell

    2014-05-01

    Full Text Available α-synuclein (aSyn expression is implicated in neurodegenerative processes, including Parkinson’s disease (PD and dementia with Lewy bodies (DLB. In animal models of these diseases, axon pathology often precedes cell death, raising the question of whether aSyn has compartment-specific toxic effects that could require early and/or independent therapeutic intervention. The relevance of axonal pathology to degeneration can only be addressed through longitudinal, in vivo monitoring of different neuronal compartments. With current imaging methods, dopaminergic neurons do not readily lend themselves to such a task in any vertebrate system. We therefore expressed human wild-type aSyn in zebrafish peripheral sensory neurons, which project elaborate superficial axons that can be continuously imaged in vivo. Axonal outgrowth was normal in these neurons but, by 2 days post-fertilization (dpf, many aSyn-expressing axons became dystrophic, with focal varicosities or diffuse beading. Approximately 20% of aSyn-expressing cells died by 3 dpf. Time-lapse imaging revealed that focal axonal swelling, but not overt fragmentation, usually preceded cell death. Co-expressing aSyn with a mitochondrial reporter revealed deficits in mitochondrial transport and morphology even when axons appeared overtly normal. The axon-protective protein Wallerian degeneration slow (WldS delayed axon degeneration but not cell death caused by aSyn. By contrast, the transcriptional coactivator PGC-1α, which has roles in the regulation of mitochondrial biogenesis and reactive-oxygen-species detoxification, abrogated aSyn toxicity in both the axon and the cell body. The rapid onset of axonal pathology in this system, and the relatively moderate degree of cell death, provide a new model for the study of aSyn toxicity and protection. Moreover, the accessibility of peripheral sensory axons will allow effects of aSyn to be studied in different neuronal compartments and might have utility in

  20. Transport limits in defect-engineered LaAlO3/SrTiO3 bilayers

    OpenAIRE

    Gunkel, F.; Wicklein, S.; Hoffmann-Eifert, S.; Meuffels, P.; Brinks, P; Huijben, M.; Waser, R.; Dittmann, R.

    2014-01-01

    The electrical properties of the metallic interface in LaAlO3/SrTiO3 (LAO/STO) bilayers are investigated with focus on the role of cationic defects in thin film STO. Systematic growth-control of the STO thin film cation stoichiometry (defect-engineering) yields a relation between cationic defects in the STO layer and electronic properties of the bilayer-interface. Hall measurements reveal a stoichiometry-effect primarily on the electron mobility. The results indicate an enhancement of scatter...

  1. AxonSeg: Open Source Software for Axon and Myelin Segmentation and Morphometric Analysis.

    Science.gov (United States)

    Zaimi, Aldo; Duval, Tanguy; Gasecka, Alicja; Côté, Daniel; Stikov, Nikola; Cohen-Adad, Julien

    2016-01-01

    Segmenting axon and myelin from microscopic images is relevant for studying the peripheral and central nervous system and for validating new MRI techniques that aim at quantifying tissue microstructure. While several software packages have been proposed, their interface is sometimes limited and/or they are designed to work with a specific modality (e.g., scanning electron microscopy (SEM) only). Here we introduce AxonSeg, which allows to perform automatic axon and myelin segmentation on histology images, and to extract relevant morphometric information, such as axon diameter distribution, axon density and the myelin g-ratio. AxonSeg includes a simple and intuitive MATLAB-based graphical user interface (GUI) and can easily be adapted to a variety of imaging modalities. The main steps of AxonSeg consist of: (i) image pre-processing; (ii) pre-segmentation of axons over a cropped image and discriminant analysis (DA) to select the best parameters based on axon shape and intensity information; (iii) automatic axon and myelin segmentation over the full image; and (iv) atlas-based statistics to extract morphometric information. Segmentation results from standard optical microscopy (OM), SEM and coherent anti-Stokes Raman scattering (CARS) microscopy are presented, along with validation against manual segmentations. Being fully-automatic after a quick manual intervention on a cropped image, we believe AxonSeg will be useful to researchers interested in large throughput histology. AxonSeg is open source and freely available at: https://github.com/neuropoly/axonseg. PMID:27594833

  2. Axonal regeneration through arterial grafts.

    OpenAIRE

    Anderson, P. N.; Turmaine, M.

    1986-01-01

    The left common peroneal nerves of adult inbred mice were severed and allowed to regenerate through the lumina of Y-shaped tubes comprising grafts of abdominal aorta and its bifurcation. Very little regeneration took place within the grafts unless the distal nerve stump was inserted into one limb of the Y-tube. Using syngeneic grafts virtually all the axons regenerating through the lumen grew down the limb of the Y-tube containing the distal nerve. Using non-syngeneic grafts, however, a subst...

  3. Axonal interferon responses and alphaherpesvirus neuroinvasion

    Science.gov (United States)

    Song, Ren

    Infection by alphaherpesviruses, including herpes simplex virus (HSV) and pseudorabies virus (PRV), typically begins at a peripheral epithelial surface and continues into the peripheral nervous system (PNS) that innervates this tissue. Inflammatory responses are induced at the infected peripheral site prior to viral invasion of the PNS. PNS neurons are highly polarized cells with long axonal processes that connect to distant targets. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which include type I interferon (e.g. IFNbeta) and type II interferon (i.e. IFNgamma). IFNbeta can be produced by all types of cells, while IFNgamma is secreted by some specific types of immune cells. And both types of IFN induce antiviral responses in surrounding cells that express the IFN receptors. The fundamental question is how do PNS neurons respond to the inflammatory milieu experienced only by their axons. Axons must act as potential front-line barriers to prevent PNS infection and damage. Using compartmented cultures that physically separate neuron axons from cell bodies, I found that pretreating isolated axons with IFNbeta or IFNgamma significantly diminished the number of HSV-1 and PRV particles moving from axons to the cell bodies in an IFN receptor-dependent manner. Furthermore, I found the responses in axons are activated differentially by the two types of IFNs. The response to IFNbeta is a rapid, axon-only response, while the response to IFNgamma involves long distance signaling to the PNS cell body. For example, exposing axons to IFNbeta induced STAT1 phosphorylation (p-STAT1) only in axons, while exposure of axons to IFNgamma induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated IFNgamma-, but not IFNbeta-mediated antiviral effects. Proteomic analysis of IFNbeta- or IFNgamma-treated axons identified several differentially regulated proteins. Therefore

  4. Intrinsic limits of channel transport hysteresis in graphene-SiO2 interface and its dependence on graphene defect density

    Science.gov (United States)

    Krishna Bharadwaj, B.; Chandrasekar, Hareesh; Nath, Digbijoy; Pratap, Rudra; Raghavan, Srinivasan

    2016-07-01

    Hysteresis in channel conductance is commonly observed on graphene field effect transistors. Although consistent and repeatable hysteresis could possibly be attractive for memory based applications, it is detrimental to the deployment of graphene in high speed electronic switches. While the origin of such hysteresis has been variously attributed to graphene-insulator interface traps, adsorbed molecules and bulk charges in the dielectric, its dependence on the quality of the graphene has been largely unexplored. Since, CVD is the most promising synthesis route for large area graphene and defects in such a growth process are inevitable, it is important to understand the influence of the quality of graphene on hysteresis. Here we demonstrate, for the first time, the effect of graphene growth defect density on device hysteresis. By intentionally tailoring the defect densities in the growth phase, we demonstrate a linear correlation between the film defect density and conductance hysteresis. The trap charge density calculated from the observed hysteresis in the electrical transfer characteristics was found to both follow the same qualitative trend, and give reasonable quantitative agreement with the defect density as extracted from Raman spectroscopy. Most importantly, by extrapolation from the observed behavior, we identify the intrinsic limits of hysteresis in graphene-SiO2 system, demonstrating that the defects in graphene contribute to traps over and above the baseline set by the SiO2 surface trap charge density.

  5. Comparison of different methods to evaluate and quantify defects of dopamine transporters using 123I FP-CIT

    International Nuclear Information System (INIS)

    Objectives: Several studies have demonstrated the capability of 123I-FPCIT SPECT for studying dopamine transporters in patients with movement disorders. Different techniques have been suggested for semi-quantitative measurement of 123I-FPCIT uptake, based on specific to non specific ratio at equilibrium. Aim of this study was to compare the results of different methods of evaluation. Methods: We performed 123I-FPCIT SPECT scan in 12 patients with Parkinson's disease (PD) and in 3 patients with essential tremor (ET). Images were analysed using 3 different methods: a) visual analysis (0=normal; 0.5=near normal, minimal abnormalities; 1=mild reduced uptake at one or both putamen; 2=severely reduced uptake at both putamen; 3=reduced uptake at caudate and putamen); b) large rectangular ROIs (including entire striatum); c) small irregular ROIs (manually drawn; different for putamen and caudate nucleus). All evaluations were carried out by 3 different operators. Results: Visual analysis and large rectangular ROIs showed the higher reproducibility, while small irregular ROIs were found more affected by operator-dependency. Visual analysis resulted very effective in distinguishing between PD and ET (given 1-3 scores as PD we had 15/15 correct diagnosis); large rectangular ROIs failed in several cases (using a 50% value as cut-off point we had 7/12 correct diagnosis of PE and 3/3 correct diagnosis of ET); small ROIs did not allow to identify a cut-off value enabling to effectively distinguish PD and ET. Conclusions: Reliability and reproducibility of a technique to evaluate 123I-FPCIT SPECT is crucial for its application in routine clinical studies. Our data indicate visual analysis as the more effective method, while the use of approaches based on ROIs, although enabling a semi-quantitative evaluation of defects, were not successful for differential diagnosis. Large ROIs approach was limited by the fact that many PD patients showed a normal uptake at caudate nuclei that

  6. Madras motor neuron disease (MMND) is distinct from the riboflavin transporter genetic defects that cause Brown–Vialetto–Van Laere syndrome

    Science.gov (United States)

    Nalini, Atchayaram; Pandraud, Amelie; Mok, Kin; Houlden, Henry

    2013-01-01

    Introduction Madras motor neuron disease (MMND), MMND variant (MMNDV) and Familial MMND (FMMND) have a unique geographic distribution predominantly reported from Southern India. The characteristic features are onset in young, weakness and wasting of limbs, multiple lower cranial nerve palsies and sensorineural hearing loss. There is a considerable overlap in the phenotype of MMND with Brown–Vialetto–Van Laere syndrome (BVVL) Boltshauser syndrome, Nathalie syndrome and Fazio–Londe syndrome. Recently a number of BVVL cases and families have been described with mutations in two riboflavin transporter genes SLC52A2 and SLC52A3 (solute carrier family 52, riboflavin transporter, member 2 and 3 respectively). Methods and results We describe six families and four sporadic MMND cases that have been clinically characterized in detail with history, examination, imaging and electrophysiological investigations. We sequenced the SLC52A1, SLC52A2 and SLC52A3 in affected probands and sporadic individuals from the MMND series as well as the C9ORF72 expansion. No genetic defects were identified and the C9ORF72 repeats were all less than 10. Conclusions These data suggest that MMND is a distinct clinical subgroup of childhood onset MND patients where the known genetic defects are so far negative. The clinico-genetic features of MMND in comparison with the BVVL group of childhood motor neuron diseases suggest that these diseases are likely to share a common defective biological pathway that may be a combination of genetic and environmental factors. PMID:24139842

  7. Uptake of nerve growth factor along peripheral and spinal axons of primary sensory neurons

    International Nuclear Information System (INIS)

    To investigate the distribution of nerve growth factor (NGF) receptors on peripheral and central axons, [125I]NGF was injected into the sciatic nerve or spinal cord of adult rats. Accumulation of [125I]NGF in lumbar dorsal root ganglia was monitored by gamma emission counting and radioautography. [125I]NGF, injected endoneurially in small quantities, was taken into sensory axons by a saturable process and was transported retrogradely to their cell bodies at a maximal rate of 2.5 to 7.5 mm/hr. Because very little [125I]NGF reached peripheral terminals, the results were interpreted to indicate that receptors for NGF are present on nonterminal segments of sensory axons. The specificity and high affinity of NGF uptake were illustrated by observations that negligible amounts of gamma activity accumulated in lumbar dorsal root ganglia after comparable intraneural injection of [125I] cytochrome C or [125I]oxidized NGF. Similar techniques were used to demonstrate avid internalization and retrograde transport of [125I]NGF by intraspinal axons arising from dorsal root ganglia. Following injection of [125I]NGF into lumbar or cervical regions of the spinal cord, neuronal perikarya were clearly labeled in radioautographs of lumbar dorsal root ganglia. Sites for NGF uptake on primary sensory neurons in the adult rat are not restricted to peripheral axon terminals but are extensively distributed along both peripheral and central axons. Receptors on axons provide a mechanism whereby NGF supplied by glia could influence neuronal maintenance or axonal regeneration

  8. Axon reflexes in human cold exposed fingers

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ducharme, M.B.

    2000-01-01

    Exposure of fingers to severe cold induces cold induced vasodilation (CIVD). The mechanism of CIVD is still debated. The original theory states that an axon reflex causes CIVD. To test this hypothesis, axon reflexes were evoked by electrical stimulation of the middle fingers of hands immersed in wat

  9. Cable energy function of cortical axons.

    Science.gov (United States)

    Ju, Huiwen; Hines, Michael L; Yu, Yuguo

    2016-01-01

    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na(+)-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na(+)-counting method severely underestimates energy cost in the cable model by 20-70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship. PMID:27439954

  10. Cable energy function of cortical axons

    Science.gov (United States)

    Ju, Huiwen; Hines, Michael L.; Yu, Yuguo

    2016-01-01

    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na+-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na+-counting method severely underestimates energy cost in the cable model by 20–70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship. PMID:27439954

  11. Neuronal Development: SAD Kinases Make Happy Axons

    OpenAIRE

    Xing, Lei; Newbern, Jason M.; Snider, William D

    2013-01-01

    The polarity proteins LKB1 and SAD-A/B are key regulators of axon specification in the developing cerebral cortex. Recent studies now show that this mechanism cannot be generalized to other classes of neurons: instead, SAD-A/B functions downstream of neurotrophin signaling in sensory neurons to mediate a later stage of axon development — arborization in the target field.

  12. Early events in axon/dendrite polarization.

    Science.gov (United States)

    Cheng, Pei-lin; Poo, Mu-ming

    2012-01-01

    Differentiation of axons and dendrites is a critical step in neuronal development. Here we review the evidence that axon/dendrite formation during neuronal polarization depends on the intrinsic cytoplasmic asymmetry inherited by the postmitotic neuron, the exposure of the neuron to extracellular chemical factors, and the action of anisotropic mechanical forces imposed by the environment. To better delineate the functions of early signals among a myriad of cellular components that were shown to influence axon/dendrite formation, we discuss their functions by distinguishing their roles as determinants, mediators, or modulators and consider selective degradation of these components as a potential mechanism for axon/dendrite polarization. Finally, we examine whether these early events of axon/dendrite formation involve local autocatalytic activation and long-range inhibition, as postulated by Alan Turing for the morphogenesis of patterned biological structure. PMID:22715881

  13. SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury.

    Science.gov (United States)

    Johnson, Victoria E; Stewart, William; Weber, Maura T; Cullen, D Kacy; Siman, Robert; Smith, Douglas H

    2016-01-01

    Diffuse axonal injury (DAI) is a common feature of severe traumatic brain injury (TBI) and may also be a predominant pathology in mild TBI or "concussion". The rapid deformation of white matter at the instant of trauma can lead to mechanical failure and calcium-dependent proteolysis of the axonal cytoskeleton in association with axonal transport interruption. Recently, a proteolytic fragment of alpha-II spectrin, "SNTF", was detected in serum acutely following mild TBI in patients and was prognostic for poor clinical outcome. However, direct evidence that this fragment is a marker of DAI has yet to be demonstrated in either humans following TBI or in models of mild TBI. Here, we used immunohistochemistry (IHC) to examine for SNTF in brain tissue following both severe and mild TBI. Human severe TBI cases (survival <7d; n = 18) were compared to age-matched controls (n = 16) from the Glasgow TBI archive. We also examined brains from an established model of mild TBI at 6, 48 and 72 h post-injury versus shams. IHC specific for SNTF was compared to that of amyloid precursor protein (APP), the current standard for DAI diagnosis, and other known markers of axonal pathology including non-phosphorylated neurofilament-H (SMI-32), neurofilament-68 (NF-68) and compacted neurofilament-medium (RMO-14) using double and triple immunofluorescent labeling. Supporting its use as a biomarker of DAI, SNTF immunoreactive axons were observed at all time points following both human severe TBI and in the model of mild TBI. Interestingly, SNTF revealed a subpopulation of degenerating axons, undetected by the gold-standard marker of transport interruption, APP. While there was greater axonal co-localization between SNTF and APP after severe TBI in humans, a subset of SNTF positive axons displayed no APP accumulation. Notably, some co-localization was observed between SNTF and the less abundant neurofilament subtype markers. Other SNTF positive axons, however, did not co-localize with any

  14. Dysregulated axonal RNA translation in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Yasuda, Kyota; Mili, Stavroula

    2016-09-01

    Amyotrophic lateral sclerosis (ALS) is an adult-onset motor neuron disease that has been associated with a diverse array of genetic changes. Prominent among these are mutations in RNA-binding proteins (RBPs) or repeat expansions that give rise to toxic RNA species. RBPs are additionally central components of pathologic aggregates that constitute a disease hallmark, suggesting that dysregulation of RNA metabolism underlies disease progression. In the context of neuronal physiology, transport of RNAs and localized RNA translation in axons are fundamental to neuronal survival and function. Several lines of evidence suggest that axonal RNA translation is a central process perturbed by various pathogenic events associated with ALS. Dysregulated translation of specific RNA groups could underlie feedback effects that connect and reinforce disease manifestations. Among such candidates are RNAs encoding proteins involved in the regulation of microtubule dynamics. Further understanding of axonally dysregulated RNA targets and of the feedback mechanisms they induce could provide useful therapeutic insights. WIREs RNA 2016, 7:589-603. doi: 10.1002/wrna.1352 For further resources related to this article, please visit the WIREs website. PMID:27038103

  15. Extra-neurohypophyseal axonal projections from individual vasopressin-containing magnocellular neurons in rat hypothalamus

    Directory of Open Access Journals (Sweden)

    Fernando Jauregui Huerta

    2015-10-01

    Full Text Available Conventional neuroanatomical, immunohistochemical techniques and electrophysiological recording, as well as in vitro labeling methods may fail to detect long range extra-neurohypophyseal-projecting axons from vasopressin (AVP-containing magnocellular neurons (magnocells in the hypothalamic paraventricular nucleus (PVN. Here, we used in vivo extracellular recording, juxtacellular labeling, post hoc anatomo-immunohistochemical analysis and camera lucida reconstruction to address this question. We demonstrate that all well-labeled AVP immunopositive neurons inside the PVN possess main axons joining the tract of Greving and multi-axon-like processes, as well as axonal collaterals branching very near to the somata, which project to extra-neurohypophyseal regions. The detected regions in this study include the medial and lateral preoptical area, suprachiasmatic nucleus, lateral habenula, medial and central amygdala and the conducting systems, such as stria medullaris, the fornix and the internal capsule. Expression of vesicular glutamate transporter 2 was observed in axon-collaterals. These results, in congruency with several previous reports in the literature, provided unequivocal evidence that AVP magnocells have an uncommon feature of possessing multiple axon-like processes emanating from somata or proximal dendrites. Furthermore, the long-range non-neurohypophyseal projections are more common than an “occasional” phenomenon as previously thought.

  16. Miro, MCU, and calcium: bridging our understanding of mitochondrial movement in axons

    Directory of Open Access Journals (Sweden)

    Karen Chang

    2013-09-01

    Full Text Available Neurons are extremely polarized structures with long axons and dendrites, which require proper distribution of mitochondria and maintenance of mitochondrial dynamics for neuronal functions and survival. Indeed, recent studies show that various neurological disorders are linked to mitochondrial transport in neurons. Mitochondrial anterograde transport is believed to deliver metabolic energy to synaptic terminals where energy demands are high, while mitochondrial retrograde transport is required to repair or remove damaged mitochondria in axons. It has been suggested that Ca2+ plays a key role in regulating mitochondrial transport by altering the configuration of mitochondrial protein, miro. However, molecular mechanisms that regulate mitochondrial transport in neurons still are not well characterized. In this review, we will discuss the roles of miro in mitochondrial transport and how the recently identified components of the mitochondrial calcium uniporter add to our current model of mitochondrial mobility regulation.

  17. X11/Mint genes control polarized localization of axonal membrane proteins in vivo.

    Science.gov (United States)

    Gross, Garrett G; Lone, G Mohiddin; Leung, Lok Kwan; Hartenstein, Volker; Guo, Ming

    2013-05-01

    Mislocalization of axonal proteins can result in misassembly and/or miswiring of neural circuits, causing disease. To date, only a handful of genes that control polarized localization of axonal membrane proteins have been identified. Here we report that Drosophila X11/Mint proteins are required for targeting several proteins, including human amyloid precursor protein (APP) and Drosophila APP-like protein (APPL), to axonal membranes and for their exclusion from dendrites of the mushroom body in Drosophila, a brain structure involved in learning and memory. Axonal localization of APP is mediated by an endocytic motif, and loss of X11/Mint results in a dramatic increase in cell-surface levels of APPL, especially on dendrites. Mutations in genes required for endocytosis show similar mislocalization of these proteins to dendrites, and strongly enhance defects seen in X11/Mint mutants. These results suggest that X11/Mint-dependent endocytosis in dendrites may serve to promote the axonal localization of membrane proteins. Since X11/Mint binds to APP, and abnormal trafficking of APP contributes to Alzheimer's disease, deregulation of X11/Mint may be important for Alzheimer's disease pathogenesis. PMID:23658195

  18. Laminin/β1 integrin signal triggers axon formation by promoting microtubule assembly and stabilization

    Institute of Scientific and Technical Information of China (English)

    Wen-Liang Lei; Shi-Ge Xing; Cai-Yun Deng; Xiang-Chun Ju; Xing-Yu Jiang; Zhen-Ge Luo

    2012-01-01

    Axon specification during neuronal polarization is closely associated with increased microtubule stabilization in one of the neurites of unpolarized neuron,but how this increased microtubule stability is achieved is unclear.Here,we show that extracellular matrix (ECM) component laminin promotes neuronal polarization via regulating directional microtubule assembly through β1 integrin (Itgb1).Contact with laminin coated on culture substrate or polystyrene beads was sufficient for axon specification of undifferentiated neurites in cultured hippocampal neurons and cortical slices.Active Itgb1 was found to be concentrated in laminin-contacting neurites.Axon formation was promoted and abolished by enhancing and attenuating Itgbl signaling,respectively.Interestingly,laminin contact promoted plus-end microtubule assembly in a manner that required Itgbl.Moreover,stabilizing microtubules partially prevented polarization defects caused by ltgbl downregulation.Finally,genetic ablation of ltgbl in dorsal telencephalic progenitors caused deficits in axon development of cortical pyramidal neurons.Thus,laminin/Itgb1 signaling plays an instructive role in axon initiation and growth,both in vitro and in vivo,through the regulation of microtubule assembly.This study has established a linkage between an extrinsic factor and intrinsic cytoskeletai dynamics during neuronal polarization.

  19. Defect-dependent carrier transport behavior of polymer:ZnO composites/electrodeposited CdS/indium tin oxide devices

    International Nuclear Information System (INIS)

    Currents through the poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) and ZnO nanoparticles (PEDOT:PSS:ZnO)/CdS/indium tin oxide (ITO) hetero-structures are studied. The authors introduced the electrodeposition technique with sulfide treatment to improve the film quality of CdS. It is shown that sulfide treatment leads to a reduction in the number of donor-like defects (that is, sulfur vacancies and cadmium interstitials) in the CdS films, which leads to the conversion of carrier transport behavior from Poole-Frenkel emission to thermionic emission-diffusion for PEDOT:PSS:ZnO/CdS/ITO devices. A correlation is identified for providing a guide to control the current transport behavior of PEDOT:PSS:ZnO/CdS/ITO devices

  20. Defect-dependent carrier transport behavior of polymer:ZnO composites/electrodeposited CdS/indium tin oxide devices

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yow-Jon, E-mail: rzr2390@yahoo.com.tw; You, C. F. [Institute of Photonics, National Changhua University of Education, Changhua 500, Taiwan (China)

    2015-07-28

    Currents through the poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) and ZnO nanoparticles (PEDOT:PSS:ZnO)/CdS/indium tin oxide (ITO) hetero-structures are studied. The authors introduced the electrodeposition technique with sulfide treatment to improve the film quality of CdS. It is shown that sulfide treatment leads to a reduction in the number of donor-like defects (that is, sulfur vacancies and cadmium interstitials) in the CdS films, which leads to the conversion of carrier transport behavior from Poole-Frenkel emission to thermionic emission-diffusion for PEDOT:PSS:ZnO/CdS/ITO devices. A correlation is identified for providing a guide to control the current transport behavior of PEDOT:PSS:ZnO/CdS/ITO devices.

  1. Correlation of film morphology and defect content with the charge-carrier transport in thin-film transistors based on ZnO nanoparticles

    International Nuclear Information System (INIS)

    The correlation of defect content and film morphology with the charge-carrier transport in field-effect devices based on zinc oxide nanoparticles was investigated. Changes in the defect content and the morphology were realized by annealing and sintering of the nanoparticle thin films. Temperature-dependent electrical measurements reveal that the carrier transport is thermally activated for both the unsintered and sintered thin films. Reduced energetic barrier heights between the particles have been determined after sintering. Additionally, the energetic barrier heights between the particles can be reduced by increasing the drain-to-source voltage and the gate-to-source voltage. The changes in the barrier height are discussed with respect to information obtained by scanning electron microscopy and photoluminescence measurements. It is found that a reduction of surface states and a lower roughness at the interface between the particle layer and the gate dielectric lead to lower barrier heights. Both surface termination and layer morphology at the interface affect the barrier height and thus are the main criteria for mobility improvement and device optimization

  2. Correlation of film morphology and defect content with the charge-carrier transport in thin-film transistors based on ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Polster, S. [Chair of Electron Devices, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Cauerstrasse 6, 91058 Erlangen (Germany); Jank, M. P. M. [Fraunhofer Institute for Integrated Systems and Device Technology, Schottkystrasse 10, 91058 Erlangen (Germany); Frey, L. [Chair of Electron Devices, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Cauerstrasse 6, 91058 Erlangen (Germany); Fraunhofer Institute for Integrated Systems and Device Technology, Schottkystrasse 10, 91058 Erlangen (Germany)

    2016-01-14

    The correlation of defect content and film morphology with the charge-carrier transport in field-effect devices based on zinc oxide nanoparticles was investigated. Changes in the defect content and the morphology were realized by annealing and sintering of the nanoparticle thin films. Temperature-dependent electrical measurements reveal that the carrier transport is thermally activated for both the unsintered and sintered thin films. Reduced energetic barrier heights between the particles have been determined after sintering. Additionally, the energetic barrier heights between the particles can be reduced by increasing the drain-to-source voltage and the gate-to-source voltage. The changes in the barrier height are discussed with respect to information obtained by scanning electron microscopy and photoluminescence measurements. It is found that a reduction of surface states and a lower roughness at the interface between the particle layer and the gate dielectric lead to lower barrier heights. Both surface termination and layer morphology at the interface affect the barrier height and thus are the main criteria for mobility improvement and device optimization.

  3. Endoplasmic reticulum sorting and kinesin-1 command the targeting of axonal GABAB receptors.

    Directory of Open Access Journals (Sweden)

    Viviana Valdés

    Full Text Available In neuronal cells the intracellular trafficking machinery controls the availability of neurotransmitter receptors at the plasma membrane, which is a critical determinant of synaptic strength. Metabotropic γ amino-butyric acid (GABA type B receptors (GABA(BRs are neurotransmitter receptors that modulate synaptic transmission by mediating the slow and prolonged responses to GABA. GABA(BRs are obligatory heteromers constituted by two subunits, GABA(BR1 and GABA(BR2. GABA(BR1a and GABA(BR1b are the most abundant subunit variants. GABA(BR1b is located in the somatodendritic domain whereas GABA(BR1a is additionally targeted to the axon. Sushi domains located at the N-terminus of GABA(BR1a constitute the only difference between both variants and are necessary and sufficient for axonal targeting. The precise targeting machinery and the organelles involved in sorting and transport have not been described. Here we demonstrate that GABA(BRs require the Golgi apparatus for plasma membrane delivery but that axonal sorting and targeting of GABA(BR1a operate in a pre-Golgi compartment. In the axon GABA(BR1a subunits are enriched in the endoplasmic reticulum (ER, and their dynamic behavior and colocalization with other secretory organelles like the ER-to-Golgi intermediate compartment (ERGIC suggest that they employ a local secretory route. The transport of axonal GABA(BR1a is microtubule-dependent and kinesin-1, a molecular motor of the kinesin family, determines axonal localization. Considering that progression of GABA(BRs through the secretory pathway is regulated by an ER retention motif our data contribute to understand the role of the axonal ER in non-canonical sorting and targeting of neurotransmitter receptors.

  4. Genetics Home Reference: giant axonal neuropathy

    Science.gov (United States)

    ... in giant axonal neuropathy: new insights into disease mechanisms. Muscle Nerve. 2012 Aug;46(2):246-56. ... with a qualified healthcare professional . About Genetics Home Reference Site Map Contact Us Selection Criteria for Links ...

  5. Transport of dibasic amino acids, cystine, and tryptophan by cultured human fibroblasts: absence of a defect in cystinuria and Hartnup disease

    Science.gov (United States)

    Groth, Ulrich; Rosenberg, Leon E.

    1972-01-01

    Transport of lysine, arginine, cystine, and tryptophan was studied in cultured skin fibroblasts from normal controls and from patients with cystinuria and Hartnup disease. Each of these amino acids was accumulated against concentration gradients by energy-dependent, saturable mechanisms. Lysine and arginine were each transported by two distinct processes which they shared with each other and with ornithine. In contrast, cystine was taken up by a different transport system with no demonstrable affinity for the dibasic amino acids. The time course and Michaelis-Menten kinetics of lysine and cystine uptake by cells from three cystinuric patients differed in no way from those found in control cells. Similarly, the characteristics of tryptophan uptake by cells from a child with Hartnup disease were identical to those noted in control cells. These findings indicate that the specific transport defects observed in gut and kidney in cystinuria and Hartnup disease are not expressed in cultured human fibroblasts, thus providing additional evidence of the important role that cellular differentiation plays in the regulation of expression of the human genome. PMID:5054467

  6. Bazooka mediates secondary axon morphology in Drosophila brain lineages

    Directory of Open Access Journals (Sweden)

    Hartenstein Volker

    2011-04-01

    Full Text Available Abstract In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that multiple GAL4 drivers have been mapped to several lineages of the Drosophila brain enables investigation of the role of Bazooka from larval to adult stages Bazooka loss-of-function (LOF clones had abnormal morphologies, including aberrant pathway choice of ventral projection neurons in the BAla1 lineage, ectopic branching in the DALv2 and BAmv1 lineages, and excess BLD5 lineage axon projections in the optic medulla. Exogenous expression of Bazooka protein in BAla1 neurons rescued defective guidance, supporting an intrinsic requirement for Bazooka in the post-mitotic neuron. Elimination of the Par-complex member Par6 recapitulated Bazooka phenotypes in some but not all lineages, suggesting that the Par complex functions in a lineage-dependent manner, and that Bazooka may act independently in some lineages. Importantly, this study highlights the potential of using a multilineage approach when studying gene function during neural development in Drosophila.

  7. Bazooka mediates secondary axon morphology in Drosophila brain lineages.

    Science.gov (United States)

    Spindler, Shana R; Hartenstein, Volker

    2011-01-01

    In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that multiple GAL4 drivers have been mapped to several lineages of the Drosophila brain enables investigation of the role of Bazooka from larval to adult stages Bazooka loss-of-function (LOF) clones had abnormal morphologies, including aberrant pathway choice of ventral projection neurons in the BAla1 lineage, ectopic branching in the DALv2 and BAmv1 lineages, and excess BLD5 lineage axon projections in the optic medulla. Exogenous expression of Bazooka protein in BAla1 neurons rescued defective guidance, supporting an intrinsic requirement for Bazooka in the post-mitotic neuron. Elimination of the Par-complex member Par6 recapitulated Bazooka phenotypes in some but not all lineages, suggesting that the Par complex functions in a lineage-dependent manner, and that Bazooka may act independently in some lineages. Importantly, this study highlights the potential of using a multilineage approach when studying gene function during neural development in Drosophila. PMID:21524279

  8. Copper transport and its defect in Wilson disease: characterization of the copper-binding domain of Wilson disease ATPase.

    Science.gov (United States)

    Sarkar, B

    2000-04-01

    Copper is an essential trace element which forms an integral component of many enzymes. While trace amounts of copper are needed to sustain life, excess copper is extremely toxic. An attempt is made here to present the current understanding of the normal transport of copper in relation to the absorption, intracellular transport and toxicity. Wilson disease is a genetic disorder of copper transport resulting in the accumulation of copper in organs such as liver and brain which leads to progressive hepatic and neurological damage. The gene responsible for Wilson disease (ATP7B) is predicted to encode a putative copper-transporting P-type ATPase. An important feature of this ATPase is the presence of a large N-terminal domain that contains six repeats of a copper-binding motif which is thought to be responsible for binding this metal prior to its transport across the membrane. We have cloned, expressed and purified the N-terminal domain (approximately 70 kD) of Wilson disease ATPase. Metal-binding properties of the domain showed the protein to bind several metals besides copper; however, copper has a higher affinity for the domain. The copper is bound to the domain in Cu(I) form with a copper: protein ratio of 6.5:1. X-ray absorption studies strongly suggest Cu(I) atoms are ligated to cysteine residues. Circular dichroism spectral analyses suggest both secondary and tertiary structural changes upon copper binding to the domain. Copper-binding studies suggest some degree of cooperativity in binding of copper. These studies as well as detailed structural information of the copper-binding domain will be crucial in determining the specific role played by the copper-transporting ATPase in the homeostatic control of copper in the body and how the transport of copper is interrupted by mutations in the ATPase gene. PMID:10830865

  9. A retrograde apoptotic signal originating in NGF-deprived distal axons of rat sympathetic neurons in compartmented cultures

    Institute of Scientific and Technical Information of China (English)

    Sue-Ann Mok; Karen Lund; Robert B Campenot

    2009-01-01

    Previous investigations of retrograde survival signaling by nerve growth factor (NGF) and other neurotrophins have supported diverse mechanisms, but all proposed mechanisms have in common the generation of survival sig-nals retrogradely transmitted to the neuronal cell bodies. We report the finding of a retrograde apoptotic signal in axons that is suppressed by local NGF signaling. NGF withdrawal from distal axons alone was sufficient to activate the pro-apoptotic transcription factor, c-jnn, in the cell bodies. Providing NGF directly to cell bodies, thereby restor-ing a source of NGF-induced survival signals, could not prevent c-jun activation caused by NGF withdrawal from the distal axons. This is evidence that c-jun is not activated due to loss of survival signals at the cell bodies. Moreover, blocking axonal transport with colchicine inhibited c-jun activation caused by NGF deprivation suggesting that a retrogradely transported pro-apoptotic signal, rather than loss of a retrogradely transported survival signal, caused c-jun activation. Additional experiments showed that activation of c-jun, pro-caspase-3 cleavage, and apoptosis were blocked by the protein kinase C inhibitors, rottlerin and chelerythrine, only when applied to distal axons suggesting that they block the axon-specific pro-apoptotic signal. The rottlerin-sensitive mechanism was found to regulate glyco-gen synthase kinase 3 (GSK3) activity. The effect of siRNA knockdown, and pharmacological inhibition of GSK3 sug-gests that GSK3 is required for apoptosis caused by NGF deprivation and may function as a retrograde carrier of the axon apoptotic signal. The existence of a retrograde death signaling system in axons that is suppressed by neurotro-phins has broad implications for neurodevelopment and for discovering treatments for neurodegenerative diseases and neurotrauma.

  10. Peripheral neuropathy in the Twitcher mouse involves the activation of axonal caspase 3

    Directory of Open Access Journals (Sweden)

    Ernesto R Bongarzone

    2011-10-01

    Full Text Available Infantile Krabbe disease results in the accumulation of lipid-raft-associated galactosylsphingosine (psychosine, demyelination, neurodegeneration and premature death. Recently, axonopathy has been depicted as a contributing factor in the progression of neurodegeneration in the Twitcher mouse, a bona fide mouse model of Krabbe disease. Analysis of the temporal-expression profile of MBP (myelin basic protein isoforms showed unexpected increases of the 14, 17 and 18.5 kDa isoforms in the sciatic nerve of 1-week-old Twitcher mice, suggesting an abnormal regulation of the myelination process during early postnatal life in this mutant. Our studies showed an elevated activation of the pro-apoptotic protease caspase 3 in sciatic nerves of 15- and 30-day-old Twitcher mice, in parallel with increasing demyelination. Interestingly, while active caspase 3 was clearly contained in peripheral axons at all ages, we found no evidence of caspase accumulation in the soma of corresponding mutant spinal cord motor neurons. Furthermore, active caspase 3 was found not only in unmyelinated axons, but also in myelinated axons of the mutant sciatic nerve. These results suggest that axonal caspase activation occurs before demyelination and following a dying-back pattern. Finally, we showed that psychosine was sufficient to activate caspase 3 in motor neuronal cells in vitro in the absence of myelinating glia. Taken together, these findings indicate that degenerating mechanisms actively and specifically mediate axonal dysfunction in Krabbe disease and support the idea that psychosine is a pathogenic sphingolipid sufficient to cause axonal defects independently of demyelination.

  11. The peculiarities of magnetization processes in layered high- temperature superconductors with ferromagnetic defects under applying of transport current and external magnetic field

    International Nuclear Information System (INIS)

    The Monte-Carlo method was used for study of magnetization processes in 2D layered high temperature superconductors (HTSC) with internal ferromagnetic defects. The magnetization was treated under application of transport current and external dc magnetic field. The voltage-current characteristics (I-V curve) were calculated in presence of external dc magnetic field. A novel S-type I-V curve of the superconductor/ferromagnet system in external magnetic field was demonstrated. It was shown that the S-type nonlinearity is due to the local reversal magnetization of magnetic particles by the field of vortices. The H-T phase diagram which demonstrates the region of existence I-V curve nonlinearity was obtained. The conditions for electromagnetic generation at the region of nonlinearity were found and the frequency of such a generation was estimated

  12. How Schwann Cells Sort Axons: New Concepts.

    Science.gov (United States)

    Feltri, M Laura; Poitelon, Yannick; Previtali, Stefano Carlo

    2016-06-01

    Peripheral nerves contain large myelinated and small unmyelinated (Remak) fibers that perform different functions. The choice to myelinate or not is dictated to Schwann cells by the axon itself, based on the amount of neuregulin I-type III exposed on its membrane. Peripheral axons are more important in determining the final myelination fate than central axons, and the implications for this difference in Schwann cells and oligodendrocytes are discussed. Interestingly, this choice is reversible during pathology, accounting for the remarkable plasticity of Schwann cells, and contributing to the regenerative potential of the peripheral nervous system. Radial sorting is the process by which Schwann cells choose larger axons to myelinate during development. This crucial morphogenetic step is a prerequisite for myelination and for differentiation of Remak fibers, and is arrested in human diseases due to mutations in genes coding for extracellular matrix and linkage molecules. In this review we will summarize progresses made in the last years by a flurry of reverse genetic experiments in mice and fish. This work revealed novel molecules that control radial sorting, and contributed unexpected ideas to our understanding of the cellular and molecular mechanisms that control radial sorting of axons. PMID:25686621

  13. Calpain activity promotes the sealing of severed giant axons

    OpenAIRE

    Godell, Christopher M.; Smyers, Mark E.; Eddleman, Christopher S.; Ballinger, Martis L.; Fishman, Harvey M.; Bittner, George D.

    1997-01-01

    A barrier (seal) must form at the cut ends of a severed axon if a neuron is to survive and eventually regenerate. Following severance of crayfish medial giant axons in physiological saline, vesicles accumulate at the cut end and form a barrier (seal) to ion and dye diffusion. In contrast, squid giant axons do not seal, even though injury-induced vesicles form after axonal transection and accumulate at cut axonal ends. Neither axon seals in Ca2+-free salines. The addition of calpain to the bat...

  14. Imaging axonal degeneration and repair in pre-clinical animal models of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Soumya S Yandamuri

    2016-05-01

    Full Text Available Multiple sclerosis (MS is a central nervous system (CNS disease characterized by chronic neuroinflammation, demyelination, and axonal damage. Infiltration of activated lymphocytes and myeloid cells are thought to be primarily responsible for white matter damage and axonopathy. Over time, this neurologic damage manifests clinically as debilitating motor and cognitive symptoms. Existing MS therapies focus on symptom relief and delay of disease progression through reduction of neuroinflammation. However, long-term strategies to remyelinate, protect, or regenerate axons have remained elusive, posing a challenge to treating progressive forms of MS. Preclinical mouse models and techniques such as immunohistochemistry, flow cytometry, and genomic and proteomic analysis have provided advances in our understanding of discrete time-points of pathology following disease induction. More recently, in vivo and in situ two-photon microscopy (2P has made it possible to visualize continuous real-time cellular behavior and structural changes occurring within the CNS during neuropathology. Research utilizing 2P imaging to study axonopathy in neuroinflammatory demyelinating disease has focused on five areas: (1 axonal morphologic changes (2 organelle transport and health, (3 relationship to inflammation, (4 neuronal excitotoxicity, and (5 regenerative therapies. 2P imaging may also be used to identify novel therapeutic targets via identification and clarification of dynamic cellular and molecular mechanisms of axonal regeneration and remyelination. Here, we review tools that have made 2P accessible for imaging neuropathologies and advances in our understanding of axonal degeneration and repair in preclinical models of demyelinating diseases.

  15. Microfluidic device for unidirectional axon growth

    Science.gov (United States)

    Malishev, E.; Pimashkin, A.; Gladkov, A.; Pigareva, Y.; Bukatin, A.; Kazantsev, V.; Mukhina, I.; Dubina, M.

    2015-11-01

    In order to better understand the communication and connectivity development of neuron networks, we designed microfluidic devices with several chambers for growing dissociated neuronal cultures from mice fetal hippocampus (E18). The chambers were connected with microchannels providing unidirectional axonal growth between “Source” and “Target” neural sub-networks. Experiments were performed in a hippocampal cultures plated in a poly-dimethylsiloxane (PDMS) microfluidic chip, aligned with a 60 microelectrode array (MEA). Axonal growth through microchannels was observed with brightfield, phase-contrast and fluorescence microscopy, and after 7 days in vitro electrical activity was recorded. Visual inspection and spike propagation analysis showed the predominant axonal growth in microchannels in a direction from “Source” to “Target”.

  16. Diverse modes of axon elaboration in the developing neocortex.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The development of axonal arbors is a critical step in the establishment of precise neural circuits, but relatively little is known about the mechanisms of axonal elaboration in the neocortex. We used in vivo two-photon time-lapse microscopy to image axons in the neocortex of green fluorescent protein-transgenic mice over the first 3 wk of postnatal development. This period spans the elaboration of thalamocortical (TC and Cajal-Retzius (CR axons and cortical synaptogenesis. Layer 1 collaterals of TC and CR axons were imaged repeatedly over time scales ranging from minutes up to days, and their growth and pruning were analyzed. The structure and dynamics of TC and CR axons differed profoundly. Branches of TC axons terminated in small, bulbous growth cones, while CR axon branch tips had large growth cones with numerous long filopodia. TC axons grew rapidly in straight paths, with frequent interstitial branch additions, while CR axons grew more slowly along tortuous paths. For both types of axon, new branches appeared at interstitial sites along the axon shaft and did not involve growth cone splitting. Pruning occurred via retraction of small axon branches (tens of microns, at both CR and TC axons or degeneration of large portions of the arbor (hundreds of microns, for TC axons only. The balance between growth and retraction favored overall growth, but only by a slight margin. Given the identical layer 1 territory upon which CR and TC axons grow, the differences in their structure and dynamics likely reflect distinct intrinsic growth programs for axons of long projection neurons versus local interneurons.

  17. Improvement of chloride transport defect by gonadotropin-releasing hormone (GnRH in cystic fibrosis epithelial cells.

    Directory of Open Access Journals (Sweden)

    Nathalie Benz

    Full Text Available Cystic fibrosis (CF, the most common autosomal recessive disease in Caucasians, is due to mutations in the CFTR gene. F508del, the most frequent mutation in patients, impairs CFTR protein folding and biosynthesis. The F508del-CFTR protein is retained in the endoplasmic reticulum (ER and its traffic to the plasma membrane is altered. Nevertheless, if it reaches the cell surface, it exhibits a Cl(- channel function despite a short half-life. Pharmacological treatments may target the F508del-CFTR defect directly by binding to the mutant protein or indirectly by altering cellular proteostasis, and promote its plasma membrane targeting and stability. We previously showed that annexine A5 (AnxA5 directly binds to F508del-CFTR and, when overexpressed, promotes its membrane stability, leading to the restoration of some Cl(- channel function in cells. Because Gonadotropin-Releasing Hormone (GnRH increases AnxA5 expression in some cells, we tested it in CF cells. We showed that human epithelial cells express GnRH-receptors (GnRH-R and that GnRH induces an AnxA5 overexpression and an increased Cl(- channel function in F508del-CFTR cells, due to an increased stability of the protein in the membranes. Beside the numerous physiological implications of the GnRH-R expression in epithelial cells, we propose that a topical use of GnRH is a potential treatment in CF.

  18. Effect of nonmagnetic defects on superconducting and transport properties of Ba(Fe{sub 1–x}Co{sub x}As){sub 2} high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Blokhin, I. S.; Gavrilkin, S. Yu. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Gorshunov, B. P. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Dravin, V. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Zhukova, E. S. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Ivanenko, O. M. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Aida, K. [Leibniz Institute for Solid State and Materials Research (Germany); Krasnosvobodtsev, S. I. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Kurt, F. [Leibniz Institute for Solid State and Materials Research (Germany); Mitsen, K. V., E-mail: mitsen@sci.lebedev.ru; Tsvetkov, A. Yu. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2015-11-15

    The effect of nonmagnetic defects on superconducting and transport properties of Ba(Fe{sub 0.94}Co{sub 0.06}As){sub 2} films is studied for obtaining information on the symmetry type of the order parameter for superconducting pnictides. Such defects are generated in the film by irradiation by He{sup +} ions with an energy of 200 keV. It is found that a decrease in superconducting transition temperature T{sub c} upon an increase in the concentration of nonmagnetic defects in this compound occurs much more slowly than predicted in the model assuming s{sup ±}-wave symmetry of the order parameter. Joint analysis of the influence of nonmagnetic defects on the superconducting and magnetotransport properties of such films leads to the conclusion that superconductivity is completely suppressed in them after critical disorder is attained, which assumes the s{sup ++}-wave symmetry.

  19. Functions of axon guidance molecules in synapse formation

    OpenAIRE

    Chen, Shih-Yu; Cheng, Hwai-Jong

    2009-01-01

    Axon guidance and synapse formation are important developmental events for establishing a functional neuronal circuitry. These two related cellular processes occur in a coordinated fashion but previous studies from multiple model organisms seemed to suggest that axon guidance and synapse formation are mediated by distinct molecular cues. Thus, axon guidance molecules are responsible for guiding the navigating axon toward its target area, while other adhesion or ligand-receptor molecules speci...

  20. The Alzheimer's β-secretase enzyme BACE1 is required for accurate axon guidance of olfactory sensory neurons and normal glomerulus formation in the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Rajapaksha Tharinda W

    2011-12-01

    axon guidance. OSNs continually undergo regeneration and hence require ongoing axon guidance. Neurogenesis and the regeneration of neurons and axons occur in other adult populations of peripheral and central neurons that also require axon guidance throughout life. Therefore, BACE1 inhibitors under development for the treatment of AD may potentially cause axon targeting defects in these neuronal populations as well.

  1. Morphometry of Axons in Optic Nerves of Siamese's Twins

    Institute of Scientific and Technical Information of China (English)

    Xinzu Gu; Zhenping Zhang; Qi Lin; Jiongji Liang; Wenyu Lu; Xiulan Ye; A A Sadun

    2002-01-01

    Purpose: To observe the development of optic nerve, we examined four optic nerves from Siameses Twins by absolute counts of axons.Methods: Mean axon diameter, mean axon density, totally axonal population and optic nerve area were noted for each optic nerve. The mean axon diameter and the mean axon density were compared between paraxial (inner sectors)and cortical (outer sectors)areas of the nerves.Results: More myelinated axons were seen in the inner sectors as compared to the outer sectors(average 11 axons/1 000 μm2 in inner sectors and 34 axons/l 000 μm2 in outer sectors( P=0. 036) . The myelinated fibers were also smaller(63 microns) in the outer sectors as compared to the inner sectors(72 microns) ( P = 0. 001 ). The average cross sectors area for the four 40 week stage optical nerves of Siamese Twins was 3.32 × 103 as compared to 1 million axons for 32-week-old normals.Conclusion: Our finding of fewer axonal number and small myelinated fibers in the Siamese Twins suggests hypoplasia. Myelination was more abnormal in the paraxial optic nerve than that in the peripheral sectors, suggesting anomalous development of optic nerve peripherally and delayed developnent centrally. Axonal density is higher in inner sectors than that in outer sectors, suggesting delayed development of the outer nerve sector.

  2. Electrokinetic confinement of axonal growth for dynamically configurable neural networks.

    Science.gov (United States)

    Honegger, Thibault; Scott, Mark A; Yanik, Mehmet F; Voldman, Joel

    2013-02-21

    Axons in the developing nervous system are directed via guidance cues, whose expression varies both spatially and temporally, to create functional neural circuits. Existing methods to create patterns of neural connectivity in vitro use only static geometries, and are unable to dynamically alter the guidance cues imparted on the cells. We introduce the use of AC electrokinetics to dynamically control axonal growth in cultured rat hippocampal neurons. We find that the application of modest voltages at frequencies on the order of 10(5) Hz can cause developing axons to be stopped adjacent to the electrodes while axons away from the electric fields exhibit uninhibited growth. By switching electrodes on or off, we can reversibly inhibit or permit axon passage across the electrodes. Our models suggest that dielectrophoresis is the causative AC electrokinetic effect. We make use of our dynamic control over axon elongation to create an axon-diode via an axon-lock system that consists of a pair of electrode 'gates' that either permit or prevent axons from passing through. Finally, we developed a neural circuit consisting of three populations of neurons, separated by three axon-locks to demonstrate the assembly of a functional, engineered neural network. Action potential recordings demonstrate that the AC electrokinetic effect does not harm axons, and Ca(2+) imaging demonstrated the unidirectional nature of the synaptic connections. AC electrokinetic confinement of axonal growth has potential for creating configurable, directional neural networks. PMID:23314575

  3. Spatial temperature gradients guide axonal outgrowth

    Science.gov (United States)

    Black, Bryan; Vishwakarma, Vivek; Dhakal, Kamal; Bhattarai, Samik; Pradhan, Prabhakar; Jain, Ankur; Kim, Young-Tae; Mohanty, Samarendra

    2016-07-01

    Formation of neural networks during development and regeneration after injury depends on accuracy of axonal pathfinding, which is primarily believed to be influenced by chemical cues. Recently, there is growing evidence that physical cues can play crucial role in axonal guidance. However, detailed mechanism involved in such guidance cues is lacking. By using weakly-focused near-infrared continuous wave (CW) laser microbeam in the path of an advancing axon, we discovered that the beam acts as a repulsive guidance cue. Here, we report that this highly-effective at-a-distance guidance is the result of a temperature field produced by the near-infrared laser light absorption. Since light absorption by extracellular medium increases when the laser wavelength was red shifted, the threshold laser power for reliable guidance was significantly lower in the near-infrared as compared to the visible spectrum. The spatial temperature gradient caused by the near-infrared laser beam at-a-distance was found to activate temperature-sensitive membrane receptors, resulting in an influx of calcium. The repulsive guidance effect was significantly reduced when extracellular calcium was depleted or in the presence of TRPV1-antagonist. Further, direct heating using micro-heater confirmed that the axonal guidance is caused by shallow temperature-gradient, eliminating the role of any non-photothermal effects.

  4. Early cellular signaling responses to axonal injury

    Directory of Open Access Journals (Sweden)

    Wang Ai

    2009-03-01

    Full Text Available Abstract Background We have used optic nerve injury as a model to study early signaling events in neuronal tissue following axonal injury. Optic nerve injury results in the selective death of retinal ganglion cells (RGCs. The time course of cell death takes place over a period of days with the earliest detection of RGC death at about 48 hr post injury. We hypothesized that in the period immediately following axonal injury, there are changes in the soma that signal surrounding glia and neurons and that start programmed cell death. In the current study, we investigated early changes in cellular signaling and gene expression that occur within the first 6 hrs post optic nerve injury. Results We found evidence of cell to cell signaling within 30 min of axonal injury. We detected differences in phosphoproteins and gene expression within the 6 hrs time period. Activation of TNFα and glutamate receptors, two pathways that can initiate cell death, begins in RGCs within 6 hrs following axonal injury. Differential gene expression at 6 hrs post injury included genes involved in cytokine, neurotrophic factor signaling (Socs3 and apoptosis (Bax. Conclusion We interpret our studies to indicate that both neurons and glia in the retina have been signaled within 30 min after optic nerve injury. The signals are probably initiated by the RGC soma. In addition, signals activating cellular death pathways occur within 6 hrs of injury, which likely lead to RGC degeneration.

  5. Defect modelling

    International Nuclear Information System (INIS)

    Calculations, drawing principally on developments at AERE Harwell, of the relaxation about lattice defects are reviewed with emphasis on the techniques required for such calculations. The principles of defect modelling are outlined and various programs developed for defect simulations are discussed. Particular calculations for metals, ionic crystals and oxides, are considered. (UK)

  6. Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain

    OpenAIRE

    Larsen, Camilla; Shy, Diana; Spindler, Shana R; Fung, Siaumin; Pereanu, Wayne; Younossi -Hartenstein, Amelia; Hartenstein, Volker

    2009-01-01

    The Drosophila central brain is composed of approximately 100 paired lineages, with most lineages comprising 100–150 neurons. Most lineages have a number of important characteristics in common. Typically, neurons of a lineage stay together as a coherent cluster and project their axons into a coherent bundle visible from late embryo to adult. Neurons born during the embryonic period form the primary axon tracts (PATs) that follow stereotyped pathways in the neuropile. Apoptotic cell death remo...

  7. Speciifc effects of c-Jun NH2-terminal kinase-interacting protein 1 in neuronal axons

    Institute of Scientific and Technical Information of China (English)

    Shu Tang; Qiang Wen; Xiao-jian Zhang; Quan-cheng Kan

    2016-01-01

    c-Jun NH2-terminal kinase (JNK)-interacting protein 3 plays an important role in brain-derived neurotrophic factor/tropomyosin-related kinase B (TrkB) anterograde axonal transport. It remains unclear whether JNK-interacting protein 1 mediates similar effects, or whether JNK-interacting protein 1 affects the regulation of TrkB anterograde axonal transport. In this study, we isolated rat embryonic hippocampus and cultured hippocampal neuronsin vitro. Coimmunoprecipitation results demonstrated that JNK-interacting protein 1 formed TrkB com-plexesin vitro andin vivo. Immunocytochemistry results showed that when JNK-interacting protein 1 was highly expressed, the distribution of TrkB gradually increased in axon terminals. However, the distribution of TrkB reduced in axon terminals after knocking out JNK-interact-ing protein 1. In addition, there were differences in distribution of TrkB after JNK-interacting protein 1 was knocked out compared with not. However, knockout of JNK-interacting protein 1 did not affect the distribution of TrkB in dendrites. These ifndings conifrm that JNK-inter-acting protein 1 can interact with TrkB in neuronal cells, and can regulate the transport of TrkB in axons, but not in dendrites.

  8. White-matter astrocytes, axonal energy metabolism, and axonal degeneration in multiple sclerosis

    Science.gov (United States)

    Cambron, Melissa; D'Haeseleer, Miguel; Laureys, Guy; Clinckers, Ralph; Debruyne, Jan; De Keyser, Jacques

    2012-01-01

    In patients with multiple sclerosis (MS), a diffuse axonal degeneration occurring throughout the white matter of the central nervous system causes progressive neurologic disability. The underlying mechanism is unclear. This review describes a number of pathways by which dysfunctional astrocytes in MS might lead to axonal degeneration. White-matter astrocytes in MS show a reduced metabolism of adenosine triphosphate-generating phosphocreatine, which may impair the astrocytic sodium potassium pump and lead to a reduced sodium-dependent glutamate uptake. Astrocytes in MS white matter appear to be deficient in β2 adrenergic receptors, which are involved in stimulating glycogenolysis and suppressing inducible nitric oxide synthase (NOS2). Glutamate toxicity, reduced astrocytic glycogenolysis leading to reduced lactate and glutamine production, and enhanced nitric oxide (NO) levels may all impair axonal mitochondrial metabolism, leading to axonal degeneration. In addition, glutamate-mediated oligodendrocyte damage and impaired myelination caused by a decreased production of N-acetylaspartate by axonal mitochondria might also contribute to axonal loss. White-matter astrocytes may be considered as a potential target for neuroprotective MS therapies. PMID:22214904

  9. Mislocalization of neuronal mitochondria reveals regulation of Wallerian degeneration and NMNAT/WLDS-mediated axon protection independent of axonal mitochondria

    OpenAIRE

    Kitay, Brandon M.; McCormack, Ryan; Wang, Yunfang; Tsoulfas, Pantelis; Zhai, R. Grace

    2013-01-01

    Axon degeneration is a common and often early feature of neurodegeneration that correlates with the clinical manifestations and progression of neurological disease. Nicotinamide mononucleotide adenylytransferase (NMNAT) is a neuroprotective factor that delays axon degeneration following injury and in models of neurodegenerative diseases suggesting a converging molecular pathway of axon self-destruction. The underlying mechanisms have been under intense investigation and recent reports suggest...

  10. AxonQuant: A Microfluidic Chamber Culture-Coupled Algorithm That Allows High-Throughput Quantification of Axonal Damage

    Directory of Open Access Journals (Sweden)

    Yang Li

    2014-02-01

    Full Text Available Published methods for imaging and quantitatively analyzing morphological changes in neuronal axons have serious limitations because of their small sample sizes, and their time-consuming and nonobjective nature. Here we present an improved microfluidic chamber design suitable for fast and high-throughput imaging of neuronal axons. We developed the AxonQuant algorithm, which is suitable for automatic processing of axonal imaging data. This microfluidic chamber-coupled algorithm allows calculation of an ‘axonal continuity index' that quantitatively measures axonal health status in a manner independent of neuronal or axonal density. This method allows quantitative analysis of axonal morphology in an automatic and nonbiased manner. Our method will facilitate large-scale high-throughput screening for genes or therapeutic compounds for neurodegenerative diseases involving axonal damage. When combined with imaging technologies utilizing different gene markers, this method will provide new insights into the mechanistic basis for axon degeneration. Our microfluidic chamber culture-coupled AxonQuant algorithm will be widely useful for studying axonal biology and neurodegenerative disorders. © 2014 S. Karger AG, Basel

  11. Regulation of myelin genes implicated in psychiatric disorders by functional activity in axons

    Directory of Open Access Journals (Sweden)

    Philip R Lee

    2009-06-01

    Full Text Available Myelination is a highly dynamic process that continues well into adulthood in humans. Several recent gene expression studies have found abnormal expression of genes involved in myelination in the prefrontal cortex of brains from patients with schizophrenia and other psychiatric illnesses. Defects in myelination could contribute to the pathophysiology of psychiatric illness by impairing information processing as a consequence of altered impulse conduction velocity and synchrony between cortical regions carrying out higher level cognitive functions. Myelination can be altered by impulse activity in axons and by environmental experience. Psychiatric illness is treated by psychotherapy, behavioral modification, and drugs affecting neurotransmission, raising the possibility that myelinating glia may not only contribute to such disorders, but that activity-dependent effects on myelinating glia could provide one of the cellular mechanisms contributing to the therapeutic effects of these treatments. This review examines evidence showing that genes and gene networks important for myelination can be regulated by functional activity in axons.

  12. Giant axonal neuropathy-like disease in an Alexandrine parrot (Psittacula eupatria).

    Science.gov (United States)

    Stent, Andrew; Gosbell, Matthew; Tatarczuch, Liliana; Summers, Brian A

    2015-09-01

    A chronic progressive neurological condition in an Alexandrine parrot (Psittacula eupatria) was manifest as intention tremors, incoordination, and seizure activity. Histology revealed large eosinophilic bodies throughout the central nervous system, and electron microscopy demonstrated that these bodies were greatly expanded axons distended by short filamentous structures that aggregated to form long strands. The presence of periodic acid-Schiff-positive material within the neuronal bodies of Purkinje cells and ganglionic neurons is another distinctive feature of this disease. The histological features of this case display some features consistent with giant axonal neuropathy as reported in humans and dogs. Based on investigation of the lineage in this case, an underlying inherited defect is suspected, but some additional factor appears to have altered the specific disease presentation in this bird. PMID:26330398

  13. Quantitative analysis of microtubule transport in growing nerve processes

    DEFF Research Database (Denmark)

    Ma*, Ytao; Shakiryanova*, Dinara; Vardya, Irina;

    2004-01-01

    translocation of MT plus ends in the axonal shaft by expressing GFP-EB1 in Xenopus embryo neurons in culture. Formal quantitative analysis of MT assembly/disassembly indicated that none of the MTs in the axonal shaft were rapidly transported. Our results suggest that transport of axonal MTs is not required for...... delivery of newly synthesized tubulin to the growing nerve processes. Udgivelsesdato: 2004...

  14. ECEL1 mutation implicates impaired axonal arborization of motor nerves in the pathogenesis of distal arthrogryposis.

    Science.gov (United States)

    Nagata, Kenichi; Kiryu-Seo, Sumiko; Tamada, Hiromi; Okuyama-Uchimura, Fumi; Kiyama, Hiroshi; Saido, Takaomi C

    2016-07-01

    The membrane-bound metalloprotease endothelin-converting enzyme-like 1 (ECEL1) has been newly identified as a causal gene of a specific type of distal arthrogryposis (DA). In contrast to most causal genes of DA, ECEL1 is predominantly expressed in neuronal cells, suggesting a unique neurogenic pathogenesis in a subset of DA patients with ECEL1 mutation. The present study analyzed developmental motor innervation and neuromuscular junction formation in limbs of the rodent homologue damage-induced neuronal endopeptidase (DINE)-deficient mouse. Whole-mount immunostaining was performed in DINE-deficient limbs expressing motoneuron-specific GFP to visualize motor innervation throughout the limb. Although DINE-deficient motor nerves displayed normal trajectory patterns from the spinal cord to skeletal muscles, they indicated impaired axonal arborization in skeletal muscles in the forelimbs and hindlimbs. Systematic examination of motor innervation in over 10 different hindlimb muscles provided evidence that DINE gene disruption leads to insufficient arborization of motor nerves after arriving at the skeletal muscle. Interestingly, the axonal arborization defect in foot muscles appeared more severe than in other hindlimb muscles, which was partially consistent with the proximal-distal phenotypic discordance observed in DA patients. Additionally, the number of innervated neuromuscular junction was significantly reduced in the severely affected DINE-deficient muscle. Furthermore, we generated a DINE knock-in (KI) mouse model with a pathogenic mutation, which was recently identified in DA patients. Axonal arborization defects were clearly detected in motor nerves of the DINE KI limb, which was identical to the DINE-deficient limb. Given that the encoded sequences, as well as ECEL1 and DINE expression profiles, are highly conserved between mouse and human, abnormal arborization of motor axons and subsequent failure of NMJ formation could be a primary cause of DA with ECEL1

  15. Axon Membrane Skeleton Structure is Optimized for Coordinated Sodium Propagation

    CERN Document Server

    Zhang, Yihao; Li, He; Tzingounis, Anastasios V; Lykotrafitis, George

    2016-01-01

    Axons transmit action potentials with high fidelity and minimal jitter. This unique capability is likely the result of the spatiotemporal arrangement of sodium channels along the axon. Super-resolution microscopy recently revealed that the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under entropic tension. Sodium channels also exhibit a periodic distribution pattern, as they bind to ankyrin G, which associates with spectrin. Here, we elucidate the relationship between the axon membrane skeleton structure and the function of the axon. By combining cytoskeletal dynamics and continuum diffusion modeling, we show that spectrin filaments under tension minimize the thermal fluctuations of sodium channels and prevent overlap of neighboring channel trajectories. Importantly, this axon skeletal arrangement allows for a highly reproducible band-like activation of sodium channels leading to coordinated sodium propagation along the axon.

  16. Axon position within the corpus callosum determines contralateral cortical projection.

    Science.gov (United States)

    Zhou, Jing; Wen, Yunqing; She, Liang; Sui, Ya-Nan; Liu, Lu; Richards, Linda J; Poo, Mu-Ming

    2013-07-16

    How developing axons in the corpus callosum (CC) achieve their homotopic projection to the contralateral cortex remains unclear. We found that axonal position within the CC plays a critical role in this projection. Labeling of nearby callosal axons in mice showed that callosal axons were segregated in an orderly fashion, with those from more medial cerebral cortex located more dorsally and subsequently projecting to more medial contralateral cortical regions. The normal axonal order within the CC was grossly disturbed when semaphorin3A/neuropilin-1 signaling was disrupted. However, the order in which axons were positioned within the CC still determined their contralateral projection, causing a severe disruption of the homotopic contralateral projection that persisted at postnatal day 30, when the normal developmental refinement of contralateral projections is completed in wild-type (WT) mice. Thus, the orderly positioning of axons within the CC is a primary determinant of how homotopic interhemispheric projections form in the contralateral cortex. PMID:23812756

  17. Motor axon synapses on renshaw cells contain higher levels of aspartate than glutamate.

    Directory of Open Access Journals (Sweden)

    Dannette S Richards

    Full Text Available Motoneuron synapses on spinal cord interneurons known as Renshaw cells activate nicotinic, AMPA and NMDA receptors consistent with co-release of acetylcholine and excitatory amino acids (EAA. However, whether these synapses express vesicular glutamate transporters (VGLUTs capable of accumulating glutamate into synaptic vesicles is controversial. An alternative possibility is that these synapses release other EAAs, like aspartate, not dependent on VGLUTs. To clarify the exact EAA concentrated at motor axon synapses we performed a quantitative postembedding colloidal gold immunoelectron analysis for aspartate and glutamate on motor axon synapses (identified by immunoreactivity to the vesicular acetylcholine transporter; VAChT contacting calbindin-immunoreactive (-IR Renshaw cell dendrites. The results show that 71% to 80% of motor axon synaptic boutons on Renshaw cells contained aspartate immunolabeling two standard deviations above average neuropil labeling. Moreover, VAChT-IR synapses on Renshaw cells contained, on average, aspartate immunolabeling at 2.5 to 2.8 times above the average neuropil level. In contrast, glutamate enrichment was lower; 21% to 44% of VAChT-IR synapses showed glutamate-IR two standard deviations above average neuropil labeling and average glutamate immunogold density was 1.7 to 2.0 times the neuropil level. The results were not influenced by antibody affinities because glutamate antibodies detected glutamate-enriched brain homogenates more efficiently than aspartate antibodies detecting aspartate-enriched brain homogenates. Furthermore, synaptic boutons with ultrastructural features of Type I excitatory synapses were always labeled by glutamate antibodies at higher density than motor axon synapses. We conclude that motor axon synapses co-express aspartate and glutamate, but aspartate is concentrated at higher levels than glutamate.

  18. Defect chemistry and oxygen transport of (La0.6Sr0.4-xMx)(0.99)Co0.2Fe0.8O3-delta, M = Ca (x=0.05, 0.1), Ba (x=0.1, 0.2), Sr Part I: Defect chemistry

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas; Søgaard, Martin; Bouwmeester, Henry J.M.;

    2009-01-01

    This paper is the first part of a two part series, where the effects of varying the A-site dopant on the defect chemistry, the diffusion coefficient and the surface catalytic properties of the materials (La0.6Sr0.4 − xMx)0.99Co0.2Fe0.8O3 − δ, M = Sr, Ca (x = 0.05, 0.1), Ba (x = 0.1, 0.2) (LSMFC......) have been investigated. In part I, the findings on the defect chemistry are reported, while the transport properties are reported in part II. Substitution of Sr2+ ions with Ca2+ ions (smaller ionic radius) and Ba2+ ions (larger ionic radius) strains the crystal structure differently for each...... oxygen loss was modelled with point defect chemistry models. Measurements at very low pO2 showed several phase transitions....

  19. Transport

    International Nuclear Information System (INIS)

    Transport is one of the major causes of environmental damage in Austria. Energy consumption, pollutants emissions, noise emissions, use of surfaces, sealing of surfaces, dissection of ecosystems and impact on landscape are the most significant environmental impacts caused by it. An overview of the transport development of passengers and freight in Austria is presented. Especially the energy consumption growth, carbon dioxide and nitrogen oxide emissions by type of transport, and the emissions development (HC, particle and carbon monoxide) of goods and passengers transport are analyzed covering the years 1980 - 1999. The health cost resulting from transport-related air pollution in Austria is given and measures to be taken for an effective control of the transport sector are mentioned. Figs. 8, Table 1. (nevyjel)

  20. The C-terminal domains of NF-H and NF-M subunits maintain axonal neurofilament content by blocking turnover of the stationary neurofilament network.

    Directory of Open Access Journals (Sweden)

    Mala V Rao

    Full Text Available Newly synthesized neurofilaments or protofilaments are incorporated into a highly stable stationary cytoskeleton network as they are transported along axons. Although the heavily phosphorylated carboxyl-terminal tail domains of the heavy and medium neurofilament (NF subunits have been proposed to contribute to this process and particularly to stability of this structure, their function is still obscure. Here we show in NF-H/M tail deletion [NF-(H/M(tailΔ] mice that the deletion of both of these domains selectively lowers NF levels 3-6 fold along optic axons without altering either rates of subunit synthesis or the rate of slow axonal transport of NF. Pulse labeling studies carried out over 90 days revealed a significantly faster rate of disappearance of NF from the stationary NF network of optic axons in NF-(H/M(tailΔ mice. Faster NF disappearance was accompanied by elevated levels of NF-L proteolytic fragments in NF-(H/M(tailΔ axons. We conclude that NF-H and NF-M C-terminal domains do not normally regulate NF transport rates as previously proposed, but instead increase the proteolytic resistance of NF, thereby stabilizing the stationary neurofilament cytoskeleton along axons.

  1. Focal axonal swellings and associated ultrastructural changes attenuate conduction velocity in central nervous system axons: a computer modeling study.

    Science.gov (United States)

    Kolaric, Katarina V; Thomson, Gemma; Edgar, Julia M; Brown, Angus M

    2013-08-01

    The constancy of action potential conduction in the central nervous system (CNS) relies on uniform axon diameter coupled with fidelity of the overlying myelin providing high-resistance, low capacitance insulation. Whereas the effects of demyelination on conduction have been extensively studied/modeled, equivalent studies on the repercussions for conduction of axon swelling, a common early pathological feature of (potentially reversible) axonal injury, are lacking. The recent description of experimentally acquired morphological and electrical properties of small CNS axons and oligodendrocytes prompted us to incorporate these data into a computer model, with the aim of simulating the effects of focal axon swelling on action potential conduction. A single swelling on an otherwise intact axon, as occurs in optic nerve axons of Cnp1 null mice caused a small decrease in conduction velocity. The presence of single swellings on multiple contiguous internodal regions (INR), as likely occurs in advanced disease, caused qualitatively similar results, except the dimensions of the swellings required to produce equivalent attenuation of conduction were significantly decreased. Our simulations of the consequences of metabolic insult to axons, namely, the appearance of multiple swollen regions, accompanied by perturbation of overlying myelin and increased axolemmal permeability, contained within a single INR, revealed that conduction block occurred when the dimensions of the simulated swellings were within the limits of those measured experimentally, suggesting that multiple swellings on a single axon could contribute to axonal dysfunction, and that increased axolemmal permeability is the decisive factor that promotes conduction block. PMID:24303138

  2. Dynamics of axon fasciculation in the presence of neuronal turnover

    CERN Document Server

    Chaudhuri, Debasish; Mohanty, P K; Zapotocky, Martin

    2008-01-01

    We formulate and characterize a model aiming to describe the formation of fascicles of axons mediated by contact axon-axon interactions. The growing axons are represented as interacting directed random walks in two spatial dimensions. To mimic axonal turnover in the mammalian olfactory system, the random walkers are injected and removed at specified rates. In the dynamical steady state, the position-dependent distribution of fascicle sizes obeys a scaling law. We identify several distinct time scales that emerge from the dynamics, are sensitive functions of the microscopic parameters of the model, and can exceed the average axonal lifetime by orders of magnitude. We discuss our findings in terms of an analytically tractable, effective model of fascicle dynamics.

  3. Hydrogen peroxide (H2O2) controls axon pathfinding during zebrafish development.

    Science.gov (United States)

    Gauron, Carole; Meda, Francesca; Dupont, Edmond; Albadri, Shahad; Quenech'Du, Nicole; Ipendey, Eliane; Volovitch, Michel; Del Bene, Filippo; Joliot, Alain; Rampon, Christine; Vriz, Sophie

    2016-06-15

    It is now becoming evident that hydrogen peroxide (H2O2), which is constantly produced by nearly all cells, contributes to bona fide physiological processes. However, little is known regarding the distribution and functions of H2O2 during embryonic development. To address this question, we used a dedicated genetic sensor and revealed a highly dynamic spatio-temporal pattern of H2O2 levels during zebrafish morphogenesis. The highest H2O2 levels are observed during somitogenesis and organogenesis, and these levels gradually decrease in the mature tissues. Biochemical and pharmacological approaches revealed that H2O2 distribution is mainly controlled by its enzymatic degradation. Here we show that H2O2 is enriched in different regions of the developing brain and demonstrate that it participates to axonal guidance. Retinal ganglion cell axonal projections are impaired upon H2O2 depletion and this defect is rescued by H2O2 or ectopic activation of the Hedgehog pathway. We further show that ex vivo, H2O2 directly modifies Hedgehog secretion. We propose that physiological levels of H2O2 regulate RGCs axonal growth through the modulation of Hedgehog pathway. PMID:27158028

  4. Dysregulation of the Axonal Trafficking of Nuclear-encoded Mitochondrial mRNA alters Neuronal Mitochondrial Activity and Mouse Behavior

    OpenAIRE

    Kar, Amar N.; Sun, Ching-Yu; Reichard, Kathryn; Gervasi, Noreen M.; Pickel, James; Nakazawa, Kazu; Gioio, Anthony E.; Kaplan, Barry B.

    2013-01-01

    Local translation of nuclear-encoded mitochondrial mRNAs is essential for mitochondrial activity, yet there is little insight into the role that axonal trafficking of these transcripts play in neuronal function and behavior. Previously, we identified a 38 nucleotide stem-loop structure (zipcode) in the 3′ untranslated region of the Cytochrome C oxidase IV (COXIV) mRNA that directs the transport of a reporter mRNA to the axon of superior cervical ganglion neurons (SCG). Over-expression of a ch...

  5. Axonal Protein Synthesis and the Regulation of Local Mitochondrial Function

    OpenAIRE

    2009-01-01

    Axons and presynaptic nerve terminals of both invertebrate and mammalian SCG neurons contain a heterogeneous population of nuclear-encoded mitochondrial mRNAs and a local cytosolic protein synthetic system. Nearly one quarter of the total protein synthesized in these structural/functional domains of the neuron is destined for mitochondria. Acute inhibition of axonal protein synthesis markedly reduces the functional activity of mitochondria. The blockade of axonal protein into mitochondria had...

  6. Axonal protein synthesis and the regulation of local mitochondrial function

    OpenAIRE

    Kaplan, B.B.; Gioio, A.E.; Hillefors, M.; Aschrafi, A.

    2009-01-01

    Axons and presynaptic nerve terminals of both invertebrate and mammalian SCG neurons contain a heterogeneous population of nuclear-encoded mitochondrial mRNAs and a local cytosolic protein synthetic system. Nearly one quarter of the total protein synthesized in these structural/functional domains of the neuron is destined for mitochondria. Acute inhibition of axonal protein synthesis markedly reduces the functional activity of mitochondria. The blockade of axonal protein into mitochondria had...

  7. Action potentials reliably invade axonal arbors of rat neocortical neurons

    OpenAIRE

    Cox, Charles L.; Denk, Winfried; Tank, David W.; Svoboda, Karel

    2000-01-01

    Neocortical pyramidal neurons have extensive axonal arborizations that make thousands of synapses. Action potentials can invade these arbors and cause calcium influx that is required for neurotransmitter release and excitation of postsynaptic targets. Thus, the regulation of action potential invasion in axonal branches might shape the spread of excitation in cortical neural networks. To measure the reliability and extent of action potential invasion into axonal arbors, we have used two-photon...

  8. Axon diameter mapping in crossing fibers with diffusion MRI

    DEFF Research Database (Denmark)

    Zhang, Hui; Dyrby, Tim B; Alexander, Daniel C

    2011-01-01

    tissue than measures derived from diffusion tensor imaging. Most existing techniques for axon diameter mapping assume a single axon orientation in the tissue model, which limits their application to only the most coherently oriented brain white matter, such as the corpus callosum, where the single...... technique by establishing reasonable axon diameter indices in the crossing region at the interface of the cingulum and the corpus callosum....

  9. Axon target matching in the developing visual system

    OpenAIRE

    Osterhout, Jessica A.

    2015-01-01

    The central nervous system (CNS) is made up of trillions of connections between specific sets of highly specialized neurons. How each individual neuron finds and connects to the correct synaptic partner remains an important and unresolved issue in neuroscience. Using the mouse visual system as a model I probed the cellular and molecular mechanisms that govern one of the key steps leading to CNS development: axon target matching. Axon target matching is the process by which axons to find and i...

  10. Axon Regeneration in the Peripheral and Central Nervous Systems

    OpenAIRE

    Huebner, Eric A.; Strittmatter, Stephen M

    2009-01-01

    Axon regeneration in the mature mammalian central nervous system (CNS) is extremely limited after injury. Consequently, functional deficits persist after spinal cord injury (SCI), traumatic brain injury, stroke, and related conditions that involve axonal disconnection. This situation differs from that in the mammalian peripheral nervous system (PNS), where long- distance axon regeneration and substantial functional recovery can occur in the adult. Both extracellular molecules and the intrinsi...

  11. Myelin sheath survival after guanethidine-induced axonal degeneration

    OpenAIRE

    1992-01-01

    Membrane-membrane interactions between axons and Schwann cells are required for initial myelin formation in the peripheral nervous system. However, recent studies of double myelination in sympathetic nerve have indicated that myelin sheaths continue to exist after complete loss of axonal contact (Kidd, G. J., and J. W. Heath. 1988. J. Neurocytol. 17:245-261). This suggests that myelin maintenance may be regulated either by diffusible axonal factors or by nonaxonal mechanisms. To test these hy...

  12. Axonal autophagy during regeneration of the rat sciatic nerve

    Institute of Scientific and Technical Information of China (English)

    Kangrong Lu; Zhongxian Piao; Zhenxi Liu; Weiwang Gu; Wanshan Wang; Nngjie Piao

    2008-01-01

    BACKGROUND: The removal of degenerated axonal debris during Wallerian degeneration is very important for nerve regeneration. However, the mechanism by which debris is removed is not been completely understood. Considerable controversy remains as to the clearance pathway and cells that are involved. OBJECTIVE: To investigate axonal autophagy during removal of degenerated axonal debris by transecting the sciatic nerve in a rat Wallerian degeneration model.DESIGN, TIME AND SETTING: Experimental neuropathological analysis. The experiment was conducted at the Laboratory Animal Service Center of the Southern Medical University between January and June 2005. MATERIALS: Fifty-four adult, Wistar rats of either sex, weighing 180-250 g, were obtained from the Laboratory Animal Service Center of the Southern Medical University. Animals were randomly divided into nine groups of six rats. METHODS: Wallerian degeneration was induced by transecting the rat sciatic nerve, and tissue samples from the distal stump were obtained 0.2, 0.4, 1, 2, 3, 4, 7, 10, and 15 days post-transection. Ultrathin sections were prepared for electron microscopy to study ultrastructure and enzyme cytochemistry staining. MAIN OUTCOME MEASURES: Ultrastructure (axon body, autophagic body, and cystoskeleton) of axons and myelin sheaths observed with electron microscopy; acidic phosphatase activity detected by Gomori staining using electron microscopy. RESULTS: The major changes of degenerating axons after transection were axoplasm swelling and separation of axons from their myelin sheath between five hours and two days post-transection. At four days post-transection, the axoplasm condensed and axons were completely separated from the myelin sheath, forming dissociative axon bodies. Vacuoles of different sizes formed in axons during the early phase after lesion. Larger dissociative axon bodies were formed when the axons were completely separated from the myelin sheath during a late phase. The axolemma

  13. Focal axonal swellings and associated ultrastructural changes attenuate conduction velocity in central nervous system axons: a computer modeling study

    OpenAIRE

    Kolaric, Katarina V; Thomson, Gemma; Edgar, Julia M; Brown, Angus M.

    2013-01-01

    The constancy of action potential conduction in the central nervous system (CNS) relies on uniform axon diameter coupled with fidelity of the overlying myelin providing high-resistance, low capacitance insulation. Whereas the effects of demyelination on conduction have been extensively studied/modeled, equivalent studies on the repercussions for conduction of axon swelling, a common early pathological feature of (potentially reversible) axonal injury, are lacking. The recent description of ex...

  14. Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain.

    Science.gov (United States)

    Larsen, Camilla; Shy, Diana; Spindler, Shana R; Fung, Siaumin; Pereanu, Wayne; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2009-11-15

    The Drosophila central brain is composed of approximately 100 paired lineages, with most lineages comprising 100-150 neurons. Most lineages have a number of important characteristics in common. Typically, neurons of a lineage stay together as a coherent cluster and project their axons into a coherent bundle visible from late embryo to adult. Neurons born during the embryonic period form the primary axon tracts (PATs) that follow stereotyped pathways in the neuropile. Apoptotic cell death removes an average of 30-40% of primary neurons around the time of hatching. Secondary neurons generated during the larval period form secondary axon tracts (SATs) that typically fasciculate with their corresponding primary axon tract. SATs develop into the long fascicles that interconnect the different compartments of the adult brain. Structurally, we distinguish between three types of lineages: PD lineages, characterized by distinct, spatially separate proximal and distal arborizations; C lineages with arborizations distributed continuously along the entire length of their tract; D lineages that lack proximal arborizations. Arborizations of many lineages, in particular those of the PD type, are restricted to distinct neuropile compartments. We propose that compartments are "scaffolded" by individual lineages, or small groups thereof. Thereby, the relatively small number of primary neurons of each primary lineage set up the compartment map in the late embryo. Compartments grow during the larval period simply by an increase in arbor volume of primary neurons. Arbors of secondary neurons form within or adjacent to the larval compartments, resulting in smaller compartment subdivisions and additional, adult specific compartments. PMID:19538956

  15. The effects of vortex localization at columnar defects on the mixed state transport properties of Tl2Ba2CaCu2O8 films

    International Nuclear Information System (INIS)

    The effects of vortex localization at columnar defects on the linear and non-linear dissipation in Tl2Ba2CaCu2O8 films are studied. The confinement of vortices into columnar defects leads to a minimum in the angular dependence of linear resistivity when the external field is brought into alignment with the defects. This observation provides compelling evidence for non-zero line tension of vortices in this highly anisotropic cuprate. The electric field vs current density (E-J) isotherms, and the temperature dependence of linear resistivity, both, indicate a Bose glass type of phase transition in this system

  16. The defect

    CERN Document Server

    Kuhlmann, Franz-Viktor

    2010-01-01

    We give an introduction to the valuation theoretical phenomenon of "defect", also known as "ramification deficiency". We describe the role it plays in deep open problems in positive characteristic: local uniformization (the local form of resolution of singularities), the model theory of valued fields, the structure theory of valued function fields. We give several examples of algebraic extensions with non-trivial defect. We indicate why Artin-Schreier defect extensions play a central role and describe a way to classify them. Further, we give an overview of various results about the defect that help to tame or avoid it, in particular "stability" theorems and theorems on "henselian rationality", and show how they are applied. Finally, we include a list of open problems.

  17. Peripheral nerve: from the microscopic functional unit of the axon to the biomechanically loaded macroscopic structure.

    Science.gov (United States)

    Topp, Kimberly S; Boyd, Benjamin S

    2012-01-01

    Peripheral nerves are composed of motor and sensory axons, associated ensheathing Schwann cells, and organized layers of connective tissues that are in continuity with the tissues of the central nervous system. Nerve fiber anatomy facilitates conduction of electrical impulses to convey information over a distance, and the length of these polarized cells necessitates regulated axonal transport of organelles and structural proteins for normal cell function. Nerve connective tissues serve a protective function as the limb is subjected to the stresses of myriad limb positions and postures. Thus, the tissues are uniquely arranged to control the local nerve fiber environment and modulate physical stresses. In this brief review, we describe the microscopic anatomy and physiology of peripheral nerve and the biomechanical properties that enable nerve to withstand the physical stresses of everyday life. PMID:22133662

  18. New insights into mRNA trafficking in axons

    NARCIS (Netherlands)

    Gumy, Laura; Katrukha, Eugene; Kapitein, Lukas; Hoogenraad, Casper

    2014-01-01

    In recent years, it has been demonstrated that mRNAs localize to axons of young and mature central and peripheral nervous system neurons in culture and in vivo. Increasing evidence is supporting a fundamental role for the local translation of these mRNAs in neuronal function by regulating axon growt

  19. Restoration of Visual Function by Enhancing Conduction in Regenerated Axons.

    Science.gov (United States)

    Bei, Fengfeng; Lee, Henry Hing Cheong; Liu, Xuefeng; Gunner, Georgia; Jin, Hai; Ma, Long; Wang, Chen; Hou, Lijun; Hensch, Takao K; Frank, Eric; Sanes, Joshua R; Chen, Chinfei; Fagiolini, Michela; He, Zhigang

    2016-01-14

    Although a number of repair strategies have been shown to promote axon outgrowth following neuronal injury in the mammalian CNS, it remains unclear whether regenerated axons establish functional synapses and support behavior. Here, in both juvenile and adult mice, we show that either PTEN and SOCS3 co-deletion, or co-overexpression of osteopontin (OPN)/insulin-like growth factor 1 (IGF1)/ciliary neurotrophic factor (CNTF), induces regrowth of retinal axons and formation of functional synapses in the superior colliculus (SC) but not significant recovery of visual function. Further analyses suggest that regenerated axons fail to conduct action potentials from the eye to the SC due to lack of myelination. Consistent with this idea, administration of voltage-gated potassium channel blockers restores conduction and results in increased visual acuity. Thus, enhancing both regeneration and conduction effectively improves function after retinal axon injury. PMID:26771493

  20. Receptor Tyrosine Kinases: Molecular Switches Regulating CNS Axon Regeneration

    Directory of Open Access Journals (Sweden)

    Vasanthy Vigneswara

    2012-01-01

    Full Text Available The poor or lack of injured adult central nervous system (CNS axon regeneration results in devastating consequences and poor functional recovery. The interplay between the intrinsic and extrinsic factors contributes to robust inhibition of axon regeneration of injured CNS neurons. The insufficient or lack of trophic support for injured neurons is considered as one of the major obstacles contributing to their failure to survive and regrow their axons after injury. In the CNS, many of the signalling pathways associated with neuronal survival and axon regeneration are regulated by several classes of receptor tyrosine kinases (RTK that respond to a variety of ligands. This paper highlights and summarises the most relevant recent findings pertinent to different classes of the RTK family of molecules, with a particular focus on elucidating their role in CNS axon regeneration.

  1. SnoN facilitates axonal regeneration after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Jiun L Do

    Full Text Available Adult CNS neurons exhibit a reduced capacity for growth compared to developing neurons, due in part to downregulation of growth-associated genes as development is completed. We tested the hypothesis that SnoN, an embryonically regulated transcription factor that specifies growth of the axonal compartment, can enhance growth in injured adult neurons. In vitro, SnoN overexpression in dissociated adult DRG neuronal cultures significantly enhanced neurite outgrowth. Moreover, TGF-β1, a negative regulator of SnoN, inhibited neurite outgrowth, and SnoN over-expression overcame this inhibition. We then examined whether SnoN influenced axonal regeneration in vivo: indeed, expression of a mutant form of SnoN resistant to degradation significantly enhanced axonal regeneration following cervical spinal cord injury, despite peri-lesional upregulation of TGF-β1. Thus, a developmental mechanism that specifies extension of the axonal compartment also promotes axonal regeneration after adult CNS injury.

  2. Brain injury tolerance limit based on computation of axonal strain.

    Science.gov (United States)

    Sahoo, Debasis; Deck, Caroline; Willinger, Rémy

    2016-07-01

    Traumatic brain injury (TBI) is the leading cause of death and permanent impairment over the last decades. In both the severe and mild TBIs, diffuse axonal injury (DAI) is the most common pathology and leads to axonal degeneration. Computation of axonal strain by using finite element head model in numerical simulation can enlighten the DAI mechanism and help to establish advanced head injury criteria. The main objective of this study is to develop a brain injury criterion based on computation of axonal strain. To achieve the objective a state-of-the-art finite element head model with enhanced brain and skull material laws, was used for numerical computation of real world head trauma. The implementation of new medical imaging data such as, fractional anisotropy and axonal fiber orientation from Diffusion Tensor Imaging (DTI) of 12 healthy patients into the finite element brain model was performed to improve the brain constitutive material law with more efficient heterogeneous anisotropic visco hyper-elastic material law. The brain behavior has been validated in terms of brain deformation against Hardy et al. (2001), Hardy et al. (2007), and in terms of brain pressure against Nahum et al. (1977) and Trosseille et al. (1992) experiments. Verification of model stability has been conducted as well. Further, 109 well-documented TBI cases were simulated and axonal strain computed to derive brain injury tolerance curve. Based on an in-depth statistical analysis of different intra-cerebral parameters (brain axonal strain rate, axonal strain, first principal strain, Von Mises strain, first principal stress, Von Mises stress, CSDM (0.10), CSDM (0.15) and CSDM (0.25)), it was shown that axonal strain was the most appropriate candidate parameter to predict DAI. The proposed brain injury tolerance limit for a 50% risk of DAI has been established at 14.65% of axonal strain. This study provides a key step for a realistic novel injury metric for DAI. PMID:27038501

  3. Prolyl Isomerase Pin1 Regulates Axon Guidance by Stabilizing CRMP2A Selectively in Distal Axons

    Czech Academy of Sciences Publication Activity Database

    Balaštík, Martin; Zhou, X.Z.; Alberich-Jorda, Meritxell; Weissová, Romana; Žiak, Jakub; Pazyra-Murphy, M.F.; Cosker, K.E.; Machoňová, Olga; Kozmiková, Iryna; Chen, CH.; Pastorino, L.; Asara, J.M.; Cole, A.; Sutherland, C.; Segal, R. A.; Lu, K.P.

    2015-01-01

    Roč. 13, č. 4 (2015), s. 812-828. ISSN 2211-1247 R&D Projects: GA MŠk(CZ) LK11213; GA MŠk LK21307; GA ČR GA15-03796S; GA MŠk LO1419 Institutional support: RVO:68378050 Keywords : Pin1 * axon guidance * Semaphorin 3A Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.358, year: 2014

  4. Clinical features of diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To analyze the mechanism of diffuse axonal injury (DAI) and study the relationship between DAI and brain concussion, brain contusion, and primary brain stem injury.Methods: The clinical data and iconographic characteristics of 56 patients with DAI were analyzed retrospectively.Results: Traffic accidents were the main cause of DAI. Among the 56 cases, 34 were injured for at least twice, and 71.43% of the patients were complicated with contusion.Conclusions: It is considered that DAI is a common pattern of primary brain injury, which is often underestimated. And DAI includes cerebral concussion and primary brain injury, and is often complicated by cerebral cortex contusion. Therefore, it is very simple and practical to divide primary brain injuries into local and diffuse injuries.

  5. Astrocyte scar formation aids central nervous system axon regeneration.

    Science.gov (United States)

    Anderson, Mark A; Burda, Joshua E; Ren, Yilong; Ao, Yan; O'Shea, Timothy M; Kawaguchi, Riki; Coppola, Giovanni; Khakh, Baljit S; Deming, Timothy J; Sofroniew, Michael V

    2016-04-14

    Transected axons fail to regrow in the mature central nervous system. Astrocytic scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or ablating chronic astrocytic scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. By contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocytic scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth-supporting molecules. Our findings show that contrary to the prevailing dogma, astrocyte scar formation aids rather than prevents central nervous system axon regeneration. PMID:27027288

  6. 31P NMR study of improvement in oxidative phosphorylation by vitamins K3 and C in a patient with a defect in electron transport at complex III in skeletal muscle.

    OpenAIRE

    Eleff, S; Kennaway, N G; Buist, N R; Darley-Usmar, V M; Capaldi, R A; Bank, W J; Chance, B

    1984-01-01

    The bioenergetic capacity of skeletal muscle in a 17-year-old patient with a severe defect in complex III of the electron transport chain has been examined by 31P NMR measurements of the molar ratio of phosphocreatine to inorganic phosphate (PCr/Pi). Resting ratios were 1.3-2.5, which can be compared with roughly 8.6 for a young, normal female control at rest. Quantitative evaluation of the activity of oxidative metabolism was afforded by the rate of recovery of PCr/Pi from exercise and was f...

  7. Immunohistochemical, ultrastructural and functional analysis of axonal regeneration through peripheral nerve grafts containing Schwann cells expressing BDNF, CNTF or NT3.

    Directory of Open Access Journals (Sweden)

    Maria João Godinho

    Full Text Available We used morphological, immunohistochemical and functional assessments to determine the impact of genetically-modified peripheral nerve (PN grafts on axonal regeneration after injury. Grafts were assembled from acellular nerve sheaths repopulated ex vivo with Schwann cells (SCs modified to express brain-derived neurotrophic factor (BDNF, a secretable form of ciliary neurotrophic factor (CNTF, or neurotrophin-3 (NT3. Grafts were used to repair unilateral 1 cm defects in rat peroneal nerves and 10 weeks later outcomes were compared to normal nerves and various controls: autografts, acellular grafts and grafts with unmodified SCs. The number of regenerated βIII-Tubulin positive axons was similar in all grafts with the exception of CNTF, which contained the fewest immunostained axons. There were significantly lower fiber counts in acellular, untransduced SC and NT3 groups using a PanNF antibody, suggesting a paucity of large caliber axons. In addition, NT3 grafts contained the greatest number of sensory fibres, identified with either IB4 or CGRP markers. Examination of semi- and ultra-thin sections revealed heterogeneous graft morphologies, particularly in BDNF and NT3 grafts in which the fascicular organization was pronounced. Unmyelinated axons were loosely organized in numerous Remak bundles in NT3 grafts, while the BDNF graft group displayed the lowest ratio of umyelinated to myelinated axons. Gait analysis revealed that stance width was increased in rats with CNTF and NT3 grafts, and step length involving the injured left hindlimb was significantly greater in NT3 grafted rats, suggesting enhanced sensory sensitivity in these animals. In summary, the selective expression of BDNF, CNTF or NT3 by genetically modified SCs had differential effects on PN graft morphology, the number and type of regenerating axons, myelination, and locomotor function.

  8. Intra-axonal myosin and actin in nerve regeneration.

    Science.gov (United States)

    McQuarrie, Irvine G; Lund, Linda M

    2009-10-01

    A focused review of sciatic nerve regeneration in the rat model, based on research conducted by the authors, is presented. We examine structural proteins carried distally in the axon by energy-requiring motor enzymes, using protein chemistry and molecular biology techniques in combination with immunohistochemistry. Relevant findings from other laboratories are cited and discussed. The general conclusion is that relatively large amounts of actin and tubulin are required to construct a regenerating axon and that these materials mainly originate in the parent axon. The motor enzymes that carry these proteins forward as macromolecules include kinesin and dynein but probably also include myosin. PMID:19927086

  9. Axon guidance and neuronal migration research in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Proper migration of neuronal somas and axonal growth cones to designated locations in the developing brain is essential for the assembly of functional neuronal circuits.Rapid progress in research of axon guidance and neuronal migration has been made in the last twenty years.Chinese researchers began their exploration in this field ten years ago and have made significant contributions in clarifying the signal transduction of axon guidance and neuronal migration.Several unique experimental approaches,including the migration assay of single isolated neurons in response to locally delivered guidance cues,have been developed by Chinese neuroscientists to investigate the molecular machinery underlying these guidance events.

  10. Evaluation of inferior alveolar nerve regeneration by bifocal distraction osteogenesis with retrograde transportation of horseradish peroxidase in dogs.

    Directory of Open Access Journals (Sweden)

    Yosuke Shogen

    Full Text Available BACKGROUND: Bifocal distraction osteogenesis has been shown to be a reliable method for reconstructing segmental mandibular defects. However, there are few reports regarding the occurrence of inferior alveolar nerve regeneration during the process of distraction. Previously, we reported inferior alveolar nerve regeneration after distraction, and evaluated the regenerated nerve using histological and electrophysiological methods. In the present study, we investigated axons regenerated by bifocal distraction osteogenesis using retrograde transportation of horseradish peroxidase in the mandibles of dogs to determine their type and function. METHODS AND FINDINGS: Using a bifocal distraction osteogenesis method, we produced a 10-mm mandibular defect, including a nerve defect, in 11 dogs and distracted using a transport disk at a rate of 1 mm/day. The regenerated inferior alveolar nerve was evaluated by retrograde transportation of HRP in all dogs at 3 and 6 months after the first operation. At 3 and 6 months, HRP-labeled neurons were observed in the trigeminal ganglion. The number of HRP-labeled neurons in each section increased, while the cell body diameter of HRP-labeled neurons was reduced over time. CONCLUSIONS: We found that the inferior alveolar nerve after bifocal distraction osteogenesis successfully recovered until peripheral tissue began to function. Although our research is still at the stage of animal experiments, it is considered that it will be possible to apply this method in the future to humans who have the mandibular defects.

  11. Charged Semiconductor Defects Structure, Thermodynamics and Diffusion

    CERN Document Server

    Seebauer, Edmund G

    2009-01-01

    The technologically useful properties of a solid often depend upon the types and concentrations of the defects it contains. Not surprisingly, defects in semiconductors have been studied for many years, in many cases with a view towards controlling their behavior through various forms of "defect engineering." For example, in the bulk, charging significantly affects the total concentration of defects that are available to mediate phenomena such as solid-state diffusion. Surface defects play an important role in mediating surface mass transport during high temperature processing steps such as epitaxial film deposition, diffusional smoothing in reflow, and nanostructure formation in memory device fabrication. Charged Semiconductor Defects details the current state of knowledge regarding the properties of the ionized defects that can affect the behavior of advanced transistors, photo-active devices, catalysts, and sensors. Features: Group IV, III-V, and oxide semiconductors; Intrinsic and extrinsic defects; and, P...

  12. The liquid phase epitaxy approach for the successful construction of ultra-thin and defect-free ZIF-8 membranes: Pure and mixed gas transport study

    KAUST Repository

    Shekhah, Osama

    2014-01-01

    The liquid-phase epitaxy (LPE) method was effectively implemented to deliberately grow/construct ultrathin (0.5-1 μm) continuous and defect-free ZIF-8 membranes. Permeation properties of different gas pair systems (O 2-N2, H2-CO2, CO2-CH 4, C3H6-C3H8, CH 4-n-C4H10) were studied using the time lag technique. This journal is © The Royal Society of Chemistry.

  13. Genetics Home Reference: autosomal recessive axonal neuropathy with neuromyotonia

    Science.gov (United States)

    ... neuromyotonia is a disorder that affects the peripheral nerves. Peripheral nerves connect the brain and spinal cord to muscles ... caused by damage to a particular part of peripheral nerves called axons , which are the extensions of nerve ...

  14. Internodal function in normal and regenerated mammalian axons

    DEFF Research Database (Denmark)

    Moldovan, M; Krarup, C

    2007-01-01

    AIM: Following Wallerian degeneration, peripheral myelinated axons have the ability to regenerate and, given a proper pathway, establish functional connections with targets. In spite of this capacity, the clinical outcome of nerve regeneration remains unsatisfactory. Early studies have found that...

  15. Syndecan Promotes Axon Regeneration by Stabilizing Growth Cone Migration

    Directory of Open Access Journals (Sweden)

    Tyson J. Edwards

    2014-07-01

    Full Text Available Growth cones facilitate the repair of nervous system damage by providing the driving force for axon regeneration. Using single-neuron laser axotomy and in vivo time-lapse imaging, we show that syndecan, a heparan sulfate (HS proteoglycan, is required for growth cone function during axon regeneration in C. elegans. In the absence of syndecan, regenerating growth cones form but are unstable and collapse, decreasing the effective growth rate and impeding regrowth to target cells. We provide evidence that syndecan has two distinct functions during axon regeneration: (1 a canonical function in axon guidance that requires expression outside the nervous system and depends on HS chains and (2 an intrinsic function in growth cone stabilization that is mediated by the syndecan core protein, independently of HS. Thus, syndecan is a regulator of a critical choke point in nervous system repair.

  16. Treadmill Training Promotes Axon Regeneration in Injured Peripheral Nerves

    OpenAIRE

    Sabatier, Manning J.; Redmon, Natalie; Schwartz, Gail; English, Arthur W.

    2008-01-01

    Physical activity after spinal cord injury promotes improvements in motor function, but its effects following peripheral nerve injury are less clear. Although axons in peripheral nerves are known to regenerate better than those in the CNS, methods of accelerating regeneration are needed due to the slow overall rate of growth. Therefore we studied the effect of two weeks of treadmill locomotion on the growth of regenerating axons in peripheral nerves following injury. The common fibular nerves...

  17. Fcγ receptor-mediated inflammation inhibits axon regeneration.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Anti-glycan/ganglioside antibodies are the most common immune effectors found in patients with Guillain-Barré Syndrome, which is a peripheral autoimmune neuropathy. We previously reported that disease-relevant anti-glycan autoantibodies inhibited axon regeneration, which echo the clinical association of these antibodies and poor recovery in Guillain-Barré Syndrome. However, the specific molecular and cellular elements involved in this antibody-mediated inhibition of axon regeneration are not previously defined. This study examined the role of Fcγ receptors and macrophages in the antibody-mediated inhibition of axon regeneration. A well characterized antibody passive transfer sciatic nerve crush and transplant models were used to study the anti-ganglioside antibody-mediated inhibition of axon regeneration in wild type and various mutant and transgenic mice with altered expression of specific Fcγ receptors and macrophage/microglia populations. Outcome measures included behavior, electrophysiology, morphometry, immunocytochemistry, quantitative real-time PCR, and western blotting. We demonstrate that the presence of autoantibodies, directed against neuronal/axonal cell surface gangliosides, in the injured mammalian peripheral nerves switch the proregenerative inflammatory environment to growth inhibitory milieu by engaging specific activating Fcγ receptors on recruited monocyte-derived macrophages to cause severe inhibition of axon regeneration. Our data demonstrate that the antibody orchestrated Fcγ receptor-mediated switch in inflammation is one mechanism underlying inhibition of axon regeneration. These findings have clinical implications for nerve repair and recovery in antibody-mediated immune neuropathies. Our results add to the complexity of axon regeneration in injured peripheral and central nervous systems as adverse effects of B cells and autoantibodies on neural injury and repair are increasingly recognized.

  18. Modality-Specific Axonal Regeneration: Towards selective regenerative neural interfaces

    Directory of Open Access Journals (Sweden)

    Mario I Romero

    2011-10-01

    Full Text Available Regenerative peripheral nerve interfaces have been proposed as viable alternatives for the natural control of robotic prosthetic devices. However, sensory and motor axons at the neural interface are of mixed submodality types, which difficult the specific recording from motor axons and the eliciting of precise sensory modalities through selective stimulation. Here we evaluated the possibility of using type-specific neurotrophins to preferentially entice the regeneration of defined axonal populations from transected peripheral nerves into separate compartments. Segregation of mixed sensory fibers from dorsal root ganglion neurons was evaluated in vitro by compartmentalized diffusion delivery of nerve growth factor (NGF and neurotrophin-3 (NT-3, to preferentially entice the growth of TrkA+ nociceptive and TrkC+ proprioceptive subsets of sensory neurons, respectively. The average axon length in the NGF channel increased 2.5 fold compared to that in saline or NT-3, whereas the number of branches increased 3 fold in the NT-3 channels. These results were confirmed using a 3-D “Y”-shaped in vitro assay showing that the arm containing NGF was able to entice a 5-fold increase in axonal length of unbranched fibers. To address if such segregation can be enticed in vivo, a “Y”-shaped tubing was used to allow regeneration of the transected adult rat sciatic nerve into separate compartments filled with either NFG or NT-3. A significant increase in the number of CGRP+ pain fibers were attracted towards the sural nerve, while N-52+ large diameter axons were observed in the tibial and NT-3 compartments. This study demonstrates the guided enrichment of sensory axons in specific regenerative chambers, and supports the notion that neurotrophic factors can be used to segregate sensory and perhaps motor axons in separate peripheral interfaces.

  19. Axonal integrity predicts cortical reorganisation following cervical injury

    OpenAIRE

    Freund, P.; Wheeler-Kingshott, C.A.; Nagy, Z.; Gorgoraptis, N.; N. Weiskopf; Friston, K.; Thompson, A J; Hutton, C.

    2012-01-01

    Background Traumatic spinal cord injury (SCI) leads to disruption of axonal architecture and macroscopic tissue loss with impaired information flow between the brain and spinal cord—the presumed basis of ensuing clinical impairment. Objective The authors used a clinically viable, multimodal MRI protocol to quantify the axonal integrity of the cranial corticospinal tract (CST) and to establish how microstructural white matter changes in the CST are related to cross-sectional spinal cord area a...

  20. Axonal neuropathy associated with monoclonal gammopathy of undetermined significance

    OpenAIRE

    GORSON, K.; Ropper, A.

    1997-01-01

    OBJECTIVE—The neuropathy associated with monoclonal gammopathy of undetermined significance (MGUS) is typically a predominantly demyelinating process that may have additional features of axonal degeneration. Sixteen patients with MGUS and a pure or predominantly axonal neuropathy are reported and compared with 20 consecutive patients with demyelinating neuropathy and MGUS who were seen during the same period.
METHODS—Retrospective review of a consecutive series of patients w...

  1. Changes in prefrontal axons may disrupt the network in autism

    OpenAIRE

    Zikopoulos, Basilis; Barbas, Helen

    2010-01-01

    Neural communication is disrupted in autism by unknown mechanisms. Here we examined whether in autism there are changes in axons, which are the conduit for neural communication. We investigated single axons and their ultrastructure in the white matter of post-mortem human brain tissue below the anterior cingulate cortex (ACC), orbitofrontal (OFC), and lateral (LPFC) prefrontal cortices, which are associated with attention, social interactions, and emotions and have been consistently implicate...

  2. Axonal maintenance, glia, exosomes, and heat shock proteins

    OpenAIRE

    Michael Tytell; Lasek, Raymond J.; Harold Gainer

    2016-01-01

    Of all cellular specializations, the axon is especially distinctive because it is a narrow cylinder of specialized cytoplasm called axoplasm with a length that may be orders of magnitude greater than the diameter of the cell body from which it originates. Thus, the volume of axoplasm can be much greater than the cytoplasm in the cell body. This fact raises a logistical problem with regard to axonal maintenance. Many of the components of axoplasm, such as soluble proteins and cytoskeleton, are...

  3. THEORETICAL PRINCIPLES UNDERLYING OPTICAL STIMULATION OF MYELINATED AXONS EXPRESSING CHANNELRHODOPSIN-2

    OpenAIRE

    ARLOW, R. L.; FOUTZ, T. J.; MCINTYRE, C. C.

    2013-01-01

    Numerous clinical conditions can be treated by neuromodulation of the peripheral nervous system (PNS). Typical electrical PNS therapies activate large diameter axons at lower electrical stimulus thresholds than small diameter axons. However, recent animal experiments with peripheral optogenetic neural stimulation (PONS) of myelinated axons expressing channelrhodopsin-2 (ChR2) have shown that this technique activates small diameter axons at lower irradiances than large diameter axons. We hypot...

  4. RNA-binding protein Hermes/RBPMS inversely affects synapse density and axon arbor formation in retinal ganglion cells in vivo.

    Science.gov (United States)

    Hörnberg, Hanna; Wollerton-van Horck, Francis; Maurus, Daniel; Zwart, Maarten; Svoboda, Hanno; Harris, William A; Holt, Christine E

    2013-06-19

    The RNA-binding protein Hermes [RNA-binding protein with multiple splicing (RBPMS)] is expressed exclusively in retinal ganglion cells (RGCs) in the CNS, but its function in these cells is not known. Here we show that Hermes protein translocates in granules from RGC bodies down the growing axons. Hermes loss of function in both Xenopus laevis and zebrafish embryos leads to a significant reduction in retinal axon arbor complexity in the optic tectum, and expression of a dominant acting mutant Hermes protein, defective in RNA-granule localization, causes similar defects in arborization. Time-lapse analysis of branch dynamics reveals that the decrease in arbor complexity is caused by a reduction in new branches rather than a decrease in branch stability. Surprisingly, Hermes depletion also leads to enhanced early visual behavior and an increase in the density of presynaptic puncta, suggesting that reduced arborization is accompanied by increased synaptogenesis to maintain synapse number. PMID:23785151

  5. Spinal irradiation does not inhibit distal axonal sprouting

    International Nuclear Information System (INIS)

    In an attempt to determine the relative importance of the nerve cell body and of the axon in initiating and controlling axonal regeneration, nerve cell bodies were irradiated and the ability of the distal axon to sprout was examined. Mice were subjected to either 25 or 50 Gray (Gy) of x-irradiation localized to the lumbar spinal cord. After times varying from 1 day to 6 months after irradiation, a sublethal dose of botulinum toxin (BoTx) was injected into the calf muscles of one leg. The soleus muscle was examined histologically after times varying from 1 week to 6 months after injection, and BoTx-induced ultraterminal axonal sprouting was assessed by the number of motor endplates showing sprouts, the length of the sprouts, and the long term endplate morphology. Apart from some irradiated subgroups having slightly shorter sprout lengths, no significant differences were found between irradiated and nonirradiated groups. The results suggest either that the processes in the nerve cell body responsible for initiating and supporting axonal growth are resistant to large doses of irradiation, or that growth regulatory mechanisms in the distal axon are under local control

  6. Dynamics of signal propagation and collision in axons

    Science.gov (United States)

    Follmann, Rosangela; Rosa, Epaminondas; Stein, Wolfgang

    2015-09-01

    Long-range communication in the nervous system is usually carried out with the propagation of action potentials along the axon of nerve cells. While typically thought of as being unidirectional, it is not uncommon for axonal propagation of action potentials to happen in both directions. This is the case because action potentials can be initiated at multiple "ectopic" positions along the axon. Two ectopic action potentials generated at distinct sites, and traveling toward each other, will collide. As neuronal information is encoded in the frequency of action potentials, action potential collision and annihilation may affect the way in which neuronal information is received, processed, and transmitted. We investigate action potential propagation and collision using an axonal multicompartment model based on the Hodgkin-Huxley equations. We characterize propagation speed, refractory period, excitability, and action potential collision for slow (type I) and fast (type II) axons. In addition, our studies include experimental measurements of action potential propagation in axons of two biological systems. Both computational and experimental results unequivocally indicate that colliding action potentials do not pass each other; they are reciprocally annihilated.

  7. Ultrastructural observation of effect of moderate hypothermia on axonal damage in an animal model of diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    孙晓川; 唐文渊; 郑履平

    2002-01-01

    Objective: To investigate the effect of moderate hypothermia on responses of axonal cytoskeleton to axonal injury in the acute stage of injury. Methods: Of fifteen adult guinea pigs, twelve animals were subjected to stretch injury to the right optic nerves and divided into the normothermic group (n=6) in which the animal's core temperature was maintained at 36.0-37.5℃ and the hypothermia group (n=6) in which the core temperature was reduced to 32.0-32.5℃ after stretch injury. Remaining three animals sustained no injury to the right optic nerves and served as control group. Half of injured animals (n=3) of either normothermic group or hypothermic group were killed at either 2 hours or 4 hours after injury. The ultrastructural changes of axonal cytoskeleton of the right optic nerve fibers from the animals were examined under a transmission electron microscope and analyzed by quantitative analysis with a computer image analysis system. Results: At 2 hours after stretch injury, there was a significant reduction in the mean number of microtubules (P<0.001), and a significant increase in the mean intermicrotubule spacing (P<0.05 or P<0.01) in axons of all sizes in normothermic animals. The mean number of neurofilaments also decreased statistically (P<0.01) in large and medium subgroups of axons in the same experimental group at 2 hours. By 4 hours, the large subgroup of axons in normothermic animals still demonstrated a significant decline in the mean number of microtubules (P<0.01) and an increase in the mean intermicrotubule spacing (P<0.05), while the medium and small subgroups of axons displayed a significant increase in the mean number of neurofilaments (P<0.05) and reduction in the mean interneurofilament spacing (P<0.05). On the contrary, either the mean number of microtubules and the mean intermicrotubule spacing, or the mean number of neurofilaments and interneurofilament spacing in axons of all sizes in hypothermic stretch-injured animals was not

  8. Axonal synapses utilize multiple synaptic ribbons in the mammalian retina.

    Directory of Open Access Journals (Sweden)

    Hong-Lim Kim

    Full Text Available In the mammalian retina, bipolar cells and ganglion cells which stratify in sublamina a of the inner plexiform layer (IPL show OFF responses to light stimuli while those that stratify in sublamina b show ON responses. This functional relationship between anatomy and physiology is a key principle of retinal organization. However, there are at least three types of retinal neurons, including intrinsically photosensitive retinal ganglion cells (ipRGCs and dopaminergic amacrine cells, which violate this principle. These cell types have light-driven ON responses, but their dendrites mainly stratify in sublamina a of the IPL, the OFF sublayer. Recent anatomical studies suggested that certain ON cone bipolar cells make axonal or ectopic synapses as they descend through sublamina a, thus providing ON input to cells which stratify in the OFF sublayer. Using immunoelectron microscopy with 3-dimensional reconstruction, we have identified axonal synapses of ON cone bipolar cells in the rabbit retina. Ten calbindin ON cone bipolar axons made en passant ribbon synapses onto amacrine or ganglion dendrites in sublamina a of the IPL. Compared to the ribbon synapses made by bipolar terminals, these axonal ribbon synapses were characterized by a broad postsynaptic element that appeared as a monad and by the presence of multiple short synaptic ribbons. These findings confirm that certain ON cone bipolar cells can provide ON input to amacrine and ganglion cells whose dendrites stratify in the OFF sublayer via axonal synapses. The monadic synapse with multiple ribbons may be a diagnostic feature of the ON cone bipolar axonal synapse in sublamina a. The presence of multiple ribbons and a broad postsynaptic density suggest these structures may be very efficient synapses. We also identified axonal inputs to ipRGCs with the architecture described above.

  9. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas

    Science.gov (United States)

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.

    1998-01-01

    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  10. Regulation of Microtubule Dynamics in Axon Regeneration: Insights from C. elegans [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Ngang Heok Tang

    2016-04-01

    Full Text Available The capacity of an axon to regenerate is regulated by its external environment and by cell-intrinsic factors. Studies in a variety of organisms suggest that alterations in axonal microtubule (MT dynamics have potent effects on axon regeneration. We review recent findings on the regulation of MT dynamics during axon regeneration, focusing on the nematode Caenorhabditis elegans. In C. elegans the dual leucine zipper kinase (DLK promotes axon regeneration, whereas the exchange factor for Arf6 (EFA-6 inhibits axon regeneration. Both DLK and EFA-6 respond to injury and control axon regeneration in part via MT dynamics. How the DLK and EFA-6 pathways are related is a topic of active investigation, as is the mechanism by which EFA-6 responds to axonal injury. We evaluate potential candidates, such as the MT affinity-regulating kinase PAR-1/MARK, in regulation of EFA-6 and axonal MT dynamics in regeneration.

  11. Nurr1 regulates Top IIβ and functions in axon genesis of mesencephalic dopaminergic neurons

    Directory of Open Access Journals (Sweden)

    Heng Xin

    2012-02-01

    Full Text Available Abstract Background NURR1 (also named as NR4A2 is a member of the steroid/thyroid hormone receptor family, which can bind to DNA and modulate expression of target genes. Previous studies have shown that NURR1 is essential for the nigral dopaminergic neuron phenotype and function maintenance, and the defects of the gene are possibly associated with Parkinson's disease (PD. Results In this study, we used new born Nurr1 knock-out mice combined with Affymetrix genechip technology and real time polymerase chain reaction (PCR to identify Nurr1 regulated genes, which led to the discovery of several transcripts differentially expressed in the nigro-striatal pathway of Nurr1 knock-out mice. We found that an axon genesis gene called Topoisomerase IIβ (Top IIβ was down-regulated in Nurr1 knock-out mice and we identified two functional NURR1 binding sites in the proximal Top IIβ promoter. While in Top IIβ null mice, we saw a significant loss of dopaminergic neurons in the substantial nigra and lack of neurites along the nigro-striatal pathway. Using specific TOP II antagonist ICRF-193 or Top IIβ siRNA in the primary cultures of ventral mesencephalic (VM neurons, we documented that suppression of TOP IIβ expression resulted in VM neurites shortening and growth cones collapsing. Furthermore, microinjection of ICRF-193 into the mouse medial forebrain bundle (MFB led to the loss of nigro-striatal projection. Conclusion Taken together, our findings suggest that Top IIβ might be a down-stream target of Nurr1, which might influence the processes of axon genesis in dopaminergic neurons via the regulation of TOP IIβ expression. The Nurr1-Top IIβ interaction may shed light on the pathologic role of Nurr1 defect in the nigro-striatal pathway deficiency associated with PD.

  12. International conference on defects in insulating crystals

    International Nuclear Information System (INIS)

    Short summaries of conference papers are presented. Some of the conference topics included transport properties, defect levels, superionic conductors, radiation effects, John-Teller effect, electron-lattice interactions, and relaxed excited states

  13. International conference on defects in insulating crystals

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Short summaries of conference papers are presented. Some of the conference topics included transport properties, defect levels, superionic conductors, radiation effects, John-Teller effect, electron-lattice interactions, and relaxed excited states. (SDF)

  14. Functional complexity of the axonal growth cone: a proteomic analysis.

    Directory of Open Access Journals (Sweden)

    Adriana Estrada-Bernal

    Full Text Available The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥ 99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions.

  15. A novel technique using hydrophilic polymers to promote axonal fusion

    Institute of Scientific and Technical Information of China (English)

    Ravinder Bamba; D Colton Riley; Nathaniel D Kelm; Mark D Does; Richard D Dortch; Wesley P hTayer

    2016-01-01

    The management of traumatic peripheral nerve injury remains a considerable concern for clinicians. With minimal innovations in surgical technique and a limited number of specialists trained to treat peripheral nerve injury, outcomes of surgical intervention have been unpredictable. The inability to manipulate the pathophysiology of nerve injury (i.e., Wallerian degeneration) has left scientists and clinicians depending on the slow and lengthy process of axonal regeneration (~1 mm/day). When axons are severed, the endings undergo calcium-mediated plasmalemmal sealing, which limits the ability of the axon to be primarily re-paired. Polythethylene glycol (PEG) in combination with a bioengineered process overcomes the inability to fuse axons. The mechanism for PEG axonal fusion is not clearly understood, but multiple studies have shown that a providing a calcium-free environment is essential to the process known as PEG fusion. The proposed mechanism is PEG-induced lipid bilayer fusion by removing the hydration barrier surrounding the axolemma and reducing the activation energy required for membrane fusion to occur. This review highlights PEG fusion, its past and current studies, and future directions in PEG fusion.

  16. Highly effective photonic cue for repulsive axonal guidance.

    Directory of Open Access Journals (Sweden)

    Bryan J Black

    Full Text Available In vivo nerve repair requires not only the ability to regenerate damaged axons, but most importantly, the ability to guide developing or regenerating axons along paths that will result in functional connections. Furthermore, basic studies in neuroscience and neuro-electronic interface design require the ability to construct in vitro neural circuitry. Both these applications require the development of a noninvasive, highly effective tool for axonal growth-cone guidance. To date, a myriad of technologies have been introduced based on chemical, electrical, mechanical, and hybrid approaches (such as electro-chemical, optofluidic flow and photo-chemical methods. These methods are either lacking in desired spatial and temporal selectivity or require the introduction of invasive external factors. Within the last fifteen years however, several attractive guidance cues have been developed using purely light based cues to achieve axonal guidance. Here, we report a novel, purely optical repulsive guidance technique that uses low power, near infrared light, and demonstrates the guidance of primary goldfish retinal ganglion cell axons through turns of up to 120 degrees and over distances of ∼90 µm.

  17. Subtypes of GABAergic neurons project axons in the neocortex

    Directory of Open Access Journals (Sweden)

    Shigeyoshi Higo

    2009-11-01

    Full Text Available γ-aminobutyric acid (GABAergic neurons in the neocortex have been regarded as interneurons and speculated to modulate the activity of neurons locally. Recently, however, several experiments revealed that neuronal nitric oxide synthase (nNOS-positive GABAergic neurons project cortico-cortically with long axons. In this study, we illustrate Golgi-like images of the nNOS-positive GABAergic neurons using a nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d reaction and follow the emanating axon branches in cat brain sections. These axon branches projected cortico-cortically with other non-labeled arcuate fibers, contra-laterally via the corpus callosum and anterior commissure. The labeled fibers were not limited to the neocortex but found also in the fimbria of the hippocampus. In order to have additional information on these GABAergic neuron projections, we investigated green fluorescent protein (GFP-labeled GABAergic neurons in GAD67-Cre knock-in / GFP Cre-reporter mice. GFP-labeled axons emanate densely, especially in the fimbria, a small number in the anterior commissure, and very sparsely in the corpus callosum. These two different approaches confirm that not only nNOS-positive GABAergic neurons but also other subtypes of GABAergic neurons project long axons in the cerebral cortex and are in a position to be involved in information processing.

  18. Abnormal growth of the corticospinal axons into the lumbar spinal cord of the hyt/hyt mouse with congenital hypothyroidism.

    Science.gov (United States)

    Hsu, Jung-Yu C; Stein, Stuart A; Xu, Xiao-Ming

    2008-11-01

    Thyroid hormone deficiency may cause severe neurological disorders resulting from developmental deficits of the central nervous system. The mutant hyt/hyt mouse, characterized by fetal-onset, life-long hypothyroidism resulting from a point mutation of the thyroid-stimulating hormone receptor of the thyroid gland, displays a variety of abnormalities in motor behavior that are likely associated with dysfunctions of specific brain regions and a defective corticospinal tract (CST). To test the hypothesis that fetal and neonatal hypothyroidism cause abnormal CST development, the growth of the CST was investigated in hypothyroid hyt/hyt mice and their euthyroid progenitors, the BALB/cByJ mice. Anterograde labeling with biotinylated dextran amine demonstrated a decrease in the number of CST axons in the hyt/hyt mouse at the first lumbar level at postnatal day (P) 10. After retrograde tracing with fast blue (FB), fewer FB-labeled neurons were found in the motor cortex, the red nucleus, and the lateral vestibular nucleus of the hyt/hyt mouse. At the fourth lumbar level, the hyt/hyt mouse also showed smaller CST cross-sectional areas and significantly lower numbers of unmyelinated axons, myelinated axons, and growth cones within the CST during postnatal development. At P10, the hyt/hyt mouse demonstrated significantly lower immunoreactivity of embryonic neural cell adhesion molecule in the CST at the seventh cervical level, whereas the expression of growth-associated protein 43 remained unchanged. Our study demonstrated an abnormal development of the CST in the hyt/hyt mouse, manifested by reduced axon quantity and retarded growth pattern at the lumbar spinal cord. PMID:18543337

  19. A Bovine Herpesvirus Type 1 Mutant Virus Specifying a Carboxyl-Terminal Truncation of Glycoprotein E Is Defective in Anterograde Neuronal Transport in Rabbits and Calves▿ †

    OpenAIRE

    Liu, Z. F.; M.C.S. Brum; Doster, A.; Jones, C.; Chowdhury, S I

    2008-01-01

    Bovine herpesvirus type 1 (BHV-1) is an important component of the bovine respiratory disease complex (BRDC) in cattle. The ability of BHV-1 to transport anterogradely from neuronal cell bodies in trigeminal ganglia (TG) to nerve ending in the noses and corneas of infected cattle following reactivation from latency plays a significant role in the pathogenesis of BRDC and maintenance of BHV-1 in the cattle population. We have constructed a BHV-1 bacterial artificial chromosome (BAC) clone by i...

  20. Involvement of SARA in Axon and Dendrite Growth.

    Science.gov (United States)

    Arias, Cristina Isabel; Siri, Sebastián Omar; Conde, Cecilia

    2015-01-01

    SARA (Smad Anchor for Receptor Activation) plays a crucial role in Rab5-mediated endocytosis in cell lines localizing to early endosomes where it regulates morphology and function. Here, we analyzed the role of SARA during neuronal development and tested whether it functions as a regulator of endocytic trafficking of selected axonal and membrane proteins. Suppression of SARA perturbs the appearance of juxtanuclear endocytic recycling compartments and the neurons show long axons with large growth cones. Furthermore, surface distribution of the cell adhesion molecule L1 in axons and the fusion of vesicles containing transferring receptor (TfR) in dendrites were increased in neurons where SARA was silenced. Conversely, SARA overexpression generated large early endosomes and reduced neurite outgrowth. Taken together, our findings suggest a significant contribution of SARA to key aspects of neuronal development, including neurite formation. PMID:26405814

  1. Neurofilament proteins in axonal regeneration and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Haitao Wang; Minfei Wu; Chuanjun Zhan; Enyuan Ma; Maoguang Yang; Xiaoyu Yang; Yingpu Li

    2012-01-01

    Neurofilament protein is a component of the mature neuronal cytoskeleton, and it interacts with the zygosome, which is mediated by neurofilament-related proteins. Neurofilament protein regulates enzyme function and the structure of linker proteins. In addition, neurofilament gene expression plays an important role in nervous system development. Previous studies have shown that neurofilament gene transcriptional regulation is crucial for neurofilament protein expression, especially in axonal regeneration and degenerative diseases. Post-transcriptional regulation increased neurofilament protein gene transcription during axonal regeneration, ultimately resulting in a pattern of neurofilament protein expression. An expression imbalance of post-transcriptional regulatory proteins and other disorders could lead to amyotrophic lateral sclerosis or other neurodegenerative diseases. These findings indicated that after transcription, neurofilament protein regulated expression of related proteins and promoted regeneration of damaged axons, suggesting that regulation disorders could lead to neurodegenerative diseases.

  2. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    Energy Technology Data Exchange (ETDEWEB)

    Menelaou, Evdokia; Paul, Latoya T. [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Perera, Surangi N. [Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States); Svoboda, Kurt R., E-mail: svobodak@uwm.edu [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States)

    2015-04-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  3. [A clinical and pathological study of diffuse axonal injury].

    Science.gov (United States)

    Nakazawa, S; Kobayashi, S; Yokota, H; Shimura, T

    1989-03-01

    There is increasing evidence from human and experimental studies that the most important factor governing the outcome in head injury is the severity of diffuse axonal injuries. The authors have experienced 18 cases of severe diffuse axonal injury which showed post-traumatic coma for more than 24 hours and CT findings resembling those of shearing injuries of the cerebral white matter such as have been presented by Zimmerman et al. (1978). The consciousness levels on admission were 6 or less on the Glasgow Coma Scale and all cases were shown clinically to have primary brain stem injury. The main type of head trauma resulted from road traffic accidents (83%). Skull fractures were found in only 5 cases (28%). These findings suggested that acceleration/deceleration injury produce in the patients severe diffuse axonal injury. Initial ICP was below 20 mmHg in 11 cases out of 13 (85%). Parenchymal small hemorrhagic lesions of initial CT were basal ganglia (7 cases), corpus callosum (4 cases), pons (4 cases), midbrain (3 cases) and thalamus (2 cases). Extraparenchymal hemorrhagic lesions included intraventricular hemorrhage (6 cases) and subarachnoid hemorrhage (6 cases). Two autopsied cases of severe diffuse axonal injury (acute case and chronic case) showed remarkable congestion and edema in the deep part of the frontal white matter. Microscopic examination revealed marked axonal degeneration including axonal retraction ball in the corpus callosum, in the internal capsule and in the white matter of the brain stem. Glasgow Outcome Scale of the 18 patients at 3 months after the trauma made us concerned that no patients indicated good recovery or even only moderate disability.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2770962

  4. Axon-glial interactions in the central nervous system

    OpenAIRE

    Butt, Arthur; Bay, Virginia

    2011-01-01

    Axon-glial interactions are critical for brain information transmission and processing. In the CNS, this is a function of the major types of glia – astrocytes, oligodendrocytes and novel NG2-glia. This special issue of the Journal of Anatomy comprises contributions arising from a symposium entitled ‘Axon-glial interactions in the CNS’, held at the University of Portsmouth, UK in July 2010. The aim of the special issue is to bring together an international group of experts to demonstrate the c...

  5. A chloride channel in rat and human axons

    OpenAIRE

    Strupp, Michael; Grafe, Peter

    1991-01-01

    Current recordings from single chloride channels were obtained from excised and cell-attached patches of rat and human axons. In rat axons the channels showed an outwardly rectifying current-voltage relationship with a slope conductance of 33 pS at negative membrane potentials and 65 pS at positive potentials (symmetrical 150 mM CsCl). They were measurably for cations (PNa/PCs/PCl=0.1/0.2/1). Channel currents were independent of cytoplasmatic calcium concentration. Inactivation was not observ...

  6. Tuning the orchestra: transcriptional pathways controlling axon regeneration

    Directory of Open Access Journals (Sweden)

    Andrea Tedeschi

    2012-01-01

    Full Text Available Trauma in the adult mammalian central nervous system leads to irreversible structural and functional impairment due to failed regeneration attempts. In contrast, neurons in the peripheral nervous system exhibit a greater regenerative ability. It has been proposed that an orchestrated sequence of transcriptional events controlling the expression of specific sets of genes may be the underlying basis of an early cell-autonomous regenerative response. Understanding whether transcriptional fine tuning, in parallel with strategies aimed at counteracting extrinsic impediments promotes axon re-growth following central nervous system injuries represents an exciting challenge for future studies. Transcriptional pathways controlling axon regeneration are presented and discussed in this review.

  7. LRRK2 and RAB7L1 coordinately regulate axonal morphology and lysosome integrity in diverse cellular contexts.

    Science.gov (United States)

    Kuwahara, Tomoki; Inoue, Keiichi; D'Agati, Vivette D; Fujimoto, Tetta; Eguchi, Tomoya; Saha, Shamol; Wolozin, Benjamin; Iwatsubo, Takeshi; Abeliovich, Asa

    2016-01-01

    Leucine-rich repeat kinase 2 (LRRK2) has been linked to several clinical disorders including Parkinson's disease (PD), Crohn's disease, and leprosy. Furthermore in rodents, LRRK2 deficiency or inhibition leads to lysosomal pathology in kidney and lung. Here we provide evidence that LRRK2 functions together with a second PD-associated gene, RAB7L1, within an evolutionarily conserved genetic module in diverse cellular contexts. In C. elegans neurons, orthologues of LRRK2 and RAB7L1 act coordinately in an ordered genetic pathway to regulate axonal elongation. Further genetic studies implicated the AP-3 complex, which is a known regulator of axonal morphology as well as of intracellular protein trafficking to the lysosome compartment, as a physiological downstream effector of LRRK2 and RAB7L1. Additional cell-based studies implicated LRRK2 in the AP-3 complex-related intracellular trafficking of lysosomal membrane proteins. In mice, deficiency of either RAB7L1 or LRRK2 leads to prominent age-associated lysosomal defects in kidney proximal tubule cells, in the absence of frank CNS pathology. We hypothesize that defects in this evolutionarily conserved genetic pathway underlie the diverse pathologies associated with LRRK2 in humans and in animal models. PMID:27424887

  8. Neural Tube Defects

    Science.gov (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the first month ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In spina bifida, ...

  9. The diabetic phenotype is conserved in myotubes established from diabetic subjects: evidence for primary defects in glucose transport and glycogen synthase activity

    DEFF Research Database (Denmark)

    Gaster, Michael; Petersen, Ingrid; Højlund, Kurt;

    2002-01-01

    (GS) activity; the content of glucose-6-phosphate, glucose, and glycogen; and the glucose transport in satellite cell cultures established from diabetic and control subjects. Myotubes were precultured in increasing insulin concentrations for 4 days and subsequently stimulated acutely by insulin. The...... present study shows that the basal glucose uptake as well as insulin-stimulated GS activity is reduced in satellite cell cultures established from patients with type 2 diabetes. Moreover, increasing insulin concentrations could compensate for the reduced GS activity to a certain extent, whereas chronic...

  10. Networks of Polarized Actin Filaments in the Axon Initial Segment Provide a Mechanism for Sorting Axonal and Dendritic Proteins

    Directory of Open Access Journals (Sweden)

    Kaori Watanabe

    2012-12-01

    Full Text Available Trafficking of proteins specifically to the axonal or somatodendritic membrane allows neurons to establish and maintain polarized compartments with distinct morphology and function. Diverse evidence suggests that an actin-dependent vesicle filter within the axon initial segment (AIS plays a critical role in polarized trafficking; however, no distinctive actin-based structures capable of comprising such a filter have been found within the AIS. Here, using correlative light and scanning electron microscopy, we visualized networks of actin filaments several microns wide within the AIS of cortical neurons in culture. Individual filaments within these patches are predominantly oriented with their plus ends facing toward the cell body, consistent with models of filter selectivity. Vesicles carrying dendritic proteins are much more likely to stop in regions occupied by the actin patches than in other regions, indicating that the patches likely prevent movement of dendritic proteins to the axon and thereby act as a vesicle filter.

  11. Membrane potential dynamics of axons in cultured hippocampal neurons probed by second-harmonic-generation imaging

    Science.gov (United States)

    Nuriya, Mutsuo; Yasui, Masato

    2010-03-01

    The electrical properties of axons critically influence the nature of communication between neurons. However, due to their small size, direct measurement of membrane potential dynamics in intact and complex mammalian axons has been a challenge. Furthermore, quantitative optical measurements of axonal membrane potential dynamics have not been available. To characterize the basic principles of somatic voltage signal propagation in intact axonal arbors, second-harmonic-generation (SHG) imaging is applied to cultured mouse hippocampal neurons. When FM4-64 is applied extracellularly to dissociated neurons, whole axonal arbors are visualized by SHG imaging. Upon action potential generation by somatic current injection, nonattenuating action potentials are recorded in intact axonal arbors. Interestingly, however, both current- and voltage-clamp recordings suggest that nonregenerative subthreshold somatic voltage changes at the soma are poorly conveyed to these axonal sites. These results reveal the nature of membrane potential dynamics of cultured hippocampal neurons, and further show the possibility of SHG imaging in physiological investigations of axons.

  12. Axon diameter and intra-axonal volume fraction of the corticospinal tract in idiopathic normal pressure hydrocephalus measured by q-space imaging.

    Directory of Open Access Journals (Sweden)

    Kouhei Kamiya

    Full Text Available PURPOSE: Previous studies suggest that compression and stretching of the corticospinal tract (CST potentially cause treatable gait disturbance in patients with idiopathic normal pressure hydrocephalus (iNPH. Measurement of axon diameter with diffusion MRI has recently been used to investigate microstructural alterations in neurological diseases. In this study, we investigated alterations in the axon diameter and intra-axonal fraction of the CST in iNPH by q-space imaging (QSI analysis. METHODS: Nineteen patients with iNPH and 10 age-matched controls were recruited. QSI data were obtained with a 3-T system by using a single-shot echo planar imaging sequence with the diffusion gradient applied parallel to the antero-posterior axis. By using a two-component low-q fit model, the root mean square displacements of intra-axonal space ( =  axon diameter and intra-axonal volume fraction of the CST were calculated at the levels of the internal capsule and body of the lateral ventricle, respectively. RESULTS: Wilcoxon's rank-sum test revealed a significant increase in CST intra-axonal volume fraction at the paraventricular level in patients (p<0.001, whereas no significant difference was observed in the axon diameter. At the level of the internal capsule, neither axon diameter nor intra-axonal volume fraction differed significantly between the two groups. CONCLUSION: Our results suggest that in patients with iNPH, the CST does not undergo irreversible axonal damage but is rather compressed and/or stretched owing to pressure from the enlarged ventricle. These analyses of axon diameter and intra-axonal fraction yield insights into microstructural alterations of the CST in iNPH.

  13. Substitution and defect chemistry of La-Cu-O systems

    International Nuclear Information System (INIS)

    In this paper substitutional effects of strontium in La-Cu-O system and defects accommodating stoichiometric deviations is investigated. The extended shear defects are analyzed using electron microscopy and the role in superconducting transport properties has been examined by magnetic measurements. The initial results suggest that the defects enhance flux pinning

  14. Synapses formed by identified retinogeniculate axons during the segregation of eye input.

    OpenAIRE

    Campbell, G; Shatz, C J

    1992-01-01

    The synaptic organization of identified retinogeniculate axons was studied during the prenatal development of eye-specific layers in the LGN of the cat. During this period, retinogeniculate axons undergo stereotyped morphological changes. Retinogeniculate axons originating from one eye and passing through LGN territory destined to be solely innervated by the other eye (inappropriate territory) initially give rise to many side branches. As the eye-specific layers emerge, these axons elaborate ...

  15. Difference in trafficking of brain-derived neurotrophic factor between axons and dendrites of cortical neurons, revealed by live-cell imaging

    Directory of Open Access Journals (Sweden)

    Kohara Keigo

    2005-06-01

    Full Text Available Abstract Background Brain-derived neurotrophic factor (BDNF, which is sorted into a regulated secretory pathway of neurons, is supposed to act retrogradely through dendrites on presynaptic neurons or anterogradely through axons on postsynaptic neurons. Depending on which is the case, the pattern and direction of trafficking of BDNF in dendrites and axons are expected to be different. To address this issue, we analyzed movements of green fluorescent protein (GFP-tagged BDNF in axons and dendrites of living cortical neurons by time-lapse imaging. In part of the experiments, the expression of BDNF tagged with cyan fluorescent protein (CFP was compared with that of nerve growth factor (NGF tagged with yellow fluorescent protein (YFP, to see whether fluorescent protein-tagged BDNF is expressed in a manner specific to this neurotrophin. Results We found that BDNF tagged with GFP or CFP was expressed in a punctated manner in dendrites and axons in about two-thirds of neurons into which plasmid cDNAs had been injected, while NGF tagged with GFP or YFP was diffusely expressed even in dendrites in about 70% of the plasmid-injected neurons. In neurons in which BDNF-GFP was expressed as vesicular puncta in axons, 59 and 23% of the puncta were moving rapidly in the anterograde and retrograde directions, respectively. On the other hand, 64% of BDNF-GFP puncta in dendrites did not move at all or fluttered back and forth within a short distance. The rest of the puncta in dendrites were moving relatively smoothly in either direction, but their mean velocity of transport, 0.47 ± 0.23 (SD μm/s, was slower than that of the moving puncta in axons (0.73 ± 0.26 μm/s. Conclusion The present results show that the pattern and velocity of the trafficking of fluorescence protein-tagged BDNF are different between axons and dendrites, and suggest that the anterograde transport in axons may be the dominant stream of BDNF to release sites.

  16. Differential Axonal Projection of Mitral and Tufted Cells in the Mouse Main Olfactory System

    Directory of Open Access Journals (Sweden)

    Shin Nagayama

    2010-09-01

    Full Text Available In the past decade, much has been elucidated regarding the functional organization of the axonal connection of olfactory sensory neurons to olfactory bulb (OB glomeruli. However, the manner in which projection neurons of the OB process odorant input and send this information to higher brain centers remains unclear. Here, we report long-range, large-scale tracing of the axonal projection patterns of OB neurons using two-photon microscopy. Tracer injection into a single glomerulus demonstrated widely distributed mitral/tufted cell axonal projections on the lateroventral surface of the mouse brain, including the anterior/posterior piriform cortex (PC and olfactory tubercle (OT. We noted two distinct groups of labeled axons: PC-orienting axons and OT-orienting axons. Each group occupied distinct parts of the lateral olfactory tract. PC-orienting axons projected axon collaterals to a wide area of the PC but only a few collaterals to the OT. OT-orienting axons densely projected axon collaterals primarily to the anterolateral OT (alOT. Different colored dye injections into the superficial and deep portions of the OB external plexiform layer revealed that the PC-orienting axon populations originated in presumed mitral cells and the OT-orienting axons in presumed tufted cells. These data suggest that although mitral and tufted cells receive similar odor signals from a shared glomerulus, they process the odor information in different ways and send their output to different higher brain centers via the PC and alOT.

  17. Traction Force and Tension Fluctuations During Axon Growth

    Directory of Open Access Journals (Sweden)

    Jamison ePolackwich

    2015-10-01

    Full Text Available Actively generated mechanical forces play a central role in axon growthand guidance, but the mechanisms that underly force generation andregulation in growing axons remain poorly understood. We reportmeasurements of the dynamics of traction stresses from growth cones ofactively advancing axons from postnatal rat DRG neurons. By tracking themovement of the growth cone and analyzing the traction stress field froma reference frame that moves with it, we are able to show that there isa clear and consistent average stress field that underlies the complexspatial stresses present at any one time. The average stress field hasstrong maxima on the sides of the growth cone, directed inward towardthe growth cone neck. This pattern represents a contractile stresscontained within the growth cone, and a net force that is balanced bythe axon tension. Using high time-resolution measurements of the growthcone traction stresses, we show that the stress field is composed offluctuating local stress peaks, with a large number peaks that live fora short time, a population of peaks whose lifetime distribution followsan exponential decay, and a small number of very long-lived peaks. Weshow that the high time-resolution data also reveal that the tensionappears to vary randomly over short time scales, roughly consistent withthe lifetime of the stress peaks, suggesting that the tensionfluctuations originate from stochastic adhesion dynamics.

  18. Model of fasciculation and sorting in mixed populations of axons

    Czech Academy of Sciences Publication Activity Database

    Chaudhuri, D.; Borowski, P.; Zápotocký, Martin

    2011-01-01

    Roč. 84, č. 2 (2011), e021908. ISSN 1539-3755 R&D Projects: GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : axon guidance * neurogenesis * mathematical model Subject RIV: FH - Neurology Impact factor: 2.255, year: 2011

  19. Spectrins in axonal cytoskeletons: Dynamics revealed by extensions and fluctuations

    Science.gov (United States)

    Lai, Lipeng; Cao, Jianshu

    2014-07-01

    The macroscopic properties, the properties of individual components, and how those components interact with each other are three important aspects of a composited structure. An understanding of the interplay between them is essential in the study of complex systems. Using axonal cytoskeleton as an example system, here we perform a theoretical study of slender structures that can be coarse-grained as a simple smooth three-dimensional curve. We first present a generic model for such systems based on the fundamental theorem of curves. We use this generic model to demonstrate the applicability of the well-known worm-like chain (WLC) model to the network level and investigate the situation when the system is stretched by strong forces (weakly bending limit). We specifically studied recent experimental observations that revealed the hitherto unknown periodic cytoskeleton structure of axons and measured the longitudinal fluctuations. Instead of focusing on single molecules, we apply analytical results from the WLC model to both single molecule and network levels and focus on the relations between extensions and fluctuations. We show how this approach introduces constraints to possible local dynamics of the spectrin tetramers in the axonal cytoskeleton and finally suggests simple but self-consistent dynamics of spectrins in which the spectrins in one spatial period of axons fluctuate in-sync.

  20. PTEN inhibition and axon regeneration and neural repair

    Institute of Scientific and Technical Information of China (English)

    Yosuke Ohtake; Umar Hayat; Shuxin Li

    2015-01-01

    The intrinsic growth ability of all the neurons declines during development although some may grow better than others. Numerous intracellular signaling proteins and transcription factors have been shown to regulate the intrinsic growth capacity in mature neurons. Among them, PI3 kinase/Akt pathway is important for controlling axon elongation. As a negative regulator of this pathway, the tumor suppressor phosphatase and tensin homolog (PTEN) appears critical to con-trol the regenerative ability of young and adult neurons. This review will focus on recent research progress in axon regeneration and neural repair by PTEN inhibition and therapeutic potential of blocking this phosphatase for neurological disorders. Inhibition of PTEN by deletion in con-ditional knockout mice, knockdown by short-hairpin RNA, or blockade by pharmacological approaches, including administration of selective PTEN antagonist peptides, stimulates various degrees of axon regrowth in juvenile or adult rodents with central nervous system injuries. Im-portantly, post-injury PTEN suppression could enhance axonal growth and functional recovery in adult central nervous system after injury.

  1. β₂-adrenergic receptors protect axons during energetic stress but do not influence basal glio-axonal lactate shuttling in mouse white matter.

    Science.gov (United States)

    Laureys, G; Valentino, M; Demol, F; Zammit, C; Muscat, R; Cambron, M; Kooijman, R; De Keyser, J

    2014-09-26

    In vitro studies have demonstrated that β2-adrenergic receptor activation stimulates glycogen degradation in astrocytes, generating lactate as a potential energy source for neurons. Using in vivo microdialysis in mouse cerebellar white matter we demonstrate continuous axonal lactate uptake and glial-axonal metabolic coupling of glutamate/lactate exchange. However, this physiological lactate production was not influenced by activation (clenbuterol) or blocking (ICI 118551) of β2-adrenergic receptors. In two-photon imaging experiments on ex vivo mouse corpus callosum subjected to aglycemia, β2-adrenergic activation rescued axons, whereas inhibition of axonal lactate uptake by α-cyano-4-hydroxycinnamic acid (4-CIN) was associated with severe axonal loss. Our results suggest that axonal protective effects of glial β2-adrenergic receptor activation are not mediated by enhanced lactate production. PMID:25064060

  2. IH activity is increased in populations of slow versus fast motor axons of the rat.

    Directory of Open Access Journals (Sweden)

    Chad eLorenz

    2014-09-01

    Full Text Available Much is known about the electrophysiological variation in motoneuron somata across different motor units. However comparatively less is known about electrophysiological variation in motor axons and how this could impact function or electrodiagnosis in healthy or diseased states. We performed nerve excitability testing on two groups of motor axons in Sprague-Dawley rats that are known to differ significantly in their chronic daily activity patterns and in the relative proportion of motor unit types: one group innervating the soleus (slow motor axons and the other group innervating the tibialis anterior (fast motor axons muscles. We found that slow motor axons have significantly larger accommodation compared to fast motor axons upon application of a 100 ms hyperpolarizing conditioning stimulus that is 40% of axon threshold (Z = 3.24, p = 0.001 or 20% of axon threshold (Z = 2.67, p = 0.008. Slow motor axons had larger accommodation to hyperpolarizing currents in the current-threshold measurement (-80% Z = 3.07, p = 0.002; -90% Z = 2.98, p = 0.003. In addition, we found that slow motor axons have a significantly smaller rheobase than fast motor axons (Z = -1.99, p = 0.047 accompanied by a lower threshold in stimulus-response curves. The results provide evidence that slow motor axons have greater activity of the hyperpolarization-activated inwardly rectifying cation conductance (IH than fast motor axons. It is possible that this difference between fast and slow axons is caused by an adaptation to their chronic differences in daily activity patterns, and that this adaptation might have a functional effect on the motor unit. Moreover, these findings indicate that slow and fast motor axons may react differently to pathological conditions.

  3. White matter involvement after TBI: Clues to axon and myelin repair capacity.

    Science.gov (United States)

    Armstrong, Regina C; Mierzwa, Amanda J; Marion, Christina M; Sullivan, Genevieve M

    2016-01-01

    Impact-acceleration forces to the head cause traumatic brain injury (TBI) with damage in white matter tracts comprised of long axons traversing the brain. White matter injury after TBI involves both traumatic axonal injury (TAI) and myelin pathology that evolves throughout the post-injury time course. The axon response to initial mechanical forces and secondary insults follows the process of Wallerian degeneration, which initiates as a potentially reversible phase of intra-axonal damage and proceeds to an irreversible phase of axon fragmentation. Distal to sites of axon disconnection, myelin sheaths remain for prolonged periods, which may activate neuroinflammation and inhibit axon regeneration. In addition to TAI, TBI can cause demyelination of intact axons. These evolving features of axon and myelin pathology also represent opportunities for repair. In experimental TBI, demyelinated axons exhibit remyelination, which can serve to both protect axons and facilitate recovery of function. Myelin remodeling may also contribute to neuroplasticity. Efficient clearance of myelin debris is a potential target to attenuate the progression of chronic pathology. During the early phase of Wallerian degeneration, interventions that prevent the transition from reversible damage to axon disconnection warrant the highest priority, based on the poor regenerative capacity of axons in the CNS. Clinical evaluation of TBI will need to address the challenge of accurately detecting the extent and stage of axon damage. Distinguishing the complex white matter changes associated with axons and myelin is necessary for interpreting advanced neuroimaging approaches and for identifying a broader range of therapeutic opportunities to improve outcome after TBI. PMID:25697845

  4. 49 CFR 215.121 - Defective car body.

    Science.gov (United States)

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Car Bodies § 215.121 Defective car body. A railroad may not place or continue in service a car, if: (a) Any portion of... 49 Transportation 4 2010-10-01 2010-10-01 false Defective car body. 215.121 Section...

  5. 49 CFR 215.119 - Defective freight car truck.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective freight car truck. 215.119 Section 215... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Suspension System § 215.119 Defective freight car truck. A railroad may not place or continue in service...

  6. Axonal regeneration and development of de novo axons from distal dendrites of adult feline commissural interneurons after a proximal axotomy

    DEFF Research Database (Denmark)

    Fenrich, Keith K; Skelton, Nicole; MacDermid, Victoria E;

    2007-01-01

    Following proximal axotomy, several types of neurons sprout de novo axons from distal dendrites. These processes may represent a means of forming new circuits following spinal cord injury. However, it is not know whether mammalian spinal interneurons, axotomized as a result of a spinal cord injur...

  7. Two novel mutations in SLC6A8 cause creatine transporter defect and distinctive X-linked mental retardation in two unrelated Dutch families.

    Science.gov (United States)

    Mancini, G M S; Catsman-Berrevoets, C E; de Coo, I F M; Aarsen, F K; Kamphoven, J H J; Huijmans, J G; Duran, M; van der Knaap, M S; Jakobs, C; Salomons, G S

    2005-01-30

    Four Dutch male patients, two brothers from unrelated families were referred for investigation of psychomotor and severe language/speech delay. All four patients showed growth deficiency over the years. Facial features and poor body habitus were quite similar in the patients and in their mothers. Brain MRI showed nonspecific periventricular white matter lesions. In all the patients neuropsychological tests revealed moderate mental retardation, attention deficit and hyperactivity with impulsivity, a semantic-pragmatic language disorder, and oral dyspraxia. This specific cognitive profile is different from other children with mental retardation syndromes and seems to be unique. Excretion of creatine to creatinine ratio in urine of the four boys was increased compared to controls and their creatine uptake in fibroblasts was deficient. In the two brothers from the first pedigree, DNA sequence analysis revealed a novel mutation in the splice donor site in intron 10 (IVS10 + 5G>C, c.1495 + 5G>C) of the SLC6A8 gene leading to skipping of exon 10. In the other sib pair a novel missense mutation (c. 1361C>T; p.Pro544Leu) was found. These are the first families reported, in which the clinical suspicion of a creatine transporter disorder was raised on clinical grounds, before a brain 1H-MRS suggested the diagnosis. Screening of apparently X-linked mental retarded patients with this somatic and behavioral phenotype by the biochemical assay of creatine to creatinine ratio in the urine or DNA sequence analysis of SLC6A8 is worthwhile even when 1H-MRS is not available. PMID:15690373

  8. Alterations of mitochondrial dynamics allow retrograde propagation of locally initiated axonal insults.

    Science.gov (United States)

    Lassus, Benjamin; Magifico, Sebastien; Pignon, Sandra; Belenguer, Pascale; Miquel, Marie-Christine; Peyrin, Jean-Michel

    2016-01-01

    In chronic neurodegenerative syndromes, neurons progressively die through a generalized retraction pattern triggering retrograde axonal degeneration toward the cell bodies, which molecular mechanisms remain elusive. Recent observations suggest that direct activation of pro-apoptotic signaling in axons triggers local degenerative events associated with early alteration of axonal mitochondrial dynamics. This raises the question of the role of mitochondrial dynamics on both axonal vulnerability stress and their implication in the spreading of damages toward unchallenged parts of the neuron. Here, using microfluidic chambers, we assessed the consequences of interfering with OPA1 and DRP1 proteins on axonal degeneration induced by local application of rotenone. We found that pharmacological inhibition of mitochondrial fission prevented axonal damage induced by rotenone, in low glucose conditions. While alteration of mitochondrial dynamics per se did not lead to spontaneous axonal degeneration, it dramatically enhanced axonal vulnerability to rotenone, which had no effect in normal glucose conditions, and promoted retrograde spreading of axonal degeneration toward the cell body. Altogether, our results suggest a mitochondrial priming effect in axons as a key process of axonal degeneration. In the context of neurodegenerative diseases, like Parkinson's and Alzheimer's, mitochondria fragmentation could hasten neuronal death and initiate spatial dispersion of locally induced degenerative events. PMID:27604820

  9. The role of T-cadherin in axonal pathway formation in neocortical circuits.

    Science.gov (United States)

    Hayano, Yuki; Zhao, Hong; Kobayashi, Hiroaki; Takeuchi, Kosei; Norioka, Shigemi; Yamamoto, Nobuhiko

    2014-12-01

    Cortical efferent and afferent fibers are arranged in a stereotyped pattern in the intermediate zone (IZ). Here, we studied the mechanism of axonal pathway formation by identifying a molecule that is expressed in a subset of cortical axons in the rat. We found that T-cadherin (T-cad), a member of the cadherin family, is expressed in deep-layer cell axons projecting to subcortical structures, but not in upper layer callosal axons projecting to the contralateral cortex. Ectopic expression of T-cad in upper layer cells induced axons to project toward subcortical structures via the upper part of the IZ. Moreover, the axons of deep-layer cells in which T-cad expression was suppressed by RNAi projected towards the contralateral cortex via an aberrant route. These results suggest that T-cad is involved in axonal pathway formation in the developing cortex. PMID:25468941

  10. Neuropathological changes of rabbit spinal motor neurons induced by retrograde axonal aluminum-uptake

    International Nuclear Information System (INIS)

    To examine pathological changes of spinal motor neurons induced by subepineurial injection of 10-500 μ1 of 2% AlCl3 solution into a sciatic nerve of rabbits, histometric studies of chromatolytic neurons, spheroids/globules and degenerative neurons in the both lumbar anterior gray horn tissues was undertaken using routine and immunochemical staining methods. All these neuronal changes were reactive to the antineurofilament antibody (SM1). Except chromatolytic neurons, the appearance of spheroids/globules and degenerative neurons were significantly dose-responsive to the volume of injected 2% AlCl3 solution. In this acute experiments, it is suggested that Al may primarily cause a disturbance of neurofilament transport in proximal axons, consequently leading to neurofibrillary degeneration of neurons. (author)

  11. Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy

    Directory of Open Access Journals (Sweden)

    Chong-Chong Xu

    2016-01-01

    Full Text Available Spinal muscular atrophy (SMA, characterized by specific degeneration of spinal motor neurons, is caused by mutations in the survival of motor neuron 1, telomeric (SMN1 gene and subsequent decreased levels of functional SMN. How the deficiency of SMN, a ubiquitously expressed protein, leads to spinal motor neuron-specific degeneration in individuals affected by SMA remains unknown. In this study, we examined the role of SMN in mitochondrial axonal transport and morphology in human motor neurons by generating SMA type 1 patient-specific induced pluripotent stem cells (iPSCs and differentiating these cells into spinal motor neurons. The initial specification of spinal motor neurons was not affected, but these SMA spinal motor neurons specifically degenerated following long-term culture. Moreover, at an early stage in SMA spinal motor neurons, but not in SMA forebrain neurons, the number of mitochondria, mitochondrial area and mitochondrial transport were significantly reduced in axons. Knocking down of SMN expression led to similar mitochondrial defects in spinal motor neurons derived from human embryonic stem cells, confirming that SMN deficiency results in impaired mitochondrial dynamics. Finally, the application of N-acetylcysteine (NAC mitigated the impairment in mitochondrial transport and morphology and rescued motor neuron degeneration in SMA long-term cultures. Furthermore, NAC ameliorated the reduction in mitochondrial membrane potential in SMA spinal motor neurons, suggesting that NAC might rescue apoptosis and motor neuron degeneration by improving mitochondrial health. Overall, our data demonstrate that SMN deficiency results in abnormal mitochondrial transport and morphology and a subsequent reduction in mitochondrial health, which are implicated in the specific degeneration of spinal motor neurons in SMA.

  12. Axonal degeneration affects muscle density in older men and women.

    Science.gov (United States)

    Lauretani, Fulvio; Bandinelli, Stefania; Bartali, Benedetta; Di Iorio, Angelo; Giacomini, Vittoria; Corsi, Anna Maria; Guralnik, Jack M; Ferrucci, Luigi

    2006-08-01

    Using data from InCHIANTI, a prospective population-based survey of older persons, we examined the relationship of peroneal nerve conduction velocity (NCV, a measure of nerve myelination) and compound muscle action potential (CMAP, a measure of axonal degeneration) with calf muscle mass and density, two complementary measures of sarcopenia. NCV and CMAP were assessed by surface electroneurography of the right peroneal nerve conducted in 1162 participants, 515 men and 647 women, age 21-96 years, free of major neurological diseases. Cross-sectional muscle area and calf muscle density were measured using peripheral quantitative computerized tomography (pQCT). Both nerve and muscle parameters declined with age although in most cases the decline was not linear. In both sexes, CMAP, but not NCV, was independently and significantly associated with calf muscle density. These findings suggest that intrinsic changes in the muscle tissue are partially caused by a reduction in the number of motor axons. PMID:16085338

  13. Missed connections: photoreceptor axon seeks target neuron for synaptogenesis.

    Science.gov (United States)

    Astigarraga, Sergio; Hofmeyer, Kerstin; Treisman, Jessica E

    2010-08-01

    Extending axons must choose the appropriate synaptic target cells in order to assemble functional neural circuitry. The axons of the Drosophila color-sensitive photoreceptors R7 and R8 project as a single fascicle from each ommatidium, but their terminals are segregated into distinct layers within their target region. Recent studies have begun to reveal the molecular mechanisms that establish this projection pattern. Both homophilic adhesion molecules and specific ligand-receptor interactions make important contributions to stabilizing R7 and R8 terminals in the appropriate target layers. These cell recognition molecules are regulated by the same transcription factors that control R7 and R8 cell fates. Autocrine and repulsive signaling mechanisms prevent photoreceptor terminals from encroaching on their neighbors, preserving the spatial resolution of visual information. PMID:20434326

  14. A comparative study of acellular nerve xenografts and allografts in repairing rat facial nerve defects.

    Science.gov (United States)

    Huang, Haitao; Xiao, Hongxi; Liu, Huawei; Niu, Yu; Yan, Rongzeng; Hu, Min

    2015-10-01

    Acellular nerves are composed of a basal lamina tube, which retains sufficient bioactivity to promote axon regeneration, thereby repairing peripheral nerve gaps. However, the clinical application of acellular allografts has been restricted due to its limited availability. To investigate whether xenografts, a substitute to allograft acellular nerves in abundant supply, could efficiently promote nerve regeneration, rabbit and rat acellular nerve grafts were used to reconstruct 1 cm defects in Wistar rat facial nerves. Autologous peroneal nerve grafts served as a positive control group. A total of 12 weeks following the surgical procedure, the axon number, myelinated axon number, myelin sheath thickness, and nerve conduction velocity of the rabbit and rat‑derived acellular nerve grafts were similar, whereas the fiber diameter of the rabbit‑derived acellular xenografts decreased, as compared with those of rat‑derived acellular allografts. Autografts exerted superior effects on nerve regeneration; however, no significant difference was observed between the axon number in the autograft group, as compared with the two acellular groups. These results suggested that autografts perform better than acellular nerve grafts, and chemically extracted acellular allografts and xenografts have similar effects on the regeneration of short facial nerve defects. PMID:26239906

  15. Bazooka mediates secondary axon morphology in Drosophila brain lineages

    OpenAIRE

    Hartenstein Volker; Spindler Shana R

    2011-01-01

    Abstract In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that mul...

  16. Giant axonal neuropathy: observations on a further patient.

    OpenAIRE

    Donaghy, M; Brett, E M; Ormerod, I E; King, R H; Thomas, P. K.

    1988-01-01

    A further child with giant axonal neuropathy (GAN), abnormally curly hair and consanguineous parents is described. Of the 19 patients with GAN so far reported in the literature, six, including the present patient, have resulted from consanguineous marriages. This makes autosomal recessive inheritance of GAN highly probable. Our patient also exhibited cerebellar ataxia and signs of pyramidal tract damage; magnetic resonance brain imaging demonstrated abnormalities within the cerebellar and cer...

  17. Craniocerebral trauma. Magnetic resonance imaging of diffuse axonal injury

    International Nuclear Information System (INIS)

    Acceleration-deceleration rotational brain trauma is a common cause of disability or death in young adults and often leads to a focal destruction of axons. The resulting pathology, axonal shear injury is referred to as diffuse axonal injury (DAI). The DAI-associated lesions occur bilaterally, are widely dispersed and have been observed in the surface and deep white matter. They are found near to and far from the impact site. When DAI is clinically suspected, magnetic resonance imaging (MRI) is the method of choice for further clarification, especially in patients where cranial computed tomography (CT) is inconspicuous. To investigate the presence of DAI after traumatic brain injury (TBI), a multimodal MRI approach is applied including the common structural and also functional imaging sequences. For structural MRI, fluid-attenuated inversion recovery (FLAIR) weighted and susceptibility contrast imaging (SWI) are the sequences mainly used. The SWI technique is extremely sensitive to blood breakdown products, which appear as small signal voids at three locations, at the gray-white interface, in the corpus callosum and in the brain stem. Functional MRI comprises a group of constantly developing techniques that have great potential in optimal evaluation of the white matter in patients after craniocerebral trauma. These imaging techniques allow the visualization of changes associated with shear injuries, such as functional impairment of axons and decreased blood flow and abnormal metabolic activity of the brain parts affected. The multimodal MRI approach in patients with DAI results in a more detailed and differentiated representation of the underlying pathophysiological changes of the injured nerve tracts and helps to improve the diagnostic and prognostic accuracy of MRI. When DAI is suspected multimodal MRI should be performed as soon as possible after craniocerebral injury. (orig.)

  18. Estimating neuronal connectivity from axonal and dendritic density fields

    Directory of Open Access Journals (Sweden)

    Jaap evan Pelt

    2013-11-01

    Full Text Available Neurons innervate space by extending axonal and dendritic arborizations. When axons and dendrites come in close proximity of each other, synapses between neurons can be formed. Neurons vary greatly in their morphologies and synaptic connections with other neurons. The size and shape of the arborizations determine the way neurons innervate space. A neuron may therefore be characterized by the spatial distribution of its axonal and dendritic 'mass'. A population mean 'mass' density field of a particular neuron type can be obtained by averaging over the individual variations in neuron geometries. Connectivity in terms of candidate synaptic contacts between neurons can be determined directly on the basis of their arborizations but also indirectly on the basis of their density fields. To decide when a candidate synapse can be formed, we previously developed a criterion defining that axonal and dendritic line pieces should cross in 3D and have an orthogonal distance less than a threshold value. In this paper, we developed new methodology for applying this criterion to density fields. We show that estimates of the number of contacts between neuron pairs calculated from their density fields are fully consistent with the number of contacts calculated from the actual arborizations. However, the estimation of the connection probability and the expected number of contacts per connection cannot be calculated directly from density fields, because density fields do not carry anymore the correlative structure in the spatial distribution of synaptic contacts. Alternatively, these two connectivity measures can be estimated from the expected number of contacts by using empirical mapping functions. The neurons used for the validation studies were generated by our neuron simulator NETMORPH. An example is given of the estimation of average connectivity and Euclidean pre- and postsynaptic distance distributions in a network of neurons represented by their population

  19. Abnormal Corticospinal Excitability in Traumatic Diffuse Axonal Brain Injury

    OpenAIRE

    Bernabeu, Montse; Demirtas-Tatlidede, Asli; Opisso, Eloy; Lopez, Raquel; Tormos, Jose Mª; Pascual-Leone, Alvaro

    2009-01-01

    This study aimed to investigate the cortical motor excitability characteristics in diffuse axonal injury (DAI) due to severe traumatic brain injury (TBI). A variety of excitatory and inhibitory transcranial magnetic stimulation (TMS) paradigms were applied to primary motor cortices of 17 patients and 11 healthy controls. The parameters of testing included resting motor threshold (MT), motor evoked potential (MEP) area under the curve, input-output curves, MEP variability, and silent period (S...

  20. Voluntary exercise increases axonal regeneration from sensory neurons

    OpenAIRE

    Molteni, Raffaella; Zheng, Jun-Qi; Ying, Zhe; Gómez-Pinilla, Fernando; Twiss, Jeffery L

    2004-01-01

    Recent advances in understanding the role of neurotrophins on activity-dependent plasticity have provided insight into how behavior can affect specific aspects of neuronal biology. We present evidence that voluntary exercise can prime adult dorsal root ganglion neurons for increased axonal regeneration through a neurotrophin-dependent mechanism. Dorsal root ganglion neurons showed an increase in neurite outgrowth when cultured from animals that had undergone 3 or 7 days of exercise compared w...

  1. Adult motor axons preferentially reinnervate predegenerated muscle nerve

    OpenAIRE

    M. Abdullah; O'Daly, A.; A Vyas; Rohde, C.; Brushart, T.M.

    2013-01-01

    Preferential motor reinnervation (PMR) is the tendency for motor axons regenerating after repair of mixed nerve to reinnervate muscle nerve and/or muscle rather than cutaneous nerve or skin. PMR may occur in response to the peripheral nerve pathway alone in juvenile rats (Brushart, 1993; Redett et al., 2005), yet the ability to identify and respond to specific pathway markers is reportedly lost in adults (Uschold et al., 2007). The experiments reported here evaluate the relative roles of path...

  2. White matter microstructure from nonparametric axon diameter distribution mapping.

    Science.gov (United States)

    Benjamini, Dan; Komlosh, Michal E; Holtzclaw, Lynne A; Nevo, Uri; Basser, Peter J

    2016-07-15

    We report the development of a double diffusion encoding (DDE) MRI method to estimate and map the axon diameter distribution (ADD) within an imaging volume. A variety of biological processes, ranging from development to disease and trauma, may lead to changes in the ADD in the central and peripheral nervous systems. Unlike previously proposed methods, this ADD experimental design and estimation framework employs a more general, nonparametric approach, without a priori assumptions about the underlying form of the ADD, making it suitable to analyze abnormal tissue. In the current study, this framework was used on an ex vivo ferret spinal cord, while emphasizing the way in which the ADD can be weighted by either the number or the volume of the axons. The different weightings, which result in different spatial contrasts, were considered throughout this work. DDE data were analyzed to derive spatially resolved maps of average axon diameter, ADD variance, and extra-axonal volume fraction, along with a novel sub-micron restricted structures map. The morphological information contained in these maps was then used to segment white matter into distinct domains by using a proposed k-means clustering algorithm with spatial contiguity and left-right symmetry constraints, resulting in identifiable white matter tracks. The method was validated by comparing histological measures to the estimated ADDs using a quantitative similarity metric, resulting in good agreement. With further acquisition acceleration and experimental parameters adjustments, this ADD estimation framework could be first used preclinically, and eventually clinically, enabling a wide range of neuroimaging applications for improved understanding of neurodegenerative pathologies and assessing microstructural changes resulting from trauma. PMID:27126002

  3. Retinal glia promote dorsal root ganglion axon regeneration.

    Directory of Open Access Journals (Sweden)

    Barbara Lorber

    Full Text Available Axon regeneration in the adult central nervous system (CNS is limited by several factors including a lack of neurotrophic support. Recent studies have shown that glia from the adult rat CNS, specifically retinal astrocytes and Müller glia, can promote regeneration of retinal ganglion cell axons. In the present study we investigated whether retinal glia also exert a growth promoting effect outside the visual system. We found that retinal glial conditioned medium significantly enhanced neurite growth and branching of adult rat dorsal root ganglion neurons (DRG in culture. Furthermore, transplantation of retinal glia significantly enhanced regeneration of DRG axons past the dorsal root entry zone after root crush in adult rats. To identify the factors that mediate the growth promoting effects of retinal glia, mass spectrometric analysis of retinal glial conditioned medium was performed. Apolipoprotein E and secreted protein acidic and rich in cysteine (SPARC were found to be present in high abundance, a finding further confirmed by western blotting. Inhibition of Apolipoprotein E and SPARC significantly reduced the neuritogenic effects of retinal glial conditioned medium on DRG in culture, suggesting that Apolipoprotein E and SPARC are the major mediators of this regenerative response.

  4. EEG functional connectivity, axon delays and white matter disease

    Science.gov (United States)

    Nunez, Paul L.; Srinivasan, Ramesh; Fields, R. Douglas

    2016-01-01

    Objective Both structural and functional brain connectivities are closely linked to white matter disease. We discuss several such links of potential interest to neurologists, neurosurgeons, radiologists, and non-clinical neuroscientists. Methods Treatment of brains as genuine complex systems suggests major emphasis on the multi-scale nature of brain connectivity and dynamic behavior. Cross-scale interactions of local, regional, and global networks are apparently responsible for much of EEG's oscillatory behaviors. Finite axon propagation speed, often assumed to be infinite in local network models, is central to our conceptual framework. Results Myelin controls axon speed, and the synchrony of impulse traffic between distant cortical regions appears to be critical for optimal mental performance and learning. Results Several experiments suggest that axon conduction speed is plastic, thereby altering the regional and global white matter connections that facilitate binding of remote local networks. Conclusions Combined EEG and high resolution EEG can provide distinct multi-scale estimates of functional connectivity in both healthy and diseased brains with measures like frequency and phase spectra, covariance, and coherence. Significance White matter disease may profoundly disrupt normal EEG coherence patterns, but currently these kinds of studies are rare in scientific labs and essentially missing from clinical environments. PMID:24815984

  5. Axonal Dysfunction Precedes Motor Neuronal Death in Amyotrophic Lateral Sclerosis.

    Directory of Open Access Journals (Sweden)

    Yuta Iwai

    Full Text Available Wide-spread fasciculations are a characteristic feature in amyotrophic lateral sclerosis (ALS, suggesting motor axonal hyperexcitability. Previous excitability studies have shown increased nodal persistent sodium conductances and decreased potassium currents in motor axons of ALS patients, both of the changes inducing hyperexcitability. Altered axonal excitability potentially contributes to motor neuron death in ALS, but the relationship of the extent of motor neuronal death and abnormal excitability has not been fully elucidated. We performed multiple nerve excitability measurements in the median nerve at the wrist of 140 ALS patients and analyzed the relationship of compound muscle action potential (CMAP amplitude (index of motor neuronal loss and excitability indices, such as strength-duration time constant, threshold electrotonus, recovery cycle and current-threshold relationships. Compared to age-matched normal controls (n = 44, ALS patients (n = 140 had longer strength-duration time constant (SDTC: a measure of nodal persistent sodium current; p 5mV. Regression analyses showed that SDTC (R = -0.22 and depolarizing threshold electrotonus (R = -0.22 increased with CMAP decline. These findings suggest that motor nerve hyperexcitability occurs in the early stage of the disease, and precedes motor neuronal loss in ALS. Modulation of altered ion channel function could be a treatment option for ALS.

  6. Axonal Dysfunction Precedes Motor Neuronal Death in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Iwai, Yuta; Shibuya, Kazumoto; Misawa, Sonoko; Sekiguchi, Yukari; Watanabe, Keisuke; Amino, Hiroshi; Kuwabara, Satoshi

    2016-01-01

    Wide-spread fasciculations are a characteristic feature in amyotrophic lateral sclerosis (ALS), suggesting motor axonal hyperexcitability. Previous excitability studies have shown increased nodal persistent sodium conductances and decreased potassium currents in motor axons of ALS patients, both of the changes inducing hyperexcitability. Altered axonal excitability potentially contributes to motor neuron death in ALS, but the relationship of the extent of motor neuronal death and abnormal excitability has not been fully elucidated. We performed multiple nerve excitability measurements in the median nerve at the wrist of 140 ALS patients and analyzed the relationship of compound muscle action potential (CMAP) amplitude (index of motor neuronal loss) and excitability indices, such as strength-duration time constant, threshold electrotonus, recovery cycle and current-threshold relationships. Compared to age-matched normal controls (n = 44), ALS patients (n = 140) had longer strength-duration time constant (SDTC: a measure of nodal persistent sodium current; p CMAP (> 5mV). Regression analyses showed that SDTC (R = -0.22) and depolarizing threshold electrotonus (R = -0.22) increased with CMAP decline. These findings suggest that motor nerve hyperexcitability occurs in the early stage of the disease, and precedes motor neuronal loss in ALS. Modulation of altered ion channel function could be a treatment option for ALS. PMID:27383069

  7. Sensory axon-derived neuregulin-1 is required for axoglial signaling and normal sensory function but not for long-term axon maintenance

    DEFF Research Database (Denmark)

    Fricker, F.R.; Zhu, N.; Tsantoulas, C.;

    2009-01-01

    " pockets. The total number of axons in the sural nerve was unchanged, but a greater proportion was unmyelinated. In addition, we observed large-diameter axons that were in a 1:1 relationship with Schwann cells, surrounded by a basal lamina but not myelinated. There was no evidence of DRG or Schwann cell...

  8. Defects of organization in rendering medical aid

    Directory of Open Access Journals (Sweden)

    Shavkat Islamov

    2010-09-01

    Full Text Available The defects of organization at the medical institution mean disturbance of rules, norms and order of rendering of medical aid. The number of organization defects in Uzbekistan increased from 20.42%, in 1999 to 25.46% in 2001 with gradual decrease to 19.9% in 2003 and 16.66%, in 2006 and gradual increase to 21.95% and 28.28% (P<0.05 in 2005 and 2008. Among the groups of essential defects of organization there were following: disturbance of transportation rules, lack of dispensary care, shortcomings in keeping medical documentation.

  9. Axon Degeneration Gated by Retrograde Activation of Somatic Pro-apoptotic Signaling.

    Science.gov (United States)

    Simon, David J; Pitts, Jason; Hertz, Nicholas T; Yang, Jing; Yamagishi, Yuya; Olsen, Olav; Tešić Mark, Milica; Molina, Henrik; Tessier-Lavigne, Marc

    2016-02-25

    During development, sensory axons compete for limiting neurotrophic support, and local neurotrophin insufficiency triggers caspase-dependent axon degeneration. The signaling driving axon degeneration upon local deprivation is proposed to reside within axons. Our results instead support a model in which, despite the apoptotic machinery being present in axons, the cell body is an active participant in gating axonal caspase activation and axon degeneration. Loss of trophic support in axons initiates retrograde activation of a somatic pro-apoptotic pathway, which, in turn, is required for distal axon degeneration via an anterograde pro-degenerative factor. At a molecular level, the cell body is the convergence point of two signaling pathways whose integrated action drives upregulation of pro-apoptotic Puma, which, unexpectedly, is confined to the cell body. Puma then overcomes inhibition by pro-survival Bcl-xL and Bcl-w and initiates the anterograde pro-degenerative program, highlighting the role of the cell body as an arbiter of large-scale axon removal. PMID:26898330

  10. Regulation of action potential waveforms by axonal GABAA receptors in cortical pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Yang Xia

    Full Text Available GABAA receptors distributed in somatodendritic compartments play critical roles in regulating neuronal activities, including spike timing and firing pattern; however, the properties and functions of GABAA receptors at the axon are still poorly understood. By recording from the cut end (bleb of the main axon trunk of layer -5 pyramidal neurons in prefrontal cortical slices, we found that currents evoked by GABA iontophoresis could be blocked by picrotoxin, indicating the expression of GABAA receptors in axons. Stationary noise analysis revealed that single-channel properties of axonal GABAA receptors were similar to those of somatic receptors. Perforated patch recording with gramicidin revealed that the reversal potential of the GABA response was more negative than the resting membrane potential at the axon trunk, suggesting that GABA may hyperpolarize the axonal membrane potential. Further experiments demonstrated that the activation of axonal GABAA receptors regulated the amplitude and duration of action potentials (APs and decreased the AP-induced Ca2+ transients at the axon. Together, our results indicate that the waveform of axonal APs and the downstream Ca2+ signals are modulated by axonal GABAA receptors.

  11. Irregular geometries in normal unmyelinated axons: a 3D serial EM analysis.

    Science.gov (United States)

    Greenberg, M M; Leitao, C; Trogadis, J; Stevens, J K

    1990-12-01

    Axons have generally been represented as straight cylinders. It is not at all uncommon for anatomists to take single cross-sections of an axonal bundle, and from the axonal diameter compute expected conduction velocities. This assumes that each cross-section represents a slice through a perfect cylinder. We have examined the three-dimensional geometry of 98 central and peripheral unmyelinated axons, using computer-assisted serial electron microscopy. These reconstructions reveal that virtually all unmyelinated axons have highly irregular axial shapes consisting of periodic varicosities. The varicosities were, without exception, filled with membranous organelles frequently including mitochondria, and have obligatory volumes similar to that described in other neurites. The mitochondria make contact with microtubules, while the other membraneous organelles were frequently found free floating in the cytoplasm. We conclude that unmyelinated axons are fundamentally varicose structures created by the presence of organelles, and that an axon's calibre is dynamic in both space and time. These irregular axonal geometries raise serious doubts about standard two dimensional morphometric analysis and suggest that electrical properties may be more heterogeneous than expected from single section data. These results also suggest that the total number of microtubules contained in an axon, rather than its single section diameter, may prove to be a more accurate predictor of properties such as conduction velocity. Finally, these results offer an explanation for a number of pathological changes that have been described in unmyelinated axons. PMID:2292722

  12. Soluble axoplasm enriched from injured CNS axons reveals the early modulation of the actin cytoskeleton.

    Directory of Open Access Journals (Sweden)

    Patrick Garland

    Full Text Available Axon injury and degeneration is a common consequence of diverse neurological conditions including multiple sclerosis, traumatic brain injury and spinal cord injury. The molecular events underlying axon degeneration are poorly understood. We have developed a novel method to enrich for axoplasm from rodent optic nerve and characterised the early events in Wallerian degeneration using an unbiased proteomics screen. Our detergent-free method draws axoplasm into a dehydrated hydrogel of the polymer poly(2-hydroxyethyl methacrylate, which is then recovered using centrifugation. This technique is able to recover axonal proteins and significantly deplete glial contamination as confirmed by immunoblotting. We have used iTRAQ to compare axoplasm-enriched samples from naïve vs injured optic nerves, which has revealed a pronounced modulation of proteins associated with the actin cytoskeleton. To confirm the modulation of the actin cytoskeleton in injured axons we focused on the RhoA pathway. Western blotting revealed an augmentation of RhoA and phosphorylated cofilin in axoplasm-enriched samples from injured optic nerve. To investigate the localisation of these components of the RhoA pathway in injured axons we transected axons of primary hippocampal neurons in vitro. We observed an early modulation of filamentous actin with a concomitant redistribution of phosphorylated cofilin in injured axons. At later time-points, RhoA is found to accumulate in axonal swellings and also colocalises with filamentous actin. The actin cytoskeleton is a known sensor of cell viability across multiple eukaryotes, and our results suggest a similar role for the actin cytoskeleton following axon injury. In agreement with other reports, our data also highlights the role of the RhoA pathway in axon degeneration. These findings highlight a previously unexplored area of axon biology, which may open novel avenues to prevent axon degeneration. Our method for isolating CNS axoplasm

  13. 49 CFR 215.9 - Movement of defective cars for repair.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of defective cars for repair. 215.9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS General § 215.9 Movement of defective cars for repair. (a) A railroad freight car which has any component described as defective in...

  14. Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion.

    Science.gov (United States)

    Nowotny, Janusz; Alim, Mohammad Abdul; Bak, Tadeusz; Idris, Mohammad Asri; Ionescu, Mihail; Prince, Kathryn; Sahdan, Mohd Zainizan; Sopian, Kamaruzzaman; Mat Teridi, Mohd Asri; Sigmund, Wolfgang

    2015-12-01

    This tutorial review considers defect chemistry of TiO2 and its solid solutions as well as defect-related properties associated with solar-to-chemical energy conversion, such as Fermi level, bandgap, charge transport and surface active sites. Defect disorder is discussed in terms of defect reactions and the related charge compensation. Defect equilibria are used in derivation of defect diagrams showing the effect of oxygen activity and temperature on the concentration of both ionic and electronic defects. These defect diagrams may be used for imposition of desired semiconducting properties that are needed to maximize the performance of TiO2-based photoelectrodes for the generation of solar hydrogen fuel using photo electrochemical cells (PECs) and photocatalysts for water purification. The performance of the TiO2-based semiconductors is considered in terms of the key performance-related properties (KPPs) that are defect related. It is shown that defect engineering may be applied for optimization of the KPPs in order to achieve optimum performance. PMID:26446476

  15. Facts about Birth Defects

    Science.gov (United States)

    ... Us Information For... Media Policy Makers Facts about Birth Defects Language: English Español (Spanish) Recommend on Facebook Tweet ... having a baby born without a birth defect. Birth Defects Are Common Every 4 ½ minutes, a baby ...

  16. Trafifc lights for axon growth:proteoglycans and their neuronal receptors

    Institute of Scientific and Technical Information of China (English)

    Yingjie Shen

    2014-01-01

    Axon growth is a central event in the development and post-injury plasticity of the nervous system. Growing axons encounter a wide variety of environmental instructions. Much like trafifc lights in controlling the migrating axons, chondroitin sulfate proteoglycans (CSPGs) and hepa-ran sulfate proteoglycans (HSPGs) often lead to“stop”and“go”growth responses in the axons, respectively. Recently, the LAR family and NgR family molecules were identified as neuronal receptors for CSPGs and HSPGs. These discoveries provided molecular tools for further study of mechanisms underlying axon growth regulation. More importantly, the identiifcation of these proteoglycan receptors offered potential therapeutic targets for promoting post-injury axon re-generation.

  17. Coculture of elongated neuron axon with poly (D, L-lactide-co-glycolide) biomembrane in vitro

    Institute of Scientific and Technical Information of China (English)

    程飚; 陈峥嵘

    2004-01-01

    Objective: To elongate human nerve axon in culture and search for suitable support matrices for peripheral nervous system transplantation.Methods: Human embryo cortical neuronal cells,seeded on poly ( D, L-lactide-co-glycolide ) ( PLGA )membrane scaffolds, were elongated with a self-made neuro-axon extending device. The growth and morphological changes of neuron axons were observed to measure axolemmal permeability after elongation.Neurofilament protein was stained by immunohistochemical technique.Results: Human embryo neuron axon could be elongated and cultured on the PLGA membrane and retain their normal form and function.Conclusions: Three dimensional scaffolds with elongated neuron axon have the basic characteristics of artificial nerves, indicating a fundemental theory of nerve repair with elongated neuron axon.

  18. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination.

    Science.gov (United States)

    Lappe-Siefke, Corinna; Goebbels, Sandra; Gravel, Michel; Nicksch, Eva; Lee, John; Braun, Peter E; Griffiths, Ian R; Nave, Klaus-Armin

    2003-03-01

    Myelination of axons by oligodendrocytes enables rapid impulse propagation in the central nervous system. But long-term interactions between axons and their myelin sheaths are poorly understood. Here we show that Cnp1, which encodes 2',3'-cyclic nucleotide phosphodiesterase in oligodendrocytes, is essential for axonal survival but not for myelin assembly. In the absence of glial cyclic nucleotide phosphodiesterase, mice developed axonal swellings and neurodegeneration throughout the brain, leading to hydrocephalus and premature death. But, in contrast to previously studied myelin mutants, the ultrastructure, periodicity and physical stability of myelin were not altered in these mice. Genetically, the chief function of glia in supporting axonal integrity can thus be completely uncoupled from its function in maintaining compact myelin. Oligodendrocyte dysfunction, such as that in multiple sclerosis lesions, may suffice to cause secondary axonal loss. PMID:12590258

  19. Defect production in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  20. Defect production in ceramics

    International Nuclear Information System (INIS)

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si3N4), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed

  1. Defect production in ceramics

    International Nuclear Information System (INIS)

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel, silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AlN and Si3N4), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed. (orig.)

  2. Loss of the E3 ubiquitin ligase LRSAM1 sensitizes peripheral axons to degeneration in a mouse model of Charcot-Marie-Tooth disease

    Directory of Open Access Journals (Sweden)

    Laurent P. Bogdanik

    2013-05-01

    Charcot-Marie-Tooth disease (CMT is a clinically and genetically heterogeneous condition characterized by peripheral axon degeneration with subsequent motor and sensory deficits. Several CMT gene products function in endosomal sorting and trafficking to the lysosome, suggesting that defects in this cellular pathway might present a common pathogenic mechanism for these conditions. LRSAM1 is an E3 ubiquitin ligase that is implicated in this process, and mutations in LRSAM1 have recently been shown to cause CMT. We have generated mouse mutations in Lrsam1 to create an animal model of this form of CMT (CMT2P. Mouse Lrsam1 is abundantly expressed in the motor and sensory neurons of the peripheral nervous system. Both homozygous and heterozygous mice have largely normal neuromuscular performance and only a very mild neuropathy phenotype with age. However, Lrsam1 mutant mice are more sensitive to challenge with acrylamide, a neurotoxic agent that causes axon degeneration, indicating that the axons in the mutant mice are indeed compromised. In transfected cells, LRSAM1 primarily localizes in a perinuclear compartment immediately beyond the Golgi and shows little colocalization with components of the endosome to lysosome trafficking pathway, suggesting that other cellular mechanisms also merit consideration.

  3. X11/Mint Genes Control Polarized Localization of Axonal Membrane Proteins in Vivo

    OpenAIRE

    Garrett G Gross; Lone, G. Mohiddin; Leung, Lok Kwan; Hartenstein, Volker; Guo, Ming

    2013-01-01

    Mislocalization of axonal proteins can result in misassembly and/or miswiring of neural circuits, causing disease. To date, only a handful of genes that control polarized localization of axonal membrane proteins have been identified. Here we report that Drosophila X11/Mint proteins are required for targeting several proteins, including human amyloid precursor protein (APP) and Drosophila APP-like protein (APPL), to axonal membranes and for their exclusion from dendrites of the mushroom body i...

  4. Actin turnover is required to prevent axon retraction driven by endogenous actomyosin contractility

    OpenAIRE

    Gallo, Gianluca; Yee, Hal F.; Letourneau, Paul C.

    2002-01-01

    Growth cone motility and guidance depend on the dynamic reorganization of filamentous actin (F-actin). In the growth cone, F-actin undergoes turnover, which is the exchange of actin subunits from existing filaments. However, the function of F-actin turnover is not clear. We used jasplakinolide (jasp), a cell-permeable macrocyclic peptide that inhibits F-actin turnover, to study the role of F-actin turnover in axon extension. Treatment with jasp caused axon retraction, demonstrating that axon ...

  5. Directional specificity and patterning of sensory axons in trigeminal ganglion–whisker pad cocultures

    OpenAIRE

    Gunhan-Agar, Emine; Haeberle, Adam; Erzurumlu, Reha S.

    2000-01-01

    In the rodent trigeminal pathway, trigeminal axons invade the developing whisker pad from a caudal to rostral direction. We investigated directional specificity of embryonic day (E). 15 rat trigeminal axons within this peripheral target field using explant cocultures. E15 trigeminal axons readily grow into the same age whisker pad explants and form follicle-related patterns along a caudal to rostral direction. They also can grow into this target from its lateral aspects. In contrast, they are...

  6. Differential Effects of NGF and NT-3 on Embryonic Trigeminal Axon Growth Patterns

    OpenAIRE

    Ulupinar, Emel; Jacquin, Mark F.; Erzurumlu, Reha S.

    2000-01-01

    We examined the effects of neurotrophins nerve growth factor (NGF) and neurotrophin-3 (NT-3) on trigeminal axon growth patterns. Embryonic (E13–15) wholemount explants of the rat trigeminal pathway including the whisker pads, trigeminal ganglia, and brainstem were cultured in serum-free medium (SFM) or SFM supplemented with NGF or NT-3 for 3 days. Trigeminal axon growth patterns were analyzed with the use of lipophilic tracer DiI. In wholemount cultures grown in SFM, trigeminal axon projectio...

  7. RNA Sequence Reveals Mouse Retinal Transcriptome Changes Early after Axonal Injury

    OpenAIRE

    Yasuda, Masayuki; Tanaka, Yuji; Ryu, Morin; Tsuda, Satoru; Nakazawa, Toru

    2014-01-01

    Glaucoma is an ocular disease characterized by progressive retinal ganglion cell (RGC) death caused by axonal injury. However, the underlying mechanisms involved in RGC death remain unclear. In this study, we investigated changes in the transcriptome profile following axonal injury in mice (C57BL/6) with RNA sequencing (RNA-seq) technology. The experiment group underwent an optic nerve crush (ONC) procedure to induce axonal injury in the right eye, and the control group underwent a sham proce...

  8. Roles of NAD in Protection of Axon against Degeneration via SIRT1 Pathways.

    Science.gov (United States)

    Zhang, Jing; Guo, Wei-Hua; Qi, Xiao-Xia; Li, Gui-Bao; Hu, Yan-Lai; Wu, Qi; Ding, Zhao-Xi; Li, Hong-Yu; Hao, Jing; Sun, Jin-Hao

    2016-04-30

    Axonal degeneration is a common pathological change of neurogenical disease which often arises before the neuron death. But it had not found any effective method to protect axon from degeneration. In this study we intended to confirm the protective effect of nicotinamide adenine dinucleotide (NAD), investigate the optimal administration dosage and time of NAD, and identify the relationship between silence signal regulating factor 1 (SIRT1) and axonal degeneration. An axonal degeneration model was established using dorsal root ganglion (DRG) neurons injured by vincristine to observe the protective effects of NAD to the injured axons. In addition, the potential contribution of the SIRT1 in axonal degeneration was also investigated. Through the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, immunochemistry staining, axons counting and length measuring, transmission electron microscope (TEM) observation, we demonstrated that NAD played an important role in preventing axonal degeneration. Further study revealed that the expression of SIRT1 and phosphorylated Akt1 (p-Akt1) was up-regulated when NAD was added into the culturing medium. Taking together, our results demonstrated that NAD might delay the axonal degeneration through SIRT1/Akt1 pathways. PMID:27080463

  9. MicroRNA-210 promotes sensory axon regeneration of adult mice in vivo and in vitro.

    Science.gov (United States)

    Hu, Yi-Wen; Jiang, Jing-Jing; Yan-Gao; Wang, Rui-Ying; Tu, Guan-Jun

    2016-05-27

    Axon regeneration as a critical step in nerve repairing and remodeling after peripheral nerve injury relies on regulation of gene expression. MicroRNAs are emerging to be important epigenetic regulators of gene expression to control axon regeneration. Here we used a novel in vivo electroporation approach to transfect microRNA-210 (miR-210) or siRNAs to adult mice dorsal root ganglion (DRG) neurons, measured the axon length 3days after sciatic nerve crush or dissociated DRG cultures in vitro to detect the effect of miR-210 in sensory axon regeneration. Importantly, we found that miR-210 overexpression could promote sensory axon regeneration and inhibit apoptsosis by ephrin-A3 (EFNA3). In addition, inhibition of endogenous miR-210 in DRG neurons impaired axon regeneration in vitro and in vivo, the regulatory effect of miR-210 was mediated by increased expression of EFNA3 because downregulation of EFNA3 fully rescued axon regeneration. We thus demonstrate that miR-210 is a new physiological regulator of sensory axon regeneration, and EFNA3 may be the functional target of miR-210. We conclude that miR-210 may play an important role in sensory axon regeneration. PMID:27102143

  10. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury

    Institute of Scientific and Technical Information of China (English)

    Christian Witzel; Werner Reutter; G Bjrn Stark; Georgios Koulaxouzidis

    2015-01-01

    Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modiifed in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp) increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the inlfuence of systemic ManNProp application using a speciifc in vivo mouse model. Using mice expressing axonal lfuorescent proteins, we quantiifed the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow lfuorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg) or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection). ManNProp signiifcantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm;P<0.005) and the number of arborizing axons (21%vs. 16%;P=0.008) 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoen-gineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.

  11. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Christian Witzel

    2015-01-01

    Full Text Available Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modified in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the influence of systemic ManNProp application using a specific in vivo mouse model. Using mice expressing axonal fluorescent proteins, we quantified the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow fluorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection. ManNProp significantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm; P < 0.005 and the number of arborizing axons (21% vs. 16% P = 0.008 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoengineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.

  12. Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay

    DEFF Research Database (Denmark)

    Colak, Dilek; Ji, Sheng-Jian; Porse, Bo T; Jaffrey, Samie R

    2013-01-01

    show that Robo3.2, a receptor for the Slit family of guidance cues, is synthesized locally within axons of commissural neurons. Robo3.2 translation is induced by floor-plate-derived signals as axons cross the spinal cord midline. Robo3.2 is also a predicted target of the nonsense-mediated mRNA decay...... (NMD) pathway. We find that NMD regulates Robo3.2 synthesis by inducing the degradation of Robo3.2 transcripts in axons that encounter the floor plate. Commissural neurons deficient in NMD proteins exhibit aberrant axonal trajectories after crossing the midline, consistent with misregulation of Robo3...

  13. Permissive Schwann cell graft/spinal cord interfaces for axon regeneration.

    Science.gov (United States)

    Williams, Ryan R; Henao, Martha; Pearse, Damien D; Bunge, Mary Bartlett

    2015-01-01

    The transplantation of autologous Schwann cells (SCs) to repair the injured spinal cord is currently being evaluated in a clinical trial. In support, this study determined properties of spinal cord/SC bridge interfaces that enabled regenerated brainstem axons to cross them, possibly leading to improvement in rat hindlimb movement. Fluid bridges of SCs and Matrigel were placed in complete spinal cord transections. Compared to pregelled bridges of SCs and Matrigel, they improved regeneration of brainstem axons across the rostral interface. The regenerating brainstem axons formed synaptophysin(+) bouton-like terminals and contacted MAP2A(+) dendrites at the caudal interface. Brainstem axon regeneration was directly associated with glial fibrillary acidic protein (GFAP(+)) astrocyte processes that elongated into the SC bridge. Electron microscopy revealed that axons, SCs, and astrocytes were enclosed together within tunnels bounded by a continuous basal lamina. Neuroglycan (NG2) expression was associated with these tunnels. One week after injury, the GFAP(+) processes coexpressed nestin and brain lipid-binding protein, and the tips of GFAP(+)/NG2(+) processes extended into the bridges together with the regenerating brainstem axons. Both brainstem axon regeneration and number of GFAP(+) processes in the bridges correlated with improvement in hindlimb locomotion. Following SCI, astrocytes may enter a reactive state that prohibits axon regeneration. Elongation of astrocyte processes into SC bridges, however, and formation of NG2(+) tunnels enable brainstem axon regeneration and improvement in function. It is important for spinal cord repair to define conditions that favor elongation of astrocytes into lesions/transplants. PMID:24152553

  14. Studying Axonal Regeneration by Laser Microsurgery and High-Resolution Videomicroscopy.

    Science.gov (United States)

    Xiao, Yan; López-Schier, Hernán

    2016-01-01

    Heterogeneous and unpredictable environmental insult, disease, or trauma can affect the integrity and function of neuronal circuits, leading to irreversible neural dysfunction. The peripheral nervous system can robustly regenerate axons after damage to recover the capacity to transmit sensory information to the brain. The mechanisms that allow axonal repair remain incompletely understood. Here we present a preparation in zebrafish that combines laser microsurgery of sensory axons and videomicroscopy of neurons in multicolor transgenic specimens. This simple protocol allows controlled damage of axons and dynamic high-resolution visualization and quantification of repair. PMID:27464814

  15. Holographic Experiments on Defects

    CERN Document Server

    Wapler, Matthias C

    2009-01-01

    Using the AdS/CFT correspondence, we study the anisotropic charge transport properties of both supersymmetric and non-supersymmetric matter fields on (2+1)-dimensional defects coupled to a (3+1)-dimensional ${\\cal N}=4$ SYM "heat bath". We focus on the case of a finite external background magnetic field, finite net charge density and finite mass. At high frequencies, we discover a spectrum of quasiparticle resonances due to the magnetic field and finite density and at small frequencies, we perform a Drude-like expansion around the DC limit. Both of these regimes display many generic features and some features that we attribute to strong coupling, such as a minimum DC conductivity and an unusual behavior of the "cyclotron" and plasmon frequencies, which become related to the resonances found in the conformal case in an earlier paper. We further study the hydrodynamic regime and the relaxation properties, from which the system displays a set of different possible transitions to the collisionless regime. The mas...

  16. Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. II. Evidence from selective inactivation of cell bodies and axon initial segments.

    Science.gov (United States)

    Nowak, L G; Bullier, J

    1998-02-01

    The results presented in the companion paper showed that extracellular electrical stimulation of the gray matter directly activates axons, but not cell bodies. The second set of experiments presented here was designed to separate the contribution of the axon initial segments and cell bodies from that of the axonal branches to the pool of presynaptic neuronal elements activated by electrical stimulation. For that purpose, N-methyl-D-aspartate (NMDA) iontophoresis was used to induce a selective inactivation of the cell body and of the adjoining portion of the axon by depolarization block, without affecting axonal branches that lack NMDA receptors. After NMDA iontophoresis, the neurons located near the iontophoresis electrode became unable to generate action potentials in an irreversible manner. When the NMDA-induced depolarization block was performed at the site of electrical stimulation, an unexpected increase in the amplitude of the orthodromic responses was observed. Several control experiments suggested that the field potential increase was due to changes of the local environment in the vicinity of the iontophoresis pipette, which led to an increased excitability of the axons. After the period of superexcitability, the orthodromic responses displayed an amplitude that was 15-20% lower than that observed before the NMDA-induced depolarization block, even though cell bodies and axon initial segment at the site of stimulation could not be activated by electrical stimulation. This result shows a low contribution for axon initial segments to the pool of neuronal elements activated by the electrical stimulation. Altogether, these experiments demonstrate that the postsynaptic responses obtained after electrical stimulation of the cortical gray matter result almost exclusively from the activation of axonal branches. Since the neocortex is organised as a network of local and long-range reciprocal connections, great attention must be paid to the interpretation of data

  17. Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients.

    Directory of Open Access Journals (Sweden)

    Jan Jessen Krut

    Full Text Available Prevalence of neurocognitive impairment in HIV-1 infected patients is reported to be high. Whether this is a result of active HIV-related neurodegeneration is unclear. We examined axonal injury in HIV-1 patients by measuring the light subunit of neurofilament protein (NFL in CSF with a novel, sensitive method.With a cross-sectional design, CSF concentrations of neurofilament protein light (NFL (marker of neuronal injury, neopterin (intrathecal immunoactivation and CSF/Plasma albumin ratio (blood-brain barrier integrity were analyzed on CSF from 252 HIV-infected patients, subdivided into untreated neuroasymptomatics (n = 200, HIV-associated dementia (HAD (n = 14 and on combinations antiretroviral treatment (cART (n = 85, and healthy controls (n = 204. 46 HIV-infected patients were included in both treated and untreated groups, but sampled at different timepoints. Furthermore, 78 neuroasymptomatic patients were analyzed before and after treatment initiation.While HAD patients had the highest NFL concentrations, elevated CSF NFL was also found in 33% of untreated neuroasymptomatic patients, mainly in those with blood CD4+ cell counts below 250 cells/μL. CSF NFL concentrations in the untreated neuroasymptomatics and treated groups were equivalent to controls 18.5 and 3.9 years older, respectively. Neopterin correlated with NFL levels in untreated groups while the albumin ratio correlated with NFL in both untreated and treated groups.Increased CSF NFL indicates ongoing axonal injury in many neuroasymptomatic patients. Treatment decreases NFL, but treated patients retain higher levels than controls, indicating either continued virus-related injury or an aging-like effect of HIV infection. NFL correlates with neopterin and albumin ratio, suggesting an association between axonal injury, neuroinflammation and blood-brain barrier permeability. NFL appears to be a sensitive biomarker of subclinical and clinical brain injury in HIV and warrants further

  18. Hyperactivated Stat3 boosts axon regeneration in the CNS.

    Science.gov (United States)

    Mehta, Saloni T; Luo, Xueting; Park, Kevin K; Bixby, John L; Lemmon, Vance P

    2016-06-01

    Axonal regeneration after spinal cord injury (SCI) is intrinsically and extrinsically inhibited by multiple factors. One major factor contributing to intrinsic regeneration failure is the inability of mature neurons in the central nervous system (CNS) to activate regeneration-associated transcription factors (TFs) post-injury. A prior study identified TFs overexpressed in neurons of the peripheral nervous system (PNS) compared to the CNS; some of these could be involved in the ability of PNS neurons to regenerate. Of these, signal transducer and activator of transcription 3 (STAT3), as well its downstream regeneration-associated targets, showed a significant upregulation in PNS neurons relative to CNS neurons, and a constitutively active variant of Stat3 (Stat3CA) promoted neurite growth when expressed in cerebellar neurons (Lerch et al., 2012; Smith et al., 2011). To further enhance STAT3's neurite outgrowth enhancing activity, Stat3CA was fused with a viral activation domain (VP16). VP16 hyperactivates TFs by recruiting transcriptional co-factors to the DNA binding domain (Hirai et al., 2010). Overexpression of this VP16-Stat3CA chimera in primary cortical neurons led to a significant increase of neurite outgrowth as well as Stat3 transcriptional activity in vitro. Furthermore, in vivo transduction of retinal ganglion cells (RGCs) with AAV constructs expressing VP16-Stat3CA resulted in regeneration of optic nerve axons after injury, to a greater degree than for those expressing Stat3CA alone. These findings confirm and extend the concept that overexpression of hyperactivated transcription factors identified as functioning in PNS regeneration can promote axon regeneration in the CNS. PMID:27060489

  19. Excitability properties of motor axons in adults with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Cliff S. Klein

    2015-06-01

    Full Text Available Cerebral Palsy (CP is a permanent disorder caused by a lesion to the developing brain that significantly impairs motor function. The neurophysiological mechanisms underlying motor impairment are not well understood. Specifically, few have addressed whether motoneuron or peripheral axon properties are altered in CP, even though disruption of descending inputs to the spinal cord may cause them to change. In the present study, we have compared nerve excitability properties in seven adults with CP and fourteen healthy controls using threshold tracking techniques by stimulating the median nerve at the wrist and recording the compound muscle action potential (CMAP over the abductor pollicis brevis. The excitability properties in the CP subjects were found to be abnormal. Early and late depolarizing and hyperpolarizing threshold electrotonus was significantly larger (i.e., fanning out, and resting current-threshold (I/V slope was smaller, in CP compared to control. In addition resting threshold and rheobase tended to be larger in CP. According to a modeling analysis of the data, an increase in leakage current under or through the myelin sheath, i.e., the Barrett-Barrett conductance (GBB, combined with a slight hyperpolarization of the resting membrane potential, best explained the group differences in excitability properties. There was a trend for those with greater impairment in gross motor function to have more abnormal axon properties. The findings indicate plasticity of motor axon properties far removed from the site of the lesion. We suspect that this plasticity is caused by disruption of descending inputs to the motoneurons at an early age around the time of their injury.

  20. Mechanisms of hyperpolarization in regenerated mature motor axons in cat

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Krarup, Christian

    2004-01-01

    We found persistent abnormalities in the recovery of membrane excitability in long-term regenerated motor nerve fibres in the cat as indicated in the companion paper. These abnormalities could partly be explained by membrane hyperpolarization. To further investigate this possibility, we compared...... the changes in excitability in control nerves and long-term regenerated cat nerves (3-5 years after tibial nerve crush) during manoeuvres known to alter axonal membrane Na(+)-K(+) pump function: polarization, cooling to 20 degrees C, reperfusion after 10 min ischaemia, and up to 60 s of repetitive stimulation...

  1. Topological defect dynamics in operando battery nanoparticles

    Science.gov (United States)

    Ulvestad, A.; Singer, A.; Clark, J. N.; Cho, H. M.; Kim, J. W.; Harder, R.; Maser, J.; Meng, Y. S.; Shpyrko, O. G.

    2015-06-01

    Topological defects can markedly alter nanomaterial properties. This presents opportunities for “defect engineering,” where desired functionalities are generated through defect manipulation. However, imaging defects in working devices with nanoscale resolution remains elusive. We report three-dimensional imaging of dislocation dynamics in individual battery cathode nanoparticles under operando conditions using Bragg coherent diffractive imaging. Dislocations are static at room temperature and mobile during charge transport. During the structural phase transformation, the lithium-rich phase nucleates near the dislocation and spreads inhomogeneously. The dislocation field is a local probe of elastic properties, and we find that a region of the material exhibits a negative Poisson’s ratio at high voltage. Operando dislocation imaging thus opens a powerful avenue for facilitating improvement and rational design of nanostructured materials.

  2. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua

    2015-02-19

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm \\'2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  3. Matrix metalloproteinases as promising regulators of axonal regrowth in the injured adult zebrafish retinotectal system.

    Science.gov (United States)

    Lemmens, Kim; Bollaerts, Ilse; Bhumika, Stitipragyan; de Groef, Lies; Van Houcke, Jessie; Darras, Veerle M; Van Hove, Inge; Moons, Lieve

    2016-05-01

    Overcoming the failure of axon regeneration in the mammalian central nervous system (CNS) after injury remains a major challenge, which makes the search for proregenerative molecules essential. Matrix metalloproteinases (MMPs) have been implicated in axonal outgrowth during CNS development and show increased expression levels during vertebrate CNS repair. In mammals, MMPs are believed to alter the suppressive extracellular matrix to become more permissive for axon regrowth. We investigated the role of MMPs in axonal regeneration following optic nerve crush (ONC) in adult zebrafish, which fully recover from such injuries due to a high intrinsic axon growth capacity and a less inhibitory environment. Lowering general retinal MMP activity through intravitreal injections of GM6001 after ONC strongly reduced retinal ganglion cell (RGC) axonal regrowth, without influencing RGC survival. Based on a recently performed transcriptome profiling study, the expression pattern of four MMPs after ONC was determined via combined use of western blotting and immunostainings. Mmp-2 and -13a were increasingly present in RGC somata during axonal regrowth. Moreover, Mmp-2 and -9 became upregulated in regrowing RGC axons and inner plexiform layer (IPL) synapses, respectively. In contrast, after an initial rise in IPL neurites and RGC axons during the injury response, Mmp-14 expression decreased during regeneration. Altogether, a phase-dependent expression pattern for each specific MMP was observed, implicating them in axonal regrowth and inner retina remodeling after injury. In conclusion, these data suggest a novel, neuron-intrinsic function for multiple MMPs in axon regrowth that is distinct from breaking down environmental barriers. J. Comp. Neurol. 524:1472-1493, 2016. © 2015 Wiley Periodicals, Inc. PMID:26509469

  4. Gogo receptor contributes to retinotopic map formation and prevents R1-6 photoreceptor axon bundling.

    Directory of Open Access Journals (Sweden)

    Irina Hein

    Full Text Available BACKGROUND: Topographic maps form the basis of neural processing in sensory systems of both vertebrate and invertebrate species. In the Drosophila visual system, neighboring R1-R6 photoreceptor axons innervate adjacent positions in the first optic ganglion, the lamina, and thereby represent visual space as a continuous map in the brain. The mechanisms responsible for the establishment of retinotopic maps remain incompletely understood. RESULTS: Here, we show that the receptor Golden goal (Gogo is required for R axon lamina targeting and cartridge elongation in a partially redundant fashion with local guidance cues provided by neighboring axons. Loss of function of Gogo in large clones of R axons results in aberrant R1-R6 fascicle spacing. Gogo affects target cartridge selection only indirectly as a consequence of the disordered lamina map. Interestingly, small clones of gogo deficient R axons perfectly integrate into a proper retinotopic map suggesting that surrounding R axons of the same or neighboring fascicles provide complementary spatial guidance. Using single photoreceptor type rescue, we show that Gogo expression exclusively in R8 cells is sufficient to mediate targeting of all photoreceptor types in the lamina. Upon lamina targeting and cartridge selection, R axons elongate within their individual cartridges. Interestingly, here Gogo prevents bundling of extending R1-6 axons. CONCLUSION: Taken together, we propose that Gogo contributes to retinotopic map formation in the Drosophila lamina by controlling the distribution of R1-R6 axon fascicles. In a later developmental step, the regular position of R1-R6 axons along the lamina plexus is crucial for target cartridge selection. During cartridge elongation, Gogo allows R1-R6 axons to extend centrally in the lamina cartridge.

  5. An ex vivo laser-induced spinal cord injury model to assess mechanisms of axonal degeneration in real-time.

    Science.gov (United States)

    Okada, Starlyn L M; Stivers, Nicole S; Stys, Peter K; Stirling, David P

    2014-01-01

    Injured CNS axons fail to regenerate and often retract away from the injury site. Axons spared from the initial injury may later undergo secondary axonal degeneration. Lack of growth cone formation, regeneration, and loss of additional myelinated axonal projections within the spinal cord greatly limits neurological recovery following injury. To assess how central myelinated axons of the spinal cord respond to injury, we developed an ex vivo living spinal cord model utilizing transgenic mice that express yellow fluorescent protein in axons and a focal and highly reproducible laser-induced spinal cord injury to document the fate of axons and myelin (lipophilic fluorescent dye Nile Red) over time using two-photon excitation time-lapse microscopy. Dynamic processes such as acute axonal injury, axonal retraction, and myelin degeneration are best studied in real-time. However, the non-focal nature of contusion-based injuries and movement artifacts encountered during in vivo spinal cord imaging make differentiating primary and secondary axonal injury responses using high resolution microscopy challenging. The ex vivo spinal cord model described here mimics several aspects of clinically relevant contusion/compression-induced axonal pathologies including axonal swelling, spheroid formation, axonal transection, and peri-axonal swelling providing a useful model to study these dynamic processes in real-time. Major advantages of this model are excellent spatiotemporal resolution that allows differentiation between the primary insult that directly injures axons and secondary injury mechanisms; controlled infusion of reagents directly to the perfusate bathing the cord; precise alterations of the environmental milieu (e.g., calcium, sodium ions, known contributors to axonal injury, but near impossible to manipulate in vivo); and murine models also offer an advantage as they provide an opportunity to visualize and manipulate genetically identified cell populations and subcellular

  6. Imaging defects and dopants

    Directory of Open Access Journals (Sweden)

    H.Philipp Ebert

    2003-06-01

    With the invention of the transistor, a revolution in the development of semiconductor-based electronic devices began. However, even in the very early stages, the importance of defects and dopant atoms became obvious. In fact, if one incorporates the right defects and dopant atoms into semiconductor materials, one can tune their electrical properties such that optimal device characteristics are achieved. Unfortunately, counteractive defects are often also formed unintentionally during semiconductor processing, leading to unfavorable electronic properties. Considerable research efforts have, therefore, focused on understanding the nanoscale physics that governs the formation of point defects, the incorporation behavior of impurities, and their respective electronic properties.

  7. Defects in semiconductors

    CERN Document Server

    Romano, Lucia; Jagadish, Chennupati

    2015-01-01

    This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoret

  8. Bushen Yisui Capsule ameliorates axonal injury in experimental autoimmune encephalomyelitis

    Institute of Scientific and Technical Information of China (English)

    Ling Fang; Lei Wang; Qi Zheng; Tao Yang; Hui Zhao; Qiuxia Zhang; Kangning Li; Li Zhou; Haiyang Gong; Yongping Fan

    2013-01-01

    A preliminary clinical study by our group demonstrated Bushen Yisui Capsule (formerly cal ed Er-huang Formula) in combination with conventional therapy is an effective prescription for the treat-ment of multiple sclerosis. However, its effect on axonal injury during early multiple sclerosis re-mains unclear. In this study, a MOG 35-55-immunized C57BL/6 mouse model of experimental au-toimmune encephalomyelitis was intragastrical y administered Bushen Yisui Capsule. The results showed that Bushen Yisui Capsule effectively improved clinical symptoms and neurological function of experimental autoimmune encephalomyelitis. In addition, amyloid precursor protein expression was down-regulated and microtubule-associated protein 2 was up-regulated. Experimental findings indicate that the disease-preventive mechanism of Bushen Yisui Capsule in experimental autoim-mune encephalomyelitis was mediated by amelioration of axonal damage and promotion of rege-neration. But the effects of the high-dose Bushen Yisui Capsule group was not better than that of the medium-dose and low-dose Bushen Yisui Capsule group in preventing neurological dysfunction.

  9. N-docosahexaenoylethanolamine regulates Hedgehog signaling and promotes growth of cortical axons

    Directory of Open Access Journals (Sweden)

    Giorgi Kharebava

    2015-12-01

    Full Text Available Axonogenesis, a process for the establishment of neuron connectivity, is central to brain function. The role of metabolites derived from docosahexaenoic acid (DHA, 22:6n-3 that is specifically enriched in the brain, has not been addressed in axon development. In this study, we tested if synaptamide (N-docosahexaenoylethanolamine, an endogenous metabolite of DHA, affects axon growth in cultured cortical neurons. We found that synaptamide increased the average axon length, inhibited GLI family zinc finger 1 (GLI1 transcription and sonic hedgehog (Shh target gene expression while inducing cAMP elevation. Similar effects were produced by cyclopamine, a regulator of the Shh pathway. Conversely, Shh antagonized elevation of cAMP and blocked synaptamide-mediated increase in axon length. Activation of Shh pathway by a smoothened (SMO agonist (SAG or overexpression of SMO did not inhibit axon growth mediated by synaptamide or cyclopamine. Instead, adenylate cyclase inhibitor SQ22536 abolished synaptamide-mediated axon growth indicating requirement of cAMP elevation for this process. Our findings establish that synaptamide promotes axon growth while Shh antagonizes synaptamide-mediated cAMP elevation and axon growth by a SMO-independent, non-canonical pathway.

  10. Fast and simplified mapping of mean axon diameter using temporal diffusion spectroscopy.

    Science.gov (United States)

    Xu, Junzhon; Li, Hua; Li, Ke; Harkins, Kevin D; Jiang, Xiaoyu; Xie, Jingping; Kang, Hakmook; Dortch, Richard D; Anderson, Adam W; Does, Mark D

    2016-04-01

    Mapping axon diameter is of interest for the potential diagnosis and monitoring of various neuronal pathologies. Advanced diffusion-weighted MRI methods have been developed to measure mean axon diameters non-invasively, but suffer major drawbacks that prevent their direct translation into clinical practice, such as complex non-linear data fitting and, more importantly, long scanning times that are usually not tolerable for most human subjects. In the current study, temporal diffusion spectroscopy using oscillating diffusion gradients was used to measure mean axon diameters with high sensitivity to small axons in the central nervous system. Axon diameters have been found to be correlated with a novel metric, DDR⊥ (the rate of dispersion of the perpendicular diffusion coefficient with gradient frequency), which is a model-free quantity that does not require complex data analyses and can be obtained from two diffusion coefficient measurements in clinically relevant times with conventional MRI machines. A comprehensive investigation including computer simulations and animal experiments ex vivo showed that measurements of DDR⊥ agree closely with histological data. In humans in vivo, DDR⊥ was also found to correlate well with reported mean axon diameters in human corpus callosum, and the total scan time was only about 8 min. In conclusion, DDR⊥ may have potential to serve as a fast, simple and model-free approach to map the mean axon diameter of white matter in clinics for assessing axon diameter changes. PMID:27077155

  11. CD8+ T cells cause disability and axon loss in a mouse model of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Chandra Deb

    Full Text Available BACKGROUND: The objective of this study was to test the hypothesis that CD8+ T cells directly mediate motor disability and axon injury in the demyelinated central nervous system. We have previously observed that genetic deletion of the CD8+ T cell effector molecule perforin leads to preservation of motor function and preservation of spinal axons in chronically demyelinated mice. METHODOLOGY/PRINCIPAL FINDINGS: To determine if CD8+ T cells are necessary and sufficient to directly injure demyelinated axons, we adoptively transferred purified perforin-competent CD8+ spinal cord-infiltrating T cells into profoundly demyelinated but functionally preserved perforin-deficient host mice. Transfer of CD8+ spinal cord-infiltrating T cells rapidly and irreversibly impaired motor function, disrupted spinal cord motor conduction, and reduced the number of medium- and large-caliber spinal axons. Likewise, immunodepletion of CD8+ T cells from chronically demyelinated wildtype mice preserved motor function and limited axon loss without altering other disease parameters. CONCLUSIONS/SIGNIFICANCE: In multiple sclerosis patients, CD8+ T cells outnumber CD4+ T cells in active lesions and the number of CD8+ T cells correlates with the extent of ongoing axon injury and functional disability. Our findings suggest that CD8+ T cells may directly injure demyelinated axons and are therefore a viable therapeutic target to protect axons and motor function in patients with multiple sclerosis.

  12. A model of fasciculation and sorting in mixed populations of axons

    CERN Document Server

    Chaudhuri, Debasish; Zapotocky, Martin

    2010-01-01

    We extend a recently proposed model (Chaudhuri et al., EPL 87, 20003 (2009)), aiming to describe the formation of fascicles of axons during neural development. The growing axons are represented as paths of interacting directed random walkers in two spatial dimensions. To mimic turnover of axons, whole paths are removed and new walkers are injected with specified rates. In the simplest version of the model, we use strongly adhesive inter-axon interactions that are identical for all pairs of axons. We generalize the model to interactions of finite strengths and to multiple types of axons with type-specific interactions. The dynamic steady state is characterized by the position-dependent distribution of fascicle sizes. With distance in the direction of axon growth, the mean fascicle size and emergent time scales grow monotonically, while the degree of sorting of fascicles by axon type has a maximum at a finite distance. To understand the emergence of slow time scales, we develop an analytical framework to analyz...

  13. Axonal plasticity elicits long-term changes in oligodendroglia and myelinated fibers

    DEFF Research Database (Denmark)

    Drøjdahl, Nina; Nielsen, Helle Hvilsted; Gardi, Jonathan E;

    2010-01-01

    Axons are linked to induction of myelination during development and to the maintenance of myelin and myelinated tracts in the adult CNS. Currently, it is unknown whether and how axonal plasticity in adult CNS impacts the myelinating cells and their precursors. In this article, we report that newl...

  14. Blast overpressure induced axonal injury changes in rat brainstem and spinal cord

    Directory of Open Access Journals (Sweden)

    Srinivasu Kallakuri

    2015-01-01

    Full Text Available Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s of blast overpressure (OP induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM tracts of cervical spinal cord are limited. Objective: The purpose of this study was to assess the extent of axonal injury in WM tracts of cervical spinal cord in male Sprague Dawley rats subjected to a single insult of blast OP. Materials and Methods: Sagittal brainstem sections and horizontal cervical spinal cord sections from blast and sham animals were stained by neurofilament light (NF-L chain and beta amyloid precursor protein immunocytochemistry and observed for axonal injury changes. Results: Observations from this preliminary study demonstrate axonal injury changes in the form of prominent swellings, retraction bulbs, and putative signs of membrane disruptions in the brainstem and cervical spinal cord WM tracts of rats subjected to blast OP. Conclusions: Prominent axonal injury changes following the blast OP exposure in brainstem and cervical spinal WM tracts underscores the need for careful evaluation of blast induced injury changes and associated symptoms. NF-L immunocytochemistry can be considered as an additional tool to assess the blast OP induced axonal injury.

  15. Axon-somatic back-propagation in detailed models of spinal alpha motoneurons

    Directory of Open Access Journals (Sweden)

    Pietro eBalbi

    2015-02-01

    Full Text Available Antidromic action potentials following distal stimulation of motor axons occasionally fail to invade the soma of alpha motoneurons in spinal cord, due to their passing through regions of high non-uniformity.Morphologically detailed conductance-based models of cat spinal alpha motoneurons have been developed, with the aim to reproduce and clarify some aspects of the electrophysiological behavior of the antidromic axon-somatic spike propagation. Fourteen 3D morphologically detailed somata and dendrites of cat spinal alpha motoneurons have been imported from an open-access web-based database of neuronal morphologies, NeuroMorpho.org, and instantiated in neurocomputational models. An axon hillock, an axonal initial segment and a myelinated axon are added to each model.By sweeping the diameter of the axonal initial segment (AIS and the axon hillock, as well as the maximal conductances of sodium channels at the AIS and at the soma, the developed models are able to show the relationships between different geometric and electrophysiological configurations and the voltage attenuation of the antidromically travelling wave.In particular, a greater than usually admitted sodium conductance at AIS is necessary and sufficient to overcome the dramatic voltage attenuation occurring during antidromic spike propagation both at the myelinated axon-AIS and at the AIS-soma transitions.

  16. A developmental timing switch promotes axon outgrowth independent of known guidance receptors.

    Directory of Open Access Journals (Sweden)

    Katherine Olsson-Carter

    2010-08-01

    Full Text Available To form functional neuronal connections, axon outgrowth and guidance must be tightly regulated across space as well as time. While a number of genes and pathways have been shown to control spatial features of axon development, very little is known about the in vivo mechanisms that direct the timing of axon initiation and elongation. The Caenorhabditis elegans hermaphrodite specific motor neurons (HSNs extend a single axon ventrally and then anteriorly during the L4 larval stage. Here we show the lin-4 microRNA promotes HSN axon initiation after cell cycle withdrawal. Axons fail to form in lin-4 mutants, while they grow prematurely in lin-4-overexpressing animals. lin-4 is required to down-regulate two inhibitors of HSN differentiation--the transcriptional regulator LIN-14 and the "stemness" factor LIN-28--and it likely does so through a cell-autonomous mechanism. This developmental switch depends neither on the UNC-40/DCC and SAX-3/Robo receptors nor on the direction of axon growth, demonstrating that it acts independently of ventral guidance signals to control the timing of HSN axon elongation.

  17. C. elegans: a new model organism for studies of axon regeneration

    OpenAIRE

    Ghosh-Roy, Anindya; Chisholm, Andrew D.

    2010-01-01

    Axonal regeneration in C. elegans was first reported five years ago. Individual GFP-labeled axons can be severed using laser microsurgery and their regrowth followed in vivo. Several neuron types display robust regrowth after injury, including motor and sensory neurons. The small size and transparency of C. elegans make possible large-scale genetic and pharmacological screens for regeneration phenotypes.

  18. Inhibition of kinesin-5 improves regeneration of injured axons by a novel microtubule-based mechanism

    Institute of Scientific and Technical Information of China (English)

    Peter W. Baas; Andrew J. Matamoros

    2015-01-01

    Microtubules have been identiifed as a powerful target for augmenting regeneration of injured adult axons in the central nervous system. Drugs that stabilize microtubules have shown some promise, but there are concerns that abnormally stabilizing microtubules may have only limited beneifts for regeneration, while at the same time may be detrimental to the normal work that microtubules perform for the axon. Kinesin-5 (also called kif11 or Eg5), a molecular motor protein best known for its crucial role in mitosis, acts as a brake on microtubule movements by other motor proteins in the axon. Drugs that inhibit kinesin-5, originally developed to treat cancer, result in greater mobility of microtubules in the axon and an overall shift in the forces on the microtubule array. As a result, the axon grows faster, retracts less, and more readily enters environments that are inhibitory to axonal regeneration. Thus, drugs that inhibit kinesin-5 offer a novel microtubule-based means to boost axonal regeneration without the concerns that ac-company abnormal stabilization of the microtubule array. Even so, inhibiting kinesin-5 is not without its own caveats, such as potential problems with navigation of the regenerating axon to its target, as well as morphological effects on dendrites that could affect learning and memory if the drugs reach the brain.

  19. Stages in axon formation: observations of growth of Aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy

    OpenAIRE

    1986-01-01

    The regenerative growth in culture of the axons of two giant identified neurons from the central nervous system of Aplysia californica was observed using video-enhanced contrast-differential interference contrast microscopy. This technique allowed the visualization in living cells of the membranous organelles of the growth cone. Elongation of axonal branches always occurred through the same sequence of events: A flat organelle-free veil protruded from the front of the growth cone, gradually f...

  20. Shank3 is localized in axons and presynaptic specializations of developing hippocampal neurons and involved in the modulation of NMDA receptor levels at axon terminals.

    Science.gov (United States)

    Halbedl, Sonja; Schoen, Michael; Feiler, Marisa S; Boeckers, Tobias M; Schmeisser, Michael J

    2016-04-01

    Autism-related Shank1, Shank2, and Shank3 are major postsynaptic scaffold proteins of excitatory glutamatergic synapses. A few studies, however, have already indicated that within a neuron, the presence of Shank family members is not limited to the postsynaptic density. By separating axons from dendrites of developing hippocampal neurons in microfluidic chambers, we show that RNA of all three Shank family members is present within axons. Immunostaining confirms these findings as all three Shanks are indeed found within separated axons and further co-localize with well-known proteins of the presynaptic specialization in axon terminals. Therefore, Shank proteins might not only serve as postsynaptic scaffold proteins, but also play a crucial role during axonal outgrowth and presynaptic development and function. This is supported by our findings that shRNA-mediated knockdown of Shank3 results in up-regulation of the NMDA receptor subunit GluN1 in axon terminals. Taken together, our findings will have major implications for the future analysis of neuronal Shank biology in both health and disease. Shank1, Shank2, and Shank3 are major postsynaptic scaffold proteins of excitatory glutamatergic synapses strongly related to several neuropsychiatric disorders. However, a few studies have already implicated a functional role of the Shanks beyond the postsynaptic density (PSD). We here show that all three Shanks are localized in both axons and pre-synaptic specializiations of developing hippocampal neurons in culture. We further provide evidence that Shank3 is involved in the modulation of NMDA receptor levels at axon terminals. Taken together, our study will open up novel avenues for the future analysis of neuronal Shank biology in both health and disease. PMID:26725465

  1. Transfer of vesicles from Schwann cell to axon: a novel mechanism of communication in the peripheral nervous system

    Directory of Open Access Journals (Sweden)

    María Alejandra eLopez-Verrilli

    2012-06-01

    Full Text Available Schwann cells (SCs are the glial component of the peripheral nervous system, with essential roles during development and maintenance of axons, as well as during regenerative processes after nerve injury. SCs increase conduction velocities by myelinating axons, regulate synaptic activity at presynaptic nerve terminals and are a source of trophic factors to neurons. Thus, development and maintenance of peripheral nerves are crucially dependent on local signalling between SCs and axons. In addition to the classic mechanisms of intercellular signalling, the possibility of communication through secreted vesicles has been poorly explored to date. Interesting recent findings suggest the occurrence of lateral transfer mediated by vesicles from glial cells to axons that could have important roles in axonal growth and axonal regeneration. Here, we review the role of vesicular transfer from SCs to axons and propose the benefits of this means in supporting neuronal and axonal maintenance and regeneration after nerve damage.

  2. Disrupted axon-glia interactions at the paranode in myelinated nerves cause axonal degeneration and neuronal cell death in the aged Caspr mutant mouse shambling.

    Science.gov (United States)

    Takagishi, Yoshiko; Katanosaka, Kimiaki; Mizoguchi, Hiroyuki; Murata, Yoshiharu

    2016-07-01

    Emerging evidence suggests that axonal degeneration is a disease mechanism in various neurodegenerative diseases and that the paranodes at the nodes of Ranvier may be the initial site of pathogenesis. We investigated the pathophysiology of the disease process in the central and peripheral nervous systems of a Caspr mutant mouse, shambling (shm), which is affected by disrupted paranodal structures and impaired nerve conduction of myelinated nerves. The shm mice manifest a progressive neurological phenotype as mice age. We found extensive axonal degeneration and a loss of neurons in the central nervous system and peripheral nervous system in aged shm mice. Axonal alteration of myelinated nerves was defined by abnormal distribution and expression of neurofilaments and derangements in the status of phosphorylated and non/de-phosphorylated neurofilaments. Autophagy-related structures were also accumulated in degenerated axons and neurons. In conclusion, our results suggest that disrupted axon-glia interactions at the paranode cause the cytoskeletal alteration in myelinated axons leading to neuronal cell death, and the process involves detrimental autophagy and aging as factors that promote the pathogenesis. PMID:27255813

  3. Axone, an ethnic probiotic containing food, reduces age of sexual maturity and increases poultry production.

    Science.gov (United States)

    Singh, Bhoj Raj; Singh, R K

    2014-06-01

    Axone (Akhuni) is a homemade synbiotic (Nagamese fermented soybean product) served as side dish in North Eastern India. In this study, effects of Axone feeding on growth, weight gain, sexual maturity and egg production on Vanaraja birds (a strain of poultry bird developed at PDP Hyderabad for villages and backyard poultry) were evaluated. Axone incorporation in commercial poultry feed at the rate of 5% (W/W) significantly improved growth rate (weight gain) both in male (p 0.001) and female (p 0.05) chicks, reduced age by 13 days at first egg laying (p 0.01), increased egg production (p ≤ 0.001) and improved egg weight (p ≤ 0.01). Microbiological analysis of Axone sample revealed that the major bacteria in Axone samples were Bacillus coagulans, well known for their probiotic value. PMID:24801640

  4. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS.

    Science.gov (United States)

    Ito, Yasushi; Ofengeim, Dimitry; Najafov, Ayaz; Das, Sudeshna; Saberi, Shahram; Li, Ying; Hitomi, Junichi; Zhu, Hong; Chen, Hongbo; Mayo, Lior; Geng, Jiefei; Amin, Palak; DeWitt, Judy Park; Mookhtiar, Adnan Kasim; Florez, Marcus; Ouchida, Amanda Tomie; Fan, Jian-bing; Pasparakis, Manolis; Kelliher, Michelle A; Ravits, John; Yuan, Junying

    2016-08-01

    Mutations in the optineurin (OPTN) gene have been implicated in both familial and sporadic amyotrophic lateral sclerosis (ALS). However, the role of this protein in the central nervous system (CNS) and how it may contribute to ALS pathology are unclear. Here, we found that optineurin actively suppressed receptor-interacting kinase 1 (RIPK1)-dependent signaling by regulating its turnover. Loss of OPTN led to progressive dysmyelination and axonal degeneration through engagement of necroptotic machinery in the CNS, including RIPK1, RIPK3, and mixed lineage kinase domain-like protein (MLKL). Furthermore, RIPK1- and RIPK3-mediated axonal pathology was commonly observed in SOD1(G93A) transgenic mice and pathological samples from human ALS patients. Thus, RIPK1 and RIPK3 play a critical role in mediating progressive axonal degeneration. Furthermore, inhibiting RIPK1 kinase may provide an axonal protective strategy for the treatment of ALS and other human degenerative diseases characterized by axonal degeneration. PMID:27493188

  5. School Building Defect Pattern

    Directory of Open Access Journals (Sweden)

    Mahli M.

    2014-01-01

    Full Text Available In providing a conducive learning environment for the student, the school building must be in good condition. This paper is evaluating the existing condition of primary school building in Sarawak, Malaysia. It focuses on building defects pattern for school building. The primary data collection is from the school building condition survey with involvement of 24 primary schools. The schools have been selected using simple random sampling and stratified sampling (of school age as the variable of selection. The reporting method is based on Condition Survey Protocol (CSP 1 Matrix. Data analysis covers descriptive and inferential statistics. The analysis carried out found that the overall 4,725 defects have been identified. The building defect pattern is mainly on Ground Level of 3,176 defects, the highest number of defects components found on walls (798. 16.2% defects are cracks from 11 common defects and most of all the highest score of defects based on age of the building were the building in the range of 11 to 20 years.

  6. The Drosophila immunoglobulin gene turtle encodes guidance molecules involved in axon pathfinding

    Directory of Open Access Journals (Sweden)

    Al-Anzi Bader

    2009-08-01

    Full Text Available Abstract Background Neuronal growth cones follow specific pathways over long distances in order to reach their appropriate targets. Research over the past 15 years has yielded a large body of information concerning the molecules that regulate this process. Some of these molecules, such as the evolutionarily conserved netrin and slit proteins, are expressed in the embryonic midline, an area of extreme importance for early axon pathfinding decisions. A general model has emerged in which netrin attracts commissural axons towards the midline while slit forces them out. However, a large number of commissural axons successfully cross the midline even in the complete absence of netrin signaling, indicating the presence of a yet unidentified midline attractant. Results The evolutionarily conserved Ig proteins encoded by the turtle/Dasm1 genes are found in Drosophila, Caenorhabditis elegans, and mammals. In Drosophila the turtle gene encodes five proteins, two of which are diffusible, that are expressed in many areas, including the vicinity of the midline. Using both molecular null alleles and transgenic expression of the different isoforms, we show that the turtle encoded proteins function as non-cell autonomous axonal attractants that promote midline crossing via a netrin-independent mechanism. turtle mutants also have either stalled or missing axon projections, while overexpression of the different turtle isoforms produces invasive neurons and branching axons that do not respect the histological divisions of the nervous system. Conclusion Our findings indicate that the turtle proteins function as axon guidance cues that promote midline attraction, axon branching, and axonal invasiveness. The latter two capabilities are required by migrating axons to explore densely packed targets.

  7. Excitation by Axon Terminal GABA Spillover in a Sound Localization Circuit.

    Science.gov (United States)

    Weisz, Catherine J C; Rubio, Maria E; Givens, Richard S; Kandler, Karl

    2016-01-20

    Synapses from neurons of the medial nucleus of the trapezoid body (MNTB) onto neurons of the lateral superior olive (LSO) in the auditory brainstem are glycinergic in maturity, but also GABAergic and glutamatergic in development. The role for this neurotransmitter cotransmission is poorly understood. Here we use electrophysiological recordings in brainstem slices from P3-P21 mice to demonstrate that GABA release evoked from MNTB axons can spill over to neighboring MNTB axons and cause excitation by activating GABAAR. This spillover excitation generates patterns of staggered neurotransmitter release from different MNTB axons resulting in characteristic "doublet" postsynaptic currents in LSO neurons. Postembedding immunogold labeling and electron microscopy provide evidence that GABAARs are localized at MNTB axon terminals. Photolytic uncaging of p-hydroxyphenacyl (pHP) GABA demonstrates backpropagation of GABAAR-mediated depolarizations from MNTB axon terminals to the soma, some hundreds of microns away. These somatic depolarizations enhanced somatic excitability by increasing the probability of action potential generation. GABA spillover excitation between MNTB axon terminals may entrain neighboring MNTB neurons, which may play a role in the developmental refinement of the MNTB-LSO pathway. Axonal spillover excitation persisted beyond the second postnatal week, suggesting that this mechanism may play a role in sound localization, by providing new avenues of communication between MNTB neurons via their distal axonal projections. Significance statement: In this study, a new mechanism of neuronal communication between auditory synapses in the mammalian sound localization pathway is described. Evidence is provided that the inhibitory neurotransmitter GABA can spill over between axon terminals to cause excitation of nearby synapses to further stimulate neurotransmitter release. Excitatory GABA spillover between inhibitory axon terminals may have important implications

  8. Defects at oxide surfaces

    CERN Document Server

    Thornton, Geoff

    2015-01-01

    This book presents the basics and characterization of defects at oxide surfaces. It provides a state-of-the-art review of the field, containing information to the various types of surface defects, describes analytical methods to study defects, their chemical activity and the catalytic reactivity of oxides. Numerical simulations of defective structures complete the picture developed. Defects on planar surfaces form the focus of much of the book, although the investigation of powder samples also form an important part. The experimental study of planar surfaces opens the possibility of applying the large armoury of techniques that have been developed over the last half-century to study surfaces in ultra-high vacuum. This enables the acquisition of atomic level data under well-controlled conditions, providing a stringent test of theoretical methods. The latter can then be more reliably applied to systems such as nanoparticles for which accurate methods of characterization of structure and electronic properties ha...

  9. Cosmic defects and cosmology

    CERN Document Server

    Magueijo, J; Magueijo, Joao; Brandenberger, Robert

    2000-01-01

    We provide a pedagogical overview of defect models of structure formation. We first introduce the concept of topological defect, and describe how to classify them. We then show how defects might be produced in phase transitions in the Early Universe and approach non-pathological scaling solutions. A very heuristic account of structure formation with defects is then provided, following which we introduce the tool box required for high precision calculations of CMB and LSS power spectra in these theories. The decomposition into scalar vector and tensor modes is reviewed, and then we introduce the concept of unequal-time correlator. We use isotropy and causality to constrain the form of these correlators. We finally show how these correlators may be decomposed into eigenmodes, thereby reducing a defect problem to a series of ``inflation'' problems. We conclude with a short description of results in these theories and how they fare against observations. We finally describe yet another application of topological d...

  10. Defect chemistry and oxygen transport of (La0.6Sr0.4 − xMx)0.99Co0.2Fe0.8O3 − δ, M = Ca (x = 0.05, 0.1), Ba (x = 0.1, 0.2), Sr: Part II: Oxygen transport

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas; Søgaard, Martin; Hendriksen, Peter Vang

    This paper is the second part of a two part series, where the effects of varying the A-site dopant on the defect chemistry and transport properties of the materials (La0.6Sr0.4 − xMx)0.99Co0.2Fe0.8O3 − δ, M = Sr, Ca (x = 0.05, 0.1), Ba (x = 0.1, 0.2) (LSMFC) have been investigated. In part I, the...... electrolyte probe were used to extract the permeability and surface resistance, rs. The highest permeability was found for (La0.6Sr0.3Ca0.1)0.99Co0.2Fe0.8O3 − δ. The apparent activation energy of the permeability was 78 kJ/mol. The inverse surface resistance, rs− 1, also had an activated behavior with an...... activation energy close to 180 kJ/mol for most of the materials. A reversible transition to an abnormally low rs was found in (La0.6Sr0.3Ca0.1)0.99Co0.2Fe0.8O3 − δ at T > 1223 K....

  11. Dihydrotestosterone ameliorates degeneration in muscle, axons and motoneurons and improves motor function in amyotrophic lateral sclerosis model mice.

    Directory of Open Access Journals (Sweden)

    Young-Eun Yoo

    Full Text Available Amyotrophic lateral sclerosis (ALS is a lethal disease characterized by a progressive loss of motoneurons. The clinical symptoms include skeletal muscle weakness and atrophy, which impairs motor performance and eventually leads to respiratory failure. We tested whether dihydrotestosterone (DHT, which has both anabolic effects on muscle and neuroprotective effects on axons and motoneurons, can ameliorate clinical symptoms in ALS. A silastic tube containing DHT crystals was implanted subcutaneously in SOD1-G93A mice at early symptomatic age when decreases in body weight and grip-strength were observed as compared to wild-type mice. DHT-treated SOD1-G93A mice demonstrated ameliorated muscle atrophy and increased body weight, which was associated with stronger grip-strength. DHT treatment increased the expression of insulin-like growth factor-1 in muscle, which can exert myotrophic as well as neurotrophic effects through retrograde transport. DHT treatment attenuated neuromuscular junction denervation, and axonal and motoneuron loss. DHT-treated SOD1-G93A mice demonstrated improvement in motor behavior as assessed by rota-rod and gait analyses, and an increased lifespan. Application of DHT is a relatively simple and non-invasive procedure, which may be translated into therapy to improve the quality of life for ALS patients.

  12. Targeted axonal import (TAxI) peptide delivers functional proteins into spinal cord motor neurons after peripheral administration.

    Science.gov (United States)

    Sellers, Drew L; Bergen, Jamie M; Johnson, Russell N; Back, Heidi; Ravits, John M; Horner, Philip J; Pun, Suzie H

    2016-03-01

    A significant unmet need in treating neurodegenerative disease is effective methods for delivery of biologic drugs, such as peptides, proteins, or nucleic acids into the central nervous system (CNS). To date, there are no operative technologies for the delivery of macromolecular drugs to the CNS via peripheral administration routes. Using an in vivo phage-display screen, we identify a peptide, targeted axonal import (TAxI), that enriched recombinant bacteriophage accumulation and delivered protein cargo into spinal cord motor neurons after intramuscular injection. In animals with transected peripheral nerve roots, TAxI delivery into motor neurons after peripheral administration was inhibited, suggesting a retrograde axonal transport mechanism for delivery into the CNS. Notably, TAxI-Cre recombinase fusion proteins induced selective recombination and tdTomato-reporter expression in motor neurons after intramuscular injections. Furthermore, TAxI peptide was shown to label motor neurons in the human tissue. The demonstration of a nonviral-mediated delivery of functional proteins into the spinal cord establishes the clinical potential of this technology for minimally invasive administration of CNS-targeted therapeutics. PMID:26888285

  13. Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury

    Science.gov (United States)

    Sachdeva, Rahul; Farrell, Kaitlin; McMullen, Mary-Katharine; Twiss, Jeffery L.; Houle, John D.

    2016-01-01

    Intra-axonal localization of mRNAs and protein synthesis machinery (PSM) endows neurons with the capacity to generate proteins locally, allowing precise spatiotemporal regulation of the axonal response to extracellular stimuli. A number of studies suggest that this local translation is a promising target to enhance the regenerative capacity of damaged axons. Using a model of central nervous system (CNS) axons regenerating into intraspinal peripheral nerve grafts (PNGs) we established that adult regenerating CNS axons contain several different mRNAs and protein synthetic machinery (PSM) components in vivo. After lower thoracic level spinal cord transection, ascending sensory axons regenerate into intraspinal PNGs but axon growth is stalled when they reach the distal end of the PNG (3 versus 7 weeks after grafting, resp.). By immunofluorescence with optical sectioning of axons by confocal microscopy, the total and phosphorylated forms of PSMs are significantly lower in stalled compared with actively regenerating axons. Reinjury of these stalled axons increased axonal localization of the PSM proteins, indicative of possible priming for a subcellular response to axotomy. These results suggest that axons downregulate protein synthetic capacity as they cease growing, yet they retain the ability to upregulate PSM after a second injury.

  14. The cholinergic ligand binding material of axonal membranes

    International Nuclear Information System (INIS)

    Choline acetyltransferase and acetylcholinesterase, the enzymes responsible for the synthesis and hydrolysis of ACh, are present in nerve fibers. In crustacean peripheral nerves, release of ACh from cut nerve fibers has been demonstrated. Previously closed membrane vesicles have been prepared from lobster walking leg nerve plasma membrane and saturable binding of cholinergic agonsist and antagonists to such membranes have been demonstrated. This paper studies this axonal cholinergic binding material, and elucidates its functions. The binding of tritium-nicotine to lobster nerve plasma membranes was antagonized by a series of cholinergic ligands as well as by a series of local anesthetics. This preparation was capable of binding I 125-alpha-bungarotoxin, a ligand widely believed to be a specific label for nicotinic ACh receptor. The labelling of 50 K petide band with tritium-MBTA following disulfide reduction is illustrated

  15. Software Defect Association Mining and Defect Correction Effort Prediction

    OpenAIRE

    Song, Q; Shepperd, MJ; Cartwright, MH; Mair, C.

    2006-01-01

    Much current software defect prediction work concentrates on the number of defects remaining in software system. In this paper, we present association rule mining based methods to predict defect associations and defect-correction effort. This is to help developers detect software defects and assist project managers in allocating testing resources more effectively. We applied the proposed methods to the SEL defect data consisting of more than 200 projects over more than 15 years. The results s...

  16. Diffuse axonal injury at ultra-high field MRI.

    Directory of Open Access Journals (Sweden)

    Christoph Moenninghoff

    Full Text Available Diffuse axonal injury (DAI is a specific type of traumatic brain injury caused by shearing forces leading to widespread tearing of axons and small vessels. Traumatic microbleeds (TMBs are regarded as a radiological marker for DAI. This study aims to compare DAI-associated TMBs at 3 Tesla (T and 7 T susceptibility weighted imaging (SWI to evaluate possible diagnostic benefits of ultra-high field (UHF MRI.10 study participants (4 male, 6 female, age range 20-74 years with known DAI were included. All MR exams were performed with a 3 T MR system (Magnetom Skyra and a 7 T MR research system (Magnetom 7 T, Siemens AG, Healthcare Sector, Erlangen, Germany each in combination with a 32-channel-receive coil. The average time interval between trauma and imaging was 22 months. Location and count of TMBs were independently evaluated by two neuroradiologists on 3 T and 7 T SWI images with similar and additionally increased spatial resolution at 7 T. Inter- and intraobserver reliability was assessed using the interclass correlation coefficient (ICC. Count and diameter of TMB were evaluated with Wilcoxon signed rank test.Susceptibility weighted imaging revealed a total of 485 TMBs (range 1-190, median 25 at 3 T, 584 TMBs (plus 20%, range 1-262, median 30.5 at 7 T with similar spatial resolution, and 684 TMBs (plus 41%, range 1-288, median 39.5 at 7 T with 10-times higher spatial resolution. Hemorrhagic DAI appeared significantly larger at 7 T compared to 3 T (p = 0.005. Inter- and intraobserver correlation regarding the counted TMB was high and almost equal 3 T and 7 T.7 T SWI improves the depiction of small hemorrhagic DAI compared to 3 T and may be supplementary to lower field strengths for diagnostic in inconclusive or medicolegal cases.

  17. Assessment of fuel defects in Darlington NGS

    International Nuclear Information System (INIS)

    This paper outlines a safety analysis of the defect status of Darlington-1 during the operating period August to October 1991. The models used are outlined, and their implementation is described. The results of the analysis indicate that the number of defected fuel elements never exceeded three in the north primary heat transport loop, and the mass of tramp uranium was ∼2 grams during the period in question. These results are within Ontario Hydro's experience with new reactors. 6 refs., 3 figs., 2 tabs

  18. Hindsight regulates photoreceptor axon targeting through transcriptional control of jitterbug/Filamin and multiple genes involved in axon guidance in Drosophila.

    Science.gov (United States)

    Oliva, Carlos; Molina-Fernandez, Claudia; Maureira, Miguel; Candia, Noemi; López, Estefanía; Hassan, Bassem; Aerts, Stein; Cánovas, José; Olguín, Patricio; Sierralta, Jimena

    2015-09-01

    During axon targeting, a stereotyped pattern of connectivity is achieved by the integration of intrinsic genetic programs and the response to extrinsic long and short-range directional cues. How this coordination occurs is the subject of intense study. Transcription factors play a central role due to their ability to regulate the expression of multiple genes required to sense and respond to these cues during development. Here we show that the transcription factor HNT regulates layer-specific photoreceptor axon targeting in Drosophila through transcriptional control of jbug/Filamin and multiple genes involved in axon guidance and cytoskeleton organization.Using a microarray analysis we identified 235 genes whose expression levels were changed by HNT overexpression in the eye primordia. We analyzed nine candidate genes involved in cytoskeleton regulation and axon guidance, six of which displayed significantly altered gene expression levels in hnt mutant retinas. Functional analysis confirmed the role of OTK/PTK7 in photoreceptor axon targeting and uncovered Tiggrin, an integrin ligand, and Jbug/Filamin, a conserved actin- binding protein, as new factors that participate of photoreceptor axon targeting. Moreover, we provided in silico and molecular evidence that supports jbug/Filamin as a direct transcriptional target of HNT and that HNT acts partially through Jbug/Filamin in vivo to regulate axon guidance. Our work broadens the understanding of how HNT regulates the coordinated expression of a group of genes to achieve the correct connectivity pattern in the Drosophila visual system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1018-1032, 2015. PMID:25652545

  19. Neural tube defects

    OpenAIRE

    M.E. Marshall

    1981-01-01

    Neural tube defects refer to any defect in the morphogenesis of the neural tube, the most common types being spina bifida and anencephaly. Spina bifida has been recognised in skeletons found in north-eastern Morocco and estimated to have an age of almost 12 000 years. It was also known to the ancient Greek and Arabian physicians who thought that the bony defect was due to the tumour. The term spina bifida was first used by Professor Nicolai Tulp of Amsterdam in 1652. Many other terms have bee...

  20. Defect solitons in photonic lattices.

    Science.gov (United States)

    Yang, Jianke; Chen, Zhigang

    2006-02-01

    Nonlinear defect modes (defect solitons) and their stability in one-dimensional photonic lattices with focusing saturable nonlinearity are investigated. It is shown that defect solitons bifurcate out from every infinitesimal linear defect mode. Low-power defect solitons are linearly stable in lower bandgaps but unstable in higher bandgaps. At higher powers, defect solitons become unstable in attractive defects, but can remain stable in repulsive defects. Furthermore, for high-power solitons in attractive defects, we found a type of Vakhitov-Kolokolov (VK) instability which is different from the usual VK instability based on the sign of the slope in the power curve. Lastly, we demonstrate that in each bandgap, in addition to defect solitons which bifurcate from linear defect modes, there is also an infinite family of other defect solitons which can be stable in certain parameter regimes. PMID:16605473

  1. Screening Tests for Birth Defects

    Science.gov (United States)

    ... Management Education & Events Advocacy For Patients About ACOG Screening Tests for Birth Defects Home For Patients Search ... for Birth Defects FAQ165, April 2014 PDF Format Screening Tests for Birth Defects Pregnancy What is a ...

  2. Assessing the axonal translocation of CeO2 and SiO2 nanoparticles in the sciatic nerve fibers of the frog: an ex vivo electrophysiological study.

    Science.gov (United States)

    Kastrinaki, Georgia; Samsouris, Christos; Kosmidis, Efstratios K; Papaioannou, Eleni; Konstandopoulos, Athanasios G; Theophilidis, George

    2015-01-01

    The axonal translocation of two commonly used nanoparticles in medicine, namely CeO2 and SiO2, is investigated. The study was conducted on frog sciatic nerve fibers in an ex vivo preparation. Nanoparticles were applied at the proximal end of the excised nerve. A nerve stimulation protocol was followed for over 35 hours. Nerve vitality curve comparison between control and exposed nerves showed that CeO2 has no neurotoxic effect at the concentrations tested. After exposure, specimens were fixed and then screen scanned every 1 mm along their length for nanoparticle presence by means of Fourier transform infrared microscopy. We demonstrated that both nanoparticles translocate within the nerve by formation of narrow bands in the Fourier transform infrared spectrum. For the CeO2, we also demonstrated that the translocation depends on both axonal integrity and electrical activity. The speed of translocation for the two species was estimated in the range of 0.45-0.58 mm/h, close to slow axonal transportation rate. Transmission electron microscopy provided direct evidence for the presence of SiO2 in the treated nerves. PMID:26648718

  3. Defect forces, defect couples and path integrals

    International Nuclear Information System (INIS)

    Definition and meaning of concepts like 'J integral' are given without any assumption about material behaviour. The key of the work is the field of 'defect forces' and 'defect couples' in a continuous media. These forces and couples, which can also be called 'material forces' and 'material couples' are related to the work done by a particle moving through a solid. It is shown that the resultant of all the defect forces included in a volume is the Jsub(k) integral computer on the surface surrounding this volume. A similar result is obtained about the moment resultant. Conventional form of the principle of virtual work is not applicable to fractures mechanics because equations of compatibility are not satisfied. A generalized form is given, which is valid when (virtual) crack propagation is considered. The virtual work of 'material' forces is included in the generalized form, and can be used as a new definition of J concept. As an illustration application, a simple procedure is described which allows to obtain the curve J-Δa (the so called J-R curve) from only one experimental test

  4. Coordinated Eph-ephrin signaling guides migration and axon targeting in the avian auditory system

    Directory of Open Access Journals (Sweden)

    Allen-Sharpley Michelle R

    2012-08-01

    Full Text Available Abstract Background In the avian sound localization circuit, nucleus magnocellularis (NM projects bilaterally to nucleus laminaris (NL, with ipsilateral and contralateral NM axon branches directed to dorsal and ventral NL dendrites, respectively. We previously showed that the Eph receptor EphB2 is expressed in NL neuropil and NM axons during development. Here we tested whether EphB2 contributes to NM-NL circuit formation. Results We found that misexpression of EphB2 in embryonic NM precursors significantly increased the number of axon targeting errors from NM to contralateral NL in a cell-autonomous manner when forward signaling was impaired. We also tested the effects of inhibiting forward signaling of different Eph receptor subclasses by injecting soluble unclustered Fc-fusion proteins at stages when NM axons are approaching their NL target. Again we found an increase in axon targeting errors compared to controls when forward signaling was impaired, an effect that was significantly increased when both Eph receptor subclasses were inhibited together. In addition to axon targeting errors, we also observed morphological abnormalities of the auditory nuclei when EphB2 forward signaling was increased by E2 transfection, and when Eph-ephrin forward signaling was inhibited by E6-E8 injection of Eph receptor fusion proteins. Conclusions These data suggest that EphB signaling has distinct functions in axon guidance and morphogenesis. The results provide evidence that multiple Eph receptors work synergistically in the formation of precise auditory circuitry.

  5. Chemokines induce axon outgrowth downstream of Hepatocyte Growth Factor and TCF/β-catenin signaling

    Directory of Open Access Journals (Sweden)

    Judith Camats

    2013-04-01

    Full Text Available Axon morphogenesis is a complex process regulated by a variety of secreted molecules, including morphogens and growth factors, resulting in the establishment of the neuronal circuitry. Our previous work demonstrated that growth factors (Neurotrophins (NT and Hepatocyte Growth Factor (HGF signal through β-catenin during axon morphogenesis. HGF signaling promotes axon outgrowth and branching by inducing β-catenin phosphorylation at Y142 and transcriptional regulation of T-Cell Factor (TCF target genes. Here we asked which genes are regulated by HGF signaling during axon morphogenesis. An array screening indicated that HGF signaling elevates the expression of chemokines of the CC and CXC families. In line with this, CCL7, CCL20 and CXCL2 significantly increase axon outgrowth in hippocampal neurons. Experiments using blocking antibodies and chemokine receptor antagonists demonstrate that chemokines act downstream of HGF signaling during axon morphogenesis. In addition, qPCR data demonstrates that CXCL2 and CCL5 expression is stimulated by HGF through Met/b-catenin/TCF pathway. These results identify CC family members and CXCL2 chemokines as novel regulators of axon morphogenesis downstream of HGF signaling.

  6. Differential expression of axon-sorting molecules in mouse olfactory sensory neurons.

    Science.gov (United States)

    Ihara, Naoki; Nakashima, Ai; Hoshina, Naosuke; Ikegaya, Yuji; Takeuchi, Haruki

    2016-08-01

    In the mouse olfactory system, the axons of olfactory sensory neurons that express the same type of odorant receptor (OR) converge to a specific set of glomeruli in the olfactory bulb (OB). It is widely accepted that expressed OR molecules instruct glomerular segregation by regulating the expression of axon-sorting molecules. Although the relationship between the expression of axon-sorting molecules and OR types has been analyzed in detail, those between the expressions of axon-sorting molecules remain to be elucidated. Here we collected the expression profiles of four axon-sorting molecules from a large number of glomeruli in the OB. These molecules demonstrated position-independent mosaic expressions, but their patterns were not identical in the OB. Comparing their expressions identified positive and negative correlations between several pairs of genes even though they showed various expressions. Furthermore, the principal component analysis revealed that the factor loadings in the principal component 1, which explain the largest amount of variation, were most likely to reflect the degree of the cyclic nucleotide-gated (CNG) channel dependence on the expression of axon-sorting molecules. Thus, neural activity generated through the CNG channel is a major component in the generation of a wide variety of expressions of axon-sorting molecules in glomerular segregation. PMID:27207328

  7. Giant Axon Formation in Mice Lacking Kell, XK, or Kell and XK

    Science.gov (United States)

    Zhu, Xiang; Cho, Eun-Sook; Sha, Quan; Peng, Jianbin; Oksov, Yelena; Kam, Siok Yuen; Ho, Mengfatt; Walker, Ruth H.; Lee, Soohee

    2015-01-01

    McLeod neuroacanthocytosis syndrome (MLS) is a rare X-linked multisystem disease caused by XK gene mutations and characterized by hematological and neurological abnormalities. XK, a putative membrane transporter, is expressed ubiquitously and is covalently linked to Kell, an endothelin-3-converting enzyme (ECE-3). Absence of XK results in reduction of Kell at sites where both proteins are coexpressed. To elucidate the functional roles of XK, Kell, and the XK–Kell complex associated with pathogenesis in MLS, we studied the pathology of the spinal cord, anterior roots, sciatic nerve, and skeletal muscle from knockout mouse models, using Kel−/−, Xk−/−, Kel−/−Xk−/−, and wild-type mice aged 6 to 18 months. A striking finding was that giant axons were frequently associated with paranodal demyelination. The pathology suggests probable anterograde progression from the spinal cord to the sciatic nerve. The neuropathological abnormalities were found in all three genotypes, but were more marked in the double-knockout Kel−/−Xk−/− mice than in either Kel−/− or Xk−/− mice. Skeletal muscles from Xk−/− and Kel−/−Xk−/− mice showed mild abnormalities, but those from Kel−/− mice were similar to the wild type. The more marked neuropathological abnormalities in Kel−/−Xk−/− mice suggest a possible functional association between XK and Kell in nonerythroid tissues. PMID:24405768

  8. Exosomes mediate cell contact-independent ephrin-Eph signaling during axon guidance.

    Science.gov (United States)

    Gong, Jingyi; Körner, Roman; Gaitanos, Louise; Klein, Rüdiger

    2016-07-01

    The cellular release of membranous vesicles known as extracellular vesicles (EVs) or exosomes represents a novel mode of intercellular communication. Eph receptor tyrosine kinases and their membrane-tethered ephrin ligands have very important roles in such biologically diverse processes as neuronal development, plasticity, and pathological diseases. Until now, it was thought that ephrin-Eph signaling requires direct cell contact. Although the biological functions of ephrin-Eph signaling are well understood, our mechanistic understanding remains modest. Here we report the release of EVs containing Ephs and ephrins by different cell types, a process requiring endosomal sorting complex required for transport (ESCRT) activity and regulated by neuronal activity. Treatment of cells with purified EphB2(+) EVs induces ephrinB1 reverse signaling and causes neuronal axon repulsion. These results indicate a novel mechanism of ephrin-Eph signaling independent of direct cell contact and proteolytic cleavage and suggest the participation of EphB2(+) EVs in neural development and synapse physiology. PMID:27354374

  9. Defect Prevention Based on 5 Dimensions of Defect Origin

    Directory of Open Access Journals (Sweden)

    Sakthi Kumaresh

    2012-08-01

    Full Text Available “Discovering the unexpected is more important than confirming the known [7]. In software development,the “unexpected” one relates to defects. These defects when unattended would cause failure to the productand risk to the users. The increasing dependency of society on software and the crucial consequences that afailure can cause requires the need to find out the defects at the origin itself. Based on the lessons learntfrom the earlier set of projects, a defect framework highlighting the 5 Dimensions (Ds of defect origin isproposed in this work. The defect framework is based on analyzing the defects that had emerged fromvarious stages of software development like Requirements, Design, Coding, Testing and Timeline (defectsdue to lack of time during development. This study is not limited to just identifying the origin of defects atvarious phases of software development but also finds out the reasons for such defects, and defectpreventive (DP measures are proposed for each type of defect. This work can help practitioners chooseeffective defect avoidance measures.In addition to arriving at defect framework, this work also proposes a defect injection metric based onseverity of the defect rather than just defect count, which gives the number of adjusted defects produced bya project at various phases. The defect injection metric value, once calculated, serves as a yardstick tomake a comparison in the improvements made in the software process development between similar set ofprojects

  10. Electronic properties of multi-defected zigzag carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Electronic properties of multi-defected zigzag single-walled carbon nanotubes are investigated by use of the tight-binding Green’s function method. The Stone-Wales defects and the vacancies are considered. We find that the conductance sensitively depends on the realistic defect configurations for the metallic zigzag carbon nanotubes. Interestingly, the electronic transport properties of the nanotubes with three vacancies can be considered as the sum effect of two double-vacancies, while those with Stone-Wales defects can not. The electron interference along the longitudinal axis and the transport blocking are observed, which may be useful for understanding the electron transport behavior of carbon nanotube in experiments.

  11. Birth Defects (For Parents)

    Science.gov (United States)

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... there is a problem with a baby's body chemistry, it is called a metabolic birth defect. Metabolic ...

  12. Neural tube defects

    Directory of Open Access Journals (Sweden)

    M.E. Marshall

    1981-09-01

    Full Text Available Neural tube defects refer to any defect in the morphogenesis of the neural tube, the most common types being spina bifida and anencephaly. Spina bifida has been recognised in skeletons found in north-eastern Morocco and estimated to have an age of almost 12 000 years. It was also known to the ancient Greek and Arabian physicians who thought that the bony defect was due to the tumour. The term spina bifida was first used by Professor Nicolai Tulp of Amsterdam in 1652. Many other terms have been used to describe this defect, but spina bifida remains the most useful general term, as it describes the separation of the vertebral elements in the midline.

  13. Point defects in platinum

    International Nuclear Information System (INIS)

    An investigation was made of the mobility and types of point defect introduced in platinum by deformation in liquid nitrogen, quenching into water from 1600oC, or reactor irradiation at 50oC. In all cases the activation energy for motion of the defect was determined from measurements of electrical resistivity. Measurements of density, hardness, and x-ray line broadening were also made there applicable. These experiments indicated that the principal defects remaining in platinum after irradiation were single vacant lattice sites and after quenching were pairs of vacant lattice sites. Those present after deformation In liquid nitrogen were single vacant lattice sites and another type of defect, perhaps interstitial atoms. (author)

  14. Extracellular matrix molecules play diverse roles in the growth and guidance of central nervous system axons

    Directory of Open Access Journals (Sweden)

    M.A. Pires-Neto

    1999-05-01

    Full Text Available Axon growth and guidance represent complex biological processes in which probably intervene diverse sets of molecular cues that allow for the appropriate wiring of the central nervous system (CNS. The extracellular matrix (ECM represents a major contributor of molecular signals either diffusible or membrane-bound that may regulate different stages of neural development. Some of the brain ECM molecules form tridimensional structures (tunnels and boundaries that appear during time- and space-regulated events, possibly playing relevant roles in the control of axon elongation and pathfinding. This short review focuses mainly on the recognized roles played by proteoglycans, laminin, fibronectin and tenascin in axonal development during ontogenesis.

  15. Clinical features and molecular modelling of novel MPZ mutations in demyelinating and axonal neuropathies

    OpenAIRE

    Mandich, Paola; Fossa, Paola; Capponi, Simona; Geroldi, Alessandro; Acquaviva, Massimo; Gulli, Rossella; Ciotti, Paola; MANGANELLI, FIORE; Grandis, Marina; Bellone, Emilia

    2009-01-01

    Mutations in the myelin protein zero (MPZ) gene have been associated with different Charcot–Marie–Tooth disease (CMT) phenotypes, including classical demyelinating CMT1B and the axonal form of the disease (CMT2). The MPZ role in the pathogenesis of both demyelinating and axonal inherited neuropathies was evaluated in the Italian population by screening a cohort of 214 patients with CMT1 or CMT2. A MPZ mutation frequency of 7.9% in demyelinating cases and of 4.8% in axonal cases was observed. ...

  16. [A case of acute motor sensory axonal polyneuropathy after Haemophilus influenzae infection].

    Science.gov (United States)

    Oda, M; Udaka, F; Kubori, T; Oka, N; Kameyama, M

    2000-08-01

    A 47-year-old woman developed consciousness disturbance, and experienced hallucinations while traveling abroad, and then went into critical condition. She was placed in the critical care unit, and had flaccid tetraparesis requiring mechanical ventilation. Haemophilus influenzae was cultured from the sputum. The level of protein of the cerebrospinal fluid was elevated to 114 mg/dl, nerve conduction study showed findings of pure axonal damage, and the sural nerve biopsy revealed severe axonal degeneration. She improved gradually by plasma exchange. The diagnosis of acute motor sensory axonal polyneuropathy (AMSAN) based on autoimmune mechanism was made. We speculate that H. influenzae infection may have elicited AMSAN in this case. PMID:11218707

  17. Diffuse axonal injury: detection of changes in anisotropy of water diffusion by diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J.H.M.; Tsui, E.Y.K.; Yuen, M.K. [Department of Diagnostic Radiology, Tuen Mun Hospital, Tsing Chung Koon Road, Tuen Mun, N.T., Hong Kong (China); Peh, W.C.G. [Department of Diagnostic Radiology, Singapore General Hospital (Singapore); Fong, D.; Fok, K.F.; Leung, K.M. [Department of Neurosurgery, Tuen Mun Hospital (Hong Kong); Fung, K.K.L. [Department of Optometry and Radiography, Hong Kong Polytechnic University (China)

    2003-01-01

    Myelinated axons of white matter demonstrate prominent directional differences in water diffusion. We performed diffusion-weighted imaging on ten patients with head injury to explore the feasibility of using water diffusion anisotropy for quantitating diffuse axonal injury. We showed significant decrease in diffusion anisotropy indices in areas with or without signal abnormality on T2 and T2*-weighted images. We conclude that the water diffusion anisotropy index a potentially useful, sensitive and quantitative way of diagnosing and assessing patients with diffuse axonal injury. (orig.)

  18. Diffuse axonal injury: detection of changes in anisotropy of water diffusion by diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Myelinated axons of white matter demonstrate prominent directional differences in water diffusion. We performed diffusion-weighted imaging on ten patients with head injury to explore the feasibility of using water diffusion anisotropy for quantitating diffuse axonal injury. We showed significant decrease in diffusion anisotropy indices in areas with or without signal abnormality on T2 and T2*-weighted images. We conclude that the water diffusion anisotropy index a potentially useful, sensitive and quantitative way of diagnosing and assessing patients with diffuse axonal injury. (orig.)

  19. Enzyme-instructed self-assembly of taxol promotes axonal branching

    Science.gov (United States)

    Mei, Bin; Miao, Qingqing; Tang, Anming; Liang, Gaolin

    2015-09-01

    Axonal branching is important for vertebrate neuron signaling. Taxol has a biphasic effect on axonal branching (i.e., high concentration inhibits axonal growth but low concentration restores it). To the best of our knowledge, low concentration of taxol to promote axonal branching has not been reported yet. Herein, we rationally designed a taxol derivative Fmoc-Phe-Phe-Lys(taxol)-Tyr(H2PO4)-OH (1) which could be subjected to alkaline phosphatase (ALP)-catalyzed self-assembly to form taxol nanofibers. We found that, at 10 μM, 1 has a microtubule (MT) condensation effect similar to that of taxol on mammalian cells but with more chronic toxicity than taxol on the cells. At a low concentration of 10 nM, 1 not only promoted neurite elongation as taxol did but also promoted axonal branching which was not achieved by using taxol. We propose that self-assembly of 1 along the MTs prohibited their lateral contacts and thus promoted axonal branching. Our strategy of enzyme-instructed self-assembly (EISA) of a taxol derivative provides a new tool for scientists to study the morphology of neurons, as well as their behaviours.Axonal branching is important for vertebrate neuron signaling. Taxol has a biphasic effect on axonal branching (i.e., high concentration inhibits axonal growth but low concentration restores it). To the best of our knowledge, low concentration of taxol to promote axonal branching has not been reported yet. Herein, we rationally designed a taxol derivative Fmoc-Phe-Phe-Lys(taxol)-Tyr(H2PO4)-OH (1) which could be subjected to alkaline phosphatase (ALP)-catalyzed self-assembly to form taxol nanofibers. We found that, at 10 μM, 1 has a microtubule (MT) condensation effect similar to that of taxol on mammalian cells but with more chronic toxicity than taxol on the cells. At a low concentration of 10 nM, 1 not only promoted neurite elongation as taxol did but also promoted axonal branching which was not achieved by using taxol. We propose that self-assembly of 1

  20. Quantum computing with defects

    OpenAIRE

    Weber, J R; Koehl, W. F.; Varley, J. B.; Janotti, A.; Buckley, B. B.; Van de Walle, C. G.; Awschalom, D. D.

    2010-01-01

    Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV-1) center stands out for its robustness - its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar qua...

  1. Anomalies and developmental defects

    International Nuclear Information System (INIS)

    Amonalies and developmental defects in trachea and bronchi (tracheal bronch us, diverticulum of trachea or bronchus, defects due to atresia of bronchial tre e, tracheobronchomegaly), lung vessels (aneurisms of pulmonary artery, agenesia, aplasia and hypoplasia of pulmonary artery,anomalies of pulmonary veins, varico sis of pulmonary veins), pulmonary tissue (lung sequestration, congenital lobar pulmonary emphysema, essential hemosiderosis), have beendescribed. The problems of the diagnosis of the above-mentioned diseases using roentgenograms are consid ered

  2. Neural Tube Defects

    OpenAIRE

    Greene, Nicholas D. E.; Copp, Andrew J.

    2014-01-01

    Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechani...

  3. Signatures of Topological Defects

    OpenAIRE

    Berezinsky, V. S.; P. Blasi(INAF Arcetri); Vilenkin, A.

    1998-01-01

    We argue that due to various restrictions cosmic strings and monopole-string networks are not likely to produce the observed flux of ultra-high energy cosmic rays (UHECR). Among the topological defects studied so far, the most promising UHECR sources are necklaces and monopolonia. Other viable sources which are similar to topological defects are relic superheavy particles. All these sources have an excess of pions (and thus photons) over nucleons at production. We demonstrate that in the case...

  4. Transcriptome Profiling Identifies Multiplexin as a Target of SAGA Deubiquitinase Activity in Glia Required for Precise Axon Guidance During Drosophila Visual Development

    Science.gov (United States)

    Ma, Jingqun; Brennan, Kaelan J.; D’Aloia, Mitch R.; Pascuzzi, Pete E.; Weake, Vikki M.

    2016-01-01

    The Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex is a transcriptional coactivator with histone acetylase and deubiquitinase activities that plays an important role in visual development and function. In Drosophila melanogaster, four SAGA subunits are required for the deubiquitination of monoubiquitinated histone H2B (ubH2B): Nonstop, Sgf11, E(y)2, and Ataxin 7. Mutations that disrupt SAGA deubiquitinase activity cause defects in neuronal connectivity in the developing Drosophila visual system. In addition, mutations in SAGA result in the human progressive visual disorder spinocerebellar ataxia type 7 (SCA7). Glial cells play a crucial role in both the neuronal connectivity defect in nonstop and sgf11 flies, and in the retinal degeneration observed in SCA7 patients. Thus, we sought to identify the gene targets of SAGA deubiquitinase activity in glia in the Drosophila larval central nervous system. To do this, we enriched glia from wild-type, nonstop, and sgf11 larval optic lobes using affinity-purification of KASH-GFP tagged nuclei, and then examined each transcriptome using RNA-seq. Our analysis showed that SAGA deubiquitinase activity is required for proper expression of 16% of actively transcribed genes in glia, especially genes involved in proteasome function, protein folding and axon guidance. We further show that the SAGA deubiquitinase-activated gene Multiplexin (Mp) is required in glia for proper photoreceptor axon targeting. Mutations in the human ortholog of Mp, COL18A1, have been identified in a family with a SCA7-like progressive visual disorder, suggesting that defects in the expression of this gene in SCA7 patients could play a role in the retinal degeneration that is unique to this ataxia. PMID:27261002

  5. Identifying motor and sensory myelinated axons in rabbit peripheral nerves by histochemical staining for carbonic anhydrase and cholinesterase activities

    Science.gov (United States)

    Riley, Danny A.; Sanger, James R.; Matloub, Hani S.; Yousif, N. John; Bain, James L. W.

    1988-01-01

    Carbonic anhydrase (CA) and cholinesterase (CE) histochemical staining of rabbit spinal nerve roots and dorsal root ganglia demonstrated that among the reactive myeliated axons, with minor exceptions, sensory axons were CA positive and CE negative whereas motor axons were CA negative and CE positive. The high specificity was achieved by adjusting reaction conditions to stain subpopulations of myelinated axons selectively while leaving 50 percent or so unstained. Fixation with glutaraldehyde appeared necessary for achieving selectivity. Following sciatic nerve transection, the reciprocal staining pattern persisted in damaged axons and their regenerating processes which formed neuromas within the proximal nerve stump. Within the neuromas, CA-stained sensory processes were elaborated earlier and in greater numbers than CE-stained regenerating motor processes. The present results indicate that histochemical axon typing can be exploited to reveal heterogeneous responses of motor and sensory axons to injury.

  6. Guidance of Drosophila Mushroom Body Axons Depends upon DRL-Wnt Receptor Cleavage in the Brain Dorsomedial Lineage Precursors

    Directory of Open Access Journals (Sweden)

    Elodie Reynaud

    2015-05-01

    Full Text Available In vivo axon pathfinding mechanisms in the neuron-dense brain remain relatively poorly characterized. We study the Drosophila mushroom body (MB axons, whose α and β branches connect to different brain areas. We show that the Ryk family WNT5 receptor, DRL (derailed, which is expressed in the dorsomedial lineages, brain structure precursors adjacent to the MBs, is required for MB α branch axon guidance. DRL acts to capture and present WNT5 to MB axons rather than transduce a WNT5 signal. DRL’s ectodomain must be cleaved and shed to guide α axons. DRL-2, another Ryk, is expressed within MB axons and functions as a repulsive WNT5 signaling receptor. Finally, our biochemical data support the existence of a ternary complex composed of the cleaved DRL ectodomain, WNT5, and DRL-2. Thus, the interaction of MB-extrinsic and -intrinsic Ryks via their common ligand acts to guide MB α axons.

  7. Electronic structure of point defects in semiconductors

    International Nuclear Information System (INIS)

    This 'Habilitation a diriger des Recherches' memoir presents most of my scientific activities during the past 7 years, in the field of electronic structure calculations of defects in solids. Point defects (vacancies, interstitials, impurities) in functional materials are a key parameter to determine if these materials will actually fill the role they have been assigned or not. Indeed, the presence of defects cannot be avoided when the temperature is increased or when the material is subjected to external stresses, such as irradiation in the nuclear reactors and in artificial satellites with solar radiations. However, in many cases, defects are introduced in the materials on purpose to tune the electronic transport, optical or even magnetic properties. This procedure is called the doping of semiconductors, which is the foundation technique for transistors, diodes, or photovoltaic cells. However, doping is not always straightforward and unexpected features may occur, such as doping asymmetry or Fermi level pinning, which can only be explained by complex phenomena involving different types of defects or complexes of defects. In this context, the calculations of electronic structure ab initio is an ideal tool to complement the experimental observations, to gain the understanding of phenomena at the atomic level, and even to predict the properties of defects. The power of the ab initio calculations comes from their ability to describe any system of electrons and nuclei without any specific adjustment. But although there is a strong need for numerical simulations in this field, the ab initio calculations for defects are still under development as of today. The work presented in this memoir summarizes my contributions to methodological developments on this subject. These developments have followed two main tracks. The first topic is the better understanding of the unavoidable finite size effects. Indeed, defects in semiconductors or insulators are generally present in

  8. Downregulation of glutamine synthetase via GLAST suppression induces retinal axonal swelling in a rat ex vivo hydrostatic pressure model.

    Science.gov (United States)

    Ishikawa, Makoto; Yoshitomi, Takeshi; Zorumski, Charles F; Izumi, Yukitoshi

    2011-08-01

    PURPOSE. High levels of glutamate can be toxic to retinal GCs. Thus, effective buffering of extracellular glutamate is important in preserving retinal structure and function. GLAST, a major glutamate transporter in the retina, and glutamine synthetase (GS) regulate extracellular glutamate accumulation and prevent excitotoxicity. This study was an examination of changes in function and expression of GLAST and GS in ex vivo rat retinas exposed to acute increases in ambient pressure. METHODS. Ex vivo rat retinas were exposed to elevated hydrostatic pressure for 24 hours. The expression of GLAST and GS were examined using immunochemistry and real-time PCR analysis. Also examined were the effects of (2S,3S)-3-[3-[4-(trifluoromethyl) benzoylamino] benzyloxy] aspartate (TFB-TBOA), an inhibitor of glutamate transporters, and l-methionine-S-sulfoximine (MSO), an inhibitor of GS. RESULTS. In this acute model, Western blot and real-time RT-PCR analyses revealed that substantially (75 mm Hg), but not moderately (35 mm Hg), elevated pressure depressed GLAST expression, diminished GS activity, and induced axonal swelling between the GC layer and the inner limiting membrane. However, at the moderately elevated pressure (35 mm Hg), administration of either TFB-TBOA or MSO also induced axonal swelling and excitotoxic neuronal damage. MSO did not depress GLAST expression but TFB-TBOA significantly suppressed GS, suggesting that downregulation of GS during pressure loading may result from impaired GLAST expression. CONCLUSIONS. The retina is at risk during acute intraocular pressure elevation due to downregulation of GS activity resulting from depressed GLAST expression. PMID:21775659

  9. Differences in the labeling of axons of passage by wheat germ agglutinin after uptake by cut peripheral nerve versus injections within the central nervous system

    International Nuclear Information System (INIS)

    Injections of a radiolabeled derivative of wheat germ agglutinin (WGA) in the subcortical white matter of the cerebral cortex in mice do not give rise to autoradiographic labeling of axon systems coursing through this fiber mass. Exposing the cut-end of mouse tibial nerve to WGA does, however, produce labeling within dorsal root ganglia and the spinal cord. These findings are discussed with consideration for dissimilarity in mode of central versus peripheral administration of the tracer, as well as in the light of potential relative differences in the uptake and transport of WGA and HRP. (Auth.)

  10. The Actin-Binding Protein α-Adducin Is Required for Maintaining Axon Diameter.

    Science.gov (United States)

    Leite, Sérgio Carvalho; Sampaio, Paula; Sousa, Vera Filipe; Nogueira-Rodrigues, Joana; Pinto-Costa, Rita; Peters, Luanne Laurel; Brites, Pedro; Sousa, Mónica Mendes

    2016-04-19

    The actin-binding protein adducin was recently identified as a component of the neuronal subcortical cytoskeleton. Here, we analyzed mice lacking adducin to uncover the function of this protein in actin rings. α-adducin knockout mice presented progressive axon enlargement in the spinal cord and optic and sciatic nerves, followed by axon degeneration and loss. Using stimulated emission depletion super-resolution microscopy, we show that a periodic subcortical actin cytoskeleton is assembled in every neuron type inspected including retinal ganglion cells and dorsal root ganglia neurons. In neurons devoid of adducin, the actin ring diameter increased, although the inter-ring periodicity was maintained. In vitro, the actin ring diameter adjusted as axons grew, suggesting the lattice is dynamic. Our data support a model in which adducin activity is not essential for actin ring assembly and periodicity but is necessary to control the diameter of both actin rings and axons and actin filament growth within rings. PMID:27068466

  11. Vertebrate Fidgetin Restrains Axonal Growth by Severing Labile Domains of Microtubules

    Directory of Open Access Journals (Sweden)

    Lanfranco Leo

    2015-09-01

    Full Text Available Individual microtubules (MTs in the axon consist of a stable domain that is highly acetylated and a labile domain that is not. Traditional MT-severing proteins preferentially cut the MT in the stable domain. In Drosophila, fidgetin behaves in this fashion, with targeted knockdown resulting in neurons with a higher fraction of acetylated (stable MT mass in their axons. Conversely, in a fidgetin knockout mouse, the fraction of MT mass that is acetylated is lower than in the control animal. When fidgetin is depleted from cultured rodent neurons, there is a 62% increase in axonal MT mass, all of which is labile. Concomitantly, there are more minor processes and a longer axon. Together with experimental data showing that vertebrate fidgetin targets unacetylated tubulin, these results indicate that vertebrate fidgetin (unlike its fly ortholog regulates neuronal development by tamping back the expansion of the labile domains of MTs.

  12. Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation

    Directory of Open Access Journals (Sweden)

    Jan Gründemann

    2015-09-01

    Full Text Available Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, KCa3.1 by local, activity-dependent calcium (Ca2+ influx at nodes of Ranvier via a T-type voltage-gated Ca2+ current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells.

  13. Calcium-dependent proteasome activation is required for axonal neurofilament degradation

    Institute of Scientific and Technical Information of China (English)

    Joo Youn Park; So Young Jang; Yoon Kyung Shin; Duk Joon Suh; Hwan Tae Park

    2013-01-01

    Even though many studies have identified roles of proteasomes in axonal degeneration, the mo-lecular mechanisms by which axonal injury regulates proteasome activity are stil unclear. In the present study, we found evidence indicating that extracellular calcium influx is an upstream regula-tor of proteasome activity during axonal degeneration in injured peripheral nerves. In degenerating axons, the increase in proteasome activity and the degradation of ubiquitinated proteins were sig-nificantly suppressed by extracellular calcium chelation. In addition, electron microscopic findings revealed selective inhibition of neurofilament degradation, but not microtubule depolymerization or mitochondrial swel ing, by the inhibition of calpain and proteasomes. Taken together, our findings suggest that calcium increase and subsequent proteasome activation are an essential initiator of neurofilament degradation in Wal erian degeneration.

  14. Calcium-dependent proteasome activation is required for axonal neurofilament degradation.

    Science.gov (United States)

    Park, Joo Youn; Jang, So Young; Shin, Yoon Kyung; Suh, Duk Joon; Park, Hwan Tae

    2013-12-25

    Even though many studies have identified roles of proteasomes in axonal degeneration, the molecular mechanisms by which axonal injury regulates proteasome activity are still unclear. In the present study, we found evidence indicating that extracellular calcium influx is an upstream regulator of proteasome activity during axonal degeneration in injured peripheral nerves. In degenerating axons, the increase in proteasome activity and the degradation of ubiquitinated proteins were significantly suppressed by extracellular calcium chelation. In addition, electron microscopic findings revealed selective inhibition of neurofilament degradation, but not microtubule depolymerization or mitochondrial swelling, by the inhibition of calpain and proteasomes. Taken together, our findings suggest that calcium increase and subsequent proteasome activation are an essential initiator of neurofilament degradation in Wallerian degeneration. PMID:25206662

  15. Mechanisms of sodium channel clustering and its influence on axonal impulse conduction.

    Science.gov (United States)

    Freeman, Sean A; Desmazières, Anne; Fricker, Desdemona; Lubetzki, Catherine; Sol-Foulon, Nathalie

    2016-02-01

    The efficient propagation of action potentials along nervous fibers is necessary for animals to interact with the environment with timeliness and precision. Myelination of axons is an essential step to ensure fast action potential propagation by saltatory conduction, a process that requires highly concentrated voltage-gated sodium channels at the nodes of Ranvier. Recent studies suggest that the clustering of sodium channels can influence axonal impulse conduction in both myelinated and unmyelinated fibers, which could have major implications in disease, particularly demyelinating pathology. This comprehensive review summarizes the mechanisms governing the clustering of sodium channels at the peripheral and central nervous system nodes and the specific roles of their clustering in influencing action potential conduction. We further highlight the classical biophysical parameters implicated in conduction timing, followed by a detailed discussion on how sodium channel clustering along unmyelinated axons can impact axonal impulse conduction in both physiological and pathological contexts. PMID:26514731

  16. Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury

    NARCIS (Netherlands)

    F. Hellal (Farida); A. Hurtado (Andres); J. Ruschel (Jörg); K.C. Flynn (Kevin); C.J. Laskowski (Claudia); M. Umlauf (Martina); L.C. Kapitein (Lukas); D. Strikis (Dinara); V. Lemmon (Vance); J. Bixby (John); C.C. Hoogenraad (Casper); F. Bradke (Frank)

    2011-01-01

    textabstractHypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. Here, moderate microtubule stabilization decreased scar formation after spinal cord injury in rodents through va

  17. Axonal degeneration in multiple sclerosis: defining therapeutic targets by identifying the causes of pathology.

    Science.gov (United States)

    Lee, Jae Young; Biemond, Melissa; Petratos, Steven

    2015-12-01

    Current therapeutics in multiple sclerosis (MS) target the putative inflammation and immune attack on CNS myelin. Despite their effectiveness in blunting the relapse rate in MS patients, such therapeutics do not prevent MS disease progression. Importantly, specific clinical dilemma arises through inability to predict MS progression and thereby therapeutically target axonal injury during MS, limiting permanent disability. The current review identifies immune and neurobiological principles that govern the sequelae of axonal degeneration during MS disease progression. Defining the specific disease arbiters, inflammatory and autoimmune, oligodendrocyte dystrophy and degenerative myelin, we discuss a basis for a molecular mechanism in axons that may be targeted therapeutically, in spatial and temporal manner to limit axonal degeneration and thereby halt progression of MS. PMID:26619755

  18. Axonal degeneration stimulates the formation of NG2+ cells and oligodendrocytes in the mouse

    DEFF Research Database (Denmark)

    Nielsen, Helle Hvilsted; Ladeby, Rune; Drøjdahl, Nina;

    2006-01-01

    Proliferation of the adult NG2-expressing oligodendrocyte precursor cells has traditionally been viewed as a remyelination response ensuing from destruction of myelin and oligodendrocytes, and not to the axonal pathology that is also a characteristic of demyelinating disease. To better understand...... the response of the NG2+ cells to the different components of demyelinating pathology, we investigated the response of adult NG2+ cells to axonal degeneration in the absence of primary myelin or oligodendrocyte pathology. Axonal degeneration was induced in the hippocampal dentate gyrus of adult mice...... by transection of the entorhino-dentate perforant path projection. The acutely induced degeneration of axons and terminals resulted in a prompt response of NG2+ cells, consisting of morphological transformation, cellular proliferation, and upregulation of NG2 expression days 2-3 after surgery. This was followed...

  19. Birth Defects. Matrix No. 2.

    Science.gov (United States)

    Brent, Robert L.

    This report discusses the magnitude of the problem of birth defects, outlines advances in the birth defects field in the past decade, and identifies those areas where research is needed for the prevention, treatment, and management of birth defects. The problem of birth defects has consumed a greater portion of our health care resources because of…

  20. Skin incision induces expression of axonal regeneration-related genes in adult rat spinal sensory neurons

    OpenAIRE

    Hill, Caitlin E.; Harrison, Benjamin J; Rau, Kris K.; Hougland, M. Tyler; Bunge, Mary Bartlett; Lorne M. Mendell; Petruska, Jeffrey C.

    2010-01-01

    Skin incision and nerve injury both induce painful conditions. Incisional and post-surgical pain is believed to arise primarily from inflammation of tissue and the subsequent sensitization of peripheral and central neurons. The role of axonal regeneration-related processes in development of pain has only been considered when there has been injury to the peripheral nerve itself, even though tissue damage likely induces injury of resident axons. We sought to determine if skin incision would aff...

  1. Negative regulation of glial engulfment activity by Draper terminates glial responses to axon injury

    OpenAIRE

    Logan, Mary A.; Hackett, Rachel; Doherty, Johnna; Sheehan, Amy; Speese, Sean D.; Freeman, Marc R

    2012-01-01

    Neuronal injury elicits potent cellular responses from glia, but molecular pathways modulating glial activation, phagocytic function, and termination of reactive responses remain poorly defined. Here we show that positive or negative regulation of glial reponses to axon injury are molecularly encoded by unique isoforms of the Drosophila engulfment receptor Draper. Draper-I promotes engulfment of axonal debris through an immunoreceptor tyrosine-based activation motif (ITAM). In contrast, Drape...

  2. Molecular Diagnosis of Infantile Neuro axonal Dystrophy by Next Generation Sequencing

    OpenAIRE

    Goyal, Manisha; Bijarnia-Mahay, Sunita; Kingsmore, Stephen; Farrow, Emily; Saunders, Carol; Saxena, Renu; Verma, Ishwar C

    2014-01-01

    Infantile Neuro axonal Dystrophy (INAD), is a rare inherited neurological disorder which affects nerve axons causing progressive loss of mental skills, muscular control and vision. The authors present a case of 5.8-y-old girl with INAD who was diagnosed after Next Generation Sequencing (NGS). She was born to a non-consanguineous couple and presented with hypotonia, developmental delay followed by neuroregression and nystagmus after 2 years of age. On examination, bilateral horizontal nystagmu...

  3. A cortical astrocyte subpopulation inhibits axon growth in vitro and in vivo

    OpenAIRE

    Liu, Rui; Wang, Zhe; Gou, Lin; XU, HANPENG

    2015-01-01

    Astrocytes are the most heterogeneous and predominant glial cell type in the central nervous system. However, the functional significance of this heterogeneity remains to be elucidated. Following injury, damaged astrocytes inhibit axonal regeneration in vivo and in vitro. Cultured primary astrocytes are commonly considered good supportive substrates for neuron attachment and axon regeneration. However, it is not known whether different populations of cells in the heterogeneous astrocyte cultu...

  4. Wnt Signalling Promotes Actin Dynamics during Axon Remodelling through the Actin-Binding Protein Eps8.

    Directory of Open Access Journals (Sweden)

    Eleanna Stamatakou

    Full Text Available Upon arrival at their synaptic targets, axons slow down their growth and extensively remodel before the assembly of presynaptic boutons. Wnt proteins are target-derived secreted factors that promote axonal remodelling and synaptic assembly. In the developing spinal cord, Wnts secreted by motor neurons promote axonal remodelling of NT-3 responsive dorsal root ganglia neurons. Axon remodelling induced by Wnts is characterised by growth cone pausing and enlargement, processes that depend on the re-organisation of microtubules. However, the contribution of the actin cytoskeleton has remained unexplored. Here, we demonstrate that Wnt3a regulates the actin cytoskeleton by rapidly inducing F-actin accumulation in growth cones from rodent DRG neurons through the scaffold protein Dishevelled-1 (Dvl1 and the serine-threonine kinase Gsk3β. Importantly, these changes in actin cytoskeleton occurs before enlargement of the growth cones is evident. Time-lapse imaging shows that Wnt3a increases lamellar protrusion and filopodia velocity. In addition, pharmacological inhibition of actin assembly demonstrates that Wnt3a increases actin dynamics. Through a yeast-two hybrid screen, we identified the actin-binding protein Eps8 as a direct interactor of Dvl1, a scaffold protein crucial for the Wnt signalling pathway. Gain of function of Eps8 mimics Wnt-mediated axon remodelling, whereas Eps8 silencing blocks the axon remodelling activity of Wnt3a. Importantly, blockade of the Dvl1-Eps8 interaction completely abolishes Wnt3a-mediated axonal remodelling. These findings demonstrate a novel role for Wnt-Dvl1 signalling through Eps8 in the regulation of axonal remodeling.

  5. An Analysis of Direct Hippocampal Cortical Field CA1 Axonal Projections to Diencephalon in the Rat

    OpenAIRE

    Cenquizca, Lee A.; Swanson, Larry W.

    2006-01-01

    The hippocampal formation is generally considered essential for processing episodic memory. However, the structural organization of hippocampal afferent and efferent axonal connections is still not completely understood, although such information is critical to support functional hypotheses. The full extent of axonal projections from field CA1 to the interbrain (diencephalon) is analyzed here with the Phaseolus vulgaris-leucoagglutinin (PHAL) method. The ventral pole of field CA1 establishes ...

  6. Workflow and Atlas System for Brain-Wide Mapping of Axonal Connectivity in Rat

    OpenAIRE

    2011-01-01

    Detailed knowledge about the anatomical organization of axonal connections is important for understanding normal functions of brain systems and disease-related dysfunctions. Such connectivity data are typically generated in neuroanatomical tract-tracing experiments in which specific axonal connections are visualized in histological sections. Since journal publications typically only accommodate restricted data descriptions and example images, literature search is a cumbersome way to retrieve ...

  7. The statistical mapping of cerebral metabolism for patients with severe diffuse axonal injury

    International Nuclear Information System (INIS)

    We investigated metabolic patterns in severe diffuse axonal injury patients using three-dimensional stereotactic surface projection (3D-SSP) technique. (Material and methods) Subjects was defined as the 23 diffuse axonal injury patients having a Coma Remission Scale of < 20 points on the PET examination in chronic stage. Normal volunteers were selected as normal database. For normal volunteers and patients, FDG-PET was carried out and 3D-SSP analysis was performed in group. (authors)

  8. Purkinje cell axonal anatomy: quantifying morphometric changes in essential tremor versus control brains

    OpenAIRE

    Babij, Rachel; Lee, Michelle; Cortés, Etty; Vonsattel, Jean-Paul G.; Faust, Phyllis L.; Louis, Elan D.

    2013-01-01

    Growing clinical, neuro-imaging and post-mortem data have implicated the cerebellum as playing an important role in the pathogenesis of essential tremor. Aside from a modest reduction of Purkinje cells in some post-mortem studies, Purkinje cell axonal swellings (torpedoes) are present to a greater degree in essential tremor cases than controls. Yet a detailed study of more subtle morphometric changes in the Purkinje cell axonal compartment has not been undertaken. We performed a detailed morp...

  9. Sustained axon-glial signaling induces Schwann cell hyperproliferation, Remak bundle myelination, and tumorigenesis

    OpenAIRE

    Gómez-Sánchez, José A.; López de Armentia, Mikel; Luján, Rafael; Kessaris, Nicoletta; Richardson, William D.; Cabedo, Hugo

    2009-01-01

    Type III neuregulins exposed on axon surfaces control myelination of the peripheral nervous system. It has been shown, for example, that threshold levels of type IIIβ1a neuregulin dictate not only the myelination fate of axons but also myelin thickness. Here we show that another neuregulin isoform, type III-β3, plays a distinct role in myelination. Neuronal overexpression of this isoform in mice stimulates Schwann cell proliferation and dramatically enlarges peripheral nerves and ganglia -whi...

  10. Nitric oxide as a putative retinal axon pathfinding and target recognition cue in Xenopus laevis

    OpenAIRE

    Sara Berman; Andrea Morris

    2011-01-01

    Nitric oxide (NO) is an atypical neurotransmitter synthesized by the enzyme nitric oxide synthase (NOS) during many stages of the Xenopus laevis life cycle. This research investigates whether the gas NO is involved in axon guidance, the neurodevelopmental process in which axons travel through the brain to their appropriate target locations to form functional neural circuitry. Through immunocytochemistry and direct labeling of the NO gas with a fluorescent dye, we have found that NOS expressio...

  11. Axon-Schwann cell interactions during peripheral nerve regeneration in zebrafish larvae

    OpenAIRE

    Ceci, Maria Laura; Mardones-Krsulovic, Camila; SÁNCHEZ, MARIO; Valdivia, Leonardo E.; Allende, Miguel L

    2014-01-01

    Background Peripheral nerve injuries can severely affect the way that animals perceive signals from the surrounding environment. While damage to peripheral axons generally has a better outcome than injuries to central nervous system axons, it is currently unknown how neurons re-establish their target innervations to recover function after injury, and how accessory cells contribute to this task. Here we use a simple technique to create reproducible and localized injury in the posterior lateral...

  12. Mild hypothermia for treatment of diffuse axonal injury: a quantitative analysis of diffusion tensor imaging

    OpenAIRE

    Jing, Guojie; Yao, Xiaoteng; Li, Yiyi; Xie, Yituan; Li, Wang#x2019;an; LIU, Kejun; Jing, Yingchao; Li, Baisheng; Lv, Yifan; Ma, Baoxin

    2014-01-01

    Fractional anisotropy values in diffusion tensor imaging can quantitatively reflect the consistency of nerve fibers after brain damage, where higher values generally indicate less damage to nerve fibers. Therefore, we hypothesized that diffusion tensor imaging could be used to evaluate the effect of mild hypothermia on diffuse axonal injury. A total of 102 patients with diffuse axonal injury were randomly divided into two groups: normothermic and mild hypothermic treatment groups. Patient's m...

  13. Microtubules Have Opposite Orientation in Axons and Dendrites of Drosophila Neurons

    OpenAIRE

    Stone, Michelle C.; Roegiers, Fabrice; Rolls, Melissa M

    2008-01-01

    In vertebrate neurons, axons have a uniform arrangement of microtubules with plus ends distal to the cell body (plus-end-out), and dendrites have equal numbers of plus- and minus-end-out microtubules. To determine whether microtubule orientation is a conserved feature of axons and dendrites, we analyzed microtubule orientation in invertebrate neurons. Using microtubule plus end dynamics, we mapped microtubule orientation in Drosophila sensory neurons, interneurons, and motor neurons. As expec...

  14. Axonal neuregulin 1 is a rate limiting but not essential factor for nerve remyelination

    OpenAIRE

    Fricker, Florence R.; Antunes-Martins, Ana; Galino, Jorge; Paramsothy, Remi; La Russa, Federica; Perkins, James; Goldberg, Rebecca; Brelstaff, Jack; Zhu, Ning; McMahon, Stephen B; Orengo, Christine; Garratt, Alistair N.; Birchmeier, Carmen; David L H Bennett

    2013-01-01

    Neuregulin 1 acts as an axonal signal that regulates multiple aspects of Schwann cell development including the survival and migration of Schwann cell precursors, the ensheathment of axons and subsequent elaboration of the myelin sheath. To examine the role of this factor in remyelination and repair following nerve injury, we ablated neuregulin 1 in the adult nervous system using a tamoxifen inducible Cre recombinase transgenic mouse system. The loss of neuregulin 1 impaired remyelination aft...

  15. Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries

    Directory of Open Access Journals (Sweden)

    Oscar A. Carballo-Molina

    2015-02-01

    Full Text Available Damage caused to neural tissue by disease or injury frequently produces a discontinuity in the nervous system. Such damage generates diverse alterations that are commonly permanent, due to the limited regeneration capacity of the adult nervous system, particularly the Central Nervous System (CNS. The cellular reaction to noxious stimulus leads to several events such as the formation of glial and fibrous scars, which inhibit axonal regeneration in both the CNS and the Peripheral Nervous System (PNS. Although in the PNS there is some degree of nerve regeneration, it is common that the growing axons reinnervate incorrect areas, causing mismatches. Providing a permissive substrate for axonal regeneration in combination with delivery systems for the release of molecules, which enhances axonal growth, could increase regeneration and the recovery of functions in the CNS or the PNS. Currently, there are no effective vehicles to supply growth factors or cells to the damaged/diseased nervous system. Hydrogels are polymers that are biodegradable, biocompatible and have the capacity to deliver a large range of molecules in situ. The inclusion of cultured neural cells into hydrogels forming three-dimensional structures allows the formation of synapses and neuronal survival. There is also evidence showing that hydrogels constitute an amenable substrate for axonal growth of endogenous or grafted cells, overcoming the presence of axonal regeneration inhibitory molecules, in both the central and peripheral nervous systems. Recent experiments suggest that hydrogels can carry and deliver several proteins relevant for improving neuronal survival and axonal growth. Although the use of hydrogels is appealing, its effectiveness is still a matter of discussion, and more results are needed to achieve consistent recovery using different parameters. This review also discusses areas of opportunity where hydrogels can be applied, in order to promote axonal regeneration of

  16. Fisiopatología del síndrome de Guillain Barré axonal Physiopathology of axonal acute Guillain Barré syndrome

    OpenAIRE

    Juan Guillermo Montoya Ch.; Diana P. Martínez T.; Jaime Carrizosa Moog; Beatriz Aguirre L.

    2002-01-01

    Se describe la fisiopatología del síndrome de Guillain Barré axonal. Se consideran especialmente cinco aspectos: 1) Agentes etiológicos, específicamente el Campylobacter jejuni. 2) Susceptibilidad genética humana. 3) Mimetismo molecular entre lipopolisacáridos y lipoproteínas. 4) Mecanismo de acción de los anticuerpos antigangliósidos y 5) Hallazgos patológicos. The physiopathology of axonal acute Guillain Barré syndrome is described. Five aspects are considered, namely: 1) Etiologic agents e...

  17. Defect Management Strategies in Software Development

    OpenAIRE

    V, Suma; T.R., Gopalakrishnan Nair

    2012-01-01

    Software is a unique entity that has laid a strong impact on all other fields either related or not related to software. These include medical, scientific, business, educational, defence, transport, telecommunication to name a few. State-of-the-art professional domain activities demands the development of high quality software. High quality software attributes to a defect-free product, which is competent of producing predictable results and remains deliverable within time and cost constraints...

  18. The clinical findings and CT diagnosis of diffuse axonal injury

    International Nuclear Information System (INIS)

    Objective: To investigate the clinical manifestations, characteristic CT findings and pathologic mechanism of diffuse axonal injury(DAI). Methods: The clinical materials and CT images of 58 cases of DAI were analyzed. Results: The clinical findings of DAI: (1) an acceleration or deceleration and spiral injury of head; (2) immediate coma after injury; (3) abnormalities of vital sign; (4) alternated muscle tone of extremities; (5) absence of local neurological sign. The diagnostic criterions of CT images: (1) multiple hemorrhagic lesions smaller than 2cm in diameter at the cortex-medulla junction or the axial area; (2) diffuse cerebral swellings; (3) general decompression and even disappearance of ventricles and cisterns; (4)non or moderate median structures dislocation (less than 5mm); (5) coexistence of other intra-cranial trauma. Conclusion: Combining with clinical findings and CT signs, a diagnosis of DAI can be established. Diffuse brain swelling (DBS) occurred by primary hypothalamus and vasomotor center of brain stem damaged is a special type. (authors)

  19. Sodium movements in perfused squid giant axons. Passive fluxes.

    Science.gov (United States)

    Rojas, E; Canessa-Fischer, M

    1968-08-01

    Sodium movements in internally perfused giant axons from the squid Dosidicus gigas were studied with varying internal sodium concentrations and with fluoride as the internal anion. It was found that as the internal concentration of sodium was increased from 2 to 200 mM the resting sodium efflux increased from 0.09 to 34.0 pmoles/cm(2)sec and the average resting sodium influx increased from 42.9 to 64.5 pmoles/cm(2)sec but this last change was not statistically significant. When perfusing with a mixture of 500 mM K glutamate and 100 mM Na glutamate the resting efflux was 10 +/- 3 pmoles/cm(2)sec and 41 +/- 10 pmoles/cm(2)sec for sodium influx. Increasing the internal sodium concentration also increased both the extra influx and the extra efflux of sodium due to impulse propagation. At any given internal sodium concentration the net extra influx was about 5 pmoles/cm(2)impulse. This finding supports the notion that the inward current generated in a propagated action potential can be completely accounted for by movements of sodium. PMID:5672003

  20. Metabolic efficiency with fast spiking in the squid axon

    Directory of Open Access Journals (Sweden)

    Abdelmalik Moujahid

    2012-11-01

    Full Text Available Fundamentally, action potentials in the squid axon are consequence of the entrance of sodium ions during the depolarization of the rising phase of the spike mediated by the outflow of potassium ions during the hyperpolarization of the falling phase. Perfect metabolic efficiency with a minimum charge needed for the change in voltage during the action potential would confine sodium entry to the rising phase and potassium efflux to the falling phase. However, because sodium channels remain open to a significant extent during the falling phase, a certain overlap of inward and outward currents is observed. In this work we investigate the impact of ion overlap on the number of the adenosine triphosphate (ATP molecules and energy cost required per action potential as a function of the temperature in a Hodgkin-Huxley model. Based on a recent approach to computing the energy cost of neuronal AP generation not based on ion counting, we show that increased firing frequencies induced by higher temperatures imply more efficient use of sodium entry, and then a decrease in the metabolic energy cost required to restore the concentration gradients after an action potential. Also, we determine values of sodium conductance at which the hydrolysis efficiency presents a clear minimum.