WorldWideScience

Sample records for axon reflex test

  1. Axon reflexes in human cold exposed fingers

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ducharme, M.B.

    2000-01-01

    Exposure of fingers to severe cold induces cold induced vasodilation (CIVD). The mechanism of CIVD is still debated. The original theory states that an axon reflex causes CIVD. To test this hypothesis, axon reflexes were evoked by electrical stimulation of the middle fingers of hands immersed in wat

  2. Histamine is released from skin by substance P but does not act as the final vasodilator in the axon reflex.

    OpenAIRE

    Barnes, P J; Brown, M. J.; Dollery, C. T.; Fuller, R W; Heavey, D. J.; Ind, P. W.

    1986-01-01

    We have explored in man the hypothesis that histamine released from dermal mast cells by neurotransmitters from afferent nerves contributes to vasodilatation of the axon reflex. The ability of substance P to release histamine from human skin in vivo, and the effects of a histamine H1-receptor antagonist on capsaicin-induced axon reflex flares were studied. Intradermal injections of substance P (50 pmol) produced a weal and flare response which was associated with increased histamine concentra...

  3. Trigeminovascular fibers increase blood flow in cortical gray matter by axon reflex-like mechanisms during acute severe hypertension or seizures

    Energy Technology Data Exchange (ETDEWEB)

    Sakas, D.E.; Moskowitz, M.A.; Kano, M.; Ogilvy, C.S. (Harvard Medical School, Boston, MA (USA)); Wei, E.P.; Kontos, H.A. (Medical College of Virginia, Richmond (USA))

    1989-02-01

    Cerebral blood flow was measured and compared in 10 symmetrical brain regions following unilateral trigeminal ganglionectomy, sham operation, or trigeminal root section (rhizotomy) in cats. Multiple determinations were obtained in anesthetized and paralyzed animals using radiolabeled microspheres during (i) normocapnia-normotension, (ii) hypercapnia, (iii) angiotensin-induced acute severe hypertension, or (iv) bicuculline-induced seizures. Flow was symmetrical in all brain regions at rest and during increases induced by hypercapnia in the three groups. During severe hypertension or seizures, marked elevations developed bilaterally. In ganglionectomized animals, increases due to hypertension or seizures were attenuated by 28-32% on the denervated side within cortical gray matter regions corresponding to the anterior, middle, and posterior cerebral arteries. Flow was symmetrical within all brain regions in sham-operated animals and in the rhizotomy group, despite comparable increases in regional cerebral blood flow induced by angiotensin. Hence, the trigeminal nerve mediates blood flow adaptations during severe hypertension and seizures. Furthermore, since trigeminal cell bodies and peripheral axons are destroyed or degenerate following ganglionectomy but not following rhizotomy, local axon reflex-like mechanisms mediate these increases in cerebral blood flow.

  4. The ANA-reflex test as a model for improving clinical appropriateness in autoimmune diagnostics.

    Science.gov (United States)

    Tonutti, Elio; Bizzaro, Nicola; Morozzi, Gabriella; Radice, Antonella; Cinquanta, Luigi; Villalta, Danilo; Tozzoli, Renato; Tampoia, Marilina; Porcelli, Brunetta; Fabris, Martina; Brusca, Ignazio; Alessio, Maria Grazia; Barberio, Giuseppina; Sorrentino, Maria Concetta; Antico, Antonio; Bassetti, Danila; Fontana, Desré Ethel; Imbastaro, Tiziana; Visentini, Daniela; Pesce, Giampaola; Bagnasco, Marcello

    2016-12-01

    Reflex tests are widely used in clinical laboratories, for example, to diagnose thyroid disorders or in the follow-up of prostate cancer. Reflex tests for antinuclear antibodies (ANA) have recently gained attention as a way to improve appropriateness in the immunological diagnosis of autoimmune rheumatic diseases and avoid waste of resources. However, the ANA-reflex test is not as simple as other consolidated reflex tests (the TSH-reflex tests or the PSA-reflex tests) because of the intrinsic complexity of the ANA test performed by the indirect immunofluorescence method on cellular substrates. The wide heterogeneity of the ANA patterns, which need correct interpretation, and the subsequent choice of the most appropriate confirmatory test (ANA subserology), which depend on the pattern feature and on clinical information, hinder any informatics automation, and require the pathologist's intervention. In this review, the Study Group on Autoimmune Diseases of the Italian Society of Clinical Pathology and Laboratory Medicine provides some indications on the configuration of the ANA-reflex test, using two different approaches depending on whether clinical information is available or not. We further give some suggestions on how to report results of the ANA-reflex test. PMID:27423928

  5. How to test for the red reflex in a child

    Directory of Open Access Journals (Sweden)

    Adapted from the poster: ‘See RED’ produced by JR Ainsworth, UK National Retinoblastoma Service, Birmingham, UK and the Childhood Eye Cancer Trust. www.chect.org.uk.

    2014-07-01

    Full Text Available Examination of pupil reflections, also known as the red reflex text, can reveal problems in the cornea, lens and sometimes the vitreous, and is particularly useful in young children. These photographs show what can occur in the case of certain major eye conditions, the most serious of which is retinoblastoma.

  6. Moro reflex

    Science.gov (United States)

    ... area into the arm may be present (these nerves are called brachial plexus). A Moro reflex in an older infant, child, or adult is ... be done to examine the child's muscles and nerves. Diagnostic ... absent reflex, may include: Shoulder x-ray Tests for disorders ...

  7. EFFECT OF NEURAL MOBILIZATION ON MONOSYNAPTIC REFLEX – A PRE TEST POST TEST EXPERIMENTAL DESIGN

    OpenAIRE

    Vipin Kumar; Manu Goyal; Rajendran, N; Dr. Narkeesh

    2013-01-01

    Background:Neural mobilization techniques leads tofacilitation of nerve gliding, reduction of nerve adher-ence, dispersion of noxious fluids, increased neural vascularity and improvement of axoplasmic flow.It haspronounced effects on monosynaptic H-reflex, which is an electrically induced reflex analogous to mechani-cally induced spinal stretch reflex. Thus, it is a reliable tool for the assessment of muscle tone through theexcitability of AMNs.Materials and Methods:The study was carried out ...

  8. EFFECT OF NEURAL MOBILIZATION ON MONOSYNAPTIC REFLEX – A PRE TEST POST TEST EXPERIMENTAL DESIGN

    Directory of Open Access Journals (Sweden)

    Vipin Kumar

    2013-08-01

    Full Text Available Background:Neural mobilization techniques leads tofacilitation of nerve gliding, reduction of nerve adher-ence, dispersion of noxious fluids, increased neural vascularity and improvement of axoplasmic flow.It haspronounced effects on monosynaptic H-reflex, which is an electrically induced reflex analogous to mechani-cally induced spinal stretch reflex. Thus, it is a reliable tool for the assessment of muscle tone through theexcitability of AMNs.Materials and Methods:The study was carried out with30 male and female subjects fromMMIPR, MM University Mullana. H-reflex was taken before and after neural mobilization.Results:Significanteffects on monosynaptic H-reflex were shown after neural mobilization with a mean difference of decrease inH-reflex latency (28.43±2.13 ms to 26.91±1.99 ms; t-value 13.24 and increase in H-reflex amplitude(4.27±2.18mv to 5.25±2.50 mv; t-value -5.13 and increase in H/M ratio (0.42±0.21 to 0.52±0.25; t-value -5.22.Conclusion:Neural mobilization has direct effect on nerve conduction as measured by electrophysiologicaltesting, thereby providing evidence to include neural mobilizations as an intervention in altered neurodynamicsof the peripheral nerves.

  9. Influence of impulsivity-reflexivity when testing dynamic spatial ability: sex and g differences.

    Science.gov (United States)

    Quiroga, M Angeles; Hernández, José Manuel; Rubio, Victor; Shih, Pei Chun; Santacreu, José

    2007-11-01

    This work analyzes the possibility that the differences in the performance of men and women in dynamic spatial tasks such as the Spatial Orientation Dynamic Test-Revised (SODT-R; Santacreu & Rubio, 1998), obtained in previous works, are due to cognitive style (Reflexivity-Impulsivity) or to the speed-accuracy tradeoff (SATO) that the participants implement. If these differences are due to cognitive style, they would be independent of intelligence, whereas if they are due to SATO, they may be associated with intelligence. In this work, 1652 participants, 984 men and 668 women, ages between 18 and 55 years, were assessed. In addition to the SODT-R, the "Test de Razonamiento Analitico, Secuencial e Inductivo" (TRASI [Analytical, Sequential, and Inductive Reasoning Test]; Rubio & Santacreu, 2003) was administered as a measure of general intelligence. Impulsivity scores (Zi) of Salkind and Wright (1977) were used to analyze reflexivity-impulsivity and SATO. The results obtained indicate that (a) four performance groups can be identified: Fast-accurate, Slow-inaccurate, Impulsive, and Reflexive. The first two groups solve the task as a function of a competence variable and the last two as a function of a personality variable; (b) performance differences should be attributed to SATO; (c) SATO differs depending on sex and intelligence level. PMID:17992956

  10. Effect of spaceflight on the subcutaneous venoarteriolar reflex in the human lower leg

    DEFF Research Database (Denmark)

    Gabrielsen, Anders; Norsk, Peter

    2007-01-01

    Whenever the legs are lowered in humans, a venoarteriolar reflex is activated by the hydrostatic distension of the venules. Through local axon reflexes, the adjacent arterioles are contracted to decrease blood flow and prevent formation of edema. Because the venoarteriolar reflex is activated by...... gravity, we tested the hypothesis that long-term weightlessness would attenuate it. The reduction in subcutaneous blood flow was measured by the (133)Xe washout technique just proximal to the ankle joint in dependent lower legs of eight supine astronauts, where the knee joint was passively bent by 90...

  11. DVA as a Diagnostic Test for Vestibulo-Ocular Reflex Function

    Science.gov (United States)

    Wood, Scott J.; Appelbaum, Meghan

    2010-01-01

    The vestibulo-ocular reflex (VOR) stabilizes vision on earth-fixed targets by eliciting eyes movements in response to changes in head position. How well the eyes perform this task can be functionally measured by the dynamic visual acuity (DVA) test. We designed a passive, horizontal DVA test to specifically study the acuity and reaction time when looking in different target locations. Visual acuity was compared among 12 subjects using a standard Landolt C wall chart, a computerized static (no rotation) acuity test and dynamic acuity test while oscillating at 0.8 Hz (+/-60 deg/s). In addition, five trials with yaw oscillation randomly presented a visual target in one of nine different locations with the size and presentation duration of the visual target varying across trials. The results showed a significant difference between the static and dynamic threshold acuities as well as a significant difference between the visual targets presented in the horizontal plane versus those in the vertical plane when comparing accuracy of vision and reaction time of the response. Visual acuity increased proportional to the size of the visual target and increased between 150 and 300 msec duration. We conclude that dynamic visual acuity varies with target location, with acuity optimized for targets in the plane of rotation. This DVA test could be used as a functional diagnostic test for visual-vestibular and neuro-cognitive impairments by assessing both accuracy and reaction time to acquire visual targets.

  12. Blink Reflex as a Complementary Test to MRI in Early Detection of Brainstem Infarctions: Comparison of Blink Reflex Abnormalities in Anterior Versus Posterior Circulation Strokes

    Directory of Open Access Journals (Sweden)

    K Basiri

    2004-08-01

    Full Text Available Background: Early detection of vertebro-basilar insufficiency is of paramount importance. Brain MRI was the only method of diagnosis for many years, but in addition to high cost and delay in report, it may not detect all brain stem lesions. In this study Blink reflex (BR was evaluated as a complementary test to MRI. Methods: Fifty-four patients were studied [27 anterior circulation stroke patients (ACSP and 27 posterior circulation stroke patients (PCSP]. MRI was performed within the first week after the onset of stroke. Nineteen age and sex matched healthy people enrolled as controls. BR was performed within the first 24 hours of the onset. Frequency of abnormal blink reflex in ACSP and PCSP was compared with MRI findings. Then abnormal responses in two groups were compared by chi-square test. Results: In both ACSP and PCSP, two patients had normal BR responses, and in 25 patients R1 or R2 components of blink responses were absent or prolonged (92.5%. R1was absent or delayed in 16 PCSP, but it was abnormal in only two ACSP (P < 0.001. Abnormal R2 responses were detected in 22 PCSP and 24 ACSP. Conclusion: BR abnormalities had high correlation with MRI findings in PCSP (92.5% BR can be performed within the first 24 hours of onset of stroke, and its results is available immediately. This test is easy to perform and comfortable for the patient, has low cost, and is available every where. Therefore we introduced BR as a complementary (but not replacing test to MRI in early detection of brainstem infarctions. Comparison of BR responses in ACSP and PCSP showed that abnormalities of R1 responses had high accuracy in differentiation between anterior and posterior circulation strokes. We concluded that BR responses not only can detect brainstem infarctions rapidly and readily in its early stages, but also can differentiate ACSP from PCSP with high accuracy. Keywords: Blink Reflex, Anterior Circulation Stroke, Posterior Circulation Stroke Patients

  13. Contribution of laser Doppler flowmetry with venoarteriolar reflex, cold, and rewarming testing, and intravital capillaroscopy to diagnose Raynaud's phenomenon

    Directory of Open Access Journals (Sweden)

    Zeman J

    2014-05-01

    Full Text Available Jan Zeman,1 Oksana Turyanytsya,1 Vojtĕch Kapsa,2 Mojmír Eliáš3 1Department of Clinical Cardiology and Angiology, Hospital Bulovka, 2Charles University in Prague, Faculty of Mathematics and Physics, 3Kooperativa a.s., Pobrezni, Prague, Czech Republic Background: The early differential diagnosis of Raynaud’s phenomenon (RP is crucial for the prognosis and therapy of these patients. In our microcirculatory laboratory, we use intravital capillaroscopy (IC, plethysmography (P, and laser Doppler flowmetry (LDF for examining acrosyndromes. We combine LDF with venoarteriolar reflex test, cold test, and rewarming test to achieve more reliable diagnoses of acrosyndromes. Patients and methods: We examined LDF and IC according to a strict protocol using a battery of tests (venoarteriolar reflex test, cold test, rewarming test applied to five different groups of people and compared their results: healthy controls, primary Raynaud’s phenomenon (PRP, systemic scleroderma, vibration white finger, and peripheral artery occlusive disease. Our tests included 340 individuals (72 patients plus 268 controls. Results: Although all tests provided some differences between controls and patients, only the rewarming test offered significant results for differential diagnoses. Conclusion: IC and LDF combined with the battery of tests (venoarteriolar reflex test, cold test, rewarming test under standard conditions can be used as reliable tools to distinguish between PRP and some types of secondary RP (especially in the case of systemic scleroderma, vibration white fingers, or peripheral artery occlusive disease; RPs with organic occlusions of the small arteries causing the diseases. Our methodology can help to distinguish between other types of RP, as well. Keywords: Raynaud’s phenomenon, acrosyndrome, laser Doppler flowmetry, intravital capillaroscopy, scleroderma, vibration white finger, peripheral artery occlusive disease

  14. In vivo testing of a 3D bifurcating microchannel scaffold inducing separation of regenerating axon bundles in peripheral nerves

    Science.gov (United States)

    Stoyanova, Irina I.; van Wezel, Richard J. A.; Rutten, Wim L. C.

    2013-12-01

    Artificial nerve guidance channels enhance the regenerative effectiveness in an injured peripheral nerve but the existing design so far has been limited to basic straight tubes simply guiding the growth to bridge the gap. Hence, one of the goals in development of more effective neuroprostheses is to create bidirectional highly selective neuro-electronic interface between a prosthetic device and the severed nerve. A step towards improving selectivity for both recording and stimulation have been made with some recent in vitro studies which showed that three-dimensional (3D) bifurcating microchannels can separate neurites growing on a planar surface and bring them into contact with individual electrodes. Since the growing axons in vivo have the innate tendency to group in bundles surrounded by connective tissue, one of the big challenges in neuro-prosthetic interface design is how to overcome it. Therefore, we performed experiments with 3D bifurcating guidance scaffolds implanted in the sciatic nerve of rats to test if this new channel architecture could trigger separation pattern of ingrowth also in vivo. Our results showed that this new method enabled the re-growth of neurites into channels with gradually diminished width (80, 40 and 20 µm) and facilitated the separation of the axonal bundles with 91% success. It seems that the 3D bifurcating scaffold might contribute towards conveying detailed neural control and sensory feedback to users of prosthetic devices, and thus could improve the quality of their daily life.

  15. Shoulder reflexes

    DEFF Research Database (Denmark)

    Diederichsen, Louise; Krogsgaard, Michael; Voigt, Michael;

    2002-01-01

    long latency (300 ms) excitatory reflex has been found when nerves in the capsule were stimulated electrically during shoulder surgery. In addition, when the anterior-inferior capsule was excited in conscious humans with modest amplitude electrical stimuli during muscle activity, a strong inhibition...... likely that the joint receptors have a more distinct role for the kinaestethic sense than muscle receptors. In cats a direct reflex from the afferents innervating the shoulder to the muscles around the shoulder has been presented. The reflex had an extremely short latency (2.7-3.1 ms). In man, a very...... was found with an average latency of 33 ms. Stimulation of the sensory nerves in the coracoacromial ligament has also been found to modify muscle activity strongly. Even though our understanding of the control of shoulder motion is incomplete, it is clear that sensory inputs can strongly modify muscle...

  16. Neurofilament Polymer Transport in Axons

    OpenAIRE

    Yan, Yanping; Brown, Anthony

    2005-01-01

    Neurofilament proteins are known to be transported along axons by slow axonal transport, but the form in which they move is controversial. In previous studies on cultured rat sympathetic neurons, we found that green fluorescent protein-tagged neurofilament proteins move predominantly in the form of filamentous structures, and we proposed that these structures are single neurofilament polymers. In the present study, we have tested this hypothesis by using a rapid perfusion technique to capture...

  17. Targeting Experimental Autoimmune Encephalomyelitis Lesions to a Predetermined Axonal Tract System Allows for Refined Behavioral Testing in an Animal Model of Multiple Sclerosis

    OpenAIRE

    Kerschensteiner, Martin; Stadelmann, Christine; Buddeberg, Bigna S.; Merkler, Doron; Bareyre, Florence M.; Anthony, Daniel C.; Linington, Christopher; Brück, Wolfgang; Schwab, Martin E.

    2004-01-01

    In multiple sclerosis (MS) the structural damage to axons determines the persistent clinical deficit patients acquire during the course of the disease. It is therefore important to test therapeutic strategies that can prevent or reverse this structural damage. The conventional animal model of MS, experimental autoimmune encephalomyelitis (EAE), typically shows disseminated inflammation in the central nervous system, which leads to a clinical deficit that cannot be directly attributed to a def...

  18. Test-retest reliability of the soleus H-reflex excitability measured during human walking

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Dyhre-Poulsen, Poul

    2010-01-01

    in every sweep. The Pearson product was used to identify one participant at a time on Day 1 among all seven participants on Day 2. For both normalization procedures 5 of 7 participants were identified by this test. Since 5 of 7 participants were recognized between days, it must be recommended to use...

  19. Computing along the axon

    Institute of Scientific and Technical Information of China (English)

    Chen Haiming; Tseren-Onolt Ishdorj; Gheorghe Pǎun

    2007-01-01

    A special form of spiking neural P systems, called axon P systems, corresponding to the activity of Ranvier nodes of neuron axon, is considered and a class of SN-like P systems where the computation is done along the axon is introduced and their language generative power is investigated.

  20. WEAKLY ALGEBRAIC REFLEXIVITY AND STRONGLY ALGEBRAIC REFLEXIVITY

    Institute of Scientific and Technical Information of China (English)

    TaoChangli; LuShijie; ChenPeixin

    2002-01-01

    Algebraic reflexivity introduced by Hadwin is related to linear interpolation. In this paper, the concepts of weakly algebraic reflexivity and strongly algebraic reflexivity which are also related to linear interpolation are introduced. Some properties of them are obtained and some relations between them revealed.

  1. Motor Axon Pathfinding

    OpenAIRE

    Bonanomi, Dario; Pfaff, Samuel L

    2010-01-01

    Motor neurons are functionally related, but represent a diverse collection of cells that show strict preferences for specific axon pathways during embryonic development. In this article, we describe the ligands and receptors that guide motor axons as they extend toward their peripheral muscle targets. Motor neurons share similar guidance molecules with many other neuronal types, thus one challenge in the field of axon guidance has been to understand how the vast complexity of brain connection...

  2. Too Busy for Reflexivity?

    DEFF Research Database (Denmark)

    Ratner, Helene

    through reflexivity in order to change their practices. Reflexivity is thus imbued with a sense of optimism: awareness about how practice is constructed is seen to improve the possibilities for changing it (Ratner 2012). Despite this optimism, “implementing” reflexivity proves difficult as risks of...

  3. Monitoring of head injury by myotatic reflex evaluation

    OpenAIRE

    Cozens, J; Miller, S; Chambers, I.; Mendelow, A

    2000-01-01

    OBJECTIVES—(1) To establish the feasibility of myotatic reflex measurement in patients with head injury. (2) To test the hypothesis that cerebral dysfunction after head injury causes myotatic reflex abnormalities through disordered descending control. These objectives arise from a proposal to use reflex measurements in monitoring patients with head injury.
METHODS—The phasic stretch reflex of biceps brachii was elicited by a servo-positioned tendon hammer. Antagonist i...

  4. Oropharyngeal examination as a predictor of obstructive sleep apnea: pilot study of gag reflex and palatal reflex

    Directory of Open Access Journals (Sweden)

    Juliana Spelta Valbuza

    2011-10-01

    Full Text Available Obstructive sleep apnea (OSA has high prevalence and may cause serious comorbities. The aim of this trial was to show if simple noninvasive methods such as gag reflex and palatal reflex are prospective multivariate assessments of predictor variables for OSA. METHOD: We evaluate gag reflex and palatal reflex, of fifty-five adult patients, and their subsequent overnight polysomnography. RESULTS: Forty-one participants presented obstructive sleep apnea. The most relevant findings in our study were: [1] absence of gag reflex on patients with severe obstructive apnea (p=0.001; [2] absence of palatal reflex on moderate obstructive apnea patients (p=0.02. CONCLUSION: Gag reflex and palatal reflex, a simple noninvasive test regularly performed in a systematic neurological examination can disclose the impact of the local neurogenic injury associated to snoring and/or obstructive sleep apnea syndrome.

  5. Determinants of axonal regeneration

    OpenAIRE

    Frisén, J

    1997-01-01

    Axons often regrow to their targets and lost functions may be restored after an injury in the peripheral nervous system. In contrast, axonal regeneration is generally very limited after injuries in the central nervous system, and functional impairment is usually permanent. The regenerative capacity depends on intrinsic neuronal factors as weil as the interaction of neurons with other cells. Glial cells may, in different situations, either support or inhibit axo...

  6. Emotionally Colorful Reflexive Games

    CERN Document Server

    Tarasenko, Sergey

    2011-01-01

    This study addresses the matter of reflexive control of the emotional states by means of Reflexive Game Theory (RGT). It is shown how to build a bridge between RGT and emotions. For this purpose the Pleasure-Arousal-Dominance (PAD) model is adopted. The major advantages of RGT are its ability to predict human behavior and unfold the entire spectra of reflexion in the human mind. On the other hand, PAD provides ultimate approach to model emotions. It is illustrated that emotions are reflexive processes and, consequently, RGT fused with PAD model is natural solution to model emotional interactions between people. The fusion of RGT and PAD, called Emotional Reflexive Games (ERG), inherits the key features of both components. Using ERG, we show how reflexive control can be successfully applied to model human emotional states. Up to date, EGR is a unique methodology capable of modeling human reflexive processes and emotional aspects simultaneously.

  7. Myelin sheath survival after guanethidine-induced axonal degeneration

    OpenAIRE

    1992-01-01

    Membrane-membrane interactions between axons and Schwann cells are required for initial myelin formation in the peripheral nervous system. However, recent studies of double myelination in sympathetic nerve have indicated that myelin sheaths continue to exist after complete loss of axonal contact (Kidd, G. J., and J. W. Heath. 1988. J. Neurocytol. 17:245-261). This suggests that myelin maintenance may be regulated either by diffusible axonal factors or by nonaxonal mechanisms. To test these hy...

  8. Reflexive intensification in Spanish: Toward a complex reflexive?

    DEFF Research Database (Denmark)

    Pedersen, Johan

    2005-01-01

    Spanish, intensifier, intensification, reflexive pronouns, anaphor, reanalysis, grammaticalization, sí, mismo......Spanish, intensifier, intensification, reflexive pronouns, anaphor, reanalysis, grammaticalization, sí, mismo...

  9. Evidence for a local sympathetic venoarteriolar "reflex" in the dog hindleg

    DEFF Research Database (Denmark)

    Henriksen, O; Amtorp, O; Faris, I;

    1983-01-01

    The study was performed in order to determine whether a local sympathetic venoarteriolar "reflex" is present in the dog hindleg. Femoral artery blood flow was measured by an electromagnetic flowmeter probe, and blood flow in the thigh muscle and subcutaneous tissue distally in the paw was measured...... suction. The results strongly suggest that a local sympathetic veno-arteriolar (axon) "reflex" is present in muscle and subcutaneous tissue in the dog hindleg....

  10. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas

    Science.gov (United States)

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.

    1998-01-01

    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  11. In vivo imaging of axonal transport using MRI: aging and Alzheimer's disease

    International Nuclear Information System (INIS)

    MRI using manganese as a trans-synaptic axonal tracing agent can unveil dynamics of axonal transport in living subjects. We use this technology to test the hypotheses if impaired axonal transport is a significant pathophysiological process in aging and early Alzheimer's disease (AD) and in part accounting for ''selective vulnerability'' of projection neurons in AD. To allow quantitative assessment of axonal transport in vivo, we developed voxel-based statistical mapping technology as well as a tracer kinetic modeling method based on mass transport for manganese-enhanced MRI to estimate axonal transport rates in aging rats and AD transgenic mice. These techniques demonstrated manganese-enhanced signal changes in axonal projections of the olfactory tract and decreased axonal transport rates in rodent models of aging and AD. Altered axonal transport may be a critical pathophysiological process in aging and AD. Manganese-enhanced MRI provides exciting opportunities for the investigations of altered axonal transport in AD and related disorders. (orig.)

  12. Etnography and Reflexivity

    Directory of Open Access Journals (Sweden)

    Mario Cardano

    2014-01-01

    Full Text Available This essay deals with a relevant and controversial topic – objectivity in ethnographic research. More specifically, I would like to examine how reflexive procedures, more precisely “reflexive account”, can increase the robustness of results gained through an ethnographic research. The essay is organized in five parts. I will start by giving a preliminary definition of the two key concepts which are at the center of the analysis – objectivity and reflexivity. I will then give a brief description of the epistemological framework in which the proposed conceptions of objectivity and reflexivity are located. Thirdly, I move on to consider the epistemic status of ethnographic research, and will emphasize that ethnographies are not just “theory-laden”, as many writers have stated, but also “praxis” or “procedure laden”. In other words, I will stress that it is not only theories which are inevitably embedded in research, influencing how observations can be made; much the same can also be said of the concrete research practices which contribute to determine the experience of the ethnographer and its representation in a text. Fourthly, I will discuss why it is useful to employ reflexive practices, and then immediately afterwards will illustrate the ways in which reflexive descriptions can contribute to greater objectivity of ethnographic accounts. In conclusion, I will discuss a number of objections which have been raised against this use of reflexivity.

  13. On Reflexive Data Models

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, S.

    2000-08-20

    An information system is reflexive if it stores a description of its current structure in the body of stored information and is acting on the base of this information. A data model is reflexive, if its language is meta-closed and can be used to build such a system. The need for reflexive data models in new areas of information technology applications is argued. An attempt to express basic notions related to information systems is made in the case when the system supports and uses meta-closed representation of the data.

  14. [Reflex sympathetic dystrophy].

    Science.gov (United States)

    Oliveira, Marta; Manuela, Manuela; Cantinho, Guilhermina

    2011-01-01

    Reflex Sympathetic Dystrophy is rare in pediatrics. It is a complex regional pain syndrome, of unknown etiology, usually post-traumatic, characterized by dysfunctions of the musculoskeletal, vascular and skin systems: severe persistent pain of a limb, sensory and vascular alterations, associated disability and psychosocial dysfunction. The diagnosis is based in high clinical suspection. In children and adolescents there are aspects that are different from the adult ones. Excessive tests may result in worsening of the clinical symptoms. Bone scintigraphy can help. Pain treatment is difficult, not specific. Physical therapies and relaxation technics give some relief. Depression must be treated. This syndrome includes fibromyalgia and complex regional pain syndrome type I. We present a clinical report of an adolescent girl, referred for pain, cold temperature, pallor and functional disability of an inferior limb, all signals disclosed by a minor trauma. She had been diagnosed depression the year before. The bone scintigraphy was a decisive test. The treatment with gabapentin, C vitamin, physiotherapy and pshycotherapy has been effective. PMID:22713207

  15. Cruciate ligament reflexes

    DEFF Research Database (Denmark)

    Krogsgaard, Michael R; Dyhre-Poulsen, Poul; Fischer-Rasmussen, Torsten

    2002-01-01

    The idea of muscular reflexes elicited from sensory nerves of the cruciate ligaments is more than 100 years old, but the existence of such reflexes has not been proven until the recent two decades. First in animal experiments, a muscular excitation could be elicited in the hamstrings when the...... anterior cruciate ligament (ACL) was pulled, and tension in the ligament caused activity of the gamma motor neurones of the muscles around the knee. Impulses from the sensory nerves in ACL were activated during motion of the knee, in particular overstretching and combined extension and rotation. In humans...... isokinetic muscle work, and also during dynamic activity (gait). This inhibitory reflex subjectively resembledgiving way. The latency of the reflex was short in animals (about 3 ms) and long in humans (60-120 ms), probably caused by differences in the experimental setup and between species. The long latency...

  16. Effects of Bed Rest on Conduction Velocity of the Triceps Surae Stretch Reflex and Postural Control

    Science.gov (United States)

    Reschke, M. F.; Wood, S. J.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.; Esteves, J. T.; Taylor, L. C.; DeDios, Y. E.; Harm, D. L.

    2011-01-01

    Despite rigorous exercise and nutritional management during space missions, astronauts returning from microgravity exhibit neuromuscular deficits and a significant loss in muscle mass in the postural muscles of the lower leg. Similar changes in the postural muscles occur in subjects participating in long-duration bed rest studies. These adaptive muscle changes manifest as a reduction in reflex conduction velocity during head-down bed rest. Because the stretch reflex encompasses both the peripheral (muscle spindle and nerve axon) and central (spinal synapse) components involved in adaptation to calf muscle unloading, it may be used to provide feedback on the general condition of neuromuscular function, and might be used to evaluate the effectiveness of countermeasures aimed at preserving muscle mass and function during periods of unloading. Stretch reflexes were measured on 18 control subjects who spent 60 to 90 days in continuous 6 deg head-down bed rest. Using a motorized system capable of rotating the foot around the ankle joint (dorsiflexion) through an angle of 10 degrees at a peak velocity of about 250 deg/sec, a stretch reflex was recorded from the subject's left triceps surae muscle group. Using surface electromyography, about 300 reflex responses were obtained and ensemble-averaged on 3 separate days before bed rest, 3 to 4 times in bed, and 3 times after bed rest. The averaged responses for each test day were examined for reflex latency and conduction velocity (CV) across gender. Computerized posturography was also conducted on these same subjects before and after bed rest as part of the standard measures. Peak-to-peak sway was measured during Sensory Organization Tests (SOTs) to evaluate changes in the ability to effectively use or suppress visual, vestibular, and proprioceptive information for postural control. Although no gender differences were found, a significant increase in reflex latency and a significant decrease in CV were observed during the bed

  17. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    Energy Technology Data Exchange (ETDEWEB)

    Menelaou, Evdokia; Paul, Latoya T. [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Perera, Surangi N. [Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States); Svoboda, Kurt R., E-mail: svobodak@uwm.edu [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States)

    2015-04-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  18. The instability of the BTB-KELCH protein Gigaxonin causes Giant Axonal Neuropathy and constitutes a new penetrant and specific diagnostic test

    OpenAIRE

    Boizot, Alexia; Talmat-Amar, Yasmina; Morrogh, Deborah; Kuntz, Nancy; Halbert, Cecile; Chabrol, Brigitte; Houlden, Henry; Stojkovic, Tanya; Schulman, Brenda; Rautenstrauss, Bernd; Bomont, Pascale

    2014-01-01

    International audience BACKGROUND: The BTB-KELCH protein Gigaxonin plays key roles in sustaining neuron survival and cytoskeleton architecture. Indeed, recessive mutations in the Gigaxonin-encoding gene cause Giant Axonal Neuropathy (GAN), a severe neurodegenerative disorder characterized by a wide disorganization of the Intermediate Filament network. Growing evidences suggest that GAN is a continuum with the peripheral neuropathy Charcot-Marie-Tooth diseases type 2 (CMT2). Sharing similar...

  19. Testing the vestibular-ocular reflexes: abnormalities of the otolith contribution in patients with neuro-otological disease.

    OpenAIRE

    Barratt, H; Bronstein, A. M.; Gresty, M A

    1987-01-01

    Conventional vestibular rotation testing with the head centered on the axis stimulates the semicircular canals evoking compensatory eye movements. If the head is placed forwards of the axis in an eccentric position the otoliths are also stimulated by a tangential linear acceleration acting laterally to the skull. In normal subjects the additional otolithic stimulus evokes compensatory eye movements with a higher gain than with head centred, particularly for high frequency (greater than 0.1 Hz...

  20. SnoN facilitates axonal regeneration after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Jiun L Do

    Full Text Available Adult CNS neurons exhibit a reduced capacity for growth compared to developing neurons, due in part to downregulation of growth-associated genes as development is completed. We tested the hypothesis that SnoN, an embryonically regulated transcription factor that specifies growth of the axonal compartment, can enhance growth in injured adult neurons. In vitro, SnoN overexpression in dissociated adult DRG neuronal cultures significantly enhanced neurite outgrowth. Moreover, TGF-β1, a negative regulator of SnoN, inhibited neurite outgrowth, and SnoN over-expression overcame this inhibition. We then examined whether SnoN influenced axonal regeneration in vivo: indeed, expression of a mutant form of SnoN resistant to degradation significantly enhanced axonal regeneration following cervical spinal cord injury, despite peri-lesional upregulation of TGF-β1. Thus, a developmental mechanism that specifies extension of the axonal compartment also promotes axonal regeneration after adult CNS injury.

  1. Brain gangliosides in axon-myelin stability and axon regeneration

    OpenAIRE

    Schnaar, Ronald L.

    2009-01-01

    Gangliosides, sialic acid-bearing glycosphingolipids, are expressed at high abundance and complexity in the brain. Altered ganglioside expression results in neural disorders, including seizures and axon degeneration. Brain gangliosides function, in part, by interacting with a ganglioside-binding lectin, myelin-associated glycoprotein (MAG). MAG, on the innermost wrap of the myelin sheath, binds to gangliosides GD1a and GT1b on axons. MAG-ganglioside binding ensures optimal axon-myelin cell-ce...

  2. Microfluidic control of axonal guidance

    Science.gov (United States)

    Gu, Ling; Black, Bryan; Ordonez, Simon; Mondal, Argha; Jain, Ankur; Mohanty, Samarendra

    2014-10-01

    The precision of axonal pathfinding and the accurate formation of functional neural circuitry are crucial for an organism during development as well as during adult central and peripheral nerve regeneration. While chemical cues are believed to be primarily responsible for axonal pathfinding, we hypothesize that forces due to localized fluid flow may directly affect neuronal guidance during early organ development. Here, we report direct evidence of fluid flow influencing axonal migration, producing turning angles of up to 90°. Microfluidic flow simulations indicate that an axon may experience significant bending force due to cross-flow, which may contribute to the observed axonal turning. This method of flow-based guidance was successfully used to fasciculate one advancing axon onto another, showcasing the potential of this technique to be used for the formation of in vitro neuronal circuits.

  3. Voluntary and reflex cough and the expiration reflex; implications for aspiration after stroke

    OpenAIRE

    Widdicombe, J G; Addington, W.R.; Fontana, G.A.; Stephens, R.E.

    2011-01-01

    Abstract Aspiration is a common result of stroke, and may lead to lung infections and pneumonia. Cough may prevent this aspiration and thus prevent the pneumonia. We review the four types of cough usually used to assess aspiration risk: voluntary cough (VC), reflex cough (RC), the laryngeal expiration reflex (LER), and cough on swallow (CoS). VC is easy to test but starts with an inspiration that may cause aspiration, and is controlled by cortico-brainstem pathways that may not be ...

  4. Reflexive functors in Algebraic Geometry

    OpenAIRE

    Sancho, Pedro

    2015-01-01

    Reflexive functors of modules naturally appear in Algebraic Geometry. In this paper we define a wide and elementary family of reflexive functors of modules, closed by tensor products and homomorphisms, in which Algebraic Geometry can be developed.

  5. Monitoring of head injury by myotatic reflex evaluation

    Science.gov (United States)

    Cozens, J; Miller, S.; Chambers, I.; Mendelow, A

    2000-01-01

    OBJECTIVES—(1) To establish the feasibility of myotatic reflex measurement in patients with head injury. (2) To test the hypothesis that cerebral dysfunction after head injury causes myotatic reflex abnormalities through disordered descending control. These objectives arise from a proposal to use reflex measurements in monitoring patients with head injury.
METHODS—The phasic stretch reflex of biceps brachii was elicited by a servo-positioned tendon hammer. Antagonist inhibition was evoked by vibration to the triceps. Using surface EMG, the amplitude of the unconditioned biceps reflex and percentage antagonist inhibition were measured. After standardisation in 16 normal adult subjects, the technique was applied to 36 patients with head injury across the range of severity. Objective (1) was addressed by attempting a measurement on each patient without therapeutic paralysis; three patients were also measured under partial paralysis. Objective (2) was addressed by preceding each of the 36 unparalysed measurements with an assessment of cerebral function using the Glasgow coma scale (GCS); rank correlation was employed to test a null hypothesis that GCS and reflex indices are unrelated.
RESULTS—In normal subjects, unconditioned reflex amplitude exhibited a positive skew requiring logarithmic transformation. Antagonist inhibition had a prolonged time course suggesting presynaptic mechanisms; subsequent measurements were standardised at 80 ms conditioning test interval (index termed "TI80").
 Measurements were obtained on all patients, even under therapeutic paralysis (objective (1)). The unconditioned reflex was absent in most patients with GCS less than 5; otherwise it varied little across the patient group. TI80 fell progressively with lower GCS, although patients' individual GCS could not be inferred from single measurements. Both reflex indices correlated with GCS (p<0.01), thereby dismissing the null hypothesis (objective (2)).

  6. The Reflexivity of Explicit Performatives

    Directory of Open Access Journals (Sweden)

    Cristina Corredor

    2010-03-01

    Full Text Available The aim of this contribution is to propose a natural implementation of the reflexive-referential theory advanced by Perry 2001 that aims at accounting for the reflexive character of explicit performative utterances. This is accomplished by introducing a reflexive-performative constraint on explicit performatives.

  7. Exaggerated sympathoexcitatory reflexes develop with changes in the rostral ventrolateral medulla in obese Zucker rats.

    Science.gov (United States)

    Huber, Domitila A; Schreihofer, Ann M

    2016-08-01

    Obesity leads to altered autonomic reflexes that reduce stability of mean arterial pressure (MAP). Sympathoinhibitory reflexes such as baroreflexes are impaired, but reflexes that raise MAP appear to be augmented. In obese Zucker rats (OZR) sciatic nerve stimulation evokes larger increases in MAP by unknown mechanisms. We sought to determine the autonomic underpinnings of this enhanced somatic pressor reflex and whether other sympathoexcitatory reflexes are augmented. We also determined whether their final common pathway, glutamatergic activation of the rostral ventrolateral medulla (RVLM), was enhanced in male OZR compared with lean Zucker rats (LZR). Sciatic nerve stimulation or activation of the nasopharyngeal reflex evoked larger rises in splanchnic sympathetic nerve activity (SNA) (79% and 45% larger in OZR, respectively; P heart rate, these two sympathoexcitatory reflexes were still exaggerated in OZR (167% and 69% larger, respectively, P < 0.05). In adult OZR microinjections of glutamate, AMPA, or NMDA into the RVLM produced larger rises in SNA (∼61% larger in OZR, P < 0.05 for each drug) and MAP, but stimulation of axonal fibers in the upper thoracic spinal cord yielded equivalent responses in OZR and LZR. In juvenile OZR and LZR, sympathoexcitatory reflexes and physiological responses to RVLM activation were comparable. These data suggest that the ability of glutamate to activate the RVLM becomes enhanced in adult OZR and may contribute to the development of exaggerated sympathoexcitatory responses independent of impaired baroreflexes. PMID:27280427

  8. Reflexivity in Pigeons

    Science.gov (United States)

    Sweeney, Mary M.; Urcuioli, Peter J.

    2010-01-01

    A recent theory of pigeons' equivalence-class formation (Urcuioli, 2008) predicts that reflexivity, an untrained ability to match a stimulus to itself, should be observed after training on two "mirror-image" symbolic successive matching tasks plus identity successive matching using some of the symbolic matching stimuli. One group of pigeons was…

  9. Experimental tests of a superposition hypothesis to explain the relationship between the vestibuloocular reflex and smooth pursuit during horizontal combined eye-head tracking in humans

    Science.gov (United States)

    Huebner, W. P.; Leigh, R. J.; Seidman, S. H.; Thomas, C. W.; Billian, C.; DiScenna, A. O.; Dell'Osso, L. F.

    1992-01-01

    1. We used a modeling approach to test the hypothesis that, in humans, the smooth pursuit (SP) system provides the primary signal for cancelling the vestibuloocular reflex (VOR) during combined eye-head tracking (CEHT) of a target moving smoothly in the horizontal plane. Separate models for SP and the VOR were developed. The optimal values of parameters of the two models were calculated using measured responses of four subjects to trials of SP and the visually enhanced VOR. After optimal parameter values were specified, each model generated waveforms that accurately reflected the subjects' responses to SP and vestibular stimuli. The models were then combined into a CEHT model wherein the final eye movement command signal was generated as the linear summation of the signals from the SP and VOR pathways. 2. The SP-VOR superposition hypothesis was tested using two types of CEHT stimuli, both of which involved passive rotation of subjects in a vestibular chair. The first stimulus consisted of a "chair brake" or sudden stop of the subject's head during CEHT; the visual target continued to move. The second stimulus consisted of a sudden change from the visually enhanced VOR to CEHT ("delayed target onset" paradigm); as the vestibular chair rotated past the angular position of the stationary visual stimulus, the latter started to move in synchrony with the chair. Data collected during experiments that employed these stimuli were compared quantitatively with predictions made by the CEHT model. 3. During CEHT, when the chair was suddenly and unexpectedly stopped, the eye promptly began to move in the orbit to track the moving target. Initially, gaze velocity did not completely match target velocity, however; this finally occurred approximately 100 ms after the brake onset. The model did predict the prompt onset of eye-in-orbit motion after the brake, but it did not predict that gaze velocity would initially be only approximately 70% of target velocity. One possible

  10. IH activity is increased in populations of slow versus fast motor axons of the rat.

    Directory of Open Access Journals (Sweden)

    Chad eLorenz

    2014-09-01

    Full Text Available Much is known about the electrophysiological variation in motoneuron somata across different motor units. However comparatively less is known about electrophysiological variation in motor axons and how this could impact function or electrodiagnosis in healthy or diseased states. We performed nerve excitability testing on two groups of motor axons in Sprague-Dawley rats that are known to differ significantly in their chronic daily activity patterns and in the relative proportion of motor unit types: one group innervating the soleus (slow motor axons and the other group innervating the tibialis anterior (fast motor axons muscles. We found that slow motor axons have significantly larger accommodation compared to fast motor axons upon application of a 100 ms hyperpolarizing conditioning stimulus that is 40% of axon threshold (Z = 3.24, p = 0.001 or 20% of axon threshold (Z = 2.67, p = 0.008. Slow motor axons had larger accommodation to hyperpolarizing currents in the current-threshold measurement (-80% Z = 3.07, p = 0.002; -90% Z = 2.98, p = 0.003. In addition, we found that slow motor axons have a significantly smaller rheobase than fast motor axons (Z = -1.99, p = 0.047 accompanied by a lower threshold in stimulus-response curves. The results provide evidence that slow motor axons have greater activity of the hyperpolarization-activated inwardly rectifying cation conductance (IH than fast motor axons. It is possible that this difference between fast and slow axons is caused by an adaptation to their chronic differences in daily activity patterns, and that this adaptation might have a functional effect on the motor unit. Moreover, these findings indicate that slow and fast motor axons may react differently to pathological conditions.

  11. The genetics of axonal transport and axonal transport disorders.

    Directory of Open Access Journals (Sweden)

    Jason E Duncan

    2006-09-01

    Full Text Available Neurons are specialized cells with a complex architecture that includes elaborate dendritic branches and a long, narrow axon that extends from the cell body to the synaptic terminal. The organized transport of essential biological materials throughout the neuron is required to support its growth, function, and viability. In this review, we focus on insights that have emerged from the genetic analysis of long-distance axonal transport between the cell body and the synaptic terminal. We also discuss recent genetic evidence that supports the hypothesis that disruptions in axonal transport may cause or dramatically contribute to neurodegenerative diseases.

  12. Axon diameter and intra-axonal volume fraction of the corticospinal tract in idiopathic normal pressure hydrocephalus measured by q-space imaging.

    Directory of Open Access Journals (Sweden)

    Kouhei Kamiya

    Full Text Available PURPOSE: Previous studies suggest that compression and stretching of the corticospinal tract (CST potentially cause treatable gait disturbance in patients with idiopathic normal pressure hydrocephalus (iNPH. Measurement of axon diameter with diffusion MRI has recently been used to investigate microstructural alterations in neurological diseases. In this study, we investigated alterations in the axon diameter and intra-axonal fraction of the CST in iNPH by q-space imaging (QSI analysis. METHODS: Nineteen patients with iNPH and 10 age-matched controls were recruited. QSI data were obtained with a 3-T system by using a single-shot echo planar imaging sequence with the diffusion gradient applied parallel to the antero-posterior axis. By using a two-component low-q fit model, the root mean square displacements of intra-axonal space ( =  axon diameter and intra-axonal volume fraction of the CST were calculated at the levels of the internal capsule and body of the lateral ventricle, respectively. RESULTS: Wilcoxon's rank-sum test revealed a significant increase in CST intra-axonal volume fraction at the paraventricular level in patients (p<0.001, whereas no significant difference was observed in the axon diameter. At the level of the internal capsule, neither axon diameter nor intra-axonal volume fraction differed significantly between the two groups. CONCLUSION: Our results suggest that in patients with iNPH, the CST does not undergo irreversible axonal damage but is rather compressed and/or stretched owing to pressure from the enlarged ventricle. These analyses of axon diameter and intra-axonal fraction yield insights into microstructural alterations of the CST in iNPH.

  13. Mentalis muscle related reflexes.

    Science.gov (United States)

    Gündüz, Ayşegül; Uyanık, Özlem; Ertürk, Özdem; Sohtaoğlu, Melis; Kızıltan, Meral Erdemir

    2016-05-01

    The mentalis muscle (MM) arises from the incisive fossa of the mandible, raises and protrudes the lower lip. Here, we aim to characterize responses obtained from MM by supraorbital and median electrical as well as auditory stimuli in a group of 16 healthy volunteers who did not have clinical palmomental reflex. Reflex activities were recorded from the MM and orbicularis oculi (O.oc) after supraorbital and median electrical as well as auditory stimuli. Response rates over MM were consistent after each stimulus, however, mean latencies of MM response were longer than O.oc responses by all stimulation modalities. Shapes and amplitudes of responses from O.oc and MM were similar. Based on our findings, we may say that MM motoneurons have connections with trigeminal, vestibulocochlear and lemniscal pathways similar to other facial muscles and electrophysiological recording of MM responses after electrical and auditory stimulation is possible in healthy subjects. PMID:26721248

  14. Axonal tubulin and axonal microtubules: biochemical evidence for cold stability

    OpenAIRE

    1984-01-01

    Nerve extracts containing tubulin labeled by axonal transport were analyzed by electrophoresis and differential extraction. We found that a substantial fraction of the tubulin in the axons of the retinal ganglion cell of guinea pigs is not solubilized by conventional methods for preparation of microtubules from whole brain. In two-dimensional polyacrylamide gel electrophoresis this cold-insoluble tubulin was biochemically distinct from tubulin obtained from whole brain microtubules prepared b...

  15. Local translation and directional steering in axons

    OpenAIRE

    Lin, Andrew C; Holt, Christine E.

    2007-01-01

    The assembly of functional neural circuits in the developing brain requires neurons to extend axons to the correct targets. This in turn requires the navigating tips of axons to respond appropriately to guidance cues present along the axonal pathway, despite being cellular ‘outposts' far from the soma. Work over the past few years has demonstrated a critical role for local translation within the axon in this process in vitro, making axon guidance another process that requires spatially locali...

  16. Reflexive functors of modules in Commutative Algebra

    OpenAIRE

    J. Navarro; Sancho, C.; Sancho, P.

    2012-01-01

    Reflexive functors of modules naturally appear in Algebraic Geometry, mainly in the theory of linear representations of group schemes, and in "duality theories". In this paper we study and determine reflexive functors and we give many properties of reflexive functors.

  17. Reflexive functors of modules in Commutative Algebra

    CERN Document Server

    Navarro, J; Sancho, P

    2012-01-01

    Reflexive functors of modules are ubiquitous in Algebraic Geometry, mainly in the theory of linear representations of group schemes, and in "duality theories". In this paper we study and determine reflexive functors and we give many properties of reflexive functors.

  18. The Effects of Attention on the Trigeminal Blink Reflex.

    Science.gov (United States)

    Schicatano, Edward J

    2016-04-01

    During top-down processing, higher cognitive processes modulate lower sensory processing. The present experiment tested the effects of directed attention on trigeminal reflex blinks in humans (n = 8). In separate sessions, participants either attended to blink-eliciting stimuli or were given no attentional instructions during stimulation of the supraorbital branch of the trigeminal nerve. Attention to blink-eliciting stimuli significantly increased reflex blink amplitude and duration and shortened blink latency compared with the no attention condition. These results suggested that higher processes such as attention can modify the trigeminal blink reflex circuit. PMID:27166326

  19. Regeneration of motor axons in the rat sciatic nerve studied by labeling with axonally transported radioactive proteins

    International Nuclear Information System (INIS)

    Labeling regenerating axons with axonally transported radioactive proteins provides information about the location of the entire range of axons from the fastest growing ones to those which are trapped in the scar. This technique has been used to study the regeneration of motor axons in the rat sciatic nerve after a crush lesion. From 2 to 14 days after the crush the lumbar spinal cord was exposed by laminectomy and multiple injections of [3H]proline were made stereotactically in the ventral horn. Twenty-four hours later the nerves were removed and the distribution of radioactivity along the nerve was measured by liquid scintillation counting. There was a peak of radioactivity in the regenerating axons distal to the crush due to an accumulation of label in the tips of these axons. After a delay of 3.2 +- 0.2 (S.E.) days, this peak advanced down the nerve at a rate of 3.0 +- 0.1 (S.E.) mm/day. The leading edge of this peak, which marks the location of the endings of the most rapidly growing labeled fibers, moved down the nerve at a rate of 4.4 +- 0.2 mm/day after a delay of 2.1 +- 0.2 days; this is the same time course as that of the most rapidly regenerating sensory axons in the rat sciatic nerve, measured by the pinch test. Another peak of radioactivity at the crush site, presumed to represent the ends of unregenerated axons or misdirected sprouts, declined rapidly during the first week, and more slowly thereafter. (Auth.)

  20. Reflexive Aero Structures for Enhanced Survivability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cornerstone Research Group Inc. (CRG) proposes to develop an advanced reflexive structure system to increase the survivability of aerostructures. This reflexive...

  1. Neurophysiology and Clinical Implications of the Laryngeal Adductor Reflex

    OpenAIRE

    Domer, Amanda S.; Kuhn, Maggie A.; Belafsky, Peter C.

    2013-01-01

    The laryngeal adductor reflex (LAR) is an involuntary protective response to stimuli in the larynx. The superior laryngeal nerve (SLN) acts as the afferent limb and the recurrent laryngeal nerve (RLN) as the efferent limb of this reflex, which is modulated by the central nervous system. Perhaps the most clinically significant application of the LAR is its use in laryngopharyngeal (LP) sensory discrimination testing. Importantly, aberrations in the LAR may predict dysphagia or portend clinical...

  2. Axially evoked postural reflexes: influence of task

    OpenAIRE

    Govender, Sendhil; Dennis, Danielle L.; Colebatch, James G.

    2014-01-01

    Postural reflexes were recorded in healthy subjects (n = 17) using brief axial accelerations and tap stimuli applied at the vertebra prominens (C7) and manubrium sterni. Short latency (SL) responses were recorded from the soleus, hamstrings and tibialis anterior muscles and expressed as a percentage of the background EMG prior to stimulus onset. In the majority of postural conditions tested, subjects were recorded standing erect and leaning forward with their feet together. The SL response wa...

  3. ABNORMAL CARDIOVASCULAR REFLEXES IN PATIENTS WITH ACHALASIA

    Institute of Scientific and Technical Information of China (English)

    戈峰; 李泽坚; 柯美云

    1994-01-01

    Using 3 non-invasive tests,abnormalities of cardiovascular reflex function were found in 7 of 15 patients with achalasia.Abnormalities of heart rate responses to the Valsalva maneuver,deep breathing ,and standing were moted in patients with autonomic neuropathy defect.The findings are consistent with the hypothesis that an abnormality of vagal function may contribute to the pathogenesis of achalasia.

  4. Axon density and axon orientation dispersion in children born preterm

    NARCIS (Netherlands)

    Kelly, Claire E.; Thompson, Deanne K.; Chen, Jian; Leemans, Alexander; Adamson, Christopher L.; Inder, Terrie E.; Cheong, Jeanie L Y; Doyle, Lex W.; Anderson, Peter J.

    2016-01-01

    Background Very preterm birth (VPT, <32 weeks' gestation) is associated with altered white matter fractional anisotropy (FA), the biological basis of which is uncertain but may relate to changes in axon density and/or dispersion, which can be measured using Neurite Orientation Dispersion and Density

  5. An experimental study of artificial murine bladder reflex arc established by abdominal reflex

    Institute of Scientific and Technical Information of China (English)

    WANG Jin-wu; ZHAO Yu-wu; HOU Chun-lin; NI Wei-feng; RUI Bi-yu; GUO Shang-chun; ZHENG Xian-you; DAI Ke-rong

    2011-01-01

    Background The neurogenic bladder dysfunction caused by spinal cord injury is difficult to treat clinically. The aim of this research was to establish an artificial bladder reflex arc in rats through abdominal reflex pathway above the level of spinal cord injury, reinnervate the neurogenic bladder and restore bladder micturition.Methods The outcome was achieved by intradural microanastomosis of the right T13 ventral root to S2 ventral root with autogenous nerve grafting, leaving the right T13 dorsal root intact. Long-term function of the reflex arc was assessed from nerve electrophysiological data and intravesical pressure tests during 8 months postoperation. Horseradish peroxidase (HRP) tracing was performed to observe the effectiveness of the artificial reflex.Results Single stimulus (3 mA, 0.3 ms pulses, 20 Hz, 5-second duration) on the right T13 dorsal root resulted in evoked action potentials, raised intravesical pressures and bladder smooth muscle, compound action potential recorded from the right vesical plexus before and after the spinal cord transaction injury between L5 and S4 segmental in 12 Sprague-Dawley rats. There were HRP labelled cells in T13 ventral horn on the experimental side and in the intermediolateral nucleus on both sides of the L6-S4 segments after HRP injection. There was no HRP labelled cell in T13 ventral horn on the control side.Conclusion Using the surviving somatic reflex above the level of spinal cord injury to reconstruct the bladder autonomous reflex arc by intradural microanastomosis of ventral root with a segment of autologous nerve grafting is practical in rats and may have clinical applications for humans.

  6. H-reflex changes following spinal cord injury.

    Science.gov (United States)

    Little, J W; Halar, E M

    1985-01-01

    Changes in both central synaptic excitability (CSE) and peripheral sensitivity of muscle spindle stretch receptors have been hypothesized to contribute to hyperactive stretch reflexes of spasticity. To assess CSE, the monosynaptic H-reflex to the triceps surae muscles was tested serially over the first six months after traumatic spinal cord injury (SCI). Six clinically complete SCI patients were compared to age-matched control subjects. As a measure of H-reflex excitability, H/M ratios were calculated by dividing maximum H-reflex by maximum M-response amplitude. Analysis of variance over the testing trials showed significant change in H/M ratios for SCI patients (p less than 0.01). T-tests comparing mean H/M ratios at different time periods after SCI revealed a significant increment after three months (p less than 0.01). H-reflex amplitude also increased significantly over this time period (p less than 0.04), but M-response amplitude did not change significantly. These increases in H/M ratio and H-reflex amplitude suggest that an increase in CSE may contribute to the appearance of hyperreflexia after SCI. PMID:3966862

  7. Outsourcing CREB translation to axons to survive

    OpenAIRE

    Lin, Andrew C; Holt, Christine E.

    2008-01-01

    Nerve growth factor induces sensory neuron survival via retrograde signalling from the axon to the cell body. Local translation of the transcription factor CREB in the axon, followed by its transport to the nucleus, is involved in this process.

  8. Axon damage and repair in multiple sclerosis.

    OpenAIRE

    Perry, V.H.; Anthony, D. C.

    1999-01-01

    It is well known that within long-standing multiple sclerosis (MS) lesions there is axonal loss but whether it is an early or late event has been more difficult to establish. The use of immunocytochemical methods that reveal axonal end-bulbs is a valuable approach to investigating acute axonal injury in human pathological material. The application of these techniques to multiple sclerosis tissue reveals evidence of axonal injury in acute lesions; the distribution of the end-bulbs in acute and...

  9. In vivo imaging of axonal transport using MRI: aging and Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Minoshima, Satoshi [University of Washington, Departments of Radiology and Bioengineering, 1959 N.E. Pacific Street, RR215, Box 357115, Seattle, WA (United States); Cross, Donna [University of Washington, Department of Radiology, 1959 N.E. Pacific Street, RR215, Box 357115, Seattle, WA (United States)

    2008-03-15

    MRI using manganese as a trans-synaptic axonal tracing agent can unveil dynamics of axonal transport in living subjects. We use this technology to test the hypotheses if impaired axonal transport is a significant pathophysiological process in aging and early Alzheimer's disease (AD) and in part accounting for ''selective vulnerability'' of projection neurons in AD. To allow quantitative assessment of axonal transport in vivo, we developed voxel-based statistical mapping technology as well as a tracer kinetic modeling method based on mass transport for manganese-enhanced MRI to estimate axonal transport rates in aging rats and AD transgenic mice. These techniques demonstrated manganese-enhanced signal changes in axonal projections of the olfactory tract and decreased axonal transport rates in rodent models of aging and AD. Altered axonal transport may be a critical pathophysiological process in aging and AD. Manganese-enhanced MRI provides exciting opportunities for the investigations of altered axonal transport in AD and related disorders. (orig.)

  10. Dentocardiac Reflex: an Allegedly New Subform of the Trigeminocardiac Reflex

    OpenAIRE

    Amr Abdulazim; Ashkan Rashad; Behnam Bohluli; Bernhard Schaller; Fatemeh Momen-Heravi; Pooyan Sadr-Eshkevari

    2011-01-01

    Trigeminocardiac reflex (TCR) is currently defined as a sudden bradycardia and decrease in mean arterial blood pressure by 20% during the manipulation of the branches of trigeminal nerve. TCR, especially during the last decade has been mostly studied in the course of neurosurgical procedures which are supposed to elicit the central subtype of TCR. Previously the well-known oculocardiac reflex was also considered as a subtype of TCR. Recently, surgeons dealing with the other branches of the fi...

  11. The Sociology of Lesbian and Gay Reflexivity or Reflexive Sociology?

    OpenAIRE

    Brian Heaphy

    2008-01-01

    This article is concerned with sociological conceptualisations of lesbian and gay sexualities as reflexive forms of existence, and identifies core problems with these. Our sociological narratives about lesbian and gay reflexivity tend to be partial in two senses. First, they talk about and envision only very particular - and relatively exclusive – experience, and fail to adequately account for the significance of difference and power in shaping diverse lesbian and gay experiences. Second, t...

  12. Management of Reflex Anoxic Seizures

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-10-01

    Full Text Available Investigators at the Roald Dahl EEG Unit, Alder Hey Children’s NHS Foundation, Liverpool, UK, review the definition, pathophysiology, clinical presentation, and management of reflex anoxic seizures (RAS in children.

  13. Reflex Sympathetic Dystrophy in Children

    OpenAIRE

    Adnan Ayvaz

    2013-01-01

       Reflex sympathetic dystrophy (chronic regional pain syndrome) isn’t frequently encountered in practical pediatrics and childhood. Reflex sympathetic dystrophy syndrome (RSD) is a disorder characterized by widespread localized pain, often along with swelling, discoloration, trophic changes and autonomic abnormalities such as vasomotor disorders. Its etio-pathogenesis hasn’t been completely determined.The disease can form in an area innerved by a partially damaged nerve...

  14. Involvement of SARA in Axon and Dendrite Growth.

    Science.gov (United States)

    Arias, Cristina Isabel; Siri, Sebastián Omar; Conde, Cecilia

    2015-01-01

    SARA (Smad Anchor for Receptor Activation) plays a crucial role in Rab5-mediated endocytosis in cell lines localizing to early endosomes where it regulates morphology and function. Here, we analyzed the role of SARA during neuronal development and tested whether it functions as a regulator of endocytic trafficking of selected axonal and membrane proteins. Suppression of SARA perturbs the appearance of juxtanuclear endocytic recycling compartments and the neurons show long axons with large growth cones. Furthermore, surface distribution of the cell adhesion molecule L1 in axons and the fusion of vesicles containing transferring receptor (TfR) in dendrites were increased in neurons where SARA was silenced. Conversely, SARA overexpression generated large early endosomes and reduced neurite outgrowth. Taken together, our findings suggest a significant contribution of SARA to key aspects of neuronal development, including neurite formation. PMID:26405814

  15. Human intraretinal myelination: Axon diameters and axon/myelin thickness ratios

    Science.gov (United States)

    FitzGibbon, Thomas; Nestorovski, Zoran

    2013-01-01

    Purpose: Human intraretinal myelination of ganglion cell axons occurs in about 1% of the population. We examined myelin thickness and axon diameter in human retinal specimens containing myelinated retinal ganglion cell axons. Materials and Methods: Two eyes containing myelinated patches were prepared for electron microscopy. Two areas were examined in one retina and five in the second retina. Measurements were compared to normal retinal and optic nerve samples and the rabbit retina, which normally contains myelinated axons. Measurements were made using a graphics tablet. Results: Mean axon diameter of myelinated axons at all locations were significantly larger than unmyelinated axons (P ≤ 0.01). Myelinated axons within the patches were significantly larger than axons within the optic nerve (P < 0.01). The relationship between axon diameter/fiber diameter (the G-ratio) seen in the retinal sites differed from that in the nerve. G-ratios were higher and myelin thickness was positively correlated to axon diameter (P < 0.01) in the retina but negatively correlated to axon diameter in the nerve (P < 0.001). Conclusion: Intraretinally myelinated axons are larger than non-myelinated axons from the same population and suggests that glial cells can induce diameter changes in retinal axons that are not normally myelinated. This effect is more dramatic on intraretinal axons compared with the normal transition zone as axons enter the optic nerve and these changes are abnormal. Whether intraretinal myelin alters axonal conduction velocity or blocks axonal conduction remains to be clarified and these issues may have different clinical outcomes. PMID:24212308

  16. Dentocardiac Reflex: an Allegedly New Subform of the Trigeminocardiac Reflex

    Directory of Open Access Journals (Sweden)

    Amr Abdulazim

    2011-05-01

    Full Text Available Trigeminocardiac reflex (TCR is currently defined as a sudden bradycardia and decrease in mean arterial blood pressure by 20% during the manipulation of the branches of trigeminal nerve. TCR, especially during the last decade has been mostly studied in the course of neurosurgical procedures which are supposed to elicit the central subtype of TCR. Previously the well-known oculocardiac reflex was also considered as a subtype of TCR. Recently, surgeons dealing with the other branches of the fifth cranial nerve have become more interested in this reflex. Some noteworthy points have been published discussing new aspects of the trigeminocardiac reflex (TCR in simple oral surgical procedures. Arakeri et al. have reviewed the similarities and differences between TCR, vasovagal response (VVR, and syncope. They have also explained a new possible pathway for the reflex during the simple extraction of upper first molars. The present paper aims to briefly discuss these recently presented points. Although the discussed concepts are noteworthy and consistent our preliminary results of our yet to be published studies, it seemed timely for us to discuss some possible shortcomings that may affect the results of such assessments.

  17. Isolation and analyses of axonal ribonucleoprotein complexes.

    Science.gov (United States)

    Doron-Mandel, Ella; Alber, Stefanie; Oses, Juan A; Medzihradszky, Katalin F; Burlingame, Alma L; Fainzilber, Mike; Twiss, Jeffery L; Lee, Seung Joon

    2016-01-01

    Cytoskeleton-dependent RNA transport and local translation in axons are gaining increased attention as key processes in the maintenance and functioning of neurons. Specific axonal transcripts have been found to play roles in many aspects of axonal physiology including axon guidance, axon survival, axon to soma communication, injury response and regeneration. This axonal transcriptome requires long-range transport that is achieved by motor proteins carrying transcripts as messenger ribonucleoprotein (mRNP) complexes along microtubules. Other than transport, the mRNP complex plays a major role in the generation, maintenance, and regulation of the axonal transcriptome. Identification of axonal RNA-binding proteins (RBPs) and analyses of the dynamics of their mRNPs are of high interest to the field. Here, we describe methods for the study of interactions between RNA and proteins in axons. First, we describe a protocol for identifying binding proteins for an RNA of interest by using RNA affinity chromatography. Subsequently, we discuss immunoprecipitation (IP) methods allowing the dissection of protein-RNA and protein-protein interactions in mRNPs under various physiological conditions. PMID:26794529

  18. Analysis of axonal regeneration in the central and peripheral nervous systems of the NG2-deficient mouse

    Directory of Open Access Journals (Sweden)

    Lieberman Alexander R

    2007-09-01

    Full Text Available Abstract Background The chondroitin sulphate proteoglycan NG2 blocks neurite outgrowth in vitro and has been proposed as a major inhibitor of axonal regeneration in the CNS. Although a substantial body of evidence underpins this hypothesis, it is challenged by recent findings including strong expression of NG2 in regenerating peripheral nerve. Results We studied axonal regeneration in the PNS and CNS of genetically engineered mice that do not express NG2, and in sex and age matched wild-type controls. In the CNS, we used anterograde tracing with BDA to study corticospinal tract (CST axons after spinal cord injury and transganglionic labelling with CT-HRP to trace ascending sensory dorsal column (DC axons after DC lesions and a conditioning lesion of the sciatic nerve. Injury to these fibre tracts resulted in no difference between knockout and wild-type mice in the ability of CST axons or DC axons to enter or cross the lesion site. Similarly, after dorsal root injury (with conditioning lesion, most regenerating dorsal root axons failed to grow across the dorsal root entry zone in both transgenic and wild-type mice. Following sciatic nerve injuries, functional recovery was assessed by analysis of the toe-spreading reflex and cutaneous sensitivity to Von Frey hairs. Anatomical correlates of regeneration were assessed by: retrograde labelling of regenerating dorsal root ganglion (DRG cells with DiAsp; immunostaining with PGP 9.5 to visualise sensory reinnervation of plantar hindpaws; electron microscopic analysis of regenerating axons in tibial and digital nerves; and by silver-cholinesterase histochemical study of motor end plate reinnervation. We also examined functional and anatomical correlates of regeneration after injury of the facial nerve by assessing the time taken for whisker movements and corneal reflexes to recover and by retrograde labelling of regenerated axons with Fluorogold and DiAsp. None of the anatomical or functional analyses

  19. [The oculocardiac reflex in blepharoplasties].

    Science.gov (United States)

    Rippmann, V; Scholz, T; Hellmann, S; Amini, P; Spilker, G

    2008-08-01

    The oculocardiac reflex (OCR) is a well-known phenomenon in ophthalmic surgery, but is rarely described in aesthetic blepharoplasty surgery. It was first mentioned in 1908 by Ascher and Dagnini. Since then, ophthalmologists and anaesthesiologists have regarded the onset of the oculocardiac reflex as a significant intraoperative problem, which is undermined by several case reports that describe dysrhythmias which have haved caused morbidity and death. Per definition the OCR is caused by ocular manipulation and involves intraoperative bradycardia by a change of 20 beats/minute compared to the preoperative heart rate or any dysrhythmia during the manipulation via a trigeminal-vagal-mediated reflex arc. Having operated on a 48-year-old, healthy woman in our clinic, who underwent a cardiac arrest during the blepharoplasty procedure, followed by a successful resuscitation, we investigated the onset of the OCR in our blepharoplasty patients within the last 3 years. The onset of the OCR was noted in 22 of 110 (20 %) blepharoplasty patients, mainly affecting younger, low-weighted patients operated under local anaesthesia. Awareness and treatment of this potentially life-threatening oculocardiac reflex are necessary. In most cases the onset of the reflex may be avoided by a gentle operation technique and by refraining from severe traction to the muscle or fat pad. The best treatment of a profound bradycardia caused by the OCR is to release tension to the muscle or fat pad in order to permit the heart rate to return to normal. Intraoperative monitoring is of utmost importance. PMID:18716987

  20. N-docosahexaenoylethanolamine regulates Hedgehog signaling and promotes growth of cortical axons

    Directory of Open Access Journals (Sweden)

    Giorgi Kharebava

    2015-12-01

    Full Text Available Axonogenesis, a process for the establishment of neuron connectivity, is central to brain function. The role of metabolites derived from docosahexaenoic acid (DHA, 22:6n-3 that is specifically enriched in the brain, has not been addressed in axon development. In this study, we tested if synaptamide (N-docosahexaenoylethanolamine, an endogenous metabolite of DHA, affects axon growth in cultured cortical neurons. We found that synaptamide increased the average axon length, inhibited GLI family zinc finger 1 (GLI1 transcription and sonic hedgehog (Shh target gene expression while inducing cAMP elevation. Similar effects were produced by cyclopamine, a regulator of the Shh pathway. Conversely, Shh antagonized elevation of cAMP and blocked synaptamide-mediated increase in axon length. Activation of Shh pathway by a smoothened (SMO agonist (SAG or overexpression of SMO did not inhibit axon growth mediated by synaptamide or cyclopamine. Instead, adenylate cyclase inhibitor SQ22536 abolished synaptamide-mediated axon growth indicating requirement of cAMP elevation for this process. Our findings establish that synaptamide promotes axon growth while Shh antagonizes synaptamide-mediated cAMP elevation and axon growth by a SMO-independent, non-canonical pathway.

  1. CD8+ T cells cause disability and axon loss in a mouse model of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Chandra Deb

    Full Text Available BACKGROUND: The objective of this study was to test the hypothesis that CD8+ T cells directly mediate motor disability and axon injury in the demyelinated central nervous system. We have previously observed that genetic deletion of the CD8+ T cell effector molecule perforin leads to preservation of motor function and preservation of spinal axons in chronically demyelinated mice. METHODOLOGY/PRINCIPAL FINDINGS: To determine if CD8+ T cells are necessary and sufficient to directly injure demyelinated axons, we adoptively transferred purified perforin-competent CD8+ spinal cord-infiltrating T cells into profoundly demyelinated but functionally preserved perforin-deficient host mice. Transfer of CD8+ spinal cord-infiltrating T cells rapidly and irreversibly impaired motor function, disrupted spinal cord motor conduction, and reduced the number of medium- and large-caliber spinal axons. Likewise, immunodepletion of CD8+ T cells from chronically demyelinated wildtype mice preserved motor function and limited axon loss without altering other disease parameters. CONCLUSIONS/SIGNIFICANCE: In multiple sclerosis patients, CD8+ T cells outnumber CD4+ T cells in active lesions and the number of CD8+ T cells correlates with the extent of ongoing axon injury and functional disability. Our findings suggest that CD8+ T cells may directly injure demyelinated axons and are therefore a viable therapeutic target to protect axons and motor function in patients with multiple sclerosis.

  2. Sorting of Dendritic and Axonal Vesicles at the Pre-axonal Exclusion Zone

    Directory of Open Access Journals (Sweden)

    Ginny G. Farías

    2015-11-01

    Full Text Available Polarized sorting of newly synthesized proteins to the somatodendritic and axonal domains of neurons occurs by selective incorporation into distinct populations of vesicular transport carriers. An unresolved issue is how the vesicles themselves are sorted to their corresponding neuronal domains. Previous studies concluded that the axon initial segment (AIS is an actin-based filter that selectively prevents passage of somatodendritic vesicles into the axon. We find, however, that most somatodendritic vesicles fail to enter the axon at a more proximal region in the axon hillock, herein referred to as the pre-axonal exclusion zone (PAEZ. Forced coupling of a somatodendritic cargo protein to an axonally directed kinesin is sufficient to drive transport of whole somatodendritic vesicles through the PAEZ toward the distal axon. Based on these findings, we propose that polarized sorting of transport vesicles occurs at the PAEZ and depends on the ability of the vesicles to acquire an appropriately directed microtubule motor.

  3. Coordinating gene expression and axon assembly to control axon growth: potential role of GSK3 signaling

    Directory of Open Access Journals (Sweden)

    Fengquan Zhou

    2012-02-01

    Full Text Available Axon growth requires coordinated regulation of gene expression in the neuronal soma, anterograde transport of synthesized raw materials along the axon, and assembly of cytoskeleton and membranes in the nerve growth cone. Glycogen synthase kinase 3 (GSK3 signaling has recently been shown to play key roles in regulation of axonal transport and cytoskeletal assembly during axon growth. GSK3 signaling is also known to regulate gene expression via controlling the functions of many transcription factors, suggesting that GSK3 may be an important regulator of gene transcription supporting axon growth. Here we will review signaling pathways that control local axon assembly at the growth cone and gene expression in the soma during developmental or regenerative axon growth and discuss the potential involvement of GSK3 signaling in these processes, with a particular focus on how GSK3 signaling modulates the function of axon growth-associated transcription factors.

  4. Mitochondrial Transport and Docking in Axons

    OpenAIRE

    Cai, Qian; Sheng, Zu-Hang

    2009-01-01

    Proper transport and distribution of mitochondria in axons and at synapses are critical for the normal physiology of neurons. Mitochondria in axons display distinct motility patterns and undergo saltatory and bidirectional movement, where mitochondria frequently stop, start moving again, and change direction. While approximately one-third of axonal mitochondria are mobile in mature neurons, a large proportion remains stationary. Their net movement is significantly influenced by recruitment to...

  5. AxonSeg: Open Source Software for Axon and Myelin Segmentation and Morphometric Analysis.

    Science.gov (United States)

    Zaimi, Aldo; Duval, Tanguy; Gasecka, Alicja; Côté, Daniel; Stikov, Nikola; Cohen-Adad, Julien

    2016-01-01

    Segmenting axon and myelin from microscopic images is relevant for studying the peripheral and central nervous system and for validating new MRI techniques that aim at quantifying tissue microstructure. While several software packages have been proposed, their interface is sometimes limited and/or they are designed to work with a specific modality (e.g., scanning electron microscopy (SEM) only). Here we introduce AxonSeg, which allows to perform automatic axon and myelin segmentation on histology images, and to extract relevant morphometric information, such as axon diameter distribution, axon density and the myelin g-ratio. AxonSeg includes a simple and intuitive MATLAB-based graphical user interface (GUI) and can easily be adapted to a variety of imaging modalities. The main steps of AxonSeg consist of: (i) image pre-processing; (ii) pre-segmentation of axons over a cropped image and discriminant analysis (DA) to select the best parameters based on axon shape and intensity information; (iii) automatic axon and myelin segmentation over the full image; and (iv) atlas-based statistics to extract morphometric information. Segmentation results from standard optical microscopy (OM), SEM and coherent anti-Stokes Raman scattering (CARS) microscopy are presented, along with validation against manual segmentations. Being fully-automatic after a quick manual intervention on a cropped image, we believe AxonSeg will be useful to researchers interested in large throughput histology. AxonSeg is open source and freely available at: https://github.com/neuropoly/axonseg. PMID:27594833

  6. Reflexivity in the research process: psychoanalytic observations

    OpenAIRE

    Brown, J. C.

    2006-01-01

    This paper highlights what psychoanalysis can add to discussions of reflexivity, by specifically describing how reflexivity is conceptualized and fostered on psychoanalytic observation methods courses at the Tavistock Clinic, London. It is demonstrated that this psychological form of reflexivity is relevant to empirical and conceptual work and shown that it shares interesting parallels with debates about reflexivity in social research methods, while also being able to contribute to discussion...

  7. Axonal regeneration through arterial grafts.

    OpenAIRE

    Anderson, P. N.; Turmaine, M.

    1986-01-01

    The left common peroneal nerves of adult inbred mice were severed and allowed to regenerate through the lumina of Y-shaped tubes comprising grafts of abdominal aorta and its bifurcation. Very little regeneration took place within the grafts unless the distal nerve stump was inserted into one limb of the Y-tube. Using syngeneic grafts virtually all the axons regenerating through the lumen grew down the limb of the Y-tube containing the distal nerve. Using non-syngeneic grafts, however, a subst...

  8. Educating the Reflexive Practitioner

    Directory of Open Access Journals (Sweden)

    Marc J. Neveu

    2012-09-01

    wearing any clothes.Notwithstanding such issues, I do believe the studio holds the potentialto be an empowering learning experience. The intention of this article is to question the mode of instruction in an architectural studio. I’ve structured the paper in three parts. First, I will briefly describe the findingsof the study made by the Carnegie Foundation for the Advancementof Teaching known as the Boyer Report.2 To develop and support the findings of the Boyer Report, I introduce the work of the educator Donald Schön. Though I see much merit in the Boyer Report, and Schön’sproposals, I argue that a more nuanced approach is required. I will recommend, therefore, in the second section of this paper that a meansof architectural education as based on the Socratic method may be amore productive approach. My reading of the Socratic method is basedprimarily on early Socratic dialogues and I will specifically use Charmidesto illustrate the issues that I believe are relevant to studio pedagogy.3 From my analysis of Charmides I will, in the third section of the essay,describe how the Socratic method is beneficial to studio pedagogy threeways: reflexive, non-propositional, and finally how Socrates’ approachmay indeed be practical. This last section will be illustrated with a studentproject. It is my conjecture that the Socratic method offers insight intocurrent discussions of educational theory, namely student-centered,project-based learning.

  9. Vestibulospinal control of reflex and voluntary head movement

    Science.gov (United States)

    Boyle, R.; Peterson, B. W. (Principal Investigator)

    2001-01-01

    Secondary canal-related vestibulospinal neurons respond to an externally applied movement of the head in the form of a firing rate modulation that encodes the angular velocity of the movement, and reflects in large part the input "head velocity in space" signal carried by the semicircular canal afferents. In addition to the head velocity signal, the vestibulospinal neurons can carry a more processed signal that includes eye position or eye velocity, or both (see Boyle on ref. list). To understand the control signals used by the central vestibular pathways in the generation of reflex head stabilization, such as the vestibulocollic reflex (VCR), and the maintenance of head posture, it is essential to record directly from identified vestibulospinal neurons projecting to the cervical spinal segments in the alert animal. The present report discusses two key features of the primate vestibulospinal system. First, the termination morphology of vestibulospinal axons in the cervical segments of the spinal cord is described to lay the structural basis of vestibulospinal control of head/neck posture and movement. And second, the head movement signal content carried by the same class of secondary vestibulospinal neurons during the actual execution of the VCR and during self-generated, or active, rapid head movements is presented.

  10. The cofinal property of the Reflexive Indecomposable Banach spaces

    OpenAIRE

    Argyros, Spiros A.; Raikoftsalis, Theocharis

    2010-01-01

    It is shown that every separable reflexive Banach space is a quotient of a reflexive Hereditarily Indecomposable space, which yields that every separable reflexive Banach is isomorphic to a subspace of a reflexive Indecomposable space. Furthermore, every separable reflexive Banach space is a quotient of a reflexive complementably $\\ell_p$ saturated space with $1

  11. TRANSIENT RELEASE REFLEXES IN CATONIC SCHIZOPHRENIA

    OpenAIRE

    Damodaran, Saji S.; Sinha, Vinod K.

    1994-01-01

    This case report describes the presence of grasp reflex and palmomental reflex as a state dependant phenomenon in a 23 year old patient with catatonic schizophrenia. A transitory disturbance of frontal lobe function is proposed as the probable mechanism. The need to study the release reflexes as an effort to delineate a neurological “sub group” of schizophrenia is suggested.

  12. Axonal interferon responses and alphaherpesvirus neuroinvasion

    Science.gov (United States)

    Song, Ren

    Infection by alphaherpesviruses, including herpes simplex virus (HSV) and pseudorabies virus (PRV), typically begins at a peripheral epithelial surface and continues into the peripheral nervous system (PNS) that innervates this tissue. Inflammatory responses are induced at the infected peripheral site prior to viral invasion of the PNS. PNS neurons are highly polarized cells with long axonal processes that connect to distant targets. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which include type I interferon (e.g. IFNbeta) and type II interferon (i.e. IFNgamma). IFNbeta can be produced by all types of cells, while IFNgamma is secreted by some specific types of immune cells. And both types of IFN induce antiviral responses in surrounding cells that express the IFN receptors. The fundamental question is how do PNS neurons respond to the inflammatory milieu experienced only by their axons. Axons must act as potential front-line barriers to prevent PNS infection and damage. Using compartmented cultures that physically separate neuron axons from cell bodies, I found that pretreating isolated axons with IFNbeta or IFNgamma significantly diminished the number of HSV-1 and PRV particles moving from axons to the cell bodies in an IFN receptor-dependent manner. Furthermore, I found the responses in axons are activated differentially by the two types of IFNs. The response to IFNbeta is a rapid, axon-only response, while the response to IFNgamma involves long distance signaling to the PNS cell body. For example, exposing axons to IFNbeta induced STAT1 phosphorylation (p-STAT1) only in axons, while exposure of axons to IFNgamma induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated IFNgamma-, but not IFNbeta-mediated antiviral effects. Proteomic analysis of IFNbeta- or IFNgamma-treated axons identified several differentially regulated proteins. Therefore

  13. Coordinated Eph-ephrin signaling guides migration and axon targeting in the avian auditory system

    Directory of Open Access Journals (Sweden)

    Allen-Sharpley Michelle R

    2012-08-01

    Full Text Available Abstract Background In the avian sound localization circuit, nucleus magnocellularis (NM projects bilaterally to nucleus laminaris (NL, with ipsilateral and contralateral NM axon branches directed to dorsal and ventral NL dendrites, respectively. We previously showed that the Eph receptor EphB2 is expressed in NL neuropil and NM axons during development. Here we tested whether EphB2 contributes to NM-NL circuit formation. Results We found that misexpression of EphB2 in embryonic NM precursors significantly increased the number of axon targeting errors from NM to contralateral NL in a cell-autonomous manner when forward signaling was impaired. We also tested the effects of inhibiting forward signaling of different Eph receptor subclasses by injecting soluble unclustered Fc-fusion proteins at stages when NM axons are approaching their NL target. Again we found an increase in axon targeting errors compared to controls when forward signaling was impaired, an effect that was significantly increased when both Eph receptor subclasses were inhibited together. In addition to axon targeting errors, we also observed morphological abnormalities of the auditory nuclei when EphB2 forward signaling was increased by E2 transfection, and when Eph-ephrin forward signaling was inhibited by E6-E8 injection of Eph receptor fusion proteins. Conclusions These data suggest that EphB signaling has distinct functions in axon guidance and morphogenesis. The results provide evidence that multiple Eph receptors work synergistically in the formation of precise auditory circuitry.

  14. The reflexive case study method

    DEFF Research Database (Denmark)

    Rittenhofer, Iris

    2015-01-01

    This paper extends the international business research on small to medium-sized enterprises (SME) at the nexus of globalization. Based on a conceptual synthesis across disciplines and theoretical perspectives, it offers management research a reflexive method for case study research of postnational...

  15. Reflexivity in Narratives on Practice

    DEFF Research Database (Denmark)

    Jakobsen, Helle Nordentoft; Olesen, Lektor Birgitte Ravn

    Previous research has shown how reflexivity is a precondition for knowledge co-production through productive dialogue in organisational contexts because it entails a re-ordering, re-arranging and re-designing of what one knows and therefore creates new angles of vision. In this paper, we draw on...

  16. Neurofilament spacing, phosphorylation, and axon diameter in regenerating and uninjured lamprey axons.

    Science.gov (United States)

    Pijak, D S; Hall, G F; Tenicki, P J; Boulos, A S; Lurie, D I; Selzer, M E

    1996-05-13

    It has been postulated that phosphorylation of the carboxy terminus sidearms of neurofilaments (NFs) increases axon diameter through repulsive electrostatic forces that increase sidearm extension and interfilament spacing. To evaluate this hypothesis, the relationships among NF phosphorylation, NF spacing, and axon diameter were examined in uninjured and spinal cord-transected larval sea lampreys (Petromyzon marinus). In untransected animals, axon diameters in the spinal cord varied from 0.5 to 50 microns. Antibodies specific for highly phosphorylated NFs labeled only large axons (> 10 microns), whereas antibodies for lightly phosphorylated NFs labeled medium-sized and small axons more darkly than large axons. For most axons in untransected animals, diameter was inversely related to NF packing density, but the interfilament distances of the largest axons were only 1.5 times those of the smallest axons. In addition, the lightly phosphorylated NFs of the small axons in the dorsal columns were widely spaced, suggesting that phosphorylation of NFs does not rigidly determine their spacing and that NF spacing does not rigidly determine axon diameter. Regenerating neurites of giant reticulospinal axons (GRAs) have diameters only 5-10% of those of their parent axons. If axon caliber is controlled by NF phosphorylation via mutual electrostatic repulsion, then NFs in the slender regenerating neurites should be lightly phosphorylated and densely packed (similar to NFs in uninjured small caliber axons), whereas NFs in the parent GRAs should be highly phosphorylated and loosely packed. However, although linear density of NFs (the number of NFs per micrometer) in these slender regenerating neurites was twice that in their parent axons, they were highly phosphorylated. Following sectioning of these same axons close to the cell body, axon-like neurites regenerated ectopically from dendritic tips. These ectopically regenerating neurites had NF linear densities 2.5 times those of

  17. An Intelligent Computerized Stretch Reflex Measurement System For Clinical And Investigative Neurology

    Science.gov (United States)

    Flanagan, P. M.; Chutkow, J. G.; Riggs, M. T.; Cristiano, V. D.

    1987-05-01

    We describe the design of a reliable, user-friendly preprototype system for quantifying the tendon stretch reflexes in humans and large mammals. A hand-held, instrumented reflex gun, the impactor of which contains a single force sensor, interfaces with a computer. The resulting test system can deliver sequences of reproducible stimuli at graded intensities and adjustable durations to a muscle's tendon ("tendon taps"), measure the impacting force of each tap, and record the subsequent reflex muscle contraction from the same tendon -- all automatically. The parameters of the reflex muscle contraction include latency; mechanical threshold; and peak time, peak magnitude, and settling time. The results of clinical tests presented in this paper illustrate the system's potential usefulness in detecting neurologic dysfunction affecting the tendon stretch reflexes, in documenting the course of neurologic illnesses and their response to therapy, and in clinical and laboratory neurologic research.

  18. Cable energy function of cortical axons.

    Science.gov (United States)

    Ju, Huiwen; Hines, Michael L; Yu, Yuguo

    2016-01-01

    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na(+)-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na(+)-counting method severely underestimates energy cost in the cable model by 20-70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship. PMID:27439954

  19. Cable energy function of cortical axons

    Science.gov (United States)

    Ju, Huiwen; Hines, Michael L.; Yu, Yuguo

    2016-01-01

    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na+-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na+-counting method severely underestimates energy cost in the cable model by 20–70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship. PMID:27439954

  20. Neuronal Development: SAD Kinases Make Happy Axons

    OpenAIRE

    Xing, Lei; Newbern, Jason M.; Snider, William D

    2013-01-01

    The polarity proteins LKB1 and SAD-A/B are key regulators of axon specification in the developing cerebral cortex. Recent studies now show that this mechanism cannot be generalized to other classes of neurons: instead, SAD-A/B functions downstream of neurotrophin signaling in sensory neurons to mediate a later stage of axon development — arborization in the target field.

  1. Monopolar recording of H reflexes at various sites.

    Science.gov (United States)

    Little, J W; Hayward, L F; Halar, E

    1989-01-01

    Various monopolar recording electrode sites have been used to record H reflexes and M responses. This investigation revealed a decrease in maximum M response amplitude accompanied by an increase in the H/M amplitude ratio as the active recording electrode was positioned more distally, below the gastrocnemii muscle bellies. H and M latencies were also significantly longer at the most distal recording site, but the latency difference is relatively independent of recording site. Serial variation was least at the most proximal recording site for an immobilized ankle. For an unrestrained ankle, serial variation was greater, but was least at the most distal site. The standard recording site, midway between knee and ankle, was not the best site for minimizing serial variation, and it was the least sensitive to vibration-induced reflex excitability changes. For serial testing of H reflex excitability, an immobilized ankle and measured proximal and distal recording sites are recommended. PMID:2752953

  2. Dynamics of mitochondrial transport in axons

    Directory of Open Access Journals (Sweden)

    Robert Francis Niescier

    2016-05-01

    Full Text Available The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

  3. Dynamics of Mitochondrial Transport in Axons.

    Science.gov (United States)

    Niescier, Robert F; Kwak, Sang Kyu; Joo, Se Hun; Chang, Karen T; Min, Kyung-Tai

    2016-01-01

    The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons. PMID:27242435

  4. Early events in axon/dendrite polarization.

    Science.gov (United States)

    Cheng, Pei-lin; Poo, Mu-ming

    2012-01-01

    Differentiation of axons and dendrites is a critical step in neuronal development. Here we review the evidence that axon/dendrite formation during neuronal polarization depends on the intrinsic cytoplasmic asymmetry inherited by the postmitotic neuron, the exposure of the neuron to extracellular chemical factors, and the action of anisotropic mechanical forces imposed by the environment. To better delineate the functions of early signals among a myriad of cellular components that were shown to influence axon/dendrite formation, we discuss their functions by distinguishing their roles as determinants, mediators, or modulators and consider selective degradation of these components as a potential mechanism for axon/dendrite polarization. Finally, we examine whether these early events of axon/dendrite formation involve local autocatalytic activation and long-range inhibition, as postulated by Alan Turing for the morphogenesis of patterned biological structure. PMID:22715881

  5. Increased Auditory Startle Reflex in Children with Functional Abdominal Pain

    NARCIS (Netherlands)

    Bakker, Mirte J.; Boer, Frits; Benninga, Marc A.; Koelman, Johannes H. T. M.; Tijssen, Marina A. J.

    2010-01-01

    Objective To test the hypothesis that children with abdominal pain-related functional gastrointestinal disorders have a general hypersensitivity for sensory stimuli. Study design Auditory startle reflexes were assessed in 20 children classified according to Rome III classifications of abdominal pain

  6. Abnormal Corticospinal Excitability in Traumatic Diffuse Axonal Brain Injury

    OpenAIRE

    Bernabeu, Montse; Demirtas-Tatlidede, Asli; Opisso, Eloy; Lopez, Raquel; Tormos, Jose Mª; Pascual-Leone, Alvaro

    2009-01-01

    This study aimed to investigate the cortical motor excitability characteristics in diffuse axonal injury (DAI) due to severe traumatic brain injury (TBI). A variety of excitatory and inhibitory transcranial magnetic stimulation (TMS) paradigms were applied to primary motor cortices of 17 patients and 11 healthy controls. The parameters of testing included resting motor threshold (MT), motor evoked potential (MEP) area under the curve, input-output curves, MEP variability, and silent period (S...

  7. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease

    OpenAIRE

    Chu, Yaping; Morfini, Gerardo A.; Langhamer, Lori B.; He, Yinzhen; Brady, Scott T.; KORDOWER, JEFFREY H.

    2012-01-01

    The progressive loss of the nigrostriatal pathway is a distinguishing feature of Parkinson’s disease. As terminal field loss seems to precede cell body loss, we tested whether alterations of axonal transport motor proteins would be early features in Parkinson’s disease. There was a decline in axonal transport motor proteins in sporadic Parkinson’s disease that preceded other well-known nigral cell-related pathology such as phenotypic downregulation of dopamine. Reductions in conventional kine...

  8. Vestibular reflexes of otolith origin

    Science.gov (United States)

    Wilson, Victor J.

    1988-01-01

    The vestibular system and its role in the maintenance of posture and in motion sickness is investigated using cats as experimental subjects. The assumption is that better understanding of the physiology of vestibular pathways is not only of intrinsic value, but will help to explain and eventually alleviate the disturbances caused by vestibular malfunction, or by exposure to an unusual environment such as space. The first project deals with the influence on the spinal cord of stimulation of the vestibular labyrinth, particularly the otoliths. A second was concerned with the properties and neural basis of the tonic neck reflex. These two projects are related, because vestibulospinal and tonic neck reflexes interact in the maintenance of normal posture. The third project began with an interest in mechanisms of motion sickness, and eventually shifted to a study of central control of respiratory muscles involved in vomiting.

  9. Reflexive fatherhood in everyday life

    DEFF Research Database (Denmark)

    Westerling, Allan

    2015-01-01

    This article looks at fathering practices in Denmark, using the findings from a research project on everyday family life in Denmark. It takes a social psychological perspective and employs discursive psychology and theories about reflexive modernisation. It shows how fathers orient towards intimacy....... Through this analysis and discussion, the article offers a way to understand the complexities of fathering in everyday life from the perspective of fathers....

  10. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injur y in stroke rats

    Institute of Scientific and Technical Information of China (English)

    Yi Xu; Shiwei Du; Xinguang Yu; Xiao Han; Jincai Hou; Hao Guo

    2014-01-01

    Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that in-travenous transplantation of human bone marrow mesenchymal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including mi-crotubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These ifndings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneifcial effects in-clude resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration.

  11. Genetics Home Reference: giant axonal neuropathy

    Science.gov (United States)

    ... in giant axonal neuropathy: new insights into disease mechanisms. Muscle Nerve. 2012 Aug;46(2):246-56. ... with a qualified healthcare professional . About Genetics Home Reference Site Map Contact Us Selection Criteria for Links ...

  12. Reflexivity, social transformation, and counter culture

    OpenAIRE

    Cox, Laurence

    1997-01-01

    This paper attempts to identify how reflexivity works within the local rationalities of social movement milieux that, it is argued, represent an important source of the development of reflexivity in contemporary lifeworlds. In interviews in the Dublin counter culture, reflexivity appears above all as the institutionalisation of autonomy, the creation of new social forms for self-determined purposes. A starting point is strategies of distancing from the taken-for-granted assumptions of in...

  13. The emergence of reflexive global labour law

    OpenAIRE

    Rogowski, Ralf

    2015-01-01

    The article introduces the main tenets of reflexive labour law and uses this perspective to interpret core trends in global labour law. It suggests a conceptual distinction between international and global labour law and identifies a transformation in the global labour law regime related to processes of reflexivity and constitutionalisation. The first part of the article analyses reflexivity within the International Labour Organization (ILO) in relation to its policy of defining labour standa...

  14. The trigeminocardiac reflex – a comparison with the diving reflex in humans

    OpenAIRE

    Lemaitre, Frederic; Chowdhury, Tumul; Schaller, Bernhard

    2015-01-01

    The trigeminocardiac reflex (TCR) has previously been described in the literature as a reflexive response of bradycardia, hypotension, and gastric hypermotility seen upon mechanical stimulation in the distribution of the trigeminal nerve. The diving reflex (DR) in humans is characterized by breath-holding, slowing of the heart rate, reduction of limb blood flow and a gradual rise in the mean arterial blood pressure. Although the two reflexes share many similarities, their relationship and esp...

  15. Arakeri′s Reflex: an Alternative Pathway for Dento-Cardiac Reflex Mediated Syncope

    OpenAIRE

    Veena Arali; Shailaja Reddy; C G Raghuram; Gururaj Arakeri

    2010-01-01

    Introduction: Dentocardiac reflex, a variant of trigeminocardiac reflex elicited specifically during tooth extraction procedures in den-tal/maxillofacial surgery and is believed to cause syncope with an afferent link mediated by posterior superior alveolar nerve. Another variant of trigeminocardiac reflex which is also of interest to the oral and maxillofacial surgeon is oculocardiac reflex which can be triggered by direct or indirect manipulation of eye globe or muscles around it.The hypothe...

  16. Reflexive Aero Structures for Enhanced Survivability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cornerstone Research Group Inc. (CRG) will develop an advanced reflexive structure technology system to increase the survivability of future systems constructed of...

  17. Reflex control of the spine and posture: a review of the literature from a chiropractic perspective

    Directory of Open Access Journals (Sweden)

    Schlappi Mark

    2005-08-01

    Full Text Available Abstract Objective This review details the anatomy and interactions of the postural and somatosensory reflexes. We attempt to identify the important role the nervous system plays in maintaining reflex control of the spine and posture. We also review, illustrate, and discuss how the human vertebral column develops, functions, and adapts to Earth's gravity in an upright position. We identify functional characteristics of the postural reflexes by reporting previous observations of subjects during periods of microgravity or weightlessness. Background Historically, chiropractic has centered around the concept that the nervous system controls and regulates all other bodily systems; and that disruption to normal nervous system function can contribute to a wide variety of common ailments. Surprisingly, the chiropractic literature has paid relatively little attention to the importance of neurological regulation of static upright human posture. With so much information available on how posture may affect health and function, we felt it important to review the neuroanatomical structures and pathways responsible for maintaining the spine and posture. Maintenance of static upright posture is regulated by the nervous system through the various postural reflexes. Hence, from a chiropractic standpoint, it is clinically beneficial to understand how the individual postural reflexes work, as it may explain some of the clinical presentations seen in chiropractic practice. Method We performed a manual search for available relevant textbooks, and a computer search of the MEDLINE, MANTIS, and Index to Chiropractic Literature databases from 1970 to present, using the following key words and phrases: "posture," "ocular," "vestibular," "cervical facet joint," "afferent," "vestibulocollic," "cervicocollic," "postural reflexes," "spaceflight," "microgravity," "weightlessness," "gravity," "posture," and "postural." Studies were selected if they specifically tested any or

  18. Tibialis anterior stretch reflex in early stance is suppressed by repetitive transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Zuur, Abraham T; Christensen, Mark Schram; Sinkjær, Thomas;

    2009-01-01

    Abstract A rapid plantar flexion perturbation in the early stance phase of walking elicits a large stretch reflex in tibialis anterior (TA). In this study we use repetitive Transcranial Magnetic Stimulation (rTMS) to test if this response is mediated through a transcortical pathway. TA stretch...... reflexes were elicited in the early stance phase of the step cycle during treadmill walking. 20 minutes of 1 Hz rTMS at 115% resting motor threshold (MTr) significantly decreased (p<0.05) the magnitude of the later component of the reflex at a latency of ~100 ms up to 25 min after the rTMS. Control...

  19. Protein phosphorylation: Localization in regenerating optic axons

    International Nuclear Information System (INIS)

    A number of axonal proteins display changes in phosphorylation during goldfish optic nerve regeneration. (1) To determine whether the phosphorylation of these proteins was closely linked to their synthesis in the retinal ganglion cell body, cycloheximide was injected intraocularly into goldfish whose optic nerves had been regenerating for 3 weeks. Cycloheximide reduced the incorporation of [3H]proline and 32P orthophosphate into total nerve protein by 84% and 46%, respectively. Of the 20 individual proteins examined, 17 contained less than 15% of the [3H]proline label measured in corresponding controls, whereas 18 proteins contained 50% or more of the 32P label, suggesting that phosphorylation was largely independent of synthesis. (2) To determine whether the proteins were phosphorylated in the ganglion cell axons, axonal transport of proteins was blocked by intraocular injection of vincristine. Vincristine reduced [3H]proline labeling of total protein by 88% and 32P labeling by 49%. Among the individual proteins [3H]proline labeling was reduced by 90% or more in 18 cases but 32P labeling was reduced only by 50% or less. (3) When 32P was injected into the cranial cavity near the ends of the optic axons, all of the phosphoproteins were labeled more intensely in the optic tract than in the optic nerve. These results suggest that most of the major phosphoproteins that undergo changes in phosphorylation in the course of regeneration are phosphorylated in the optic axons

  20. How Schwann Cells Sort Axons: New Concepts.

    Science.gov (United States)

    Feltri, M Laura; Poitelon, Yannick; Previtali, Stefano Carlo

    2016-06-01

    Peripheral nerves contain large myelinated and small unmyelinated (Remak) fibers that perform different functions. The choice to myelinate or not is dictated to Schwann cells by the axon itself, based on the amount of neuregulin I-type III exposed on its membrane. Peripheral axons are more important in determining the final myelination fate than central axons, and the implications for this difference in Schwann cells and oligodendrocytes are discussed. Interestingly, this choice is reversible during pathology, accounting for the remarkable plasticity of Schwann cells, and contributing to the regenerative potential of the peripheral nervous system. Radial sorting is the process by which Schwann cells choose larger axons to myelinate during development. This crucial morphogenetic step is a prerequisite for myelination and for differentiation of Remak fibers, and is arrested in human diseases due to mutations in genes coding for extracellular matrix and linkage molecules. In this review we will summarize progresses made in the last years by a flurry of reverse genetic experiments in mice and fish. This work revealed novel molecules that control radial sorting, and contributed unexpected ideas to our understanding of the cellular and molecular mechanisms that control radial sorting of axons. PMID:25686621

  1. Calpain activity promotes the sealing of severed giant axons

    OpenAIRE

    Godell, Christopher M.; Smyers, Mark E.; Eddleman, Christopher S.; Ballinger, Martis L.; Fishman, Harvey M.; Bittner, George D.

    1997-01-01

    A barrier (seal) must form at the cut ends of a severed axon if a neuron is to survive and eventually regenerate. Following severance of crayfish medial giant axons in physiological saline, vesicles accumulate at the cut end and form a barrier (seal) to ion and dye diffusion. In contrast, squid giant axons do not seal, even though injury-induced vesicles form after axonal transection and accumulate at cut axonal ends. Neither axon seals in Ca2+-free salines. The addition of calpain to the bat...

  2. Facial reflex examination for assessment of trigeminal nerve involvement in pituitary fossa tumours.

    OpenAIRE

    Bynke, O

    1985-01-01

    Sixteen patients with pituitary fossa tumours with different intrasellar extension have been studied by facial reflex examination, a neurophysiological test for the trigemino-facial pathway. Impaired transmission along the reflex path was shown in patients with proved encroachments on the flexible walls of the cavernous sinuses, but with no tumour spread to the brain stem and facial nerve. The findings were consistent with a subclinical involvement of the first trigeminal division. Tumour rem...

  3. High-speed video-oculography applied to assess pupil light reflex

    OpenAIRE

    Roig Hernández, Ana Belén; Espinosa Tomás, Julián; Pérez Rodríguez, Jorge; Mas Candela, David

    2014-01-01

    Eye response to light exposure is usually described through the pupillary light reflex, which controls the pupil diameter and allows for testing the sensory and motor functions of the eye. We have arranged an experimental setup and developed a procedure in order to improve the video-oculography experiment through high-speed imaging. The technique has been applied over eleven people distinguishing between consensual and direct pupillary light reflexes and analyzing the eye dominance. We found ...

  4. Testosterone and grasp-reflex differences in human neonates

    OpenAIRE

    Tan, Uner; Tan, Meliha

    2001-01-01

    According to the Geschwind-Behan-Galaburda (GBG) hypothesis, prenatal testosterone (T) causes a slowing in the development of the left brain with a consequent compensatory growth in the right brain, creating a reverse organisation of the cerebral lateralisation. That is, left- and right-handedness might be associated with high and low prenatal T levels, respectively. To test this hypothesis, the relations of T levels (umbilical cord blood) to grasp-reflex strengths were studied in human ne...

  5. Antecedents and Consequences of Reflexivity in New Product Idea Screening

    OpenAIRE

    Hammedi, W.; Riel, van, A.C.M.J.; Sasovova, Z.

    2011-01-01

    Pre-development activities, such as new product idea screening, are considered to play an important role in innovation success. At the screening stage, a management team evaluates new product and service ideas and makes a first go/no-go decision under high levels of uncertainty and ambiguity. The present study proposes and tests a model of team-level antecedents and consequences of reflexivity - the explicit evaluation and discussion of working methods, tools, and criteria within a team - in ...

  6. Microfluidic device for unidirectional axon growth

    Science.gov (United States)

    Malishev, E.; Pimashkin, A.; Gladkov, A.; Pigareva, Y.; Bukatin, A.; Kazantsev, V.; Mukhina, I.; Dubina, M.

    2015-11-01

    In order to better understand the communication and connectivity development of neuron networks, we designed microfluidic devices with several chambers for growing dissociated neuronal cultures from mice fetal hippocampus (E18). The chambers were connected with microchannels providing unidirectional axonal growth between “Source” and “Target” neural sub-networks. Experiments were performed in a hippocampal cultures plated in a poly-dimethylsiloxane (PDMS) microfluidic chip, aligned with a 60 microelectrode array (MEA). Axonal growth through microchannels was observed with brightfield, phase-contrast and fluorescence microscopy, and after 7 days in vitro electrical activity was recorded. Visual inspection and spike propagation analysis showed the predominant axonal growth in microchannels in a direction from “Source” to “Target”.

  7. Reflexive Learning through Visual Methods

    DEFF Research Database (Denmark)

    Frølunde, Lisbeth

    2014-01-01

    methods are exemplified through two university classroom cases about collaborative idea generation processes. The visual methods and materials in the cases are photo elicitation using photo cards, and modeling with LEGO Serious Play sets. Why. The goal is to encourage the reader, whether student or...... professional, to facilitate with visual methods in a critical, reflective, and experimental way. The chapter offers recommendations for facilitating with visual methods to support playful, emergent designerly processes. The chapter also has a critical, situated perspective. Where. This chapter offers case...... vignettes that refer to design-oriented workshops where student groups generate ideas, such as for a campaign. The cases are set at Roskilde University. How. There are recommendations on how to facilitate workshops and develop your own practice as a reflexive facilitator. Some of the typical facilitation...

  8. Diverse modes of axon elaboration in the developing neocortex.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The development of axonal arbors is a critical step in the establishment of precise neural circuits, but relatively little is known about the mechanisms of axonal elaboration in the neocortex. We used in vivo two-photon time-lapse microscopy to image axons in the neocortex of green fluorescent protein-transgenic mice over the first 3 wk of postnatal development. This period spans the elaboration of thalamocortical (TC and Cajal-Retzius (CR axons and cortical synaptogenesis. Layer 1 collaterals of TC and CR axons were imaged repeatedly over time scales ranging from minutes up to days, and their growth and pruning were analyzed. The structure and dynamics of TC and CR axons differed profoundly. Branches of TC axons terminated in small, bulbous growth cones, while CR axon branch tips had large growth cones with numerous long filopodia. TC axons grew rapidly in straight paths, with frequent interstitial branch additions, while CR axons grew more slowly along tortuous paths. For both types of axon, new branches appeared at interstitial sites along the axon shaft and did not involve growth cone splitting. Pruning occurred via retraction of small axon branches (tens of microns, at both CR and TC axons or degeneration of large portions of the arbor (hundreds of microns, for TC axons only. The balance between growth and retraction favored overall growth, but only by a slight margin. Given the identical layer 1 territory upon which CR and TC axons grow, the differences in their structure and dynamics likely reflect distinct intrinsic growth programs for axons of long projection neurons versus local interneurons.

  9. Automated Axon Counting in Rodent Optic Nerve Sections with AxonJ

    Science.gov (United States)

    Zarei, Kasra; Scheetz, Todd E.; Christopher, Mark; Miller, Kathy; Hedberg-Buenz, Adam; Tandon, Anamika; Anderson, Michael G.; Fingert, John H.; Abràmoff, Michael David

    2016-01-01

    We have developed a publicly available tool, AxonJ, which quantifies the axons in optic nerve sections of rodents stained with paraphenylenediamine (PPD). In this study, we compare AxonJ’s performance to human experts on 100x and 40x images of optic nerve sections obtained from multiple strains of mice, including mice with defects relevant to glaucoma. AxonJ produced reliable axon counts with high sensitivity of 0.959 and high precision of 0.907, high repeatability of 0.95 when compared to a gold-standard of manual assessments and high correlation of 0.882 to the glaucoma damage staging of a previously published dataset. AxonJ allows analyses that are quantitative, consistent, fully-automated, parameter-free, and rapid on whole optic nerve sections at 40x. As a freely available ImageJ plugin that requires no highly specialized equipment to utilize, AxonJ represents a powerful new community resource augmenting studies of the optic nerve using mice. PMID:27226405

  10. Vestibuloocular reflex of rhesus monkeys after spaceflight

    Science.gov (United States)

    Cohen, Bernard; Kozlovskaia, Inessa; Raphan, Theodore; Solomon, David; Helwig, Denice; Cohen, Nathaniel; Sirota, Mikhail; Iakushin, Sergei

    1992-01-01

    The vestibuloocular reflex (VOR) of two rhesus monkeys was recorded before and after 14 days of spaceflight. The gain (eye velocity/head velocity) of the horizontal VOR, tested 15 and 18 h after landing, was approximately equal to preflight values. The dominant time constant of the animal tested 15 h after landing was equivalent to that before flight. During nystagmus induced by off-vertical axis rotation (OVAR), the latency, rising time constant, steady-state eye velocity, and phase of modulation in eye velocity and eye position with respect to head position were similar in both monkeys before and after flight. There were changes in the amplitude of modulation of horizontal eye velocity during steady-state OVAR and in the ability to discharge stored activity rapidly by tilting during postrotatory nystagmus (tilt dumping) after flight: OVAR modulations were larger, and tilt dumping was lost in the one animal tested on the day of landing and for several days thereafter. If the gain and time constant of the horizontal VOR exchange in microgravity, they must revert to normal soon after landing. The changes that were observed suggest that adaptation to microgravity had caused alterations in way that the central nervous system processes otolith input.

  11. Axonal transport of ribonucleoprotein particles (vaults).

    Science.gov (United States)

    Li, J Y; Volknandt, W; Dahlstrom, A; Herrmann, C; Blasi, J; Das, B; Zimmermann, H

    1999-01-01

    RNA was previously shown to be transported into both dendritic and axonal compartments of nerve cells, presumably involving a ribonucleoprotein particle. In order to reveal potential mechanisms of transport we investigated the axonal transport of the major vault protein of the electric ray Torpedo marmorata. This protein is the major protein component of a ribonucleoprotein particle (vault) carrying a non-translatable RNA and has a wide distribution in the animal kingdom. It is highly enriched in the cholinergic electromotor neurons and similar in size to synaptic vesicles. The axonal transport of vaults was investigated by immunofluorescence, using the anti-vault protein antibody as marker, and cytofluorimetric scanning, and was compared to that of the synaptic vesicle membrane protein SV2 and of the beta-subunit of the F1-ATPase as a marker for mitochondria. Following a crush significant axonal accumulation of SV2 proximal to the crush could first be observed after 1 h, that of mitochondria after 3 h and that of vaults after 6 h, although weekly fluorescent traces of accumulations of vault protein were observed in the confocal microscope as early as 3 h. Within the time-period investigated (up to 72 h) the accumulation of all markers increased continuously. Retrograde accumulations also occurred, and the immunofluorescence for the retrograde component, indicating recycling, was weaker than that for the anterograde component, suggesting that more than half of the vaults are degraded within the nerve terminal. High resolution immunofluorescence revealed a granular structure-in accordance with the biochemical characteristics of vaults. Of interest was the observation that the increase of vault immunoreactivity proximal to the crush accelerated with time after crushing, while that of SV2-containing particles appeared to decelerate, indicating that the crush procedure with time may have induced perikaryal alterations in the production and subsequent export to the axon

  12. Improvement of cobalt-transport in axons by complexing agents.

    Science.gov (United States)

    Gallyas, F; Lénárd, L; Lázár, G

    1978-09-01

    The use of the cobalt technique is limited by the fact that cobaltous ions travel within axons for a shorter distance than do other intracellular markers. In the present experiments different organic cobaltous complexes were tested in the rat's sciatic nerve. Cobaltous complexes containing ornithine, threonine, lysine or Girard's reagent travelled two or three times further than did the cobaltous ions alone. Using the lysine complex in the frog's visual system, very fine terminals were observed which have never been demonstrated with other techniques. The possible use of other metal complexes as intracellular markers are also discussed. PMID:19605220

  13. MSC p43 required for axonal development in motor neurons

    Science.gov (United States)

    Zhu, Xiaodong; Liu, Yang; Yin, Yanqing; Shao, Aiyun; Zhang, Bo; Kim, Sunghoon; Zhou, Jiawei

    2009-01-01

    Neuron connectivity and correct neural function largely depend on axonal integrity. Neurofilaments (NFs) constitute the main cytoskeletal network maintaining the structural integrity of neurons and exhibit dynamic changes during axonal and dendritic growth. However, the mechanisms underlying axonal development and maintenance remain poorly understood. Here, we identify that multisynthetase complex p43 (MSC p43) is essential for NF assembly and axon maintenance. The MSC p43 protein was predominantly expressed in central neurons and interacted with NF light subunit in vivo. Mice lacking MSC p43 exhibited axon degeneration in motor neurons, defective neuromuscular junctions, muscular atrophy, and motor dysfunction. Furthermore, MSC p43 depletion in mice caused disorganization of the axonal NF network. Mechanistically, MSC p43 is required for maintaining normal phosphorylation levels of NFs. Thus, MSC p43 is indispensable in maintaining axonal integrity. Its dysfunction may underlie the NF disorganization and axon degeneration associated with motor neuron degenerative diseases. PMID:19717447

  14. [Research progress of rectoanal inhibitory reflex].

    Science.gov (United States)

    Yin, Shuhui; Zhao, Ke

    2015-12-01

    The understanding of rectoanal inhibitory reflex (RAIR) is progressing for the latest 100 years. From the discovery of its important role in diagnosis of Hirschsprung's disease to all aspects of its development, reflex pathways, neural regulation and physiological functions, there have been more in-depth explorations. It is now recognized that a number of other diseases also have a more specific performance of RAIR. It has become an important and indispensable part to anorectal manometry. Research progress of rectoanal inhibitory reflex is reviewed in this article. PMID:26704013

  15. Enhanced D1 and D2 Inhibitions Induced by Low-Frequency Trains of Conditioning Stimuli: Differential Effects on H- and T-Reflexes and Possible Mechanisms

    Science.gov (United States)

    Mezzarane, Rinaldo André; Magalhães, Fernando Henrique; Chaud, Vitor Martins; Elias, Leonardo Abdala; Kohn, André Fabio

    2015-01-01

    Mechanically evoked reflexes have been postulated to be less sensitive to presynaptic inhibition (PSI) than the H-reflex. This has implications on investigations of spinal cord neurophysiology that are based on the T-reflex. Preceding studies have shown an enhanced effect of PSI on the H-reflex when a train of ~10 conditioning stimuli at 1 Hz was applied to the nerve of the antagonist muscle. The main questions to be addressed in the present study are if indeed T-reflexes are less sensitive to PSI and whether (and to what extent and by what possible mechanisms) the effect of low frequency conditioning, found previously for the H-reflex, can be reproduced on T-reflexes from the soleus muscle. We explored two different conditioning-to-test (C-T) intervals: 15 and 100 ms (corresponding to D1 and D2 inhibitions, respectively). Test stimuli consisted of either electrical pulses applied to the posterior tibial nerve to elicit H-reflexes or mechanical percussion to the Achilles tendon to elicit T-reflexes. The 1 Hz train of conditioning electrical stimuli delivered to the common peroneal nerve induced a stronger effect of PSI as compared to a single conditioning pulse, for both reflexes (T and H), regardless of C-T-intervals. Moreover, the conditioning train of pulses (with respect to a single conditioning pulse) was proportionally more effective for T-reflexes as compared to H-reflexes (irrespective of the C-T interval), which might be associated with the differential contingent of Ia afferents activated by mechanical and electrical test stimuli. A conceivable explanation for the enhanced PSI effect in response to a train of stimuli is the occurrence of homosynaptic depression at synapses on inhibitory interneurons interposed within the PSI pathway. The present results add to the discussion of the sensitivity of the stretch reflex pathway to PSI and its functional role. PMID:25807195

  16. Correlation of gastroesophageal reflex with aspiration pneumonia after surgery

    International Nuclear Information System (INIS)

    In order to elucidate the correlation of gastroesophageal reflex (GER) with aspiration pneumonia after surgery, 48 patients (mean, 75.6 years) with gastric cancer treated at the hospital from March, 1994 to December, 1994 were subjected to this prospective study. The pharyngeal stimulation test, nutritional assessment, radionuclide esophageal scintigraphy (34 cases) were performed before surgery and relationship between those results and aspiration pneumonia were studied. Aspiration pneumonia occurred in 3 cases, and all of them were in, significantly, poor nutritional status, compared with other. A significant increase in the frequency of GER was observed when a naso-gastric tube (NGT) was placed, but surprisingly, all the patients with aspiration pneumonia were 3 out of 4 patients who had continuous GER without NGT. It is noteworthy, continuous GER without NGT was significantly (p<0.001) affected postoperative aspiration pneumonia and impaired phalyngeal reflex was frequently correlated with development of aspiration pneumonia, when malnutritional status existed. (author)

  17. Functions of axon guidance molecules in synapse formation

    OpenAIRE

    Chen, Shih-Yu; Cheng, Hwai-Jong

    2009-01-01

    Axon guidance and synapse formation are important developmental events for establishing a functional neuronal circuitry. These two related cellular processes occur in a coordinated fashion but previous studies from multiple model organisms seemed to suggest that axon guidance and synapse formation are mediated by distinct molecular cues. Thus, axon guidance molecules are responsible for guiding the navigating axon toward its target area, while other adhesion or ligand-receptor molecules speci...

  18. Filtration coefficient of the axon membrane as measured with hydrostatic and osmotic methods.

    Science.gov (United States)

    Vargas, F F

    1968-01-01

    The hydraulic conductivity of the membranes surrounding the giant axon of the squid, Dosidicus gigas, was measured. In some axons the axoplasm was partially removed by suction. Perfusion was then established by insertion of a second pipette. In other axons the axoplasm was left intact and only one pipette was inserted. In both groups hydrostatic pressure was applied by means of a water column in a capillary manometer. Displacement of the meniscus in time gave the rate of fluid flowing across the axon sheath. In both groups osmotic differences across the membrane were established by the addition of a test molecule to the external medium which was seawater. The hydraulic conductivity determined by application of hydrostatic pressure was 10.6 +/- 0.8.10(-8) cm/sec cm H(2)O in perfused axons and 3.2 +/- 0.6.10(-8) cm/sec cm H(2)O in intact axons. When the driving force was an osmotic pressure gradient the conductivity was 4.5 +/- 0.6 x 10(-10) cm/sec cm H(2)O and 4.8 +/- 0.9 x 10(-10) cm/sec cm H(2)O in perfused and intact axons, respectively. A comparable result was found when the internal solution was made hyperosmotic. The fluid flow was a linear function of the hydrostatic pressure up to 70 cm of water. Glycerol outflux and membrane conductance were increased 1.6 and 1.1 times by the application of hydrostatic pressure. These increments do not give an explanation of the difference between the filtration coefficients. Other possible explanations are suggested and discussed. PMID:5642470

  19. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase

    International Nuclear Information System (INIS)

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrations that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE-/-) versus wild type (AChE+/+) mice indicated that while these OPs inhibited axonal growth in AChE+/+ DRG neurons, they had no effect on axonal growth in AChE-/- DRG neurons. However, transfection of AChE-/- DRG neurons with cDNA encoding full-length AChE restored the wild type response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs

  20. Latencies of Reflex Discharges in Some Oro-facial Reflexes of the Frog

    OpenAIRE

    NOMURA, HIROMICHI; Suzuki, Hirokazu

    1987-01-01

    Unitary reflex discharges were recorded from the branches of the trigeminal nerve innervating the submental and masseter muscles following electrical stimulation of the lingual branch of the glossopharyngeal nerve, the maxillary branch of the trigeminal nerve and the mandibular branch of the facial nerve. Reflex discharges were effectively elicited by repetitive electrical stimulation of afferent nerves, but the number of reflex impulses as well as the latencies varied from discharge to disch...

  1. Morphometry of Axons in Optic Nerves of Siamese's Twins

    Institute of Scientific and Technical Information of China (English)

    Xinzu Gu; Zhenping Zhang; Qi Lin; Jiongji Liang; Wenyu Lu; Xiulan Ye; A A Sadun

    2002-01-01

    Purpose: To observe the development of optic nerve, we examined four optic nerves from Siameses Twins by absolute counts of axons.Methods: Mean axon diameter, mean axon density, totally axonal population and optic nerve area were noted for each optic nerve. The mean axon diameter and the mean axon density were compared between paraxial (inner sectors)and cortical (outer sectors)areas of the nerves.Results: More myelinated axons were seen in the inner sectors as compared to the outer sectors(average 11 axons/1 000 μm2 in inner sectors and 34 axons/l 000 μm2 in outer sectors( P=0. 036) . The myelinated fibers were also smaller(63 microns) in the outer sectors as compared to the inner sectors(72 microns) ( P = 0. 001 ). The average cross sectors area for the four 40 week stage optical nerves of Siamese Twins was 3.32 × 103 as compared to 1 million axons for 32-week-old normals.Conclusion: Our finding of fewer axonal number and small myelinated fibers in the Siamese Twins suggests hypoplasia. Myelination was more abnormal in the paraxial optic nerve than that in the peripheral sectors, suggesting anomalous development of optic nerve peripherally and delayed developnent centrally. Axonal density is higher in inner sectors than that in outer sectors, suggesting delayed development of the outer nerve sector.

  2. Electrokinetic confinement of axonal growth for dynamically configurable neural networks.

    Science.gov (United States)

    Honegger, Thibault; Scott, Mark A; Yanik, Mehmet F; Voldman, Joel

    2013-02-21

    Axons in the developing nervous system are directed via guidance cues, whose expression varies both spatially and temporally, to create functional neural circuits. Existing methods to create patterns of neural connectivity in vitro use only static geometries, and are unable to dynamically alter the guidance cues imparted on the cells. We introduce the use of AC electrokinetics to dynamically control axonal growth in cultured rat hippocampal neurons. We find that the application of modest voltages at frequencies on the order of 10(5) Hz can cause developing axons to be stopped adjacent to the electrodes while axons away from the electric fields exhibit uninhibited growth. By switching electrodes on or off, we can reversibly inhibit or permit axon passage across the electrodes. Our models suggest that dielectrophoresis is the causative AC electrokinetic effect. We make use of our dynamic control over axon elongation to create an axon-diode via an axon-lock system that consists of a pair of electrode 'gates' that either permit or prevent axons from passing through. Finally, we developed a neural circuit consisting of three populations of neurons, separated by three axon-locks to demonstrate the assembly of a functional, engineered neural network. Action potential recordings demonstrate that the AC electrokinetic effect does not harm axons, and Ca(2+) imaging demonstrated the unidirectional nature of the synaptic connections. AC electrokinetic confinement of axonal growth has potential for creating configurable, directional neural networks. PMID:23314575

  3. Reconstruction of atonic bladder innervation after spinal cord injury: A bladder reflex arc with afferent and efferent pathways.

    Science.gov (United States)

    He, Jun; Li, Guitao; Luo, Dixin; Sun, Hongtao; Qi, Yong; Li, Yiyi; Jin, Xunjie

    2015-11-01

    Background Establishing bladder reflex arcs only with the efferent pathway to induce micturition after spinal cord injury (SCI) has been successful. However, the absence of sensory function and micturition desires can lead to serious complications. Objectives To reconstruct a bladder reflex arc with both afferent and efferent pathways to achieve atonic bladder innervation after SCI. Methods A reflex arc was established by microanastomosis of the S2 dorsal root to the peripheral process of the L5 dorsal ganglion and the L5 ventral root to the S2 ventral root. The functions of the reflex arc were evaluated using electrophysiology, wheat germ agglutinin-horseradish peroxidase (WGA-HRP) tracing, and calcitonin gene-related peptide (CGRP) immunocytochemistry analysis. Hind-paw motion was evaluated by CatWalk gait. Results Compound action potentials and compound muscle action potentials were recorded at the right L5 dorsal root following electrical stimulation of right S2 dorsal root. Similar to the control side, these were not significantly different before or after the spinal cord destruction between L6 and S4. WGA-HRP tracing and CGRP immunocytochemistry showed that construction of the afferent and efferent pathways of the bladder reflex arc encouraged axonal regeneration of motor and sensory nerves, which then made contact with the anterior and posterior horns of the spinal cord, ultimately reestablishing axoplasmic transportation. Gait analysis showed that at 3 months following the operation, only the regularity index was significantly different as compared with 1 day before the operation, other parameters showing no difference. Conclusion Bladder reflex arc with the afferent and efferent pathways reconstructs the micturition function without great influence on the motion of leg. PMID:25582052

  4. Spatial temperature gradients guide axonal outgrowth

    Science.gov (United States)

    Black, Bryan; Vishwakarma, Vivek; Dhakal, Kamal; Bhattarai, Samik; Pradhan, Prabhakar; Jain, Ankur; Kim, Young-Tae; Mohanty, Samarendra

    2016-07-01

    Formation of neural networks during development and regeneration after injury depends on accuracy of axonal pathfinding, which is primarily believed to be influenced by chemical cues. Recently, there is growing evidence that physical cues can play crucial role in axonal guidance. However, detailed mechanism involved in such guidance cues is lacking. By using weakly-focused near-infrared continuous wave (CW) laser microbeam in the path of an advancing axon, we discovered that the beam acts as a repulsive guidance cue. Here, we report that this highly-effective at-a-distance guidance is the result of a temperature field produced by the near-infrared laser light absorption. Since light absorption by extracellular medium increases when the laser wavelength was red shifted, the threshold laser power for reliable guidance was significantly lower in the near-infrared as compared to the visible spectrum. The spatial temperature gradient caused by the near-infrared laser beam at-a-distance was found to activate temperature-sensitive membrane receptors, resulting in an influx of calcium. The repulsive guidance effect was significantly reduced when extracellular calcium was depleted or in the presence of TRPV1-antagonist. Further, direct heating using micro-heater confirmed that the axonal guidance is caused by shallow temperature-gradient, eliminating the role of any non-photothermal effects.

  5. Axonal PPARγ promotes neuronal regeneration after injury.

    Science.gov (United States)

    Lezana, Juan Pablo; Dagan, Shachar Y; Robinson, Ari; Goldstein, Ronald S; Fainzilber, Mike; Bronfman, Francisca C; Bronfman, Miguel

    2016-06-01

    PPARγ is a ligand-activated nuclear receptor best known for its involvement in adipogenesis and glucose homeostasis. PPARγ activity has also been associated with neuroprotection in different neurological disorders, but the mechanisms involved in PPARγ effects in the nervous system are still unknown. Here we describe a new functional role for PPARγ in neuronal responses to injury. We found both PPAR transcripts and protein within sensory axons and observed an increase in PPARγ protein levels after sciatic nerve crush. This was correlated with increased retrograde transport of PPARγ after injury, increased association of PPARγ with the molecular motor dynein, and increased nuclear accumulation of PPARγ in cell bodies of sensory neurons. Furthermore, PPARγ antagonists attenuated the response of sensory neurons to sciatic nerve injury, and inhibited axonal growth of both sensory and cortical neurons in culture. Thus, axonal PPARγ is involved in neuronal injury responses required for axonal regeneration. Since PPARγ is a major molecular target of the thiazolidinedione (TZD) class of drugs used in the treatment of type II diabetes, several pharmaceutical agents with acceptable safety profiles in humans are available. Our findings provide motivation and rationale for the evaluation of such agents for efficacy in central and peripheral nerve injuries. PMID:26446277

  6. Early cellular signaling responses to axonal injury

    Directory of Open Access Journals (Sweden)

    Wang Ai

    2009-03-01

    Full Text Available Abstract Background We have used optic nerve injury as a model to study early signaling events in neuronal tissue following axonal injury. Optic nerve injury results in the selective death of retinal ganglion cells (RGCs. The time course of cell death takes place over a period of days with the earliest detection of RGC death at about 48 hr post injury. We hypothesized that in the period immediately following axonal injury, there are changes in the soma that signal surrounding glia and neurons and that start programmed cell death. In the current study, we investigated early changes in cellular signaling and gene expression that occur within the first 6 hrs post optic nerve injury. Results We found evidence of cell to cell signaling within 30 min of axonal injury. We detected differences in phosphoproteins and gene expression within the 6 hrs time period. Activation of TNFα and glutamate receptors, two pathways that can initiate cell death, begins in RGCs within 6 hrs following axonal injury. Differential gene expression at 6 hrs post injury included genes involved in cytokine, neurotrophic factor signaling (Socs3 and apoptosis (Bax. Conclusion We interpret our studies to indicate that both neurons and glia in the retina have been signaled within 30 min after optic nerve injury. The signals are probably initiated by the RGC soma. In addition, signals activating cellular death pathways occur within 6 hrs of injury, which likely lead to RGC degeneration.

  7. The legacy of care as reflexive learning

    Science.gov (United States)

    García, Marta Rodríguez; Moya, Jose Luis Medina

    2016-01-01

    Abstract Objective: to analyze whether the tutor's use of reflexive strategies encourages the students to reflect. The goal is to discover what type of strategies can help to achieve this and how tutors and students behave in the practical context. Method: a qualitative and ethnographic focus was adopted. Twenty-seven students and 15 tutors from three health centers participated. The latter had received specific training on reflexive clinical tutoring. The analysis was developed through constant comparisons of the categories. Results: the results demonstrate that the tutors' use of reflexive strategies such as didactic questioning, didactic empathy and pedagogical silence contributes to encourage the students' reflection and significant learning. Conclusions: reflexive practice is key to tutors' training and students' learning. PMID:27305180

  8. Entrepreneurship Teaching Conducted as Strategic Reflexive Conversation

    DEFF Research Database (Denmark)

    Kristiansson, Michael

    The paper intends exploring and ascertaining whether the concept of strategic reflexive conversation can profitably be applied to entrepreneurship. As a start, a process of conceptualisation is undertaken, which is instrumental in placing the notion of strategic reflexive conversation into a...... knowledge management perspective. Strategic reflexive conversation is presented in an enhanced and updated version, which is contrasted to entrepreneurship through reflection. The findings indicate and it can be concluded that, with some important reservations, strategic reflexive conversation can...... advantageously, and on a pilot basis, be applied to entrepreneurship in practical environments and within the framework of entrepreneurship-centred teaching. The present theoretical investigation is solely of an introductory nature and steps are considered that can lead to the planning of additional exploratory...

  9. Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain

    OpenAIRE

    Larsen, Camilla; Shy, Diana; Spindler, Shana R; Fung, Siaumin; Pereanu, Wayne; Younossi -Hartenstein, Amelia; Hartenstein, Volker

    2009-01-01

    The Drosophila central brain is composed of approximately 100 paired lineages, with most lineages comprising 100–150 neurons. Most lineages have a number of important characteristics in common. Typically, neurons of a lineage stay together as a coherent cluster and project their axons into a coherent bundle visible from late embryo to adult. Neurons born during the embryonic period form the primary axon tracts (PATs) that follow stereotyped pathways in the neuropile. Apoptotic cell death remo...

  10. Demanding Reflexivity: Lazy Ozzie and Other Stories.

    OpenAIRE

    McCormack, David

    2007-01-01

    One of the orthodoxies of supervising research within the framework of a radical approach to adult education is that you 'demand' a reflexive approach. That is, you ask that the researcher adopt a paradigm of research that does not pretend scientific validity, one that recognises that the researcher's own assumptions, experiences and subjectivity constitute the major source of colour in the canvas he or she is painting. Reflexivity in research involves developing 'critical literacy' by not...

  11. Reflexive Operator Algebras on Banach Spaces

    OpenAIRE

    Merlevède, Florence; Peligrad, Costel; Peligrad, Magda

    2012-01-01

    In this paper we study the reflexivity of a unital strongly closed algebra of operators with complemented invariant subspace lattice on a Banach space. We prove that if such an algebra contains a complete Boolean algebra of projections of finite uniform multiplicity and with the direct sum property, then it is reflexive, i.e. it contains every operator that leaves invariant every closed subspace in the invariant subspace lattice of the algebra. In particular, such algebras coincide with their...

  12. The legacy of care as reflexive learning

    OpenAIRE

    García, Marta Rodríguez; Moya, Jose Luis Medina

    2016-01-01

    Abstract Objective: to analyze whether the tutor's use of reflexive strategies encourages the students to reflect. The goal is to discover what type of strategies can help to achieve this and how tutors and students behave in the practical context. Method: a qualitative and ethnographic focus was adopted. Twenty-seven students and 15 tutors from three health centers participated. The latter had received specific training on reflexive clinical tutoring. The analysis was developed through const...

  13. The legacy of care as reflexive learning

    OpenAIRE

    Marta Rodríguez García; Jose Luis Medina Moya

    2016-01-01

    Abstract Objective: to analyze whether the tutor's use of reflexive strategies encourages the students to reflect. The goal is to discover what type of strategies can help to achieve this and how tutors and students behave in the practical context. Method: a qualitative and ethnographic focus was adopted. Twenty-seven students and 15 tutors from three health centers participated. The latter had received specific training on reflexive clinical tutoring. The analysis was developed through c...

  14. White-matter astrocytes, axonal energy metabolism, and axonal degeneration in multiple sclerosis

    Science.gov (United States)

    Cambron, Melissa; D'Haeseleer, Miguel; Laureys, Guy; Clinckers, Ralph; Debruyne, Jan; De Keyser, Jacques

    2012-01-01

    In patients with multiple sclerosis (MS), a diffuse axonal degeneration occurring throughout the white matter of the central nervous system causes progressive neurologic disability. The underlying mechanism is unclear. This review describes a number of pathways by which dysfunctional astrocytes in MS might lead to axonal degeneration. White-matter astrocytes in MS show a reduced metabolism of adenosine triphosphate-generating phosphocreatine, which may impair the astrocytic sodium potassium pump and lead to a reduced sodium-dependent glutamate uptake. Astrocytes in MS white matter appear to be deficient in β2 adrenergic receptors, which are involved in stimulating glycogenolysis and suppressing inducible nitric oxide synthase (NOS2). Glutamate toxicity, reduced astrocytic glycogenolysis leading to reduced lactate and glutamine production, and enhanced nitric oxide (NO) levels may all impair axonal mitochondrial metabolism, leading to axonal degeneration. In addition, glutamate-mediated oligodendrocyte damage and impaired myelination caused by a decreased production of N-acetylaspartate by axonal mitochondria might also contribute to axonal loss. White-matter astrocytes may be considered as a potential target for neuroprotective MS therapies. PMID:22214904

  15. Mislocalization of neuronal mitochondria reveals regulation of Wallerian degeneration and NMNAT/WLDS-mediated axon protection independent of axonal mitochondria

    OpenAIRE

    Kitay, Brandon M.; McCormack, Ryan; Wang, Yunfang; Tsoulfas, Pantelis; Zhai, R. Grace

    2013-01-01

    Axon degeneration is a common and often early feature of neurodegeneration that correlates with the clinical manifestations and progression of neurological disease. Nicotinamide mononucleotide adenylytransferase (NMNAT) is a neuroprotective factor that delays axon degeneration following injury and in models of neurodegenerative diseases suggesting a converging molecular pathway of axon self-destruction. The underlying mechanisms have been under intense investigation and recent reports suggest...

  16. AxonQuant: A Microfluidic Chamber Culture-Coupled Algorithm That Allows High-Throughput Quantification of Axonal Damage

    Directory of Open Access Journals (Sweden)

    Yang Li

    2014-02-01

    Full Text Available Published methods for imaging and quantitatively analyzing morphological changes in neuronal axons have serious limitations because of their small sample sizes, and their time-consuming and nonobjective nature. Here we present an improved microfluidic chamber design suitable for fast and high-throughput imaging of neuronal axons. We developed the AxonQuant algorithm, which is suitable for automatic processing of axonal imaging data. This microfluidic chamber-coupled algorithm allows calculation of an ‘axonal continuity index' that quantitatively measures axonal health status in a manner independent of neuronal or axonal density. This method allows quantitative analysis of axonal morphology in an automatic and nonbiased manner. Our method will facilitate large-scale high-throughput screening for genes or therapeutic compounds for neurodegenerative diseases involving axonal damage. When combined with imaging technologies utilizing different gene markers, this method will provide new insights into the mechanistic basis for axon degeneration. Our microfluidic chamber culture-coupled AxonQuant algorithm will be widely useful for studying axonal biology and neurodegenerative disorders. © 2014 S. Karger AG, Basel

  17. The passive of reflexive verbs in Icelandic

    Directory of Open Access Journals (Sweden)

    Hlíf Árnadóttir

    2011-10-01

    Full Text Available The Reflexive Passive in Icelandic is reminiscent of the so-called New Passive (or New Impersonal in that the oblique case of a passivized object NP is preserved. As is shown by recent surveys, however, speakers who accept the Reflexive Passive do not necessarily accept the New Passive, whereas conversely, speakers who accept the New Passive do also accept the Reflexive Passive. Based on these results we suggest that there is a hierarchy in the acceptance of passive sentences in Icelandic, termed the Passive Acceptability Hierarchy. The validity of this hierarchy is confirmed by our diachronic corpus study of open access digital library texts from Icelandic journals and newspapers dating from the 19th and 20th centuries (tímarit.is. Finally, we sketch an analysis of the Reflexive Passive, proposing that the different acceptability rates of the Reflexive and New Passives lie in the argument status of the object. Simplex reflexive pronouns are semantically dependent on the verbs which select them, and should therefore be analyzed as syntactic arguments only, and not as semantic arguments of these verbs.

  18. Brauer-Thrall for totally reflexive modules

    CERN Document Server

    Christensen, Lars Winther; Rahmati, Hamidreza; Striuli, Janet; Wiegand, Roger

    2010-01-01

    Let R be a commutative noetherian local ring that is not Gorenstein. It was recently discovered that the category of totally reflexive modules over R is representation infinite, provided that it contains a non-free module. The main goal of this paper is to understand how complex the category of totally reflexive modules can be in this situation. Local rings (R,m) with m^3=0 are commonly regarded as the structurally simplest rings to admit diverse categorical and homological characteristics. For such rings we obtain conclusive results about the category of totally reflexive modules, modeled on the Brauer-Thrall conjectures. Starting from a non-free cyclic totally reflexive module, we construct a family of indecomposable totally reflexive R-modules that contains, for every n in N, a module that is minimally generated by n elements. Moreover, if the residue field R/m is algebraically closed, then we construct for every n in N an infinite family of indecomposable and pairwise non-isomorphic totally reflexive R-mo...

  19. H-reflex latency in uremic neuropathy: correlation with NCV and clinical findings.

    Science.gov (United States)

    Halar, E M; Brozovich, F V; Milutinovic, J; Inouye, V L; Becker, V M

    1979-04-01

    Sixty-two uremic patients on dialysis of varying durations were tested bilaterally for posterior tibial nerve H-reflex latency, at 3-month intervals. Bilateral nerve conduction velocities (NCVs) of the peroneal, tibial, and sural nerves were concomitantly determined in all subjects. Proprioception sense, vibration perception threshold at the great toes, and deep tendon reflexes at the knee and ankle were determined in all subjects on the day of electrodiagnostic testing. The sensitivity of the H-reflex latency in detection of the onset and severity of uremic neuropathy was assessed. H-reflex latency changes were compared to NCV and clinical test results. The following was found: (1) of the parameters studied, the H-reflex latency appeared to be the most sensitive indicator of early uremic polyneuropathies, (2) electrodiagnostic tests were more sensitive to the onset of neuropathies than the clinical testing parameters studied, and (3) the sural sensory nerve appeared to be involved earlier than peroneal and tibial motor nerves in neuropathies studied. PMID:224838

  20. Celsr3 and Fzd3 Organize a Pioneer Neuron Scaffold to Steer Growing Thalamocortical Axons.

    Science.gov (United States)

    Feng, Jia; Xian, Quanxiang; Guan, Tingting; Hu, Jing; Wang, Meizhi; Huang, Yuhua; So, Kwok-Fai; Evans, Sylvia M; Chai, Guoliang; Goffinet, Andre M; Qu, Yibo; Zhou, Libing

    2016-07-01

    Celsr3 and Fzd3 regulate the development of reciprocal thalamocortical projections independently of their expression in cortical or thalamic neurons. To understand this cell non autonomous mechanism further, we tested whether Celsr3 and Fzd3 could act via Isl1-positive guidepost cells. Isl1-positive cells appear in the forebrain at embryonic day (E) 9.5-E10.5 and, from E12.5, they form 2 contingents in ventral telencephalon and prethalamus. In control mice, corticothalamic axons run in the ventral telencephalic corridor in close contact with Isl1-positive cells. When Celsr3 or Fzd3 is inactivated in Isl1-expressing cells, corticofugal fibers stall and loop in the ventral telencephalic corridor of high Isl1 expression, and thalamic axons fail to cross the diencephalon-telencephalon junction (DTJ). At E12.5, before thalamic and cortical axons emerge, pioneer projections from Isl1-positive cells cross the DTJ from both sides in control but not mutant embryos. These early projections appear to act like a bridge to guide later growing thalamic axons through the DTJ. Our data suggest that Celsr3 and Fzd3 orchestrate the formation of a scaffold of pioneer neurons and their axons. This scaffold extends from prethalamus to ventral telencephalon and subcortex, and steers reciprocal corticothalamic fibers. PMID:27170656

  1. EVALUATION OF SENSORY SYSTEM FUNCTION USING REFLEX MODIFICATION OF THE STARTLE RESPONSE

    Science.gov (United States)

    Methods to measure damage to sensory systems following toxicant exposure vary from rapid and subjective tests (e.g., pinna reflex) to time-consuming and objective tests (e.g., psychophysical tests). eflex modification of the startle response represents an alternative technique in...

  2. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2010-07-01

    Full Text Available Abstract Background To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by ~35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H- reflex responses during powered versus unpowered walking. Methods We tested soleus H-reflex responses in neurologically intact subjects (n=8 that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered, then with power (powered, and finally without power again (second unpowered. We also collected joint kinematics and electromyography. Results When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG activation (27-48% and had concomitant reductions in H-reflex amplitude (12-24% compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions. Conclusion These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance

  3. A new method to determine reflex latency induced by high rate stimulation of the nervous system

    Directory of Open Access Journals (Sweden)

    Ilhan Karacan

    2014-07-01

    Full Text Available High rate stimulations of the neuromuscular system, such as continuous whole body vibration, tonic vibration reflex and high frequency electrical stimulation, are used in the physiological research with an increasing interest. In these studies, the neuronal circuitries underlying the reflex responses remain unclear due to the problem of determining the exact reflex latencies. We present a novel “cumulated average method” to determine the reflex latency during high rate stimulation of the nervous system which was proven to be significantly more accurate than the classical method. The classical method, cumulant density analysis, reveals the relationship between the two synchronously recorded signals as a function of the lag between the signals. The comparison of new method with the classical technique and their relative accuracy was tested using a computer simulation. In the simulated signals the EMG response latency was constructed to be exactly 40 ms. The new method accurately indicated the value of the simulated reflex latency (40 ms. However, the classical method showed that the lag time between the simulated triggers and the simulated signals was 49 ms. Simulation results illustrated that the cumulated average method is a reliable and more accurate method compared with the classical method. We therefore suggest that the new cumulated average method is able to determine the high rate stimulation induced reflex latencies more accurately than the classical method.

  4. Eccentric exercise inhibits the H reflex in the middle part of the trapezius muscle

    DEFF Research Database (Denmark)

    Vangsgaard, Steffen; Nørgaard, Lars Tønners; Korsholm Flaskager, Brian;

    2013-01-01

    the dominant middle trapezius muscle by electrical stimulation of the C3/4 cervical nerve in ten healthy subjects. DOMS was induced by eccentric exercise of the dominant shoulder. H reflexes were obtained in four sessions: "24 h before", "Pre", "Post", and "24 h after" eccentric exercise. Ratios of......The objectives of this study were to (1) investigate the modulation of the H reflex immediately after and 24 h after eccentric exercise in the presence of delayed-onset muscle soreness (DOMS) and (2) test the reproducibility of the H reflex in trapezius across days. H reflexes were recorded from...... maximal H reflex and M wave responses (H (max)/M (max)) were compared between sessions. In addition, a between session comparison was done for the ratios of H reflex amplitudes (H (i_75)/M (max), and H (i_50)/M (max)) obtained from the stimulus intensity needed to obtain 75 and 50 % of H (max) at "24 h...

  5. Neural reflex pathways in intestinal inflammation: hypotheses to viable therapy.

    Science.gov (United States)

    Willemze, Rose A; Luyer, Misha D; Buurman, Wim A; de Jonge, Wouter J

    2015-06-01

    Studies in neuroscience and immunology have clarified much of the anatomical and cellular basis for bidirectional interactions between the nervous and immune systems. As with other organs, intestinal immune responses and the development of immunity seems to be modulated by neural reflexes. Sympathetic immune modulation and reflexes are well described, and in the past decade the parasympathetic efferent vagus nerve has been added to this immune-regulation network. This system, designated 'the inflammatory reflex', comprises an afferent arm that senses inflammation and an efferent arm that inhibits innate immune responses. Intervention in this system as an innovative principle is currently being tested in pioneering trials of vagus nerve stimulation using implantable devices to treat IBD. Patients benefit from this treatment, but some of the working mechanisms remain to be established, for instance, treatment is effective despite the vagus nerve not always directly innervating the inflamed tissue. In this Review, we will focus on the direct neuronal regulatory mechanisms of immunity in the intestine, taking into account current advances regarding the innervation of the spleen and lymphoid organs, with a focus on the potential for treatment in IBD and other gastrointestinal pathologies. PMID:25963513

  6. Stapedial reflex and recruitment: What is the relationship with tinnitus?

    Directory of Open Access Journals (Sweden)

    Fernando Laffitte Fernandes

    2014-01-01

    Full Text Available Tinnitus is characterized by an auditory perception of sound, with no stimuli from the external environment. Tinnitus is an increasingly significant complaint, affecting 10-17% of the world population. As a symptom, it should always be considered with pathology in the auditory system. Our study aims to assess the relationship of this symptom with the presence of a stapedial reflex and the phenomenon of recruitment. Medical records of patients complaining of subjective tinnitus during their first consultation in the Outpatient Clinic of the Unicamp Teaching Hospital, in Brazil, between 2011 and 2012 were analyzed. We carried out a study with 65 non-randomized tinnitus individuals using questionnaires, clinical and audiological evaluations. The visual analogue scale was used to characterize the degree of disturbance caused by tinnitus. Statistical tests were performed using the IBM SPSS Statistics 19. No association was found between tinnitus and the presence of acoustic reflex or phenomenon of recruitment. We concluded that there is no relationship between tinnitus, the phenomenon of recruitment or the presence of an acoustic reflex.

  7. Stapedial reflex and recruitment: what is the relationship with tinnitus?

    Science.gov (United States)

    Fernandes, Fernando Laffitte; Guimarães, Alexandre Caixeta; de Carvalho, Guilherme Machado; Mezzalira, Raquel; Stoler, Guita; Paschoal, Jorge Rizzato

    2014-01-01

    Tinnitus is characterized by an auditory perception of sound, with no stimuli from the external environment. Tinnitus is an increasingly significant complaint, affecting 10-17% of the world population. As a symptom, it should always be considered with pathology in the auditory system. Our study aims to assess the relationship of this symptom with the presence of a stapedial reflex and the phenomenon of recruitment. Medical records of patients complaining of subjective tinnitus during their first consultation in the Outpatient Clinic of the Unicamp Teaching Hospital, in Brazil, between 2011 and 2012 were analyzed. We carried out a study with 65 non-randomized tinnitus individuals using questionnaires, clinical and audiological evaluations. The visual analogue scale was used to characterize the degree of disturbance caused by tinnitus. Statistical tests were performed using the IBM SPSS Statistics 19. No association was found between tinnitus and the presence of acoustic reflex or phenomenon of recruitment. We concluded that there is no relationship between tinnitus, the phenomenon of recruitment or the presence of an acoustic reflex. PMID:25387539

  8. Robust Axonal Regeneration Occurs in the Injured CAST/Ei Mouse CNS

    OpenAIRE

    Omura, T; Omura, K.; Tedeschi, A; Riva, P; Painter, MW; L. Rojas; Martin, J.; Lisi, V; Huebner, EA; Latremoliere, A; Yin, Y.; Barrett, LB; Singh, B; Lee, S.; Crisman, T

    2015-01-01

    © 2015 Elsevier Inc. Axon regeneration in the CNS requires reactivating injured neurons' intrinsic growth state and enabling growth in an inhibitory environment. Using an inbred mouse neuronal phenotypic screen, we find that CAST/Ei mouse adult dorsal root ganglion neurons extend axons more on CNS myelin than the other eight strains tested, especially when pre-injured. Injury-primed CAST/Ei neurons also regenerate markedly in the spinal cord and optic nerve more than those from C57BL/6 mice a...

  9. Fast Inactivation of Delayed Rectifier K Conductance in Squid Giant Axon and Its Cell Bodies

    OpenAIRE

    Mathes, Chris; Rosenthal, Joshua J. C.; Armstrong, Clay M.; Gilly, William F.

    1997-01-01

    Inactivation of delayed rectifier K conductance (gK) was studied in squid giant axons and in the somata of giant fiber lobe (GFL) neurons. Axon measurements were made with an axial wire voltage clamp by pulsing to VK (∼−10 mV in 50–70 mM external K) for a variable time and then assaying available gK with a strong, brief test pulse. GFL cells were studied with whole-cell patch clamp using the same prepulse procedure as well as with long depolarizations. Under our experimental conditions (12–18...

  10. Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord.

    Science.gov (United States)

    Wong, Liang-Fong; Yip, Ping K; Battaglia, Anna; Grist, John; Corcoran, Jonathan; Maden, Malcolm; Azzouz, Mimoun; Kingsman, Susan M; Kingsman, Alan J; Mazarakis, Nicholas D; McMahon, Stephen B

    2006-02-01

    The embryonic CNS readily undergoes regeneration, unlike the adult CNS, which has limited axonal repair after injury. Here we tested the hypothesis that retinoic acid receptor beta2 (RARbeta2), critical in development for neuronal growth, may enable adult neurons to grow in an inhibitory environment. Overexpression of RARbeta2 in adult rat dorsal root ganglion cultures increased intracellular levels of cyclic AMP and stimulated neurite outgrowth. Stable RARbeta2 expression in DRG neurons in vitro and in vivo enabled their axons to regenerate across the inhibitory dorsal root entry zone and project into the gray matter of the spinal cord. The regenerated neurons enhanced second-order neuronal activity in the spinal cord, and RARbeta2-treated rats showed highly significant improvement in sensorimotor tasks. These findings show that RARbeta2 induces axonal regeneration programs within injured neurons and may thus offer new therapeutic opportunities for CNS regeneration. PMID:16388307

  11. Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Fang Cheng

    2012-06-01

    Full Text Available Abstract Background Reactive oxygen species (ROS released by microglia and other inflammatory cells can cause axonal degeneration. A reduction in axonal transport has also been implicated as a cause of axonal dystrophies and neurodegeneration, but there is a paucity of experimental data concerning the effects of ROS on axonal transport. We used live cell imaging to examine the effects of hydrogen peroxide on the axonal transport of mitochondria and Golgi-derived vesicles in cultured rat hippocampal neurons. Results Hydrogen peroxide rapidly inhibited axonal transport, hours before any detectable changes in mitochondrial morphology or signs of axonal degeneration. Mitochondrial transport was affected earlier and was more severely inhibited than the transport of Golgi-derived vesicles. Anterograde vesicle transport was more susceptible to peroxide inhibition than retrograde transport. Axonal transport partially recovered following removal of hydrogen peroxide and local application of hydrogen peroxide inhibited transport, suggesting that the effects were not simply a result of nerve cell death. Sodium azide, an ATP synthesis blocker, had similar effects on axonal transport, suggesting that ATP depletion may contribute to the transport inhibition due to hydrogen peroxide. Conclusions These results indicate that inhibition of axonal transport is an early consequence of exposure to ROS and may contribute to subsequent axonal degeneration.

  12. Axon Membrane Skeleton Structure is Optimized for Coordinated Sodium Propagation

    CERN Document Server

    Zhang, Yihao; Li, He; Tzingounis, Anastasios V; Lykotrafitis, George

    2016-01-01

    Axons transmit action potentials with high fidelity and minimal jitter. This unique capability is likely the result of the spatiotemporal arrangement of sodium channels along the axon. Super-resolution microscopy recently revealed that the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under entropic tension. Sodium channels also exhibit a periodic distribution pattern, as they bind to ankyrin G, which associates with spectrin. Here, we elucidate the relationship between the axon membrane skeleton structure and the function of the axon. By combining cytoskeletal dynamics and continuum diffusion modeling, we show that spectrin filaments under tension minimize the thermal fluctuations of sodium channels and prevent overlap of neighboring channel trajectories. Importantly, this axon skeletal arrangement allows for a highly reproducible band-like activation of sodium channels leading to coordinated sodium propagation along the axon.

  13. Axon position within the corpus callosum determines contralateral cortical projection.

    Science.gov (United States)

    Zhou, Jing; Wen, Yunqing; She, Liang; Sui, Ya-Nan; Liu, Lu; Richards, Linda J; Poo, Mu-Ming

    2013-07-16

    How developing axons in the corpus callosum (CC) achieve their homotopic projection to the contralateral cortex remains unclear. We found that axonal position within the CC plays a critical role in this projection. Labeling of nearby callosal axons in mice showed that callosal axons were segregated in an orderly fashion, with those from more medial cerebral cortex located more dorsally and subsequently projecting to more medial contralateral cortical regions. The normal axonal order within the CC was grossly disturbed when semaphorin3A/neuropilin-1 signaling was disrupted. However, the order in which axons were positioned within the CC still determined their contralateral projection, causing a severe disruption of the homotopic contralateral projection that persisted at postnatal day 30, when the normal developmental refinement of contralateral projections is completed in wild-type (WT) mice. Thus, the orderly positioning of axons within the CC is a primary determinant of how homotopic interhemispheric projections form in the contralateral cortex. PMID:23812756

  14. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Montecchiani, Celeste; Pedace, Lucia; Lo Giudice, Temistocle; Casella, Antonella; Mearini, Marzia; Gaudiello, Fabrizio; Pedroso, José L; Terracciano, Chiara; Caltagirone, Carlo; Massa, Roberto; St George-Hyslop, Peter H; Barsottini, Orlando G P; Kawarai, Toshitaka; Orlacchio, Antonio

    2016-01-01

    Charcot-Marie-Tooth disease is a group of hereditary peripheral neuropathies that share clinical characteristics of progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss, as well as diminished tendon reflexes. Hundreds of causative DNA changes have been found, but much of the genetic basis of the disease is still unexplained. Mutations in the ALS5/SPG11/KIAA1840 gene are a frequent cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and peripheral axonal neuropathy, and account for ∼ 40% of autosomal recessive juvenile amyotrophic lateral sclerosis. The overlap of axonal Charcot-Marie-Tooth disease with both diseases, as well as the common autosomal recessive inheritance pattern of thin corpus callosum and axonal Charcot-Marie-Tooth disease in three related patients, prompted us to analyse the ALS5/SPG11/KIAA1840 gene in affected individuals with autosomal recessive axonal Charcot-Marie-Tooth disease. We investigated 28 unrelated families with autosomal recessive axonal Charcot-Marie-Tooth disease defined by clinical, electrophysiological, as well as pathological evaluation. Besides, we screened for all the known genes related to axonal autosomal recessive Charcot-Marie-Tooth disease (CMT2A2/HMSN2A2/MFN2, CMT2B1/LMNA, CMT2B2/MED25, CMT2B5/NEFL, ARCMT2F/dHMN2B/HSPB1, CMT2K/GDAP1, CMT2P/LRSAM1, CMT2R/TRIM2, CMT2S/IGHMBP2, CMT2T/HSJ1, CMTRID/COX6A1, ARAN-NM/HINT and GAN/GAN), for the genes related to autosomal recessive hereditary spastic paraplegia with thin corpus callosum and axonal peripheral neuropathy (SPG7/PGN, SPG15/ZFYVE26, SPG21/ACP33, SPG35/FA2H, SPG46/GBA2, SPG55/C12orf65 and SPG56/CYP2U1), as well as for the causative gene of peripheral neuropathy with or without agenesis of the corpus callosum (SLC12A6). Mitochondrial disorders related to Charcot-Marie-Tooth disease type 2 were also excluded by sequencing POLG and TYMP genes. An additional locus for autosomal recessive Charcot

  15. Loading and reflexes : the influence of body weight and active movements on reflex responses in humans

    NARCIS (Netherlands)

    Bastiaanse, Catharina Maria

    2003-01-01

    This thesis describes six studies on the influence of active movements and body loading on reflex responses. To measure those influences healthy subjects were asked to walk with different loadings (e.g. a backpack) or with different active movements (e.g. arm swing) while different reflex responses

  16. Synaptic Democracy and Vesicular Transport in Axons

    Science.gov (United States)

    Bressloff, Paul C.; Levien, Ethan

    2015-04-01

    Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".

  17. Prognostic Value of Impaired Preoperative Ankle Reflex in Surgical Outcome of Lumbar Disc Herniation

    Directory of Open Access Journals (Sweden)

    Farzad Omidi-Kashani

    2016-01-01

    Full Text Available Background: Several prognostic factors exist influencing the outcome of surgical discectomy in the patients with lumbar disc herniation (LDH. The aim of this study is to evaluate the relationship between severity of preoperative impaired ankle reflex and outcomes of lumbar discectomy in the patients with L5-S1 LDH. Methods: We retrospectively evaluated 181 patients (108 male and 73 female who underwent simple discectomy in our orthopedic department from April 2009 to April 2013 and followed them up for more than one year. The mean age of the patients was 35.3±8.9 years old. Severity of reflex impairment was graded from 0 to 4+ and radicular pain and disability were assessed by visual analogue scale (VAS and Oswestry disability index (ODI questionnaires, respectively. Subjective satisfaction was also evaluated at the last follow-up visit. Chi-square and Kruskal-Wallis tests were used to compare qualitative variables. Results: Reflex impairment existed in 44.8% preoperatively that improved to 10% at the last follow-up visit. Statistical analyses could not find a significant relationship between the severity of impaired ankle reflex and sex or age (P=0.538 and P=0.709, respectively. There was a remarkable relationship between severity of reflex impairment and preoperative radicular pain or disability (P=0.012 and P=0.002, respectively. Kruskal-Wallis test showed that a more severity in ankle reflex impairment was associated with not only less improvement in postoperative pain and disability but also less satisfaction rate (P Conclusions: In the patients with L5-S1 LDH, more severe ankle reflex impairment is associated with less improvement in postoperative pain, disability, and subjective satisfaction.

  18. Developmental hypothyroxinaemia induced by maternal mild iodine deficiency delays hippocampal axonal growth in the rat offspring.

    Science.gov (United States)

    Wei, W; Wang, Y; Wang, Y; Dong, J; Min, H; Song, B; Teng, W; Xi, Q; Chen, J

    2013-09-01

    Iodine is essential for the biosynthesis of thyroid hormones, including triiodothyronine and thyroxine. Thyroid hormones are important for central nervous system development. Mild maternal iodine deficiency (ID)-induced hypothyroxinaemia causes neurological deficits and mental retardation of the foetus. However, the detailed mechanism underlying these deficits is still largely unknown. Given that the growth-associated protein of 43 kDa (GAP-43), semaphorin 3A (Sema3A) and the glycogen synthase kinase 3β (GSK3β)/collapsin response mediator protein 2 (CRMP2) pathway are essential for axonal development, we hypothesise that hippocampal axonal growth-related proteins may be impaired, which may contribute to hippocampal axonal growth delay in rat offspring exposed to maternal hypothyroxinaemia. To test this hypothesis, maternal hypothyroxinaemia models were established in Wistar rats using a mild ID diet. Besides a negative control group, two maternal hypothyroidism models were created with either a severe ID diet or methimazole in the water. Our results showed that maternal hypothyroxinaemia exposure delayed offspring axonal growth on gestational day 19, postnatal day (PN) 7, PN14 and PN21. Consistent with this, the mean intensity of hippocampal CRMP2 and Tau1 immunofluorescence axonal protein was reduced in the mild ID group. Moreover, maternal hypothyroxinaemia disrupted expressions of GAP-43 and Sema3A. Furthermore, the phosphorylation of GSK3β and CRMP2 was also affected in the treated offspring, implying a potential mechanism by which hypothyroxinaemia-exposure affects neurodevelopment. Taken together, our data support the hypothesis that maternal hypothyroxinaemia may impair axonal growth of the offspring. PMID:23763342

  19. Effects of p-xylene inhalation on axonal transport in the rat retinal ganglion cells

    International Nuclear Information System (INIS)

    Although the solvent xylene is suspected of producing nervous system dysfunction in animals and humans, little is known regarding the neurochemical consequences of xylene inhalation. The intent of this study was to determine the effect of intermittent, acute, and subchronic p-xylene exposure on the axonal transport of proteins and glycoproteins within the rat retinofugal tract. A number of different exposure regimens were tested ranging from 50 ppm for a single 6-hr exposure to 1600 ppm 6 hr/day, 5 days/week, for a total of 8 exposure days. Immediately following removal from the inhalation chambers rats were injected intraocularly with [35S]methionine and [3H]fucose (to label retinal proteins and glycoproteins, respectively) and the axonal transport of labeled macromolecules to axons (optic nerve and optic tract) and nerve endings (lateral geniculate body and superior colliculus) was examined 20 hr after precursor injection. Only relatively severe exposure regimens (i.e., 800 or 1600 ppm 6 hr/day, 5 days/week, for 1.5 weeks) produced significant reductions in axonal transport; there was a moderate reduction in the axonal transport of 35S-labeled proteins in the 800-ppm-treated group which was more widespread in the 1600 ppm-treated group. Transport of 3H-labeled glycoproteins was less affected. Assessment of retinal metabolism immediately after isotope injection indicated that the rate of precursor uptake was not reduced in either treatment group. Furthermore, rapid transport was still substantially reduced in animals exposed to 1600 ppm p-xylene and allowed a 13-day withdrawal period. These data indicate that p-xylene inhalation decreases rapid axonal transport supplied to the projections of the rat retinal ganglion cells immediately after cessation of inhalation exposure and that this decreased transport is still apparent 13 days after the last exposure

  20. Influences of olfactory ensheathing cells transplantation on axonal regeneration in spinal cord of adult rats

    Institute of Scientific and Technical Information of China (English)

    沈慧勇; 唐勇; 吴燕峰; 陈燕涛; 程志安

    2002-01-01

    To observe whether olfactory ensheathing cells could be used to promote axonal regeneration in a spontaneously nonregenerating system. Methods: After laminectomy at the lower thoracic level, the spinal cords of adult rats were exposed and completely transected at T10. A suspension of ensheathing cells was injected into the lesion site in 12 adult rats, and control D/F-12 (1∶1 mixture of DMEM and Hams F-12) was injected in 12 adult rats. Six weeks and ten weeks after cell transplantation, the rats were evaluated by climbing test and motor evoked potentials (MEPs) monitoring. The samples were procured and studied with histologicl and immunohistochemical methods. Results: At the 6th week after cell transplantation, all the rats in both the transplanted and control groups were paraplegic and the MEPs could not be recorded. At the 10th week after cell transplantation, of 7 rats in the control group, 2 rats had muscles contraction of the lower extremities, 2 rats had hips and/or knees active movement; and 5 rats MEPs could be recorded in the hind limbs in the transplanted group (n=7). None of the rats in the control group had functional improvement and no MEPs recorded (n=7). Numerous regenerating axons were observed through the transplantation and continued to regenerate into the denervated host tract. Cell labelling using anti-Myelin Basic Protein (MBP) and anti-Nerve Growth Factor Receptor (anti-NGFR) indicated that the regenerated axons were derived from the appropriate neuronal source and that donor cells migrated into the denervated host tract. But axonal degeneration existed and regenerating axons were not observed within the spinal cords of the adult rats with only D/F-12 injection. Conclusions: The axonal regeneration in the transected adult rat spinal cord is possible after ensheathing cells transplantation.

  1. The ROSAT-ESO Flux-Limited X-Ray (REFLEX) Galaxy Cluster Survey III: The Power Spectrum

    OpenAIRE

    Schuecker, Peter; Boehringer, Hans; Guzzo, Luigi; Collins, Chris A.; Neumann, Doris M.; Schindler, Sabine; Voges, Wolfgang; De Grandi, Sabrina; Chincarini, Guido; Cruddace, Ray; Mueller, Volker; Reiprich, Thomas H.; Retzlaff, Joerg; Shaver, Peter

    2000-01-01

    We present a measure of the power spectrum on scales from 15 to 800 Mpc/h using the ROSAT-ESO Flux-Limited X-Ray(REFLEX) galaxy cluster catalogue. The REFLEX survey provides a sample of the 452 X-ray brightest southern clusters of galaxies with the nominal flux limit S=3.0 10^{-12}erg/s/cm2 for the ROSAT energy band (0.1-2.4)keV. Several tests are performed showing no significant incompletenesses of the REFLEX clusters with X-ray luminosities brighter than 10^{43}erg/s up to scales of about 8...

  2. The capsaicin cough reflex in patients with symptoms elicited by odorous chemicals

    DEFF Research Database (Denmark)

    Holst, H; Arendt-Nielsen, L; Mosbech, H; Vesterhauge, S; Elberling, J

    2010-01-01

    Patients with multiple chemical sensitivity and eczema patients with airway symptoms elicited by odorous chemicals have enhanced cough reflex to capsaicin when applying the tidal breathing method. The aims of the present study were to test whether the capsaicin induced cough reflex was enhanced......'s criteria for multiple chemical sensitivity and 15 eczema patients with airway symptoms elicited by odorous chemicals were compared with 29 age-matched, healthy controls. We measured C5--the capsaicin concentration causing five coughs or more--using the single breath inhalation test. No difference was found...

  3. Human investigations into the exercise pressor reflex

    DEFF Research Database (Denmark)

    Secher, Niels H; Amann, Markus

    2012-01-01

    . The importance of the exercise pressor reflex for tight cardiovascular regulation during dynamic exercise is supported by studies using pharmacological blockade of lower limb muscle afferent nerves. These experiments show attenuation of the increase in BP and cardiac output when exercise is performed......During exercise, neural input from skeletal muscles reflexly maintains or elevates blood pressure (BP) despite a maybe fivefold increase in vascular conductance. This exercise pressor reflex is illustrated by similar heart rate (HR) and BP responses to electrically induced and voluntary exercise....... The lack of an increase in BP during exercise with paralysed legs manifests, although electrical stimulation of muscles enhances lactate release and reduces muscle glycogen. Thus, the exercise pressor reflex enhances sympathetic activity and maintains perfusion pressure by restraining abdominal blood...

  4. Visual reflex seizures induced by complex stimuli.

    Science.gov (United States)

    Zifkin, Benjamin G; Inoue, Yushi

    2004-01-01

    Visual reflex seizures induced by complex stimuli may be triggered by patterned and flashing displays that are now ubiquitous. The seizures may be clinically generalized, but unilateral and bilateral myoclonic attacks also may be triggered, especially in patients with juvenile myoclonic epilepsy, and recently, clearly focal reflex occipital lobe seizures have been described. Some seizure-triggering properties of video displays can be identified, such as perceived brightness, pattern, flicker frequency, and color. Knowledge of these is useful in planning individual treatment and in designing regulations for screen content of television broadcasts or for other video displays. Some subjects will also be sensitive to cognitive or action-programming activation, especially when playing video games, and this can increase the chance of seizure triggering. Nonspecific factors such as sleep deprivation, prolonged exposure, and drug or alcohol use also may play a role in reflex seizure occurrence. PMID:14706042

  5. Knockdown of Ephrin-A5 Expression by 40% Does not Affect Motor Axon Growth or Migration into the Chick Hindlimb

    Directory of Open Access Journals (Sweden)

    Robert S. Winning

    2011-11-01

    Full Text Available Bidirectional signaling between Eph receptor tyrosine kinases and their cell-surface protein signals, the ephrins, comprises one mechanism for guiding motor axons to their proper targets. During projection of motor axons from the lateral motor column (LMC motor neurons of the spinal cord to the hindlimb muscles in chick embryos, ephrin-A5 has been shown to be expressed in the LMC motor axons until they reach the base of the limb bud and initiate sorting into their presumptive dorsal and ventral nerve trunks, at which point expression is extinguished. We tested the hypothesis that this dynamic pattern of ephrin-A5 expression in LMC motor axons is important for the growth and guidance of the axons to, and into, the hindlimb by knocking down endogenous ephrin-A5 expression in the motor neurons and their axons. No perturbation of LMC motor axon projections was observed in response to this treatment, suggesting that ephrin-A5 is not needed for LMC motor axon growth or guidance.

  6. Focal axonal swellings and associated ultrastructural changes attenuate conduction velocity in central nervous system axons: a computer modeling study.

    Science.gov (United States)

    Kolaric, Katarina V; Thomson, Gemma; Edgar, Julia M; Brown, Angus M

    2013-08-01

    The constancy of action potential conduction in the central nervous system (CNS) relies on uniform axon diameter coupled with fidelity of the overlying myelin providing high-resistance, low capacitance insulation. Whereas the effects of demyelination on conduction have been extensively studied/modeled, equivalent studies on the repercussions for conduction of axon swelling, a common early pathological feature of (potentially reversible) axonal injury, are lacking. The recent description of experimentally acquired morphological and electrical properties of small CNS axons and oligodendrocytes prompted us to incorporate these data into a computer model, with the aim of simulating the effects of focal axon swelling on action potential conduction. A single swelling on an otherwise intact axon, as occurs in optic nerve axons of Cnp1 null mice caused a small decrease in conduction velocity. The presence of single swellings on multiple contiguous internodal regions (INR), as likely occurs in advanced disease, caused qualitatively similar results, except the dimensions of the swellings required to produce equivalent attenuation of conduction were significantly decreased. Our simulations of the consequences of metabolic insult to axons, namely, the appearance of multiple swollen regions, accompanied by perturbation of overlying myelin and increased axolemmal permeability, contained within a single INR, revealed that conduction block occurred when the dimensions of the simulated swellings were within the limits of those measured experimentally, suggesting that multiple swellings on a single axon could contribute to axonal dysfunction, and that increased axolemmal permeability is the decisive factor that promotes conduction block. PMID:24303138

  7. Early ultrastructural defects of axons and axon-glia junctions in mice lacking expression of Cnp1.

    Science.gov (United States)

    Edgar, Julia M; McLaughlin, Mark; Werner, Hauke B; McCulloch, Mailis C; Barrie, Jennifer A; Brown, Angus; Faichney, Andrew Blyth; Snaidero, Nicolas; Nave, Klaus-Armin; Griffiths, Ian R

    2009-12-01

    Most axons in the central nervous system (CNS) are surrounded by a multilayered myelin sheath that promotes fast, saltatory conduction of electrical impulses. By insulating the axon, myelin also shields the axoplasm from the extracellular milieu. In the CNS, oligodendrocytes provide support for the long-term maintenance of myelinated axons, independent of the myelin sheath. Here, we use electron microscopy and morphometric analyses to examine the evolution of axonal and oligodendroglial changes in mice deficient in 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and in mice deficient in both CNP and proteolipid protein (PLP/DM20). We show that CNP is necessary for the formation of a normal inner tongue process of oligodendrocytes that myelinate small diameter axons. We also show that axonal degeneration in Cnp1 null mice is present very early in postnatal life. Importantly, compact myelin formed by transplanted Cnp1 null oligodendrocytes induces the same degenerative changes in shiverer axons that normally are dysmyelinated but structurally intact. Mice deficient in both CNP and PLP develop a more severe axonal phenotype than either single mutant, indicating that the two oligodendroglial proteins serve distinct functions in supporting the myelinated axon. These observations support a model in which the trophic functions of oligodendrocytes serve to offset the physical shielding of axons by myelin membranes. PMID:19459211

  8. The capsaicin cough reflex in patients with symptoms elicited by odorous chemicals

    DEFF Research Database (Denmark)

    Holst, H.; Arendt-Nielsen, Lars; Mosbech, H.;

    2010-01-01

    Patients with multiple chemical sensitivity and eczema patients with airway symptoms elicited by odorous chemicals have enhanced cough reflex to capsaicin when applying the tidal breathing method. The aims of the present study were to test whether the capsaicin induced cough reflex was enhanced...... when applying the single breath inhalation method in similar groups of patients with symptoms related to odorous chemicals e.g. other persons wearing of perfume; and to investigate to what extent the reporting of lower airway symptoms influenced the cough reflex. Sixteen patients fulfilling Cullen......'s criteria for multiple chemical sensitivity and 15 eczema patients with airway symptoms elicited by odorous chemicals were compared with 29 age-matched, healthy controls. We measured C5--the capsaicin concentration causing five coughs or more--using the single breath inhalation test. No difference was found...

  9. Polarized neutron reflectometer 'Reflex-P'

    CERN Document Server

    Korneev, D A; Yaradajkin, S P

    2002-01-01

    About 10 years ago the idea of a new spectrometer 'Reflex' at the IBR-2 reactor was formulated. According to the initial idea, the spectrometer was projected as a combination of two reflectometers. One of them is the spectrometer with polarized neutrons and another one with nonpolarized neutrons. At present half of the project has been executed. On the 9th beam of the IBR-2 reactor the polarized branch of the spectrometer 'Reflex-P' is successfully working. This paper is devoted to the description of main parameters of this spectrometer and development perspectives.

  10. Reflex control for safe autonomous robot operation

    International Nuclear Information System (INIS)

    This paper describes the design of an autonomous, sonar-based world mapping system for collision prevention in robotic systems. Obstacle detection and mapping is performed as a task that competes with higher-level tasks for the robot's attention. All tasks are integrated within a hierarchy, organized and co-ordinated by schemes analogous to biological reflexes and fixed action patterns. It is illustrated how the existence of low-level reflex behaviours can enhance the survivability and autonomy of complex systems and simplify the design of complex higher-level controls like our autonomous sonar-based world mapping system

  11. Dynamics of axon fasciculation in the presence of neuronal turnover

    CERN Document Server

    Chaudhuri, Debasish; Mohanty, P K; Zapotocky, Martin

    2008-01-01

    We formulate and characterize a model aiming to describe the formation of fascicles of axons mediated by contact axon-axon interactions. The growing axons are represented as interacting directed random walks in two spatial dimensions. To mimic axonal turnover in the mammalian olfactory system, the random walkers are injected and removed at specified rates. In the dynamical steady state, the position-dependent distribution of fascicle sizes obeys a scaling law. We identify several distinct time scales that emerge from the dynamics, are sensitive functions of the microscopic parameters of the model, and can exceed the average axonal lifetime by orders of magnitude. We discuss our findings in terms of an analytically tractable, effective model of fascicle dynamics.

  12. Nerve growth factor released from a novel PLGA nerve conduit can improve axon growth

    Science.gov (United States)

    Lin, Keng-Min; Shea, Jill; Gale, Bruce K.; Sant, Himanshu; Larrabee, Patti; Agarwal, Jay

    2016-04-01

    Nerve injury can occur due to penetrating wounds, compression, traumatic stretch, and cold exposure. Despite prompt repair, outcomes are dismal. In an attempt to help resolve this challenge, in this work, a poly-lactic-co-glycolic acid (PLGA) nerve conduit with associated biodegradable drug reservoir was designed, fabricated, and tested. Unlike current nerve conduits, this device is capable of fitting various clinical scenarios by delivering different drugs without reengineering the whole system. To demonstrate the potential of this device for nerve repair, a series of experiments were performed using nerve growth factor (NGF). First, an NGF dosage curve was developed to determine the minimum NGF concentration for optimal axonal outgrowth on chick dorsal root ganglia (DRG) cells. Next, PLGA devices loaded with NGF were evaluated for sustained drug release and axon growth enhancement with the released drug. A 20 d in vitro release test was conducted and the nerve conduit showed the ability to meet and maintain the minimum NGF requirement determined previously. Bioactivity assays of the released NGF showed that drug released from the device between the 15th and 20th day could still promote axon growth (76.6-95.7 μm) in chick DRG cells, which is in the range of maximum growth. These novel drug delivery conduits show the ability to deliver NGF at a dosage that efficiently promotes ex vivo axon growth and have the potential for in vivo application to help bridge peripheral nerve gaps.

  13. Nerve growth factor released from a novel PLGA nerve conduit can improve axon growth

    International Nuclear Information System (INIS)

    Nerve injury can occur due to penetrating wounds, compression, traumatic stretch, and cold exposure. Despite prompt repair, outcomes are dismal. In an attempt to help resolve this challenge, in this work, a poly-lactic-co-glycolic acid (PLGA) nerve conduit with associated biodegradable drug reservoir was designed, fabricated, and tested. Unlike current nerve conduits, this device is capable of fitting various clinical scenarios by delivering different drugs without reengineering the whole system. To demonstrate the potential of this device for nerve repair, a series of experiments were performed using nerve growth factor (NGF). First, an NGF dosage curve was developed to determine the minimum NGF concentration for optimal axonal outgrowth on chick dorsal root ganglia (DRG) cells. Next, PLGA devices loaded with NGF were evaluated for sustained drug release and axon growth enhancement with the released drug. A 20 d in vitro release test was conducted and the nerve conduit showed the ability to meet and maintain the minimum NGF requirement determined previously. Bioactivity assays of the released NGF showed that drug released from the device between the 15th and 20th day could still promote axon growth (76.6–95.7 μm) in chick DRG cells, which is in the range of maximum growth. These novel drug delivery conduits show the ability to deliver NGF at a dosage that efficiently promotes ex vivo axon growth and have the potential for in vivo application to help bridge peripheral nerve gaps. (paper)

  14. Axonal Protein Synthesis and the Regulation of Local Mitochondrial Function

    OpenAIRE

    2009-01-01

    Axons and presynaptic nerve terminals of both invertebrate and mammalian SCG neurons contain a heterogeneous population of nuclear-encoded mitochondrial mRNAs and a local cytosolic protein synthetic system. Nearly one quarter of the total protein synthesized in these structural/functional domains of the neuron is destined for mitochondria. Acute inhibition of axonal protein synthesis markedly reduces the functional activity of mitochondria. The blockade of axonal protein into mitochondria had...

  15. Axonal protein synthesis and the regulation of local mitochondrial function

    OpenAIRE

    Kaplan, B.B.; Gioio, A.E.; Hillefors, M.; Aschrafi, A.

    2009-01-01

    Axons and presynaptic nerve terminals of both invertebrate and mammalian SCG neurons contain a heterogeneous population of nuclear-encoded mitochondrial mRNAs and a local cytosolic protein synthetic system. Nearly one quarter of the total protein synthesized in these structural/functional domains of the neuron is destined for mitochondria. Acute inhibition of axonal protein synthesis markedly reduces the functional activity of mitochondria. The blockade of axonal protein into mitochondria had...

  16. Action potentials reliably invade axonal arbors of rat neocortical neurons

    OpenAIRE

    Cox, Charles L.; Denk, Winfried; Tank, David W.; Svoboda, Karel

    2000-01-01

    Neocortical pyramidal neurons have extensive axonal arborizations that make thousands of synapses. Action potentials can invade these arbors and cause calcium influx that is required for neurotransmitter release and excitation of postsynaptic targets. Thus, the regulation of action potential invasion in axonal branches might shape the spread of excitation in cortical neural networks. To measure the reliability and extent of action potential invasion into axonal arbors, we have used two-photon...

  17. Axon diameter mapping in crossing fibers with diffusion MRI

    DEFF Research Database (Denmark)

    Zhang, Hui; Dyrby, Tim B; Alexander, Daniel C

    2011-01-01

    tissue than measures derived from diffusion tensor imaging. Most existing techniques for axon diameter mapping assume a single axon orientation in the tissue model, which limits their application to only the most coherently oriented brain white matter, such as the corpus callosum, where the single...... technique by establishing reasonable axon diameter indices in the crossing region at the interface of the cingulum and the corpus callosum....

  18. Axon target matching in the developing visual system

    OpenAIRE

    Osterhout, Jessica A.

    2015-01-01

    The central nervous system (CNS) is made up of trillions of connections between specific sets of highly specialized neurons. How each individual neuron finds and connects to the correct synaptic partner remains an important and unresolved issue in neuroscience. Using the mouse visual system as a model I probed the cellular and molecular mechanisms that govern one of the key steps leading to CNS development: axon target matching. Axon target matching is the process by which axons to find and i...

  19. Axon Regeneration in the Peripheral and Central Nervous Systems

    OpenAIRE

    Huebner, Eric A.; Strittmatter, Stephen M

    2009-01-01

    Axon regeneration in the mature mammalian central nervous system (CNS) is extremely limited after injury. Consequently, functional deficits persist after spinal cord injury (SCI), traumatic brain injury, stroke, and related conditions that involve axonal disconnection. This situation differs from that in the mammalian peripheral nervous system (PNS), where long- distance axon regeneration and substantial functional recovery can occur in the adult. Both extracellular molecules and the intrinsi...

  20. Brainstem reflexes and brainstem auditory evoked responses in Huntington's chorea.

    OpenAIRE

    Bollen, E; Arts, R.J.; Roos, R A; van der Velde, E A; Buruma, O J

    1986-01-01

    Blink reflex, corneal reflex, jaw reflex, exteroceptive suppression in masseter muscles and brainstem auditory evoked potentials were measured in 20 patients with Huntington's chorea and 12 controls. A significantly increased latency of the second component of the homolateral and heterolateral blink reflex was found in the patient group as compared with the controls. The other investigations revealed no significant differences between patients and controls except for some facilitation of the ...

  1. Prevalence of family history in patients with reflex syncope

    DEFF Research Database (Denmark)

    Holmegard, Haya N; Benn, Marianne; Kaijer, Michelle Nymann; Haunsø, Stig; Mehlsen, Jesper

    2013-01-01

    Reflex syncope is defined by a rapid transient loss of consciousness caused by global cerebral hypoperfusion resulting from vasodilatation and/or bradycardia attributable to inappropriate cardiovascular reflexes. A hereditary component has been suggested, but prevalence of family history may differ...... among subtypes of reflex syncope, as these have different autonomic responses and pathogeneses may be diverse. The present study aimed to assess the prevalence of a positive family history of syncope and cardiovascular characteristics in patients with cardioinhibitory and vasodepressor reflex syncope...

  2. Anatomy and neuro-pathophysiology of the cough reflex arc

    OpenAIRE

    Polverino Mario; Polverino Francesca; Fasolino Marco; Andò Filippo; Alfieri Antonio; De Blasio Francesco

    2012-01-01

    Abstract Coughing is an important defensive reflex that occurs through the stimulation of a complex reflex arc. It accounts for a significant number of consultations both at the level of general practitioner and of respiratory specialists. In this review we first analyze the cough reflex under normal conditions; then we analyze the anatomy and the neuro-pathophysiology of the cough reflex arc. The aim of this review is to provide the anatomic and pathophysiologic elements of evaluation of the...

  3. Axonal autophagy during regeneration of the rat sciatic nerve

    Institute of Scientific and Technical Information of China (English)

    Kangrong Lu; Zhongxian Piao; Zhenxi Liu; Weiwang Gu; Wanshan Wang; Nngjie Piao

    2008-01-01

    BACKGROUND: The removal of degenerated axonal debris during Wallerian degeneration is very important for nerve regeneration. However, the mechanism by which debris is removed is not been completely understood. Considerable controversy remains as to the clearance pathway and cells that are involved. OBJECTIVE: To investigate axonal autophagy during removal of degenerated axonal debris by transecting the sciatic nerve in a rat Wallerian degeneration model.DESIGN, TIME AND SETTING: Experimental neuropathological analysis. The experiment was conducted at the Laboratory Animal Service Center of the Southern Medical University between January and June 2005. MATERIALS: Fifty-four adult, Wistar rats of either sex, weighing 180-250 g, were obtained from the Laboratory Animal Service Center of the Southern Medical University. Animals were randomly divided into nine groups of six rats. METHODS: Wallerian degeneration was induced by transecting the rat sciatic nerve, and tissue samples from the distal stump were obtained 0.2, 0.4, 1, 2, 3, 4, 7, 10, and 15 days post-transection. Ultrathin sections were prepared for electron microscopy to study ultrastructure and enzyme cytochemistry staining. MAIN OUTCOME MEASURES: Ultrastructure (axon body, autophagic body, and cystoskeleton) of axons and myelin sheaths observed with electron microscopy; acidic phosphatase activity detected by Gomori staining using electron microscopy. RESULTS: The major changes of degenerating axons after transection were axoplasm swelling and separation of axons from their myelin sheath between five hours and two days post-transection. At four days post-transection, the axoplasm condensed and axons were completely separated from the myelin sheath, forming dissociative axon bodies. Vacuoles of different sizes formed in axons during the early phase after lesion. Larger dissociative axon bodies were formed when the axons were completely separated from the myelin sheath during a late phase. The axolemma

  4. Localization of Axonal Motor Molecules Machinery in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Fulvio Florenzano

    2012-04-01

    Full Text Available Axonal transport and neuronal survival depend critically on active transport and axon integrity both for supplying materials and communication to different domains of the cell body. All these actions are executed through cytoskeleton, transport and regulatory elements that appear to be disrupted in neurodegenerative diseases. Motor-driven transport both supplies and clears distal cellular portions with proteins and organelles. This transport is especially relevant in projection and motor neurons, which have long axons to reach the farthest nerve endings. Thus, any disturbance of axonal transport may have severe consequences for neuronal function and survival. A growing body of literature indicates the presence of alterations to the motor molecules machinery, not only in expression levels and phosphorylation, but also in their subcellular distribution within populations of neurons, which are selectively affected in the course of neurodegenerative diseases. The implications of this altered subcellular localization and how this affects axon survival and neuronal death still remain poorly understood, although several hypotheses have been suggested. Furthermore, cytoskeleton and transport element localization can be selectively disrupted in some disorders suggesting that specific loss of the axonal functionality could be a primary hallmark of the disorder. This can lead to axon degeneration and neuronal death either directly, through the functional absence of essential axonal proteins, or indirectly, through failures in communication among different cellular domains. This review compares the localization of cytoskeleton and transport elements in some neurodegenerative disorders to ask what aspects may be essential for axon survival and neuronal death.

  5. Focal axonal swellings and associated ultrastructural changes attenuate conduction velocity in central nervous system axons: a computer modeling study

    OpenAIRE

    Kolaric, Katarina V; Thomson, Gemma; Edgar, Julia M; Brown, Angus M.

    2013-01-01

    The constancy of action potential conduction in the central nervous system (CNS) relies on uniform axon diameter coupled with fidelity of the overlying myelin providing high-resistance, low capacitance insulation. Whereas the effects of demyelination on conduction have been extensively studied/modeled, equivalent studies on the repercussions for conduction of axon swelling, a common early pathological feature of (potentially reversible) axonal injury, are lacking. The recent description of ex...

  6. Biological Motion Cues Trigger Reflexive Attentional Orienting

    Science.gov (United States)

    Shi, Jinfu; Weng, Xuchu; He, Sheng; Jiang, Yi

    2010-01-01

    The human visual system is extremely sensitive to biological signals around us. In the current study, we demonstrate that biological motion walking direction can induce robust reflexive attentional orienting. Following a brief presentation of a central point-light walker walking towards either the left or right direction, observers' performance…

  7. Madonna as a symbol of reflexive modernisation

    NARCIS (Netherlands)

    M. van den Berg; C.L. ter Hoeven

    2013-01-01

    The communication of social and cultural tensions embodied in the symbol Madonna explain the unparalleled public and scientific fascination for this cultural phenomenon. These tensions can be seen as communications of reflexive modernisation, in which modernisation has produced its own counterforce.

  8. A reflexive perspective in problem solving

    Directory of Open Access Journals (Sweden)

    Chio, José Angel

    2013-01-01

    Full Text Available The objective of this paper is to favour the methodological process of reflexive analysis in problem solving in the general teaching methods that concentrates in strengthening the dimensional analysis, to gain a greater preparation of the students for the solution of mathematical problems.

  9. The reflexive self and culture: a critique.

    Science.gov (United States)

    Adams, Matthew

    2003-06-01

    This article attempts to engage with a tendency in the theorization of social change and self-identity, evident in the work of a number of contemporary social theorists, to place an extended process of reflexivity at the heart of modern identity. As symptomatic of 'neo-modern' accounts of selfhood, critical readings of Giddens, Beck, Castells and some aspects of social theory more generally, and their account of modern reflexivity's relationship to culture, are assessed. In light of these criticisms, ways in which culture might still play an important part in the shaping of identity are considered. The relationship between language, culture and reflexivity, drawing from philosophy, sociology and G. H. Mead's own brand of social psychology, are all utilized in establishing a critique of the role Giddens and others designate for culture in the constitution of the contemporary self. By potentially repositioning self-identity in its connection to culture, the overall bearing of reflexivity upon the processes of self-identity is thus questioned. It is argued that a culturally-situated, yet fluid and multifarious account of self-identity is a necessary analytical and normative alternative. PMID:12945868

  10. Reflectivity, Reflexivity and Situated Reflective Practice

    Science.gov (United States)

    Malthouse, Richard; Roffey-Barentsen, Jodi; Watts, Mike

    2014-01-01

    This paper describes an aspect of reflective practice referred to as situated reflective practice. The overarching theory is derived from social theories of structuration and reflexivity. In particular, from Giddens' theory of structuration, which sees social life as an interplay of agency and structure. Discussion of the research reported…

  11. Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain.

    Science.gov (United States)

    Larsen, Camilla; Shy, Diana; Spindler, Shana R; Fung, Siaumin; Pereanu, Wayne; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2009-11-15

    The Drosophila central brain is composed of approximately 100 paired lineages, with most lineages comprising 100-150 neurons. Most lineages have a number of important characteristics in common. Typically, neurons of a lineage stay together as a coherent cluster and project their axons into a coherent bundle visible from late embryo to adult. Neurons born during the embryonic period form the primary axon tracts (PATs) that follow stereotyped pathways in the neuropile. Apoptotic cell death removes an average of 30-40% of primary neurons around the time of hatching. Secondary neurons generated during the larval period form secondary axon tracts (SATs) that typically fasciculate with their corresponding primary axon tract. SATs develop into the long fascicles that interconnect the different compartments of the adult brain. Structurally, we distinguish between three types of lineages: PD lineages, characterized by distinct, spatially separate proximal and distal arborizations; C lineages with arborizations distributed continuously along the entire length of their tract; D lineages that lack proximal arborizations. Arborizations of many lineages, in particular those of the PD type, are restricted to distinct neuropile compartments. We propose that compartments are "scaffolded" by individual lineages, or small groups thereof. Thereby, the relatively small number of primary neurons of each primary lineage set up the compartment map in the late embryo. Compartments grow during the larval period simply by an increase in arbor volume of primary neurons. Arbors of secondary neurons form within or adjacent to the larval compartments, resulting in smaller compartment subdivisions and additional, adult specific compartments. PMID:19538956

  12. New Molecular Knowledge Towards the Trigemino-Cardiac Reflex as a Cerebral Oxygen-Conserving Reflex

    Directory of Open Access Journals (Sweden)

    N. Sandu

    2010-01-01

    Full Text Available The trigemino-cardiac reflex (TCR represents the most powerful of the autonomous reflexes and is a subphenomenon in the group of the so-called “oxygen-conserving reflexes”. Within seconds after the initiation of such a reflex, there is a powerful and differentiated activation of the sympathetic system with subsequent elevation in regional cerebral blood flow (CBF, with no changes in the cerebral metabolic rate of oxygen (CMRO2 or in the cerebral metabolic rate of glucose (CMRglc. Such an increase in regional CBF without a change of CMRO2 or CMRglc provides the brain with oxygen rapidly and efficiently. Features of the reflex have been discovered during skull base surgery, mediating reflex protection projects via currently undefined pathways from the rostral ventrolateral medulla oblongata to the upper brainstem and/or thalamus, which finally engage a small population of neurons in the cortex. This cortical center appears to be dedicated to transduce a neuronal signal reflexively into cerebral vasodilatation and synchronization of electrocortical activity; a fact that seems to be unique among autonomous reflexes. Sympathetic excitation is mediated by cortical-spinal projection to spinal preganglionic sympathetic neurons, whereas bradycardia is mediated via projections to cardiovagal motor medullary neurons. The integrated reflex response serves to redistribute blood from viscera to the brain in response to a challenge to cerebral metabolism, but seems also to initiate a preconditioning mechanism. Previous studies showed a great variability in the human TCR response, in special to external stimuli and individual factors. The TCR gives, therefore, not only new insights into novel therapeutic options for a range of disorders characterized by neuronal death, but also into the cortical and molecular organization of the brain.

  13. A phantom axon setup for validating models of action potential recordings.

    Science.gov (United States)

    Rossel, Olivier; Soulier, Fabien; Bernard, Serge; Guiraud, David; Cathébras, Guy

    2016-08-01

    Electrode designs and strategies for electroneurogram recordings are often tested first by computer simulations and then by animal models, but they are rarely implanted for long-term evaluation in humans. The models show that the amplitude of the potential at the surface of an axon is higher in front of the nodes of Ranvier than at the internodes; however, this has not been investigated through in vivo measurements. An original experimental method is presented to emulate a single fiber action potential in an infinite conductive volume, allowing the potential of an axon to be recorded at both the nodes of Ranvier and the internodes, for a wide range of electrode-to-fiber radial distances. The paper particularly investigates the differences in the action potential amplitude along the longitudinal axis of an axon. At a short radial distance, the action potential amplitude measured in front of a node of Ranvier is two times larger than in the middle of two nodes. Moreover, farther from the phantom axon, the measured action potential amplitude is almost constant along the longitudinal axis. The results of this new method confirm the computer simulations, with a correlation of 97.6 %. PMID:27016364

  14. Axonal sodium channel distribution shapes the depolarized action potential threshold of dentate granule neurons.

    Science.gov (United States)

    Kress, Geraldine J; Dowling, Margaret J; Eisenman, Lawrence N; Mennerick, Steven

    2010-04-01

    Intrinsic excitability is a key feature dictating neuronal response to synaptic input. Here we investigate the recent observation that dentate granule neurons exhibit a more depolarized voltage threshold for action potential initiation than CA3 pyramidal neurons. We find no evidence that tonic GABA currents, leak or voltage-gated potassium conductances, or the expression of sodium channel isoform differences can explain this depolarized threshold. Axonal initial segment voltage-gated sodium channels, which are dominated by the Na(V)1.6 isoform in both cell types, distribute more proximally and exhibit lower overall density in granule neurons than in CA3 neurons. To test possible contributions of sodium channel distributions to voltage threshold and to test whether morphological differences participate, we performed simulations of dentate granule neurons and of CA3 pyramidal neurons. These simulations revealed that cell morphology and sodium channel distribution combine to yield the characteristic granule neuron action potential upswing and voltage threshold. Proximal axon sodium channel distribution strongly contributes to the higher voltage threshold of dentate granule neurons for two reasons. First, action potential initiation closer to the somatodendritic current sink causes the threshold of the initiating axon compartment to rise. Second, the proximity of the action potential initiation site to the recording site causes somatic recordings to more faithfully reflect the depolarized threshold of the axon than in cells like CA3 neurons, with distally initiating action potentials. Our results suggest that the proximal location of axon sodium channels in dentate granule neurons contributes to the intrinsic excitability differences between DG and CA3 neurons and may participate in the low-pass filtering function of dentate granule neurons. PMID:19603521

  15. Chronic intermittent ethanol induced axon and myelin degeneration is attenuated by calpain inhibition.

    Science.gov (United States)

    Samantaray, Supriti; Knaryan, Varduhi H; Patel, Kaushal S; Mulholland, Patrick J; Becker, Howard C; Banik, Naren L

    2015-10-01

    Chronic alcohol consumption causes multifaceted damage to the central nervous system (CNS), underlying mechanisms of which are gradually being unraveled. In our previous studies, activation of calpain, a calcium-activated neutral protease has been found to cause detrimental alterations in spinal motor neurons following ethanol (EtOH) exposure in vitro. However, it is not known whether calpain plays a pivotal role in chronic EtOH exposure-induced structural damage to CNS in vivo. To test the possible involvement of calpain in EtOH-associated neurodegenerative mechanisms the present investigation was conducted in a well-established mouse model of alcohol dependence - chronic intermittent EtOH (CIE) exposure and withdrawal. Our studies indicated significant loss of axonal proteins (neurofilament light and heavy, 50-60%), myelin proteins (myelin basic protein, 20-40% proteolipid protein, 25%) and enzyme (2', 3'-cyclic-nucleotide 3'-phosphodiesterase, 21-55%) following CIE in multiple regions of brain including hippocampus, corpus callosum, cerebellum, and importantly in spinal cord. These CIE-induced deleterious effects escalated after withdrawal in each CNS region tested. Increased expression and activity of calpain along with enhanced ratio of active calpain to calpastatin (sole endogenous inhibitor) was observed after withdrawal compared to EtOH exposure. Pharmacological inhibition of calpain with calpeptin (25 μg/kg) prior to each EtOH vapor inhalation significantly attenuated damage to axons and myelin as demonstrated by immuno-profiles of axonal and myelin proteins, and Luxol Fast Blue staining. Calpain inhibition significantly protected the ultrastructural integrity of axons and myelin compared to control as confirmed by electron microscopy. Together, these findings confirm CIE exposure and withdrawal induced structural alterations in axons and myelin, predominantly after withdrawal and corroborate calpain inhibition as a potential protective strategy against

  16. Neurofilament gene expression: a major determinant of axonal caliber

    International Nuclear Information System (INIS)

    Within the wide spectrum of axonal diameters occurring in mammalian nerve fibers, each class of neurons has a relatively restricted range of axonal calibers. The control of caliber has functional significance because diameter is the principal determinant of conduction velocity in myelinated nerve fibers. Previous observations support the hypothesis that neurofilaments (NF) are major intrinsic determinants of axonal caliber in large myelinated nerve fibers. Following interruption of axons (axotomy) by crushing or cutting a peripheral nerve, caliber is reduced in the proximal axonal stumps, which extend from the cell bodies to the site of axotomy. This reduction in axonal caliber in the proximal stumps is associated with a selective diminution in the amount of NF protein undergoing slow axonal transport in these axons, with a decrease in axonal NF content, and with reduced conduction velocity. The present report demonstrates that changes in axonal caliber after axotomy correlate with a selective alteration in NF gene expression. Hybridization with specific cDNAs was used to measure levels of mRNA encoding the 68-kDa neurofilament protein (NF68), β-tubulin, and actin in lumbar sensory neurons of rat at various times after crushing the sciatic nerve. Between 4 and 42 days after axotomy by nerve crush, the levels of NF68 mRNA were reduced 2- to 3-fold. At the same times, the levels of tubulin and actin mRNAs were increased several-fold. These findings support the hypothesis that the expression of a single set of neuron-specific genes (encoding NF) directly determines axonal caliber, a feature neuronal morphology with important consequences for physiology and behavior

  17. Modification of Otolith Reflex Asymmetries Following Space Flight

    Science.gov (United States)

    Clarke, Andrew H.; Schoenfeld, Uwe; Wood, Scott J.

    2011-01-01

    We hypothesize that changes in otolith-mediated reflexes adapted for microgravity contribute to perceptual, gaze and postural disturbances upon return to Earth s gravity. Our goal was to determine pre- versus post-fight differences in unilateral otolith reflexes that reflect these adaptive changes. This study represents the first comprehensive examination of unilateral otolith function following space flight. Ten astronauts participated in unilateral otolith function tests three times pre-flight and up to four times after Shuttle flights from landing day through the subsequent 10 days. During unilateral centrifugation (UC, +/- 3.5cm at 400deg/s), utricular function was examined by the perceptual changes reflected by the subjective visual vertical (SVV) and by video-oculographic measurement of the otolith-mediated ocular counter-roll (OOR). Unilateral saccular reflexes were recorded by measurement of collic Vestibular Evoked Myogenic Potential (cVEMP). Although data from a few subjects were not obtained early post-flight, a general increase in asymmetry of otolith responses was observed on landing day relative to pre-flight baseline, with a subsequent reversal in asymmetry within 2-3 days. Recovery to baseline levels was achieved within 10 days. This fluctuation in the asymmetry measures appeared strongest for SVV, in a consistent direction for OOR, and in an opposite direction for cVEMP. These results are consistent with our hypothesis that space flight results in adaptive changes in central nervous system processing of otolith input. Adaptation to microgravity may reveal asymmetries in otolith function upon to return to Earth that were not detected prior to the flight due to compensatory mechanisms.

  18. Yaw sensory rearrangement alters pitch vestibulo-ocular reflex responses

    Science.gov (United States)

    Petropoulos, A. E.; Wall, C. 3rd; Oman, C. M.

    1997-01-01

    Ten male subjects underwent two types of adaptation paradigm designed either to enhance or to attenuate the gain of the canal-ocular reflex (COR), before undergoing otolith-ocular reflex (OOR) testing with constant velocity, earth horizontal axis and pitch rotation. The adaptation paradigm paired a 0.2 Hz sinusoidal rotation about an earth vertical axis with a 0.2 Hz optokinetic stimulus that was deliberately mismatched in peak velocity or phase and was designed to produce short-term changes in the COR. Preadaptation and postadaptation OOR tests occurred at a constant velocity of 60 degrees/sec in the dark and produced a modulation component of the slow phase velocity with a frequency of 0.16 Hz due to otolithic stimulation by the sinusoidally changing gravity vector. Of the seven subjects who showed enhancement of the COR gain, six also showed enhancement of the OOR modulation component. Of the seven subjects who showed attenuation of the COR gain, five also showed attenuation of the OOR modulation component. The probability that these two cross-axis adaptation effects would occur by chance is less than 0.02. This suggests that visual-vestibular conditioning of the yaw axis COR also induced changes in the pitch axis OOR. We thus postulate that the central nervous system pathways that process horizontal canal yaw stimuli have elements in common with those processing otolithic stimuli about the pitch axis.

  19. Analysis of data from the Pericles and reflex experiments using the Codes Trac-PF1/MOD1 and QFLOOD

    International Nuclear Information System (INIS)

    The computer programs TRAC-FP1/MOD1 and QFLOOD have been used to analyse data obtained from two reflood rigs: PERICLES, a 7 - 51 bundle arranged to investigate the chimney effect, and REFLEX, a single heated tube. TRAC produced poor predictions for PERICLES, the calculated temperature history curves at the 2.03 m elevation differing markedly from experiment. TRAC predictions for the REFLEX base case agreed quite well with experiment, but for a second REFLEX test, at higher inlet water flowrate, TRAC greatly overpredicted the quench front speed. QFLOOD also performed badly against PERICLES, quench time being overpredicted by more than 50%. A number of sensitivity studies were carried out in order to establish the source of the error in the modelling. Several possible explanations were investigated, but definite conclusions could not be drawn. QFLOOD predictions for REFLEX were generally satisfactory

  20. Stability of the Medial Olivocochlear Reflex as Measured by Distortion Product Otoacoustic Emissions

    Science.gov (United States)

    Mishra, Srikanta K.; Abdala, Carolina

    2015-01-01

    Purpose: The purpose of this study was to assess the repeatability of a fine-resolution, distortion product otoacoustic emission (DPOAE)-based assay of the medial olivocochlear (MOC) reflex in normal-hearing adults. Method: Data were collected during 36 test sessions from 4 normal-hearing adults to assess short-term stability and 5 normal-hearing…

  1. New insights into mRNA trafficking in axons

    NARCIS (Netherlands)

    Gumy, Laura; Katrukha, Eugene; Kapitein, Lukas; Hoogenraad, Casper

    2014-01-01

    In recent years, it has been demonstrated that mRNAs localize to axons of young and mature central and peripheral nervous system neurons in culture and in vivo. Increasing evidence is supporting a fundamental role for the local translation of these mRNAs in neuronal function by regulating axon growt

  2. Restoration of Visual Function by Enhancing Conduction in Regenerated Axons.

    Science.gov (United States)

    Bei, Fengfeng; Lee, Henry Hing Cheong; Liu, Xuefeng; Gunner, Georgia; Jin, Hai; Ma, Long; Wang, Chen; Hou, Lijun; Hensch, Takao K; Frank, Eric; Sanes, Joshua R; Chen, Chinfei; Fagiolini, Michela; He, Zhigang

    2016-01-14

    Although a number of repair strategies have been shown to promote axon outgrowth following neuronal injury in the mammalian CNS, it remains unclear whether regenerated axons establish functional synapses and support behavior. Here, in both juvenile and adult mice, we show that either PTEN and SOCS3 co-deletion, or co-overexpression of osteopontin (OPN)/insulin-like growth factor 1 (IGF1)/ciliary neurotrophic factor (CNTF), induces regrowth of retinal axons and formation of functional synapses in the superior colliculus (SC) but not significant recovery of visual function. Further analyses suggest that regenerated axons fail to conduct action potentials from the eye to the SC due to lack of myelination. Consistent with this idea, administration of voltage-gated potassium channel blockers restores conduction and results in increased visual acuity. Thus, enhancing both regeneration and conduction effectively improves function after retinal axon injury. PMID:26771493

  3. Receptor Tyrosine Kinases: Molecular Switches Regulating CNS Axon Regeneration

    Directory of Open Access Journals (Sweden)

    Vasanthy Vigneswara

    2012-01-01

    Full Text Available The poor or lack of injured adult central nervous system (CNS axon regeneration results in devastating consequences and poor functional recovery. The interplay between the intrinsic and extrinsic factors contributes to robust inhibition of axon regeneration of injured CNS neurons. The insufficient or lack of trophic support for injured neurons is considered as one of the major obstacles contributing to their failure to survive and regrow their axons after injury. In the CNS, many of the signalling pathways associated with neuronal survival and axon regeneration are regulated by several classes of receptor tyrosine kinases (RTK that respond to a variety of ligands. This paper highlights and summarises the most relevant recent findings pertinent to different classes of the RTK family of molecules, with a particular focus on elucidating their role in CNS axon regeneration.

  4. Diffuse axonal injury at ultra-high field MRI.

    Directory of Open Access Journals (Sweden)

    Christoph Moenninghoff

    Full Text Available Diffuse axonal injury (DAI is a specific type of traumatic brain injury caused by shearing forces leading to widespread tearing of axons and small vessels. Traumatic microbleeds (TMBs are regarded as a radiological marker for DAI. This study aims to compare DAI-associated TMBs at 3 Tesla (T and 7 T susceptibility weighted imaging (SWI to evaluate possible diagnostic benefits of ultra-high field (UHF MRI.10 study participants (4 male, 6 female, age range 20-74 years with known DAI were included. All MR exams were performed with a 3 T MR system (Magnetom Skyra and a 7 T MR research system (Magnetom 7 T, Siemens AG, Healthcare Sector, Erlangen, Germany each in combination with a 32-channel-receive coil. The average time interval between trauma and imaging was 22 months. Location and count of TMBs were independently evaluated by two neuroradiologists on 3 T and 7 T SWI images with similar and additionally increased spatial resolution at 7 T. Inter- and intraobserver reliability was assessed using the interclass correlation coefficient (ICC. Count and diameter of TMB were evaluated with Wilcoxon signed rank test.Susceptibility weighted imaging revealed a total of 485 TMBs (range 1-190, median 25 at 3 T, 584 TMBs (plus 20%, range 1-262, median 30.5 at 7 T with similar spatial resolution, and 684 TMBs (plus 41%, range 1-288, median 39.5 at 7 T with 10-times higher spatial resolution. Hemorrhagic DAI appeared significantly larger at 7 T compared to 3 T (p = 0.005. Inter- and intraobserver correlation regarding the counted TMB was high and almost equal 3 T and 7 T.7 T SWI improves the depiction of small hemorrhagic DAI compared to 3 T and may be supplementary to lower field strengths for diagnostic in inconclusive or medicolegal cases.

  5. Influence of cryopreserved olfactory ensheathing cells transplantation on axonal regeneration in spinal cord of adult rats

    Institute of Scientific and Technical Information of China (English)

    沈慧勇; 殷德振; 唐勇; 吴燕峰; 程志安; 杨睿; 黄霖

    2004-01-01

    Objective: To observe the effects of cryopreserved olfactory ensheathing cells (OECs) transplantation on axonal regeneration and functional recovery following spinal cord injury in adult rats.Methods: Twenty-four rats were divided into experimental and control groups, each group having 12 rats. The spinal cord injury was established by transecting the spinal cord at T10 level with microsurgery scissors.OECs were purified from SD rat olfactory bulb and cultured in DMEM ( Dulbecco's minimum essential medium) and cryopreserved (-120℃) for two weeks.OECs suspension[(1-1.4)×105/ul] was transplanted into transected spinal cord, while the DMEM solution was injected instead in the control group. At 6 and 12 weeks after transplantation, the rats were evaluated with climbing test and MEP ( moter evoked potentials) monitoring. The samples of spinal cord were procured and studied with histological and immunohisto chemical stainings.Results: At 6 weeks after transplantation, all of the rats in both transplanted and control groups were paraplegic, and MEPs could not be recorded. Morphology of transplanted OECs was normal, and OECs were interfused with host well. Axons could regrow into gap tissue between the spinal cords. Both OECs and regrown axons were immunoreactive for MBP. No regrown axons were found in the control group. At 12 weeks after transplantation, 2 rats (2/7) had lower extremities muscle contraction, 2 rats (2/7) had hip and/or knee active movement, and MEP of 5 rats (5/7) could be recorded in the calf in the transplantation group. None of the rats (7/ 7) in the control group had functional improvement, and none had MEPs recorded. In the transplanted group,histological and immunohistochemical methods showed the number of transplanted OECs reduced and some regrown axons had reached the end of transected spinal cord.However, no regrown axons could be seen except scar formation in the control group.Conclusions: Cryopreserved OECs could integrated with the host and

  6. Brain injury tolerance limit based on computation of axonal strain.

    Science.gov (United States)

    Sahoo, Debasis; Deck, Caroline; Willinger, Rémy

    2016-07-01

    Traumatic brain injury (TBI) is the leading cause of death and permanent impairment over the last decades. In both the severe and mild TBIs, diffuse axonal injury (DAI) is the most common pathology and leads to axonal degeneration. Computation of axonal strain by using finite element head model in numerical simulation can enlighten the DAI mechanism and help to establish advanced head injury criteria. The main objective of this study is to develop a brain injury criterion based on computation of axonal strain. To achieve the objective a state-of-the-art finite element head model with enhanced brain and skull material laws, was used for numerical computation of real world head trauma. The implementation of new medical imaging data such as, fractional anisotropy and axonal fiber orientation from Diffusion Tensor Imaging (DTI) of 12 healthy patients into the finite element brain model was performed to improve the brain constitutive material law with more efficient heterogeneous anisotropic visco hyper-elastic material law. The brain behavior has been validated in terms of brain deformation against Hardy et al. (2001), Hardy et al. (2007), and in terms of brain pressure against Nahum et al. (1977) and Trosseille et al. (1992) experiments. Verification of model stability has been conducted as well. Further, 109 well-documented TBI cases were simulated and axonal strain computed to derive brain injury tolerance curve. Based on an in-depth statistical analysis of different intra-cerebral parameters (brain axonal strain rate, axonal strain, first principal strain, Von Mises strain, first principal stress, Von Mises stress, CSDM (0.10), CSDM (0.15) and CSDM (0.25)), it was shown that axonal strain was the most appropriate candidate parameter to predict DAI. The proposed brain injury tolerance limit for a 50% risk of DAI has been established at 14.65% of axonal strain. This study provides a key step for a realistic novel injury metric for DAI. PMID:27038501

  7. Receptive field properties of bipolar cell axon terminals in direction-selective sublaminas of the mouse retina.

    Science.gov (United States)

    Chen, Minggang; Lee, Seunghoon; Park, Silvia J H; Looger, Loren L; Zhou, Z Jimmy

    2014-10-15

    Retinal bipolar cells (BCs) transmit visual signals in parallel channels from the outer to the inner retina, where they provide glutamatergic inputs to specific networks of amacrine and ganglion cells. Intricate network computation at BC axon terminals has been proposed as a mechanism for complex network computation, such as direction selectivity, but direct knowledge of the receptive field property and the synaptic connectivity of the axon terminals of various BC types is required in order to understand the role of axonal computation by BCs. The present study tested the essential assumptions of the presynaptic model of direction selectivity at axon terminals of three functionally distinct BC types that ramify in the direction-selective strata of the mouse retina. Results from two-photon Ca(2+) imaging, optogenetic stimulation, and dual patch-clamp recording demonstrated that 1) CB5 cells do not receive fast GABAergic synaptic feedback from starburst amacrine cells (SACs); 2) light-evoked and spontaneous Ca(2+) responses are well coordinated among various local regions of CB5 axon terminals; 3) CB5 axon terminals are not directionally selective; 4) CB5 cells consist of two novel functional subtypes with distinct receptive field structures; 5) CB7 cells provide direct excitatory synaptic inputs to, but receive no direct GABAergic synaptic feedback from, SACs; and 6) CB7 axon terminals are not directionally selective, either. These findings help to simplify models of direction selectivity by ruling out complex computation at BC terminals. They also show that CB5 comprises two functional subclasses of BCs. PMID:25031256

  8. 4S RNA is transported axonally in normal and regenerating axons of the sciatic nerves of rats

    International Nuclear Information System (INIS)

    Experiments were designed to determine if following injection of [3H]uridine into the lumbar spinal cord of the rat, [3H]RNA could be demonstrated within axons of the sciatic nerve, and if 4S RNA is the predominant predominant RNA species present in these axons. (Auth.)

  9. Assessment and reflexivity in family therapy training.

    OpenAIRE

    Neden, Jeanette

    2007-01-01

    Educational contexts can be both enriched and impoverished by our relationship with learning and our 'identity stories' as learners influence how we construct contexts for learning. Keenoy et al. (2007) describe identity as a 'transient bridging concept' between the individual and society which is constructed through 'reflexive processes of naming, labelling, classifying and associating symbolic artefacts and social actors in a dialogical process of social definition and redefinition'. Can me...

  10. Frequency dependence of vestibuloocular reflex thresholds

    OpenAIRE

    Haburcakova, Csilla; Lewis, Richard F.; Merfeld, Daniel M.

    2011-01-01

    How the brain processes signals in the presence of noise impacts much of behavioral neuroscience. Thresholds provide one way to assay noise. While perceptual thresholds have been widely investigated, vestibuloocular reflex (VOR) thresholds have seldom been studied and VOR threshold dynamics have never, to our knowledge, been reported. Therefore, we assessed VOR thresholds as a function of frequency. Specifically, we measured horizontal VOR thresholds evoked by yaw rotation in rhesus monkeys, ...

  11. Reflectivity, reflexivity and situated reflective practice

    OpenAIRE

    Malthouse, R; Roffey-Barentsen, J; Watts, DM

    2014-01-01

    This paper describes an aspect of reflective practice referred to as ‘Situated Reflective Practice’ (SRP). The overarching theory is derived from social theories of structuration and reflexivity. In particular, from Giddens’s (1984) theory of structuration, this sees social life as interplay of agency and structure. Discussion of the research reported here centres on the nature of such situated reflection, considers related literature and presents the data collected in a recent small-scale st...

  12. Esophageal reflexes modulate frontoparietal response in neonates: Novel application of concurrent NIRS and provocative esophageal manometry.

    Science.gov (United States)

    Jadcherla, Sudarshan R; Pakiraih, Joanna F; Hasenstab, Kathryn A; Dar, Irfaan; Gao, Xiaoyu; Bates, D Gregory; Kashou, Nasser H

    2014-07-01

    Central and peripheral neural regulation of swallowing and aerodigestive reflexes is unclear in human neonates. Functional near infrared spectroscopy (NIRS) is a noninvasive method to measure changes in oxyhemoglobin (HbO) and deoxyhemoglobin (HbD). Pharyngoesophageal manometry permits evaluation of aerodigestive reflexes. Modalities were combined to investigate feasibility and to test neonatal frontoparietal cortical changes during pharyngoesophageal (visceral) stimulation and/or swallowing. Ten neonates (45.6 ± 3.0 wk postmenstrual age, 4.1 ± 0.5 kg) underwent novel pharyngoesophageal manometry concurrent with NIRS. To examine esophagus-brain interactions, we analyzed cortical hemodynamic response (HDR) latency and durations during aerodigestive provocation and esophageal reflexes. Data are presented as means ± SE or percent. HDR rates were 8.84 times more likely with basal spontaneous deglutition compared with sham stimuli (P = 0.004). Of 182 visceral stimuli, 95% were analyzable for esophageal responses, 38% for HDR, and 36% for both. Of analyzable HDR (n = 70): 1) HbO concentration (μmol/l) baseline 1.5 ± 0.7 vs. 3.7 ± 0.7 poststimulus was significant (P = 0.02), 2) HbD concentration (μmol/l) between baseline 0.1 ± 0.4 vs. poststimulus -0.5 ± 0.4 was not significant (P = 0.73), and 3) hemispheric lateralization was 21% left only, 29% right only, and 50% bilateral. During concurrent esophageal and NIRS responses (n = 66): 1) peristaltic reflexes were present in 74% and HDR in 61% and 2) HDR was 4.75 times more likely with deglutition reflex vs. secondary peristaltic reflex (P = 0.016). Concurrent NIRS with visceral stimulation is feasible in neonates, and frontoparietal cortical activation is recognized. Deglutition contrasting with secondary peristalsis is related to cortical activation, thus implicating higher hierarchical aerodigestive protective functional neural networks. PMID:24789204

  13. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    Science.gov (United States)

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P < 0.01) reduced the amplitude of the reflex bladder contractions to 8.5 ± 1.9 cmH2O. Injection of lidocaine (2%, 1-2 ml) into the sacral spinal cord or transection of the sacral spinal roots and spinal cord further reduced the contraction amplitude to 4.2 ± 1.3 cmH2O. Pudendal nerve stimulation (PNS) at frequencies of 0.5-5 Hz and 40 Hz but not at 10-20 Hz inhibited reflex bladder contractions, whereas tibial nerve stimulation (TNS) failed to inhibit bladder contractions at all tested frequencies (0.5-40 Hz). These results indicate that PNS inhibition of nociceptive afferent C-fiber-mediated spinal reflex bladder contractions can occur at the spinal level in the absence of supraspinal pathways, but TNS inhibition requires supraspinal pathways. In addition, this study shows, for the first time, that after acute spinal cord transection reflex bladder contractions can be triggered by activating nociceptive bladder afferent C-fibers using acetic acid irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions. PMID:25056352

  14. The effect of distraction strategies on pain perception and the nociceptive flexor reflex (RIII reflex).

    Science.gov (United States)

    Ruscheweyh, Ruth; Kreusch, Annette; Albers, Christoph; Sommer, Jens; Marziniak, Martin

    2011-11-01

    Distraction from pain reduces pain perception, and imaging studies have suggested that this may at least partially be mediated by activation of descending pain inhibitory systems. Here, we used the nociceptive flexor reflex (RIII reflex) to directly quantify the effects of different distraction strategies on basal spinal nociception and its temporal summation. Twenty-seven healthy subjects participated in 3 distraction tasks (mental imagery, listening to preferred music, spatial discrimination of brush stimuli) and, in a fourth task, concentrated on the painful stimulus. Results show that all 3 distraction tasks reduced pain perception, but only the brush task also reduced the RIII reflex. The concentration-on-pain task increased both pain perception and the RIII reflex. The extent of temporal summation of pain perception and the extent of temporal summation of the RIII reflex were not affected by any of the tasks. These results suggest that some, but not all, forms of pain reduction by distraction rely on descending pain inhibition. In addition, pain reduction by distraction seems to preferentially affect mechanisms of basal nociceptive transmission, not of temporal summation. PMID:21925793

  15. Prolyl Isomerase Pin1 Regulates Axon Guidance by Stabilizing CRMP2A Selectively in Distal Axons

    Czech Academy of Sciences Publication Activity Database

    Balaštík, Martin; Zhou, X.Z.; Alberich-Jorda, Meritxell; Weissová, Romana; Žiak, Jakub; Pazyra-Murphy, M.F.; Cosker, K.E.; Machoňová, Olga; Kozmiková, Iryna; Chen, CH.; Pastorino, L.; Asara, J.M.; Cole, A.; Sutherland, C.; Segal, R. A.; Lu, K.P.

    2015-01-01

    Roč. 13, č. 4 (2015), s. 812-828. ISSN 2211-1247 R&D Projects: GA MŠk(CZ) LK11213; GA MŠk LK21307; GA ČR GA15-03796S; GA MŠk LO1419 Institutional support: RVO:68378050 Keywords : Pin1 * axon guidance * Semaphorin 3A Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.358, year: 2014

  16. Clinical features of diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To analyze the mechanism of diffuse axonal injury (DAI) and study the relationship between DAI and brain concussion, brain contusion, and primary brain stem injury.Methods: The clinical data and iconographic characteristics of 56 patients with DAI were analyzed retrospectively.Results: Traffic accidents were the main cause of DAI. Among the 56 cases, 34 were injured for at least twice, and 71.43% of the patients were complicated with contusion.Conclusions: It is considered that DAI is a common pattern of primary brain injury, which is often underestimated. And DAI includes cerebral concussion and primary brain injury, and is often complicated by cerebral cortex contusion. Therefore, it is very simple and practical to divide primary brain injuries into local and diffuse injuries.

  17. Intracortical circuits of pyramidal neurons reflect their long-range axonal targets

    OpenAIRE

    Brown, Solange P.; Hestrin, Shaul

    2009-01-01

    Cortical columns generate separate streams of information that are distributed to numerous cortical and subcortical brain regions1. We asked whether local intracortical circuits reflect these different processing streams by testing if the intracortical connectivity among pyramids reflects their long-range axonal targets. We recorded simultaneously from up to four retrogradely labelled pyramids that projected to the superior colliculus, the contralateral striatum or the contralateral cortex to...

  18. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injury in stroke rats

    OpenAIRE

    Xu, Yi; Du, Shiwei; Yu, Xinguang; HAN, XIAO; Hou, Jincai; Guo, Hao

    2014-01-01

    Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that intravenous transplantation of human ...

  19. Strain differences in baroceptor reflex in adult Wistar Kyoto rats

    Directory of Open Access Journals (Sweden)

    Vitor E. Valenti

    2010-01-01

    Full Text Available OBJECTIVES: A subset of normotensive Sprague-Dawley rats show lower baroreflex sensitivity; however, no previous study investigated whether there are differences in baroreflex sensitivity within this subset. Our study compared baroreflex sensitivity among conscious rats of this specific subtype. METHODS: Male Wistar Kyoto (WKY rats (16 weeks old were studied. Cannulas were inserted into the abdominal aortic artery through the right femoral artery to measure mean arterial pressure (MAP and heart rate (HR. Baroreflex gain was calculated as the ratio between change in HR and MAP variation (ΔHR/ΔMAP in response to a depressor dose of sodium nitroprusside (SNP, 50 µg/kg, i.v. and a pressor dose of phenylephrine (PE, 8 µg/kg, i.v.. Rats were divided into four groups: 1 low bradycardic baroreflex (LB, baroreflex gain (BG between -1 and -2 bpm/mmHg tested with PE; 2 high bradycardic baroreflex (HB, BG < -2 bpm/mmHg tested with PE; 3 low tachycardic baroreflex (LT, BG between -1 and -2 bpm/mmHg tested with SNP and; 4 high tachycardic baroreflex (HT, BG < -2 bpm/mmHg tested with SNP. Significant differences were considered for p < 0.05. RESULTS: Approximately 37% of the rats showed a reduced bradycardic peak, bradycardic reflex and decreased bradycardic gain of baroreflex while roughly 23% had a decreased basal HR, tachycardic peak, tachycardic reflex and reduced sympathetic baroreflex gain. No significant alterations were noted with regard to basal MAP. CONCLUSION: There is variability regarding baroreflex sensitivity among WKY rats from the same laboratory.

  20. N- and L-Type Voltage-Gated Calcium Channels Mediate Fast Calcium Transients in Axonal Shafts of Mouse Peripheral Nerve

    Science.gov (United States)

    Barzan, Ruxandra; Pfeiffer, Friederike; Kukley, Maria

    2016-01-01

    In the peripheral nervous system (PNS) a vast number of axons are accommodated within fiber bundles that constitute peripheral nerves. A major function of peripheral axons is to propagate action potentials along their length, and hence they are equipped with Na+ and K+ channels, which ensure successful generation, conduction and termination of each action potential. However little is known about Ca2+ ion channels expressed along peripheral axons and their possible functional significance. The goal of the present study was to test whether voltage-gated Ca2+ channels (VGCCs) are present along peripheral nerve axons in situ and mediate rapid activity-dependent Ca2+ elevations under physiological circumstances. To address this question we used mouse sciatic nerve slices, Ca2+ indicator Oregon Green BAPTA-1, and 2-photon Ca2+ imaging in fast line scan mode (500 Hz). We report that transient increases in intra-axonal Ca2+ concentration take place along peripheral nerve axons in situ when axons are stimulated electrically with single pulses. Furthermore, we show for the first time that Ca2+ transients in peripheral nerves are fast, i.e., occur in a millisecond time-domain. Combining Ca2+ imaging and pharmacology with specific blockers of different VGCCs subtypes we demonstrate that Ca2+ transients in peripheral nerves are mediated mainly by N-type and L-type VGCCs. Discovery of fast Ca2+ entry into the axonal shafts through VGCCs in peripheral nerves suggests that Ca2+ may be involved in regulation of action potential propagation and/or properties in this system, or mediate neurotransmitter release along peripheral axons as it occurs in the optic nerve and white matter of the central nervous system (CNS). PMID:27313508

  1. Semaphorin 3C Released from a Biocompatible Hydrogel Guides and Promotes Axonal Growth of Rodent and Human Dopaminergic Neurons.

    Science.gov (United States)

    Carballo-Molina, Oscar A; Sánchez-Navarro, Andrea; López-Ornelas, Adolfo; Lara-Rodarte, Rolando; Salazar, Patricia; Campos-Romo, Aurelio; Ramos-Mejía, Verónica; Velasco, Iván

    2016-06-01

    Cell therapy in experimental models of Parkinson's disease replaces the lost dopamine neurons (DAN), but we still need improved methods to guide dopaminergic axons (DAx) of grafted neurons to make proper connections. The protein Semaphorin 3C (Sema3C) attracts DAN axons and enhances their growth. In this work, we show that the hydrogel PuraMatrix, a self-assembling peptide-based matrix, incorporates Sema3C and releases it steadily during 4 weeks. We also tested if hydrogel-delivered Sema3C attracts DAx using a system of rat midbrain explants embedded in collagen gels. We show that Sema3C released by this hydrogel attracts DAx, in a similar way to pretectum, which is known to attract growing DAN axons. We assessed the effect of Sema3C on the growth of DAx using microfluidic devices. DAN from rat midbrain or those differentiated from human embryonic stem cells showed enhanced axonal extension when exposed to hydrogel-released Sema3C, similar to soluble Sema3C. Notably, DAN of human origin express the cognate Sema3C receptors, Neuropilin1 and Neuropilin2. These results show that PuraMatrix is able to incorporate and release Sema3C, and such delivery guides and promotes the axonal growth of DAN. This biocompatible hydrogel might be useful as a Sema3C carrier for in vivo studies in parkinsonian animal models. PMID:27174503

  2. Membrane turnover and receptor trafficking in regenerating axons.

    Science.gov (United States)

    Hausott, Barbara; Klimaschewski, Lars

    2016-02-01

    Peripheral axonal regeneration requires surface-expanding membrane addition. The continuous incorporation of new membranes into the axolemma allows the pushing force of elongating microtubules to drive axonal growth cones forwards. Hence, a constant supply of membranes and cytoskeletal building blocks is required, often for many weeks. In human peripheral nerves, axonal tips may be more than 1 m away from the neuronal cell body. Therefore, in the initial phase of regeneration, membranes are derived from pre-existing vesicles or synthesised locally. Only later stages of axonal regeneration are supported by membranes and proteins synthesised in neuronal cell bodies, considering that the fastest anterograde transport mechanisms deliver cargo at 20 cm/day. Whereas endocytosis and exocytosis of membrane vesicles are balanced in intact axons, membrane incorporation exceeds membrane retrieval during regeneration to compensate for the loss of membranes distal to the lesion site. Physiological membrane turnover rates will not be established before the completion of target reinnervation. In this review, the current knowledge on membrane traffic in axonal outgrowth is summarised, with a focus on endosomal vesicles as the providers of membranes and carriers of growth factor receptors required for initiating signalling pathways to promote the elongation and branching of regenerating axons in lesioned peripheral nerves. PMID:26222895

  3. Astrocyte scar formation aids central nervous system axon regeneration.

    Science.gov (United States)

    Anderson, Mark A; Burda, Joshua E; Ren, Yilong; Ao, Yan; O'Shea, Timothy M; Kawaguchi, Riki; Coppola, Giovanni; Khakh, Baljit S; Deming, Timothy J; Sofroniew, Michael V

    2016-04-14

    Transected axons fail to regrow in the mature central nervous system. Astrocytic scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or ablating chronic astrocytic scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. By contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocytic scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth-supporting molecules. Our findings show that contrary to the prevailing dogma, astrocyte scar formation aids rather than prevents central nervous system axon regeneration. PMID:27027288

  4. The swallowing reflex and its significance as an airway defensive reflex

    Directory of Open Access Journals (Sweden)

    Takashi eNishino

    2013-01-01

    Full Text Available Swallowing function, in humans, is very complex. Swallowing plays, not only an important role in food digestion, but also a major role in preventing the entrance of food and/or other materials into the lower respiratory tract. To achieve this, precise coordination is necessary between breathing and swallowing since the pharynx serves as a common pathway for both respiration and digestion. The swallowing reflex consists of afferent pathways, central integration, and efferent pathways. Any defect or disorder along reflex arc can cause a potential delay or impairment in swallow function. The swallowing reflex can be modulated not only by pathological factors but also by physiological factors. Among these, timing of swallows in relation to the phase of respiration may be the most important factor that determines the occurrence of pulmonary aspiration, since phases of inspiration and the expiration-inspiration transition are the most vulnerable for pulmonary aspiration.

  5. High levels of sound pressure: acoustic reflex thresholds and auditory complaints of workers with noise exposure

    Directory of Open Access Journals (Sweden)

    Alexandre Scalli Mathias Duarte

    2015-08-01

    Full Text Available INTRODUCTION: The clinical evaluation of subjects with occupational noise exposure has been difficult due to the discrepancy between auditory complaints and auditory test results. This study aimed to evaluate the contralateral acoustic reflex thresholds of workers exposed to high levels of noise, and to compare these results to the subjects' auditory complaints.METHODS: This clinical retrospective study evaluated 364 workers between 1998 and 2005; their contralateral acoustic reflexes were compared to auditory complaints, age, and noise exposure time by chi-squared, Fisher's, and Spearman's tests.RESULTS: The workers' age ranged from 18 to 50 years (mean = 39.6, and noise exposure time from one to 38 years (mean = 17.3. We found that 15.1% (55 of the workers had bilateral hearing loss, 38.5% (140 had bilateral tinnitus, 52.8% (192 had abnormal sensitivity to loud sounds, and 47.2% (172 had speech recognition impairment. The variables hearing loss, speech recognition impairment, tinnitus, age group, and noise exposure time did not show relationship with acoustic reflex thresholds; however, all complaints demonstrated a statistically significant relationship with Metz recruitment at 3000 and 4000 Hz bilaterally.CONCLUSION: There was no significance relationship between auditory complaints and acoustic reflexes.

  6. Motricidade reflexa na morte cerebral The reflex activity in the brain death

    Directory of Open Access Journals (Sweden)

    Wilson L. Sanvito

    1972-03-01

    Full Text Available O diagnóstico de morte cerebral está baseado em critérios clínicos, eletrencefalográficos e angiográficos. Do ponto de vista clínico deve ser evidenciado o seguinte quadro: coma profundo, midríase paralítica bilateral, ausência de reação a qualquer estímulo externo, apnéia, arreflexia superficial e profunda. Do ponto de vista eletrencefalográfico são necessários dois registros, separados por um intervalo de 24 horas, evidenciando traçados iselétricos. No presente trabalho são estudados 15 pacientes com morte cerebral comprovada do ponto de vista clínico e eletrencefalográfico. Em 8 pacientes havia persistência de atividade reflexa durante a fase de morte cerebral (reflexos profundos e/ou superficiais. Fenômenos de automatismos medulares também foram verificados em 3 pacientes.The diagnosis of brain death is based in clinical, electroencephalographic and angiographic data. The criteria for diagnosis of brain death are: deep coma with unreceptivity and unresponsiveness, no movements or breathing (the patient's respiration must be maintained artificially, bilateral dilated and fixed pupils, absence of corneal reflexes, no response to caloric test, absence of deep tendon reflexes and of the superficial abdominal and plantar reflexes, isoelectric EEG maintained for twenty-four hours. The purpose of this study was to observe the natural clinical courses of 15 patients with brain death, specially the data concerning the deep and superficial reflexes. From 15 patients fulfilling the criteria of brain death, 8 maintained spinal reflexes up to the time of cardiac arrest; in five of these patients the superficial abdominal reflexes were present and the reflexes of spinal automatism could be elicited. These results show that the absence of deep and superficial reflexes can't be considered as essencial for the diagnosis of brain death.

  7. Intra-axonal myosin and actin in nerve regeneration.

    Science.gov (United States)

    McQuarrie, Irvine G; Lund, Linda M

    2009-10-01

    A focused review of sciatic nerve regeneration in the rat model, based on research conducted by the authors, is presented. We examine structural proteins carried distally in the axon by energy-requiring motor enzymes, using protein chemistry and molecular biology techniques in combination with immunohistochemistry. Relevant findings from other laboratories are cited and discussed. The general conclusion is that relatively large amounts of actin and tubulin are required to construct a regenerating axon and that these materials mainly originate in the parent axon. The motor enzymes that carry these proteins forward as macromolecules include kinesin and dynein but probably also include myosin. PMID:19927086

  8. Axon guidance and neuronal migration research in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Proper migration of neuronal somas and axonal growth cones to designated locations in the developing brain is essential for the assembly of functional neuronal circuits.Rapid progress in research of axon guidance and neuronal migration has been made in the last twenty years.Chinese researchers began their exploration in this field ten years ago and have made significant contributions in clarifying the signal transduction of axon guidance and neuronal migration.Several unique experimental approaches,including the migration assay of single isolated neurons in response to locally delivered guidance cues,have been developed by Chinese neuroscientists to investigate the molecular machinery underlying these guidance events.

  9. Electrophysiological observations on the human pudendo-anal reflex.

    OpenAIRE

    Varma, J S; Smith, A N; McInnes, A

    1986-01-01

    A reproducible electrophysiological technique is described to determine the latency of reflex contraction of the external anal sphincter in response to stimulation of the dorsal genital nerve: the pudendo-anal reflex. This was studied in 38 asymptomatic control subjects and 20 women with neurogenic faecal incontinence, supplemented by determination of the mean motor unit potential duration (MUPD) of the external anal sphincter and anorectal manometry. The reflex latency in the control group w...

  10. Characteristics of Glottic Closure Reflex in a Canine Model

    OpenAIRE

    Kim, Young-Ho; Kang, Ju Wan; Kim, Kwang-Moon

    2009-01-01

    Purpose The most important function of the larynx is airway protection which is provided through a polysynaptic reflex closure triggered by the receptors in the glottic and supraglottic mucosa, evoking the reflex contraction of the laryngeal muscles especially by strong adduction of vocal cords. Based on the hypotheses that central facilitation is essential for this bilateral adductor reflex and that its disturbance can result in weakened laryngeal closure, we designed this study to elucidate...

  11. Cardiovascular regulation by skeletal muscle reflexes in health and disease

    OpenAIRE

    Murphy, Megan N.; Mizuno, Masaki; Mitchell, Jere H.; Smith, Scott A

    2011-01-01

    Heart rate and blood pressure are elevated at the onset and throughout the duration of dynamic or static exercise. These neurally mediated cardiovascular adjustments to physical activity are regulated, in part, by a peripheral reflex originating in contracting skeletal muscle termed the exercise pressor reflex. Mechanically sensitive and metabolically sensitive receptors activating the exercise pressor reflex are located on the unencapsulated nerve terminals of group III and group IV afferent...

  12. Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles?

    OpenAIRE

    Sloot, Lizeth H.; van den Noort, Josien C; van der Krogt, Marjolein M.; Bruijn, Sjoerd M.; Jaap Harlaar

    2015-01-01

    Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensiti...

  13. The Role of Transformational Leadership in Enhancing Team Reflexivity

    OpenAIRE

    Schippers, M.C.; Hartog, den, JI Jerry; Koopman, P.L.; Knippenberg, van, D.

    2007-01-01

    textabstractTeam reflexivity, or the extent to which teams reflect upon and modify their functioning, has been identified as a key factor in the effectiveness of work teams. As yet, however, little is known about the factors that play a role in enhancing team reflexivity, and it is thus important to develop theorizing around the determinants of reflexivity. From an applied perspective, leadership is a very relevant factor. The current study is a first step in the development of such a theory,...

  14. Skew polynomial rings over abelian and idempotent reflexive rings

    OpenAIRE

    Louzari, Mohamed

    2015-01-01

    Let $R$ be a ring and $\\sigma$ an endomorphism of $R$. In this note, we study skew polynomial rings and skew power series rings over idempotent reflexive rings and abelian rings. Also, we introduce the concept of right (resp., left) $\\sigma$-idempotent reflexive rings which generalizes right (resp., left) idempotent reflexive rings and $\\sigma$-abelian rings. Certain results are obtained as corollaries from our results.

  15. Cortical control of hering-breuer reflexes in anesthetized rats

    OpenAIRE

    Aleksandrov VG; Mercuriev VA; Ivanova TG; Tarasievich AA; Aleksandrova NP

    2009-01-01

    Abstract It had been hypothesized that the regions of prefrontal cortex which are involved in respiratory control can modulate Hering-Breuer reflexes evoked by vagal input from pulmonary stretch receptors. In the present study, experiments were performed on urethane anesthetized spontaneously breathing Wistar rats. The expiratory-promoting reflex was evaluated from changes in expiratory time immediately after airway occlusion at the end of inspiration. The inspiratory-inhibitory reflex was es...

  16. Anatomy and neuro-pathophysiology of the cough reflex arc

    Directory of Open Access Journals (Sweden)

    Polverino Mario

    2012-06-01

    Full Text Available Abstract Coughing is an important defensive reflex that occurs through the stimulation of a complex reflex arc. It accounts for a significant number of consultations both at the level of general practitioner and of respiratory specialists. In this review we first analyze the cough reflex under normal conditions; then we analyze the anatomy and the neuro-pathophysiology of the cough reflex arc. The aim of this review is to provide the anatomic and pathophysiologic elements of evaluation of the complex and multiple etiologies of cough.

  17. Serotonin spillover onto the axon initial segment of motoneurons induces central fatigue by inhibiting action potential initiation

    DEFF Research Database (Denmark)

    Cotel, Florence; Exley, Richard; Cragg, Stephanie;

    2013-01-01

    --as during motor exercise--activated 5-HT1A receptors that decreased motoneuronal excitability. Electrophysiological tests combined with pharmacology showed that focal activation of 5-HT1A receptors at the axon initial segment (AIS), but not on other motoneuronal compartments, inhibited the action potential...

  18. Genetics Home Reference: autosomal recessive axonal neuropathy with neuromyotonia

    Science.gov (United States)

    ... neuromyotonia is a disorder that affects the peripheral nerves. Peripheral nerves connect the brain and spinal cord to muscles ... caused by damage to a particular part of peripheral nerves called axons , which are the extensions of nerve ...

  19. Internodal function in normal and regenerated mammalian axons

    DEFF Research Database (Denmark)

    Moldovan, M; Krarup, C

    2007-01-01

    AIM: Following Wallerian degeneration, peripheral myelinated axons have the ability to regenerate and, given a proper pathway, establish functional connections with targets. In spite of this capacity, the clinical outcome of nerve regeneration remains unsatisfactory. Early studies have found that...

  20. Syndecan Promotes Axon Regeneration by Stabilizing Growth Cone Migration

    Directory of Open Access Journals (Sweden)

    Tyson J. Edwards

    2014-07-01

    Full Text Available Growth cones facilitate the repair of nervous system damage by providing the driving force for axon regeneration. Using single-neuron laser axotomy and in vivo time-lapse imaging, we show that syndecan, a heparan sulfate (HS proteoglycan, is required for growth cone function during axon regeneration in C. elegans. In the absence of syndecan, regenerating growth cones form but are unstable and collapse, decreasing the effective growth rate and impeding regrowth to target cells. We provide evidence that syndecan has two distinct functions during axon regeneration: (1 a canonical function in axon guidance that requires expression outside the nervous system and depends on HS chains and (2 an intrinsic function in growth cone stabilization that is mediated by the syndecan core protein, independently of HS. Thus, syndecan is a regulator of a critical choke point in nervous system repair.

  1. The Relationship between Dyslipidemia and Acute Axonal Function in Type 2 Diabetes Mellitus In Vivo

    Science.gov (United States)

    Kwai, Natalie C. G.; Nigole, William; Poynten, Ann M.; Brown, Christopher; Krishnan, Arun V.

    2016-01-01

    Objectives Diabetic peripheral neuropathy (DPN) is a common and debilitating complication of diabetes mellitus. Treatment largely consists of symptom alleviation and there is a need to identify therapeutic targets for prevention and treatment of DPN. The objective of this study was to utilise novel neurophysiological techniques to investigate axonal function in patients with type 2 diabetes and to prospectively determine their relationship to serum lipids in type 2 diabetic patients. Methods Seventy-one patients with type 2 diabetes were consecutively recruited and tested. All patients underwent thorough clinical neurological assessments including nerve conduction studies, and median motor axonal excitability studies. Studies were also undertaken in age matched normal control subjects(n = 42). Biochemical studies, including serum lipid levels were obtained in all patients. Patient excitability data was compared to control data and linear regression analysis was performed to determine the relationship between serum triglycerides and low density lipoproteins and excitability parameters typically abnormal in type 2 diabetic patients. Results Patient mean age was 64.2±2.3 years, mean glycosylated haemoglobin (HbA1c%) was 7.8±0.3%, mean triglyceride concentration was 1.6±0.1 mmol/L and mean cholesterol concentration was 4.1±0.2mmol/L. Compared to age matched controls, median motor axonal excitability studies indicated axonal dysfunction in type 2 diabetic patients as a whole (T2DM) and in a subgroup of the patients without DPN (T2DM-NN). These included reduced percentage threshold change during threshold electrotonus at 10–20ms depolarising currents (TEd10–20ms)(controls 68.4±0.8, T2DM63.9±0.8, T2DM-NN64.8±1.6%,Pdiabetic patients: TEd(10–20ms)(1.2(-1.4,3.8);P = 0.4) and superexcitability (2.4(-0.05, 4.8);P = 0.06). Conclusions These findings suggest that serum triglyceride levels are not related to axonal function in type 2 diabetic patients. Additional

  2. Functional and structural characterization of axonal opioid receptors as targets for analgesia

    Science.gov (United States)

    Mambretti, Egle M; Kistner, Katrin; Mayer, Stefanie; Massotte, Dominique; Kieffer, Brigitte L; Hoffmann, Carsten; Reeh, Peter W; Brack, Alexander; Asan, Esther

    2016-01-01

    Background Opioids are the gold standard for the treatment of acute pain despite serious side effects in the central and enteric nervous system. µ-opioid receptors (MOPs) are expressed and functional at the terminals of sensory axons, when activated by exogenous or endogenous ligands. However, the presence and function of MOP along nociceptive axons remains controversial particularly in naïve animals. Here, we characterized axonal MOPs by immunofluorescence, ultrastructural, and functional analyses. Furthermore, we evaluated hypertonic saline as a possible enhancer of opioid receptor function. Results Comparative immunolabeling showed that, among several tested antibodies, which all provided specific MOP detection in the rat central nervous system (CNS), only one monoclonal MOP-antibody yielded specificity and reproducibility for MOP detection in the rat peripheral nervous system including the sciatic nerve. Double immunolabeling documented that MOP immunoreactivity was confined to calcitonin gene-related peptide (CGRP) positive fibers and fiber bundles. Almost identical labeling and double labeling patterns were found using mcherry-immunolabeling on sciatic nerves of mice producing a MOP-mcherry fusion protein (MOP-mcherry knock-in mice). Preembedding immunogold electron microscopy on MOP-mcherry knock-in sciatic nerves indicated presence of MOP in cytoplasm and at membranes of unmyelinated axons. Application of [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) or fentanyl dose-dependently inhibited depolarization-induced CGRP release from rat sciatic nerve axons ex vivo, which was blocked by naloxone. When the lipophilic opioid fentanyl was applied perisciatically in naïve Wistar rats, mechanical nociceptive thresholds increased. Subthreshold doses of fentanyl or the hydrophilic opioid DAMGO were only effective if injected together with hypertonic saline. In vitro, using β-arrestin-2/MOP double-transfected human embryonic kidney cells, DAMGO as well as fentanyl

  3. Methodological Reflexivity: Towards Evolving Methodological Frameworks through Critical and Reflexive Deliberations

    Science.gov (United States)

    Raven, Glenda

    2006-01-01

    In this article, the author argues for a central and critical role for "reflexivity in research" with the aim of developing and strengthening not only everyone's understanding of what everyone does in environmental education research, but also how, and why everyone does it. In a narrative account of methodological issues that occurred within, and…

  4. The effect of titrated fentanyl on suppressed cough reflex in healthy adult volunteers.

    Science.gov (United States)

    Kelly, H E; Shaw, G M; Brett, C N; Greenwood, F M; Huckabee, M L

    2016-05-01

    Cough suppression is part of the pharmacodynamic profile of opioids. We investigated the impact of clinical doses of fentanyl on suppressing the cough reflex. Thirteen volunteers received 2 μg.kg(-1) of fentanyl in a divided administration protocol. Three minutes after each administration and at 10 min intervals during washout, suppressed cough reflex testing with nebulised citric acid was performed and compared with fentanyl effect-site concentration. Mean (SD) citric acid concentration provoking cough increased from 0.5 (0.28) mol.l(-1) at baseline to 1.2 (0.50) mol.l(-1) after 2 μg.kg(-1) of fentanyl (p = 0.01). Mean (SD) fentanyl effect-site concentration after the final dose of fentanyl was 1.89 (0.05) ng.ml(-1) . A strong positive correlation was found between suppressed cough reflex thresholds and fentanyl effect-site concentrations during both fentanyl administration and washout phases of the study (r(2) = 0.79, p = 0.01). The mean (SD) length of time for return of suppressed cough response was 44.6 (18.8) min. Clinically relevant doses of fentanyl produced cough reflex suppression in healthy volunteers. PMID:26919658

  5. Treadmill Training Promotes Axon Regeneration in Injured Peripheral Nerves

    OpenAIRE

    Sabatier, Manning J.; Redmon, Natalie; Schwartz, Gail; English, Arthur W.

    2008-01-01

    Physical activity after spinal cord injury promotes improvements in motor function, but its effects following peripheral nerve injury are less clear. Although axons in peripheral nerves are known to regenerate better than those in the CNS, methods of accelerating regeneration are needed due to the slow overall rate of growth. Therefore we studied the effect of two weeks of treadmill locomotion on the growth of regenerating axons in peripheral nerves following injury. The common fibular nerves...

  6. Fcγ receptor-mediated inflammation inhibits axon regeneration.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Anti-glycan/ganglioside antibodies are the most common immune effectors found in patients with Guillain-Barré Syndrome, which is a peripheral autoimmune neuropathy. We previously reported that disease-relevant anti-glycan autoantibodies inhibited axon regeneration, which echo the clinical association of these antibodies and poor recovery in Guillain-Barré Syndrome. However, the specific molecular and cellular elements involved in this antibody-mediated inhibition of axon regeneration are not previously defined. This study examined the role of Fcγ receptors and macrophages in the antibody-mediated inhibition of axon regeneration. A well characterized antibody passive transfer sciatic nerve crush and transplant models were used to study the anti-ganglioside antibody-mediated inhibition of axon regeneration in wild type and various mutant and transgenic mice with altered expression of specific Fcγ receptors and macrophage/microglia populations. Outcome measures included behavior, electrophysiology, morphometry, immunocytochemistry, quantitative real-time PCR, and western blotting. We demonstrate that the presence of autoantibodies, directed against neuronal/axonal cell surface gangliosides, in the injured mammalian peripheral nerves switch the proregenerative inflammatory environment to growth inhibitory milieu by engaging specific activating Fcγ receptors on recruited monocyte-derived macrophages to cause severe inhibition of axon regeneration. Our data demonstrate that the antibody orchestrated Fcγ receptor-mediated switch in inflammation is one mechanism underlying inhibition of axon regeneration. These findings have clinical implications for nerve repair and recovery in antibody-mediated immune neuropathies. Our results add to the complexity of axon regeneration in injured peripheral and central nervous systems as adverse effects of B cells and autoantibodies on neural injury and repair are increasingly recognized.

  7. Modality-Specific Axonal Regeneration: Towards selective regenerative neural interfaces

    Directory of Open Access Journals (Sweden)

    Mario I Romero

    2011-10-01

    Full Text Available Regenerative peripheral nerve interfaces have been proposed as viable alternatives for the natural control of robotic prosthetic devices. However, sensory and motor axons at the neural interface are of mixed submodality types, which difficult the specific recording from motor axons and the eliciting of precise sensory modalities through selective stimulation. Here we evaluated the possibility of using type-specific neurotrophins to preferentially entice the regeneration of defined axonal populations from transected peripheral nerves into separate compartments. Segregation of mixed sensory fibers from dorsal root ganglion neurons was evaluated in vitro by compartmentalized diffusion delivery of nerve growth factor (NGF and neurotrophin-3 (NT-3, to preferentially entice the growth of TrkA+ nociceptive and TrkC+ proprioceptive subsets of sensory neurons, respectively. The average axon length in the NGF channel increased 2.5 fold compared to that in saline or NT-3, whereas the number of branches increased 3 fold in the NT-3 channels. These results were confirmed using a 3-D “Y”-shaped in vitro assay showing that the arm containing NGF was able to entice a 5-fold increase in axonal length of unbranched fibers. To address if such segregation can be enticed in vivo, a “Y”-shaped tubing was used to allow regeneration of the transected adult rat sciatic nerve into separate compartments filled with either NFG or NT-3. A significant increase in the number of CGRP+ pain fibers were attracted towards the sural nerve, while N-52+ large diameter axons were observed in the tibial and NT-3 compartments. This study demonstrates the guided enrichment of sensory axons in specific regenerative chambers, and supports the notion that neurotrophic factors can be used to segregate sensory and perhaps motor axons in separate peripheral interfaces.

  8. Axonal integrity predicts cortical reorganisation following cervical injury

    OpenAIRE

    Freund, P.; Wheeler-Kingshott, C.A.; Nagy, Z.; Gorgoraptis, N.; N. Weiskopf; Friston, K.; Thompson, A J; Hutton, C.

    2012-01-01

    Background Traumatic spinal cord injury (SCI) leads to disruption of axonal architecture and macroscopic tissue loss with impaired information flow between the brain and spinal cord—the presumed basis of ensuing clinical impairment. Objective The authors used a clinically viable, multimodal MRI protocol to quantify the axonal integrity of the cranial corticospinal tract (CST) and to establish how microstructural white matter changes in the CST are related to cross-sectional spinal cord area a...

  9. Axonal neuropathy associated with monoclonal gammopathy of undetermined significance

    OpenAIRE

    GORSON, K.; Ropper, A.

    1997-01-01

    OBJECTIVE—The neuropathy associated with monoclonal gammopathy of undetermined significance (MGUS) is typically a predominantly demyelinating process that may have additional features of axonal degeneration. Sixteen patients with MGUS and a pure or predominantly axonal neuropathy are reported and compared with 20 consecutive patients with demyelinating neuropathy and MGUS who were seen during the same period.
METHODS—Retrospective review of a consecutive series of patients w...

  10. Changes in prefrontal axons may disrupt the network in autism

    OpenAIRE

    Zikopoulos, Basilis; Barbas, Helen

    2010-01-01

    Neural communication is disrupted in autism by unknown mechanisms. Here we examined whether in autism there are changes in axons, which are the conduit for neural communication. We investigated single axons and their ultrastructure in the white matter of post-mortem human brain tissue below the anterior cingulate cortex (ACC), orbitofrontal (OFC), and lateral (LPFC) prefrontal cortices, which are associated with attention, social interactions, and emotions and have been consistently implicate...

  11. Axonal maintenance, glia, exosomes, and heat shock proteins

    OpenAIRE

    Michael Tytell; Lasek, Raymond J.; Harold Gainer

    2016-01-01

    Of all cellular specializations, the axon is especially distinctive because it is a narrow cylinder of specialized cytoplasm called axoplasm with a length that may be orders of magnitude greater than the diameter of the cell body from which it originates. Thus, the volume of axoplasm can be much greater than the cytoplasm in the cell body. This fact raises a logistical problem with regard to axonal maintenance. Many of the components of axoplasm, such as soluble proteins and cytoskeleton, are...

  12. Reflexive regulation of CSR to promote sustainability

    DEFF Research Database (Denmark)

    Buhmann, Karin

    2011-01-01

    This article discusses Corporate Social Responsibility (CSR) from the perspective of governmental regulation as a measure to promote public policy interests through public-private regulation intended to influence firms’ self-regulation. Presenting a ‘government case’ for CSR, the connection between...... and the EU CSR Alliance. Focusing on human rights based in international law, it analyses the patterns of negotiation in the MSF and the background for the launch of the CSR Alliance. It shows that analysing public-private regulation of CSR from the perspective of reflexive law theory assists us in...

  13. Effects of direct current on motoneuron reflex excitability (Assessed by H-reflex amplitude) in healthy subjects

    OpenAIRE

    Olyaei G; Akbari M; Esfandiarpoor F

    2000-01-01

    The purpose of the this study was to investigate the effect of direct current on montoneuron reflex exitability. Thirty six subjects (18 males, 18 females) 19.36 years of age ( x= 24.06, SD= 3.63) participated in this study. The reflex excitability of soleus motoneruons was assessed by measuring the amount of change in the peak to peak ampitude of the H-reflex before and after direct current was applied to the skin over the sural nerve. Reflex recordings were taken before and after direct cur...

  14. Neural reflex regulation of arterial pressure in pathophysiological conditions: interplay among the baroreflex, the cardiopulmonary reflexes and the chemoreflex

    Directory of Open Access Journals (Sweden)

    E.C. Vasquez

    1997-04-01

    Full Text Available The maintenance of arterial pressure at levels adequate to perfuse the tissues is a basic requirement for the constancy of the internal environment and survival. The objective of the present review was to provide information about the basic reflex mechanisms that are responsible for the moment-to-moment regulation of the cardiovascular system. We demonstrate that this control is largely provided by the action of arterial and non-arterial reflexes that detect and correct changes in arterial pressure (baroreflex, blood volume or chemical composition (mechano- and chemosensitive cardiopulmonary reflexes, and changes in blood-gas composition (chemoreceptor reflex. The importance of the integration of these cardiovascular reflexes is well understood and it is clear that processing mainly occurs in the nucleus tractus solitarii, although the mechanism is poorly understood. There are several indications that the interactions of baroreflex, chemoreflex and Bezold-Jarisch reflex inputs, and the central nervous system control the activity of autonomic preganglionic neurons through parallel afferent and efferent pathways to achieve cardiovascular homeostasis. It is surprising that so little appears in the literature about the integration of these neural reflexes in cardiovascular function. Thus, our purpose was to review the interplay between peripheral neural reflex mechanisms of arterial blood pressure and blood volume regulation in physiological and pathophysiological states. Special emphasis is placed on the experimental model of arterial hypertension induced by N-nitro-L-arginine methyl ester (L-NAME in which the interplay of these three reflexes is demonstrable

  15. THEORETICAL PRINCIPLES UNDERLYING OPTICAL STIMULATION OF MYELINATED AXONS EXPRESSING CHANNELRHODOPSIN-2

    OpenAIRE

    ARLOW, R. L.; FOUTZ, T. J.; MCINTYRE, C. C.

    2013-01-01

    Numerous clinical conditions can be treated by neuromodulation of the peripheral nervous system (PNS). Typical electrical PNS therapies activate large diameter axons at lower electrical stimulus thresholds than small diameter axons. However, recent animal experiments with peripheral optogenetic neural stimulation (PONS) of myelinated axons expressing channelrhodopsin-2 (ChR2) have shown that this technique activates small diameter axons at lower irradiances than large diameter axons. We hypot...

  16. Spinal irradiation does not inhibit distal axonal sprouting

    International Nuclear Information System (INIS)

    In an attempt to determine the relative importance of the nerve cell body and of the axon in initiating and controlling axonal regeneration, nerve cell bodies were irradiated and the ability of the distal axon to sprout was examined. Mice were subjected to either 25 or 50 Gray (Gy) of x-irradiation localized to the lumbar spinal cord. After times varying from 1 day to 6 months after irradiation, a sublethal dose of botulinum toxin (BoTx) was injected into the calf muscles of one leg. The soleus muscle was examined histologically after times varying from 1 week to 6 months after injection, and BoTx-induced ultraterminal axonal sprouting was assessed by the number of motor endplates showing sprouts, the length of the sprouts, and the long term endplate morphology. Apart from some irradiated subgroups having slightly shorter sprout lengths, no significant differences were found between irradiated and nonirradiated groups. The results suggest either that the processes in the nerve cell body responsible for initiating and supporting axonal growth are resistant to large doses of irradiation, or that growth regulatory mechanisms in the distal axon are under local control

  17. Dynamics of signal propagation and collision in axons

    Science.gov (United States)

    Follmann, Rosangela; Rosa, Epaminondas; Stein, Wolfgang

    2015-09-01

    Long-range communication in the nervous system is usually carried out with the propagation of action potentials along the axon of nerve cells. While typically thought of as being unidirectional, it is not uncommon for axonal propagation of action potentials to happen in both directions. This is the case because action potentials can be initiated at multiple "ectopic" positions along the axon. Two ectopic action potentials generated at distinct sites, and traveling toward each other, will collide. As neuronal information is encoded in the frequency of action potentials, action potential collision and annihilation may affect the way in which neuronal information is received, processed, and transmitted. We investigate action potential propagation and collision using an axonal multicompartment model based on the Hodgkin-Huxley equations. We characterize propagation speed, refractory period, excitability, and action potential collision for slow (type I) and fast (type II) axons. In addition, our studies include experimental measurements of action potential propagation in axons of two biological systems. Both computational and experimental results unequivocally indicate that colliding action potentials do not pass each other; they are reciprocally annihilated.

  18. Axon-glia interaction and membrane traffic in myelin formation

    Directory of Open Access Journals (Sweden)

    Robin eWhite

    2014-01-01

    Full Text Available In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialised glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarisation followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasising the central role of the Src-family kinase Fyn during CNS myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of PLP (proteolipid protein transport by SNARE proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.

  19. Mild fluid percussion injury in mice produces evolving selective axonal pathology and cognitive deficits relevant to human brain injury.

    Science.gov (United States)

    Spain, Aisling; Daumas, Stephanie; Lifshitz, Jonathan; Rhodes, Jonathan; Andrews, Peter J D; Horsburgh, Karen; Fowler, Jill H

    2010-08-01

    Mild traumatic brain injury (TBI) accounts for up to 80% of clinical TBI and can result in cognitive impairment and white matter damage that may develop and persist over several years. Clinically relevant models of mild TBI for investigation of neurobiological changes and the development of therapeutic strategies are poorly developed. In this study we investigated the temporal profile of axonal and somal injury that may contribute to cognitive impairments in a mouse model of mild TBI. Neuronal perikaryal damage (hematoxylin and eosin and Fluoro-Jade C), myelin integrity (myelin basic protein and myelin-associated glycoprotein), and axonal damage (amyloid precursor protein), were evaluated by immunohistochemistry at 4 h, 24 h, 72 h, 4 weeks, and 6 weeks after mild lateral fluid percussion brain injury (0.9 atm; righting time 167 +/- 15 sec). At 3 weeks post-injury spatial reference learning and memory were tested in the Morris water maze (MWM). Levels of damage to neuronal cell bodies were comparable in the brain-injured and sham groups. Myelin integrity was minimally altered following injury. Clear alterations in axonal damage were observed at various time points after injury. Axonal damage was localized to the cingulum at 4 h post-injury. At 4 and 6 weeks post-injury, axonal damage was evident in the external capsule, and was seen at 6 weeks in the dorsal thalamic nuclei. At 3 weeks post-injury, injured mice showed an impaired ability to learn the water maze task, suggesting injury-induced alterations in search strategy learning. The evolving localization of axonal damage points to ongoing degeneration after injury that is concomitant with a deficit in learning. PMID:20528171

  20. Ultrastructural observation of effect of moderate hypothermia on axonal damage in an animal model of diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    孙晓川; 唐文渊; 郑履平

    2002-01-01

    Objective: To investigate the effect of moderate hypothermia on responses of axonal cytoskeleton to axonal injury in the acute stage of injury. Methods: Of fifteen adult guinea pigs, twelve animals were subjected to stretch injury to the right optic nerves and divided into the normothermic group (n=6) in which the animal's core temperature was maintained at 36.0-37.5℃ and the hypothermia group (n=6) in which the core temperature was reduced to 32.0-32.5℃ after stretch injury. Remaining three animals sustained no injury to the right optic nerves and served as control group. Half of injured animals (n=3) of either normothermic group or hypothermic group were killed at either 2 hours or 4 hours after injury. The ultrastructural changes of axonal cytoskeleton of the right optic nerve fibers from the animals were examined under a transmission electron microscope and analyzed by quantitative analysis with a computer image analysis system. Results: At 2 hours after stretch injury, there was a significant reduction in the mean number of microtubules (P<0.001), and a significant increase in the mean intermicrotubule spacing (P<0.05 or P<0.01) in axons of all sizes in normothermic animals. The mean number of neurofilaments also decreased statistically (P<0.01) in large and medium subgroups of axons in the same experimental group at 2 hours. By 4 hours, the large subgroup of axons in normothermic animals still demonstrated a significant decline in the mean number of microtubules (P<0.01) and an increase in the mean intermicrotubule spacing (P<0.05), while the medium and small subgroups of axons displayed a significant increase in the mean number of neurofilaments (P<0.05) and reduction in the mean interneurofilament spacing (P<0.05). On the contrary, either the mean number of microtubules and the mean intermicrotubule spacing, or the mean number of neurofilaments and interneurofilament spacing in axons of all sizes in hypothermic stretch-injured animals was not

  1. Serotonergic Modulation of the Trigeminocardiac Reflex Neurotransmission to Cardiac Vagal Neurons in the Nucleus Ambiguus

    OpenAIRE

    Gorini, C.; Jameson, H. S.; Mendelowitz, D.

    2009-01-01

    Stimulation of the trigeminal nerve evokes a dramatic decrease in heart rate and blood pressure, and this reflex has generally been termed the trigeminocardiac reflex. A subset of the trigeminocardiac reflex is the diving reflex in which the nasal mucosa is stimulated with water or air-borne chemical irritants. Activation of the diving reflex evokes a pronounced bradycardia, mediated by increased parasympathetic cardiac activity, and is the most powerful autonomic reflex. However, exaggeratio...

  2. Reflex switch experiments with capacitor bank drivers

    International Nuclear Information System (INIS)

    Pulsed power systems based on power amplifications of magnetic energy stored in vacuum offer significant advantages in power scaling, compactness and cost over conventional technology. The key component of such a system is the vacuum switch, which is to stay closed for a long enough time to energize an inductor with current and then to open in a short enough time to produce a power-amplified output pulse near the final vacuum load. The reflex switch is a simple system that meets these requirements. It consists of a primary cathode, a thin anode, and an electrically floating secondary electrode that acts first as a cathode and then as the anode. The closed mode of the switch is characterized by the presence of a population of reflexing electrons (passing many times through the thin anode, depositing a fraction of their initial energy on each pass) and counterstreaming ions. The current can be orders of magnitude greater than the Langmuir bipolar current for the same geometry and voltage. Previous experiments employed high voltage, short pulse drivers. The authors report their bank drivers. They measured scaling laws and an empirical figure-of-merit that allows them to design experiments for desired results

  3. Chronic Contusion Spinal Cord Injury Impairs Ejaculatory Reflexes in Male Rats: Partial Recovery by Systemic Infusions of Dopamine D3 Receptor Agonist 7OHDPAT.

    Science.gov (United States)

    Kozyrev, Natalie; Staudt, Michael D; Brown, Arthur; Coolen, Lique M

    2016-05-15

    Chronic spinal cord injury (SCI) causes major disruption of ejaculatory function in men. Ejaculation is a reflex and the spinal generator for ejaculatory reflexes in the rat has been located in the lumbosacral spinal cord. The effects of SCI on the rat spinal ejaculation generator and ejaculatory reflexes remain understudied. The first goal of the current study was to establish the effects of chronic SCI on the function of the spinal ejaculation generator. Male rats received a contusion injury of the spinal cord at spinal level T6-T7. Ejaculatory reflexes elicited by electrical stimulation of the dorsal penile nerve (DPN) were evaluated in injured and control rats at 4-6 weeks following SCI. SCI males demonstrated significant reductions in bursting of the bulbocavernosus muscle (BCM), an indicator for expulsion phase of ejaculation, and in seminal vesicle pressure (SVP) increases, an indicator for the emission phase of ejaculation, following DPN stimulation. Thus, contusion SCI resulted in long-term impairment of ejaculatory reflexes. The D3 agonist 7-hydroxy-2-(di-N-propylamino) tetralin (7OHDPAT) facilitates ejaculation in spinal cord intact rats, thus the second goal of the current study was to test whether subcutaneous infusions of 7OHDPAT can facilitate ejaculatory reflexes in rats with chronic SCI. Male rats received a contusion injury at T6-T7 and effects of systemic administration of 7OHDPAT (1 mg/kg) were tested 4-5 weeks following injury. Results showed that 7OHDPAT administration facilitated ejaculatory reflexes in SCI males with or without DPN stimulation, provided that supraspinal inputs to the lumbar cord were severed by transection just prior to evaluating the reflex. Thus, 7OHDPAT administration in SCI males was able to overcome the detrimental effects of SCI on ejaculatory reflexes. PMID:26437577

  4. Bourdieu and Science Studies: Toward a Reflexive Sociology

    Science.gov (United States)

    Hess, David J.

    2011-01-01

    Two of Bourdieu's fundamental contributions to science studies--the reflexive analysis of the social and human sciences and the concept of an intellectual field--are used to frame a reflexive study of the history and social studies of science and technology as an intellectual field in the United States. The universe of large, Ph.D.-granting…

  5. The Role of Transformational Leadership in Enhancing Team Reflexivity

    NARCIS (Netherlands)

    M.C. Schippers (Michaéla); D.N. den Hartog (Deanne); P.L. Koopman (Paul); D.L. van Knippenberg (Daan)

    2007-01-01

    textabstractTeam reflexivity, or the extent to which teams reflect upon and modify their functioning, has been identified as a key factor in the effectiveness of work teams. As yet, however, little is known about the factors that play a role in enhancing team reflexivity, and it is thus important to

  6. Poly(trimethylene carbonate-co-ε-caprolactone) promotes axonal growth.

    Science.gov (United States)

    Rocha, Daniela Nogueira; Brites, Pedro; Fonseca, Carlos; Pêgo, Ana Paula

    2014-01-01

    Mammalian central nervous system (CNS) neurons do not regenerate after injury due to the inhibitory environment formed by the glial scar, largely constituted by myelin debris. The use of biomaterials to bridge the lesion area and the creation of an environment favoring axonal regeneration is an appealing approach, currently under investigation. This work aimed at assessing the suitability of three candidate polymers - poly(ε-caprolactone), poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-CL)) (11∶89 mol%) and poly(trimethylene carbonate) - with the final goal of using these materials in the development of conduits to promote spinal cord regeneration. Poly(L-lysine) (PLL) coated polymeric films were tested for neuronal cell adhesion and neurite outgrowth. At similar PLL film area coverage conditions, neuronal polarization and axonal elongation was significantly higher on P(TMC-CL) films. Furthermore, cortical neurons cultured on P(TMC-CL) were able to extend neurites even when seeded onto myelin. This effect was found to be mediated by the glycogen synthase kinase 3β (GSK3β) signaling pathway with impact on the collapsin response mediator protein 4 (CRMP4), suggesting that besides surface topography, nanomechanical properties were implicated in this process. The obtained results indicate P(TMC-CL) as a promising material for CNS regenerative applications as it promotes axonal growth, overcoming myelin inhibition. PMID:24586346

  7. The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth

    International Nuclear Information System (INIS)

    Fibrous substrates functioning as temporary extracellular matrices can be prepared easily by electrospinning, yielding fibrous matrices suitable as internal fillers for nerve guidance channels. In this study, gelatin micro- or nano-fibres were prepared by electrospinning by tuning the gelatin concentration and solution flow rate. The effect of gelatin fibre diameter on cell adhesion and proliferation was tested in vitro using explant cultures of Schwann cells (SC) and dorsal root ganglia (DRG). Cell adhesion was assessed by quantifying the cell spreading area, actin cytoskeleton organization and focal adhesion complex formation. Nano-fibres promoted cell spreading and actin cytoskeleton organization, increasing cellular adhesion and the proliferation rate. However, both migration rate and motility, quantified by transwell and time lapse assays respectively, were greater in cells cultured on micro-fibres. Finally, there was more DRG axon outgrowth on micro-fibres. These data suggest that the topography of electrospun gelatin fibres can be adjusted to modulate SC and axon organization and that both nano- and micro-fibres are promising fillers for the design of devices for peripheral nerve repair. - Highlights: • Electrospinning used to produce gelatin nano- and micro-fibre matrices. • Nano-fibre matrices promote Schwann cell organization and increase proliferation rate. • Micro-fibre matrices promote Schwann cell migration. • Micro-fibre matrices promote axonal outgrowth

  8. The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Gnavi, S., E-mail: sara.gnavi@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Fornasari, B.E., E-mail: benedettaelena.fornasari@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Tonda-Turo, C., E-mail: chiara.tondaturo@polito.it [Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10100 (Italy); Ciardelli, G., E-mail: gianluca.ciardelli@polito.it [Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10100 (Italy); CNR-IPCF UOS, Pisa 56124 (Italy); Zanetti, M., E-mail: marco.zanetti@unito.it [Nanostructured Interfaces and Surfaces, Department of Chemistry, University of Torino, Torino 10100 (Italy); Geuna, S., E-mail: stefano.geuna@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Perroteau, I., E-mail: isabelle.perroteau@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy)

    2015-03-01

    Fibrous substrates functioning as temporary extracellular matrices can be prepared easily by electrospinning, yielding fibrous matrices suitable as internal fillers for nerve guidance channels. In this study, gelatin micro- or nano-fibres were prepared by electrospinning by tuning the gelatin concentration and solution flow rate. The effect of gelatin fibre diameter on cell adhesion and proliferation was tested in vitro using explant cultures of Schwann cells (SC) and dorsal root ganglia (DRG). Cell adhesion was assessed by quantifying the cell spreading area, actin cytoskeleton organization and focal adhesion complex formation. Nano-fibres promoted cell spreading and actin cytoskeleton organization, increasing cellular adhesion and the proliferation rate. However, both migration rate and motility, quantified by transwell and time lapse assays respectively, were greater in cells cultured on micro-fibres. Finally, there was more DRG axon outgrowth on micro-fibres. These data suggest that the topography of electrospun gelatin fibres can be adjusted to modulate SC and axon organization and that both nano- and micro-fibres are promising fillers for the design of devices for peripheral nerve repair. - Highlights: • Electrospinning used to produce gelatin nano- and micro-fibre matrices. • Nano-fibre matrices promote Schwann cell organization and increase proliferation rate. • Micro-fibre matrices promote Schwann cell migration. • Micro-fibre matrices promote axonal outgrowth.

  9. Non-Cell-Autonomous Regulation of Retrograde Motoneuronal Axonal Transport in an SBMA Mouse Model

    Science.gov (United States)

    Halievski, Katherine; Kemp, Michael Q.; Breedlove, S. Marc; Miller, Kyle E.

    2016-01-01

    Abstract Defects in axonal transport are seen in motoneuronal diseases, but how that impairment comes about is not well understood. In spinal bulbar muscular atrophy (SBMA), a disorder linked to a CAG/polyglutamine repeat expansion in the androgen receptor (AR) gene, the disease-causing AR disrupts axonal transport by acting in both a cell-autonomous fashion in the motoneurons themselves, and in a non-cell-autonomous fashion in muscle. The non-cell-autonomous mechanism is suggested by data from a unique “myogenic” transgenic (TG) mouse model in which an AR transgene expressed exclusively in skeletal muscle fibers triggers an androgen-dependent SBMA phenotype, including defects in retrograde transport. However, motoneurons in this TG model retain the endogenous AR gene, leaving open the possibility that impairments in transport in this model also depend on ARs in the motoneurons themselves. To test whether non-cell-autonomous mechanisms alone can perturb retrograde transport, we generated male TG mice in which the endogenous AR allele has the testicular feminization mutation (Tfm) and, consequently, is nonfunctional. Males carrying the Tfm allele alone show no deficits in motor function or axonal transport, with or without testosterone treatment. However, when Tfm males carrying the myogenic transgene (Tfm/TG) are treated with testosterone, they develop impaired motor function and defects in retrograde transport, having fewer retrogradely labeled motoneurons and deficits in endosomal flux based on time-lapse video microscopy of living axons. These findings demonstrate that non-cell-autonomous disease mechanisms originating in muscle are sufficient to induce defects in retrograde transport in motoneurons. PMID:27517091

  10. Bridging Physics and Biology Using Resistance and Axons

    Science.gov (United States)

    Dyer, Joshua M.

    2014-11-01

    When teaching physics, it is often difficult to get biology-oriented students to see the relevance of physics.1 A complaint often heard is that biology students are required to take physics for the Medical College Admission Test (MCAT) as part of a "weeding out" process, but that they don't feel like they need physics for biology. Despite this impression held by students, there have been calls for better physics education for future physicians and life scientists.2,3 Research is being performed to improve physics classes and labs by linking topics in biology and physics.4,5 Described here is a laboratory experiment covering the topics of resistance of materials and circuits/Kirchhoff's laws in a biology context with their direct application to neurons, axons, and electrical impulse transmission within animals. This experiment will also demonstrate the mechanism believed to cause multiple sclerosis. The apparatus was designed with low-cost and readily available materials in mind.

  11. Voluntary Control of the Near Reflex: A Case Report

    Directory of Open Access Journals (Sweden)

    Serpil Akar

    2014-03-01

    Full Text Available Spasm of the near reflex is a rare disorder that involves intermittent and variable episodes of esotropia, pseudomyopia, and pupillary myosis. It is usually functional in origin and is seen mainly in young patients. Treatment options for spasm of the near reflex have had variable success. In instances where the etiology of spasm of the near reflex was suspected to be hysteria, psychotherapy has proven beneficial. We report the case of an 11-year-old girl who had functional spasm of the near reflex. The symptoms persisted for two years. Symptomatic relief was achieved by cycloplegia and spectacle correction (added plus lenses at near. The patient also underwent psychological counseling. In our case, the functional spasm of the near reflex spontaneously resolved after 2 years. (Turk J Ophthalmol 2014; 44: 161-3

  12. Axonal synapses utilize multiple synaptic ribbons in the mammalian retina.

    Directory of Open Access Journals (Sweden)

    Hong-Lim Kim

    Full Text Available In the mammalian retina, bipolar cells and ganglion cells which stratify in sublamina a of the inner plexiform layer (IPL show OFF responses to light stimuli while those that stratify in sublamina b show ON responses. This functional relationship between anatomy and physiology is a key principle of retinal organization. However, there are at least three types of retinal neurons, including intrinsically photosensitive retinal ganglion cells (ipRGCs and dopaminergic amacrine cells, which violate this principle. These cell types have light-driven ON responses, but their dendrites mainly stratify in sublamina a of the IPL, the OFF sublayer. Recent anatomical studies suggested that certain ON cone bipolar cells make axonal or ectopic synapses as they descend through sublamina a, thus providing ON input to cells which stratify in the OFF sublayer. Using immunoelectron microscopy with 3-dimensional reconstruction, we have identified axonal synapses of ON cone bipolar cells in the rabbit retina. Ten calbindin ON cone bipolar axons made en passant ribbon synapses onto amacrine or ganglion dendrites in sublamina a of the IPL. Compared to the ribbon synapses made by bipolar terminals, these axonal ribbon synapses were characterized by a broad postsynaptic element that appeared as a monad and by the presence of multiple short synaptic ribbons. These findings confirm that certain ON cone bipolar cells can provide ON input to amacrine and ganglion cells whose dendrites stratify in the OFF sublayer via axonal synapses. The monadic synapse with multiple ribbons may be a diagnostic feature of the ON cone bipolar axonal synapse in sublamina a. The presence of multiple ribbons and a broad postsynaptic density suggest these structures may be very efficient synapses. We also identified axonal inputs to ipRGCs with the architecture described above.

  13. Regulation of Microtubule Dynamics in Axon Regeneration: Insights from C. elegans [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Ngang Heok Tang

    2016-04-01

    Full Text Available The capacity of an axon to regenerate is regulated by its external environment and by cell-intrinsic factors. Studies in a variety of organisms suggest that alterations in axonal microtubule (MT dynamics have potent effects on axon regeneration. We review recent findings on the regulation of MT dynamics during axon regeneration, focusing on the nematode Caenorhabditis elegans. In C. elegans the dual leucine zipper kinase (DLK promotes axon regeneration, whereas the exchange factor for Arf6 (EFA-6 inhibits axon regeneration. Both DLK and EFA-6 respond to injury and control axon regeneration in part via MT dynamics. How the DLK and EFA-6 pathways are related is a topic of active investigation, as is the mechanism by which EFA-6 responds to axonal injury. We evaluate potential candidates, such as the MT affinity-regulating kinase PAR-1/MARK, in regulation of EFA-6 and axonal MT dynamics in regeneration.

  14. Learning to breathe: Habituation of Hering–Breuer inflation reflex emerges with postnatal brainstem maturation

    OpenAIRE

    Dutschmann, Mathias; Bautista, Tara G.; Mörschel, Michael; Dick, Thomas E

    2014-01-01

    The Hering–Breuer (HBR) reflex is considered a major regulatory feedback for the generation and patterning of respiratory activity. While HBR is important in neonates, its significance in adults is controversial. Previous experiments that investigated the plasticity of entrainment of the respiratory rhythm by vagal input demonstrated postnatal changes in HBR plasticity. Here we analyzed postnatal changes in the plasticity of HBR by mimicking the classic lung inflation tests with repetitive to...

  15. Nicotine-activated descending facilitation on spinal NMDA-dependent reflex potentiation from pontine tegmentum in rats.

    Science.gov (United States)

    Pan, Shwu-Fen; Peng, Hsien-Yu; Chen, Chi-Chung; Chen, Mei-Jung; Lee, Shin-Da; Cheng, Chen-Li; Shyu, Jyh-Cherng; Liao, Jiuan-Miaw; Chen, Gin-Den; Lin, Tzer-Bin

    2008-05-01

    This study was conducted to investigate the possible neurotransmitter that activates the descending pathways coming from the dorsolateral pontine tegmentum (DPT) to modulate spinal pelvic-urethra reflex potentiation. External urethra sphincter electromyogram (EUSE) activity in response to test stimulation (TS, 1/30 Hz) and repetitive stimulation (RS, 1 Hz) on the pelvic afferent nerve of 63 anesthetized rats were recorded with or without microinjection of nicotinic cholinergic receptor (nAChR) agonists, ACh and nicotine, to the DPT. TS evoked a baseline reflex activity with a single action potential (1.00 +/- 0.00 spikes/stimulation, n = 40), whereas RS produced a long-lasting reflex potentiation (16.14 +/- 0.96 spikes/stimulation, n = 40) that was abolished by d-2-amino-5-phosphonovaleric acid (1.60 +/- 0.89 spikes/stimulation, n = 40) and was attenuated by 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo (F) quinoxaline (7.10 +/- 0.84 spikes/stimulation, n = 40). ACh and nicotine microinjections to DPT both produced facilitation on the RS-induced reflex potentiation (23.57 +/- 2.23 and 28.29 +/- 2.36 spikes/stimulation, P acid-dependent reflex potentiation via descending serotonergic neurotransmission. This descending modulation may have physiological/pathological relevance in the neural controls of urethral closure. PMID:18287401

  16. The swallowing reflex and its significance as an airway defensive reflex

    OpenAIRE

    TakashiNishino

    2013-01-01

    Swallowing function, in humans, is very complex. Swallowing plays, not only an important role in food digestion, but also a major role in preventing the entrance of food and/or other materials into the lower respiratory tract. To achieve this, precise coordination is necessary between breathing and swallowing since the pharynx serves as a common pathway for both respiration and digestion. The swallowing reflex consists of afferent pathways, central integration, and efferent pathways. Any ...

  17. The swallowing reflex and its significance as an airway defensive reflex

    OpenAIRE

    Nishino, Takashi

    2013-01-01

    Swallowing function, in humans, is very complex. Swallowing plays, not only an important role in food digestion, but also a major role in preventing the entrance of food and/or other materials into the lower respiratory tract. To achieve this, precise coordination is necessary between breathing and swallowing since the pharynx serves as a common pathway for both respiration and digestion. The swallowing reflex consists of afferent pathways, central integration, and efferent pathways. Any defe...

  18. Functional complexity of the axonal growth cone: a proteomic analysis.

    Directory of Open Access Journals (Sweden)

    Adriana Estrada-Bernal

    Full Text Available The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥ 99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions.

  19. A novel technique using hydrophilic polymers to promote axonal fusion

    Institute of Scientific and Technical Information of China (English)

    Ravinder Bamba; D Colton Riley; Nathaniel D Kelm; Mark D Does; Richard D Dortch; Wesley P hTayer

    2016-01-01

    The management of traumatic peripheral nerve injury remains a considerable concern for clinicians. With minimal innovations in surgical technique and a limited number of specialists trained to treat peripheral nerve injury, outcomes of surgical intervention have been unpredictable. The inability to manipulate the pathophysiology of nerve injury (i.e., Wallerian degeneration) has left scientists and clinicians depending on the slow and lengthy process of axonal regeneration (~1 mm/day). When axons are severed, the endings undergo calcium-mediated plasmalemmal sealing, which limits the ability of the axon to be primarily re-paired. Polythethylene glycol (PEG) in combination with a bioengineered process overcomes the inability to fuse axons. The mechanism for PEG axonal fusion is not clearly understood, but multiple studies have shown that a providing a calcium-free environment is essential to the process known as PEG fusion. The proposed mechanism is PEG-induced lipid bilayer fusion by removing the hydration barrier surrounding the axolemma and reducing the activation energy required for membrane fusion to occur. This review highlights PEG fusion, its past and current studies, and future directions in PEG fusion.

  20. Highly effective photonic cue for repulsive axonal guidance.

    Directory of Open Access Journals (Sweden)

    Bryan J Black

    Full Text Available In vivo nerve repair requires not only the ability to regenerate damaged axons, but most importantly, the ability to guide developing or regenerating axons along paths that will result in functional connections. Furthermore, basic studies in neuroscience and neuro-electronic interface design require the ability to construct in vitro neural circuitry. Both these applications require the development of a noninvasive, highly effective tool for axonal growth-cone guidance. To date, a myriad of technologies have been introduced based on chemical, electrical, mechanical, and hybrid approaches (such as electro-chemical, optofluidic flow and photo-chemical methods. These methods are either lacking in desired spatial and temporal selectivity or require the introduction of invasive external factors. Within the last fifteen years however, several attractive guidance cues have been developed using purely light based cues to achieve axonal guidance. Here, we report a novel, purely optical repulsive guidance technique that uses low power, near infrared light, and demonstrates the guidance of primary goldfish retinal ganglion cell axons through turns of up to 120 degrees and over distances of ∼90 µm.

  1. Subtypes of GABAergic neurons project axons in the neocortex

    Directory of Open Access Journals (Sweden)

    Shigeyoshi Higo

    2009-11-01

    Full Text Available γ-aminobutyric acid (GABAergic neurons in the neocortex have been regarded as interneurons and speculated to modulate the activity of neurons locally. Recently, however, several experiments revealed that neuronal nitric oxide synthase (nNOS-positive GABAergic neurons project cortico-cortically with long axons. In this study, we illustrate Golgi-like images of the nNOS-positive GABAergic neurons using a nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d reaction and follow the emanating axon branches in cat brain sections. These axon branches projected cortico-cortically with other non-labeled arcuate fibers, contra-laterally via the corpus callosum and anterior commissure. The labeled fibers were not limited to the neocortex but found also in the fimbria of the hippocampus. In order to have additional information on these GABAergic neuron projections, we investigated green fluorescent protein (GFP-labeled GABAergic neurons in GAD67-Cre knock-in / GFP Cre-reporter mice. GFP-labeled axons emanate densely, especially in the fimbria, a small number in the anterior commissure, and very sparsely in the corpus callosum. These two different approaches confirm that not only nNOS-positive GABAergic neurons but also other subtypes of GABAergic neurons project long axons in the cerebral cortex and are in a position to be involved in information processing.

  2. Study of the Reflex-Klystron

    International Nuclear Information System (INIS)

    The main purpose of this paper is the theoretical study and the development of a technique for designing. A low power Reflex-Klystron, in order to construct it in the graduated section laboratories of the Instituto Politecnico Nacional. It is pretended to attain a power of 15-45 m W in frequencies of 8-10 GHz with low acceleration potentials (300-400 V) and electric current of 15-25 m A; the device will be mechanically tuned and will have a fine tuning through the potential of the reflector (150-180 V negative with respect to the resonator). The International System of Units is used in this thesis. (Author)

  3. The artificial somato-autonomic reflex arch does not improve bowel function in subjects with spinal cord injury

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Mylius; Krogh, Klaus; Clemmensen, Dorte;

    2015-01-01

    Study design: Prospective cohort study. Objective: Although introduced for neurogenic bladder dysfunction, it has been suggested that the artificial somato-autonomic reflex arch alleviates neurogenic bowel dysfunction (NBD). We aimed at evaluating the effects of the reflex arch on NBD. Setting......: Denmark. Methods: Ten subjects with supraconal spinal cord injury (SCI) (nine males, median age 46 years) had an anastomosis created between the ventral part of the fifth lumbar or first sacral nerve root and the ventral part of the second sacral nerve root. Standardized assessment of segmental colorectal...... transit times with radiopaque markers, evaluation of scintigraphic assessed colorectal emptying upon defecation, scintigraphic assessment of colorectal transport during stimulation of the reflex arch, standard anorectal physiology tests and colorectal symptoms were performed at baseline and 18 months...

  4. Effects of a training program to increase reflexivity and planning in a school area at risk due to poverty

    Directory of Open Access Journals (Sweden)

    María Cristina Richaud de Minzi

    2011-05-01

    Full Text Available The aim of this paper was to analyze the differences Reflexivity-Impulsivity in cognitive style and planning as regards social risk and to test the efficacy of a reflexivity training program integrated to the curriculum in a poverty context. We have worked with a sample of 110 6-year-old children: an experimental group (N = 47 a control group (N = 22 at risk and a control group not at risk (N = 41. All of them live in Entre Ríos, Argentina. The results indicate differences in R-I response patterns and planning in terms of social risk and emphasize the role of experience in the development of thesefunctions. Besides, they support the hypothesis which holds the possibility to improve the reflexive disposition after program training.

  5. Reflexivity, description and the analysis of social settings

    Directory of Open Access Journals (Sweden)

    Rodney Watson

    2005-01-01

    Full Text Available The concept of 'reflexivity' has become an often-intoned mantra in contemporary social science, particulary, perhaps, sociology. This article, however, argues that the 'blanket use' of 'reflexivity' glosses over and confuses many different actual definitions and understandings of the concept - not least because the concept operates differently as a move within each of the divergent analytic 'games' that compose the overall discipline. One (among many other crucial distinctions is that between 'stipulative' and 'essential' reflexivity - the former originating in part in G.H.Mead's notions of the 'I' and the 'Me', and extended within current theories of reflexive modernity. This concept has been wrenched by professional social scientist from its mundane moorings and has been 'elevated' into an analytic technique of self interrogation. By contrast, 'essential' reflexivity, as adduced by ethnomethodological sociologists, remains resolutely emplaced in the domain of lay society-members' ordinary sense-making practices: it here refers to the reciprocal, back-and-forth determinations of sense of members' mundane descriptions of their specific circumstances and of the circumstances they describe - description and circumstance reflect upon each other during the sense-making practices. A brief example of essential reflexivity is given- reflexive formulations in ordinary conversations.

  6. Three dimensional morphometric analyses of axon terminals early changes induced by methylmercury intoxication in the adult cat striate cortex.

    Science.gov (United States)

    de Oliveira, Ricardo Bezerra; Gomes Leal, Wallace; Picanço-Diniz, Domingos Luis Wanderley; Torres Neto, João Bento; Lins, Nara; Malm, Olaf; Picanço-Diniz, Cristovam W

    2008-12-01

    The aim of the present report is to investigate in detail morphometric changes of axon terminals of area 17 of adult cat induced by methylmercury intoxication. Six adult male cats (Felix catus), with 12 h day-light cycle and ad libitum water and food regimen, received a single dose of MeHgCl (6.4 mg/kg) dissolved in milk, whereas control subjects (n=6) received only milk. After 30 days, biocytin iontophoretic injections were done into the area 17, (Horsley-Clark coordinates between AP 3.0-6.0) on the crown of the lateral gyrus, near the border with area 18. MeHg and inorganic Hg (Hgi) concentrations were measured in the brain parenchyma of intoxicated cats and corresponded on average to 1.39+/-0.3 and 6.79+/-0.6 ppm (mean+/-s.e.m.) respectively. Twenty four hours after iontophoresis, aldehyde fixed brain sections (200 microm thick), were processed to reveal biocytin labeled terminals. Axonal microscopic 3D reconstructions using Neurolucida software (Microbright Systems Inc.) allowed estimations of boutons, branching points and segment densities for each terminal. Cluster analysis of morphometric axonal features from control and intoxicated group revealed, two distinct axon families (Type I and II) as described elsewhere. Total density values of boutons, branching points and segment densities of intoxicated group, decreased 81, 59 and 91% respectively, as compared to the control group (ANOVA two-way, Bonferroni a priori test pintoxication in the visual cortex. PMID:18835550

  7. Neurofilament proteins in axonal regeneration and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Haitao Wang; Minfei Wu; Chuanjun Zhan; Enyuan Ma; Maoguang Yang; Xiaoyu Yang; Yingpu Li

    2012-01-01

    Neurofilament protein is a component of the mature neuronal cytoskeleton, and it interacts with the zygosome, which is mediated by neurofilament-related proteins. Neurofilament protein regulates enzyme function and the structure of linker proteins. In addition, neurofilament gene expression plays an important role in nervous system development. Previous studies have shown that neurofilament gene transcriptional regulation is crucial for neurofilament protein expression, especially in axonal regeneration and degenerative diseases. Post-transcriptional regulation increased neurofilament protein gene transcription during axonal regeneration, ultimately resulting in a pattern of neurofilament protein expression. An expression imbalance of post-transcriptional regulatory proteins and other disorders could lead to amyotrophic lateral sclerosis or other neurodegenerative diseases. These findings indicated that after transcription, neurofilament protein regulated expression of related proteins and promoted regeneration of damaged axons, suggesting that regulation disorders could lead to neurodegenerative diseases.

  8. The functional and pragmatic features of assonance phraseological reflexes

    Directory of Open Access Journals (Sweden)

    Shkapenko T.

    2014-09-01

    Full Text Available This paper analyzes a specific group of phraseological reflexes based on an assonance rhyme with an initial interrogative utterance. Assonance phraseological reflexes cannot perform a descriptive or nominative function acting in the process of verbal interaction only as markers of pragmatic intentions. Therefore, the attempts to describe them in terms of traditional semantics prove unsuccessful. A proper study of assonance phraseological reflexes is possible only in the framework of speech act theory. From the cognitive perspective, these units of speech are an example of a language game typical of speech subcultures.

  9. [A clinical and pathological study of diffuse axonal injury].

    Science.gov (United States)

    Nakazawa, S; Kobayashi, S; Yokota, H; Shimura, T

    1989-03-01

    There is increasing evidence from human and experimental studies that the most important factor governing the outcome in head injury is the severity of diffuse axonal injuries. The authors have experienced 18 cases of severe diffuse axonal injury which showed post-traumatic coma for more than 24 hours and CT findings resembling those of shearing injuries of the cerebral white matter such as have been presented by Zimmerman et al. (1978). The consciousness levels on admission were 6 or less on the Glasgow Coma Scale and all cases were shown clinically to have primary brain stem injury. The main type of head trauma resulted from road traffic accidents (83%). Skull fractures were found in only 5 cases (28%). These findings suggested that acceleration/deceleration injury produce in the patients severe diffuse axonal injury. Initial ICP was below 20 mmHg in 11 cases out of 13 (85%). Parenchymal small hemorrhagic lesions of initial CT were basal ganglia (7 cases), corpus callosum (4 cases), pons (4 cases), midbrain (3 cases) and thalamus (2 cases). Extraparenchymal hemorrhagic lesions included intraventricular hemorrhage (6 cases) and subarachnoid hemorrhage (6 cases). Two autopsied cases of severe diffuse axonal injury (acute case and chronic case) showed remarkable congestion and edema in the deep part of the frontal white matter. Microscopic examination revealed marked axonal degeneration including axonal retraction ball in the corpus callosum, in the internal capsule and in the white matter of the brain stem. Glasgow Outcome Scale of the 18 patients at 3 months after the trauma made us concerned that no patients indicated good recovery or even only moderate disability.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2770962

  10. Axon-glial interactions in the central nervous system

    OpenAIRE

    Butt, Arthur; Bay, Virginia

    2011-01-01

    Axon-glial interactions are critical for brain information transmission and processing. In the CNS, this is a function of the major types of glia – astrocytes, oligodendrocytes and novel NG2-glia. This special issue of the Journal of Anatomy comprises contributions arising from a symposium entitled ‘Axon-glial interactions in the CNS’, held at the University of Portsmouth, UK in July 2010. The aim of the special issue is to bring together an international group of experts to demonstrate the c...

  11. A chloride channel in rat and human axons

    OpenAIRE

    Strupp, Michael; Grafe, Peter

    1991-01-01

    Current recordings from single chloride channels were obtained from excised and cell-attached patches of rat and human axons. In rat axons the channels showed an outwardly rectifying current-voltage relationship with a slope conductance of 33 pS at negative membrane potentials and 65 pS at positive potentials (symmetrical 150 mM CsCl). They were measurably for cations (PNa/PCs/PCl=0.1/0.2/1). Channel currents were independent of cytoplasmatic calcium concentration. Inactivation was not observ...

  12. Tuning the orchestra: transcriptional pathways controlling axon regeneration

    Directory of Open Access Journals (Sweden)

    Andrea Tedeschi

    2012-01-01

    Full Text Available Trauma in the adult mammalian central nervous system leads to irreversible structural and functional impairment due to failed regeneration attempts. In contrast, neurons in the peripheral nervous system exhibit a greater regenerative ability. It has been proposed that an orchestrated sequence of transcriptional events controlling the expression of specific sets of genes may be the underlying basis of an early cell-autonomous regenerative response. Understanding whether transcriptional fine tuning, in parallel with strategies aimed at counteracting extrinsic impediments promotes axon re-growth following central nervous system injuries represents an exciting challenge for future studies. Transcriptional pathways controlling axon regeneration are presented and discussed in this review.

  13. Networks of Polarized Actin Filaments in the Axon Initial Segment Provide a Mechanism for Sorting Axonal and Dendritic Proteins

    Directory of Open Access Journals (Sweden)

    Kaori Watanabe

    2012-12-01

    Full Text Available Trafficking of proteins specifically to the axonal or somatodendritic membrane allows neurons to establish and maintain polarized compartments with distinct morphology and function. Diverse evidence suggests that an actin-dependent vesicle filter within the axon initial segment (AIS plays a critical role in polarized trafficking; however, no distinctive actin-based structures capable of comprising such a filter have been found within the AIS. Here, using correlative light and scanning electron microscopy, we visualized networks of actin filaments several microns wide within the AIS of cortical neurons in culture. Individual filaments within these patches are predominantly oriented with their plus ends facing toward the cell body, consistent with models of filter selectivity. Vesicles carrying dendritic proteins are much more likely to stop in regions occupied by the actin patches than in other regions, indicating that the patches likely prevent movement of dendritic proteins to the axon and thereby act as a vesicle filter.

  14. Orientationally invariant indices of axon diameter and density from diffusion MRI

    DEFF Research Database (Denmark)

    Alexander, Daniel C; Hubbard, Penny L; Hall, Matt G;

    2010-01-01

    tensor imaging. Orientational invariance allows for combination with tractography and presents new opportunities for mapping brain connectivity and quantifying disease processes. The technique uses a four-compartment tissue model combined with an optimized multishell high-angular-resolution pulsed......-gradient-spin-echo acquisition. We test the method in simulation, on fixed monkey brains using a preclinical scanner and on live human brains using a clinical 3T scanner. The human data take about one hour to acquire. The simulation experiments show that both monkey and human protocols distinguish distributions of axon...

  15. Membrane potential dynamics of axons in cultured hippocampal neurons probed by second-harmonic-generation imaging

    Science.gov (United States)

    Nuriya, Mutsuo; Yasui, Masato

    2010-03-01

    The electrical properties of axons critically influence the nature of communication between neurons. However, due to their small size, direct measurement of membrane potential dynamics in intact and complex mammalian axons has been a challenge. Furthermore, quantitative optical measurements of axonal membrane potential dynamics have not been available. To characterize the basic principles of somatic voltage signal propagation in intact axonal arbors, second-harmonic-generation (SHG) imaging is applied to cultured mouse hippocampal neurons. When FM4-64 is applied extracellularly to dissociated neurons, whole axonal arbors are visualized by SHG imaging. Upon action potential generation by somatic current injection, nonattenuating action potentials are recorded in intact axonal arbors. Interestingly, however, both current- and voltage-clamp recordings suggest that nonregenerative subthreshold somatic voltage changes at the soma are poorly conveyed to these axonal sites. These results reveal the nature of membrane potential dynamics of cultured hippocampal neurons, and further show the possibility of SHG imaging in physiological investigations of axons.

  16. Spinal Reflexes During Postural Control Under Psychological Pressure.

    Science.gov (United States)

    Tanaka, Yoshifumi

    2015-07-01

    This study investigated the effect of psychological pressure on spinal reflex excitability. Thirteen participants performed a balancing task by standing on a balance disk with one foot. After six practice trials, they performed one nonpressure and one pressure trial involving a performance-contingent cash reward or punishment. Stress responses were successfully induced; state anxiety, mental effort, and heart rates all increased under pressure. Soleus Hoffmann reflex amplitude in the pressure trial was significantly smaller than in the nonpressure trial. This modification of spinal reflexes may be caused by presynaptic inhibition under the control of higher central nerve excitation under pressure. This change did not prevent 12 of the 13 participants from successfully completing the postural control task under pressure. These results suggest that Hoffmann reflex inhibition would contribute to optimal postural control under stressful situations. PMID:25587695

  17. Nasal reflexes: implications for exercise, breathing, and sex.

    Science.gov (United States)

    Baraniuk, James N; Merck, Samantha J

    2008-04-01

    Nasal patency, with both congestion and decongestion, is affected in a wide variety of reflexes. Stimuli leading to nasal reflexes include exercise; alterations of body position, pressure, and temperature; neurologic syndromes; and dentistry. As anticipated, the vagal and trigeminal systems are closely integrated through nasobronchial and bronchonasal reflexes. However, perhaps of greater pathophysiologic importance are the naso-hypopharyngeal-laryngeal reflexes that become aggravated during sinusitis. None other than Sigmund Freud saw deeply beyond the facial adornment and recognized the deeper sexual tensions that can regulate nasal functions and psychoanalytical status. Wine, women, and song are linked with airflow through the nose-the nose, which by any other name would still smell as sweetly. PMID:18417057

  18. On the gastrocecal inhibitory reflex in the rat.

    Directory of Open Access Journals (Sweden)

    Lee,Zai-Liu

    1981-11-01

    Full Text Available In rats anesthetized with urethane, the effects of distention of the stomach upon cecal motility and neural mechanisms which generate this effect were studied. Cecal motility was inhibited which generate this effect were studied. Cecal motility was inhibited when the pars glandularis of the stomach was distended by pressure ranging from 25 to 30 cm H2O. This inhibitory reflex was not affected by bilateral cervical vagotomy, but completely abolished following bilateral severance of the greater splanchnic nerves or after intravenous administration of guanethidine. After transection of the spinal cord at the level of the 5th thoracic segment the inhibitory reflex remained intact, but was abolished following pithing of the 6th thoracic segment and below. It may be concluded that the afferent and efferent path of the gastrocecal inhibitory reflex mainly pass through the greater splanchnic nerves and the reflex center is located in thoracic segments caudal to the 6th thoracic segment.

  19. Reconsidering reflexivity: introducing the case for intellectual entrepreneurship.

    Science.gov (United States)

    Cutcliffe, John R

    2003-01-01

    In this article, the author reconsiders reflexivity and attempts to examine some unresolved issues by drawing particular attention to the relationship between reflexivity and certain related phenomena/processes: the researcher's a priori knowledge, values, beliefs; empathy within qualitative research; the presence and influence of the researcher's tacit knowledge, and May's "magic" in method. Given the limitations of some reflexive activity identified in this article, the author introduces the case for greater intellectual entrepreneurship within the context of qualitative research. He suggests that excessive emphasis on reflexive activity might inhibit intellectual entrepreneurship. Wherein intellectual entrepreneurship implies a conscious and deliberate attempt on the part of academics to explore the world of ideas boldly; to take more risks in theory development and to move away from being timid researchers. PMID:12564268

  20. Synapses formed by identified retinogeniculate axons during the segregation of eye input.

    OpenAIRE

    Campbell, G; Shatz, C J

    1992-01-01

    The synaptic organization of identified retinogeniculate axons was studied during the prenatal development of eye-specific layers in the LGN of the cat. During this period, retinogeniculate axons undergo stereotyped morphological changes. Retinogeniculate axons originating from one eye and passing through LGN territory destined to be solely innervated by the other eye (inappropriate territory) initially give rise to many side branches. As the eye-specific layers emerge, these axons elaborate ...

  1. Nasocardiac reflex during aspiration and injection through a nasogastric tube: An infrequent occurrence

    OpenAIRE

    Rudrashish Haldar; Jasleen Kaur; Sukhminder Jit Singh Bajwa

    2015-01-01

    Nasocardiac reflex is a relatively less discussed variant of trigeminovagal reflex where the afferent arc of the reflex is represented by any of the branches of the trigeminal nerves, and the efferent arc is via the vagus nerve. Elicitation of this reflex is commonly seen during surgical manipulation and is manifested as bradycardia or even asystole. We report a case where nasocardiac reflex was unusually observed in a patient when aspiration and injection were done through a nasogastric tube.

  2. Critical Evaluation of a Program to Foster Reflexive Antiracism

    OpenAIRE

    Hayley Franklin; Yin Paradies; Emma Kowal

    2014-01-01

    This paper documents the evaluation of a three-day program entitled: Race, Culture, Indigeneity and the Politics of Disadvantage, which was delivered in 2010 in Melbourne, Australia with the aim of promoting Reflexive Antiracism (RA), a novel diversity training approach. To assess the impact of the program on its participants, the Reflexive Antiracism Scale- Indigenous (RAS-I) was devised and administered before and after the program both to participants and a matched control group. The progr...

  3. Trigeminocardiac Reflex during Maxillary Reconstruction Surgery: A Case Report

    OpenAIRE

    Mayank Kulshrestha; Sahil Kapur; Col. M Kapadia

    2014-01-01

    Systemic hypotension, cardiac dysrhythmia especially bradycardia, apnoea, and gastric hypermotility occurring presumably after stimulation of any of the sensory branches of trigeminal nerve is coined as trigeminocardiac reflex (TCR). It has been described to occur in various surgeries like cerebello-pontine angle and pituitary fossa surgeries. Such bradycardic reflex responses have also been observed during maxillofacial surgeries. The TCR presents as a challenge to both the Anaesthesiologis...

  4. Emetic stimulation inhibits the swallowing reflex in decerebrate rats.

    OpenAIRE

    Kurozumi, Chiharu; Yamagata, Ryuzo; Himi, Naoyuki; Koga, Tomoshige

    2008-01-01

    The effects of emetic stimulation on the swallowing reflex were investigated in decerebrated rats. Hypoxia, gastric distension and LiCl administration were used as emetic stimulations. The swallowing reflex was elicited by electrical stimulation of the superior laryngeal nerve (SLN, 20 Hz, 3-5 V, 0.3 ms duration) for 20 s. To examine the effect of hypoxia, nitrogen gas was inhaled under artificial ventilation. There were significantly fewer swallows during a decrease in PO(2) than under air v...

  5. Variable Patterned Pudendal Nerve Stimuli Improves Reflex Bladder Activation

    OpenAIRE

    Bruns, Tim M.; Bhadra, Narendra; Gustafson, Kenneth J.

    2008-01-01

    We evaluated variable patterns of pudendal nerve (PN) stimuli for reflex bladder excitation. Reflex activation of the bladder has been demonstrated previously with 20–33 Hz continuous stimulation of PN afferents. Neuronal circuits accessed by afferent mediated pathways may respond better to physiological patterned stimuli than continuous stimulation. Unilateral PN nerve cuffs were placed in neurologically intact male cats. PN stimulation (0.5–100 Hz) was performed under isovolumetric conditio...

  6. Pain-related somatosensory evoked potentials in cortical reflex myoclonus.

    OpenAIRE

    Kakigi, R; Shibasaki, H; Neshige, R; Ikeda, A.; Mamiya, K.; Kuroda, Y

    1990-01-01

    To elucidate the sensitivity to pain stimuli in patients with cortical reflex myoclonus, pain-related somatosensory evoked potentials (pain SEPs) following CO2 laser stimulation and conventional electrically-stimulated SEPs (electric SEPs) were compared in four patients with cortical reflex myoclonus. The P25 peak of electric SEPs was considerably enhanced but the P320 potential of pain SEPs was of normal amplitude in all patients. After medication, myoclonus was reduced and the amplitude of ...

  7. A tapetal-like fundus reflex in a healthy male

    DEFF Research Database (Denmark)

    Schatz, Patrik; Bregnhøj, Jesper; Arvidsson, Henrik; Sharon, Dror; Mizrahi-Meissonnier, Liliana; Sander, Birgit; Grønskov, Karen; Larsen, Michael

    2012-01-01

    To report on the retinal function and structure in a 37-year-old male who presented with a tapetal-like reflex (TLR) indistinguishable from that seen in female carriers of X-linked retinitis pigmentosa (XLRP).......To report on the retinal function and structure in a 37-year-old male who presented with a tapetal-like reflex (TLR) indistinguishable from that seen in female carriers of X-linked retinitis pigmentosa (XLRP)....

  8. The Reflexive Nature of Reading as Ethnographic Practice: Editorial Note

    OpenAIRE

    Roth, Wolff-Michael

    2004-01-01

    In diesem Editorial schlage ich vor, das Lesen publizierter Texte nicht nur als Betreiben von Ethnographie zu verstehen, sondern darüber hinausgehend konkretisiert sich das Lesen auch in der Produktion von neuen Texten, und in diesem Prozess werden die kulturellen Praktiken reproduziert, die in den gelesenen Texten analysiert wurden. Als ethnographische Methode ist das Lesen ein reflexives Projekt. Ich skizziere einen dialektischen Ansatz, der diese reflexive Natur des Lesens theoretisiert.

  9. Die reflexive Natur des Lesens als ethnografische Praxis (Editorial)

    OpenAIRE

    Roth, Wolff-Michael

    2004-01-01

    In diesem Editorial schlage ich vor, das Lesen publizierter Texte nicht nur als Betreiben von Ethnographie zu verstehen, sondern darüber hinausgehend konkretisiert sich das Lesen auch in der Produktion von neuen Texten, und in diesem Prozess werden die kulturellen Praktiken reproduziert, die in den gelesenen Texten analysiert wurden. Als ethnographische Methode ist das Lesen ein reflexives Projekt. Ich skizziere einen dialektischen Ansatz, der diese reflexive Natur des Lesens theoretisiert. ...

  10. Control of attention before reflexive and intentional saccades

    OpenAIRE

    Casana-Perez, Susana Maria

    2004-01-01

    The relation between covert and overt spatial attention and saccadic eye movements was investigated in control subjects, Parkinson’s Disease (PD) patients, and cerebellar patients in a dual-task paradigm. The main question was how different types of cues (reflexive/intentional) guide the spatial attention during fixation or during the preparation phase of a saccade. The subjects were asked to follow a reflexive or intentional cue, to discriminate a character that appeared either at the cued s...

  11. Reflex anuria: a rare cause of acute kidney injury

    OpenAIRE

    Dhakarwal, Pradeep; Adediran, Samuel

    2014-01-01

    Background: Acute Kidney Injury results from pre renal, post renal or intrinsic renal causes. Reflex anuria is a very rare cause of renal impairment which happens due to irritation or trauma to one kidney or ureter, or severely painful stimuli to other nearby organs.Case Presentation: Here we present a case of acute kidney injury secondary to reflex anuria in a patient who underwent extensive gynecological surgery along with ureteral manipulation which recovered spontaneously.Conclusion: Refl...

  12. Innovation society today: the reflexive creation of novelty

    OpenAIRE

    Hutter, Michael; Knoblauch, Hubert; Rammert, Werner; Windeler, Arnold

    2015-01-01

    "While innovation has shaped modern society from its very inception, it is currently gaining new dimensions: Innovation is becoming increasingly reflexive, heterogeneously distributed, and ubiquitous. Reflexivity implies more than the intentional transformation of routine actions; it also refers to the transformation of social practices based on continuously (re-) produced knowledge about innovation. Thus, innovation itself becomes the aim and purpose of social activities: as the meaning and ...

  13. Differential Axonal Projection of Mitral and Tufted Cells in the Mouse Main Olfactory System

    Directory of Open Access Journals (Sweden)

    Shin Nagayama

    2010-09-01

    Full Text Available In the past decade, much has been elucidated regarding the functional organization of the axonal connection of olfactory sensory neurons to olfactory bulb (OB glomeruli. However, the manner in which projection neurons of the OB process odorant input and send this information to higher brain centers remains unclear. Here, we report long-range, large-scale tracing of the axonal projection patterns of OB neurons using two-photon microscopy. Tracer injection into a single glomerulus demonstrated widely distributed mitral/tufted cell axonal projections on the lateroventral surface of the mouse brain, including the anterior/posterior piriform cortex (PC and olfactory tubercle (OT. We noted two distinct groups of labeled axons: PC-orienting axons and OT-orienting axons. Each group occupied distinct parts of the lateral olfactory tract. PC-orienting axons projected axon collaterals to a wide area of the PC but only a few collaterals to the OT. OT-orienting axons densely projected axon collaterals primarily to the anterolateral OT (alOT. Different colored dye injections into the superficial and deep portions of the OB external plexiform layer revealed that the PC-orienting axon populations originated in presumed mitral cells and the OT-orienting axons in presumed tufted cells. These data suggest that although mitral and tufted cells receive similar odor signals from a shared glomerulus, they process the odor information in different ways and send their output to different higher brain centers via the PC and alOT.

  14. HPLC analysis of closed, open, and reflex eye tear proteins

    Directory of Open Access Journals (Sweden)

    Sitaramamma T

    1998-01-01

    Full Text Available Changes in the closed, open and reflex eye tear proteins of normal subjects were compared and analysed. Tear proteins were resolved by high-performance liquid chromatography (HPLC utilising both gel filtration (P-300 SW and reverse-phase (C-18 columns and the HPLC fractions were further analysed by sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDS-PAGE under reducing and non-reducing conditions. The protein composition of the closed-eye tear was significantly different from that of the open and reflex-eye tear. Secretory IgA (sIgA was the predominant protein in closed eye tears constituting 49% of the total protein compared to 11% in reflex tears, whereas lysozyme was the predominant protein (53% in reflex tears. Levels of lactoferrin, lipocalin and lysozyme were relatively constant in both open and reflex tears. HPLC profiles of the closed-eye tears, upon continuous stimulation of lacrimal glands indicated that sIgA was significantly reduced whereas lactoferrin, lipocalin, and lysozyme were significantly increased. These results indicate that the tear composition upon waking attains that of the open eye within 4 to 5 minutes, and upon continuous stimulation this reflects the reflex-eye tear composition. It also indicates that mechanisms responsible for changes in concentration of constitutive and regulated tear protein with stimulus can be studied successfully using non-invasive methods to collect human tears.

  15. Anticausatives are weak scalar expressions, not reflexive expressions

    Directory of Open Access Journals (Sweden)

    Florian Schäfer

    2016-07-01

    Full Text Available We discuss conceptual and empirical arguments from Germanic, Romance and Slavic languages against an analysis treating anticausative verbs as derived from their lexical causative counterparts under reflexivization. Instead, we defend the standard account to the semantics of the causative alternation according to which anticausatives in general, and anticausatives marked with reflexive morphology in particular, denote simple one-place inchoative events that are logically entailed by their lexical causative counterparts. Under such an account, anticausative verbs are weak scalar expressions that stand in a semantico-pragmatic opposition to their strong lexical causative counterparts. Due to this scalar relation, the use of an anticausative can trigger the implicature that the use of its lexical causative counterpart is too strong. As usual with implicatures, they can be ‘metalinguistically’ denied, cancelled, or reinforced and we argue that these mechanisms explain all central empirical facts brought up in the literature in favor of a treatment of anticausatives as semantically reflexive predicates. Our results reinforce the view that the reflexive morphemes used in many (Indo-European languages to mark anticausatives do not necessarily trigger reflexive semantics. However, we also show that a string involving a reflexively marked (anti-causative verb can be forced into a semantically reflexive construal under particular conceptual or grammatical circumstances.

  16. Cortical control of hering-breuer reflexes in anesthetized rats

    Directory of Open Access Journals (Sweden)

    Aleksandrov VG

    2009-12-01

    Full Text Available Abstract It had been hypothesized that the regions of prefrontal cortex which are involved in respiratory control can modulate Hering-Breuer reflexes evoked by vagal input from pulmonary stretch receptors. In the present study, experiments were performed on urethane anesthetized spontaneously breathing Wistar rats. The expiratory-promoting reflex was evaluated from changes in expiratory time immediately after airway occlusion at the end of inspiration. The inspiratory-inhibitory reflex was estimated from changes in inspiratory time provoked by airway occlusion at the end of expiration. The results indicate that electrical microstimulation of the responsive sites within the insular cortex significantly weakened both expiratory-promoting and inspiratory-inhibitory reflex. Activation of the infralimbic cortex depressed expiratory-promoting reflex, but inspiratory-inhibitory reflex was enhanced. These results suggest that stimulation of the prefrontal cortex influences vagally mediated control of the respiratory phases timing and several regions of the prefrontal cortex modulate distinct sets of neurons in the network controlling inspiratory and expiratory phases of a breath cycle.

  17. Quantifying mechanical force in axonal growth and guidance

    Directory of Open Access Journals (Sweden)

    Ahmad Ibrahim Mahmoud Athamneh

    2015-09-01

    Full Text Available Mechanical force plays a fundamental role in neuronal development, physiology, and regeneration. In particular, research has shown that force is involved in growth cone-mediated axonal growth and guidance as well as stretch-induced elongation when an organism increases in size after forming initial synaptic connections. However, much of the details about the exact role of force in these fundamental processes remain unknown. In this review, we highlight (1 standing questions concerning the role of mechanical force in axonal growth and guidance and (2 different experimental techniques used to quantify forces in axons and growth cones. We believe that satisfying answers to these questions will require quantitative information about the relationship between elongation, forces, cytoskeletal dynamics, axonal transport, signaling, substrate adhesion, and stiffness contributing to directional growth advance. Furthermore, we address why a wide range of force values have been reported in the literature, and what these values mean in the context of neuronal mechanics. We hope that this review will provide a guide for those interested in studying the role of force in development and regeneration of neuronal networks.

  18. Traction Force and Tension Fluctuations During Axon Growth

    Directory of Open Access Journals (Sweden)

    Jamison ePolackwich

    2015-10-01

    Full Text Available Actively generated mechanical forces play a central role in axon growthand guidance, but the mechanisms that underly force generation andregulation in growing axons remain poorly understood. We reportmeasurements of the dynamics of traction stresses from growth cones ofactively advancing axons from postnatal rat DRG neurons. By tracking themovement of the growth cone and analyzing the traction stress field froma reference frame that moves with it, we are able to show that there isa clear and consistent average stress field that underlies the complexspatial stresses present at any one time. The average stress field hasstrong maxima on the sides of the growth cone, directed inward towardthe growth cone neck. This pattern represents a contractile stresscontained within the growth cone, and a net force that is balanced bythe axon tension. Using high time-resolution measurements of the growthcone traction stresses, we show that the stress field is composed offluctuating local stress peaks, with a large number peaks that live fora short time, a population of peaks whose lifetime distribution followsan exponential decay, and a small number of very long-lived peaks. Weshow that the high time-resolution data also reveal that the tensionappears to vary randomly over short time scales, roughly consistent withthe lifetime of the stress peaks, suggesting that the tensionfluctuations originate from stochastic adhesion dynamics.

  19. Model of fasciculation and sorting in mixed populations of axons

    Czech Academy of Sciences Publication Activity Database

    Chaudhuri, D.; Borowski, P.; Zápotocký, Martin

    2011-01-01

    Roč. 84, č. 2 (2011), e021908. ISSN 1539-3755 R&D Projects: GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : axon guidance * neurogenesis * mathematical model Subject RIV: FH - Neurology Impact factor: 2.255, year: 2011

  20. Spectrins in axonal cytoskeletons: Dynamics revealed by extensions and fluctuations

    Science.gov (United States)

    Lai, Lipeng; Cao, Jianshu

    2014-07-01

    The macroscopic properties, the properties of individual components, and how those components interact with each other are three important aspects of a composited structure. An understanding of the interplay between them is essential in the study of complex systems. Using axonal cytoskeleton as an example system, here we perform a theoretical study of slender structures that can be coarse-grained as a simple smooth three-dimensional curve. We first present a generic model for such systems based on the fundamental theorem of curves. We use this generic model to demonstrate the applicability of the well-known worm-like chain (WLC) model to the network level and investigate the situation when the system is stretched by strong forces (weakly bending limit). We specifically studied recent experimental observations that revealed the hitherto unknown periodic cytoskeleton structure of axons and measured the longitudinal fluctuations. Instead of focusing on single molecules, we apply analytical results from the WLC model to both single molecule and network levels and focus on the relations between extensions and fluctuations. We show how this approach introduces constraints to possible local dynamics of the spectrin tetramers in the axonal cytoskeleton and finally suggests simple but self-consistent dynamics of spectrins in which the spectrins in one spatial period of axons fluctuate in-sync.

  1. PTEN inhibition and axon regeneration and neural repair

    Institute of Scientific and Technical Information of China (English)

    Yosuke Ohtake; Umar Hayat; Shuxin Li

    2015-01-01

    The intrinsic growth ability of all the neurons declines during development although some may grow better than others. Numerous intracellular signaling proteins and transcription factors have been shown to regulate the intrinsic growth capacity in mature neurons. Among them, PI3 kinase/Akt pathway is important for controlling axon elongation. As a negative regulator of this pathway, the tumor suppressor phosphatase and tensin homolog (PTEN) appears critical to con-trol the regenerative ability of young and adult neurons. This review will focus on recent research progress in axon regeneration and neural repair by PTEN inhibition and therapeutic potential of blocking this phosphatase for neurological disorders. Inhibition of PTEN by deletion in con-ditional knockout mice, knockdown by short-hairpin RNA, or blockade by pharmacological approaches, including administration of selective PTEN antagonist peptides, stimulates various degrees of axon regrowth in juvenile or adult rodents with central nervous system injuries. Im-portantly, post-injury PTEN suppression could enhance axonal growth and functional recovery in adult central nervous system after injury.

  2. Recommendations to enable drug development for inherited neuropathies: Charcot-Marie-Tooth and Giant Axonal Neuropathy [v2; ref status: indexed, http://f1000r.es/3am

    Directory of Open Access Journals (Sweden)

    Lori Sames

    2014-04-01

    Full Text Available Approximately 1 in 2500 Americans suffer from Charcot-Marie-Tooth (CMT disease. The underlying disease mechanisms are unique in most forms of CMT, with many point mutations on various genes causing a toxic accumulation of misfolded proteins. Symptoms of the disease often present within the first two decades of life, with CMT1A patients having reduced compound muscle and sensory action potentials, slow nerve conduction velocities, sensory loss, progressive distal weakness, foot and hand deformities, decreased reflexes, bilateral foot drop and about 5% become wheelchair bound. In contrast, the ultra-rare disease Giant Axonal Neuropathy (GAN is frequently described as a recessively inherited condition that results in progressive nerve death. GAN usually appears in early childhood and progresses slowly as neuronal injury becomes more severe and leads to death in the second or third decade. There are currently no treatments for any of the forms of CMTs or GAN. We suggest that further clinical studies should analyse electrical impedance myography as an outcome measure for CMT. Further, additional quality of life (QoL assessments for these CMTs are required, and we need to identify GAN biomarkers as well as develop new genetic testing panels for both diseases. We propose that using the Global Registry of Inherited Neuropathy (GRIN could be useful for many of these studies. Patient advocacy groups and professional organizations (such as the Hereditary Neuropathy Foundation (HNF, Hannah's Hope Fund (HHF, The Neuropathy Association (TNA and the American Association of Neuromuscular and Electrodiagnostic Medicine (AANEM can play a central role in educating clinicians and patients. Undertaking these studies will assist in the correct diagnosis of disease recruiting patients for clinical studies, and will ultimately improve the endpoints for clinical trials. By addressing obstacles that prevent industry investment in various forms of inherited neuropathies

  3. Recommendations to enable drug development for inherited neuropathies: Charcot-Marie-Tooth and Giant Axonal Neuropathy [v1; ref status: indexed, http://f1000r.es/33n

    Directory of Open Access Journals (Sweden)

    Lori Sames

    2014-04-01

    Full Text Available Approximately 1 in 2500 Americans suffer from Charcot-Marie-Tooth (CMT disease. The underlying disease mechanisms are unique in most forms of CMT, with many point mutations on various genes causing a toxic accumulation of misfolded proteins. Symptoms of the disease often present within the first two decades of life, with CMT1A patients having reduced compound muscle and sensory action potentials, slow nerve conduction velocities, sensory loss, progressive distal weakness, foot and hand deformities, decreased reflexes, bilateral foot drop and about 5% become wheelchair bound. In contrast, the ultra-rare disease Giant Axonal Neuropathy (GAN is frequently described as a recessively inherited condition that results in progressive nerve death. GAN usually appears in early childhood and progresses slowly as neuronal injury becomes more severe and leads to death in the second or third decade. There are currently no treatments for any of the forms of CMTs or GAN. We suggest that further clinical studies should analyse electrical impedance myography as an outcome measure for CMT. Further, additional quality of life (QoL assessments for these CMTs are required, and we need to identify GAN biomarkers as well as develop new genetic testing panels for both diseases. We propose that using the Global Registry of Inherited Neuropathy (GRIN could be useful for many of these studies. Patient advocacy groups and professional organizations (such as the Hereditary Neuropathy Foundation (HNF, Hannah's Hope Fund (HHF, The Neuropathy Association (TNA and the American Association of Neuromuscular and Electrodiagnostic Medicine (AANEM can play a central role in educating clinicians and patients. Undertaking these studies will assist in the correct diagnosis of disease recruiting patients for clinical studies, and will ultimately improve the endpoints for clinical trials. By addressing obstacles that prevent industry investment in various forms of inherited neuropathies

  4. Least-Squares Solutions of Matrix Equations (AX =B, XC =D) for Hermitian Reflexive (Anti-Hermitian Reflexive) Matrices and Its Approximation

    Institute of Scientific and Technical Information of China (English)

    Shuo ZHOU; Shi Tong YANG; Wen WANG

    2011-01-01

    In this paper,the Hermitian reflexive (Anti-Hermitian reflexive) least-squares solutions of matrix equations (AX =B,XC =D) are considered.With special properties of partitioned matrices and Hermitian reflexive (Anti-Hermitian reflexive) matrices,the general expression of the solution is obtained.Moreover,the related optimal approximation problem to a given matrix over the solution set is considered.

  5. Soleus Hoffmann reflex amplitudes are specifically modulated by cutaneous inputs from the arms and opposite leg during walking but not standing.

    Science.gov (United States)

    Suzuki, Shinya; Nakajima, Tsuyoshi; Futatsubashi, Genki; Mezzarane, Rinaldo A; Ohtsuka, Hiroyuki; Ohki, Yukari; Zehr, E Paul; Komiyama, Tomoyoshi

    2016-08-01

    Electrical stimulation of cutaneous nerves innervating heteronymous limbs (the arms or contralateral leg) modifies the excitability of soleus Hoffmann (H-) reflexes. The differences in the sensitivities of the H-reflex pathway to cutaneous afferents from different limbs and their modulation during the performance of motor tasks (i.e., standing and walking) are not fully understood. In the present study, we investigated changes in soleus H-reflex amplitudes induced by electrical stimulation of peripheral nerves. Selected targets for conditioning stimulation included the superficial peroneal nerve, which innervates the foot dorsum in the contralateral ankle (cSP), and the superficial radial nerve, which innervates the dorsum of the hand in the ipsilateral (iSR) or contralateral wrist (cSR). Stimulation and subsequent reflex assessment took place during the standing and early-stance phase of treadmill walking in ten healthy subjects. Cutaneous stimulation produced long-latency inhibition (conditioning-test interval of ~100 ms) of the H-reflex during the early-stance phase of walking, and the inhibition was stronger following cSP stimulation compared with iSR or cSR stimulation. In contrast, although similar conditioning stimulation significantly facilitated the H-reflex during standing, this effect remained constant irrespective of the different conditioning sites. These findings suggest that cutaneous inputs from the arms and contralateral leg had reversible effects on the H-reflex amplitudes, including inhibitions with different sensitivities during the early-stance phase of walking and facilitation during standing. Furthermore, the differential sensitivities of the H-reflex modulations were expressed only during walking when the locations of the afferent inputs were functionally relevant. PMID:27030502

  6. ATZ (3-amino-1,2,4-triazole injected into the fourth cerebral ventricle influences the Bezold-Jarisch reflex in conscious rats

    Directory of Open Access Journals (Sweden)

    Vitor E. Valenti

    2010-01-01

    Full Text Available OBJECTIVES: Many studies have investigated the importance of oxidative stress on the cardiovascular system. In this study we evaluated the effects of central catalase inhibition on cardiopulmonary reflex in conscious Wistar rats. METHODS: Male Wistar rats were implanted with a stainless steel guide cannula in the fourth cerebral ventricle. The femoral artery and vein were cannulated for mean arterial pressure and heart rate measurement and for drug infusion, respectively. After basal mean arterial pressure and heart rate recordings, the cardiopulmonary reflex was tested with a dose of phenylbiguanide (PBG, 8 μg/kg, bolus. Cardiopulmonary reflex was evaluated before and μl15 minutes after 1.0 μl 3-amino-1,2,4-triazole (ATZ, 0.01g/100μl0.01 g/100 μl injection into the fourth cerebral ventricle. Vehicle treatment did not change cardiopulmonary reflex responses. RESULTS: Central ATZ significantly increased hypotensive responses without influencing the bradycardic reflex. CONCLUSION: ATZ injected into the fourth cerebral ventricle increases sympathetic inhibition but does not change the parasympathetic component of the cardiopulmonary reflex in conscious Wistar rats.

  7. Peripheral venous distension elicits a blood pressure raising reflex in young and middle-aged adults.

    Science.gov (United States)

    Matthews, Evan L; Brian, Michael S; Coyle, Dana E; Edwards, David G; Stocker, Sean D; Wenner, Megan M; Farquhar, William B

    2016-06-01

    Distension of peripheral veins in humans elicits a pressor and sympathoexcitatory response that is mediated through group III/IV skeletal muscle afferents. There is some evidence that autonomic reflexes mediated by these sensory fibers are blunted with increasing age, yet to date the venous distension reflex has only been studied in young adults. Therefore, we tested the hypothesis that the venous distension reflex would be attenuated in middle-aged compared with young adults. Nineteen young (14 men/5 women, 25 ± 1 yr) and 13 middle-aged (9 men/4 women, 50 ± 2 yr) healthy normotensive participants underwent venous distension via saline infusion through a retrograde intravenous catheter in an antecubital vein during limb occlusion. Beat-by-beat blood pressure, muscle sympathetic nerve activity (MSNA), and model flow-derived cardiac output (Q), and total peripheral resistance (TPR) were recorded throughout the trial. Mean arterial pressure (MAP) increased during the venous distension in both young (baseline 83 ± 2, peak 94 ± 3 mmHg; P 0.05). These findings suggest that peripheral venous distension elicits a pressor and sympathetic response in middle-aged adults similar to the response observed in young adults. PMID:27053648

  8. Loudness changes resulting from an electrically induced middle-ear reflex.

    Science.gov (United States)

    Gunn, W. J.

    1973-01-01

    An experiment was conducted in order to determine the changes in loudness brought about by electro-cutaneous elicitation of the middle-ear reflex. Subjects were required to judge the relative loudness of the second of three consecutive 30-msec bursts of tone, the second tone being accompanied by an electrical shock to the external auditory meatus, capable of eliciting a contraction of the middle-ear muscles. The difference between these judgments and those of the control condition (shock on the arm) was taken to represent a measure of the attenuation provided by contraction of the middle-ear muscles. Test tones were 500, 1000, 2000, and 3000 Hz at levels of 65, 75, 85, 95, and 105 dB. The results indicate that the middle-ear reflex decreases the middle-ear's transmission mainly for low-frequency sounds. The results fail to lend support to the Loeb-Riopelle hypothesis that the middle-ear reflex acts as a limiter, rather than a linear attenuator.

  9. β₂-adrenergic receptors protect axons during energetic stress but do not influence basal glio-axonal lactate shuttling in mouse white matter.

    Science.gov (United States)

    Laureys, G; Valentino, M; Demol, F; Zammit, C; Muscat, R; Cambron, M; Kooijman, R; De Keyser, J

    2014-09-26

    In vitro studies have demonstrated that β2-adrenergic receptor activation stimulates glycogen degradation in astrocytes, generating lactate as a potential energy source for neurons. Using in vivo microdialysis in mouse cerebellar white matter we demonstrate continuous axonal lactate uptake and glial-axonal metabolic coupling of glutamate/lactate exchange. However, this physiological lactate production was not influenced by activation (clenbuterol) or blocking (ICI 118551) of β2-adrenergic receptors. In two-photon imaging experiments on ex vivo mouse corpus callosum subjected to aglycemia, β2-adrenergic activation rescued axons, whereas inhibition of axonal lactate uptake by α-cyano-4-hydroxycinnamic acid (4-CIN) was associated with severe axonal loss. Our results suggest that axonal protective effects of glial β2-adrenergic receptor activation are not mediated by enhanced lactate production. PMID:25064060

  10. EFFECT OF MENSTRUAL CYCLE IN LONG LATENCY REFLEX OF ABDUCTOR POLLICIS BREVIS AMONG HEALTHY FEMALE VOLUNTEERS.

    Directory of Open Access Journals (Sweden)

    Rekha.D

    2015-07-01

    Full Text Available Background: Long Latency Reflex (LLR is one of the late responses occurring after H reflex from a mixed nerve by submaximal stimulation. LLR has been found to be absent in patients with multiple sclerosis, spastic patients and in Huntington’s disease. A change in body temperature affects conduction velocity. It is a known fact that there is a change in body temperature during menstrual cycle. However, no studies are available to indicate changes in latency of LLR during the menstrual cycle. Aim: To determine the effect of menstrual cycle on Long Latency Reflex of Abductor Pollicis Brevis among healthy female volunteers. Material and Methods: A cross sectional study was carried out in 30 healthy female volunteers aged 20-30 yrs. The study was conducted between 9.00 a.m.-11.00 a.m using Digital Nerve Conduction/EMG/EP machine (Recorders Medicare system, India in a laboratory maintained at 22º±3ºC. LLR was recorded during early follicular and mid-luteal phases by stimulation of median nerve while abducting the thumb and recording the EMG response of Abductor Pollicis Brevis. Body temperature was recorded. Latency of LLR obtained during two phases of menstrual cycle was compared. Result: The mean value of latency for LLR was 45.45±2.95 ms (mean±SD in the mid luteal phase. It was significantly (Wilcoxon test, p<0.001 shorter than the value in the early follicular phase 47.10±2.51ms (mean±SD. This is possibly due to the higher body temperature in the mid luteal phase. Conclusion: Long Latency Reflex was found to be affected during the phases of the menstrual cycle in healthy female volunteers.

  11. WEAKLY ALGEBRAIC REFLEXIVITY AND STRONGLY ALGEBRAIC REFLEXIVITY%弱代数性自反与强代数性自反

    Institute of Scientific and Technical Information of China (English)

    陶常利; 鲁世杰; 陈培鑫

    2002-01-01

    Algebraic reflexivity introduced by Hadwin is related to linear interpolation. In this paper, the concepts of weakly algebraic reflexivity and strongly algebraic reflexivity which are also related to linear interpolation are introduced. Some properties of them are obtained and some relations between them revealed.

  12. Point-Counterpoint: Reflex Cultures Reduce Laboratory Workload and Improve Antimicrobial Stewardship in Patients Suspected of Having Urinary Tract Infections.

    Science.gov (United States)

    Humphries, Romney M; Dien Bard, Jennifer

    2016-02-01

    Urinary tract infections (UTIs) are frequent and lead to a large number of clinical encounters. A common management strategy for patients suspected of having a urinary tract infection is to test for pyuria and bacteria by urine analysis (UA) of midstream urine, with initiation of antibiotic therapy and urine culture if one or both tests are positive. Although this practice was first used in an outpatient setting with midstream urine samples, some institutions allow its use in the management of catheterized patients. The ideas behind the reflex urine culture are to limit laboratory workload by not performing culture on negative specimens and to improve antimicrobial stewardship by not giving antimicrobials to patients with negative UA results. The questions are, first, whether reflex urine culture reduces workloads significantly and, second, whether it improves antimicrobial stewardship in the era of increasing numbers of urinary tract infections due to extensively drug-resistant Gram-negative bacilli. Romney Humphries from UCLA supports the idea that reflex urine cultures are of value and describes what reflex parameters are most useful, while Jennifer Dien Bard of Children's Hospital Los Angeles discusses their limitations. PMID:26659213

  13. White matter involvement after TBI: Clues to axon and myelin repair capacity.

    Science.gov (United States)

    Armstrong, Regina C; Mierzwa, Amanda J; Marion, Christina M; Sullivan, Genevieve M

    2016-01-01

    Impact-acceleration forces to the head cause traumatic brain injury (TBI) with damage in white matter tracts comprised of long axons traversing the brain. White matter injury after TBI involves both traumatic axonal injury (TAI) and myelin pathology that evolves throughout the post-injury time course. The axon response to initial mechanical forces and secondary insults follows the process of Wallerian degeneration, which initiates as a potentially reversible phase of intra-axonal damage and proceeds to an irreversible phase of axon fragmentation. Distal to sites of axon disconnection, myelin sheaths remain for prolonged periods, which may activate neuroinflammation and inhibit axon regeneration. In addition to TAI, TBI can cause demyelination of intact axons. These evolving features of axon and myelin pathology also represent opportunities for repair. In experimental TBI, demyelinated axons exhibit remyelination, which can serve to both protect axons and facilitate recovery of function. Myelin remodeling may also contribute to neuroplasticity. Efficient clearance of myelin debris is a potential target to attenuate the progression of chronic pathology. During the early phase of Wallerian degeneration, interventions that prevent the transition from reversible damage to axon disconnection warrant the highest priority, based on the poor regenerative capacity of axons in the CNS. Clinical evaluation of TBI will need to address the challenge of accurately detecting the extent and stage of axon damage. Distinguishing the complex white matter changes associated with axons and myelin is necessary for interpreting advanced neuroimaging approaches and for identifying a broader range of therapeutic opportunities to improve outcome after TBI. PMID:25697845

  14. Quantification of the stapedial reflex reveals delayed responses in autism.

    Science.gov (United States)

    Lukose, Richard; Brown, Kevin; Barber, Carol M; Kulesza, Randy Joseph

    2013-10-01

    Autism is a developmental disorder characterized, in part, by sensory abnormalities. It is well established that most if not all patients with autism have problems with auditory processing, ranging from deafness to hyperacusis, and physiological testing of auditory function (i.e. auditory brain stem responses) implicates brain stem dysfunction in autism. Additionally, previous research from this lab has revealed significantly fewer auditory brain stem neurons in autistic subjects as young as 2 years of age. These observations have led us to hypothesize that objective, noninvasive measures of auditory function can be used as an early screening tool to identify neonates with an elevated risk of carrying a diagnosis of autism. Here, we provide a detailed quantitative investigation of the acoustic stapedial reflex (ASR), a three- or four-neuron brain stem circuit, in young autistic subjects and normal developing controls. Indeed, we find significantly lower thresholds, responses occurring at significantly longer latency and right-left asymmetry in autistic subjects. The results from this investigation support deficits in auditory function as a cardinal feature of autism and suggest that individuals with autism can be identified by their ASR responses. PMID:23825093

  15. Axonal regeneration and development of de novo axons from distal dendrites of adult feline commissural interneurons after a proximal axotomy

    DEFF Research Database (Denmark)

    Fenrich, Keith K; Skelton, Nicole; MacDermid, Victoria E;

    2007-01-01

    Following proximal axotomy, several types of neurons sprout de novo axons from distal dendrites. These processes may represent a means of forming new circuits following spinal cord injury. However, it is not know whether mammalian spinal interneurons, axotomized as a result of a spinal cord injur...

  16. A method of reflexive balancing in a pragmatic, interdisciplinary and reflexive bioethics.

    Science.gov (United States)

    Ives, Jonathan

    2014-07-01

    In recent years there has been a wealth of literature arguing the need for empirical and interdisciplinary approaches to bioethics, based on the premise that an empirically informed ethical analysis is more grounded, contextually sensitive and therefore more relevant to clinical practice than an 'abstract' philosophical analysis. Bioethics has (arguably) always been an interdisciplinary field, and the rise of 'empirical' (bio)ethics need not be seen as an attempt to give a new name to the longstanding practice of interdisciplinary collaboration, but can perhaps best be understood as a substantive attempt to engage with the nature of that interdisciplinarity and to articulate the relationship between the many different disciplines (some of them empirical) that contribute to the field. It can also be described as an endeavour to explain how different disciplinary approaches can be integrated to effectively answer normative questions in bioethics, and fundamental to that endeavour is the need to think about how a robust methodology can be articulated that successfully marries apparently divergent epistemological and metaethical perspectives with method. This paper proposes 'Reflexive Bioethics' (RB) as a methodology for interdisciplinary and empirical bioethics, which utilizes a method of 'Reflexive Balancing' (RBL). RBL has been developed in response to criticisms of various forms of reflective equilibrium, and is built upon a pragmatic characterization of Bioethics and a 'quasi-moral foundationalism', which allows RBL to avoid some of the difficulties associated with RE and yet retain the flexible egalitarianism that makes it intuitively appealing to many. PMID:23444909

  17. Plasminogen deficiency causes reduced corticospinal axonal plasticity and functional recovery after stroke in mice.

    Directory of Open Access Journals (Sweden)

    Zhongwu Liu

    Full Text Available Tissue plasminogen activator (tPA has been implicated in neurite outgrowth and neurological recovery post stroke. tPA converts the zymogen plasminogen (Plg into plasmin. In this study, using plasminogen knockout (Plg-/- mice and their Plg-native littermates (Plg+/+, we investigated the role of Plg in axonal remodeling and neurological recovery after stroke. Plg+/+ and Plg-/- mice (n = 10/group were subjected to permanent intraluminal monofilament middle cerebral artery occlusion (MCAo. A foot-fault test and a single pellet reaching test were performed prior to and on day 3 after stroke, and weekly thereafter to monitor functional deficit and recovery. Biotinylated dextran amine (BDA was injected into the left motor cortex to anterogradely label the corticospinal tract (CST. Animals were euthanized 4 weeks after stroke. Neurite outgrowth was also measured in primary cultured cortical neurons harvested from Plg+/+ and Plg-/- embryos. In Plg+/+ mice, the motor functional deficiency after stroke progressively recovered with time. In contrast, recovery in Plg-/- mice was significantly impaired compared to Plg+/+ mice (p0.82, p<0.01. Plg-/- neurons exhibited significantly reduced neurite outgrowth. Our data suggest that plasminogen-dependent proteolysis has a beneficial effect during neurological recovery after stroke, at least in part, by promoting axonal remodeling in the denervated spinal cord.

  18. Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles?

    Directory of Open Access Journals (Sweden)

    Lizeth H Sloot

    Full Text Available Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163-191 ms. Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally

  19. Gravity and Development of Cardiopulmonary Reflex

    Science.gov (United States)

    Nagaoka, Shunji; Eno, Yuko; Ohira, Yoshinobu

    Cardio-pulmonary reflex, which our cardiac activity is synchronized to the respiration by autonomic nervous system regulation, is called as "respiratory sinus arrhythmia" and commonly found in adult. The physiological function of the espiratory sinus arrhythmia is considered to maximize the gas exchange during respiration cycle. This respiration induced heart rate variability (RHRV) is only found in mammals and avian showing a remarkable postnatal development, whereas no RHRV in aquatic species such as fish or amphibian. To elucidate our hypothesis that gravity exposure may plays a key role in the postnatal development of RHRV as well as its evolutional origin in these ground animals, we have studied effects of hypergravity (2G) on the postnatal development of RHRV using rat. Pregnant Wister rats were kept in centrifugal cages system for 38 days from 6th days of pregnant mother to have neonates until 23 days old. Electrocardiograph was recorded from the neonates in 2 to 23 days old in 2G group with simultaneous control (1G) group. The RHRV analysis was performed by calculating a component of Fourier power spectral coincide with the respiration frequency. In both groups, averaged resting heart rate gradually increase from 2 to 23 days old. When comparing the heart rate between the two groups, the 2G group indicated significantly lower (240± 8 bpm) than 1G control (326±21 bpm, p¡0.001) in 2 days old, where as no significance in 23 days old. The RHRV of 2 days old neonates in both groups indicated very small magnitude but significantly lower in 2G group than 1G control (p¡0.01). The RHRV gradually increase during the first 2 weeks and then rapid increased to reached 45 fold of magnitude in 1G control, whereas 69 fold in 2G group. The results strongly suggested that the postnatal innervation from respiration to cardiovascular centers was gravity dependent.

  20. Alterations of mitochondrial dynamics allow retrograde propagation of locally initiated axonal insults.

    Science.gov (United States)

    Lassus, Benjamin; Magifico, Sebastien; Pignon, Sandra; Belenguer, Pascale; Miquel, Marie-Christine; Peyrin, Jean-Michel

    2016-01-01

    In chronic neurodegenerative syndromes, neurons progressively die through a generalized retraction pattern triggering retrograde axonal degeneration toward the cell bodies, which molecular mechanisms remain elusive. Recent observations suggest that direct activation of pro-apoptotic signaling in axons triggers local degenerative events associated with early alteration of axonal mitochondrial dynamics. This raises the question of the role of mitochondrial dynamics on both axonal vulnerability stress and their implication in the spreading of damages toward unchallenged parts of the neuron. Here, using microfluidic chambers, we assessed the consequences of interfering with OPA1 and DRP1 proteins on axonal degeneration induced by local application of rotenone. We found that pharmacological inhibition of mitochondrial fission prevented axonal damage induced by rotenone, in low glucose conditions. While alteration of mitochondrial dynamics per se did not lead to spontaneous axonal degeneration, it dramatically enhanced axonal vulnerability to rotenone, which had no effect in normal glucose conditions, and promoted retrograde spreading of axonal degeneration toward the cell body. Altogether, our results suggest a mitochondrial priming effect in axons as a key process of axonal degeneration. In the context of neurodegenerative diseases, like Parkinson's and Alzheimer's, mitochondria fragmentation could hasten neuronal death and initiate spatial dispersion of locally induced degenerative events. PMID:27604820

  1. The role of T-cadherin in axonal pathway formation in neocortical circuits.

    Science.gov (United States)

    Hayano, Yuki; Zhao, Hong; Kobayashi, Hiroaki; Takeuchi, Kosei; Norioka, Shigemi; Yamamoto, Nobuhiko

    2014-12-01

    Cortical efferent and afferent fibers are arranged in a stereotyped pattern in the intermediate zone (IZ). Here, we studied the mechanism of axonal pathway formation by identifying a molecule that is expressed in a subset of cortical axons in the rat. We found that T-cadherin (T-cad), a member of the cadherin family, is expressed in deep-layer cell axons projecting to subcortical structures, but not in upper layer callosal axons projecting to the contralateral cortex. Ectopic expression of T-cad in upper layer cells induced axons to project toward subcortical structures via the upper part of the IZ. Moreover, the axons of deep-layer cells in which T-cad expression was suppressed by RNAi projected towards the contralateral cortex via an aberrant route. These results suggest that T-cad is involved in axonal pathway formation in the developing cortex. PMID:25468941

  2. In vivo intracellular recordings from spinal lumbar motoneurones in P0-deficient mice indicate an activity-dependent axonal conduction failure in otherwise functional motoneurones

    DEFF Research Database (Denmark)

    Lehnhoff, Janna; Moldovan, Mihai; Hedegaard, Anne;

    2014-01-01

    Mice deficient for the peripheral myelin binding protein zero (P0-/-) show a progressive dysmyelinating neuropathy phenotypically resembling severe forms of Charcot-Marie-Tooth (CMT) disease. Traditionally, the progression of the disease was attributed to axonal loss, but the effect of chronic...... dysmyelination remains poorly understood. In this study, in vivo electrophysiological recordings were used to assess the function of both central and axonal components of spinal lumbar motoneurones in adult P0-/- mice.Three month old P0-/- mice (n=7) and wild type (WT) littermate controls (n=5) were...... anaesthetized with Hypnorm (0.315 mg/mL fentanyl-citrate + 10 mg/mL fluanisone), Midazolam (5 mg/mL), and sterile water, mixed in the ratio 1:1:2 (induction: 0.15mL/25g, maintenance: 0.05 mL/20 minutes, S.C.). Anaesthesia during surgery was assessed by the lack of reflexes to a short noxious pinch on the hind...

  3. Combined, but not individual, blockade of ASIC3, P2X, and EP4 receptors attenuates the exercise pressor reflex in rats with freely perfused hindlimb muscles.

    Science.gov (United States)

    Stone, Audrey J; Copp, Steven W; Kim, Joyce S; Kaufman, Marc P

    2015-12-01

    In healthy humans, tests of the hypothesis that lactic acid, PGE2, or ATP plays a role in evoking the exercise pressor reflex proved controversial. The findings in humans resembled ours in decerebrate rats that individual blockade of the receptors to lactic acid, PGE2, and ATP had only small effects on the exercise pressor reflex provided that the muscles were freely perfused. This similarity between humans and rats prompted us to test the hypothesis that in rats with freely perfused muscles combined receptor blockade is required to attenuate the exercise pressor reflex. We first compared the reflex before and after injecting either PPADS (10 mg/kg), a P2X receptor antagonist, APETx2 (100 μg/kg), an activating acid-sensing ion channel 3 (ASIC) channel antagonist, or L161982 (2 μg/kg), an EP4 receptor antagonist, into the arterial supply of the hindlimb of decerebrated rats. We then examined the effects of combined blockade of P2X receptors, ASIC3 channels, and EP4 receptors on the exercise pressor reflex using the same doses, intra-arterial route, and time course of antagonist injections as those used for individual blockade. We found that neither PPADS (n = 5), APETx2 (n = 6), nor L161982 (n = 6) attenuated the reflex. In contrast, combined blockade of these receptors (n = 7) attenuated the peak (↓27%, P EP4 receptors on the endings of thin fiber muscle afferents is required to attenuate the exercise pressor reflex in rats with freely perfused hindlimbs. PMID:26472871

  4. Simultaneously measured pupillary light reflex and heart rate variability in healthy children

    International Nuclear Information System (INIS)

    We investigated the potential inter-relationship between two measures of autonomic nervous system: pupillary light reflex (PLR) and heart rate variability (HRV), in healthy children of 8–16 years old. PLR was measured at both dark- and light-adapted conditions with various stimulation intensities. Simultaneously measured HRV was obtained in five different PLR testing phases: before PLR test, light-adapted PLR test, dark adaptation, dark-adapted PLR test and after PLR test. The frequency domain HRV parameters measured during the PLR test were significantly different from those measured during rest. Both the regression analysis and factor analysis indicated that PLR and HRV parameters were not correlated, which suggests that they may provide complementary assessment of different aspects of the overall autonomic nervous system. (paper)

  5. Processing the Chinese reflexive ‘ziji’: Effects of featural constraints on anaphor resolution

    Directory of Open Access Journals (Sweden)

    Xiao eHe

    2016-04-01

    Full Text Available We present three self-paced reading experiments that investigate the reflexive ziji ‘self’ in Chinese – in particular, we tested whether and how person-feature-based blocking guides comprehenders’ real-time processing and final interpretation of ziji. Prior work claims that in Chinese sentences like John thought that {I/you/Bill} did not like ZIJI, (i the reflexive ziji can refer to the matrix subject John if the intervening subject is also a third person entity (e.g. Bill, but that (ii an intervening first or second person pronoun blocks reference to the matrix subject, causing ziji to refer to the first or second person pronoun. However, native speakers’ judgments regarding the accessibility of long-distance antecedents are rather unstable, and researchers also disagree on what the exact configurations are that allow blocking. In addition, many open questions persist regarding the real-time processing of reflexives more generally, in particular regarding the accessibility (or lack thereof of structurally unlicensed antecedents. We conducted three self-paced reading studies where we recorded people’s word-by-word reading times and also asked questions that probed their off-line interpretation of the reflexive ziji. People’s answers to the off-line questions show that blocking is not absolute: Comprehenders do allow significant numbers of non-local choices in both the first and the second person blocking conditions, albeit in small numbers. At the same time, the reading time data, particularly those from Experiments 2 and 3, show that comprehenders use person feature cues to quickly filter out inaccessible long-distance referents. The difference between on-line and off-line patterns points to the possibility that the interpretation of ziji unfolds over time: it seems that initially, during real-time processing, person-feature cues weigh more heavily and constrain what antecedent candidates get considered, but that at some later

  6. Processing the Chinese Reflexive "ziji": Effects of Featural Constraints on Anaphor Resolution.

    Science.gov (United States)

    He, Xiao; Kaiser, Elsi

    2016-01-01

    We present three self-paced reading experiments that investigate the reflexive ziji "self" in Chinese-in particular, we tested whether and how person-feature-based blocking guides comprehenders' real-time processing and final interpretation of ziji. Prior work claims that in Chinese sentences like "John thought that {I/you/Bill} did not like ZIJI," (i) the reflexive ziji can refer to the matrix subject John if the intervening subject is also a third person entity (e.g., Bill), but that (ii) an intervening first or second person pronoun blocks reference to the matrix subject, causing ziji to refer to the first or second person pronoun. However, native speakers' judgments regarding the accessibility of long-distance antecedents are rather unstable, and researchers also disagree on what the exact configurations are that allow blocking. In addition, many open questions persist regarding the real-time processing of reflexives more generally, in particular regarding the accessibility (or lack thereof) of structurally unlicensed antecedents. We conducted three self-paced reading studies where we recorded people's word-by-word reading times and also asked questions that probed their off-line interpretation of the reflexive ziji. People's answers to the off-line questions show that blocking is not absolute: Comprehenders do allow significant numbers of non-local choices in both the first and the second person blocking conditions, albeit in small numbers. At the same time, the reading time data, particularly those from Experiments 2 and 3, show that comprehenders use person feature cues to quickly filter out inaccessible long-distance referents. The difference between on-line and off-line patterns points to the possibility that the interpretation of ziji unfolds over time: it seems that initially, during real-time processing, person-feature cues weigh more heavily and constrain what antecedent candidates get considered, but that at some later point, other kinds of

  7. Processing the Chinese Reflexive “ziji”: Effects of Featural Constraints on Anaphor Resolution

    Science.gov (United States)

    He, Xiao; Kaiser, Elsi

    2016-01-01

    We present three self-paced reading experiments that investigate the reflexive ziji “self” in Chinese—in particular, we tested whether and how person-feature-based blocking guides comprehenders' real-time processing and final interpretation of ziji. Prior work claims that in Chinese sentences like “John thought that {I/you/Bill} did not like ZIJI,” (i) the reflexive ziji can refer to the matrix subject John if the intervening subject is also a third person entity (e.g., Bill), but that (ii) an intervening first or second person pronoun blocks reference to the matrix subject, causing ziji to refer to the first or second person pronoun. However, native speakers' judgments regarding the accessibility of long-distance antecedents are rather unstable, and researchers also disagree on what the exact configurations are that allow blocking. In addition, many open questions persist regarding the real-time processing of reflexives more generally, in particular regarding the accessibility (or lack thereof) of structurally unlicensed antecedents. We conducted three self-paced reading studies where we recorded people's word-by-word reading times and also asked questions that probed their off-line interpretation of the reflexive ziji. People's answers to the off-line questions show that blocking is not absolute: Comprehenders do allow significant numbers of non-local choices in both the first and the second person blocking conditions, albeit in small numbers. At the same time, the reading time data, particularly those from Experiments 2 and 3, show that comprehenders use person feature cues to quickly filter out inaccessible long-distance referents. The difference between on-line and off-line patterns points to the possibility that the interpretation of ziji unfolds over time: it seems that initially, during real-time processing, person-feature cues weigh more heavily and constrain what antecedent candidates get considered, but that at some later point, other kinds of

  8. Axonal degeneration affects muscle density in older men and women.

    Science.gov (United States)

    Lauretani, Fulvio; Bandinelli, Stefania; Bartali, Benedetta; Di Iorio, Angelo; Giacomini, Vittoria; Corsi, Anna Maria; Guralnik, Jack M; Ferrucci, Luigi

    2006-08-01

    Using data from InCHIANTI, a prospective population-based survey of older persons, we examined the relationship of peroneal nerve conduction velocity (NCV, a measure of nerve myelination) and compound muscle action potential (CMAP, a measure of axonal degeneration) with calf muscle mass and density, two complementary measures of sarcopenia. NCV and CMAP were assessed by surface electroneurography of the right peroneal nerve conducted in 1162 participants, 515 men and 647 women, age 21-96 years, free of major neurological diseases. Cross-sectional muscle area and calf muscle density were measured using peripheral quantitative computerized tomography (pQCT). Both nerve and muscle parameters declined with age although in most cases the decline was not linear. In both sexes, CMAP, but not NCV, was independently and significantly associated with calf muscle density. These findings suggest that intrinsic changes in the muscle tissue are partially caused by a reduction in the number of motor axons. PMID:16085338

  9. Missed connections: photoreceptor axon seeks target neuron for synaptogenesis.

    Science.gov (United States)

    Astigarraga, Sergio; Hofmeyer, Kerstin; Treisman, Jessica E

    2010-08-01

    Extending axons must choose the appropriate synaptic target cells in order to assemble functional neural circuitry. The axons of the Drosophila color-sensitive photoreceptors R7 and R8 project as a single fascicle from each ommatidium, but their terminals are segregated into distinct layers within their target region. Recent studies have begun to reveal the molecular mechanisms that establish this projection pattern. Both homophilic adhesion molecules and specific ligand-receptor interactions make important contributions to stabilizing R7 and R8 terminals in the appropriate target layers. These cell recognition molecules are regulated by the same transcription factors that control R7 and R8 cell fates. Autocrine and repulsive signaling mechanisms prevent photoreceptor terminals from encroaching on their neighbors, preserving the spatial resolution of visual information. PMID:20434326

  10. Faroese long-distance reflexives face off against Icelandic long-distance reflexives

    Directory of Open Access Journals (Sweden)

    Tania E. Strahan

    2009-01-01

    Full Text Available Long-distance reflexives (LDRs in Faroese are often compared to those in Icelandic, and are even considered to have the same distribution (Thráinsson et al., 2004. In this paper I evaluate the extent to which this is true. The results from recent fieldwork show that there are clear differences between the LDR in the two closely related languages, in particular that Faroese speakers often reject LDR sentences that contain a non-third person, and that Faroese LDR is often completely acceptable out of a non-complement clause. In addition, initial findings suggest that there may be dialectal variation with respect to at least these two aspects of LDR in Faroese.

  11. Academic strangeness as uncomfortable reflexivity and academic reflexivity as uncomfortable strangeness in higher education

    DEFF Research Database (Denmark)

    Fristrup, Tine; Tulinius, Charlotte; Hølge-Hazelton, Bibi

    2015-01-01

    paper briefly describes the strategies used to plan, deliver and evaluate the course, but the main emphasis is on the learning taking place as a consequence of working within this area and using these strategies in the educational setting. Having participated in and studied academic and peer supervision...... for many years, we had a growing concern for young empirical researchers studying vulnerable subjects without any kind of attention, supervision, or education to strengthen their skills with regard to handling issues of vulnerability among their researched subjects as well as within themselves. All...... involve a critique of conventional objectivity, looking for alternatives to the distanced, impersonal mode of presentation in order to produce texts with more passionate individual voices. In order to develop a reflexive framework for academic learning processes when researching vulnerable subjects in...

  12. Bazooka mediates secondary axon morphology in Drosophila brain lineages

    OpenAIRE

    Hartenstein Volker; Spindler Shana R

    2011-01-01

    Abstract In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that mul...

  13. Giant axonal neuropathy: observations on a further patient.

    OpenAIRE

    Donaghy, M; Brett, E M; Ormerod, I E; King, R H; Thomas, P. K.

    1988-01-01

    A further child with giant axonal neuropathy (GAN), abnormally curly hair and consanguineous parents is described. Of the 19 patients with GAN so far reported in the literature, six, including the present patient, have resulted from consanguineous marriages. This makes autosomal recessive inheritance of GAN highly probable. Our patient also exhibited cerebellar ataxia and signs of pyramidal tract damage; magnetic resonance brain imaging demonstrated abnormalities within the cerebellar and cer...

  14. Craniocerebral trauma. Magnetic resonance imaging of diffuse axonal injury

    International Nuclear Information System (INIS)

    Acceleration-deceleration rotational brain trauma is a common cause of disability or death in young adults and often leads to a focal destruction of axons. The resulting pathology, axonal shear injury is referred to as diffuse axonal injury (DAI). The DAI-associated lesions occur bilaterally, are widely dispersed and have been observed in the surface and deep white matter. They are found near to and far from the impact site. When DAI is clinically suspected, magnetic resonance imaging (MRI) is the method of choice for further clarification, especially in patients where cranial computed tomography (CT) is inconspicuous. To investigate the presence of DAI after traumatic brain injury (TBI), a multimodal MRI approach is applied including the common structural and also functional imaging sequences. For structural MRI, fluid-attenuated inversion recovery (FLAIR) weighted and susceptibility contrast imaging (SWI) are the sequences mainly used. The SWI technique is extremely sensitive to blood breakdown products, which appear as small signal voids at three locations, at the gray-white interface, in the corpus callosum and in the brain stem. Functional MRI comprises a group of constantly developing techniques that have great potential in optimal evaluation of the white matter in patients after craniocerebral trauma. These imaging techniques allow the visualization of changes associated with shear injuries, such as functional impairment of axons and decreased blood flow and abnormal metabolic activity of the brain parts affected. The multimodal MRI approach in patients with DAI results in a more detailed and differentiated representation of the underlying pathophysiological changes of the injured nerve tracts and helps to improve the diagnostic and prognostic accuracy of MRI. When DAI is suspected multimodal MRI should be performed as soon as possible after craniocerebral injury. (orig.)

  15. Estimating neuronal connectivity from axonal and dendritic density fields

    Directory of Open Access Journals (Sweden)

    Jaap evan Pelt

    2013-11-01

    Full Text Available Neurons innervate space by extending axonal and dendritic arborizations. When axons and dendrites come in close proximity of each other, synapses between neurons can be formed. Neurons vary greatly in their morphologies and synaptic connections with other neurons. The size and shape of the arborizations determine the way neurons innervate space. A neuron may therefore be characterized by the spatial distribution of its axonal and dendritic 'mass'. A population mean 'mass' density field of a particular neuron type can be obtained by averaging over the individual variations in neuron geometries. Connectivity in terms of candidate synaptic contacts between neurons can be determined directly on the basis of their arborizations but also indirectly on the basis of their density fields. To decide when a candidate synapse can be formed, we previously developed a criterion defining that axonal and dendritic line pieces should cross in 3D and have an orthogonal distance less than a threshold value. In this paper, we developed new methodology for applying this criterion to density fields. We show that estimates of the number of contacts between neuron pairs calculated from their density fields are fully consistent with the number of contacts calculated from the actual arborizations. However, the estimation of the connection probability and the expected number of contacts per connection cannot be calculated directly from density fields, because density fields do not carry anymore the correlative structure in the spatial distribution of synaptic contacts. Alternatively, these two connectivity measures can be estimated from the expected number of contacts by using empirical mapping functions. The neurons used for the validation studies were generated by our neuron simulator NETMORPH. An example is given of the estimation of average connectivity and Euclidean pre- and postsynaptic distance distributions in a network of neurons represented by their population

  16. Tau phosphorylation affects its axonal transport and degradation

    OpenAIRE

    Rodríguez-Martín, Teresa; Cuchillo-Ibáñez, Inmaculada; Noble, Wendy; Nyenya, Fanon; Anderton, Brian H; Hanger, Diane P.

    2013-01-01

    Phosphorylated forms of microtubule-associated protein tau accumulate in neurofibrillary tangles in Alzheimer's disease. To investigate the effects of specific phosphorylated tau residues on its function, wild type or phosphomutant tau was expressed in cells. Elevated tau phosphorylation decreased its microtubule binding and bundling, and increased the number of motile tau particles, without affecting axonal transport kinetics. In contrast, reducing tau phosphorylation enhanced the amount of ...

  17. Slowing of the axonal transport of neurofilament proteins during development

    International Nuclear Information System (INIS)

    We examined age-dependent changes in neurofilament transport in motor axons of the rat sciatic nerve. SDS-PAGE and gel fluorography confirmed that the distribution of labeled neurofilament triplet protein coincides with the major slow component a (SCa) wave in these neurons. The velocity of neurofilament transport was calculated on the basis of the location of the 50th percentile of radioactivity in this wave 33 days after motor neurons were labeled by the intraspinal administration of [3H]leucine and [3H]lysine. Overall, the velocity fell from 1.95 mm/day at 3 weeks of age to 1.12 mm/day at 20 weeks. Between 3 and 10 weeks, it fell at a 6-fold higher rate (0.096 mm/day/week) than between 10 and 20 weeks (0.016 mm/day/week). We also found a marked change in the shape of the slow component wave during development. It appeared to consist of several overlapping peaks moving at slightly different velocities in animals 10 weeks of age or less as compared to a single slower moving peak at 20 weeks. We propose that the velocity of slow axonal transport reflects the level of maturation of the neuron, and that the presence of several overlapping peaks of transported radioactivity in the sciatic nerve of younger animals reflects the presence of several populations of motor axons at different stages of development. We also discuss the relationship between changes in the velocity of neurofilament transport and alterations in the composition of the cytoskeleton that occur as the axon grows in caliber during postnatal development

  18. Voluntary exercise increases axonal regeneration from sensory neurons

    OpenAIRE

    Molteni, Raffaella; Zheng, Jun-Qi; Ying, Zhe; Gómez-Pinilla, Fernando; Twiss, Jeffery L

    2004-01-01

    Recent advances in understanding the role of neurotrophins on activity-dependent plasticity have provided insight into how behavior can affect specific aspects of neuronal biology. We present evidence that voluntary exercise can prime adult dorsal root ganglion neurons for increased axonal regeneration through a neurotrophin-dependent mechanism. Dorsal root ganglion neurons showed an increase in neurite outgrowth when cultured from animals that had undergone 3 or 7 days of exercise compared w...

  19. Adult motor axons preferentially reinnervate predegenerated muscle nerve

    OpenAIRE

    M. Abdullah; O'Daly, A.; A Vyas; Rohde, C.; Brushart, T.M.

    2013-01-01

    Preferential motor reinnervation (PMR) is the tendency for motor axons regenerating after repair of mixed nerve to reinnervate muscle nerve and/or muscle rather than cutaneous nerve or skin. PMR may occur in response to the peripheral nerve pathway alone in juvenile rats (Brushart, 1993; Redett et al., 2005), yet the ability to identify and respond to specific pathway markers is reportedly lost in adults (Uschold et al., 2007). The experiments reported here evaluate the relative roles of path...

  20. White matter microstructure from nonparametric axon diameter distribution mapping.

    Science.gov (United States)

    Benjamini, Dan; Komlosh, Michal E; Holtzclaw, Lynne A; Nevo, Uri; Basser, Peter J

    2016-07-15

    We report the development of a double diffusion encoding (DDE) MRI method to estimate and map the axon diameter distribution (ADD) within an imaging volume. A variety of biological processes, ranging from development to disease and trauma, may lead to changes in the ADD in the central and peripheral nervous systems. Unlike previously proposed methods, this ADD experimental design and estimation framework employs a more general, nonparametric approach, without a priori assumptions about the underlying form of the ADD, making it suitable to analyze abnormal tissue. In the current study, this framework was used on an ex vivo ferret spinal cord, while emphasizing the way in which the ADD can be weighted by either the number or the volume of the axons. The different weightings, which result in different spatial contrasts, were considered throughout this work. DDE data were analyzed to derive spatially resolved maps of average axon diameter, ADD variance, and extra-axonal volume fraction, along with a novel sub-micron restricted structures map. The morphological information contained in these maps was then used to segment white matter into distinct domains by using a proposed k-means clustering algorithm with spatial contiguity and left-right symmetry constraints, resulting in identifiable white matter tracks. The method was validated by comparing histological measures to the estimated ADDs using a quantitative similarity metric, resulting in good agreement. With further acquisition acceleration and experimental parameters adjustments, this ADD estimation framework could be first used preclinically, and eventually clinically, enabling a wide range of neuroimaging applications for improved understanding of neurodegenerative pathologies and assessing microstructural changes resulting from trauma. PMID:27126002

  1. Molecular diagnosis of infantile Neuro axonal Dystrophy by Next Generation Sequencing.

    Science.gov (United States)

    Goyal, Manisha; Bijarnia-Mahay, Sunita; Kingsmore, Stephen; Farrow, Emily; Saunders, Carol; Saxena, Renu; Verma, Ishwar C

    2015-05-01

    Infantile Neuro axonal Dystrophy (INAD), is a rare inherited neurological disorder which affects nerve axons causing progressive loss of mental skills, muscular control and vision. The authors present a case of 5.8-y-old girl with INAD who was diagnosed after Next Generation Sequencing (NGS). She was born to a non-consanguineous couple and presented with hypotonia, developmental delay followed by neuroregression and nystagmus after 2 years of age. On examination, bilateral horizontal nystagmus and normal head circumference were noted. Brain MRI showed cerebellar atrophy and altered signal intensities in bilateral globus pallidi and thalami. Magnetic resonance spectroscopy (MRS) showed elevation of lactate. Metabolic testing with Tandem Mass Spectrometry (TMS) and Gas Chromatography Mass Spectrometry (GC-MS) were normal. Mitochondrial disorder was suspected in view of clinical presentation, increased lactate and neuro-imaging suggestive of Leigh syndrome. Mitochondrial Leigh mutations and SURF1 gene sequencing yielded normal results. Lack of a clear diagnosis led to performance of NGS using panel of about 514 genes. A homozygous novel mutation at position c.2277-1G>C in PLA2G6 gene presumed to give rise to altered splicing, was detected, thus confirming the diagnosis of INAD. This report provides evidence of the usefulness of NGS technology as a quick and accurate diagnostic tool for an otherwise complicated genetic disease. To the authors knowledge, this is the first case report with mutations in PLA2G6 gene from India. PMID:25348461

  2. Chronic idiopathic axonal neuropathy and pain, treated with the endogenous lipid mediator palmitoylethanolamide: a case collection

    Directory of Open Access Journals (Sweden)

    Keppel Hesselink JM

    2013-09-01

    Full Text Available J M Keppel Hesselink Faculty of Medicine, University Witten/Herdecke, Germany Abstract: Chronic idiopathic axonal polyneuropathy is a frequent diagnosis in patients suffering from idiopathic polyneuropathy and neuropathic pain. No guidelines exist on how to treat these patients. To date, there are no results available from randomized clinical trials, and mostly classical neuropathic analgesics are prescribed, such as amitriptyline and gabapentine. However, the usefulness of these drugs is limited, as many patients remain in pain despite treatment, or suffer debilitating side effects. Palmitoylethanolamide (PEA is a new analgesic compound, tested in more than 4,000 patients in various clinical trials in a variety of patients suffering from various neuropathic pain states. It is available in Europe and the USA as a food supplement under the brand name PeaPure, and it is available for medical purposes in Italy and Spain under brand names Normast and Pelvilen. We present a case series of seven patients with an electrophysiological confirmed diagnosis of chronic idiopathic axonal polyneuropathy, suffering from neuropathic pains, mostly refractory to previous analgesics. In all these patients, PEA reduced pain significantly, without side effects. PEA can be administered in addition to other analgesics, without negative drug–drug interactions, or can be used as a stand-alone analgesic. Due to a favorable ratio between efficacy and safety, PEA should be considered more often as a treatment for neuropathic pain. Keywords: CIAP, polyneuropathy, treatment, neuropathic

  3. Salvianolic acid B protects the myelin sheath around injured spinal cord axons

    Institute of Scientific and Technical Information of China (English)

    Zhe Zhu; Lu Ding; Wen-feng Qiu; Hong-fu Wu; Rui Li

    2016-01-01

    Salvianolic acid B, an active pharmaceutical compound present inSalvia miltiorrhiza, exerts a neuroprotective effect in animal models of brain and spinal cord injury. Salvianolic acid B can promote recovery of neurological function; however, its protective effect on the myelin sheath after spinal cord injury remains poorly understood. Thus, in this study,in vitro tests showed that salvianolic acid B contributed to oligodendrocyte precursor cell differentiation, and the most effective dose was 20 µg/mL. Forin vivo investigation, rats with spinal cord injury were intraperitoneally injected with 20 mg/kg salvianolic acid B for 8 weeks. The amount of myelin sheath and the number of re-generating axons increased, neurological function recovered, and caspase-3 expression was decreased in the spinal cord of salvianolic acid B-treated animals compared with untreated control rats. These results indicate that salvianolic acid B can protect axons and the myelin sheath, and can promote the recovery of neurological function. Its mechanism of action is likely to be associated with inhibiting apoptosis and promoting the differentiation and maturation of oligodendrocyte precursor cells.

  4. Salvianolic acid B protects the myelin sheath around injured spinal cord axons

    Directory of Open Access Journals (Sweden)

    Zhe Zhu

    2016-01-01

    Full Text Available Salvianolic acid B, an active pharmaceutical compound present in Salvia miltiorrhiza, exerts a neuroprotective effect in animal models of brain and spinal cord injury. Salvianolic acid B can promote recovery of neurological function; however, its protective effect on the myelin sheath after spinal cord injury remains poorly understood. Thus, in this study, in vitro tests showed that salvianolic acid B contributed to oligodendrocyte precursor cell differentiation, and the most effective dose was 20 μg/mL. For in vivo investigation, rats with spinal cord injury were intraperitoneally injected with 20 mg/kg salvianolic acid B for 8 weeks. The amount of myelin sheath and the number of regenerating axons increased, neurological function recovered, and caspase-3 expression was decreased in the spinal cord of salvianolic acid B-treated animals compared with untreated control rats. These results indicate that salvianolic acid B can protect axons and the myelin sheath, and can promote the recovery of neurological function. Its mechanism of action is likely to be associated with inhibiting apoptosis and promoting the differentiation and maturation of oligodendrocyte precursor cells.

  5. Salvianolic acid B protects the myelin sheath around injured spinal cord axons.

    Science.gov (United States)

    Zhu, Zhe; Ding, Lu; Qiu, Wen-Feng; Wu, Hong-Fu; Li, Rui

    2016-03-01

    Salvianolic acid B, an active pharmaceutical compound present in Salvia miltiorrhiza, exerts a neuroprotective effect in animal models of brain and spinal cord injury. Salvianolic acid B can promote recovery of neurological function; however, its protective effect on the myelin sheath after spinal cord injury remains poorly understood. Thus, in this study, in vitro tests showed that salvianolic acid B contributed to oligodendrocyte precursor cell differentiation, and the most effective dose was 20 μg/mL. For in vivo investigation, rats with spinal cord injury were intraperitoneally injected with 20 mg/kg salvianolic acid B for 8 weeks. The amount of myelin sheath and the number of regenerating axons increased, neurological function recovered, and caspase-3 expression was decreased in the spinal cord of salvianolic acid B-treated animals compared with untreated control rats. These results indicate that salvianolic acid B can protect axons and the myelin sheath, and can promote the recovery of neurological function. Its mechanism of action is likely to be associated with inhibiting apoptosis and promoting the differentiation and maturation of oligodendrocyte precursor cells. PMID:27127491

  6. ESO Reflex: A Graphical Workflow Engine for Astronomical Data Reduction

    Science.gov (United States)

    Hook, Richard; Romaniello, Martino; Ullgrén, Marko; Maisala, Sami; Solin, Otto; Oittinen, Tero; Savolainen, Villa; Järveläinen, Pekka; Tyynelä, Jani; Péron, Michèle; Izzo, Carlo; Ballester, Pascal; Gabasch, Armin

    2008-03-01

    ESO Reflex is a software tool that provides a novel approach to astronomical data reduction. The reduction sequence is rendered and controlled as a graphical workflow. Users can follow and interact with the processing in an intuitive manner, without the need for complex scripting. The graphical interface also allows the modification of existing workflows and the creation of new ones. ESO Reflex can invoke standard ESO data reduction recipes in a flexible way. Python scripts, IDL procedures and shell commands can also be easily brought into workflows and a variety of visualisation and display options, including custom product inspection and validation steps, are available. ESO Reflex was developed in the context of the Sampo project, a three-year effort led by ESO and conducted by a software development team from Finland as an in-kind contribution to joining ESO. It is planned that the software will be released to the community in late 2008.

  7. Axonal Transport Impairment in Chemotherapy-Induced Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Gabriella Nicolini

    2015-08-01

    Full Text Available Chemotherapy-Induced Peripheral Neuropathy (CIPN is a dose-limiting side effect of several antineoplastic drugs which significantly reduces patients’ quality of life. Although different molecular mechanisms have been investigated, CIPN pathobiology has not been clarified yet. It has largely been recognized that Dorsal Root Ganglia are the main targets of chemotherapy and that the longest nerves are the most damaged, together with fast axonal transport. Indeed, this bidirectional cargo-specific transport has a pivotal role in neuronal function and its impairment is involved in several neurodegenerative and neurodevelopmental diseases. Literature data demonstrate that, despite different mechanisms of action, all antineoplastic agents impair the axonal trafficking to some extent and the severity of the neuropathy correlates with the degree of damage on this bidirectional transport. In this paper, we will examine the effect of the main old and new chemotherapeutic drug categories on axonal transport, with the aim of clarifying their potential mechanisms of action, and, if possible, of identifying neuroprotective strategies, based on the knowledge of the alterations induced by each drugs.

  8. Retinal glia promote dorsal root ganglion axon regeneration.

    Directory of Open Access Journals (Sweden)

    Barbara Lorber

    Full Text Available Axon regeneration in the adult central nervous system (CNS is limited by several factors including a lack of neurotrophic support. Recent studies have shown that glia from the adult rat CNS, specifically retinal astrocytes and Müller glia, can promote regeneration of retinal ganglion cell axons. In the present study we investigated whether retinal glia also exert a growth promoting effect outside the visual system. We found that retinal glial conditioned medium significantly enhanced neurite growth and branching of adult rat dorsal root ganglion neurons (DRG in culture. Furthermore, transplantation of retinal glia significantly enhanced regeneration of DRG axons past the dorsal root entry zone after root crush in adult rats. To identify the factors that mediate the growth promoting effects of retinal glia, mass spectrometric analysis of retinal glial conditioned medium was performed. Apolipoprotein E and secreted protein acidic and rich in cysteine (SPARC were found to be present in high abundance, a finding further confirmed by western blotting. Inhibition of Apolipoprotein E and SPARC significantly reduced the neuritogenic effects of retinal glial conditioned medium on DRG in culture, suggesting that Apolipoprotein E and SPARC are the major mediators of this regenerative response.

  9. EEG functional connectivity, axon delays and white matter disease

    Science.gov (United States)

    Nunez, Paul L.; Srinivasan, Ramesh; Fields, R. Douglas

    2016-01-01

    Objective Both structural and functional brain connectivities are closely linked to white matter disease. We discuss several such links of potential interest to neurologists, neurosurgeons, radiologists, and non-clinical neuroscientists. Methods Treatment of brains as genuine complex systems suggests major emphasis on the multi-scale nature of brain connectivity and dynamic behavior. Cross-scale interactions of local, regional, and global networks are apparently responsible for much of EEG's oscillatory behaviors. Finite axon propagation speed, often assumed to be infinite in local network models, is central to our conceptual framework. Results Myelin controls axon speed, and the synchrony of impulse traffic between distant cortical regions appears to be critical for optimal mental performance and learning. Results Several experiments suggest that axon conduction speed is plastic, thereby altering the regional and global white matter connections that facilitate binding of remote local networks. Conclusions Combined EEG and high resolution EEG can provide distinct multi-scale estimates of functional connectivity in both healthy and diseased brains with measures like frequency and phase spectra, covariance, and coherence. Significance White matter disease may profoundly disrupt normal EEG coherence patterns, but currently these kinds of studies are rare in scientific labs and essentially missing from clinical environments. PMID:24815984

  10. Dysregulated axonal RNA translation in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Yasuda, Kyota; Mili, Stavroula

    2016-09-01

    Amyotrophic lateral sclerosis (ALS) is an adult-onset motor neuron disease that has been associated with a diverse array of genetic changes. Prominent among these are mutations in RNA-binding proteins (RBPs) or repeat expansions that give rise to toxic RNA species. RBPs are additionally central components of pathologic aggregates that constitute a disease hallmark, suggesting that dysregulation of RNA metabolism underlies disease progression. In the context of neuronal physiology, transport of RNAs and localized RNA translation in axons are fundamental to neuronal survival and function. Several lines of evidence suggest that axonal RNA translation is a central process perturbed by various pathogenic events associated with ALS. Dysregulated translation of specific RNA groups could underlie feedback effects that connect and reinforce disease manifestations. Among such candidates are RNAs encoding proteins involved in the regulation of microtubule dynamics. Further understanding of axonally dysregulated RNA targets and of the feedback mechanisms they induce could provide useful therapeutic insights. WIREs RNA 2016, 7:589-603. doi: 10.1002/wrna.1352 For further resources related to this article, please visit the WIREs website. PMID:27038103

  11. Axonal Dysfunction Precedes Motor Neuronal Death in Amyotrophic Lateral Sclerosis.

    Directory of Open Access Journals (Sweden)

    Yuta Iwai

    Full Text Available Wide-spread fasciculations are a characteristic feature in amyotrophic lateral sclerosis (ALS, suggesting motor axonal hyperexcitability. Previous excitability studies have shown increased nodal persistent sodium conductances and decreased potassium currents in motor axons of ALS patients, both of the changes inducing hyperexcitability. Altered axonal excitability potentially contributes to motor neuron death in ALS, but the relationship of the extent of motor neuronal death and abnormal excitability has not been fully elucidated. We performed multiple nerve excitability measurements in the median nerve at the wrist of 140 ALS patients and analyzed the relationship of compound muscle action potential (CMAP amplitude (index of motor neuronal loss and excitability indices, such as strength-duration time constant, threshold electrotonus, recovery cycle and current-threshold relationships. Compared to age-matched normal controls (n = 44, ALS patients (n = 140 had longer strength-duration time constant (SDTC: a measure of nodal persistent sodium current; p 5mV. Regression analyses showed that SDTC (R = -0.22 and depolarizing threshold electrotonus (R = -0.22 increased with CMAP decline. These findings suggest that motor nerve hyperexcitability occurs in the early stage of the disease, and precedes motor neuronal loss in ALS. Modulation of altered ion channel function could be a treatment option for ALS.

  12. Axonal Dysfunction Precedes Motor Neuronal Death in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Iwai, Yuta; Shibuya, Kazumoto; Misawa, Sonoko; Sekiguchi, Yukari; Watanabe, Keisuke; Amino, Hiroshi; Kuwabara, Satoshi

    2016-01-01

    Wide-spread fasciculations are a characteristic feature in amyotrophic lateral sclerosis (ALS), suggesting motor axonal hyperexcitability. Previous excitability studies have shown increased nodal persistent sodium conductances and decreased potassium currents in motor axons of ALS patients, both of the changes inducing hyperexcitability. Altered axonal excitability potentially contributes to motor neuron death in ALS, but the relationship of the extent of motor neuronal death and abnormal excitability has not been fully elucidated. We performed multiple nerve excitability measurements in the median nerve at the wrist of 140 ALS patients and analyzed the relationship of compound muscle action potential (CMAP) amplitude (index of motor neuronal loss) and excitability indices, such as strength-duration time constant, threshold electrotonus, recovery cycle and current-threshold relationships. Compared to age-matched normal controls (n = 44), ALS patients (n = 140) had longer strength-duration time constant (SDTC: a measure of nodal persistent sodium current; p CMAP (> 5mV). Regression analyses showed that SDTC (R = -0.22) and depolarizing threshold electrotonus (R = -0.22) increased with CMAP decline. These findings suggest that motor nerve hyperexcitability occurs in the early stage of the disease, and precedes motor neuronal loss in ALS. Modulation of altered ion channel function could be a treatment option for ALS. PMID:27383069

  13. Sensory axon-derived neuregulin-1 is required for axoglial signaling and normal sensory function but not for long-term axon maintenance

    DEFF Research Database (Denmark)

    Fricker, F.R.; Zhu, N.; Tsantoulas, C.;

    2009-01-01

    " pockets. The total number of axons in the sural nerve was unchanged, but a greater proportion was unmyelinated. In addition, we observed large-diameter axons that were in a 1:1 relationship with Schwann cells, surrounded by a basal lamina but not myelinated. There was no evidence of DRG or Schwann cell...

  14. Automated data reduction workflows for astronomy. The ESO Reflex environment

    Science.gov (United States)

    Freudling, W.; Romaniello, M.; Bramich, D. M.; Ballester, P.; Forchi, V.; García-Dabló, C. E.; Moehler, S.; Neeser, M. J.

    2013-11-01

    Context. Data from complex modern astronomical instruments often consist of a large number of different science and calibration files, and their reduction requires a variety of software tools. The execution chain of the tools represents a complex workflow that needs to be tuned and supervised, often by individual researchers that are not necessarily experts for any specific instrument. Aims: The efficiency of data reduction can be improved by using automatic workflows to organise data and execute a sequence of data reduction steps. To realize such efficiency gains, we designed a system that allows intuitive representation, execution and modification of the data reduction workflow, and has facilities for inspection and interaction with the data. Methods: The European Southern Observatory (ESO) has developed Reflex, an environment to automate data reduction workflows. Reflex is implemented as a package of customized components for the Kepler workflow engine. Kepler provides the graphical user interface to create an executable flowchart-like representation of the data reduction process. Key features of Reflex are a rule-based data organiser, infrastructure to re-use results, thorough book-keeping, data progeny tracking, interactive user interfaces, and a novel concept to exploit information created during data organisation for the workflow execution. Results: Automated workflows can greatly increase the efficiency of astronomical data reduction. In Reflex, workflows can be run non-interactively as a first step. Subsequent optimization can then be carried out while transparently re-using all unchanged intermediate products. We found that such workflows enable the reduction of complex data by non-expert users and minimizes mistakes due to book-keeping errors. Conclusions: Reflex includes novel concepts to increase the efficiency of astronomical data processing. While Reflex is a specific implementation of astronomical scientific workflows within the Kepler workflow

  15. Axon Degeneration Gated by Retrograde Activation of Somatic Pro-apoptotic Signaling.

    Science.gov (United States)

    Simon, David J; Pitts, Jason; Hertz, Nicholas T; Yang, Jing; Yamagishi, Yuya; Olsen, Olav; Tešić Mark, Milica; Molina, Henrik; Tessier-Lavigne, Marc

    2016-02-25

    During development, sensory axons compete for limiting neurotrophic support, and local neurotrophin insufficiency triggers caspase-dependent axon degeneration. The signaling driving axon degeneration upon local deprivation is proposed to reside within axons. Our results instead support a model in which, despite the apoptotic machinery being present in axons, the cell body is an active participant in gating axonal caspase activation and axon degeneration. Loss of trophic support in axons initiates retrograde activation of a somatic pro-apoptotic pathway, which, in turn, is required for distal axon degeneration via an anterograde pro-degenerative factor. At a molecular level, the cell body is the convergence point of two signaling pathways whose integrated action drives upregulation of pro-apoptotic Puma, which, unexpectedly, is confined to the cell body. Puma then overcomes inhibition by pro-survival Bcl-xL and Bcl-w and initiates the anterograde pro-degenerative program, highlighting the role of the cell body as an arbiter of large-scale axon removal. PMID:26898330

  16. Regulation of action potential waveforms by axonal GABAA receptors in cortical pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Yang Xia

    Full Text Available GABAA receptors distributed in somatodendritic compartments play critical roles in regulating neuronal activities, including spike timing and firing pattern; however, the properties and functions of GABAA receptors at the axon are still poorly understood. By recording from the cut end (bleb of the main axon trunk of layer -5 pyramidal neurons in prefrontal cortical slices, we found that currents evoked by GABA iontophoresis could be blocked by picrotoxin, indicating the expression of GABAA receptors in axons. Stationary noise analysis revealed that single-channel properties of axonal GABAA receptors were similar to those of somatic receptors. Perforated patch recording with gramicidin revealed that the reversal potential of the GABA response was more negative than the resting membrane potential at the axon trunk, suggesting that GABA may hyperpolarize the axonal membrane potential. Further experiments demonstrated that the activation of axonal GABAA receptors regulated the amplitude and duration of action potentials (APs and decreased the AP-induced Ca2+ transients at the axon. Together, our results indicate that the waveform of axonal APs and the downstream Ca2+ signals are modulated by axonal GABAA receptors.

  17. Irregular geometries in normal unmyelinated axons: a 3D serial EM analysis.

    Science.gov (United States)

    Greenberg, M M; Leitao, C; Trogadis, J; Stevens, J K

    1990-12-01

    Axons have generally been represented as straight cylinders. It is not at all uncommon for anatomists to take single cross-sections of an axonal bundle, and from the axonal diameter compute expected conduction velocities. This assumes that each cross-section represents a slice through a perfect cylinder. We have examined the three-dimensional geometry of 98 central and peripheral unmyelinated axons, using computer-assisted serial electron microscopy. These reconstructions reveal that virtually all unmyelinated axons have highly irregular axial shapes consisting of periodic varicosities. The varicosities were, without exception, filled with membranous organelles frequently including mitochondria, and have obligatory volumes similar to that described in other neurites. The mitochondria make contact with microtubules, while the other membraneous organelles were frequently found free floating in the cytoplasm. We conclude that unmyelinated axons are fundamentally varicose structures created by the presence of organelles, and that an axon's calibre is dynamic in both space and time. These irregular axonal geometries raise serious doubts about standard two dimensional morphometric analysis and suggest that electrical properties may be more heterogeneous than expected from single section data. These results also suggest that the total number of microtubules contained in an axon, rather than its single section diameter, may prove to be a more accurate predictor of properties such as conduction velocity. Finally, these results offer an explanation for a number of pathological changes that have been described in unmyelinated axons. PMID:2292722

  18. Soluble axoplasm enriched from injured CNS axons reveals the early modulation of the actin cytoskeleton.

    Directory of Open Access Journals (Sweden)

    Patrick Garland

    Full Text Available Axon injury and degeneration is a common consequence of diverse neurological conditions including multiple sclerosis, traumatic brain injury and spinal cord injury. The molecular events underlying axon degeneration are poorly understood. We have developed a novel method to enrich for axoplasm from rodent optic nerve and characterised the early events in Wallerian degeneration using an unbiased proteomics screen. Our detergent-free method draws axoplasm into a dehydrated hydrogel of the polymer poly(2-hydroxyethyl methacrylate, which is then recovered using centrifugation. This technique is able to recover axonal proteins and significantly deplete glial contamination as confirmed by immunoblotting. We have used iTRAQ to compare axoplasm-enriched samples from naïve vs injured optic nerves, which has revealed a pronounced modulation of proteins associated with the actin cytoskeleton. To confirm the modulation of the actin cytoskeleton in injured axons we focused on the RhoA pathway. Western blotting revealed an augmentation of RhoA and phosphorylated cofilin in axoplasm-enriched samples from injured optic nerve. To investigate the localisation of these components of the RhoA pathway in injured axons we transected axons of primary hippocampal neurons in vitro. We observed an early modulation of filamentous actin with a concomitant redistribution of phosphorylated cofilin in injured axons. At later time-points, RhoA is found to accumulate in axonal swellings and also colocalises with filamentous actin. The actin cytoskeleton is a known sensor of cell viability across multiple eukaryotes, and our results suggest a similar role for the actin cytoskeleton following axon injury. In agreement with other reports, our data also highlights the role of the RhoA pathway in axon degeneration. These findings highlight a previously unexplored area of axon biology, which may open novel avenues to prevent axon degeneration. Our method for isolating CNS axoplasm

  19. Slope walking causes short-term changes in soleus H-reflex excitability

    OpenAIRE

    Sabatier, Manning J.; Wedewer, Wesley; Barton, Ben; Henderson, Eric; Murphy, John T.; Ou, Kar

    2015-01-01

    The purpose of this study was to test the hypothesis that downslope treadmill walking decreases spinal excitability. Soleus H-reflexes were measured in sixteen adults on 3 days. Measurements were taken before and twice after 20 min of treadmill walking at 2.5 mph (starting at 10 and 45 min post). Participants walked on a different slope each day [level (Lv), upslope (Us) or downslope (Ds)]. The tibial nerve was electrically stimulated with a range of intensities to construct the M-response an...

  20. Agentive reflexive clitics and transitive 'se' constructions in Spanish

    OpenAIRE

    Grant Armstrong

    2013-01-01

    This paper investigates the structure of transitive sentences that contain a non-doubling reflexive clitic such as Juan se lavó todos los platos and María se leyó un libro. Though these are traditionally labelled unselected (non-core) agreeing datives or aspectual datives, I argue that this label obscures a relevant difference between two classes of constructions. agentive reflexive clitic (= ARC) constructions are characterized by a uniform set of effects on the external argument (= it must ...

  1. Trigeminocardiac Reflex during Maxillary Reconstruction Surgery: A Case Report

    Directory of Open Access Journals (Sweden)

    Mayank Kulshrestha

    2014-03-01

    Full Text Available Systemic hypotension, cardiac dysrhythmia especially bradycardia, apnoea, and gastric hypermotility occurring presumably after stimulation of any of the sensory branches of trigeminal nerve is coined as trigeminocardiac reflex (TCR. It has been described to occur in various surgeries like cerebello-pontine angle and pituitary fossa surgeries. Such bradycardic reflex responses have also been observed during maxillofacial surgeries. The TCR presents as a challenge to both the Anaesthesiologist and the Surgeon in view of its varied presentations, diagnosis, prevention and appropriate management.

  2. Startle and blink reflex in high functioning autism.

    Science.gov (United States)

    Erturk, Ozdem; Korkmaz, Baris; Alev, Gulce; Demirbilek, Veysi; Kiziltan, Meral

    2016-06-01

    An important clinical feature of autism is the presence of atypical responses to sensory stimuli. In this study, we investigated if high functioning autistic patients had abnormalities in the blink reflex and the startle reaction to auditory or somatosensory stimuli. Fourteen patients aged between 7 and 16 years were included in the study. We found a longer latency of the blink reflex, an increased duration and amplitude of the auditory startle reaction and a lower presence rate of the somatosensorial startle reaction in autistic patients. To better define the sensorial characteristics of the disease could improve the therapeutic management of children with autism spectrum disorder. PMID:26997128

  3. Interindividual differences in H reflex modulation during normal walking

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Dyhre-Poulsen, Poul; Alkjaer, T;

    2002-01-01

    treadmill walking at 4.5 km/h. Using a two-dimensional analysis joint angles, angular velocities, accelerations, linear velocities and accelerations were calculated, and net joint moments about the ankle, knee and hip joint were computed by inverse dynamics from the video and force plate data. Six subjects...... subjects with different H reflex modulation would exhibit different walking mechanics and different EMG activity. Fifteen subjects walked across two force platforms at 4.5 km/h (+/-10%) while the movements were recorded on video. The soleus H reflex and EMG activity were recorded separately during...

  4. Implementation of reflex loops in a biomechanical finite element model.

    Science.gov (United States)

    Salin, Dorian; Arnoux, Pierre-Jean; Kayvantash, Kambiz; Behr, Michel

    2016-11-01

    In the field of biomechanics, the offer of models which are more and more realistic requires to integrate a physiological response, in particular, the controlled muscle bracing and the reflexes. The following work aims to suggest a unique methodology which couples together a sensory and motor loop with a finite element model. Our method is applied to the study of the oscillation of the elbow in the case of a biceps brachial stretch reflex. The results obtained are promising in the purpose of the development of reactive human body models. PMID:27108871

  5. Standardisation of the electrical elicitation of the human flexor reflex.

    OpenAIRE

    Tøorring, J; Pedersen, E.; Klemar, B

    1981-01-01

    The threshold and latency of the human flexor reflex were recorded by different kinds of electrical stimuli in order to find the optimal stimulus, defined as the lowest amount of currency and the shortest possible duration. Stimulation was given over the posterior tibial nerve of the foot. The reflex response was recorded from the tibialis anterior muscle and the number and duration of the pulses and the inter-phase interval were varied. A train of five square wave pulses with a duration of 0...

  6. Cosmopolitan encounters: reflexive engagements and the ethics of sharing

    DEFF Research Database (Denmark)

    Plage, Stefanie; Willing, Indigo; Woodward, Ian;

    2016-01-01

    This study contributes to the growing research on everyday cosmopolitanism in diverse societies. We employ a cosmopolitan encounters framework to explore the reflexive openness people perform and the ethical reasoning they draw on to get along with each other. In particular, we look beyond...... in which diversity is strategically negotiated by enacting practices of civility. We argue that cosmopolitanism emerges from interactions in encounters between individuals when they reflect on their positionality within unequal power relationships and their actions are guided by a cosmopolitan ethics....... The ethical framework we propose is grounded in reflexive acts of sharing going beyond notions of giving and performing hospitality within a host/guest dyad....

  7. The inhibitory effect of a chewing task on a human jaw reflex

    NARCIS (Netherlands)

    P. Maillou; S.W. Cadden; F. Lobbezoo

    2010-01-01

    This study was undertaken to investigate whether an inhibitory jaw reflex could be modulated by experimentally controlled conditions that mimicked symptoms of temporomandibular disorders. Reflecting on previous work, we anticipated that these conditions might suppress the reflex. Electromyographic r

  8. Involvement of spinal α2 -adrenoceptors in prolonged modulation of hind limb withdrawal reflexes following acute noxious stimulation in the anaesthetized rabbit.

    Science.gov (United States)

    Harris, John

    2016-03-01

    The role of spinal α2 -adrenoceptors in mediating long-lasting modulation of hind limb withdrawal reflexes following acute noxious chemical stimulation of distant heterotopic and local homotopic locations has been investigated in pentobarbitone-anaesthetized rabbits. Reflexes evoked in the ankle extensor muscle medial gastrocnemius (MG) by electrical stimulation of the ipsilateral heel, and reflexes elicited in the ankle flexor tibialis anterior and the knee flexor semitendinosus by stimulation at the base of the ipsilateral toes, could be inhibited for over 1 h after mustard oil (20%) was applied to either the snout or into the contralateral MG. The heel-MG response was also inhibited after applying mustard oil across the plantar metatarsophalangeal joints of the ipsilateral foot, whereas this homotopic stimulus facilitated both flexor responses. Mustard oil also caused a significant pressor effect when applied to any of the three test sites. The selective α2 -adrenoceptor antagonist, RX 821002 (100-300 μg, intrathecally), had no effect on reflexes per se, but did cause a decrease in mean arterial blood pressure. In the presence of the α2 -blocker, inhibitory and facilitatory effects of mustard oil on reflexes were completely abolished. These data imply that long-lasting inhibition of spinal reflexes following acute noxious stimulation of distant locations involves activation of supraspinal noradrenergic pathways, the effects of which are dependent on an intact α2 -adrenoceptor system at the spinal level. These pathways and receptors also appear to be involved in facilitation (sensitization) as well as inhibition of reflexes following a noxious stimulus applied to the same limb. PMID:26804327

  9. Modulation of flexion reflex induced by hip angle changes in human spinal cord injury

    OpenAIRE

    Knikou, Maria; KAY, ELIZABETH; Rymer, William Zev

    2005-01-01

    The flexion reflex can be elicited via stimulation of skin, muscle, and high-threshold afferents inducing a generalized flexion of the limb. In spinalized animal models this reflex is quite prominent and is strongly modulated by actions of hip proprioceptors. However, analogous actions on the flexion reflex in spinal cord injured (SCI) humans have not yet been examined. In this study, we investigated the effects of imposed static hip angle changes on the flexion reflex in ten motor incomplete...

  10. Central trigeminocardiac reflex in pediatric neurosurgery: a case report and review of the literature

    OpenAIRE

    Spiriev Toma; Tzekov Christo; Laleva Lili; Kostadinova Christina; Kondoff Slavomir; Sandu Nora; Schaller Bernhard

    2012-01-01

    Abstract Introduction Trigeminocardiac reflex is a well-known phenomenon in neurosurgery, craniofacial surgery, ophthalmology and interventional neuroradiology. Even though the trigeminocardiac reflex has become an important factor in skull base surgery and neurosurgery, the central form of trigeminocardiac reflex has only been described in adult subpopulations until now. Case presentation We present a clear form of repetitive trigeminocardiac reflex expressed during revision surgery of a gia...

  11. Effect of intrathecal baclofen on the monosynaptic reflex in humans: evidence for a postsynaptic action.

    OpenAIRE

    Azouvi, P; Roby-Brami, A.; Biraben, A; Thiebaut, J B; Thurel, C; Bussel, B

    1993-01-01

    Intrathecal baclofen is a very powerful antispastic agent. Its mechanism of action on the monosynaptic H-reflex in spinal patients was investigated. It could inhibit rapidly and profoundly monosynaptic reflexes in lower limbs, but did not modify Ia vibratory inhibition of the soleus H-reflex. To assess more precisely its effect on Ia afferents, an experimental paradigm using Ia heteronymous facilitation of the soleus H-reflex was used. Intrathecal baclofen did not modify the amount of monosyn...

  12. Pathophysiology of knee jerk reflex abnormalities in L5 root injury

    OpenAIRE

    Ginanneschi, Federica; Mondelli, Mauro; Piu, Pietro; Rossi, Alessandro

    2015-01-01

    Although the knee jerk reflex is mediated by the L3 and L4 nerve roots, evidence exists that altered knee jerk expression may occur with exclusively L5 radiculopathy. The present study set out to identify the factors responsible for knee jerk reflex abnormalities in L5 monoradiculopathy. We analyzed clinical and electrophysiological data in 56 subjects affected by L5 monoradiculopathy. Seventeen patients (30.3%) showed an abnormal knee reflex. L5 patients with an abnormal knee reflex differed...

  13. The Neuroanatomical Correlates of Training-Related Perceptuo-Reflex Uncoupling in Dancers

    OpenAIRE

    Nigmatullina, Yuliya; Hellyer, Peter J.; Nachev, Parashkev; Sharp, David J.; Seemungal, Barry M.

    2013-01-01

    Sensory input evokes low-order reflexes and higher-order perceptual responses. Vestibular stimulation elicits vestibular-ocular reflex (VOR) and self-motion perception (e.g., vertigo) whose response durations are normally equal. Adaptation to repeated whole-body rotations, for example, ballet training, is known to reduce vestibular responses. We investigated the neuroanatomical correlates of vestibular perceptuo-reflex adaptation in ballet dancers and controls. Dancers' vestibular-reflex and ...

  14. Abnormal growth of the corticospinal axons into the lumbar spinal cord of the hyt/hyt mouse with congenital hypothyroidism.

    Science.gov (United States)

    Hsu, Jung-Yu C; Stein, Stuart A; Xu, Xiao-Ming

    2008-11-01

    Thyroid hormone deficiency may cause severe neurological disorders resulting from developmental deficits of the central nervous system. The mutant hyt/hyt mouse, characterized by fetal-onset, life-long hypothyroidism resulting from a point mutation of the thyroid-stimulating hormone receptor of the thyroid gland, displays a variety of abnormalities in motor behavior that are likely associated with dysfunctions of specific brain regions and a defective corticospinal tract (CST). To test the hypothesis that fetal and neonatal hypothyroidism cause abnormal CST development, the growth of the CST was investigated in hypothyroid hyt/hyt mice and their euthyroid progenitors, the BALB/cByJ mice. Anterograde labeling with biotinylated dextran amine demonstrated a decrease in the number of CST axons in the hyt/hyt mouse at the first lumbar level at postnatal day (P) 10. After retrograde tracing with fast blue (FB), fewer FB-labeled neurons were found in the motor cortex, the red nucleus, and the lateral vestibular nucleus of the hyt/hyt mouse. At the fourth lumbar level, the hyt/hyt mouse also showed smaller CST cross-sectional areas and significantly lower numbers of unmyelinated axons, myelinated axons, and growth cones within the CST during postnatal development. At P10, the hyt/hyt mouse demonstrated significantly lower immunoreactivity of embryonic neural cell adhesion molecule in the CST at the seventh cervical level, whereas the expression of growth-associated protein 43 remained unchanged. Our study demonstrated an abnormal development of the CST in the hyt/hyt mouse, manifested by reduced axon quantity and retarded growth pattern at the lumbar spinal cord. PMID:18543337

  15. Acoustic startle reflex and pre-pulse inhibition in tinnitus patients

    Institute of Scientific and Technical Information of China (English)

    Kelly Shadwick; Wei Sun

    2014-01-01

    Gap induced pre-pulse inhibition (Gap-PPI) of acoustic startle reflex has been used as a measurement of tinnitus in animal models. However, whether this test is sensitive to detect tinnitus in humans is still unclear. Based on the testing procedure used in animal studies, a human subject testing method was formulated and conducted to investigate if a similar result could be found in tinnitus patients. Audiologic and tinnitus assessments and acoustic startle reflex measurements were performed on seven tinnitus subjects and nine age matched subjects without tinnitus. There was no significant difference found between the control and tinnitus group on the Gap-PPI across the frequencies evaluated. The amplitude of the startle response in the tinnitus group with normal hearing thresholds was significantly higher than the control group and those with tinnitus and hearing loss. This preliminary result suggests that hyperexcitability in the central auditory system may be involved in tinnitus. There was no correlation between hearing thresholds and the increased amplitude of startle response.

  16. Trafifc lights for axon growth:proteoglycans and their neuronal receptors

    Institute of Scientific and Technical Information of China (English)

    Yingjie Shen

    2014-01-01

    Axon growth is a central event in the development and post-injury plasticity of the nervous system. Growing axons encounter a wide variety of environmental instructions. Much like trafifc lights in controlling the migrating axons, chondroitin sulfate proteoglycans (CSPGs) and hepa-ran sulfate proteoglycans (HSPGs) often lead to“stop”and“go”growth responses in the axons, respectively. Recently, the LAR family and NgR family molecules were identified as neuronal receptors for CSPGs and HSPGs. These discoveries provided molecular tools for further study of mechanisms underlying axon growth regulation. More importantly, the identiifcation of these proteoglycan receptors offered potential therapeutic targets for promoting post-injury axon re-generation.

  17. Coculture of elongated neuron axon with poly (D, L-lactide-co-glycolide) biomembrane in vitro

    Institute of Scientific and Technical Information of China (English)

    程飚; 陈峥嵘

    2004-01-01

    Objective: To elongate human nerve axon in culture and search for suitable support matrices for peripheral nervous system transplantation.Methods: Human embryo cortical neuronal cells,seeded on poly ( D, L-lactide-co-glycolide ) ( PLGA )membrane scaffolds, were elongated with a self-made neuro-axon extending device. The growth and morphological changes of neuron axons were observed to measure axolemmal permeability after elongation.Neurofilament protein was stained by immunohistochemical technique.Results: Human embryo neuron axon could be elongated and cultured on the PLGA membrane and retain their normal form and function.Conclusions: Three dimensional scaffolds with elongated neuron axon have the basic characteristics of artificial nerves, indicating a fundemental theory of nerve repair with elongated neuron axon.

  18. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination.

    Science.gov (United States)

    Lappe-Siefke, Corinna; Goebbels, Sandra; Gravel, Michel; Nicksch, Eva; Lee, John; Braun, Peter E; Griffiths, Ian R; Nave, Klaus-Armin

    2003-03-01

    Myelination of axons by oligodendrocytes enables rapid impulse propagation in the central nervous system. But long-term interactions between axons and their myelin sheaths are poorly understood. Here we show that Cnp1, which encodes 2',3'-cyclic nucleotide phosphodiesterase in oligodendrocytes, is essential for axonal survival but not for myelin assembly. In the absence of glial cyclic nucleotide phosphodiesterase, mice developed axonal swellings and neurodegeneration throughout the brain, leading to hydrocephalus and premature death. But, in contrast to previously studied myelin mutants, the ultrastructure, periodicity and physical stability of myelin were not altered in these mice. Genetically, the chief function of glia in supporting axonal integrity can thus be completely uncoupled from its function in maintaining compact myelin. Oligodendrocyte dysfunction, such as that in multiple sclerosis lesions, may suffice to cause secondary axonal loss. PMID:12590258

  19. MODULATION BREATHING OF THE ELECTRICAL ACTIVITY IN THE PHRENIC NERVE DURING STARTLES REFLEXES

    OpenAIRE

    Emanov, Sergey

    2006-01-01

    In the paper the reflex activity in the phrenic nerve is studied in chloralose anesthetized cats during development of somatic startle reflexes. Modulation of responses during the respiratory cycle is described. Organization of possible neurophysiologic mechanisms of phrenic responses during startle reflexes is discussed

  20. X11/Mint Genes Control Polarized Localization of Axonal Membrane Proteins in Vivo

    OpenAIRE

    Garrett G Gross; Lone, G. Mohiddin; Leung, Lok Kwan; Hartenstein, Volker; Guo, Ming

    2013-01-01

    Mislocalization of axonal proteins can result in misassembly and/or miswiring of neural circuits, causing disease. To date, only a handful of genes that control polarized localization of axonal membrane proteins have been identified. Here we report that Drosophila X11/Mint proteins are required for targeting several proteins, including human amyloid precursor protein (APP) and Drosophila APP-like protein (APPL), to axonal membranes and for their exclusion from dendrites of the mushroom body i...

  1. Actin turnover is required to prevent axon retraction driven by endogenous actomyosin contractility

    OpenAIRE

    Gallo, Gianluca; Yee, Hal F.; Letourneau, Paul C.

    2002-01-01

    Growth cone motility and guidance depend on the dynamic reorganization of filamentous actin (F-actin). In the growth cone, F-actin undergoes turnover, which is the exchange of actin subunits from existing filaments. However, the function of F-actin turnover is not clear. We used jasplakinolide (jasp), a cell-permeable macrocyclic peptide that inhibits F-actin turnover, to study the role of F-actin turnover in axon extension. Treatment with jasp caused axon retraction, demonstrating that axon ...

  2. Directional specificity and patterning of sensory axons in trigeminal ganglion–whisker pad cocultures

    OpenAIRE

    Gunhan-Agar, Emine; Haeberle, Adam; Erzurumlu, Reha S.

    2000-01-01

    In the rodent trigeminal pathway, trigeminal axons invade the developing whisker pad from a caudal to rostral direction. We investigated directional specificity of embryonic day (E). 15 rat trigeminal axons within this peripheral target field using explant cocultures. E15 trigeminal axons readily grow into the same age whisker pad explants and form follicle-related patterns along a caudal to rostral direction. They also can grow into this target from its lateral aspects. In contrast, they are...

  3. Differential Effects of NGF and NT-3 on Embryonic Trigeminal Axon Growth Patterns

    OpenAIRE

    Ulupinar, Emel; Jacquin, Mark F.; Erzurumlu, Reha S.

    2000-01-01

    We examined the effects of neurotrophins nerve growth factor (NGF) and neurotrophin-3 (NT-3) on trigeminal axon growth patterns. Embryonic (E13–15) wholemount explants of the rat trigeminal pathway including the whisker pads, trigeminal ganglia, and brainstem were cultured in serum-free medium (SFM) or SFM supplemented with NGF or NT-3 for 3 days. Trigeminal axon growth patterns were analyzed with the use of lipophilic tracer DiI. In wholemount cultures grown in SFM, trigeminal axon projectio...

  4. Axonal Transport Proteomics Reveals Mobilization of Translation Machinery to the Lesion Site in Injured Sciatic Nerve*

    OpenAIRE

    Michaelevski, Izhak; Medzihradszky, Katalin F.; Lynn, Aenoch; Burlingame, Alma L.; Fainzilber, Mike

    2009-01-01

    Investigations of the molecular mechanisms underlying responses to nerve injury have highlighted the importance of axonal transport systems. To obtain a comprehensive view of the protein ensembles associated with axonal transport in injured axons, we analyzed the protein compositions of axoplasm concentrated at ligatures following crush injury of rat sciatic nerve. LC-MS/MS analyses of iTRAQ-labeled peptides from axoplasm distal and proximal to the ligation sites revealed protein ensembles tr...

  5. RNA Sequence Reveals Mouse Retinal Transcriptome Changes Early after Axonal Injury

    OpenAIRE

    Yasuda, Masayuki; Tanaka, Yuji; Ryu, Morin; Tsuda, Satoru; Nakazawa, Toru

    2014-01-01

    Glaucoma is an ocular disease characterized by progressive retinal ganglion cell (RGC) death caused by axonal injury. However, the underlying mechanisms involved in RGC death remain unclear. In this study, we investigated changes in the transcriptome profile following axonal injury in mice (C57BL/6) with RNA sequencing (RNA-seq) technology. The experiment group underwent an optic nerve crush (ONC) procedure to induce axonal injury in the right eye, and the control group underwent a sham proce...

  6. Characterizing high-velocity angular vestibulo-ocular reflex function in service members post-blast exposure

    OpenAIRE

    Scherer, Matthew R.; Shelhamer, Mark J.; Schubert, Michael C.

    2010-01-01

    Blasts (explosions) are the most common mechanism of injury in modern warfare. Traumatic brain injury (TBI) and dizziness are common sequelae associated with blasts, and many service members (SMs) report symptoms worsen with activity. The purpose of this study was to measure angular vestibulo-ocular reflex gain (aVOR) of blast-exposed SMs with TBI during head impulse testing. We also assessed their symptoms during exertion. Twenty-four SMs recovering from TBI were prospectively assigned to on...

  7. “Bedside-to-Bench” Behavioral Outcomes in Animal Models of Pain: Beyond the Evaluation of Reflexes

    OpenAIRE

    Cobos, Enrique J.; Portillo-Salido, Enrique

    2013-01-01

    Despite the myriad promising new targets and candidate analgesics recently identified in preclinical pain studies, little translation to novel pain medications has been generated. The pain phenotype in humans involves complex behavioral alterations, including changes in daily living activities and psychological disturbances. These behavioral changes are not reflected by the outcome measures traditionally used in rodents for preclinical pain testing, which are based on reflexes evoked by senso...

  8. Experimental Study of a Triode Reflex Geometry Vircator

    CERN Document Server

    Baryshevsky, Vladimir; Gurnevich, Evgeny; Molchanov, Pavel

    2016-01-01

    Triode reflex geometry vircator operating within 3.0 - 4.2 GHz range with efficiency up to 6% is developed and experimentally investigated. Shiftable reflectors are shown to enable frequency tuning and output power control. Radiation frequency and power are analyzed for different cathode-anode gap values and varied reflector positions.

  9. Authentic role of ATP signaling in micturition reflex.

    Science.gov (United States)

    Takezawa, Kentaro; Kondo, Makoto; Kiuchi, Hiroshi; Ueda, Norichika; Soda, Tetsuji; Fukuhara, Shinichiro; Takao, Tetsuya; Miyagawa, Yasushi; Tsujimura, Akira; Matsumoto-Miyai, Kazumasa; Ishida, Yusuke; Negoro, Hiromitsu; Ogawa, Osamu; Nonomura, Norio; Shimada, Shoichi

    2016-01-01

    Adenosine triphosphate (ATP) is a signaling molecule that regulates cellular processes. Based on previous studies of bladder function over the past decade, bladder ATP signaling was thought to have an essential role in the normal micturition reflex. In this study, we performed detailed analyses of bladder function in purinergic receptor-deficient mice using the automated voided stain on paper method and video-urodynamics. Unexpectedly, a lack of P2X2 or P2X3 receptors did not affect bladder function under normal physiological conditions, indicating that bladder ATP signaling is not essential for normal micturition reflex. In contrast, we found that lipopolysaccharide (LPS) induced markedly high levels of ATP release from the urothelium. In addition, LPS-induced rapid bladder hyperactivity was attenuated in P2X2(-/-) and P2X3(-/-) mice. Contrary to the previous interpretation, our present findings indicate that bladder ATP signaling has a fundamental role in the micturition reflex, especially in bladder dysfunction, under pathological conditions. Therefore, the bladder ATP signaling pathway might be a highly promising therapeutic target for functional bladder disorders. This study newly defines an authentic role for bladder ATP signaling in the micturition reflex. PMID:26795755

  10. The plantar reflex : a historical, clinical and electromyographic study

    NARCIS (Netherlands)

    J. van Gijn (Jan)

    1977-01-01

    textabstractThe plantar reflex is one of the most important physical signs in medicine. Few patients undergoing a full medical examination can avoid having their soles stroked, because an upgoing great toe is regarded as a reliable sign of dysfunction of corticospinal nerve fibres. So far, there is

  11. Axillary Brachial Plexus Blockade for the Reflex Sympathetic Dystrophy Syndrome.

    Science.gov (United States)

    Ribbers, G. M.; Geurts, A. C. H.; Rijken, R. A. J.; Kerkkamp, H. E. M.

    1997-01-01

    Reflex sympathetic dystrophy syndrome (RSD) is a neurogenic pain syndrome characterized by pain, vasomotor and dystrophic changes, and often motor impairments. This study evaluated the effectiveness of brachial plexus blockade with local anaesthetic drugs as a treatment for this condition. Three patients responded well; three did not. (DB)

  12. 21 CFR 890.1450 - Powered reflex hammer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered reflex hammer. 890.1450 Section 890.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1450 Powered...

  13. Opening to Possibility: Reflectivity and Reflexivity in Our Teaching

    Science.gov (United States)

    Wilhelm, Jeff, Ed.

    2013-01-01

    This commentary explores how teachers can create a culture of tolerance by promoting reflectivity and reflexivity, and considers classroom processes and activities for doing so. "Reflectivity" is considered to be the use of personal values, experiences, and habits to make meaning and is a central tenet of inquiry approaches: to build…

  14. Power from Switching across Netdoms through Reflexive and Indexical Language.

    Directory of Open Access Journals (Sweden)

    Fontdevila, Jorge

    2010-06-01

    Full Text Available In differentiated societies with far-reaching yet fragmented social networks, the ability to manage pervasive ambiguity is crucial to navigate domination orders. In this paper we contend that identities, to enhance their control through switchings across networks and domains (netdoms, manage growing ambiguity via language’s reflexive and indexical features. We elaborate on several features—metapragmatics, heteroglossia, and poetics—and assert that they are seldom innocent performances to build consensus in the reproduction of social orders. On the contrary, language is inherently implicated in relations of domination. We then argue that metapragmatic control of stories acquired in countless netdom switchings leads to strong footings that secure resources and opportunity; that rhetorics that include rich heteroglossic voicing via structural holes generate stories that can be reflexively transposed to other institutional arenas; and that poetic control of speech styles may transform identities into power-law constellations with robust footing that decouple into prisms to preserve quality. Our goal is to twofold: First, to show that the reflexivity and indexicality of language emerges from myriad switchings across netdoms; and second, to demonstrate that reflexive and indexical language is critical to identities’ struggles for control—of footing and domination—via their switchings across rapidly polymerizing netdoms.

  15. Trait dominance promotes reflexive staring at masked angry body postures

    NARCIS (Netherlands)

    Hortensius, R.; van Honk, J.; De Gelder, B.; Terburg, D.

    2014-01-01

    It has been shown that dominant individuals sustain eye-contact when non-consciously confronted with angry faces, suggesting reflexive mechanisms underlying dominance behaviors. However, dominance and submission can be conveyed and provoked by means of not only facial but also bodily features. So fa

  16. Experimental Optimization of a reflex triode virtual cathode oscillator

    International Nuclear Information System (INIS)

    Experimental findings on a high power Reflex Triode Virtual Cathode Oscillator (Vircator) are reported. The performance of a vircator are modified with the inclusion of reflecting strips. Motivation for this technique was driven by success of reflector inclusion to a coaxial vircator. A parametric experimental study was performed to optimize the performance of this geometry

  17. Soleus H-reflex excitability during pedaling post-stroke

    DEFF Research Database (Denmark)

    Schindler-Ivens, Sheila; Brown, David A.; Lewis, Gwyn N.; Nielsen, Jens Bo; Ondishko, Kathy L.; Wieser, Jon

    2008-01-01

    A major contributor to impaired locomotion post-stroke is abnormal phasing of paretic muscle activity, but the mechanisms remain unclear. Previous studies have shown that, in the paretic limb of people post-stroke, Group Ia reflexes are abnormally elevated and fail to decrease in amplitude during...

  18. Perception of spectrally degraded reflexives and pronouns by children

    NARCIS (Netherlands)

    Başkent, Deniz; van Rij, Jacolien; Ng, Zheng Yen; Free, Rolien; Hendriks, Petra

    2013-01-01

    Speech perception skills in cochlear-implant users are often measured with simple speech materials. In children, it is crucial to fully characterize linguistic development, and this requires linguistically more meaningful materials. The authors propose using the comprehension of reflexives and prono

  19. Positioning Resumes and Cover Letters as Reflective-Reflexive Process

    Science.gov (United States)

    Randazzo, Chalice

    2012-01-01

    Although the resume and cover letter genre is widely discussed in both popular and scholarly publications, discussion thus far has failed to acknowledge that the process of creating a resume and cover letter has the potential for encouraging students' reflective and reflexive capacities. This article suggests that business communication educators…

  20. Results of Investigations on the Blink Reflex as a Protective Means against Laser and LED Radiation: A Description Based on Fundamental Psychophysical Laws

    Energy Technology Data Exchange (ETDEWEB)

    Hans-Dieter Reidenbach [Cologne University of Applied Sciences Research Laboratory on Medical Technology/HLT Betzdorfer Str. 2, 50679 Koeln (Germany)

    2006-07-01

    2,650 volunteers have been investigated in blink-reflex studies with various test equipment, where a laser beam or a single element L.E.D. or an array have been used to irradiate the human eye in order to initiate a physiological reaction. In addition 1,196 volunteers took part in aversion response studies. 491 persons out of 2,650, i.e., 18.53 %, showed a blink reflex or lid closure, upon exposure to irradiation from a laser or an L.E.D.. Only 6.19 %, i. e., 74 out of 1,196 volunteers, showed other aversion responses, like gross eye or head movements. The different parameters which are mainly responsible for the respective results concerning the blink reflex will be dealt with and explained, as they have been achieved up to now. In addition some experimentally verified dependencies on fundamental psychophysical laws will be described. Besides the statement that the blink reflex should not be used as a sufficient physiological protective means it can be generally stated that in order to ensure their safety, in spite of the missing blink-reflex and other aversion responses, users of low-power lasers should be instructed to perform active protective reactions, e.g., to close the eyes voluntarily and simultaneously move the head away from the beam in the case of an unintentional exposure or intrabeam viewing. (author)

  1. Results of Investigations on the Blink Reflex as a Protective Means against Laser and LED Radiation: A Description Based on Fundamental Psychophysical Laws

    International Nuclear Information System (INIS)

    2,650 volunteers have been investigated in blink-reflex studies with various test equipment, where a laser beam or a single element L.E.D. or an array have been used to irradiate the human eye in order to initiate a physiological reaction. In addition 1,196 volunteers took part in aversion response studies. 491 persons out of 2,650, i.e., 18.53 %, showed a blink reflex or lid closure, upon exposure to irradiation from a laser or an L.E.D.. Only 6.19 %, i. e., 74 out of 1,196 volunteers, showed other aversion responses, like gross eye or head movements. The different parameters which are mainly responsible for the respective results concerning the blink reflex will be dealt with and explained, as they have been achieved up to now. In addition some experimentally verified dependencies on fundamental psychophysical laws will be described. Besides the statement that the blink reflex should not be used as a sufficient physiological protective means it can be generally stated that in order to ensure their safety, in spite of the missing blink-reflex and other aversion responses, users of low-power lasers should be instructed to perform active protective reactions, e.g., to close the eyes voluntarily and simultaneously move the head away from the beam in the case of an unintentional exposure or intrabeam viewing. (author)

  2. Thiazolidinediones promote axonal growth through the activation of the JNK pathway.

    Directory of Open Access Journals (Sweden)

    Rodrigo A Quintanilla

    Full Text Available The axon is a neuronal process involved in protein transport, synaptic plasticity, and neural regeneration. It has been suggested that their structure and function are profoundly impaired in neurodegenerative diseases. Previous evidence suggest that Peroxisome Proliferator-Activated Receptors-γ (PPARγ promote neuronal differentiation on various neuronal cell types. In addition, we demonstrated that activation of PPARγby thiazolidinediones (TZDs drugs that selectively activate PPARγ prevent neurite loss and axonal damage induced by amyloid-β (Aβ. However, the potential role of TZDs in axonal elongation and neuronal polarity has not been explored. We report here that the activation of PPARγ by TZDs promoted axon elongation in primary hippocampal neurons. Treatments with different TZDs significantly increased axonal growth and branching area, but no significant effects were observed in neurite elongation compared to untreated neurons. Treatment with PPARγ antagonist (GW 9662 prevented TZDs-induced axonal growth. Recently, it has been suggested that the c-Jun N-terminal kinase (JNK plays an important role regulating axonal growth and neuronal polarity. Interestingly, in our studies, treatment with TZDs induced activation of the JNK pathway, and the pharmacological blockage of this pathway prevented axon elongation induced by TZDs. Altogether, these results indicate that activation of JNK induced by PPARγactivators stimulates axonal growth and accelerates neuronal polarity. These novel findings may contribute to the understanding of the effects of PPARγ on neuronal differentiation and validate the use of PPARγ activators as therapeutic agents in neurodegenerative diseases.

  3. Roles of NAD in Protection of Axon against Degeneration via SIRT1 Pathways.

    Science.gov (United States)

    Zhang, Jing; Guo, Wei-Hua; Qi, Xiao-Xia; Li, Gui-Bao; Hu, Yan-Lai; Wu, Qi; Ding, Zhao-Xi; Li, Hong-Yu; Hao, Jing; Sun, Jin-Hao

    2016-04-30

    Axonal degeneration is a common pathological change of neurogenical disease which often arises before the neuron death. But it had not found any effective method to protect axon from degeneration. In this study we intended to confirm the protective effect of nicotinamide adenine dinucleotide (NAD), investigate the optimal administration dosage and time of NAD, and identify the relationship between silence signal regulating factor 1 (SIRT1) and axonal degeneration. An axonal degeneration model was established using dorsal root ganglion (DRG) neurons injured by vincristine to observe the protective effects of NAD to the injured axons. In addition, the potential contribution of the SIRT1 in axonal degeneration was also investigated. Through the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, immunochemistry staining, axons counting and length measuring, transmission electron microscope (TEM) observation, we demonstrated that NAD played an important role in preventing axonal degeneration. Further study revealed that the expression of SIRT1 and phosphorylated Akt1 (p-Akt1) was up-regulated when NAD was added into the culturing medium. Taking together, our results demonstrated that NAD might delay the axonal degeneration through SIRT1/Akt1 pathways. PMID:27080463

  4. MicroRNA-210 promotes sensory axon regeneration of adult mice in vivo and in vitro.

    Science.gov (United States)

    Hu, Yi-Wen; Jiang, Jing-Jing; Yan-Gao; Wang, Rui-Ying; Tu, Guan-Jun

    2016-05-27

    Axon regeneration as a critical step in nerve repairing and remodeling after peripheral nerve injury relies on regulation of gene expression. MicroRNAs are emerging to be important epigenetic regulators of gene expression to control axon regeneration. Here we used a novel in vivo electroporation approach to transfect microRNA-210 (miR-210) or siRNAs to adult mice dorsal root ganglion (DRG) neurons, measured the axon length 3days after sciatic nerve crush or dissociated DRG cultures in vitro to detect the effect of miR-210 in sensory axon regeneration. Importantly, we found that miR-210 overexpression could promote sensory axon regeneration and inhibit apoptsosis by ephrin-A3 (EFNA3). In addition, inhibition of endogenous miR-210 in DRG neurons impaired axon regeneration in vitro and in vivo, the regulatory effect of miR-210 was mediated by increased expression of EFNA3 because downregulation of EFNA3 fully rescued axon regeneration. We thus demonstrate that miR-210 is a new physiological regulator of sensory axon regeneration, and EFNA3 may be the functional target of miR-210. We conclude that miR-210 may play an important role in sensory axon regeneration. PMID:27102143

  5. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury

    Institute of Scientific and Technical Information of China (English)

    Christian Witzel; Werner Reutter; G Bjrn Stark; Georgios Koulaxouzidis

    2015-01-01

    Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modiifed in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp) increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the inlfuence of systemic ManNProp application using a speciifc in vivo mouse model. Using mice expressing axonal lfuorescent proteins, we quantiifed the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow lfuorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg) or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection). ManNProp signiifcantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm;P<0.005) and the number of arborizing axons (21%vs. 16%;P=0.008) 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoen-gineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.

  6. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Christian Witzel

    2015-01-01

    Full Text Available Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modified in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the influence of systemic ManNProp application using a specific in vivo mouse model. Using mice expressing axonal fluorescent proteins, we quantified the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow fluorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection. ManNProp significantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm; P < 0.005 and the number of arborizing axons (21% vs. 16% P = 0.008 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoengineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.

  7. Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay

    DEFF Research Database (Denmark)

    Colak, Dilek; Ji, Sheng-Jian; Porse, Bo T; Jaffrey, Samie R

    2013-01-01

    show that Robo3.2, a receptor for the Slit family of guidance cues, is synthesized locally within axons of commissural neurons. Robo3.2 translation is induced by floor-plate-derived signals as axons cross the spinal cord midline. Robo3.2 is also a predicted target of the nonsense-mediated mRNA decay...... (NMD) pathway. We find that NMD regulates Robo3.2 synthesis by inducing the degradation of Robo3.2 transcripts in axons that encounter the floor plate. Commissural neurons deficient in NMD proteins exhibit aberrant axonal trajectories after crossing the midline, consistent with misregulation of Robo3...

  8. Permissive Schwann cell graft/spinal cord interfaces for axon regeneration.

    Science.gov (United States)

    Williams, Ryan R; Henao, Martha; Pearse, Damien D; Bunge, Mary Bartlett

    2015-01-01

    The transplantation of autologous Schwann cells (SCs) to repair the injured spinal cord is currently being evaluated in a clinical trial. In support, this study determined properties of spinal cord/SC bridge interfaces that enabled regenerated brainstem axons to cross them, possibly leading to improvement in rat hindlimb movement. Fluid bridges of SCs and Matrigel were placed in complete spinal cord transections. Compared to pregelled bridges of SCs and Matrigel, they improved regeneration of brainstem axons across the rostral interface. The regenerating brainstem axons formed synaptophysin(+) bouton-like terminals and contacted MAP2A(+) dendrites at the caudal interface. Brainstem axon regeneration was directly associated with glial fibrillary acidic protein (GFAP(+)) astrocyte processes that elongated into the SC bridge. Electron microscopy revealed that axons, SCs, and astrocytes were enclosed together within tunnels bounded by a continuous basal lamina. Neuroglycan (NG2) expression was associated with these tunnels. One week after injury, the GFAP(+) processes coexpressed nestin and brain lipid-binding protein, and the tips of GFAP(+)/NG2(+) processes extended into the bridges together with the regenerating brainstem axons. Both brainstem axon regeneration and number of GFAP(+) processes in the bridges correlated with improvement in hindlimb locomotion. Following SCI, astrocytes may enter a reactive state that prohibits axon regeneration. Elongation of astrocyte processes into SC bridges, however, and formation of NG2(+) tunnels enable brainstem axon regeneration and improvement in function. It is important for spinal cord repair to define conditions that favor elongation of astrocytes into lesions/transplants. PMID:24152553

  9. Studying Axonal Regeneration by Laser Microsurgery and High-Resolution Videomicroscopy.

    Science.gov (United States)

    Xiao, Yan; López-Schier, Hernán

    2016-01-01

    Heterogeneous and unpredictable environmental insult, disease, or trauma can affect the integrity and function of neuronal circuits, leading to irreversible neural dysfunction. The peripheral nervous system can robustly regenerate axons after damage to recover the capacity to transmit sensory information to the brain. The mechanisms that allow axonal repair remain incompletely understood. Here we present a preparation in zebrafish that combines laser microsurgery of sensory axons and videomicroscopy of neurons in multicolor transgenic specimens. This simple protocol allows controlled damage of axons and dynamic high-resolution visualization and quantification of repair. PMID:27464814

  10. Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. II. Evidence from selective inactivation of cell bodies and axon initial segments.

    Science.gov (United States)

    Nowak, L G; Bullier, J

    1998-02-01

    The results presented in the companion paper showed that extracellular electrical stimulation of the gray matter directly activates axons, but not cell bodies. The second set of experiments presented here was designed to separate the contribution of the axon initial segments and cell bodies from that of the axonal branches to the pool of presynaptic neuronal elements activated by electrical stimulation. For that purpose, N-methyl-D-aspartate (NMDA) iontophoresis was used to induce a selective inactivation of the cell body and of the adjoining portion of the axon by depolarization block, without affecting axonal branches that lack NMDA receptors. After NMDA iontophoresis, the neurons located near the iontophoresis electrode became unable to generate action potentials in an irreversible manner. When the NMDA-induced depolarization block was performed at the site of electrical stimulation, an unexpected increase in the amplitude of the orthodromic responses was observed. Several control experiments suggested that the field potential increase was due to changes of the local environment in the vicinity of the iontophoresis pipette, which led to an increased excitability of the axons. After the period of superexcitability, the orthodromic responses displayed an amplitude that was 15-20% lower than that observed before the NMDA-induced depolarization block, even though cell bodies and axon initial segment at the site of stimulation could not be activated by electrical stimulation. This result shows a low contribution for axon initial segments to the pool of neuronal elements activated by the electrical stimulation. Altogether, these experiments demonstrate that the postsynaptic responses obtained after electrical stimulation of the cortical gray matter result almost exclusively from the activation of axonal branches. Since the neocortex is organised as a network of local and long-range reciprocal connections, great attention must be paid to the interpretation of data

  11. H-REFLEX UP-CONDITIONING ENCOURAGES RECOVERY OF EMG ACTIVITY AND H-REFLEXES AFTER SCIATIC NERVE TRANSECTION AND REPAIR IN RATS

    OpenAIRE

    Chen, Yi; Wang, Yu; Chen, Lu; Sun, Chenyuo; English, Arthur W.; Wolpaw, Jonathan R.; Chen, Xiang Yang

    2010-01-01

    Operant conditioning of the spinal stretch reflex or its electrical analog, the H-reflex, produces spinal cord plasticity and can thereby affect motoneuron responses to primary afferent input. To explore whether this conditioning can affect the functional outcome after peripheral nerve injury, we assessed the effect of up-conditioning soleus (SOL) H-reflex on SOL and tibialis anterior (TA) function after sciatic nerve transection and repair. Sprague-Dawley rats were implanted with EMG electro...

  12. Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients.

    Directory of Open Access Journals (Sweden)

    Jan Jessen Krut

    Full Text Available Prevalence of neurocognitive impairment in HIV-1 infected patients is reported to be high. Whether this is a result of active HIV-related neurodegeneration is unclear. We examined axonal injury in HIV-1 patients by measuring the light subunit of neurofilament protein (NFL in CSF with a novel, sensitive method.With a cross-sectional design, CSF concentrations of neurofilament protein light (NFL (marker of neuronal injury, neopterin (intrathecal immunoactivation and CSF/Plasma albumin ratio (blood-brain barrier integrity were analyzed on CSF from 252 HIV-infected patients, subdivided into untreated neuroasymptomatics (n = 200, HIV-associated dementia (HAD (n = 14 and on combinations antiretroviral treatment (cART (n = 85, and healthy controls (n = 204. 46 HIV-infected patients were included in both treated and untreated groups, but sampled at different timepoints. Furthermore, 78 neuroasymptomatic patients were analyzed before and after treatment initiation.While HAD patients had the highest NFL concentrations, elevated CSF NFL was also found in 33% of untreated neuroasymptomatic patients, mainly in those with blood CD4+ cell counts below 250 cells/μL. CSF NFL concentrations in the untreated neuroasymptomatics and treated groups were equivalent to controls 18.5 and 3.9 years older, respectively. Neopterin correlated with NFL levels in untreated groups while the albumin ratio correlated with NFL in both untreated and treated groups.Increased CSF NFL indicates ongoing axonal injury in many neuroasymptomatic patients. Treatment decreases NFL, but treated patients retain higher levels than controls, indicating either continued virus-related injury or an aging-like effect of HIV infection. NFL correlates with neopterin and albumin ratio, suggesting an association between axonal injury, neuroinflammation and blood-brain barrier permeability. NFL appears to be a sensitive biomarker of subclinical and clinical brain injury in HIV and warrants further

  13. Hyperactivated Stat3 boosts axon regeneration in the CNS.

    Science.gov (United States)

    Mehta, Saloni T; Luo, Xueting; Park, Kevin K; Bixby, John L; Lemmon, Vance P

    2016-06-01

    Axonal regeneration after spinal cord injury (SCI) is intrinsically and extrinsically inhibited by multiple factors. One major factor contributing to intrinsic regeneration failure is the inability of mature neurons in the central nervous system (CNS) to activate regeneration-associated transcription factors (TFs) post-injury. A prior study identified TFs overexpressed in neurons of the peripheral nervous system (PNS) compared to the CNS; some of these could be involved in the ability of PNS neurons to regenerate. Of these, signal transducer and activator of transcription 3 (STAT3), as well its downstream regeneration-associated targets, showed a significant upregulation in PNS neurons relative to CNS neurons, and a constitutively active variant of Stat3 (Stat3CA) promoted neurite growth when expressed in cerebellar neurons (Lerch et al., 2012; Smith et al., 2011). To further enhance STAT3's neurite outgrowth enhancing activity, Stat3CA was fused with a viral activation domain (VP16). VP16 hyperactivates TFs by recruiting transcriptional co-factors to the DNA binding domain (Hirai et al., 2010). Overexpression of this VP16-Stat3CA chimera in primary cortical neurons led to a significant increase of neurite outgrowth as well as Stat3 transcriptional activity in vitro. Furthermore, in vivo transduction of retinal ganglion cells (RGCs) with AAV constructs expressing VP16-Stat3CA resulted in regeneration of optic nerve axons after injury, to a greater degree than for those expressing Stat3CA alone. These findings confirm and extend the concept that overexpression of hyperactivated transcription factors identified as functioning in PNS regeneration can promote axon regeneration in the CNS. PMID:27060489

  14. Excitability properties of motor axons in adults with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Cliff S. Klein

    2015-06-01

    Full Text Available Cerebral Palsy (CP is a permanent disorder caused by a lesion to the developing brain that significantly impairs motor function. The neurophysiological mechanisms underlying motor impairment are not well understood. Specifically, few have addressed whether motoneuron or peripheral axon properties are altered in CP, even though disruption of descending inputs to the spinal cord may cause them to change. In the present study, we have compared nerve excitability properties in seven adults with CP and fourteen healthy controls using threshold tracking techniques by stimulating the median nerve at the wrist and recording the compound muscle action potential (CMAP over the abductor pollicis brevis. The excitability properties in the CP subjects were found to be abnormal. Early and late depolarizing and hyperpolarizing threshold electrotonus was significantly larger (i.e., fanning out, and resting current-threshold (I/V slope was smaller, in CP compared to control. In addition resting threshold and rheobase tended to be larger in CP. According to a modeling analysis of the data, an increase in leakage current under or through the myelin sheath, i.e., the Barrett-Barrett conductance (GBB, combined with a slight hyperpolarization of the resting membrane potential, best explained the group differences in excitability properties. There was a trend for those with greater impairment in gross motor function to have more abnormal axon properties. The findings indicate plasticity of motor axon properties far removed from the site of the lesion. We suspect that this plasticity is caused by disruption of descending inputs to the motoneurons at an early age around the time of their injury.

  15. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 3. Effects of prolonged weightlessness on a human otolith-spinal reflex

    Science.gov (United States)

    Watt, D. G.; Money, K. E.; Tomi, L. M.

    1986-01-01

    Reflex responses that depend on human otolith organ sensitivity were measured before, during and after a 10 day space flight. Otolith-spinal reflexes were elicited by means of sudden, unexpected falls. In weightlessness, "falls" were achieved using elastic cords running from a torso harness to the floor. Electromyographic (EMG) activity was recorded from gastrocnemius-soleus. The EMG response occurring in the first 100-120 ms of a fall, considered to be predominantly otolith-spinal in origin, decreased in amplitude immediately upon entering weightlessness, and continued to decline throughout the flight, especially during the first two mission days. The response returned to normal before the first post-flight testing session. The results suggest that information coming from the otolith organs is gradually ignored by the nervous system during prolonged space flight, although the possibility that otolith-spinal reflexes are decreased independent of other otolith output pathways cannot be ruled out.

  16. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission. III - Effects of prolonged weightlessness on a human otolith-spinal reflex

    Science.gov (United States)

    Watt, D. G. D.; Money, K. E.; Tomi, L. M.

    1986-01-01

    Reflex responses that depend on human otolith organ sensitivity were measured before, during and after a 10 day space flight. Otolith-spinal reflexes were elicited by means of sudden, unexpected falls. In weightlessness, 'falls' were achieved using elastic cords running from a torso harness to the floor. Electromyographic (EMG) activity was recorded from gastrocnemius-soleus. The EMG response occurring in the first 100-120 ms of a fall, considered to be predominantly otolith-spinal in origin, decreased in amplitude immediately upon entering weightlessness, and continued to decline throughout the flight, especially during the first two mission days. The response returned to normal before the first post-flight testing session. The results suggest that information coming from the otolith organs is gradually ignored by the nervous system during prolonged space flight, although the possibility that otolith-spinal reflexes are decreased independent of other otolith output pathways cannot by ruled out.

  17. Delay of the Blink Reflex in Patients Receiving Platinum-Analogue Chemotherapy

    Science.gov (United States)

    Park, Kang Young; Park, Yun Hee; Chang, Hyun Jung; Cho, Eun Sol; Kim, Seok-Hyun; Kim, Woo Jin

    2016-01-01

    Objective To investigate the presence of cranial neuropathy in patients with platinum-analogue chemotherapy using electrodiagnostic evaluations. Methods Thirty-nine patients whose chemotherapy was completed within a month and 40 control subjects were enrolled in the study. Electrodiagnostic evaluation was performed using sensory and motor nerve conduction studies and blink reflex studies, in addition to the two-point discrimination test. Results The chemotherapy group had significantly longer latencies of bilateral R1 responses (left p<0.001; right p<0.001) and greater distance in two-point discrimination (p<0.001) compared to the control group. In the subgroup with peripheral polyneuropathy, the left R1 (p=0.01), both R2i (left p=0.02; right p=0.03) and the left R2c (p=0.02) were prolonged relative to those without the polyneuropathy, and both R1 (left p<0.001; right p<0.001), R2i (left p=0.01; right p=0.03), and the left R2c (p=0.01) were prolonged relative to the controls. On the other hand, the subgroup without the polyneuropathy showed only prolongation of both R1 (left p=0.006; right p<0.001) relative to the controls. Conclusion In the present study, comparison of blink reflex and two-point discrimination showed the likelihood of subclinical cranial neuropathy following platinum-analogue chemotherapy. Cranial neuropathy caused by platinum agents was more profound in patients with peripheral polyneuropathy and may be dependent on the cumulative dose of the drug. The blink reflex may be of value in detecting subclinical cranial neuropathy in patients undergoing platinum-analogue chemotherapy. PMID:26949671

  18. Assessment of Patellar Tendon Reflex Responses Using Second-Order System Characteristics

    Science.gov (United States)

    Steineman, Brett D.; Karra, Pavan; Park, Kiwon

    2016-01-01

    Deep tendon reflex tests, such as the patellar tendon reflex (PTR), are widely accepted as simple examinations for detecting neurological disorders. Despite common acceptance, the grading scales remain subjective, creating an opportunity for quantitative measures to improve the reliability and efficacy of these tests. Previous studies have demonstrated the usefulness of quantified measurement variables; however, little work has been done to correlate experimental data with theoretical models using entire PTR responses. In the present study, it is hypothesized that PTR responses may be described by the exponential decay rate and damped natural frequency of a theoretical second-order system. Kinematic data was recorded from both knees of 45 subjects using a motion capture system and correlation analysis found that the mean R2 value was 0.99. Exponential decay rate and damped natural frequency ranges determined from the sample population were −5.61 to −1.42 and 11.73 rad/s to 14.96 rad/s, respectively. This study confirmed that PTR responses strongly correlate to a second-order system and that exponential decay rate and undamped natural frequency are novel measurement variables to accurately measure PTR responses. Therefore, further investigation of these measurement variables and their usefulness in grading PTR responses is warranted. PMID:27041981

  19. Assessment of Patellar Tendon Reflex Responses Using Second-Order System Characteristics

    Directory of Open Access Journals (Sweden)

    Brett D. Steineman

    2016-01-01

    Full Text Available Deep tendon reflex tests, such as the patellar tendon reflex (PTR, are widely accepted as simple examinations for detecting neurological disorders. Despite common acceptance, the grading scales remain subjective, creating an opportunity for quantitative measures to improve the reliability and efficacy of these tests. Previous studies have demonstrated the usefulness of quantified measurement variables; however, little work has been done to correlate experimental data with theoretical models using entire PTR responses. In the present study, it is hypothesized that PTR responses may be described by the exponential decay rate and damped natural frequency of a theoretical second-order system. Kinematic data was recorded from both knees of 45 subjects using a motion capture system and correlation analysis found that the mean R2 value was 0.99. Exponential decay rate and damped natural frequency ranges determined from the sample population were −5.61 to −1.42 and 11.73 rad/s to 14.96 rad/s, respectively. This study confirmed that PTR responses strongly correlate to a second-order system and that exponential decay rate and undamped natural frequency are novel measurement variables to accurately measure PTR responses. Therefore, further investigation of these measurement variables and their usefulness in grading PTR responses is warranted.

  20. Assessment of Patellar Tendon Reflex Responses Using Second-Order System Characteristics.

    Science.gov (United States)

    Steineman, Brett D; Karra, Pavan; Park, Kiwon

    2016-01-01

    Deep tendon reflex tests, such as the patellar tendon reflex (PTR), are widely accepted as simple examinations for detecting neurological disorders. Despite common acceptance, the grading scales remain subjective, creating an opportunity for quantitative measures to improve the reliability and efficacy of these tests. Previous studies have demonstrated the usefulness of quantified measurement variables; however, little work has been done to correlate experimental data with theoretical models using entire PTR responses. In the present study, it is hypothesized that PTR responses may be described by the exponential decay rate and damped natural frequency of a theoretical second-order system. Kinematic data was recorded from both knees of 45 subjects using a motion capture system and correlation analysis found that the mean R (2) value was 0.99. Exponential decay rate and damped natural frequency ranges determined from the sample population were -5.61 to -1.42 and 11.73 rad/s to 14.96 rad/s, respectively. This study confirmed that PTR responses strongly correlate to a second-order system and that exponential decay rate and undamped natural frequency are novel measurement variables to accurately measure PTR responses. Therefore, further investigation of these measurement variables and their usefulness in grading PTR responses is warranted. PMID:27041981

  1. Mechanisms of hyperpolarization in regenerated mature motor axons in cat

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Krarup, Christian

    2004-01-01

    We found persistent abnormalities in the recovery of membrane excitability in long-term regenerated motor nerve fibres in the cat as indicated in the companion paper. These abnormalities could partly be explained by membrane hyperpolarization. To further investigate this possibility, we compared...... the changes in excitability in control nerves and long-term regenerated cat nerves (3-5 years after tibial nerve crush) during manoeuvres known to alter axonal membrane Na(+)-K(+) pump function: polarization, cooling to 20 degrees C, reperfusion after 10 min ischaemia, and up to 60 s of repetitive stimulation...

  2. Oxaliplatin-induced hyperexcitation of rat sciatic nerve fibers: an intra-axonal study.

    Science.gov (United States)

    Kagiava, Alexia; Kosmidis, Efstratios K; Theophilidis, George

    2013-02-01

    Oxaliplatin is an agent that is used extensively in gastrointestinal cancer chemotherapy. The agent's major dose-limiting toxicity is peripheral neuropathy that can manifest as a chronic or an acute syndrome. Oxaliplatin-induced acute neuropathy is purportedly caused by an alteration of the biophysical properties of voltage-gated sodium channels. However, sodium channel blockers have not been successful at preventing acute neuropathy in the clinical setting. We report intra-axonal recordings from the isolated rat sciatic nerve preparation under the effect of oxaliplatin. The depolarization phase of single action potentials remains intact with a duration of 0.52 ± 0.02 ms (n=68) before and 0.55 ± 0.01 ms (n=68) after 1-5 h of exposure to 150 μM oxaliplatin (unpaired t-test, P > 0.05) whereas there is a significant broadening of the repolarization phase (2.16 ± 0.10 ms, n=68, before and 5.90 ± 0.32 ms after, n=68, unpaired t-test, P < 0.05). Apart from changes in spike shape, oxaliplatin also had drastic concentration- and time-dependent effects on the firing responses of fibers to short stimuli. In the intra-axonal recordings, three groups of firing patterns were indentified. The first group shows bursting (internal frequency 90 - 130 Hz, n=88), the second shows a characteristic plateau (at -19.27�2.84 mV, n=31, with durations ranging from 45 - 140 ms depending on the exposure time), and the third combines a plateau and a bursting period. Our results implicate the voltage-gated potassium channels as additional oxaliplatin targets, opening up new perspectives for the pharmacological prevention of peripheral neuropathy. PMID:22721389

  3. Intact thumb reflex in areflexic Guillain Barré syndrome: A novel phenomenon

    Directory of Open Access Journals (Sweden)

    Karkal Ravishankar Naik

    2014-01-01

    Full Text Available Introduction: Areflexia is one of the cardinal clinical features for the diagnosis of Guillain Barré syndrome. However, some patients may have sluggish proximal muscle stretch reflexes. Presence of thumb reflex, a distal stretch muscle reflex has not been documented in Guillain Barré syndrome. Materials and Methods: We prospectively evaluated thumb reflex in Guillain Barré syndrome patients and age matched controls from April to September 2013. Results: There were 31 patients with Guillain Barrι syndrome in whom thumb reflex could be elicited in all (24 brisk, 7 sluggish, whereas all the other muscle stretch reflexes were absent in 29 patients at presentation and the remaining two had sluggish biceps and quadriceps reflexes (P = 0.001. Serial examination revealed gradual diminution of the thumb reflex (P < 0.001. Rapid progression of weakness was associated with early loss of the thumb reflex. Conclusion: Thumb reflex, a distal stretch reflex is preserved in the early phase of Guillain Barré syndrome.

  4. An Efficient Algorithm for the Reflexive Solution of the Quaternion Matrix Equation AXB+CXHD=F

    Directory of Open Access Journals (Sweden)

    Ning Li

    2013-01-01

    Full Text Available We propose an iterative algorithm for solving the reflexive solution of the quaternion matrix equation AXB+CXHD=F. When the matrix equation is consistent over reflexive matrix X, a reflexive solution can be obtained within finite iteration steps in the absence of roundoff errors. By the proposed iterative algorithm, the least Frobenius norm reflexive solution of the matrix equation can be derived when an appropriate initial iterative matrix is chosen. Furthermore, the optimal approximate reflexive solution to a given reflexive matrix X0 can be derived by finding the least Frobenius norm reflexive solution of a new corresponding quaternion matrix equation. Finally, two numerical examples are given to illustrate the efficiency of the proposed methods.

  5. Matrix metalloproteinases as promising regulators of axonal regrowth in the injured adult zebrafish retinotectal system.

    Science.gov (United States)

    Lemmens, Kim; Bollaerts, Ilse; Bhumika, Stitipragyan; de Groef, Lies; Van Houcke, Jessie; Darras, Veerle M; Van Hove, Inge; Moons, Lieve

    2016-05-01

    Overcoming the failure of axon regeneration in the mammalian central nervous system (CNS) after injury remains a major challenge, which makes the search for proregenerative molecules essential. Matrix metalloproteinases (MMPs) have been implicated in axonal outgrowth during CNS development and show increased expression levels during vertebrate CNS repair. In mammals, MMPs are believed to alter the suppressive extracellular matrix to become more permissive for axon regrowth. We investigated the role of MMPs in axonal regeneration following optic nerve crush (ONC) in adult zebrafish, which fully recover from such injuries due to a high intrinsic axon growth capacity and a less inhibitory environment. Lowering general retinal MMP activity through intravitreal injections of GM6001 after ONC strongly reduced retinal ganglion cell (RGC) axonal regrowth, without influencing RGC survival. Based on a recently performed transcriptome profiling study, the expression pattern of four MMPs after ONC was determined via combined use of western blotting and immunostainings. Mmp-2 and -13a were increasingly present in RGC somata during axonal regrowth. Moreover, Mmp-2 and -9 became upregulated in regrowing RGC axons and inner plexiform layer (IPL) synapses, respectively. In contrast, after an initial rise in IPL neurites and RGC axons during the injury response, Mmp-14 expression decreased during regeneration. Altogether, a phase-dependent expression pattern for each specific MMP was observed, implicating them in axonal regrowth and inner retina remodeling after injury. In conclusion, these data suggest a novel, neuron-intrinsic function for multiple MMPs in axon regrowth that is distinct from breaking down environmental barriers. J. Comp. Neurol. 524:1472-1493, 2016. © 2015 Wiley Periodicals, Inc. PMID:26509469

  6. Gogo receptor contributes to retinotopic map formation and prevents R1-6 photoreceptor axon bundling.

    Directory of Open Access Journals (Sweden)

    Irina Hein

    Full Text Available BACKGROUND: Topographic maps form the basis of neural processing in sensory systems of both vertebrate and invertebrate species. In the Drosophila visual system, neighboring R1-R6 photoreceptor axons innervate adjacent positions in the first optic ganglion, the lamina, and thereby represent visual space as a continuous map in the brain. The mechanisms responsible for the establishment of retinotopic maps remain incompletely understood. RESULTS: Here, we show that the receptor Golden goal (Gogo is required for R axon lamina targeting and cartridge elongation in a partially redundant fashion with local guidance cues provided by neighboring axons. Loss of function of Gogo in large clones of R axons results in aberrant R1-R6 fascicle spacing. Gogo affects target cartridge selection only indirectly as a consequence of the disordered lamina map. Interestingly, small clones of gogo deficient R axons perfectly integrate into a proper retinotopic map suggesting that surrounding R axons of the same or neighboring fascicles provide complementary spatial guidance. Using single photoreceptor type rescue, we show that Gogo expression exclusively in R8 cells is sufficient to mediate targeting of all photoreceptor types in the lamina. Upon lamina targeting and cartridge selection, R axons elongate within their individual cartridges. Interestingly, here Gogo prevents bundling of extending R1-6 axons. CONCLUSION: Taken together, we propose that Gogo contributes to retinotopic map formation in the Drosophila lamina by controlling the distribution of R1-R6 axon fascicles. In a later developmental step, the regular position of R1-R6 axons along the lamina plexus is crucial for target cartridge selection. During cartridge elongation, Gogo allows R1-R6 axons to extend centrally in the lamina cartridge.

  7. A Combination of Central Pattern Generator-based and Reflex-based Neural Networks for Dynamic, Adaptive, Robust Bipedal Locomotion

    DEFF Research Database (Denmark)

    Di Canio, Giuliano; Larsen, Jørgen Christian; Wörgötter, Florentin;

    2016-01-01

    Robotic systems inspired from humans have always been lightening up the curiosity of engineers and scientists. Of many challenges, human locomotion is a very difficult one where a number of different systems needs to interact in order to generate a correct and balanced pattern. To simulate...... the interaction of these systems, implementations with reflexbased or central pattern generator (CPG)-based controllers have been tested on bipedal robot systems. In this paper we will combine the two controller types, into a controller that works with both reflex and CPG signals. We use a reflex-based neural...... network to generate basic walking patterns of a dynamic bipedal walking robot (DACBOT) and then a CPG-based neural network to ensure robust walking behavior...

  8. An ex vivo laser-induced spinal cord injury model to assess mechanisms of axonal degeneration in real-time.

    Science.gov (United States)

    Okada, Starlyn L M; Stivers, Nicole S; Stys, Peter K; Stirling, David P

    2014-01-01

    Injured CNS axons fail to regenerate and often retract away from the injury site. Axons spared from the initial injury may later undergo secondary axonal degeneration. Lack of growth cone formation, regeneration, and loss of additional myelinated axonal projections within the spinal cord greatly limits neurological recovery following injury. To assess how central myelinated axons of the spinal cord respond to injury, we developed an ex vivo living spinal cord model utilizing transgenic mice that express yellow fluorescent protein in axons and a focal and highly reproducible laser-induced spinal cord injury to document the fate of axons and myelin (lipophilic fluorescent dye Nile Red) over time using two-photon excitation time-lapse microscopy. Dynamic processes such as acute axonal injury, axonal retraction, and myelin degeneration are best studied in real-time. However, the non-focal nature of contusion-based injuries and movement artifacts encountered during in vivo spinal cord imaging make differentiating primary and secondary axonal injury responses using high resolution microscopy challenging. The ex vivo spinal cord model described here mimics several aspects of clinically relevant contusion/compression-induced axonal pathologies including axonal swelling, spheroid formation, axonal transection, and peri-axonal swelling providing a useful model to study these dynamic processes in real-time. Major advantages of this model are excellent spatiotemporal resolution that allows differentiation between the primary insult that directly injures axons and secondary injury mechanisms; controlled infusion of reagents directly to the perfusate bathing the cord; precise alterations of the environmental milieu (e.g., calcium, sodium ions, known contributors to axonal injury, but near impossible to manipulate in vivo); and murine models also offer an advantage as they provide an opportunity to visualize and manipulate genetically identified cell populations and subcellular

  9. A period of structural plasticity at the axon initial segment in developing visual cortex

    Directory of Open Access Journals (Sweden)

    Petra Wahle

    2014-03-01

    Full Text Available Cortical networks are shaped by sensory experience and are most susceptible to modifications during critical periods characterized by enhanced plasticity at the structural and functional level. A system particularly well-studied in this context is the mammalian visual system. Plasticity has been documented for the somatodendritic compartment of neurons in detail. A neuronal microdomain not yet studied in this context is the axon initial segment (AIS located at the proximal axon segment. It is a specific electrogenic axonal domain and the site of action potential generation. Recent studies showed that structure and function of the AIS can be dynamically regulated. Here we hypothesize that the AIS shows a dynamic regulation during maturation of the visual cortex. We therefore analyzed AIS length development from embryonic day (E 12.5 to adulthood in mice. A tri-phasic time course of AIS length remodeling during development was observed. AIS first appeared at E14.5 and increased in length throughout the postnatal period to a peak between postnatal day (P 10 to P15 (eyes open P13-14. Then, AIS length was reduced significantly around the beginning of the critical period for ocular dominance plasticity (CP, P21. Shortest AIS were observed at the peak of the CP (P28, followed by a moderate elongation towards the end of the CP (P35. To test if the dynamic maturation of the AIS is influenced by eye opening (onset of activity, animals were deprived of visual input before and during the CP. Deprivation for 1 week prior to eye opening did not affect AIS length development. However, deprivation from P0-P28 and P14-P28 resulted in AIS length distribution similar to the peak at P15. In other words, deprivation from birth prevents the transient shortening of the AIS and maintains an immature AIS length. These results are the first to suggest a dynamic maturation of the AIS in cortical neurons and point to novel mechanisms in the development of neuronal

  10. Bazooka mediates secondary axon morphology in Drosophila brain lineages

    Directory of Open Access Journals (Sweden)

    Hartenstein Volker

    2011-04-01

    Full Text Available Abstract In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that multiple GAL4 drivers have been mapped to several lineages of the Drosophila brain enables investigation of the role of Bazooka from larval to adult stages Bazooka loss-of-function (LOF clones had abnormal morphologies, including aberrant pathway choice of ventral projection neurons in the BAla1 lineage, ectopic branching in the DALv2 and BAmv1 lineages, and excess BLD5 lineage axon projections in the optic medulla. Exogenous expression of Bazooka protein in BAla1 neurons rescued defective guidance, supporting an intrinsic requirement for Bazooka in the post-mitotic neuron. Elimination of the Par-complex member Par6 recapitulated Bazooka phenotypes in some but not all lineages, suggesting that the Par complex functions in a lineage-dependent manner, and that Bazooka may act independently in some lineages. Importantly, this study highlights the potential of using a multilineage approach when studying gene function during neural development in Drosophila.

  11. Bazooka mediates secondary axon morphology in Drosophila brain lineages.

    Science.gov (United States)

    Spindler, Shana R; Hartenstein, Volker

    2011-01-01

    In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that multiple GAL4 drivers have been mapped to several lineages of the Drosophila brain enables investigation of the role of Bazooka from larval to adult stages Bazooka loss-of-function (LOF) clones had abnormal morphologies, including aberrant pathway choice of ventral projection neurons in the BAla1 lineage, ectopic branching in the DALv2 and BAmv1 lineages, and excess BLD5 lineage axon projections in the optic medulla. Exogenous expression of Bazooka protein in BAla1 neurons rescued defective guidance, supporting an intrinsic requirement for Bazooka in the post-mitotic neuron. Elimination of the Par-complex member Par6 recapitulated Bazooka phenotypes in some but not all lineages, suggesting that the Par complex functions in a lineage-dependent manner, and that Bazooka may act independently in some lineages. Importantly, this study highlights the potential of using a multilineage approach when studying gene function during neural development in Drosophila. PMID:21524279

  12. Bushen Yisui Capsule ameliorates axonal injury in experimental autoimmune encephalomyelitis

    Institute of Scientific and Technical Information of China (English)

    Ling Fang; Lei Wang; Qi Zheng; Tao Yang; Hui Zhao; Qiuxia Zhang; Kangning Li; Li Zhou; Haiyang Gong; Yongping Fan

    2013-01-01

    A preliminary clinical study by our group demonstrated Bushen Yisui Capsule (formerly cal ed Er-huang Formula) in combination with conventional therapy is an effective prescription for the treat-ment of multiple sclerosis. However, its effect on axonal injury during early multiple sclerosis re-mains unclear. In this study, a MOG 35-55-immunized C57BL/6 mouse model of experimental au-toimmune encephalomyelitis was intragastrical y administered Bushen Yisui Capsule. The results showed that Bushen Yisui Capsule effectively improved clinical symptoms and neurological function of experimental autoimmune encephalomyelitis. In addition, amyloid precursor protein expression was down-regulated and microtubule-associated protein 2 was up-regulated. Experimental findings indicate that the disease-preventive mechanism of Bushen Yisui Capsule in experimental autoim-mune encephalomyelitis was mediated by amelioration of axonal damage and promotion of rege-neration. But the effects of the high-dose Bushen Yisui Capsule group was not better than that of the medium-dose and low-dose Bushen Yisui Capsule group in preventing neurological dysfunction.

  13. Automated kymograph analysis for profiling axonal transport of secretory granules.

    Science.gov (United States)

    Mukherjee, Amit; Jenkins, Brian; Fang, Cheng; Radke, Richard J; Banker, Gary; Roysam, Badrinath

    2011-06-01

    This paper describes an automated method to profile the velocity patterns of small organelles (BDNF granules) being transported along a selected section of axon of a cultured neuron imaged by time-lapse fluorescence microscopy. Instead of directly detecting the granules as in conventional tracking, the proposed method starts by generating a two-dimensional spatio-temporal map (kymograph) of the granule traffic along an axon segment. Temporal sharpening during the kymograph creation helps to highlight granule movements while suppressing clutter due to stationary granules. A voting algorithm defined over orientation distribution functions is used to refine the locations and velocities of the granules. The refined kymograph is analyzed using an algorithm inspired from the minimum set cover framework to generate multiple motion trajectories of granule transport paths. The proposed method is computationally efficient, robust to significant levels of noise and clutter, and can be used to capture and quantify trends in transport patterns quickly and accurately. When evaluated on a collection of image sequences, the proposed method was found to detect granule movement events with 94% recall rate and 82% precision compared to a time-consuming manual analysis. Further, we present a study to evaluate the efficacy of velocity profiling by analyzing the impact of oxidative stress on granule transport in which the fully automated analysis correctly reproduced the biological conclusion generated by manual analysis. PMID:21330183

  14. Values of blink reflex and electroneurography in diagnosis of facial paralysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND:The electrophysiological test was mainly achieved by the reaction of nerve fiber to electrical stimulus,usually expressed by the amplitude and latency.Blink reflex and electroneurography (ENOG) are widely applied in facial paralysis,the amplitude would step down,and the latency would prolong when the facial nerve was injured.OBJECTIVE:To compare the value of blink reflex and ENOG in the diagnosis of facial paralysis (Bell's palsy).DESIGN:A controlled trial.SETTINGS:Affiliated Hospital,Chengdu University of Traditional Chinese Medicine;West China Hospital of Sichuan University;Mianyang Hospital of Traditional Chinese Medicine;Sichuan People's Hospital.PARTICIPANTS:The patients who had finished the tests of blink reflex (n=207) and ENOG (n=205) were selected from the Affiliated Hospital,Chengdu University of Traditional Chinese Medicine;West China Hospital of Sichuan University;Mianyang Hospital of Traditional Chinese Medicine;Sichuan People's Hospital from September 2001 to July 2003.After treatment for 4 weeks,the patients finished tests of blink reflex (n =207) and ENOG (n =205) were randomly divided into primary treatment group (n=68,69),acupuncture group (n =71,66) and comprehensive treatment group (n =68,70),respectively.Approval was obtained from the ethic committee of hospital.METHODS:Patients in the primary treatment group and acupuncture group were treated with western medicine,acupuncture and moxibustion alone respectively,and those in the comprehensive treatment group were treated with acupuncture and moxibustion based on western medicine.The whole period of treatment was 4 weeks.The tests of blink reflex and ENOG were carried out using Japanese light and electricity MEB-2200 electromyogram/induced potential instrument for once before and after treatment respectively.The normal value of the latency period of wave R1 was within 13 ms,and the difference was 1 - 1.2 ms between the left and right sides.MAIN OUTCOME MEASURES:The latency of wave Rl

  15. Fast and simplified mapping of mean axon diameter using temporal diffusion spectroscopy.

    Science.gov (United States)

    Xu, Junzhon; Li, Hua; Li, Ke; Harkins, Kevin D; Jiang, Xiaoyu; Xie, Jingping; Kang, Hakmook; Dortch, Richard D; Anderson, Adam W; Does, Mark D

    2016-04-01

    Mapping axon diameter is of interest for the potential diagnosis and monitoring of various neuronal pathologies. Advanced diffusion-weighted MRI methods have been developed to measure mean axon diameters non-invasively, but suffer major drawbacks that prevent their direct translation into clinical practice, such as complex non-linear data fitting and, more importantly, long scanning times that are usually not tolerable for most human subjects. In the current study, temporal diffusion spectroscopy using oscillating diffusion gradients was used to measure mean axon diameters with high sensitivity to small axons in the central nervous system. Axon diameters have been found to be correlated with a novel metric, DDR⊥ (the rate of dispersion of the perpendicular diffusion coefficient with gradient frequency), which is a model-free quantity that does not require complex data analyses and can be obtained from two diffusion coefficient measurements in clinically relevant times with conventional MRI machines. A comprehensive investigation including computer simulations and animal experiments ex vivo showed that measurements of DDR⊥ agree closely with histological data. In humans in vivo, DDR⊥ was also found to correlate well with reported mean axon diameters in human corpus callosum, and the total scan time was only about 8 min. In conclusion, DDR⊥ may have potential to serve as a fast, simple and model-free approach to map the mean axon diameter of white matter in clinics for assessing axon diameter changes. PMID:27077155

  16. DIRECT MEASUREMENT OF FAST AXONAL ORGANELLE TRANSPORT IN THE SCIATIC NERVE OF RATS TREATED WITH ACRYLAMIDE

    Science.gov (United States)

    The effects of acrylamide on fast axonal transport have been measured primarily using the indirect methods of isotope or enzyme accumulation. e report the first direct evaluation of the effects of sub-chronic acrylamide dosing (150, 300 or 500 mg/kg total dose) on the fast axonal...

  17. A model of fasciculation and sorting in mixed populations of axons

    CERN Document Server

    Chaudhuri, Debasish; Zapotocky, Martin

    2010-01-01

    We extend a recently proposed model (Chaudhuri et al., EPL 87, 20003 (2009)), aiming to describe the formation of fascicles of axons during neural development. The growing axons are represented as paths of interacting directed random walkers in two spatial dimensions. To mimic turnover of axons, whole paths are removed and new walkers are injected with specified rates. In the simplest version of the model, we use strongly adhesive inter-axon interactions that are identical for all pairs of axons. We generalize the model to interactions of finite strengths and to multiple types of axons with type-specific interactions. The dynamic steady state is characterized by the position-dependent distribution of fascicle sizes. With distance in the direction of axon growth, the mean fascicle size and emergent time scales grow monotonically, while the degree of sorting of fascicles by axon type has a maximum at a finite distance. To understand the emergence of slow time scales, we develop an analytical framework to analyz...

  18. Axonal plasticity elicits long-term changes in oligodendroglia and myelinated fibers

    DEFF Research Database (Denmark)

    Drøjdahl, Nina; Nielsen, Helle Hvilsted; Gardi, Jonathan E;

    2010-01-01

    Axons are linked to induction of myelination during development and to the maintenance of myelin and myelinated tracts in the adult CNS. Currently, it is unknown whether and how axonal plasticity in adult CNS impacts the myelinating cells and their precursors. In this article, we report that newl...

  19. Blast overpressure induced axonal injury changes in rat brainstem and spinal cord

    Directory of Open Access Journals (Sweden)

    Srinivasu Kallakuri

    2015-01-01

    Full Text Available Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s of blast overpressure (OP induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM tracts of cervical spinal cord are limited. Objective: The purpose of this study was to assess the extent of axonal injury in WM tracts of cervical spinal cord in male Sprague Dawley rats subjected to a single insult of blast OP. Materials and Methods: Sagittal brainstem sections and horizontal cervical spinal cord sections from blast and sham animals were stained by neurofilament light (NF-L chain and beta amyloid precursor protein immunocytochemistry and observed for axonal injury changes. Results: Observations from this preliminary study demonstrate axonal injury changes in the form of prominent swellings, retraction bulbs, and putative signs of membrane disruptions in the brainstem and cervical spinal cord WM tracts of rats subjected to blast OP. Conclusions: Prominent axonal injury changes following the blast OP exposure in brainstem and cervical spinal WM tracts underscores the need for careful evaluation of blast induced injury changes and associated symptoms. NF-L immunocytochemistry can be considered as an additional tool to assess the blast OP induced axonal injury.

  20. Axon-somatic back-propagation in detailed models of spinal alpha motoneurons

    Directory of Open Access Journals (Sweden)

    Pietro eBalbi

    2015-02-01

    Full Text Available Antidromic action potentials following distal stimulation of motor axons occasionally fail to invade the soma of alpha motoneurons in spinal cord, due to their passing through regions of high non-uniformity.Morphologically detailed conductance-based models of cat spinal alpha motoneurons have been developed, with the aim to reproduce and clarify some aspects of the electrophysiological behavior of the antidromic axon-somatic spike propagation. Fourteen 3D morphologically detailed somata and dendrites of cat spinal alpha motoneurons have been imported from an open-access web-based database of neuronal morphologies, NeuroMorpho.org, and instantiated in neurocomputational models. An axon hillock, an axonal initial segment and a myelinated axon are added to each model.By sweeping the diameter of the axonal initial segment (AIS and the axon hillock, as well as the maximal conductances of sodium channels at the AIS and at the soma, the developed models are able to show the relationships between different geometric and electrophysiological configurations and the voltage attenuation of the antidromically travelling wave.In particular, a greater than usually admitted sodium conductance at AIS is necessary and sufficient to overcome the dramatic voltage attenuation occurring during antidromic spike propagation both at the myelinated axon-AIS and at the AIS-soma transitions.

  1. A developmental timing switch promotes axon outgrowth independent of known guidance receptors.

    Directory of Open Access Journals (Sweden)

    Katherine Olsson-Carter

    2010-08-01

    Full Text Available To form functional neuronal connections, axon outgrowth and guidance must be tightly regulated across space as well as time. While a number of genes and pathways have been shown to control spatial features of axon development, very little is known about the in vivo mechanisms that direct the timing of axon initiation and elongation. The Caenorhabditis elegans hermaphrodite specific motor neurons (HSNs extend a single axon ventrally and then anteriorly during the L4 larval stage. Here we show the lin-4 microRNA promotes HSN axon initiation after cell cycle withdrawal. Axons fail to form in lin-4 mutants, while they grow prematurely in lin-4-overexpressing animals. lin-4 is required to down-regulate two inhibitors of HSN differentiation--the transcriptional regulator LIN-14 and the "stemness" factor LIN-28--and it likely does so through a cell-autonomous mechanism. This developmental switch depends neither on the UNC-40/DCC and SAX-3/Robo receptors nor on the direction of axon growth, demonstrating that it acts independently of ventral guidance signals to control the timing of HSN axon elongation.

  2. C. elegans: a new model organism for studies of axon regeneration

    OpenAIRE

    Ghosh-Roy, Anindya; Chisholm, Andrew D.

    2010-01-01

    Axonal regeneration in C. elegans was first reported five years ago. Individual GFP-labeled axons can be severed using laser microsurgery and their regrowth followed in vivo. Several neuron types display robust regrowth after injury, including motor and sensory neurons. The small size and transparency of C. elegans make possible large-scale genetic and pharmacological screens for regeneration phenotypes.

  3. Inhibition of kinesin-5 improves regeneration of injured axons by a novel microtubule-based mechanism

    Institute of Scientific and Technical Information of China (English)

    Peter W. Baas; Andrew J. Matamoros

    2015-01-01

    Microtubules have been identiifed as a powerful target for augmenting regeneration of injured adult axons in the central nervous system. Drugs that stabilize microtubules have shown some promise, but there are concerns that abnormally stabilizing microtubules may have only limited beneifts for regeneration, while at the same time may be detrimental to the normal work that microtubules perform for the axon. Kinesin-5 (also called kif11 or Eg5), a molecular motor protein best known for its crucial role in mitosis, acts as a brake on microtubule movements by other motor proteins in the axon. Drugs that inhibit kinesin-5, originally developed to treat cancer, result in greater mobility of microtubules in the axon and an overall shift in the forces on the microtubule array. As a result, the axon grows faster, retracts less, and more readily enters environments that are inhibitory to axonal regeneration. Thus, drugs that inhibit kinesin-5 offer a novel microtubule-based means to boost axonal regeneration without the concerns that ac-company abnormal stabilization of the microtubule array. Even so, inhibiting kinesin-5 is not without its own caveats, such as potential problems with navigation of the regenerating axon to its target, as well as morphological effects on dendrites that could affect learning and memory if the drugs reach the brain.

  4. Stages in axon formation: observations of growth of Aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy

    OpenAIRE

    1986-01-01

    The regenerative growth in culture of the axons of two giant identified neurons from the central nervous system of Aplysia californica was observed using video-enhanced contrast-differential interference contrast microscopy. This technique allowed the visualization in living cells of the membranous organelles of the growth cone. Elongation of axonal branches always occurred through the same sequence of events: A flat organelle-free veil protruded from the front of the growth cone, gradually f...

  5. Shank3 is localized in axons and presynaptic specializations of developing hippocampal neurons and involved in the modulation of NMDA receptor levels at axon terminals.

    Science.gov (United States)

    Halbedl, Sonja; Schoen, Michael; Feiler, Marisa S; Boeckers, Tobias M; Schmeisser, Michael J

    2016-04-01

    Autism-related Shank1, Shank2, and Shank3 are major postsynaptic scaffold proteins of excitatory glutamatergic synapses. A few studies, however, have already indicated that within a neuron, the presence of Shank family members is not limited to the postsynaptic density. By separating axons from dendrites of developing hippocampal neurons in microfluidic chambers, we show that RNA of all three Shank family members is present within axons. Immunostaining confirms these findings as all three Shanks are indeed found within separated axons and further co-localize with well-known proteins of the presynaptic specialization in axon terminals. Therefore, Shank proteins might not only serve as postsynaptic scaffold proteins, but also play a crucial role during axonal outgrowth and presynaptic development and function. This is supported by our findings that shRNA-mediated knockdown of Shank3 results in up-regulation of the NMDA receptor subunit GluN1 in axon terminals. Taken together, our findings will have major implications for the future analysis of neuronal Shank biology in both health and disease. Shank1, Shank2, and Shank3 are major postsynaptic scaffold proteins of excitatory glutamatergic synapses strongly related to several neuropsychiatric disorders. However, a few studies have already implicated a functional role of the Shanks beyond the postsynaptic density (PSD). We here show that all three Shanks are localized in both axons and pre-synaptic specializiations of developing hippocampal neurons in culture. We further provide evidence that Shank3 is involved in the modulation of NMDA receptor levels at axon terminals. Taken together, our study will open up novel avenues for the future analysis of neuronal Shank biology in both health and disease. PMID:26725465

  6. RETROGRADE AXONAL TRANSPORT OF PHOSPHOINOSITIDES AFTER INTRANEURAL INJECTION OF [3H]MYO-INOSITOL INTO THE RAT SCIATIC NERVE

    Science.gov (United States)

    Although autoradiography has demonstrated local incorporation of [3H]inositol into axonal phospholipids after intraneural injection (Gould, 1976; Gould et at., 1987b), retrograde axonal transport of phosphatidylinositol has only been demonstrated after injection of lipid precurso...

  7. Transfer of vesicles from Schwann cell to axon: a novel mechanism of communication in the peripheral nervous system

    Directory of Open Access Journals (Sweden)

    María Alejandra eLopez-Verrilli

    2012-06-01

    Full Text Available Schwann cells (SCs are the glial component of the peripheral nervous system, with essential roles during development and maintenance of axons, as well as during regenerative processes after nerve injury. SCs increase conduction velocities by myelinating axons, regulate synaptic activity at presynaptic nerve terminals and are a source of trophic factors to neurons. Thus, development and maintenance of peripheral nerves are crucially dependent on local signalling between SCs and axons. In addition to the classic mechanisms of intercellular signalling, the possibility of communication through secreted vesicles has been poorly explored to date. Interesting recent findings suggest the occurrence of lateral transfer mediated by vesicles from glial cells to axons that could have important roles in axonal growth and axonal regeneration. Here, we review the role of vesicular transfer from SCs to axons and propose the benefits of this means in supporting neuronal and axonal maintenance and regeneration after nerve damage.

  8. High-density and low electron temperature direct current reflex plasma source

    International Nuclear Information System (INIS)

    A new type of direct current, high-density, and low electron temperature reflex plasma source, obtained as a hybrid between a modified hollow-cathode discharge and a Penning ionization gauge discharge is presented. The plasma source was tested in argon, nitrogen, and oxygen over a range pressure of 1.0-10-3 m-bar, discharge currents 20-200 mA, and magnetic field 0-120 Gauss. Both external parameters, such as breakdown potential and the discharge voltage-current characteristic, and its internal parameters, like the electron energy distribution function, electron and ion densities, and electron temperature, were measured. Due to the enhanced hollow-cathode effect by the magnetic trapping of electrons, the density of the bulk plasma is as high as 1018 m-3, and the electron temperature is as low as a few tenths of electron volts. The plasma density scales with the dissipated power. Another important feature of this reflex plasma source is its high degree of uniformity, while the discharge bulk region is free of an electric field

  9. Vestibulo-spinal and vestibulo-ocular reflexes are modulated when standing with increased postural threat.

    Science.gov (United States)

    Naranjo, E N; Cleworth, T W; Allum, J H J; Inglis, J T; Lea, J; Westerberg, B D; Carpenter, M G

    2016-02-01

    We investigated how vestibulo-spinal reflexes (VSRs) and vestibulo-ocular reflexes (VORs) measured through vestibular evoked myogenic potentials (VEMPs) and video head impulse test (vHIT) outcomes, respectively, are modulated during standing under conditions of increased postural threat. Twenty-five healthy young adults stood quietly at low (0.8 m from the ground) and high (3.2 m) surface height conditions in two experiments. For the first experiment (n = 25) VEMPs were recorded with surface EMG from inferior oblique (IO), sternocleidomastoid (SCM), trapezius (TRP), and soleus (SOL) muscles in response to 256 air-conducted short tone bursts (125 dB SPL, 500 Hz, 4 ms) delivered via headphones. A subset of subjects (n = 19) also received horizontal and vertical head thrusts (∼150°/s) at each height in a separate session, comparing eye and head velocities by using a vHIT system for calculating the functional VOR gains. VEMP amplitudes (IO, TRP, SOL) and horizontal and vertical vHIT gains all increased with high surface height conditions (P VOR gains that can be observed in both physiological and functional outcome measures. These findings provide support for a potential central modulation of the vestibular nucleus complex through excitatory inputs from neural centers involved in processing fear, anxiety, arousal, and vigilance. PMID:26631147

  10. Fear conditioning facilitates rats gap detection measured by prepulse inhibition of the startle reflex

    Science.gov (United States)

    Zou, Dan; Wu, Xihong; Li, Liang

    2005-04-01

    A low-intensity acoustic event presented shortly before an intense startling sound can inhibit the acoustic startle reflex. This phenomenon is called prepulse inhibition (PPI), and is widely used as a model of sensorimotor gating in both humans and animals. Particularly, it has been used for evaluating the aging effect on the mouse's ability to detect a silent gap in otherwise continuous sounds. The present study extended this model to the emotional modulation of gap detection. The results show that a silent gap embedded in each of the two broadband noise sounds (55 dB SPL), which were delivered by two spatially separated loudspeakers, could inhibit the startle reflex that was induced by a loud sound presented from the third loudspeaker 50 ms after the gap. The inhibitory effect largely depended on the duration of the gap, with the mean duration threshold around 11 ms across 18 rats tested. Pairing the gap with foot shock in a temporally specific manner, but not in a temporally random manner, significantly reduced the duration threshold. Thus this study established a new animal behavioral model both for studying auditory temporal processing and for studying auditory signal-detection plasticity induced by emotional learning.

  11. Stabilizing skateboard speed-wobble with reflex delay.

    Science.gov (United States)

    Varszegi, Balazs; Takacs, Denes; Stepan, Gabor; Hogan, S John

    2016-08-01

    A simple mechanical model of the skateboard-skater system is analysed, in which the effect of human control is considered by means of a linear proportional-derivative (PD) controller with delay. The equations of motion of this non-holonomic system are neutral delay-differential equations. A linear stability analysis of the rectilinear motion is carried out analytically. It is shown how to vary the control gains with respect to the speed of the skateboard to stabilize the uniform motion. The critical reflex delay of the skater is determined as the function of the speed. Based on this analysis, we present an explanation for the linear instability of the skateboard-skater system at high speed. Moreover, the advantages of standing ahead of the centre of the board are demonstrated from the viewpoint of reflex delay and control gain sensitivity. PMID:27534701

  12. Abnormal oculocardiac reflex in two patients with Marcus Gunn syndrome

    Directory of Open Access Journals (Sweden)

    Maitree Pandey

    2011-01-01

    Full Text Available Marcus Gunn phenomenon is seen in 4 to 6% of congenital ptosis patients. We report two cases of abnormal oculocardiac reflex during ptosis correction surgery. Marcus Gunn syndrome is an autosomal dominant condition with incomplete penetrance. It is believed to be a neural misdirection syndrome in which fibres of the motor division of the trigeminal nerve are congenitally misdirected into the superior pterygoid and the levator muscles. Anesthetic considerations include taking a detailed history about any previous anaesthetic exposure and any reaction to it as this syndrome has a high probability of being associated with malignant hyperthermia. It is also postulated that an atypical oculocardiac reflex might be initiated in these patients as seen in our patients, so precautions must be taken for its prevention and early detection.

  13. Altered pupillary light reflex in PACAP receptor 1-deficient mice

    DEFF Research Database (Denmark)

    Engelund, Anna; Fahrenkrug, Jan; Harrison, Adrian Paul;

    2012-01-01

    The pupillary light reflex (PLR) is regulated by the classical photoreceptors, rods and cones, and by intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin. IpRGCs receive input from rods and cones and project to the olivary pretectal nucleus (OPN......), which is the primary visual center involved in PLR. Mice lacking either the classical photoreceptors or melanopsin exhibit some changes in PLR, whereas the reflex is completely lost in mice deficient of all three photoreceptors. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP......) is co-stored with melanopsin in ipRGCs and mediates light signaling to the brain via the specific PACAP receptor 1 (PAC1R). Here, we examined the occurrence of PACAP and PAC1R in the mouse OPN, and studied if lack of PAC1R affected the PLR. PACAP-immunoreactive nerve fibers were shown in the mouse...

  14. Reflexively exploring knowledge and power in collaborative research

    DEFF Research Database (Denmark)

    Olesen, Birgitte Ravn; Pedersen, Chistina Hee; Frølunde, Lisbeth; Phillips, Louise Jane; Nordentoft, Helle Merete

    processes of mutual learning. There are also tensions between processes of opening up for a plurality of knowledges and processes of closure in order to achieve strategic ends in the form of some kind of outcome. The basic premise underpinning this workshop is that we as researchers can best deal with the......The proposed workshop will take its starting point in the challenges which collaborative research practices share. The aim of the workshop is to work with, and further develop, a range of critical, reflexive strategies for understanding, analysing and dealing with those challenges. The workshop...... complexities and tensions of collaborative research through reflexive analyses of how “dialogue” and “participation” are played out concretely in collaborative research practices. Therefore, the workshop will be designed as a forum in which we go into depth with the different problems, dilemmas, ambivalences...

  15. Teacher education and the challenges of the reflexive practice

    Directory of Open Access Journals (Sweden)

    Maria Regina Peres

    2013-06-01

    Full Text Available This article approaches the importance of teacher practice and their initial and continuing education in the light of the challenges offered by the critical reflexive proposal. The aims of this study were to investigate the underlying assumptions regarding teachers’ current education and practice, to research and analyze the major difficulties found in the development of teaching practice, to comprehend and analyze the complexity inherent to the teacher’s performance in the initial years of elementary school. A bibliographic research and a qualitative research with elementary school teachers were therefore developed. The results indicate that although teachers believe the learning process to be continuous, they do not invest in this type of education. Furthermore it was found that teachers’ critical reflexive attitudes are blended with eproductivist attitudes.

  16. Operationalizing reflexivity to improve the rigor of palliative care research.

    Science.gov (United States)

    Johnston, Bridget; Pringle, Jan; Buchanan, Deans

    2016-08-01

    Reflective practice involves deliberate consideration of actions, attitudes and behaviors. Reflexivity in research is considered important for ensuring that research is ethically and rigorously conducted. This paper details the challenges of conducting research involving patients with palliative care needs within the acute hospital environment. It discusses the contribution of reflexivity to a pilot study using the Patient Dignity Question (PDQ) "What do I need to know about you as a person to take the best care of you that I can?" as a brief intervention to foster a more person-centered climate. Challenges that emerged are discussed from the perspectives of the researchers, the participants, and the setting; they relate to: timing and recruitment, the nature of palliative care illness, attitudes to research, and the research environment. Awareness of such issues can prompt researchers to devise appropriate strategies and approaches that may inform and assist the rigor and conduct of future research. PMID:26620579

  17. Avoidance and management of trigeminocardiac reflex complicating awake-craniotomy.

    Science.gov (United States)

    Prabhu, Vikram C; Bamber, Norman I; Shea, John F; Jellish, W Scott

    2008-12-01

    The trigeminocardiac reflex occurs from manipulation or stimulation of peripheral branches or the central component of the trigeminal nerve and consists of bradycardia, hypotension, apnea, and increased gastric motility. The efferent limb of the response is mediated by the vagus nerve. This 65-year-old Caucasian male suffered an episode of bradycardia progressing to transient asystole during the course of an awake-craniotomy procedure for tumor resection. The cardiac rhythm changes resolved with administration of intravenous atropine, removal of the precipitating stimulus, and application of topical anesthetic on the dura of the middle cranial fossa. The trigeminocardiac response may complicate the course of a craniotomy and may place an awake, unintubated patient at increased risk for morbidity. The reflex may be prevented by anesthetizing the dura innervated by the trigeminal nerve via injection or topical application of local anesthetic. If encountered, removal of the stimulus, airway protection, and administration of vagolytic medications are measures that need to be considered. PMID:18845385

  18. Motion and Walking Stabilization of Humanoids Using Sensory Reflex Control

    Directory of Open Access Journals (Sweden)

    Jong-Wook Kim

    2016-04-01

    Full Text Available Humanoid robots are versatile robot platforms that can carry out intelligent tasks and services for humans, including intimate interactions. For high mobility, a robust stabilization of motion including biped walking is crucial. This paper employs and elaborates on sensory reflex control to stabilize standing motion and biped walking using basic sensors such as an inertial measurement unit (IMU and a force-sensing resistor (FSR. Specifically, normalized zero-moment points processed from FSR data are used in the reflexive control of a simple motion of swinging the whole body while standing, and the measured inclination angle of the trunk, filtered from IMU data, is used for biped walking on a sloped floor. The proposed control scheme is validated through experiments with the commercial humanoid robot, ROBOTIS-OP.

  19. Disrupted axon-glia interactions at the paranode in myelinated nerves cause axonal degeneration and neuronal cell death in the aged Caspr mutant mouse shambling.

    Science.gov (United States)

    Takagishi, Yoshiko; Katanosaka, Kimiaki; Mizoguchi, Hiroyuki; Murata, Yoshiharu

    2016-07-01

    Emerging evidence suggests that axonal degeneration is a disease mechanism in various neurodegenerative diseases and that the paranodes at the nodes of Ranvier may be the initial site of pathogenesis. We investigated the pathophysiology of the disease process in the central and peripheral nervous systems of a Caspr mutant mouse, shambling (shm), which is affected by disrupted paranodal structures and impaired nerve conduction of myelinated nerves. The shm mice manifest a progressive neurological phenotype as mice age. We found extensive axonal degeneration and a loss of neurons in the central nervous system and peripheral nervous system in aged shm mice. Axonal alteration of myelinated nerves was defined by abnormal distribution and expression of neurofilaments and derangements in the status of phosphorylated and non/de-phosphorylated neurofilaments. Autophagy-related structures were also accumulated in degenerated axons and neurons. In conclusion, our results suggest that disrupted axon-glia interactions at the paranode cause the cytoskeletal alteration in myelinated axons leading to neuronal cell death, and the process involves detrimental autophagy and aging as factors that promote the pathogenesis. PMID:27255813

  20. Plasticity of Urinary Bladder Reflexes Evoked by Stimulation of Pudendal Afferent Nerves after Chronic Spinal Cord Injury in Cats

    OpenAIRE

    Tai, Changfeng; Chen, Mang; Shen, Bing; Wang, Jicheng; Liu, Hailong; Roppolo, James R.; de Groat, William C.

    2010-01-01

    Bladder reflexes evoked by stimulation of pudendal afferent nerves (PudA-to-Bladder reflex) were studied in normal and chronic spinal cord injured (SCI) adult cats to examine the reflex plasticity. Physiological activation of pudendal afferent nerves by tactile stimulation of the perigenital skin elicits an inhibitory PudA-to-Bladder reflex in normal cats, but activates an excitatory reflex in chronic SCI cats. However, in both normal and chronic SCI cats electrical stimulation applied to the...