WorldWideScience

Sample records for axon growth guidance

  1. Signaling mechanisms in cortical axon growth, guidance and branching

    Directory of Open Access Journals (Sweden)

    Katherine eKalil

    2011-09-01

    Full Text Available Precise wiring of cortical circuits during development depends upon axon extension, guidance and branching to appropriate targets. Motile growth cones at axon tips navigate through the nervous system by responding to molecular cues, which modulate signaling pathways within axonal growth cones. Intracellular calcium signaling has emerged as a major transducer of guidance cues but exactly how calcium signaling pathways modify the actin and microtubule cytoskeleton to evoke growth cone behaviors and axon branching is still mysterious. Axons must often pause in their outgrowth while their branches extend into targets. Some evidence suggests a competition between growth of axons and branches but the mechanisms are poorly understood. Since it is difficult to study growing axons deep within the mammalian brain, much of what we know about signaling pathways and cytoskeletal dynamics has come from studies of axonal growth cones, in many cases from non-mammalian species, growing in tissue culture. Consequently it is not well understood how guidance cues relevant to mammalian neural development in vivo signal to the growth cone cytoskeleton during axon outgrowth and guidance. In this review we describe our recent work in dissociated cultures of developing rodent sensorimotor cortex in the context of the current literature on molecular guidance cues, calcium signaling pathways and cytoskeletal dynamics that regulate growth cone behaviors. A major challenge is to relate findings in tissue culture to mechanisms of cortical development in vivo. Toward this goal, we describe our recent work in cortical slices, which preserve the complex cellular and molecular environment of the mammalian brain but allow direct visualization of growth cone behaviors and calcium signaling. Findings from this work suggest that mechanisms regulating axon growth and guidance in dissociated culture neurons also underlie development of cortical connectivity in vivo.

  2. Quantifying mechanical force in axonal growth and guidance

    Directory of Open Access Journals (Sweden)

    Ahmad Ibrahim Mahmoud Athamneh

    2015-09-01

    Full Text Available Mechanical force plays a fundamental role in neuronal development, physiology, and regeneration. In particular, research has shown that force is involved in growth cone-mediated axonal growth and guidance as well as stretch-induced elongation when an organism increases in size after forming initial synaptic connections. However, much of the details about the exact role of force in these fundamental processes remain unknown. In this review, we highlight (1 standing questions concerning the role of mechanical force in axonal growth and guidance and (2 different experimental techniques used to quantify forces in axons and growth cones. We believe that satisfying answers to these questions will require quantitative information about the relationship between elongation, forces, cytoskeletal dynamics, axonal transport, signaling, substrate adhesion, and stiffness contributing to directional growth advance. Furthermore, we address why a wide range of force values have been reported in the literature, and what these values mean in the context of neuronal mechanics. We hope that this review will provide a guide for those interested in studying the role of force in development and regeneration of neuronal networks.

  3. Wnt5a regulates midbrain dopaminergic axon growth and guidance.

    Directory of Open Access Journals (Sweden)

    Brette D Blakely

    Full Text Available During development, precise temporal and spatial gradients are responsible for guiding axons to their appropriate targets. Within the developing ventral midbrain (VM the cues that guide dopaminergic (DA axons to their forebrain targets remain to be fully elucidated. Wnts are morphogens that have been identified as axon guidance molecules. Several Wnts are expressed in the VM where they regulate the birth of DA neurons. Here, we describe that a precise temporo-spatial expression of Wnt5a accompanies the development of nigrostriatal projections by VM DA neurons. In mice at E11.5, Wnt5a is expressed in the VM where it was found to promote DA neurite and axonal growth in VM primary cultures. By E14.5, when DA axons are approaching their striatal target, Wnt5a causes DA neurite retraction in primary cultures. Co-culture of VM explants with Wnt5a-overexpressing cell aggregates revealed that Wnt5a is capable of repelling DA neurites. Antagonism experiments revealed that the effects of Wnt5a are mediated by the Frizzled receptors and by the small GTPase, Rac1 (a component of the non-canonical Wnt planar cell polarity pathway. Moreover, the effects were specific as they could be blocked by Wnt5a antibody, sFRPs and RYK-Fc. The importance of Wnt5a in DA axon morphogenesis was further verified in Wnt5a-/- mice, where fasciculation of the medial forebrain bundle (MFB as well as the density of DA neurites in the MFB and striatal terminals were disrupted. Thus, our results identify a novel role of Wnt5a in DA axon growth and guidance.

  4. Wnt-induced calcium signaling mediates axon growth and guidance in the developing corpus callosum.

    Science.gov (United States)

    Hutchins, B Ian; Li, Li; Kalil, Katherine

    2012-01-10

    Wnt5a gradients guide callosal axons by repulsion through Ryk receptors in vivo. We recently found that Wnt5a repels cortical axons and promotes axon outgrowth through calcium signaling in vitro. Here, using cortical slices, we show that Wnt5a signals through Ryk to guide and promote outgrowth of callosal axons after they cross the midline. Calcium transient frequencies in callosal growth cones positively correlate with axon outgrowth rates in vitro. In cortical slices, calcium release through inositol 1,4,5-trisphosphate (IP(3)) receptors and calcium entry through transient receptor potential channels modulate axon growth and guidance. Knocking down Ryk inhibits calcium signaling in cortical axons, reduces rates of axon outgrowth subsequent to midline crossing, and causes axon guidance defects. Calcium- and calmodulin-dependent protein kinase II (CaMKII) is required downstream of Wnt-induced calcium signaling for postcrossing callosal axon growth and guidance. Taken together, these results suggest that growth and guidance of postcrossing callosal axons by Wnt-Ryk-calcium signaling involves axon repulsion through CaMKII.

  5. Primary neuron culture for nerve growth and axon guidance studies in zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Zheyan Chen

    Full Text Available Zebrafish (Danio rerio is a widely used model organism in genetics and developmental biology research. Genetic screens have proven useful for studying embryonic development of the nervous system in vivo, but in vitro studies utilizing zebrafish have been limited. Here, we introduce a robust zebrafish primary neuron culture system for functional nerve growth and guidance assays. Distinct classes of central nervous system neurons from the spinal cord, hindbrain, forebrain, and retina from wild type zebrafish, and fluorescent motor neurons from transgenic reporter zebrafish lines, were dissociated and plated onto various biological and synthetic substrates to optimize conditions for axon outgrowth. Time-lapse microscopy revealed dynamically moving growth cones at the tips of extending axons. The mean rate of axon extension in vitro was 21.4±1.2 µm hr(-1 s.e.m. for spinal cord neurons, which corresponds to the typical ∼0.5 mm day(-1 growth rate of nerves in vivo. Fluorescence labeling and confocal microscopy demonstrated that bundled microtubules project along axons to the growth cone central domain, with filamentous actin enriched in the growth cone peripheral domain. Importantly, the growth cone surface membrane expresses receptors for chemotropic factors, as detected by immunofluorescence microscopy. Live-cell functional assays of axon extension and directional guidance demonstrated mammalian brain-derived neurotrophic factor (BDNF-dependent stimulation of outgrowth and growth cone chemoattraction, whereas mammalian myelin-associated glycoprotein inhibited outgrowth. High-resolution live-cell Ca(2+-imaging revealed local elevation of cytoplasmic Ca(2+ concentration in the growth cone induced by BDNF application. Moreover, BDNF-induced axon outgrowth, but not basal outgrowth, was blocked by treatments to suppress cytoplasmic Ca(2+ signals. Thus, this primary neuron culture model system may be useful for studies of neuronal development

  6. Extracellular matrix molecules play diverse roles in the growth and guidance of central nervous system axons

    Directory of Open Access Journals (Sweden)

    M.A. Pires-Neto

    1999-05-01

    Full Text Available Axon growth and guidance represent complex biological processes in which probably intervene diverse sets of molecular cues that allow for the appropriate wiring of the central nervous system (CNS. The extracellular matrix (ECM represents a major contributor of molecular signals either diffusible or membrane-bound that may regulate different stages of neural development. Some of the brain ECM molecules form tridimensional structures (tunnels and boundaries that appear during time- and space-regulated events, possibly playing relevant roles in the control of axon elongation and pathfinding. This short review focuses mainly on the recognized roles played by proteoglycans, laminin, fibronectin and tenascin in axonal development during ontogenesis.

  7. Evidence for Dysregulation of Axonal Growth and Guidance in the Etiology of ASD

    Directory of Open Access Journals (Sweden)

    Kathryn eMcFadden

    2013-10-01

    Full Text Available Current theories concerning the cause of autism spectrum disorders (ASDs have converged on the concept of abnormal development of brain connectivity. This concept is supported by accumulating evidence from functional imaging, DTI, and high definition fiber tracking (HDFT studies which suggest altered microstructure in the axonal tracts connecting cortical areas may underly many of the cognitive manifestations of ASD. Additionally, large-scale genomic studies implicate numerous gene candidates known or suspected to mediate neuritic outgrowth and axonal guidance in fetal and perinatal life. Neuropathological observations in postmortem ASD brain samples further support this model and include subtle disturbances of cortical lamination and subcortical axonal morphology. Of note is the relatively common finding of poor differentiation of the gray-white junction associated with an excess superficial white matter or interstitial neurons (INs. INs are thought to be remnants of the fetal subplate, a transient structure which plays a key role in the guidance and morphogenesis of thalamocortical and cortico-cortical connections and the organization of cortical columnar architecture. While not discounting the importance of synaptic dysfunction in the etiology of ASD, this paper will briefly review the cortical abnormalities and genetic evidence supporting a model of dysregulated axonal growth and guidance as key developmental processes underlying the clinical manifestations of ASD.

  8. The discovery of the growth cone and its influence on the study of axon guidance

    Directory of Open Access Journals (Sweden)

    Elisa eTamariz

    2015-05-01

    Full Text Available For over a century, there has been a great deal of interest in understanding how neural connectivity is established during development and regeneration. Interest in the latter arises from the possibility that knowledge of this process can be used to reestablish lost connections after lesion or neurodegeneration. At the end of the XIX century, Santiago Ramón y Cajal discovered that the distal tip of growing axons contained a structure that he called the growth cone. He proposed that this structure enabled the axon’s oriented growth in response to attractants, now known as chemotropic molecules. He further proposed that the physical properties of the surrounding tissues could influence the growth cone and the direction of growth. This seminal discovery afforded a plausible explanation for directed axonal growth and has led to the discovery of axon guidance mechanisms that include diffusible attractants and repellants and guidance cues anchored to cell membranes or extracellular matrix. In this review the major events in the development of this field are discussed.

  9. Sensory axon guidance with semaphorin 6A and nerve growth factor in a biomimetic choice point model

    International Nuclear Information System (INIS)

    The direct effect of guidance cues on developing and regenerating axons in vivo is not fully understood, as the process involves a multiplicity of attractive and repulsive signals, presented both as soluble and membrane-bound ligands. A better understanding of axon guidance is critical to functional recovery following injury to the nervous system through improved outgrowth and mapping of damaged nerves. Due to their implications as inhibitors to central nervous system regeneration, we investigated the repulsive properties of semaphorin 6A and ephrin-B3 on E15 rat dorsal root ganglion explants, as well as possible interactions with soluble gradients of chemoattractive nerve growth factor (NGF). We employed a 3D biomimetic in vitro choice point model, which enabled the simple and rapid preparation of patterned gel growth matrices with quantifiable presentation of guidance cues in a specifiable manner that resembles the in vivo presentation of soluble and/or immobilized ligands. Neurites demonstrated an inhibitory response to immobilized Sema6A by lumbosacral dorsal root ganglion explants, while no such repulsion was observed for immobilized ephrin-B3 by explants at any spinal level. Interestingly, Sema6A inhibition could be partially attenuated in a concentration-dependent manner through the simultaneous presentation of soluble NGF gradients. The in vitro model described herein represents a versatile and valuable investigative tool in the quest for understanding developmental processes and improving regeneration following nervous system injury. (paper)

  10. Axon guidance and neuronal migration research in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Proper migration of neuronal somas and axonal growth cones to designated locations in the developing brain is essential for the assembly of functional neuronal circuits.Rapid progress in research of axon guidance and neuronal migration has been made in the last twenty years.Chinese researchers began their exploration in this field ten years ago and have made significant contributions in clarifying the signal transduction of axon guidance and neuronal migration.Several unique experimental approaches,including the migration assay of single isolated neurons in response to locally delivered guidance cues,have been developed by Chinese neuroscientists to investigate the molecular machinery underlying these guidance events.

  11. The Caenorhabditis elegans Eph receptor activates NCK and N-WASP, and inhibits Ena/VASP to regulate growth cone dynamics during axon guidance.

    Science.gov (United States)

    Mohamed, Ahmed M; Boudreau, Jeffrey R; Yu, Fabian P S; Liu, Jun; Chin-Sang, Ian D

    2012-01-01

    The Eph receptor tyrosine kinases (RTKs) are regulators of cell migration and axon guidance. However, our understanding of the molecular mechanisms by which Eph RTKs regulate these processes is still incomplete. To understand how Eph receptors regulate axon guidance in Caenorhabditis elegans, we screened for suppressors of axon guidance defects caused by a hyperactive VAB-1/Eph RTK. We identified NCK-1 and WSP-1/N-WASP as downstream effectors of VAB-1. Furthermore, VAB-1, NCK-1, and WSP-1 can form a complex in vitro. We also report that NCK-1 can physically bind UNC-34/Enabled (Ena), and suggest that VAB-1 inhibits the NCK-1/UNC-34 complex and negatively regulates UNC-34. Our results provide a model of the molecular events that allow the VAB-1 RTK to regulate actin dynamics for axon guidance. We suggest that VAB-1/Eph RTK can stop axonal outgrowth by inhibiting filopodia formation at the growth cone by activating Arp2/3 through a VAB-1/NCK-1/WSP-1 complex and by inhibiting UNC-34/Ena activity.

  12. Evidence for Dysregulation of Axonal Growth and Guidance in the Etiology of ASD

    OpenAIRE

    Kathryn eMcFadden; Nancy eMinshew

    2013-01-01

    Current theories concerning the cause of autism spectrum disorders (ASDs) have converged on the concept of abnormal development of brain connectivity. This concept is supported by accumulating evidence from functional imaging, DTI, and high definition fiber tracking (HDFT) studies which suggest altered microstructure in the axonal tracts connecting cortical areas may underly many of the cognitive manifestations of ASD. Additionally, large-scale genomic studies implicate numerous gene candidat...

  13. RGM is a repulsive guidance molecule for retinal axons

    DEFF Research Database (Denmark)

    Monnier, Philippe P; Sierra, Ana; Macchi, Paolo;

    2002-01-01

    Axons rely on guidance cues to reach remote targets during nervous system development. A well-studied model system for axon guidance is the retinotectal projection. The retina can be divided into halves; the nasal half, next to the nose, and the temporal half. A subset of retinal axons, those from...... the temporal half, is guided by repulsive cues expressed in a graded fashion in the optic tectum, part of the midbrain. Here we report the cloning and functional characterization of a membrane-associated glycoprotein, which we call RGM (repulsive guidance molecule). This molecule shares no sequence homology...... with known guidance cues, and its messenger RNA is distributed in a gradient with increasing concentration from the anterior to posterior pole of the embryonic tectum. Recombinant RGM at low nanomolar concentration induces collapse of temporal but not of nasal growth cones and guides temporal retinal axons...

  14. Prolyl Isomerase Pin1 Regulates Axon Guidance by Stabilizing CRMP2A Selectively in Distal Axons

    Directory of Open Access Journals (Sweden)

    Martin Balastik

    2015-10-01

    Full Text Available Axon guidance relies on precise translation of extracellular signal gradients into local changes in cytoskeletal dynamics, but the molecular mechanisms regulating dose-dependent responses of growth cones are still poorly understood. Here, we show that during embryonic development in growing axons, a low level of Semaphorin3A stimulation is buffered by the prolyl isomerase Pin1. We demonstrate that Pin1 stabilizes CDK5-phosphorylated CRMP2A, the major isoform of CRMP2 in distal axons. Consequently, Pin1 knockdown or knockout reduces CRMP2A levels specifically in distal axons and inhibits axon growth, which can be fully rescued by Pin1 or CRMP2A expression. Moreover, Pin1 knockdown or knockout increases sensitivity to Sema3A-induced growth cone collapse in vitro and in vivo, leading to developmental abnormalities in axon guidance. These results identify an important isoform-specific function and regulation of CRMP2A in controlling axon growth and uncover Pin1-catalyzed prolyl isomerization as a regulatory mechanism in axon guidance.

  15. Highly effective photonic cue for repulsive axonal guidance.

    Directory of Open Access Journals (Sweden)

    Bryan J Black

    Full Text Available In vivo nerve repair requires not only the ability to regenerate damaged axons, but most importantly, the ability to guide developing or regenerating axons along paths that will result in functional connections. Furthermore, basic studies in neuroscience and neuro-electronic interface design require the ability to construct in vitro neural circuitry. Both these applications require the development of a noninvasive, highly effective tool for axonal growth-cone guidance. To date, a myriad of technologies have been introduced based on chemical, electrical, mechanical, and hybrid approaches (such as electro-chemical, optofluidic flow and photo-chemical methods. These methods are either lacking in desired spatial and temporal selectivity or require the introduction of invasive external factors. Within the last fifteen years however, several attractive guidance cues have been developed using purely light based cues to achieve axonal guidance. Here, we report a novel, purely optical repulsive guidance technique that uses low power, near infrared light, and demonstrates the guidance of primary goldfish retinal ganglion cell axons through turns of up to 120 degrees and over distances of ∼90 µm.

  16. Functions of axon guidance molecules in synapse formation

    OpenAIRE

    Chen, Shih-Yu; Cheng, Hwai-Jong

    2009-01-01

    Axon guidance and synapse formation are important developmental events for establishing a functional neuronal circuitry. These two related cellular processes occur in a coordinated fashion but previous studies from multiple model organisms seemed to suggest that axon guidance and synapse formation are mediated by distinct molecular cues. Thus, axon guidance molecules are responsible for guiding the navigating axon toward its target area, while other adhesion or ligand-receptor molecules speci...

  17. Dopaminergic axon guidance: which makes what?

    Directory of Open Access Journals (Sweden)

    Laetitia ePrestoz

    2012-07-01

    Full Text Available Mesotelencephalic pathways in the adult central nervous system have been studied in great detail because of their implication in major physiological functions as well as in psychiatric, neurological and neurodegenerative diseases. However, the ontogeny of these pathways and the molecular mechanisms that guide dopaminergic axons during embryogenesis have been only recently studied. This line of research is of crucial interest for the repair of lesioned circuits in adulthood following neurodegenerative diseases or common traumatic injuries. For instance, in the adult, the anatomic and functional repair of the nigrostriatal pathway following dopaminergic embryonic neuron transplantation suggests that specific guidance cues exist which govern embryonic fibers outgrowth, and suggests that axons from transplanted embryonic cells are able to respond to theses cues, which then guide them to their final targets. In this review, we first synthesize the work that has been performed in the last few years on developing mesotelencephalic pathways, and summarize the current knowledge on the identity of cellular and molecular signals thought to be involved in establishing mesotelencephalic dopaminergic neuronal connectivity during embryogenesis in the central nervous system of rodents. Then, we review the modulation of expression of these molecular signals in the lesioned adult brain and discuss their potential role in remodeling the mesotelencephalic dopaminergic circuitry, with a particular focus on Parkinson’s disease. Identifying guidance molecules involved in the connection of grafted cells may be useful for cellular therapy in Parkinsonian patients, as these molecules may help direct axons from grafted cells along the long distance they have to travel from the substantia nigra to the striatum.

  18. Electrokinetic confinement of axonal growth for dynamically configurable neural networks.

    Science.gov (United States)

    Honegger, Thibault; Scott, Mark A; Yanik, Mehmet F; Voldman, Joel

    2013-02-21

    Axons in the developing nervous system are directed via guidance cues, whose expression varies both spatially and temporally, to create functional neural circuits. Existing methods to create patterns of neural connectivity in vitro use only static geometries, and are unable to dynamically alter the guidance cues imparted on the cells. We introduce the use of AC electrokinetics to dynamically control axonal growth in cultured rat hippocampal neurons. We find that the application of modest voltages at frequencies on the order of 10(5) Hz can cause developing axons to be stopped adjacent to the electrodes while axons away from the electric fields exhibit uninhibited growth. By switching electrodes on or off, we can reversibly inhibit or permit axon passage across the electrodes. Our models suggest that dielectrophoresis is the causative AC electrokinetic effect. We make use of our dynamic control over axon elongation to create an axon-diode via an axon-lock system that consists of a pair of electrode 'gates' that either permit or prevent axons from passing through. Finally, we developed a neural circuit consisting of three populations of neurons, separated by three axon-locks to demonstrate the assembly of a functional, engineered neural network. Action potential recordings demonstrate that the AC electrokinetic effect does not harm axons, and Ca(2+) imaging demonstrated the unidirectional nature of the synaptic connections. AC electrokinetic confinement of axonal growth has potential for creating configurable, directional neural networks. PMID:23314575

  19. Shh goes multidirectional in axon guidance

    Institute of Scientific and Technical Information of China (English)

    Paola Bovolenta; Luisa Sanchez-Arrones

    2012-01-01

    Shh and Wnts,secreted by the floor and roof plate of the spinal cord,direct longitudinal growth of the axons from the adjacent ventral funiculus and cortico-spinal tract.Whether these midline cues influencethe directionality of axons elongating in more lateral positions of the spinal cord is unexplored.Song and colleagues investigate this possibility and demonstrate that the location of descending raphe-spinal tract in the ventrolateral spinal cord is dictated by the simultaneous repellent activity of Shh gradients in both the anteriorto-posterior (A-P) and medial-tolateral (M-L) axis. The spinal cord is the main pathway for exchange of information between the brain and the rest of the body.Sensory information collected in the body periphery is conveyed to the brain by axonal tracts that ascend along the spinal cord whereas motor information travels from the brain to the periphery in descending tracts.Precise spatial organization of these fiber tracts is thus essential for animal behavior and survival.

  20. Regulation of Axonal Midline Guidance by Prolyl 4-Hydroxylation in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Torpe, Nanna; Pocock, Roger David John

    2014-01-01

    Neuronal wiring during development requires that the growth cones of axons and dendrites are correctly guided to their appropriate targets. As in other animals, axon growth cones in Caenorhabditis elegans integrate information in their extracellular environment via interactions among transiently......, little is known of its importance in the control of axon guidance. In a screen of prolyl 4-hydroxylase (P4H) mutants, we found that genetic removal of a specific P4H subunit, DPY-18, causes dramatic defects in C. elegans neuroanatomy. In dpy-18 mutant animals, the axons of specific ventral nerve cord...

  1. Cannabinoid receptor CB2 modulates axon guidance

    DEFF Research Database (Denmark)

    Duff, Gabriel; Argaw, Anteneh; Cecyre, Bruno;

    2013-01-01

    Navigation of retinal projections towards their targets is regulated by guidance molecules and growth cone transduction mechanisms. Here, we present in vitro and in vivo evidences that the cannabinoid receptor 2 (CB2R) is expressed along the retino-thalamic pathway and exerts a modulatory action ...... CB2R's implication in retinothalamic development. Overall, this study demonstrates that the contribution of endocannabinoids to brain development is not solely mediated by CB1R, but also involves CB2R....

  2. Effects of laminin blended with chitosan on axon guidance on patterned substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, N; Guan, Y J; Chen, X B [Division of Biomedical Engineering, University of Saskatchewan, Saskatoon S7N 5A9 (Canada); Li, M G [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon S7N 5A9 (Canada); Schreyer, D J, E-mail: niz504@mail.usask.c [Department of Anatomy and Cell Biology, Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, S7K 0M7 (Canada)

    2010-12-15

    Axon guidance is a crucial consideration in the design of tissue scaffolds used to promote nerve regeneration. Here we investigate the combined use of laminin (a putative axon adhesion and guidance molecule) and chitosan (a leading candidate base material for the construction of scaffolds) for promoting axon guidance in cultured adult dorsal root ganglion (DRG) neurons. Using a dispensing-based rapid prototyping (DBRP) technique, two-dimensional grid patterns were created by dispensing chitosan or laminin-blended chitosan substrate strands oriented in orthogonal directions. In vitro experiments illustrated DRG neurites on these patterns preferentially grew upon and followed the laminin-blended chitosan pathways. These results suggest that an orientation of neurite growth can be achieved in an artificially patterned substrate by creating selectively biofunctional pathways. The DBRP technique may provide improved strategies for the use of biofunctional pathways in the design of three-dimensional scaffolds for guidance of nerve repair.

  3. A developmental timing switch promotes axon outgrowth independent of known guidance receptors.

    Directory of Open Access Journals (Sweden)

    Katherine Olsson-Carter

    2010-08-01

    Full Text Available To form functional neuronal connections, axon outgrowth and guidance must be tightly regulated across space as well as time. While a number of genes and pathways have been shown to control spatial features of axon development, very little is known about the in vivo mechanisms that direct the timing of axon initiation and elongation. The Caenorhabditis elegans hermaphrodite specific motor neurons (HSNs extend a single axon ventrally and then anteriorly during the L4 larval stage. Here we show the lin-4 microRNA promotes HSN axon initiation after cell cycle withdrawal. Axons fail to form in lin-4 mutants, while they grow prematurely in lin-4-overexpressing animals. lin-4 is required to down-regulate two inhibitors of HSN differentiation--the transcriptional regulator LIN-14 and the "stemness" factor LIN-28--and it likely does so through a cell-autonomous mechanism. This developmental switch depends neither on the UNC-40/DCC and SAX-3/Robo receptors nor on the direction of axon growth, demonstrating that it acts independently of ventral guidance signals to control the timing of HSN axon elongation.

  4. Mechanisms of TSC-mediated control of synapse assembly and axon guidance.

    Directory of Open Access Journals (Sweden)

    Sarah Knox

    Full Text Available Tuberous sclerosis complex is a dominant genetic disorder produced by mutations in either of two tumor suppressor genes, TSC1 and TSC2; it is characterized by hamartomatous tumors, and is associated with severe neurological and behavioral disturbances. Mutations in TSC1 or TSC2 deregulate a conserved growth control pathway that includes Ras homolog enriched in brain (Rheb and Target of Rapamycin (TOR. To understand the function of this pathway in neural development, we have examined the contributions of multiple components of this pathway in both neuromuscular junction assembly and photoreceptor axon guidance in Drosophila. Expression of Rheb in the motoneuron, but not the muscle of the larval neuromuscular junction produced synaptic overgrowth and enhanced synaptic function, while reductions in Rheb function compromised synapse development. Synapse growth produced by Rheb is insensitive to rapamycin, an inhibitor of Tor complex 1, and requires wishful thinking, a bone morphogenetic protein receptor critical for functional synapse expansion. In the visual system, loss of Tsc1 in the developing retina disrupted axon guidance independently of cellular growth. Inhibiting Tor complex 1 with rapamycin or eliminating the Tor complex 1 effector, S6 kinase (S6k, did not rescue axon guidance abnormalities of Tsc1 mosaics, while reductions in Tor function suppressed those phenotypes. These findings show that Tsc-mediated control of axon guidance and synapse assembly occurs via growth-independent signaling mechanisms, and suggest that Tor complex 2, a regulator of actin organization, is critical in these aspects of neuronal development.

  5. The Drosophila immunoglobulin gene turtle encodes guidance molecules involved in axon pathfinding

    Directory of Open Access Journals (Sweden)

    Al-Anzi Bader

    2009-08-01

    Full Text Available Abstract Background Neuronal growth cones follow specific pathways over long distances in order to reach their appropriate targets. Research over the past 15 years has yielded a large body of information concerning the molecules that regulate this process. Some of these molecules, such as the evolutionarily conserved netrin and slit proteins, are expressed in the embryonic midline, an area of extreme importance for early axon pathfinding decisions. A general model has emerged in which netrin attracts commissural axons towards the midline while slit forces them out. However, a large number of commissural axons successfully cross the midline even in the complete absence of netrin signaling, indicating the presence of a yet unidentified midline attractant. Results The evolutionarily conserved Ig proteins encoded by the turtle/Dasm1 genes are found in Drosophila, Caenorhabditis elegans, and mammals. In Drosophila the turtle gene encodes five proteins, two of which are diffusible, that are expressed in many areas, including the vicinity of the midline. Using both molecular null alleles and transgenic expression of the different isoforms, we show that the turtle encoded proteins function as non-cell autonomous axonal attractants that promote midline crossing via a netrin-independent mechanism. turtle mutants also have either stalled or missing axon projections, while overexpression of the different turtle isoforms produces invasive neurons and branching axons that do not respect the histological divisions of the nervous system. Conclusion Our findings indicate that the turtle proteins function as axon guidance cues that promote midline attraction, axon branching, and axonal invasiveness. The latter two capabilities are required by migrating axons to explore densely packed targets.

  6. Synergistic integration of Netrin and ephrin axon guidance signals by spinal motor neurons.

    Science.gov (United States)

    Poliak, Sebastian; Morales, Daniel; Croteau, Louis-Philippe; Krawchuk, Dayana; Palmesino, Elena; Morton, Susan; Cloutier, Jean-François; Charron, Frederic; Dalva, Matthew B; Ackerman, Susan L; Kao, Tzu-Jen; Kania, Artur

    2015-01-01

    During neural circuit assembly, axonal growth cones are exposed to multiple guidance signals at trajectory choice points. While axonal responses to individual guidance cues have been extensively studied, less is known about responses to combination of signals and underlying molecular mechanisms. Here, we studied the convergence of signals directing trajectory selection of spinal motor axons entering the limb. We first demonstrate that Netrin-1 attracts and repels distinct motor axon populations, according to their expression of Netrin receptors. Quantitative in vitro assays demonstrate that motor axons synergistically integrate both attractive or repulsive Netrin-1 signals together with repulsive ephrin signals. Our investigations of the mechanism of ephrin-B2 and Netrin-1 integration demonstrate that the Netrin receptor Unc5c and the ephrin receptor EphB2 can form a complex in a ligand-dependent manner and that Netrin-ephrin synergistic growth cones responses involve the potentiation of Src family kinase signaling, a common effector of both pathways. PMID:26633881

  7. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    Science.gov (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  8. Traction Force and Tension Fluctuations During Axon Growth

    Directory of Open Access Journals (Sweden)

    Jamison ePolackwich

    2015-10-01

    Full Text Available Actively generated mechanical forces play a central role in axon growthand guidance, but the mechanisms that underly force generation andregulation in growing axons remain poorly understood. We reportmeasurements of the dynamics of traction stresses from growth cones ofactively advancing axons from postnatal rat DRG neurons. By tracking themovement of the growth cone and analyzing the traction stress field froma reference frame that moves with it, we are able to show that there isa clear and consistent average stress field that underlies the complexspatial stresses present at any one time. The average stress field hasstrong maxima on the sides of the growth cone, directed inward towardthe growth cone neck. This pattern represents a contractile stresscontained within the growth cone, and a net force that is balanced bythe axon tension. Using high time-resolution measurements of the growthcone traction stresses, we show that the stress field is composed offluctuating local stress peaks, with a large number peaks that live fora short time, a population of peaks whose lifetime distribution followsan exponential decay, and a small number of very long-lived peaks. Weshow that the high time-resolution data also reveal that the tensionappears to vary randomly over short time scales, roughly consistent withthe lifetime of the stress peaks, suggesting that the tensionfluctuations originate from stochastic adhesion dynamics.

  9. Midline governs axon pathfinding by coordinating expression of two major guidance systems.

    Science.gov (United States)

    Liu, Qing-Xin; Hiramoto, Masaki; Ueda, Hitoshi; Gojobori, Takashi; Hiromi, Yasushi; Hirose, Susumu

    2009-05-15

    Formation of the neural network requires concerted action of multiple axon guidance systems. How neurons orchestrate expression of multiple guidance genes is poorly understood. Here, we show that Drosophila T-box protein Midline controls expression of genes encoding components of two major guidance systems: Frazzled, ROBO, and Slit. In midline mutant, expression of all these molecules are reduced, resulting in severe axon guidance defects, whereas misexpression of Midline induces their expression. Midline is present on the promoter regions of these genes, indicating that Midline controls transcription directly. We propose that Midline controls axon pathfinding through coordinating the two guidance systems.

  10. Microfluidic device for unidirectional axon growth

    Science.gov (United States)

    Malishev, E.; Pimashkin, A.; Gladkov, A.; Pigareva, Y.; Bukatin, A.; Kazantsev, V.; Mukhina, I.; Dubina, M.

    2015-11-01

    In order to better understand the communication and connectivity development of neuron networks, we designed microfluidic devices with several chambers for growing dissociated neuronal cultures from mice fetal hippocampus (E18). The chambers were connected with microchannels providing unidirectional axonal growth between “Source” and “Target” neural sub-networks. Experiments were performed in a hippocampal cultures plated in a poly-dimethylsiloxane (PDMS) microfluidic chip, aligned with a 60 microelectrode array (MEA). Axonal growth through microchannels was observed with brightfield, phase-contrast and fluorescence microscopy, and after 7 days in vitro electrical activity was recorded. Visual inspection and spike propagation analysis showed the predominant axonal growth in microchannels in a direction from “Source” to “Target”.

  11. TIPsy tour guides: How microtubule plus-end tracking proteins (+TIPs facilitate axon guidance

    Directory of Open Access Journals (Sweden)

    Elizabeth A Bearce

    2015-06-01

    Full Text Available The growth cone is a dynamic cytoskeletal vehicle, which drives the end of a developing axon. It serves to interpret and navigate through the complex landscape and guidance cues of the early nervous system. The growth cone’s distinctive cytoskeletal organization offers a fascinating platform to study how extracellular cues can be translated into mechanical outgrowth and turning behaviors. While many studies of cell motility highlight the importance of actin networks in signaling, adhesion, and propulsion, both seminal and emerging works in the field have highlighted a unique and necessary role for microtubules in growth cone navigation. Here, we focus on the role of singular pioneer microtubules, which extend into the growth cone periphery and are regulated by a diverse family of microtubule plus-end tracking proteins (+TIPs. These +TIPs accumulate at the dynamic ends of microtubules, where they are well-positioned to encounter and respond to key signaling events downstream of guidance receptors, catalyzing immediate changes in microtubule stability and actin cross-talk, that facilitate both axonal outgrowth and turning events.

  12. EFN-4 functions in LAD-2-mediated axon guidance in Caenorhabditis elegans.

    Science.gov (United States)

    Dong, Bingyun; Moseley-Alldredge, Melinda; Schwieterman, Alicia A; Donelson, Cory J; McMurry, Jonathan L; Hudson, Martin L; Chen, Lihsia

    2016-04-01

    During development of the nervous system, growing axons rely on guidance molecules to direct axon pathfinding. A well-characterized family of guidance molecules are the membrane-associated ephrins, which together with their cognate Eph receptors, direct axon navigation in a contact-mediated fashion. InC. elegans, the ephrin-Eph signaling system is conserved and is best characterized for their roles in neuroblast migration during early embryogenesis. This study demonstrates a role for the C. elegans ephrin EFN-4 in axon guidance. We provide both genetic and biochemical evidence that is consistent with the C. elegans divergent L1 cell adhesion molecule LAD-2 acting as a non-canonical ephrin receptor to EFN-4 to promote axon guidance. We also show that EFN-4 probably functions as a diffusible factor because EFN-4 engineered to be soluble can promote LAD-2-mediated axon guidance. This study thus reveals a potential additional mechanism for ephrins in regulating axon guidance and expands the repertoire of receptors by which ephrins can signal.

  13. A multi-component model of the developing retinocollicular pathway incorporating axonal and synaptic growth.

    Directory of Open Access Journals (Sweden)

    Keith B Godfrey

    2009-12-01

    Full Text Available During development, neurons extend axons to different brain areas and produce stereotypical patterns of connections. The mechanisms underlying this process have been intensively studied in the visual system, where retinal neurons form retinotopic maps in the thalamus and superior colliculus. The mechanisms active in map formation include molecular guidance cues, trophic factor release, spontaneous neural activity, spike-timing dependent plasticity (STDP, synapse creation and retraction, and axon growth, branching and retraction. To investigate how these mechanisms interact, a multi-component model of the developing retinocollicular pathway was produced based on phenomenological approximations of each of these mechanisms. Core assumptions of the model were that the probabilities of axonal branching and synaptic growth are highest where the combined influences of chemoaffinity and trophic factor cues are highest, and that activity-dependent release of trophic factors acts to stabilize synapses. Based on these behaviors, model axons produced morphologically realistic growth patterns and projected to retinotopically correct locations in the colliculus. Findings of the model include that STDP, gradient detection by axonal growth cones and lateral connectivity among collicular neurons were not necessary for refinement, and that the instructive cues for axonal growth appear to be mediated first by molecular guidance and then by neural activity. Although complex, the model appears to be insensitive to variations in how the component developmental mechanisms are implemented. Activity, molecular guidance and the growth and retraction of axons and synapses are common features of neural development, and the findings of this study may have relevance beyond organization in the retinocollicular pathway.

  14. Drosophila Ryks and their roles in axon and muscle guidance

    NARCIS (Netherlands)

    Lahaye, Liza Lucia

    2015-01-01

    In the last decade it has become clear that a number of the molecular mechanisms that are required for proper navigation of axons in complex nervous systems are also employed to guide muscles to their appropriate attachment sites. Among the gene families that mediate these diverse processes is the R

  15. Asymmetric axonal edge guidance: a new paradigm for building oriented neuronal networks.

    Science.gov (United States)

    Renault, Renaud; Durand, Jean-Baptiste; Viovy, Jean-Louis; Villard, Catherine

    2016-06-21

    We present a novel kind of directional axon guides for brain-on-a-chip applications. Contrarily to previous works, the directionality in our design is created by rerouting axons growing in the unwanted direction back to their original compartment while leaving the other growth direction unaffected. This design yields state-of-the-art levels of directionality without the disadvantages of previously reported technologies.

  16. A genomic pathway approach to a complex disease: axon guidance and Parkinson disease.

    Directory of Open Access Journals (Sweden)

    Timothy G Lesnick

    2007-06-01

    Full Text Available While major inroads have been made in identifying the genetic causes of rare Mendelian disorders, little progress has been made in the discovery of common gene variations that predispose to complex diseases. The single gene variants that have been shown to associate reproducibly with complex diseases typically have small effect sizes or attributable risks. However, the joint actions of common gene variants within pathways may play a major role in predisposing to complex diseases (the paradigm of complex genetics. The goal of this study was to determine whether polymorphism in a candidate pathway (axon guidance predisposed to a complex disease (Parkinson disease [PD]. We mined a whole-genome association dataset and identified single nucleotide polymorphisms (SNPs that were within axon-guidance pathway genes. We then constructed models of axon-guidance pathway SNPs that predicted three outcomes: PD susceptibility (odds ratio = 90.8, p = 4.64 x 10(-38, survival free of PD (hazards ratio = 19.0, p = 5.43 x 10(-48, and PD age at onset (R(2 = 0.68, p = 1.68 x 10(-51. By contrast, models constructed from thousands of random selections of genomic SNPs predicted the three PD outcomes poorly. Mining of a second whole-genome association dataset and mining of an expression profiling dataset also supported a role for many axon-guidance pathway genes in PD. These findings could have important implications regarding the pathogenesis of PD. This genomic pathway approach may also offer insights into other complex diseases such as Alzheimer disease, diabetes mellitus, nicotine and alcohol dependence, and several cancers.

  17. Functional complexity of the axonal growth cone: a proteomic analysis.

    Directory of Open Access Journals (Sweden)

    Adriana Estrada-Bernal

    Full Text Available The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥ 99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions.

  18. Low-density Lipoprotein Receptor-related Proteins in a Novel Mechanism of Axon Guidance and Peripheral Nerve Regeneration.

    Science.gov (United States)

    Landowski, Lila M; Pavez, Macarena; Brown, Lachlan S; Gasperini, Robert; Taylor, Bruce V; West, Adrian K; Foa, Lisa

    2016-01-15

    The low-density lipoprotein receptor-related protein receptors 1 and 2 (LRP1 and LRP2) are emerging as important cell signaling mediators in modulating neuronal growth and repair. We examined whether LRP1 and LRP2 are able to mediate a specific aspect of neuronal growth: axon guidance. We sought to identify LRP1 and LRP2 ligands that could induce axonal chemoattraction, which might have therapeutic potential. Using embryonic sensory neurons (rat dorsal root ganglia) in a growth cone turning assay, we tested a range of LRP1 and LRP2 ligands for the ability to guide growth cone navigation. Three ligands were chemorepulsive: α-2-macroglobulin, tissue plasminogen activator, and metallothionein III. Conversely, only one LRP ligand, metallothionein II, was found to be chemoattractive. Chemoattraction toward a gradient of metallothionein II was calcium-dependent, required the expression of both LRP1 and LRP2, and likely involves further co-receptors such as the tropomyosin-related kinase A (TrkA) receptor. The potential for LRP-mediated chemoattraction to mediate axonal regeneration was examined in vivo in a model of chemical denervation in adult rats. In these in vivo studies, metallothionein II was shown to enhance epidermal nerve fiber regeneration so that it was complete within 7 days compared with 14 days in saline-treated animals. Our data demonstrate that both LRP1 and LRP2 are necessary for metallothionein II-mediated chemotactic signal transduction and that they may form part of a signaling complex. Furthermore, the data suggest that LRP-mediated chemoattraction represents a novel, non-classical signaling system that has therapeutic potential as a disease-modifying agent for the injured peripheral nervous system.

  19. Involvement of SARA in Axon and Dendrite Growth.

    Science.gov (United States)

    Arias, Cristina Isabel; Siri, Sebastián Omar; Conde, Cecilia

    2015-01-01

    SARA (Smad Anchor for Receptor Activation) plays a crucial role in Rab5-mediated endocytosis in cell lines localizing to early endosomes where it regulates morphology and function. Here, we analyzed the role of SARA during neuronal development and tested whether it functions as a regulator of endocytic trafficking of selected axonal and membrane proteins. Suppression of SARA perturbs the appearance of juxtanuclear endocytic recycling compartments and the neurons show long axons with large growth cones. Furthermore, surface distribution of the cell adhesion molecule L1 in axons and the fusion of vesicles containing transferring receptor (TfR) in dendrites were increased in neurons where SARA was silenced. Conversely, SARA overexpression generated large early endosomes and reduced neurite outgrowth. Taken together, our findings suggest a significant contribution of SARA to key aspects of neuronal development, including neurite formation. PMID:26405814

  20. Repulsive axon guidance by Draxin is mediated by protein Kinase B (Akt), glycogen synthase kinase-3β (GSK-3β) and microtubule-associated protein 1B.

    Science.gov (United States)

    Meli, Rajeshwari; Weisová, Petronela; Propst, Friedrich

    2015-01-01

    Draxin is an important axon guidance cue necessary for the formation of forebrain commissures including the corpus callosum, but the molecular details of draxin signaling are unknown. To unravel how draxin signals are propagated we used murine cortical neurons and genetic and pharmacological approaches. We found that draxin-induced growth cone collapse critically depends on draxin receptors (deleted in colorectal cancer, DCC), inhibition of protein kinase B/Akt, activation of GSK-3β (glycogen synthase kinase-3β) and the presence of microtubule-associated protein MAP1B. This study, for the first time elucidates molecular events in draxin repulsion, links draxin and DCC to MAP1B and identifies a novel MAP1B-depenent GSK-3β pathway essential for chemo-repulsive axon guidance cue signaling.

  1. The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia.

    Directory of Open Access Journals (Sweden)

    Katariina Hannula-Jouppi

    2005-10-01

    Full Text Available Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples, the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.

  2. The Axon Guidance Receptor Gene ROBO1 Is a Candidate Gene for Developmental Dyslexia.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples, the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.

  3. Convergent differential regulation of SLIT-ROBO axon guidance genes in the brains of vocal learners.

    Science.gov (United States)

    Wang, Rui; Chen, Chun-Chun; Hara, Erina; Rivas, Miriam V; Roulhac, Petra L; Howard, Jason T; Chakraborty, Mukta; Audet, Jean-Nicolas; Jarvis, Erich D

    2015-04-15

    Only a few distantly related mammals and birds have the trait of complex vocal learning, which is the ability to imitate novel sounds. This ability is critical for speech acquisition and production in humans, and is attributed to specialized forebrain vocal control circuits that have several unique connections relative to adjacent brain circuits. As a result, it has been hypothesized that there could exist convergent changes in genes involved in neural connectivity of vocal learning circuits. In support of this hypothesis, expanding on our related study (Pfenning et al. [2014] Science 346: 1256846), here we show that the forebrain part of this circuit that makes a relatively rare direct connection to brainstem vocal motor neurons in independent lineages of vocal learning birds (songbird, parrot, and hummingbird) has specialized regulation of axon guidance genes from the SLIT-ROBO molecular pathway. The SLIT1 ligand was differentially downregulated in the motor song output nucleus that makes the direct projection, whereas its receptor ROBO1 was developmentally upregulated during critical periods for vocal learning. Vocal nonlearning bird species and male mice, which have much more limited vocal plasticity and associated circuits, did not show comparable specialized regulation of SLIT-ROBO genes in their nonvocal motor cortical regions. These findings are consistent with SLIT and ROBO gene dysfunctions associated with autism, dyslexia, and speech sound language disorders and suggest that convergent evolution of vocal learning was associated with convergent changes in the SLIT-ROBO axon guidance pathway.

  4. A neuron-benign microfluidic gradient generator for studying the response of mammalian neurons towards axon guidance factors.

    Science.gov (United States)

    Bhattacharjee, Nirveek; Li, Nianzhen; Keenan, Thomas M; Folch, Albert

    2010-11-01

    Investigation of biochemical cues in isolation or in combinations in cell culture systems is crucial for unraveling the mechanisms that govern neural development and repair. The most widely used experimental paradigms that elicit axon guidance in vitro utilize as the source of the gradient a pulsatile pipette, transfected cells, or a loaded gel, producing time-varying gradients of poor reproducibility which are not well suited for studying slow-growing mammalian cells. Although microfluidic device design have allowed for generating stable, complex gradients of diffusible molecules, the flow-induced shear forces in a microchannel has made it impossible to maintain viable mammalian neuronal cultures for sufficiently long times. In this paper, we describe axonal responses of mouse cortical neurons in a "neuron-benign" gradient-generator device based on an open chamber that can establish highly stable gradients of diffusible molecules for at least 6 h with negligible shear stress, and also allows the neurons to thrive for at least 2 weeks. Except for the period when the gradient is on, the cells in the gradient are under the same conditions as the cells on the control surfaces, which ensure a consistent set of micro-environmental variables. The gradient stability and uniformity over the cell culture surface achieved by the device, together with our software platform for acquiring, post-processing and quantitatively analyzing the large number of images allowed us to extract valuable information even from small datasets. We report a directed response of primary mammalian neurons (from E14 embryonic mice cortex) to a diffusible gradient of netrin in vitro. We infer from our studies that a large majority (∼73%) of the neurons that extend axons during the gradient application grow towards the netrin source, and our data analysis also indicates that netrin acts as a growth factor for this same population of neurons.

  5. Knockdown of Ephrin-A5 Expression by 40% Does not Affect Motor Axon Growth or Migration into the Chick Hindlimb

    Directory of Open Access Journals (Sweden)

    Robert S. Winning

    2011-11-01

    Full Text Available Bidirectional signaling between Eph receptor tyrosine kinases and their cell-surface protein signals, the ephrins, comprises one mechanism for guiding motor axons to their proper targets. During projection of motor axons from the lateral motor column (LMC motor neurons of the spinal cord to the hindlimb muscles in chick embryos, ephrin-A5 has been shown to be expressed in the LMC motor axons until they reach the base of the limb bud and initiate sorting into their presumptive dorsal and ventral nerve trunks, at which point expression is extinguished. We tested the hypothesis that this dynamic pattern of ephrin-A5 expression in LMC motor axons is important for the growth and guidance of the axons to, and into, the hindlimb by knocking down endogenous ephrin-A5 expression in the motor neurons and their axons. No perturbation of LMC motor axon projections was observed in response to this treatment, suggesting that ephrin-A5 is not needed for LMC motor axon growth or guidance.

  6. Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF.

    Directory of Open Access Journals (Sweden)

    Keiko Miwa

    Full Text Available Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs and sympathetic neurons (SNs isolated from neonatal rat ventricles and superior cervical ganglia were cultured at a close distance. Then, morphological and functional coupling between SNs and VMs was assessed in response to GDNF (10 ng/ml or nerve growth factor (50 ng/ml. As a result, fractions of neurofilament-M-positive axons and synapsin-I-positive area over the surface of VMs were markedly increased with GDNF by 9-fold and 25-fold, respectively, compared to control without neurotrophic factors. Pre- and post-synaptic stimulation of β1-adrenergic receptors (BAR with nicotine and noradrenaline, respectively, resulted in an increase of the spontaneous beating rate of VMs co-cultured with SNs in the presence of GDNF. GDNF overexpressing VMs by adenovirus vector (AdGDNF-VMs attracted more axons from SNs compared with mock-transfected VMs. In vivo, axon outgrowth toward the denervated myocardium in adult rat hearts after cryoinjury was also enhanced significantly by adenovirus-mediated GDNF overexpression. GDNF acts as a potent chemoattractant for sympathetic innervation of ventricular myocytes, and is a promising molecular target for regulation of cardiac function in diseased hearts.

  7. Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF).

    Science.gov (United States)

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Hirabayashi, Masumi; Watabe, Kazuhiko; Jimbo, Yasuhiko; Kodama, Itsuo; Komuro, Issei

    2013-01-01

    Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF) promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs) and sympathetic neurons (SNs) isolated from neonatal rat ventricles and superior cervical ganglia were cultured at a close distance. Then, morphological and functional coupling between SNs and VMs was assessed in response to GDNF (10 ng/ml) or nerve growth factor (50 ng/ml). As a result, fractions of neurofilament-M-positive axons and synapsin-I-positive area over the surface of VMs were markedly increased with GDNF by 9-fold and 25-fold, respectively, compared to control without neurotrophic factors. Pre- and post-synaptic stimulation of β1-adrenergic receptors (BAR) with nicotine and noradrenaline, respectively, resulted in an increase of the spontaneous beating rate of VMs co-cultured with SNs in the presence of GDNF. GDNF overexpressing VMs by adenovirus vector (AdGDNF-VMs) attracted more axons from SNs compared with mock-transfected VMs. In vivo, axon outgrowth toward the denervated myocardium in adult rat hearts after cryoinjury was also enhanced significantly by adenovirus-mediated GDNF overexpression. GDNF acts as a potent chemoattractant for sympathetic innervation of ventricular myocytes, and is a promising molecular target for regulation of cardiac function in diseased hearts.

  8. Effects of medium flow on axon growth with or without nerve growth factor.

    Science.gov (United States)

    Kumamoto, Junichi; Kitahata, Hiroyuki; Goto, Makiko; Nagayama, Masaharu; Denda, Mitsuhiro

    2015-09-11

    Axon growth is a crucial process in regeneration of damaged nerves. On the other hand, elongation of nerve fibers in the epidermis has been observed in skin of atopic dermatitis patients. Thus, regulation of nerve fiber extension might be an effective strategy to accelerate nerve regeneration and/or to reduce itching in pruritus dermatosis. We previously demonstrated that neurons and epidermal keratinocytes similarly contain multiple receptors that are activated by various environmental factors, and in particular, keratinocytes are influenced by shear stress. Thus, in the present study, we evaluated the effects of micro-flow of the medium on axon growth in the presence or absence of nerve growth factor (NGF), using cultured dorsal-root-ganglion (DRG) cells. The apparatus, AXIS™, consists of two chambers connected by a set of microgrooves, through which signaling molecules and axons, but not living cells, can pass. When DRG cells were present in chamber 1, NGF was present in chamber 2, and micro-flow was directed from chamber 1 to chamber 2, axon growth was significantly increased compared with other conditions. Acceleration of axon growth in the direction of the micro-flow was also observed in the absence of NGF. These results suggest that local micro-flow might significantly influence axon growth. PMID:26212442

  9. Drosophila cortex and neuropile glia influence secondary axon tract growth, pathfinding, and fasciculation in the developing larval brain

    OpenAIRE

    Spindler, Shana R; Ortiz, Irma; Fung, Siaumin; Takashima, Shigeo; Hartenstein, Volker

    2009-01-01

    Glial cells play important roles in the developing brain during axon fasciculation, growth cone guidance, and neuron survival. In the Drosophila brain, three main classes of glia have been identified including surface, cortex, and neuropile glia. While surface glia ensheaths the brain and is involved in the formation of the blood-brain-barrier and the control of neuroblast proliferation, the range of functions for cortex and neuropile glia is less well understood. In this study, we use the ni...

  10. Slit/Robo-mediated axon guidance in Tribolium and Drosophila: divergent genetic programs build insect nervous systems.

    Science.gov (United States)

    Evans, Timothy A; Bashaw, Greg J

    2012-03-01

    As the complexity of animal nervous systems has increased during evolution, developmental control of neuronal connectivity has become increasingly refined. How has functional diversification within related axon guidance molecules contributed to the evolution of nervous systems? To address this question, we explore the evolution of functional diversity within the Roundabout (Robo) family of axon guidance receptors. In Drosophila, Robo and Robo2 promote midline repulsion, while Robo2 and Robo3 specify the position of longitudinal axon pathways. The Robo family has expanded by gene duplication in insects; robo2 and robo3 exist as distinct genes only within dipterans, while other insects, like the flour beetle Tribolium castaneum, retain an ancestral robo2/3 gene. Both Robos from Tribolium can mediate midline repulsion in Drosophila, but unlike the fly Robos cannot be down-regulated by Commissureless. The overall architecture and arrangement of longitudinal pathways are remarkably conserved in Tribolium, despite it having only two Robos. Loss of TcSlit causes midline collapse of axons in the beetle, a phenotype recapitulated by simultaneous knockdown of both Robos. Single gene knockdowns reveal that beetle Robos have specialized axon guidance functions: TcRobo is dedicated to midline repulsion, while TcRobo2/3 also regulates longitudinal pathway formation. TcRobo2/3 knockdown reproduces aspects of both Drosophila robo2 and robo3 mutants, suggesting that TcRobo2/3 has two functions that in Drosophila are divided between Robo2 and Robo3. The ability of Tribolium to organize longitudinal axons into three discrete medial-lateral zones with only two Robo receptors demonstrates that beetle and fly achieve equivalent developmental outcomes using divergent genetic programs.

  11. Differential Effects of NGF and NT-3 on Embryonic Trigeminal Axon Growth Patterns

    OpenAIRE

    Ulupinar, Emel; Jacquin, Mark F.; Erzurumlu, Reha S.

    2000-01-01

    We examined the effects of neurotrophins nerve growth factor (NGF) and neurotrophin-3 (NT-3) on trigeminal axon growth patterns. Embryonic (E13–15) wholemount explants of the rat trigeminal pathway including the whisker pads, trigeminal ganglia, and brainstem were cultured in serum-free medium (SFM) or SFM supplemented with NGF or NT-3 for 3 days. Trigeminal axon growth patterns were analyzed with the use of lipophilic tracer DiI. In wholemount cultures grown in SFM, trigeminal axon projectio...

  12. Overexpression of Pax6 results in microphthalmia, retinal dysplasia and defective retinal ganglion cell axon guidance

    Directory of Open Access Journals (Sweden)

    Jeffery Glen

    2008-05-01

    contralateral optic tracts at the optic chiasm vary differently with gene dosage. Increasing dosage increases the proportion projecting ipsilaterally regardless of the size of the total projection. Conclusion Pax6 overexpression does not obviously impair the initial formation of the eye and its major cell-types but prevents normal development of the retina from about E14.5, leading eventually to severe retinal degeneration in postnatal life. This sequence is different to that underlying microphthalmia in Pax6+/- heterozygotes, which is due primarily to defects in the initial stages of lens formation. Before the onset of severe retinal dysplasia, Pax6 overexpression causes defects of retinal axons, preventing their normal growth and navigation through the optic chiasm.

  13. Trafifc lights for axon growth:proteoglycans and their neuronal receptors

    Institute of Scientific and Technical Information of China (English)

    Yingjie Shen

    2014-01-01

    Axon growth is a central event in the development and post-injury plasticity of the nervous system. Growing axons encounter a wide variety of environmental instructions. Much like trafifc lights in controlling the migrating axons, chondroitin sulfate proteoglycans (CSPGs) and hepa-ran sulfate proteoglycans (HSPGs) often lead to“stop”and“go”growth responses in the axons, respectively. Recently, the LAR family and NgR family molecules were identified as neuronal receptors for CSPGs and HSPGs. These discoveries provided molecular tools for further study of mechanisms underlying axon growth regulation. More importantly, the identiifcation of these proteoglycan receptors offered potential therapeutic targets for promoting post-injury axon re-generation.

  14. Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain

    OpenAIRE

    Larsen, Camilla; Shy, Diana; Spindler, Shana R; Fung, Siaumin; Pereanu, Wayne; Younossi -Hartenstein, Amelia; Hartenstein, Volker

    2009-01-01

    The Drosophila central brain is composed of approximately 100 paired lineages, with most lineages comprising 100–150 neurons. Most lineages have a number of important characteristics in common. Typically, neurons of a lineage stay together as a coherent cluster and project their axons into a coherent bundle visible from late embryo to adult. Neurons born during the embryonic period form the primary axon tracts (PATs) that follow stereotyped pathways in the neuropile. Apoptotic cell death remo...

  15. Drosophila cortex and neuropile glia influence secondary axon tract growth, pathfinding, and fasciculation in the developing larval brain.

    Science.gov (United States)

    Spindler, Shana R; Ortiz, Irma; Fung, Siaumin; Takashima, Shigeo; Hartenstein, Volker

    2009-10-15

    Glial cells play important roles in the developing brain during axon fasciculation, growth cone guidance, and neuron survival. In the Drosophila brain, three main classes of glia have been identified including surface, cortex, and neuropile glia. While surface glia ensheaths the brain and is involved in the formation of the blood-brain-barrier and the control of neuroblast proliferation, the range of functions for cortex and neuropile glia is less well understood. In this study, we use the nirvana2-GAL4 driver to visualize the association of cortex and neuropile glia with axon tracts formed by different brain lineages and selectively eliminate these glial populations via induced apoptosis. The larval central brain consists of approximately 100 lineages. Each lineage forms a cohesive axon bundle, the secondary axon tract (SAT). While entering and traversing the brain neuropile, SATs interact in a characteristic way with glial cells. Some SATs are completely invested with glial processes; others show no particular association with glia, and most fall somewhere in between these extremes. Our results demonstrate that the elimination of glia results in abnormalities in SAT fasciculation and trajectory. The most prevalent phenotype is truncation or misguidance of axon tracts, or abnormal fasciculation of tracts that normally form separate pathways. Importantly, the degree of glial association with a given lineage is positively correlated with the severity of the phenotype resulting from glial ablation. Previous studies have focused on the embryonic nerve cord or adult-specific compartments to establish the role of glia. Our study provides, for the first time, an analysis of glial function in the brain during axon formation and growth in larval development. PMID:19646433

  16. Nerve growth factor released from a novel PLGA nerve conduit can improve axon growth

    International Nuclear Information System (INIS)

    Nerve injury can occur due to penetrating wounds, compression, traumatic stretch, and cold exposure. Despite prompt repair, outcomes are dismal. In an attempt to help resolve this challenge, in this work, a poly-lactic-co-glycolic acid (PLGA) nerve conduit with associated biodegradable drug reservoir was designed, fabricated, and tested. Unlike current nerve conduits, this device is capable of fitting various clinical scenarios by delivering different drugs without reengineering the whole system. To demonstrate the potential of this device for nerve repair, a series of experiments were performed using nerve growth factor (NGF). First, an NGF dosage curve was developed to determine the minimum NGF concentration for optimal axonal outgrowth on chick dorsal root ganglia (DRG) cells. Next, PLGA devices loaded with NGF were evaluated for sustained drug release and axon growth enhancement with the released drug. A 20 d in vitro release test was conducted and the nerve conduit showed the ability to meet and maintain the minimum NGF requirement determined previously. Bioactivity assays of the released NGF showed that drug released from the device between the 15th and 20th day could still promote axon growth (76.6–95.7 μm) in chick DRG cells, which is in the range of maximum growth. These novel drug delivery conduits show the ability to deliver NGF at a dosage that efficiently promotes ex vivo axon growth and have the potential for in vivo application to help bridge peripheral nerve gaps. (paper)

  17. Nerve growth factor released from a novel PLGA nerve conduit can improve axon growth

    Science.gov (United States)

    Lin, Keng-Min; Shea, Jill; Gale, Bruce K.; Sant, Himanshu; Larrabee, Patti; Agarwal, Jay

    2016-04-01

    Nerve injury can occur due to penetrating wounds, compression, traumatic stretch, and cold exposure. Despite prompt repair, outcomes are dismal. In an attempt to help resolve this challenge, in this work, a poly-lactic-co-glycolic acid (PLGA) nerve conduit with associated biodegradable drug reservoir was designed, fabricated, and tested. Unlike current nerve conduits, this device is capable of fitting various clinical scenarios by delivering different drugs without reengineering the whole system. To demonstrate the potential of this device for nerve repair, a series of experiments were performed using nerve growth factor (NGF). First, an NGF dosage curve was developed to determine the minimum NGF concentration for optimal axonal outgrowth on chick dorsal root ganglia (DRG) cells. Next, PLGA devices loaded with NGF were evaluated for sustained drug release and axon growth enhancement with the released drug. A 20 d in vitro release test was conducted and the nerve conduit showed the ability to meet and maintain the minimum NGF requirement determined previously. Bioactivity assays of the released NGF showed that drug released from the device between the 15th and 20th day could still promote axon growth (76.6-95.7 μm) in chick DRG cells, which is in the range of maximum growth. These novel drug delivery conduits show the ability to deliver NGF at a dosage that efficiently promotes ex vivo axon growth and have the potential for in vivo application to help bridge peripheral nerve gaps.

  18. Thiazolidinediones promote axonal growth through the activation of the JNK pathway.

    Directory of Open Access Journals (Sweden)

    Rodrigo A Quintanilla

    Full Text Available The axon is a neuronal process involved in protein transport, synaptic plasticity, and neural regeneration. It has been suggested that their structure and function are profoundly impaired in neurodegenerative diseases. Previous evidence suggest that Peroxisome Proliferator-Activated Receptors-γ (PPARγ promote neuronal differentiation on various neuronal cell types. In addition, we demonstrated that activation of PPARγby thiazolidinediones (TZDs drugs that selectively activate PPARγ prevent neurite loss and axonal damage induced by amyloid-β (Aβ. However, the potential role of TZDs in axonal elongation and neuronal polarity has not been explored. We report here that the activation of PPARγ by TZDs promoted axon elongation in primary hippocampal neurons. Treatments with different TZDs significantly increased axonal growth and branching area, but no significant effects were observed in neurite elongation compared to untreated neurons. Treatment with PPARγ antagonist (GW 9662 prevented TZDs-induced axonal growth. Recently, it has been suggested that the c-Jun N-terminal kinase (JNK plays an important role regulating axonal growth and neuronal polarity. Interestingly, in our studies, treatment with TZDs induced activation of the JNK pathway, and the pharmacological blockage of this pathway prevented axon elongation induced by TZDs. Altogether, these results indicate that activation of JNK induced by PPARγactivators stimulates axonal growth and accelerates neuronal polarity. These novel findings may contribute to the understanding of the effects of PPARγ on neuronal differentiation and validate the use of PPARγ activators as therapeutic agents in neurodegenerative diseases.

  19. The Alzheimer's β-secretase enzyme BACE1 is required for accurate axon guidance of olfactory sensory neurons and normal glomerulus formation in the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Rajapaksha Tharinda W

    2011-12-01

    Full Text Available Abstract Background The β-secretase, β-site amyloid precursor protein cleaving enzyme 1 (BACE1, is a prime therapeutic target for lowering cerebral β-amyloid (Aβ levels in Alzheimer's disease (AD. Clinical development of BACE1 inhibitors is being intensely pursued. However, little is known about the physiological functions of BACE1, and the possibility exists that BACE1 inhibition may cause mechanism-based side effects. Indeed, BACE1-/- mice exhibit a complex neurological phenotype. Interestingly, BACE1 co-localizes with presynaptic neuronal markers, indicating a role in axons and/or terminals. Moreover, recent studies suggest axon guidance molecules are potential BACE1 substrates. Here, we used a genetic approach to investigate the function of BACE1 in axon guidance of olfactory sensory neurons (OSNs, a well-studied model of axon targeting in vivo. Results We bred BACE1-/- mice with gene-targeted mice in which GFP is expressed from the loci of two odorant-receptors (ORs, MOR23 and M72, and olfactory marker protein (OMP to produce offspring that were heterozygous for MOR23-GFP, M72-GFP, or OMP-GFP and were either BACE1+/+ or BACE1-/-. BACE1-/- mice had olfactory bulbs (OBs that were smaller and weighed less than OBs of BACE1+/+ mice. In wild-type mice, BACE1 was present in OSN axon terminals in OB glomeruli. In whole-mount preparations and tissue sections, many OB glomeruli from OMP-GFP; BACE1-/- mice were malformed compared to wild-type glomeruli. MOR23-GFP; BACE1-/- mice had an irregular MOR23 glomerulus that was innervated by randomly oriented, poorly fasciculated OSN axons compared to BACE1+/+ mice. Most importantly, M72-GFP; BACE1-/- mice exhibited M72 OSN axons that were mis-targeted to ectopic glomeruli, indicating impaired axon guidance in BACE1-/- mice. Conclusions Our results demonstrate that BACE1 is required for the accurate targeting of OSN axons and the proper formation of glomeruli in the OB, suggesting a role for BACE1 in

  20. N-docosahexaenoylethanolamine regulates Hedgehog signaling and promotes growth of cortical axons

    Directory of Open Access Journals (Sweden)

    Giorgi Kharebava

    2015-12-01

    Full Text Available Axonogenesis, a process for the establishment of neuron connectivity, is central to brain function. The role of metabolites derived from docosahexaenoic acid (DHA, 22:6n-3 that is specifically enriched in the brain, has not been addressed in axon development. In this study, we tested if synaptamide (N-docosahexaenoylethanolamine, an endogenous metabolite of DHA, affects axon growth in cultured cortical neurons. We found that synaptamide increased the average axon length, inhibited GLI family zinc finger 1 (GLI1 transcription and sonic hedgehog (Shh target gene expression while inducing cAMP elevation. Similar effects were produced by cyclopamine, a regulator of the Shh pathway. Conversely, Shh antagonized elevation of cAMP and blocked synaptamide-mediated increase in axon length. Activation of Shh pathway by a smoothened (SMO agonist (SAG or overexpression of SMO did not inhibit axon growth mediated by synaptamide or cyclopamine. Instead, adenylate cyclase inhibitor SQ22536 abolished synaptamide-mediated axon growth indicating requirement of cAMP elevation for this process. Our findings establish that synaptamide promotes axon growth while Shh antagonizes synaptamide-mediated cAMP elevation and axon growth by a SMO-independent, non-canonical pathway.

  1. Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain.

    Science.gov (United States)

    Larsen, Camilla; Shy, Diana; Spindler, Shana R; Fung, Siaumin; Pereanu, Wayne; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2009-11-15

    The Drosophila central brain is composed of approximately 100 paired lineages, with most lineages comprising 100-150 neurons. Most lineages have a number of important characteristics in common. Typically, neurons of a lineage stay together as a coherent cluster and project their axons into a coherent bundle visible from late embryo to adult. Neurons born during the embryonic period form the primary axon tracts (PATs) that follow stereotyped pathways in the neuropile. Apoptotic cell death removes an average of 30-40% of primary neurons around the time of hatching. Secondary neurons generated during the larval period form secondary axon tracts (SATs) that typically fasciculate with their corresponding primary axon tract. SATs develop into the long fascicles that interconnect the different compartments of the adult brain. Structurally, we distinguish between three types of lineages: PD lineages, characterized by distinct, spatially separate proximal and distal arborizations; C lineages with arborizations distributed continuously along the entire length of their tract; D lineages that lack proximal arborizations. Arborizations of many lineages, in particular those of the PD type, are restricted to distinct neuropile compartments. We propose that compartments are "scaffolded" by individual lineages, or small groups thereof. Thereby, the relatively small number of primary neurons of each primary lineage set up the compartment map in the late embryo. Compartments grow during the larval period simply by an increase in arbor volume of primary neurons. Arbors of secondary neurons form within or adjacent to the larval compartments, resulting in smaller compartment subdivisions and additional, adult specific compartments. PMID:19538956

  2. 2- and 6-O-sulfated proteoglycans have distinct and complementary roles in cranial axon guidance and motor neuron migration

    Science.gov (United States)

    Maden, Charlotte H.; Davidson, Kathryn; Fantin, Alessandro

    2016-01-01

    The correct migration and axon extension of neurons in the developing nervous system is essential for the appropriate wiring and function of neural networks. Here, we report that O-sulfotransferases, a class of enzymes that modify heparan sulfate proteoglycans (HSPGs), are essential to regulate neuronal migration and axon development. We show that the 6-O-sulfotransferases HS6ST1 and HS6ST2 are essential for cranial axon patterning, whilst the 2-O-sulfotransferase HS2ST (also known as HS2ST1) is important to regulate the migration of facial branchiomotor (FBM) neurons in the hindbrain. We have also investigated how HS2ST interacts with other signals in the hindbrain and show that fibroblast growth factor (FGF) signalling regulates FBM neuron migration in an HS2ST-dependent manner. PMID:27048738

  3. The neural adhesion molecule TAG-1 modulates responses of sensory axons to diffusible guidance signals.

    Science.gov (United States)

    Law, Chris O; Kirby, Rebecca J; Aghamohammadzadeh, Soheil; Furley, Andrew J W

    2008-08-01

    When the axons of primary sensory neurons project into the embryonic mammalian spinal cord, they bifurcate and extend rostrocaudally before sending collaterals to specific laminae according to neuronal subclass. The specificity of this innervation has been suggested to be the result both of differential sensitivity to chemorepellants expressed in the ventral spinal cord and of the function of Ig-like neural cell adhesion molecules in the dorsal horn. The relationship between these mechanisms has not been addressed. Focussing on the pathfinding of TrkA+ NGF-dependent axons, we demonstrate for the first time that their axons project prematurely into the dorsal horn of both L1 and TAG-1 knockout mice. We show that axons lacking TAG-1, similar to those lacking L1, are insensitive to wild-type ventral spinal cord (VSC)-derived chemorepellants, indicating that adhesion molecule function is required in the axons, and that this loss of response is explained in part by loss of response to Sema3A. We present evidence that TAG-1 affects sensitivity to Sema3A by binding to L1 and modulating the endocytosis of the L1/neuropilin 1 Sema3A receptor complex. However, TAG-1 appears to affect sensitivity to other VSC-derived chemorepellants via an L1-independent mechanism. We suggest that this dependence of chemorepellant sensitivity on the functions of combinations of adhesion molecules is important to ensure that axons project via specific pathways before extending to their final targets. PMID:18550718

  4. Expression patterns of semaphorin7A and plexinC1 during rat neural development suggest roles in axon guidance and neuronal migration

    Directory of Open Access Journals (Sweden)

    Hellemons Anita JCGM

    2007-08-01

    Full Text Available Abstract Background Although originally identified as embryonic axon guidance cues, semaphorins are now known to regulate multiple, distinct, processes crucial for neuronal network formation including axon growth and branching, dendritic morphology, and neuronal migration. Semaphorin7A (Sema7A, the only glycosylphosphatidylinositol-anchored semaphorin, promotes axon growth in vitro and is required for the proper growth of the mouse lateral olfactory tract in vivo. Sema7A has been postulated to signal through two unrelated receptors, an RGD-dependent α1β1-integrin and a member of the plexin family, plexinC1. β1-integrins underlie Sema7A-mediated axon growth and Sema7A function in the immune system. Sema7A-plexinC1 interactions have also been implicated in immune system function, but the neuronal role of this ligand-receptor pair remains to be explored. To gain further insight into the function(s of Sema7A and plexinC1 during neural development, we present here a detailed analysis of Sema7A and plexinC1 expression in the developing rat nervous system. Results In situ hybridization revealed select expression of Sema7A and plexinC1 in multiple neuronal systems including: the olfactory system, the hypothalamo-hypophysial system, the hippocampus, the meso-diencephalic dopamine system, and the spinal cord. Within these systems, Sema7A and plexinC1 are often expressed in specific neuronal subsets. In general, Sema7A transcript levels increase significantly towards adulthood, whereas plexinC1 expression decreases as development proceeds. PlexinC1, but not Sema7A, is strongly expressed by distinct populations of migrating neurons. In addition to neuronal expression, Sema7A and plexinC1 transcripts were detected in oligodendrocytes and ependymal cells, respectively. Conclusion Sema7A and plexinC1 expression patterns are consistent with these proteins serving both cooperative and separate functions during neural development. The prominent expression of

  5. Expression patterns of semaphorin7A and plexinC1 during rat neural development suggest roles in axon guidance and neuronal migration

    Science.gov (United States)

    Pasterkamp, R Jeroen; Kolk, Sharon M; Hellemons, Anita JCGM; Kolodkin, Alex L

    2007-01-01

    Background Although originally identified as embryonic axon guidance cues, semaphorins are now known to regulate multiple, distinct, processes crucial for neuronal network formation including axon growth and branching, dendritic morphology, and neuronal migration. Semaphorin7A (Sema7A), the only glycosylphosphatidylinositol-anchored semaphorin, promotes axon growth in vitro and is required for the proper growth of the mouse lateral olfactory tract in vivo. Sema7A has been postulated to signal through two unrelated receptors, an RGD-dependent α1β1-integrin and a member of the plexin family, plexinC1. β1-integrins underlie Sema7A-mediated axon growth and Sema7A function in the immune system. Sema7A-plexinC1 interactions have also been implicated in immune system function, but the neuronal role of this ligand-receptor pair remains to be explored. To gain further insight into the function(s) of Sema7A and plexinC1 during neural development, we present here a detailed analysis of Sema7A and plexinC1 expression in the developing rat nervous system. Results In situ hybridization revealed select expression of Sema7A and plexinC1 in multiple neuronal systems including: the olfactory system, the hypothalamo-hypophysial system, the hippocampus, the meso-diencephalic dopamine system, and the spinal cord. Within these systems, Sema7A and plexinC1 are often expressed in specific neuronal subsets. In general, Sema7A transcript levels increase significantly towards adulthood, whereas plexinC1 expression decreases as development proceeds. PlexinC1, but not Sema7A, is strongly expressed by distinct populations of migrating neurons. In addition to neuronal expression, Sema7A and plexinC1 transcripts were detected in oligodendrocytes and ependymal cells, respectively. Conclusion Sema7A and plexinC1 expression patterns are consistent with these proteins serving both cooperative and separate functions during neural development. The prominent expression of plexinC1 in several distinct

  6. Expression of the Wnt signaling system in central nervous system axon guidance and regeneration

    Directory of Open Access Journals (Sweden)

    Edmund eHollis

    2012-02-01

    Full Text Available Wnt signaling is essential for axon wiring throughout the development of the nervous system in vertebrates and invertebrates. In vertebrates, Wnts are expressed in gradients that span the entire anterior-posterior axis in the spinal cord and the medial-lateral axis in the superior colliculus. In the brainstem, Wnts are expressed in more complex gradients along the anterior-posterior axis. These gradients provide directional information for axon pathfinding and positional information for topographic mapping and are detected by cell polarity signaling pathways. The gradient expression of Wnts and the coordinated expression of Wnt signaling systems are regulated by mechanisms which are currently unknown. Injury to the adult spinal cord results in the re-induction of Wnts in multiple cell types around the lesion site and their signaling system in injured axons. Reinduced Wnts form gradients around the lesion site, with the lesion site being the peak. The reinduced Wnts may be responsible for the well-known retraction of descending motor axons through the atypical kinase receptor Ryk. Wnt signaling is an appealing therapeutic target for CNS repair. The mechanisms regulating the reinduction will be informative for therapeutic design.

  7. p250GAP is a novel player in the Cdh1-APC/Smurf1 pathway of axon growth regulation.

    Directory of Open Access Journals (Sweden)

    Madhuvanthi Kannan

    Full Text Available Axon growth is an essential process during brain development. The E3 ubiquitin ligase Cdh1-APC has emerged as a critical regulator of intrinsic axon growth control. Here, we identified the RhoGAP p250GAP as a novel interactor of the E3 ubiquitin ligase Cdh1-APC and found that p250GAP promotes axon growth downstream of Cdh1-APC. We also report that p250GAP undergoes non-proteolytic ubiquitination and associates with the Cdh1 substrate Smurf1 to synergistically regulate axon growth. Finally, we found that in vivo knockdown of p250GAP in the developing cerebellar cortex results in impaired migration and axonal growth. Taken together, our data indicate that Cdh1-APC together with the RhoA regulators p250GAP and Smurf1 controls axon growth in the mammalian brain.

  8. The H3K4me3/2 histone demethylase RBR-2 controls axon guidance by repressing the actin-remodeling gene wsp-1

    DEFF Research Database (Denmark)

    Mariani, Luca; Lussi, Yvonne C.; Vandamme, Julien;

    2016-01-01

    . Here, we show that RBR-2, the sole homolog of the KDM5 family of H3K4me3/2 demethylases in Caenorhabditis elegans, ensures correct axon guidance by controlling the expression of the actin regulator wsp-1. Loss of rbr-2 results in increased levels of H3K4me3 at the transcriptional start site of wsp-1...

  9. Dscam1 Forms a Complex with Robo1 and the N-Terminal Fragment of Slit to Promote the Growth of Longitudinal Axons

    Science.gov (United States)

    Alavi, Maryam; Song, Minmin; Gillis, Taylor; Bousum, Adam; Miller, Amanda; Kidd, Thomas

    2016-01-01

    The Slit protein is a major midline repellent for central nervous system (CNS) axons. In vivo, Slit is proteolytically cleaved into N- and C-terminal fragments, but the biological significance of this is unknown. Analysis in the Drosophila ventral nerve cord of a slit allele (slit-UC) that cannot be cleaved revealed that midline repulsion is still present but longitudinal axon guidance is disrupted, particularly across segment boundaries. Double mutants for the Slit receptors Dscam1 and robo1 strongly resemble the slit-UC phenotype, suggesting they cooperate in longitudinal axon guidance, and through biochemical approaches, we found that Dscam1 and Robo1 form a complex dependent on Slit-N. In contrast, Robo1 binding alone shows a preference for full-length Slit, whereas Dscam1 only binds Slit-N. Using a variety of transgenes, we demonstrated that Dscam1 appears to modify the output of Robo/Slit complexes so that signaling is no longer repulsive. Our data suggest that the complex is promoting longitudinal axon growth across the segment boundary. The ability of Dscam1 to modify the output of other receptors in a ligand-dependent fashion may be a general principle for Dscam proteins. PMID:27654876

  10. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology.

    Directory of Open Access Journals (Sweden)

    Guy eElston

    2014-08-01

    Full Text Available Here we review recent findings related to postnatal spinogenesis, dendritic and axon growth, pruning and electrophysiology of neocortical pyramidal cells in the developing primate brain. Pyramidal cells in sensory, association and executive cortex grow dendrites, spines and axons at different rates, and vary in the degree of pruning. Of particular note is the fact that pyramidal cells in primary visual area (V1 prune more spines than they grow during postnatal development, whereas those in inferotemporal (TEO and TE and granular prefrontal cortex (gPFC; Brodmann’s area 12 grow more than they prune. Moreover, pyramidal cells in TEO, TE and the gPFC continue to grow larger dendritic territories from birth into adulthood, replete with spines, whereas those in V1 become smaller during this time. The developmental profile of intrinsic axons also varies between cortical areas: those in V1, for example, undergo an early proliferation followed by pruning and local consolidation into adulthood, whereas those in area TE tend to establish their territory and consolidate it into adulthood with little pruning. We correlate the anatomical findings with the electrophysiological properties of cells in the different cortical areas, including membrane time constant, depolarizing sag, duration of individual action potentials, and spike-frequency adaptation. All of the electrophysiological variables ramped up before 7 months of age in V1, but continued to ramp up over a protracted period of time in area TE. These data suggest that the anatomical and electrophysiological profiles of pyramidal cells vary among cortical areas at birth, and continue to diverge into adulthood. Moreover, the data reveal that the use it or lose it notion of synaptic reinforcement may speak to only part of the story, use it but you still might lose it may be just as prevalent in the cerebral cortex.

  11. Exosomes mediate cell contact-independent ephrin-Eph signaling during axon guidance.

    Science.gov (United States)

    Gong, Jingyi; Körner, Roman; Gaitanos, Louise; Klein, Rüdiger

    2016-07-01

    The cellular release of membranous vesicles known as extracellular vesicles (EVs) or exosomes represents a novel mode of intercellular communication. Eph receptor tyrosine kinases and their membrane-tethered ephrin ligands have very important roles in such biologically diverse processes as neuronal development, plasticity, and pathological diseases. Until now, it was thought that ephrin-Eph signaling requires direct cell contact. Although the biological functions of ephrin-Eph signaling are well understood, our mechanistic understanding remains modest. Here we report the release of EVs containing Ephs and ephrins by different cell types, a process requiring endosomal sorting complex required for transport (ESCRT) activity and regulated by neuronal activity. Treatment of cells with purified EphB2(+) EVs induces ephrinB1 reverse signaling and causes neuronal axon repulsion. These results indicate a novel mechanism of ephrin-Eph signaling independent of direct cell contact and proteolytic cleavage and suggest the participation of EphB2(+) EVs in neural development and synapse physiology. PMID:27354374

  12. Lazarillo, a neuronal lipocalin in grasshoppers with a role in axon guidance.

    Science.gov (United States)

    Sánchez, D; Ganfornina, M D; Bastiani, M J

    2000-10-18

    In this report we present a review on the grasshopper lipocalin Lazarillo with special emphasis on how its molecular properties could account for its known function: the guidance of pioneer neurons during nervous system development. The expression and function of Lazarillo in a subset of developing neurons, its heavy glycosylation and its glycosylphosphatidylinositol linkage to the plasma membrane, make Lazarillo a unique member of the lipocalin family. We have built a model of the tertiary structure of Lazarillo in which we have studied the exposed surfaces in search for clues about ligand and protein interactions with Lazarillo. Our hypotheses about how this lipocalin can exert its function are discussed.

  13. Complete Loss of Netrin-1 Results in Embryonic Lethality and Severe Axon Guidance Defects without Increased Neural Cell Death

    Directory of Open Access Journals (Sweden)

    Jenea M. Bin

    2015-08-01

    Full Text Available Netrin-1 regulates cell migration and adhesion during the development of the nervous system, vasculature, lung, pancreas, muscle, and mammary gland. It is also proposed to function as a dependence ligand that inhibits apoptosis; however, studies disagree regarding whether netrin-1 loss-of-function mice exhibit increased cell death. Furthermore, previously studied netrin-1 loss-of-function gene-trap mice express a netrin-1-β-galactosidase protein chimera with potential for toxic gain-of-function effects, as well as a small amount of wild-type netrin-1 protein. To unambiguously assess loss of function, we generated netrin-1 floxed and netrin-1 null mouse lines. Netrin-1−/− mice die earlier and exhibit more severe axon guidance defects than netrin-1 gene-trap mice, revealing that complete loss of function is more severe than previously reported. Netrin-1−/− embryos also exhibit increased expression of the netrin receptors DCC and neogenin that are proposed dependence receptors; however, increased apoptosis was not detected, inconsistent with netrin-1 being an essential dependence receptor ligand in the embryonic spinal cord.

  14. Developmental Axon Stretch Stimulates Neuron Growth While Maintaining Normal Electrical Activity, Intracellular Calcium Flux, and Somatic Morphology

    Directory of Open Access Journals (Sweden)

    Joseph R Loverde

    2015-08-01

    Full Text Available Elongation of nerve fibers intuitively occurs throughout mammalian development, and is synchronized with expansion of the growing body. While most tissue systems enlarge through mitosis and differentiation, elongation of nerve fibers is remarkably unique. The emerging paradigm suggests that axons undergo stretch as contiguous tissues enlarge between the proximal and distal segments of spanning nerve fibers. While stretch is distinct from growth, tension is a known stimulus which regulates the growth of axons. Here, we hypothesized that the axon stretch-growth process may be a natural form of injury, whereby regenerative processes fortify elongating axons in order to prevent disconnection. Harnessing the live imaging capability of our axon stretch-growth bioreactors, we assessed neurons both during and following stretch for biomarkers associated with injury. Utilizing whole-cell patch clamp recording, we found no evidence of changes in spontaneous action potential activity or degradation of elicited action potentials during real-time axon stretch at strains of up to 18 % applied over 5 minutes. Unlike traumatic axonal injury, functional calcium imaging of the soma revealed no shifts in free intracellular calcium during axon stretch. Finally, the cross-sectional areas of nuclei and cytoplasms were normal, with no evidence of chromatolysis following week-long stretch-growth limited to the lower of 25 % strain or 3 mm total daily stretch. The neuronal growth cascade coupled to stretch was concluded to be independent of the changes in membrane potential, action potential generation, or calcium flux associated with traumatic injury. While axon stretch-growth is likely to share overlap with regenerative processes, we conclude that developmental stretch is a distinct stimulus from traumatic axon injury.

  15. Transcriptional control of axonal guidance and sorting in dorsal interneurons by the Lim-HD proteins Lhx9 and Lhx1

    Directory of Open Access Journals (Sweden)

    Schejter Adi

    2009-06-01

    Full Text Available Abstract Background Lim-HD proteins control crucial aspects of neuronal differentiation, including subtype identity and axonal guidance. The Lim-HD proteins Lhx2/9 and Lhx1/5 are expressed in the dorsal spinal interneuron populations dI1 and dI2, respectively. While they are not required for cell fate acquisition, their role in patterning the axonal trajectory of dI1 and dI2 neurons remains incompletely understood. Results Using newly identified dI1- and dI2-specific enhancers to trace axonal trajectories originating from these interneurons, we found that each population is subdivided into several distinct groups according to their axonal pathways. dI1 neurons project axons rostrally, either ipsi- or contra-laterally, while dI2 are mostly commissural neurons that project their axons rostrally and caudally. The longitudinal axonal tracks of each neuronal population self-fasciculate to form dI1- and dI2-specific bundles. The dI1 bundles are spatially located ventral relative to dI2 bundles. To examine the functional contribution of Lim-HD proteins to establishment of dI axonal projections, the Lim-HD code of dI neurons was altered by cell-specific ectopic expression. Expression of Lhx1 in dI1 neurons caused a repression of Lhx2/9 and imposed caudal projection to the caudal commissural dI1 neurons. Complementarily, when expressed in dI2 neurons, Lhx9 repressed Lhx1/5 and triggered a bias toward rostral projection in otherwise caudally projecting dI2 neurons, and ventral shift of the longitudinal axonal fascicule. Conclusion The Lim-HD proteins Lhx9 and Lhx1 serve as a binary switch in controlling the rostral versus caudal longitudinal turning of the caudal commissural axons. Lhx1 determines caudal turning and Lhx9 triggers rostral turning.

  16. Integration of shallow gradients of Shh and Netrin-1 guides commissural axons.

    Directory of Open Access Journals (Sweden)

    Tyler F W Sloan

    2015-03-01

    Full Text Available During nervous system development, gradients of Sonic Hedgehog (Shh and Netrin-1 attract growth cones of commissural axons toward the floor plate of the embryonic spinal cord. Mice defective for either Shh or Netrin-1 signaling have commissural axon guidance defects, suggesting that both Shh and Netrin-1 are required for correct axon guidance. However, how Shh and Netrin-1 collaborate to guide axons is not known. We first quantified the steepness of the Shh gradient in the spinal cord and found that it is mostly very shallow. We then developed an in vitro microfluidic guidance assay to simulate these shallow gradients. We found that axons of dissociated commissural neurons respond to steep but not shallow gradients of Shh or Netrin-1. However, when we presented axons with combined Shh and Netrin-1 gradients, they had heightened sensitivity to the guidance cues, turning in response to shallower gradients that were unable to guide axons when only one cue was present. Furthermore, these shallow gradients polarized growth cone Src-family kinase (SFK activity only when Shh and Netrin-1 were combined, indicating that SFKs can integrate the two guidance cues. Together, our results indicate that Shh and Netrin-1 synergize to enable growth cones to sense shallow gradients in regions of the spinal cord where the steepness of a single guidance cue is insufficient to guide axons, and we identify a novel type of synergy that occurs when the steepness (and not the concentration of a guidance cue is limiting.

  17. Drosophila as a genetic and cellular model for studies on axonal growth

    Directory of Open Access Journals (Sweden)

    Whitington Paul

    2007-05-01

    Full Text Available Abstract One of the most fascinating processes during nervous system development is the establishment of stereotypic neuronal networks. An essential step in this process is the outgrowth and precise navigation (pathfinding of axons and dendrites towards their synaptic partner cells. This phenomenon was first described more than a century ago and, over the past decades, increasing insights have been gained into the cellular and molecular mechanisms regulating neuronal growth and navigation. Progress in this area has been greatly assisted by the use of simple and genetically tractable invertebrate model systems, such as the fruit fly Drosophila melanogaster. This review is dedicated to Drosophila as a genetic and cellular model to study axonal growth and demonstrates how it can and has been used for this research. We describe the various cellular systems of Drosophila used for such studies, insights into axonal growth cones and their cytoskeletal dynamics, and summarise identified molecular signalling pathways required for growth cone navigation, with particular focus on pathfinding decisions in the ventral nerve cord of Drosophila embryos. These Drosophila-specific aspects are viewed in the general context of our current knowledge about neuronal growth.

  18. Axon guidance factor SLIT2 inhibits neural invasion and metastasis in pancreatic cancer.

    Science.gov (United States)

    Göhrig, Andreas; Detjen, Katharina M; Hilfenhaus, Georg; Körner, Jan L; Welzel, Martina; Arsenic, Ruza; Schmuck, Rosa; Bahra, Marcus; Wu, Jane Y; Wiedenmann, Bertram; Fischer, Christian

    2014-03-01

    Pancreatic ductal adenocarcinoma (PDAC) metastasizes by neural, vascular, and local invasion routes, which limit patient survival. In nerves and vessels, SLIT2 and its ROBO receptors constitute repellent guidance cues that also direct epithelial branching. Thus, the SLIT2-ROBO system may represent a key pinch point to regulate PDAC spread. In this study, we examined the hypothesis that escaping from repellent SLIT2-ROBO signaling is essential to enable PDAC cells to appropriate their local stromal infrastructure for dissemination. Through immunohistochemical analysis, we detected SLIT2 receptors ROBO1 and ROBO4 on epithelia, nerves, and vessels in healthy pancreas and PDAC specimens, respectively. SLIT2 mRNA expression was reduced in PDAC compared with nontransformed pancreatic tissues and cell lines, suggesting a reduction in SLIT2-ROBO pathway activity in PDAC. In support of this interpretation, restoring the SLIT2 expression in SLIT2-deficient PDAC cells inhibited their bidirectional chemoattraction with neural cells, and more specifically, impaired unidirectional PDAC cell navigation along outgrowing neurites in models of neural invasion. Restoring autocrine/paracrine SLIT2 signaling was also sufficient to inhibit the directed motility of PDAC cells, but not their random movement. Conversely, RNA interference-mediated silencing of ROBO1 stimulated the motility of SLIT2-competent PDAC cells. Furthermore, culture supernatants from SLIT2-competent PDAC cells impaired migration of endothelial cells (human umbilical vein endothelial cells), whereas an N-terminal SLIT2 cleavage fragment stimulated such migration. In vivo investigations of pancreatic tumors with restored SLIT2 expression demonstrated reduced invasion, metastasis, and vascularization, with opposing effects produced by ROBO1 silencing in tumor cells or sequestration of endogenous SLIT2. Analysis of clinical specimens of PDAC showed that those with low SLIT2 mRNA expression exhibited a higher incidence

  19. Motor Axon Pathfinding

    OpenAIRE

    Bonanomi, Dario; Pfaff, Samuel L

    2010-01-01

    Motor neurons are functionally related, but represent a diverse collection of cells that show strict preferences for specific axon pathways during embryonic development. In this article, we describe the ligands and receptors that guide motor axons as they extend toward their peripheral muscle targets. Motor neurons share similar guidance molecules with many other neuronal types, thus one challenge in the field of axon guidance has been to understand how the vast complexity of brain connection...

  20. Arrest of Myelination and Reduced Axon Growth when Schwann Cells Lack mTOR

    OpenAIRE

    Sherman, Diane L.; Krols, Michiel; Wu, Lai-Man N.; Grove, Matthew; Nave, Klaus-Armin; Gangloff, Yann-Gaël; Brophy, Peter J.

    2012-01-01

    In developing peripheral nerves differentiating Schwann cells sort individual axons from bundles and ensheath them to generate multiple layers of myelin. In recent years there has been an increasing understanding of the extracellular and intracellular factors that initiate and stimulate Schwann cell myelination together with a growing appreciation of some of the signalling pathways involved. However, our knowledge of how Schwann cell growth is regulated during myelination is still incomplete....

  1. Regulation of Intracellular Structural Tension by Talin in the Axon Growth and Regeneration.

    Science.gov (United States)

    Dingyu, Wang; Fanjie, Meng; Zhengzheng, Ding; Baosheng, Huang; Chao, Yang; Yi, Pan; Huiwen, Wu; Jun, Guo; Gang, Hu

    2016-09-01

    Intracellular tension is the most important characteristic of neuron polarization as well as the growth and regeneration of axons, which can be generated by motor proteins and conducted along the cytoskeleton. To better understand this process, we created Förster resonance energy transfer (FRET)-based tension probes that can be incorporated into microfilaments to provide a real-time measurement of forces in neuron cytoskeletons. We found that our probe could be used to assess the structural tension of neuron polarity. Nerve growth factor (NGF) upregulated structural forces, whereas the glial-scar inhibitors chondroitin sulfate proteoglycan (CSPG) and aggrecan weakened such forces. Notably, the tension across axons was distributed uniformly and remarkably stronger than that in the cell body in NGF-stimulated neurons. The mechanosensors talin/vinculin could antagonize the effect of glial-scar inhibitors via structural forces. However, E-cadherin was closely associated with glial-scar inhibitor-induced downregulation of structural forces. Talin/vinculin was involved in the negative regulation of E-cadherin transcription through the nuclear factor-kappa B pathway. Collectively, this study clarified the mechanism underlying intracellular tension in the growth and regeneration of axons which, conversely, can be regulated by talin and E-cadherin. PMID:26298665

  2. Quantification of dendritic and axonal growth after injury to the auditory system of the adult cricket Gryllus bimaculatus.

    Science.gov (United States)

    Pfister, Alexandra; Johnson, Amy; Ellers, Olaf; Horch, Hadley W

    2013-01-01

    Dendrite and axon growth and branching during development are regulated by a complex set of intracellular and external signals. However, the cues that maintain or influence adult neuronal morphology are less well understood. Injury and deafferentation tend to have negative effects on adult nervous systems. An interesting example of injury-induced compensatory growth is seen in the cricket, Gryllus bimaculatus. After unilateral loss of an ear in the adult cricket, auditory neurons within the central nervous system (CNS) sprout to compensate for the injury. Specifically, after being deafferented, ascending neurons (AN-1 and AN-2) send dendrites across the midline of the prothoracic ganglion where they receive input from auditory afferents that project through the contralateral auditory nerve (N5). Deafferentation also triggers contralateral N5 axonal growth. In this study, we quantified AN dendritic and N5 axonal growth at 30 h, as well as at 3, 5, 7, 14, and 20 days after deafferentation in adult crickets. Significant differences in the rates of dendritic growth between males and females were noted. In females, dendritic growth rates were non-linear; a rapid burst of dendritic extension in the first few days was followed by a plateau reached at 3 days after deafferentation. In males, however, dendritic growth rates were linear, with dendrites growing steadily over time and reaching lengths, on average, twice as long as in females. On the other hand, rates of N5 axonal growth showed no significant sexual dimorphism and were linear. Within each animal, the growth rates of dendrites and axons were not correlated, indicating that independent factors likely influence dendritic and axonal growth in response to injury in this system. Our findings provide a basis for future study of the cellular features that allow differing dendrite and axon growth patterns as well as sexually dimorphic dendritic growth in response to deafferentation.

  3. Quantification of dendritic and axonal growth after injury to the auditory system of the adult cricket Gryllus bimaculatus

    Directory of Open Access Journals (Sweden)

    Alexandra ePfister

    2013-08-01

    Full Text Available Dendrite and axon growth and branching during development are regulated by a complex set of intracellular and external signals. However, the cues that maintain or influence adult neuronal morphology are less well understood. Injury and deafferentation tend to have negative effects on adult nervous systems. An interesting example of injury-induced compensatory growth is seen in the cricket, Gryllus bimaculatus. After unilateral loss of an ear in the adult cricket, auditory neurons within the central nervous system sprout to compensate for the injury. Specifically, after being deafferented, ascending neurons (AN-1 and AN-2 send dendrites across the midline of the prothoracic ganglion where they receive input from auditory afferents that project through the contralateral auditory nerve (N5. Deafferentation also triggers contralateral N5 axonal growth. In this study, we quantified AN dendritic and N5 axonal growth at 30 hours, as well as at 3, 5, 7, 14 and 20 days after deafferentation in adult crickets. Significant differences in the rates of dendritic growth between males and females were noted. In females, dendritic growth rates were non-linear; a rapid burst of dendritic extension in the first few days was followed by a plateau reached at 3 days after deafferentation. In males, however, dendritic growth rates were linear, with dendrites growing steadily over time and reaching lengths, on average, twice as long as in females. On the other hand, rates of N5 axonal growth showed no significant sexual dimorphism and were linear. Within each animal, the growth rates of dendrites and axons were not correlated, indicating that independent factors likely influence dendritic and axonal growth in response to injury in this system. Our findings provide a basis for future study of the cellular features that allow differing dendrite and axon growth patterns as well as sexually dimorphic dendritic growth in response to deafferentation.

  4. Actin turnover is required to prevent axon retraction driven by endogenous actomyosin contractility

    OpenAIRE

    Gallo, Gianluca; Yee, Hal F.; Letourneau, Paul C.

    2002-01-01

    Growth cone motility and guidance depend on the dynamic reorganization of filamentous actin (F-actin). In the growth cone, F-actin undergoes turnover, which is the exchange of actin subunits from existing filaments. However, the function of F-actin turnover is not clear. We used jasplakinolide (jasp), a cell-permeable macrocyclic peptide that inhibits F-actin turnover, to study the role of F-actin turnover in axon extension. Treatment with jasp caused axon retraction, demonstrating that axon ...

  5. Poly(trimethylene carbonate-co-ε-caprolactone promotes axonal growth.

    Directory of Open Access Journals (Sweden)

    Daniela Nogueira Rocha

    Full Text Available Mammalian central nervous system (CNS neurons do not regenerate after injury due to the inhibitory environment formed by the glial scar, largely constituted by myelin debris. The use of biomaterials to bridge the lesion area and the creation of an environment favoring axonal regeneration is an appealing approach, currently under investigation. This work aimed at assessing the suitability of three candidate polymers - poly(ε-caprolactone, poly(trimethylene carbonate-co-ε-caprolactone (P(TMC-CL (11∶89 mol% and poly(trimethylene carbonate - with the final goal of using these materials in the development of conduits to promote spinal cord regeneration. Poly(L-lysine (PLL coated polymeric films were tested for neuronal cell adhesion and neurite outgrowth. At similar PLL film area coverage conditions, neuronal polarization and axonal elongation was significantly higher on P(TMC-CL films. Furthermore, cortical neurons cultured on P(TMC-CL were able to extend neurites even when seeded onto myelin. This effect was found to be mediated by the glycogen synthase kinase 3β (GSK3β signaling pathway with impact on the collapsin response mediator protein 4 (CRMP4, suggesting that besides surface topography, nanomechanical properties were implicated in this process. The obtained results indicate P(TMC-CL as a promising material for CNS regenerative applications as it promotes axonal growth, overcoming myelin inhibition.

  6. Diet and energy-sensing inputs affect TorC1-mediated axon misrouting but not TorC2-directed synapse growth in a Drosophila model of tuberous sclerosis.

    Directory of Open Access Journals (Sweden)

    Brian Dimitroff

    Full Text Available The Target of Rapamycin (TOR growth regulatory system is influenced by a number of different inputs, including growth factor signaling, nutrient availability, and cellular energy levels. While the effects of TOR on cell and organismal growth have been well characterized, this pathway also has profound effects on neural development and behavior. Hyperactivation of the TOR pathway by mutations in the upstream TOR inhibitors TSC1 (tuberous sclerosis complex 1 or TSC2 promotes benign tumors and neurological and behavioral deficits, a syndrome known as tuberous sclerosis (TS. In Drosophila, neuron-specific overexpression of Rheb, the direct downstream target inhibited by Tsc1/Tsc2, produced significant synapse overgrowth, axon misrouting, and phototaxis deficits. To understand how misregulation of Tor signaling affects neural and behavioral development, we examined the influence of growth factor, nutrient, and energy sensing inputs on these neurodevelopmental phenotypes. Neural expression of Pi3K, a principal mediator of growth factor inputs to Tor, caused synapse overgrowth similar to Rheb, but did not disrupt axon guidance or phototaxis. Dietary restriction rescued Rheb-mediated behavioral and axon guidance deficits, as did overexpression of AMPK, a component of the cellular energy sensing pathway, but neither was able to rescue synapse overgrowth. While axon guidance and behavioral phenotypes were affected by altering the function of a Tor complex 1 (TorC1 component, Raptor, or a TORC1 downstream element (S6k, synapse overgrowth was only suppressed by reducing the function of Tor complex 2 (TorC2 components (Rictor, Sin1. These findings demonstrate that different inputs to Tor signaling have distinct activities in nervous system development, and that Tor provides an important connection between nutrient-energy sensing systems and patterning of the nervous system.

  7. Coordinated motor neuron axon growth and neuromuscular synaptogenesis are promoted by CPG15 in vivo.

    Science.gov (United States)

    Javaherian, Ashkan; Cline, Hollis T

    2005-02-17

    We have used in vivo time-lapse two-photon imaging of single motor neuron axons labeled with GFP combined with labeling of presynaptic vesicle clusters and postsynaptic acetylcholine receptors in Xenopus laevis tadpoles to determine the dynamic rearrangement of individual axon branches and synaptogenesis during motor axon arbor development. Control GFP-labeled axons are highly dynamic during the period when axon arbors are elaborating. Axon branches emerge from sites of synaptic vesicle clusters. These data indicate that motor neuron axon elaboration and synaptogenesis are concurrent and iterative. We tested the role of Candidate Plasticity Gene 15 (CPG15, also known as Neuritin), an activity-regulated gene that is expressed in the developing motor neurons in this process. CPG15 expression enhances the development of motor neuron axon arbors by promoting neuromuscular synaptogenesis and by increasing the addition of new axon branches. PMID:15721237

  8. Local translation and directional steering in axons

    OpenAIRE

    Lin, Andrew C; Holt, Christine E.

    2007-01-01

    The assembly of functional neural circuits in the developing brain requires neurons to extend axons to the correct targets. This in turn requires the navigating tips of axons to respond appropriately to guidance cues present along the axonal pathway, despite being cellular ‘outposts' far from the soma. Work over the past few years has demonstrated a critical role for local translation within the axon in this process in vitro, making axon guidance another process that requires spatially locali...

  9. Semaphorin 3C Released from a Biocompatible Hydrogel Guides and Promotes Axonal Growth of Rodent and Human Dopaminergic Neurons.

    Science.gov (United States)

    Carballo-Molina, Oscar A; Sánchez-Navarro, Andrea; López-Ornelas, Adolfo; Lara-Rodarte, Rolando; Salazar, Patricia; Campos-Romo, Aurelio; Ramos-Mejía, Verónica; Velasco, Iván

    2016-06-01

    Cell therapy in experimental models of Parkinson's disease replaces the lost dopamine neurons (DAN), but we still need improved methods to guide dopaminergic axons (DAx) of grafted neurons to make proper connections. The protein Semaphorin 3C (Sema3C) attracts DAN axons and enhances their growth. In this work, we show that the hydrogel PuraMatrix, a self-assembling peptide-based matrix, incorporates Sema3C and releases it steadily during 4 weeks. We also tested if hydrogel-delivered Sema3C attracts DAx using a system of rat midbrain explants embedded in collagen gels. We show that Sema3C released by this hydrogel attracts DAx, in a similar way to pretectum, which is known to attract growing DAN axons. We assessed the effect of Sema3C on the growth of DAx using microfluidic devices. DAN from rat midbrain or those differentiated from human embryonic stem cells showed enhanced axonal extension when exposed to hydrogel-released Sema3C, similar to soluble Sema3C. Notably, DAN of human origin express the cognate Sema3C receptors, Neuropilin1 and Neuropilin2. These results show that PuraMatrix is able to incorporate and release Sema3C, and such delivery guides and promotes the axonal growth of DAN. This biocompatible hydrogel might be useful as a Sema3C carrier for in vivo studies in parkinsonian animal models. PMID:27174503

  10. The NAV2 homolog Sickie regulates F-actin-mediated axonal growth in Drosophila mushroom body neurons via the non-canonical Rac-Cofilin pathway.

    Science.gov (United States)

    Abe, Takashi; Yamazaki, Daisuke; Murakami, Satoshi; Hiroi, Makoto; Nitta, Yohei; Maeyama, Yuko; Tabata, Tetsuya

    2014-12-01

    The Rac-Cofilin pathway is essential for cytoskeletal remodeling to control axonal development. Rac signals through the canonical Rac-Pak-LIMK pathway to suppress Cofilin-dependent axonal growth and through a Pak-independent non-canonical pathway to promote outgrowth. Whether this non-canonical pathway converges to promote Cofilin-dependent F-actin reorganization in axonal growth remains elusive. We demonstrate that Sickie, a homolog of the human microtubule-associated protein neuron navigator 2, cell-autonomously regulates axonal growth of Drosophila mushroom body (MB) neurons via the non-canonical pathway. Sickie was prominently expressed in the newborn F-actin-rich axons of MB neurons. A sickie mutant exhibited axonal growth defects, and its phenotypes were rescued by exogenous expression of Sickie. We observed phenotypic similarities and genetic interactions among sickie and Rac-Cofilin signaling components. Using the MARCM technique, distinct F-actin and phospho-Cofilin patterns were detected in developing axons mutant for sickie and Rac-Cofilin signaling regulators. The upregulation of Cofilin function alleviated the axonal defect of the sickie mutant. Epistasis analyses revealed that Sickie suppresses the LIMK overexpression phenotype and is required for Pak-independent Rac1 and Slingshot phosphatase to counteract LIMK. We propose that Sickie regulates F-actin-mediated axonal growth via the non-canonical Rac-Cofilin pathway in a Slingshot-dependent manner.

  11. Brain-derived neurotrophic factor is required for axonal growth of selective groups of neurons in the arcuate nucleus

    Directory of Open Access Journals (Sweden)

    Guey-Ying Liao

    2015-06-01

    Conclusion: This study shows that the majority of TrkB neurons in the ARH are distinct from known neuronal populations and that BDNF plays a critical role in directing projections from these neurons to the DMH and PVH. We propose that hyperphagic obesity due to BDNF deficiency is in part attributable to impaired axonal growth of TrkB-expressing ARH neurons.

  12. Whole Genome Sequencing of Newly Established Pancreatic Cancer Lines Identifies Novel Somatic Mutation (c.2587G>A in Axon Guidance Receptor Plexin A1 as Enhancer of Proliferation and Invasion.

    Directory of Open Access Journals (Sweden)

    Rebecca Sorber

    Full Text Available The genetic profile of human pancreatic cancers harbors considerable heterogeneity, which suggests a possible explanation for the pronounced inefficacy of single therapies in this disease. This observation has led to a belief that custom therapies based on individual tumor profiles are necessary to more effectively treat pancreatic cancer. It has recently been discovered that axon guidance genes are affected by somatic structural variants in up to 25% of human pancreatic cancers. Thus far, however, some of these mutations have only been correlated to survival probability and no function has been assigned to these observed axon guidance gene mutations in pancreatic cancer. In this study we established three novel pancreatic cancer cell lines and performed whole genome sequencing to discover novel mutations in axon guidance genes that may contribute to the cancer phenotype of these cells. We discovered, among other novel somatic variants in axon guidance pathway genes, a novel mutation in the PLXNA1 receptor (c.2587G>A in newly established cell line SB.06 that mediates oncogenic cues of increased invasion and proliferation in SB.06 cells and increased invasion in 293T cells upon stimulation with the receptor's natural ligand semaphorin 3A compared to wild type PLXNA1 cells. Mutant PLXNA1 signaling was associated with increased Rho-GTPase and p42/p44 MAPK signaling activity and cytoskeletal expansion, but not changes in E-cadherin, vimentin, or metalloproteinase 9 expression levels. Pharmacologic inhibition of the Rho-GTPase family member CDC42 selectively abrogated PLXNA1 c.2587G>A-mediated increased invasion. These findings provide in-vitro confirmation that somatic mutations in axon guidance genes can provide oncogenic gain-of-function signals and may contribute to pancreatic cancer progression.

  13. Transcriptional control in embryonic Drosophila midline guidance assessed through a whole genome approach

    Directory of Open Access Journals (Sweden)

    Tomancak Pavel

    2007-07-01

    Full Text Available Abstract Background During the development of the Drosophila central nervous system the process of midline crossing is orchestrated by a number of guidance receptors and ligands. Many key axon guidance molecules have been identified in both invertebrates and vertebrates, but the transcriptional regulation of growth cone guidance remains largely unknown. It is established that translational regulation plays a role in midline crossing, and there are indications that transcriptional regulation is also involved. To investigate this issue, we conducted a genome-wide study of transcription in Drosophila embryos using wild type and a number of well-characterized Drosophila guidance mutants and transgenics. We also analyzed a previously published microarray time course of Drosophila embryonic development with an axon guidance focus. Results Using hopach, a novel clustering method which is well suited to microarray data analysis, we identified groups of genes with similar expression patterns across guidance mutants and transgenics. We then systematically characterized the resulting clusters with respect to their relevance to axon guidance using two complementary controlled vocabularies: the Gene Ontology (GO and anatomical annotations of the Atlas of Pattern of Gene Expression (APoGE in situ hybridization database. The analysis indicates that regulation of gene expression does play a role in the process of axon guidance in Drosophila. We also find a strong link between axon guidance and hemocyte migration, a result that agrees with mounting evidence that axon guidance molecules are co-opted in vertebrate vascularization. Cell cyclin activity in the context of axon guidance is also suggested from our array data. RNA and protein expression patterns of cell cyclins in axon guidance mutants and transgenics support this possible link. Conclusion This study provides important insights into the regulation of axon guidance in vivo.

  14. Transcriptome Profiling Identifies Multiplexin as a Target of SAGA Deubiquitinase Activity in Glia Required for Precise Axon Guidance During Drosophila Visual Development

    Directory of Open Access Journals (Sweden)

    Jingqun Ma

    2016-08-01

    Full Text Available The Spt-Ada-Gcn5 Acetyltransferase (SAGA complex is a transcriptional coactivator with histone acetylase and deubiquitinase activities that plays an important role in visual development and function. In Drosophila melanogaster, four SAGA subunits are required for the deubiquitination of monoubiquitinated histone H2B (ubH2B: Nonstop, Sgf11, E(y2, and Ataxin 7. Mutations that disrupt SAGA deubiquitinase activity cause defects in neuronal connectivity in the developing Drosophila visual system. In addition, mutations in SAGA result in the human progressive visual disorder spinocerebellar ataxia type 7 (SCA7. Glial cells play a crucial role in both the neuronal connectivity defect in nonstop and sgf11 flies, and in the retinal degeneration observed in SCA7 patients. Thus, we sought to identify the gene targets of SAGA deubiquitinase activity in glia in the Drosophila larval central nervous system. To do this, we enriched glia from wild-type, nonstop, and sgf11 larval optic lobes using affinity-purification of KASH-GFP tagged nuclei, and then examined each transcriptome using RNA-seq. Our analysis showed that SAGA deubiquitinase activity is required for proper expression of 16% of actively transcribed genes in glia, especially genes involved in proteasome function, protein folding and axon guidance. We further show that the SAGA deubiquitinase-activated gene Multiplexin (Mp is required in glia for proper photoreceptor axon targeting. Mutations in the human ortholog of Mp, COL18A1, have been identified in a family with a SCA7-like progressive visual disorder, suggesting that defects in the expression of this gene in SCA7 patients could play a role in the retinal degeneration that is unique to this ataxia.

  15. Transcriptome Profiling Identifies Multiplexin as a Target of SAGA Deubiquitinase Activity in Glia Required for Precise Axon Guidance During Drosophila Visual Development

    Science.gov (United States)

    Ma, Jingqun; Brennan, Kaelan J.; D’Aloia, Mitch R.; Pascuzzi, Pete E.; Weake, Vikki M.

    2016-01-01

    The Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex is a transcriptional coactivator with histone acetylase and deubiquitinase activities that plays an important role in visual development and function. In Drosophila melanogaster, four SAGA subunits are required for the deubiquitination of monoubiquitinated histone H2B (ubH2B): Nonstop, Sgf11, E(y)2, and Ataxin 7. Mutations that disrupt SAGA deubiquitinase activity cause defects in neuronal connectivity in the developing Drosophila visual system. In addition, mutations in SAGA result in the human progressive visual disorder spinocerebellar ataxia type 7 (SCA7). Glial cells play a crucial role in both the neuronal connectivity defect in nonstop and sgf11 flies, and in the retinal degeneration observed in SCA7 patients. Thus, we sought to identify the gene targets of SAGA deubiquitinase activity in glia in the Drosophila larval central nervous system. To do this, we enriched glia from wild-type, nonstop, and sgf11 larval optic lobes using affinity-purification of KASH-GFP tagged nuclei, and then examined each transcriptome using RNA-seq. Our analysis showed that SAGA deubiquitinase activity is required for proper expression of 16% of actively transcribed genes in glia, especially genes involved in proteasome function, protein folding and axon guidance. We further show that the SAGA deubiquitinase-activated gene Multiplexin (Mp) is required in glia for proper photoreceptor axon targeting. Mutations in the human ortholog of Mp, COL18A1, have been identified in a family with a SCA7-like progressive visual disorder, suggesting that defects in the expression of this gene in SCA7 patients could play a role in the retinal degeneration that is unique to this ataxia. PMID:27261002

  16. Pioneer Axon Navigation Is Controlled by AEX-3, a Guanine Nucleotide Exchange Factor for RAB-3 in Caenorhabditis elegans.

    Science.gov (United States)

    Bhat, Jaffar M; Hutter, Harald

    2016-07-01

    Precise and accurate axon tract formation is an essential aspect of brain development. This is achieved by the migration of early outgrowing axons (pioneers) allowing later outgrowing axons (followers) to extend toward their targets in the embryo. In Caenorhabditis elegans the AVG neuron pioneers the right axon tract of the ventral nerve cord, the major longitudinal axon tract. AVG is essential for the guidance of follower axons and hence organization of the ventral nerve cord. In an enhancer screen for AVG axon guidance defects in a nid-1/Nidogen mutant background, we isolated an allele of aex-3 aex-3 mutant animals show highly penetrant AVG axon navigation defects. These defects are dependent on a mutation in nid-1/Nidogen, a basement membrane component. Our data suggest that AEX-3 activates RAB-3 in the context of AVG axon navigation. aex-3 genetically acts together with known players of vesicular exocytosis: unc-64/Syntaxin, unc-31/CAPS, and ida-1/IA-2. Furthermore our genetic interaction data suggest that AEX-3 and the UNC-6/Netrin receptor UNC-5 act in the same pathway, suggesting AEX-3 might regulate the trafficking and/or insertion of UNC-5 at the growth cone to mediate the proper guidance of the AVG axon. PMID:27116976

  17. Optimal myelin elongation relies on YAP activation by axonal growth and inhibition by Crb3/Hippo pathway.

    Science.gov (United States)

    Fernando, Ruani N; Cotter, Laurent; Perrin-Tricaud, Claire; Berthelot, Jade; Bartolami, Sylvain; Pereira, Jorge A; Gonzalez, Sergio; Suter, Ueli; Tricaud, Nicolas

    2016-01-01

    Fast nerve conduction relies on successive myelin segments that electrically isolate axons. Segment geometry-diameter and length-is critical for the optimization of nerve conduction and the molecular mechanisms allowing this optimized geometry are partially known. We show here that peripheral myelin elongation is dynamically regulated by stimulation of YAP (Yes-associated protein) transcription cofactor activity during axonal elongation and limited by inhibition of YAP activity via the Hippo pathway. YAP promotes myelin and non-myelin genes transcription while the polarity protein Crb3, localized at the tips of the myelin sheath, activates the Hippo pathway to temper YAP activity, therefore allowing for optimal myelin growth. Dystrophic Dy(2j/2j) mice mimicking human peripheral neuropathy with reduced internodal lengths have decreased nuclear YAP which, when corrected, leads to longer internodes. These data show a novel mechanism controlling myelin growth and nerve conduction, and provide a molecular ground for disease with short myelin segments. PMID:27435623

  18. Vertebrate Fidgetin Restrains Axonal Growth by Severing Labile Domains of Microtubules

    Directory of Open Access Journals (Sweden)

    Lanfranco Leo

    2015-09-01

    Full Text Available Individual microtubules (MTs in the axon consist of a stable domain that is highly acetylated and a labile domain that is not. Traditional MT-severing proteins preferentially cut the MT in the stable domain. In Drosophila, fidgetin behaves in this fashion, with targeted knockdown resulting in neurons with a higher fraction of acetylated (stable MT mass in their axons. Conversely, in a fidgetin knockout mouse, the fraction of MT mass that is acetylated is lower than in the control animal. When fidgetin is depleted from cultured rodent neurons, there is a 62% increase in axonal MT mass, all of which is labile. Concomitantly, there are more minor processes and a longer axon. Together with experimental data showing that vertebrate fidgetin targets unacetylated tubulin, these results indicate that vertebrate fidgetin (unlike its fly ortholog regulates neuronal development by tamping back the expansion of the labile domains of MTs.

  19. Chondroitinase ABC promotes recovery of adaptive limb movements and enhances axonal growth caudal to a spinal hemisection

    OpenAIRE

    Jefferson, Stephanie C.; Tester, Nicole J.; Howland, Dena R.

    2011-01-01

    A number of studies have shown that Chondroitinase ABC (Ch’ase ABC) digestion of inhibitory chondroitin sulfate glycosaminoglycans significantly enhances axonal growth and recovery in rodents following spinal cord injury (SCI). Further, our group has shown improved recovery following SCI in the larger cat model. The purpose of the current study was to determine if intraspinal delivery of Ch’ase ABC, following T10 hemisections in adult cats, enhances adaptive movement features during a skilled...

  20. Abnormal growth of the corticospinal axons into the lumbar spinal cord of the hyt/hyt mouse with congenital hypothyroidism.

    Science.gov (United States)

    Hsu, Jung-Yu C; Stein, Stuart A; Xu, Xiao-Ming

    2008-11-01

    Thyroid hormone deficiency may cause severe neurological disorders resulting from developmental deficits of the central nervous system. The mutant hyt/hyt mouse, characterized by fetal-onset, life-long hypothyroidism resulting from a point mutation of the thyroid-stimulating hormone receptor of the thyroid gland, displays a variety of abnormalities in motor behavior that are likely associated with dysfunctions of specific brain regions and a defective corticospinal tract (CST). To test the hypothesis that fetal and neonatal hypothyroidism cause abnormal CST development, the growth of the CST was investigated in hypothyroid hyt/hyt mice and their euthyroid progenitors, the BALB/cByJ mice. Anterograde labeling with biotinylated dextran amine demonstrated a decrease in the number of CST axons in the hyt/hyt mouse at the first lumbar level at postnatal day (P) 10. After retrograde tracing with fast blue (FB), fewer FB-labeled neurons were found in the motor cortex, the red nucleus, and the lateral vestibular nucleus of the hyt/hyt mouse. At the fourth lumbar level, the hyt/hyt mouse also showed smaller CST cross-sectional areas and significantly lower numbers of unmyelinated axons, myelinated axons, and growth cones within the CST during postnatal development. At P10, the hyt/hyt mouse demonstrated significantly lower immunoreactivity of embryonic neural cell adhesion molecule in the CST at the seventh cervical level, whereas the expression of growth-associated protein 43 remained unchanged. Our study demonstrated an abnormal development of the CST in the hyt/hyt mouse, manifested by reduced axon quantity and retarded growth pattern at the lumbar spinal cord. PMID:18543337

  1. IN-1 combined with neurotrophin-3 for axonal growth-related gene expression after spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Ruisen Zhan; Jinbo Xu; Weiguo Wang; Zhiyue Li; Shijie Chen; Shuangxi Sun

    2011-01-01

    A spinal cord hemisection injury model was established in rats.Treatment with IN-1 and/or neurotrophin-3 was found to regulate the expression of growth-associated protein 43, nerve growth factor, and basic fibroblast growth factor genes in the injured spinal cord tissues; transcript levels were first increased and then decreased.Expression levels reached a peak at days 7 (growth-associated protein 43) or 14 (nerve growth factor and basic fibroblast growth factor) following spinal cord injury.Combined treatment with neurotrophin-3 and IN-1 achieved the most apparent effect on the expression and recovery of motor function.These findings confirm that combined therapy with neurotrophin-3 and IN-1 can increase expression of growth factors in the injured spinal cord tissues and promote the axonal regeneration.

  2. Vector-induced NT-3 expression in rats promotes collateral growth of injured corticospinal tract axons far rostral to a spinal cord injury.

    Science.gov (United States)

    Weishaupt, N; Mason, A L O; Hurd, C; May, Z; Zmyslowski, D C; Galleguillos, D; Sipione, S; Fouad, K

    2014-07-11

    Rewiring the injured corticospinal tract (CST) by promoting connections between CST axons and spared neurons is a strategy being explored experimentally to achieve improved recovery of motor function after spinal cord injury (SCI). Reliable interventions to promote and direct growth of collaterals from injured CST axons are in high demand to promote functionally relevant detour pathways. A promising tool is neurotrophin-3 (NT-3), which has shown growth-stimulating and chemo-attractive effects for spared CST axons caudal to a CST lesion. Yet, efforts to promote growth of injured CST axons rostral to a SCI with NT-3 have been less successful to date. Evidence indicates that immune activation in the local growth environment, either intrinsic or induced by the endotoxin lipopolysaccharide (LPS), can play a decisive role in the CST's responsiveness to NT-3. Here, we test the potential of NT-3 as a tool to enhance and direct collateral growth from the injured CST rostral to a SCI (1) using long-term expression of NT-3 by adeno-associated viral vectors, (2) with and without stimulating the immune system with LPS. Our results indicate that inducing a growth response from injured CST axons into a region of vector-mediated NT-3 expression is possible in the environment of the spinal cord rostral to a SCI, but seems dependent on the distance between the responding axon and the source of NT-3. Our findings also suggest that injured CST axons do not increase their growth response to NT-3 after immune activation with LPS in this environment. In conclusion, this is to our knowledge the first demonstration that NT-3 can be effective at promoting growth of injured CST collaterals far rostral to a SCI. Making NT-3 available in close proximity to CST target axons may be the key to success when using NT-3 to rewire the injured CST in future investigations.

  3. Plexin A3 and turnout regulate motor axonal branch morphogenesis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Rajiv Sainath

    Full Text Available During embryogenesis motor axons navigate to their target muscles, where individual motor axons develop complex branch morphologies. The mechanisms that control axonal branching morphogenesis have been studied intensively, yet it still remains unclear when branches begin to form or how branch locations are determined. Live cell imaging of individual zebrafish motor axons reveals that the first axonal branches are generated at the ventral extent of the myotome via bifurcation of the growth cone. Subsequent branches are generated by collateral branching restricted to their synaptic target field along the distal portion of the axon. This precisely timed and spatially restricted branching process is disrupted in turnout mutants we identified in a forward genetic screen. Molecular genetic mapping positioned the turnout mutation within a 300 kb region encompassing eight annotated genes, however sequence analysis of all eight open reading frames failed to unambiguously identify the turnout mutation. Chimeric analysis and single cell labeling reveal that turnout function is required cell non-autonomously for intraspinal motor axon guidance and peripheral branch formation. turnout mutant motor axons form the first branch on time via growth cone bifurcation, but unlike wild-type they form collateral branches precociously, when the growth cone is still navigating towards the ventral myotome. These precocious collateral branches emerge along the proximal region of the axon shaft typically devoid of branches, and they develop into stable, permanent branches. Furthermore, we find that null mutants of the guidance receptor plexin A3 display identical motor axon branching defects, and time lapse analysis reveals that precocious branch formation in turnout and plexin A3 mutants is due to increased stability of otherwise short-lived axonal protrusions. Thus, plexin A3 dependent intrinsic and turnout dependent extrinsic mechanisms suppress collateral branch

  4. The Extract of Roots of Sophora flavescens Enhances the Recovery of Motor Function by Axonal Growth in Mice with a Spinal Cord Injury

    Science.gov (United States)

    Tanabe, Norio; Kuboyama, Tomoharu; Kazuma, Kohei; Konno, Katsuhiro; Tohda, Chihiro

    2016-01-01

    Although axonal extension to reconstruct spinal tracts should be effective for restoring function after spinal cord injury (SCI), chondroitin sulfate proteoglycan (CSPG) levels increase at spinal cord lesion sites, and inhibit axonal regrowth. In this study, we found that the water extract of roots of Sophora flavescens extended the axons of mouse cortical neurons, even on a CSPG-coated surface. Consecutive oral administrations of S. flavescens extract to SCI mice for 31 days increased the density of 5-HT-positive axons at the lesion site and improved the motor function. Further, the active constituents in the S. flavescens extract were identified. The water and alkaloid fractions of the S. flavescens extract each exhibited axonal extension activity in vitro. LC/MS analysis revealed that these fractions mainly contain matrine and/or oxymatrine, which are well-known major compounds in S. flavescens. Matrine and oxymatrine promoted axonal extension on the CSPG-coated surface. This study is the first to demonstrate that S. flavescens extract, matrine, and oxymatrine enhance axonal growth in vitro, even on a CSPG-coated surface, and that S. flavescens extract improves motor function and increases axonal density in SCI mice. PMID:26834638

  5. The extract of roots of Sophora flavescens enhances the recovery of motor function by axonal growth in mice with a spinal cord injury

    Directory of Open Access Journals (Sweden)

    Norio eTanabe

    2016-01-01

    Full Text Available Although axonal extension to reconstruct spinal tracts should be effective for restoring function after spinal cord injury (SCI, chondroitin sulfate proteoglycan (CSPG levels increase at spinal cord lesion sites and inhibit axonal regrowth. In this study, we found that the water extract of roots of Sophora flavescens extended the axons of mouse cortical neurons, even on a CSPG-coated surface. Consecutive oral administrations of S. flavescens extract to SCI mice for 31 days increased the density of 5-HT-positive axons at the lesion site and improved the motor function. Further, the active constituents in the S. flavescens extract were identified. The water and alkaloid fractions of the S. flavescens extract each exhibited axonal extension activity in vitro. LC/MS analysis revealed that these fractions mainly contain matrine and/or oxymatrine, which are well-known major compounds in S. flavescens. Matrine and oxymatrine promoted axonal extension on the CSPG-coated surface. This study is the first to demonstrate that S. flavescens extract, matrine and oxymatrine enhance axonal growth in vitro, even on a CSPG-coated surface, and that S. flavescens extract improves motor function and increases axonal density in SCI mice.

  6. Developmental expression profiles of axon guidance signaling and the immune system in the marmoset cortex: potential molecular mechanisms of pruning of dendritic spines during primate synapse formation in late infancy and prepuberty (I).

    Science.gov (United States)

    Sasaki, Tetsuya; Oga, Tomofumi; Nakagaki, Keiko; Sakai, Kazuhisa; Sumida, Kayo; Hoshino, Kohei; Miyawaki, Izuru; Saito, Koichi; Suto, Fumikazu; Ichinohe, Noritaka

    2014-02-14

    The synapse number and the related dendritic spine number in the cerebral cortex of primates shows a rapid increase after birth. Depending on the brain region and species, the number of synapses reaches a peak before adulthood, and pruning takes place after this peak (overshoot-type synaptic formation). Human mental disorders, such as autism and schizophrenia, are hypothesized to be a result of either too weak or excessive pruning after the peak is reached. Thus, it is important to study the molecular mechanisms underlying overshoot-type synaptic formation, particularly the pruning phase. To examine the molecular mechanisms, we used common marmosets (Callithrix jacchus). Microarray analysis of the marmoset cortex was performed in the ventrolateral prefrontal, inferior temporal, and primary visual cortices, where changes in the number of dendritic spines have been observed. The spine number of all the brain regions above showed a peak at 3 months (3 M) after birth and gradually decreased (e.g., at 6 M and in adults). In this study, we focused on genes that showed differential expression between ages of 3 M and 6 M and on the differences whose fold change (FC) was greater than 1.2. The selected genes were subjected to canonical pathway analysis, and in this study, we describe axon guidance signaling, which had high plausibility. The results showed a large number of genes belonging to subsystems within the axon guidance signaling pathway, macrophages/immune system, glutamate system, and others. We divided the data and discussion of these results into 2 papers, and this is the first paper, which deals with the axon guidance signaling and macrophage/immune system. Other systems will be described in the next paper. Many components of subsystems within the axon guidance signaling underwent changes in gene expression from 3 M to 6 M so that the synapse/dendritic spine number would decrease at 6 M. Thus, axon guidance signaling probably contributes to the decrease in

  7. Growth of White Matter in the Adolescent Brain: Myelin or Axon?

    Science.gov (United States)

    Paus, Tomas

    2010-01-01

    White matter occupies almost half of the human brain. It contains axons connecting spatially segregated modules and, as such, it is essential for the smooth flow of information in functional networks. Structural maturation of white matter continues during adolescence, as reflected in age-related changes in its volume, as well as in its…

  8. A novel and efficient gene transfer strategy reduces glial reactivity and improves neuronal survival and axonal growth in vitro.

    Directory of Open Access Journals (Sweden)

    Mathieu Desclaux

    Full Text Available BACKGROUND: The lack of axonal regeneration in the central nervous system is attributed among other factors to the formation of a glial scar. This cellular structure is mainly composed of reactive astrocytes that overexpress two intermediate filament proteins, the glial fibrillary acidic protein (GFAP and vimentin. Indeed, in vitro, astrocytes lacking GFAP or both GFAP and vimentin were shown to be the substrate for increased neuronal plasticity. Moreover, double knockout mice lacking both GFAP and vimentin presented lower levels of glial reactivity in vivo, significant axonal regrowth and improved functional recovery in comparison with wild-type mice after spinal cord hemisection. From these results, our objective was to develop a novel therapeutic strategy for axonal regeneration, based on the targeted suppression of astroglial reactivity and scarring by lentiviral-mediated RNA-interference (RNAi. METHODS AND FINDINGS: In this study, we constructed two lentiviral vectors, Lv-shGFAP and Lv-shVIM, which allow efficient and stable RNAi-mediated silencing of endogenous GFAP or vimentin in vitro. In cultured cortical and spinal reactive astrocytes, the use of these vectors resulted in a specific, stable and highly significant decrease in the corresponding protein levels. In a second model -- scratched primary cultured astrocytes -- Lv-shGFAP, alone or associated with Lv-shVIM, decreased astrocytic reactivity and glial scarring. Finally, in a heterotopic coculture model, cortical neurons displayed higher survival rates and increased neurite growth when cultured with astrocytes in which GFAP and vimentin had been invalidated by lentiviral-mediated RNAi. CONCLUSIONS: Lentiviral-mediated knockdown of GFAP and vimentin in astrocytes show that GFAP is a key target for modulating reactive gliosis and monitoring neuron/glia interactions. Thus, manipulation of reactive astrocytes with the Lv-shGFAP vector constitutes a promising therapeutic strategy for

  9. Modulating actin dynamics during axon formation, growth and regeneration : the role of Adducin

    OpenAIRE

    Tavares, Carla Anita Gomes

    2014-01-01

    Apesar de o citoesqueleto de actina ser um importante fator no crescimento axonal, a forma como as diferentes proteínas de ligação à actina controlam a sua dinâmica não é ainda completamente conhecida. No sistema nervoso central adulto a regeneração axonal pode ocorrer em condições específicas, nomeadamente aumentando o potencial regenerativo intrínseco de alguns neurónios através de uma lesão prévia. Utilizando o modelo de lesão condicionada foi determinado que certas proteínas de ligação à ...

  10. Myelin-based inhibitors of oligodendrocyte myelination: clues from axonal growth and regeneration

    Institute of Scientific and Technical Information of China (English)

    Feng Mei; S.Y.Christin Chong; Jonah R.Chan

    2013-01-01

    The differentiation of and myelination by oligodendrocytes (OLs) are exquisitely regulated by a series of intrinsic and extrinsic mechanisms.As each OL can make differing numbers of myelin segments with variable lengths along similar axon tracts,myelination can be viewed as a graded process shaped by inhibitory/inductive cues during development.Myelination by OLs is a prime example of an adaptive process determined by the microenvironment and architecture of the central nervous system (CNS).In this review,we discuss how myelin formation by OLs may be controlled by the heterogeneous microenvironment of the CNS.Then we address recent findings demonstrating that neighboring OLs may compete for available axon space,and highlight our current understanding of myelin-based inhibitors of axonal regeneration that are potentially responsible for the reciprocal dialogue between OLs and determine the numbers and lengths of myelin internodes.Understanding the mechanisms that control the spatiotemporal regulation of myelinogenic potential during development may provide valuable insight into therapeutic strategies for promoting remyelination in an inhibitory microenvironment.

  11. Neuronal development and axon growth are altered by glyphosate through a WNT non-canonical signaling pathway.

    Science.gov (United States)

    Coullery, Romina P; Ferrari, María E; Rosso, Silvana B

    2016-01-01

    The growth and morphological differentiation of neurons are critical events in the establishment of proper neuronal connectivity and functioning. The developing nervous system is highly susceptible to damage caused by exposure to environmental contaminants. Glyphosate-containing herbicides are the most used agrochemicals in the world, particularly on genetically modified plants. Previous studies have demonstrated that glyphosate induces neurotoxicity in mammals. Therefore, its action mechanism on the nervous system needs to be determined. In this study, we report about impaired neuronal development caused by glyphosate exposure. Particularly, we observed that the initial axonal differentiation and growth of cultured neurons is affected by glyphosate since most treated cells remained undifferentiated after 1 day in culture. Although they polarized at 2 days in vitro, they elicited shorter and unbranched axons and they also developed less complex dendritic arbors compared to controls. To go further, we attempted to identify the cellular mechanism by which glyphosate affected neuronal morphology. Biochemical approaches revealed that glyphosate led to a decrease in Wnt5a level, a key factor for the initial neurite development and maturation, as well as inducing a down-regulation of CaMKII activity. This data suggests that the morphological defects would likely be a consequence of the decrease in both Wnt5a expression and CaMKII activity induced by glyphosate. Additionally, these changes might be reflected in a subsequent neuronal dysfunction. Therefore, our findings highlight the importance of establishing rigorous control on the use of glyphosate-based herbicides in order to protect mammals' health.

  12. Diverse roles for Wnt7a in ventral midbrain neurogenesis and dopaminergic axon morphogenesis.

    Science.gov (United States)

    Fernando, Chathurini V; Kele, Julianna; Bye, Christopher R; Niclis, Jonathan C; Alsanie, Walaa; Blakely, Brette D; Stenman, Jan; Turner, Brad J; Parish, Clare L

    2014-09-01

    During development of the central nervous system, trophic, together with genetic, cues dictate the balance between cellular proliferation and differentiation. Subsequent to the birth of new neurons, additional intrinsic and extrinsic signals regulate the connectivity of these cells. While a number of regulators of ventral midbrain (VM) neurogenesis and dopaminergic (DA) axon guidance are known, we identify a number of novel roles for the secreted glycoprotein, Wnt7a, in this context. We demonstrate a temporal and spatial expression of Wnt7a in the VM, indicative of roles in neurogenesis, differentiation, and axonal growth and guidance. In primary VM cultures, and validated in Wnt7a-deficient mice, we show that the early expression within the VM is important for regulating VM progenitor proliferation, cell cycle progression, and cell survival, thereby dictating the number of midbrain Nurr1 precursors and DA neurons. During early development of the midbrain DA pathways, Wnt7a promotes axonal elongation and repels DA neurites out of the midbrain. Later, Wnt7a expression in the VM midline suggests a role in preventing axonal crossing while expression in regions flanking the medial forebrain bundle (thalamus and hypothalamus) ensured appropriate trajectory of DA axons en route to their forebrain targets. We show that the effects of Wnt7a in VM development are mediated, at least in part, by the β-catenin/canonical pathways. Together, these findings identify Wnt7a as a new regulator of VM neurogenesis and DA axon growth and guidance.

  13. Single neuron transcriptomics identify SRSF/SR protein B52 as a regulator of axon growth and Choline acetyltransferase splicing

    Science.gov (United States)

    Liu, Boyin; Bossing, Torsten

    2016-01-01

    We removed single identified neurons from living Drosophila embryos to gain insight into the transcriptional control of developing neuronal networks. The microarray analysis of the transcriptome of two sibling neurons revealed seven differentially expressed transcripts between both neurons (threshold: log21.4). One transcript encodes the RNA splicing factor B52. Loss of B52 increases growth of axon branches. B52 function is also required for Choline acetyltransferase (ChAT ) splicing. At the end of embryogenesis, loss of B52 function impedes splicing of ChAT, reduces acetylcholine synthesis, and extends the period of uncoordinated muscle twitches during larval hatching. ChAT regulation by SRSF proteins may be a conserved feature since changes in SRSF5 expression and increased acetylcholine levels in brains of bipolar disease patients have been reported recently. PMID:27725692

  14. Outsourcing CREB translation to axons to survive

    OpenAIRE

    Lin, Andrew C; Holt, Christine E.

    2008-01-01

    Nerve growth factor induces sensory neuron survival via retrograde signalling from the axon to the cell body. Local translation of the transcription factor CREB in the axon, followed by its transport to the nucleus, is involved in this process.

  15. Guidance Receptors in the Nervous and Cardiovascular Systems.

    Science.gov (United States)

    Rubina, K A; Tkachuk, V A

    2015-10-01

    Blood vessels and nervous fibers grow in parallel, for they express similar receptors for chemokine substances. Recently, much attention is being given to studying guidance receptors and their ligands besides the growth factors, cytokines, and chemokines necessary to form structures in the nervous and vascular systems. Such guidance molecules determine trajectory for growing axons and vessels. Guidance molecules include Ephrins and their receptors, Neuropilins and Plexins as receptors for Semaphorins, Robos as receptors for Slit-proteins, and UNC5B receptors binding Netrins. Apart from these receptors and their ligands, urokinase and its receptor (uPAR) and T-cadherin are also classified as guidance molecules. The urokinase system mediates local proteolysis at the leading edge of cells, thereby providing directed migration. T-cadherin is a repellent molecule that regulates the direction of growing axons and blood vessels. Guidance receptors also play an important role in the diseases of the nervous and cardiovascular systems.

  16. Drosophila Ten-m and filamin affect motor neuron growth cone guidance.

    Directory of Open Access Journals (Sweden)

    Lihua Zheng

    Full Text Available The Drosophila Ten-m (also called Tenascin-major, or odd Oz (odz gene has been associated with a pair-rule phenotype. We identified and characterized new alleles of Drosophila Ten-m to establish that this gene is not responsible for segmentation defects but rather causes defects in motor neuron axon routing. In Ten-m mutants the inter-segmental nerve (ISN often crosses segment boundaries and fasciculates with the ISN in the adjacent segment. Ten-m is expressed in the central nervous system and epidermal stripes during the stages when the growth cones of the neurons that form the ISN navigate to their targets. Over-expression of Ten-m in epidermal cells also leads to ISN misrouting. We also found that Filamin, an actin binding protein, physically interacts with the Ten-m protein. Mutations in cheerio, which encodes Filamin, cause defects in motor neuron axon routing like those of Ten-m. During embryonic development, the expression of Filamin and Ten-m partially overlap in ectodermal cells. These results suggest that Ten-m and Filamin in epidermal cells might together influence growth cone progression.

  17. The Formin DAAM Functions as Molecular Effector of the Planar Cell Polarity Pathway during Axonal Development in Drosophila.

    Science.gov (United States)

    Gombos, Rita; Migh, Ede; Antal, Otilia; Mukherjee, Anindita; Jenny, Andreas; Mihály, József

    2015-07-15

    Recent studies established that the planar cell polarity (PCP) pathway is critical for various aspects of nervous system development and function, including axonal guidance. Although it seems clear that PCP signaling regulates actin dynamics, the mechanisms through which this occurs remain elusive. Here, we establish a functional link between the PCP system and one specific actin regulator, the formin DAAM, which has previously been shown to be required for embryonic axonal morphogenesis and filopodia formation in the growth cone. We show that dDAAM also plays a pivotal role during axonal growth and guidance in the adult Drosophila mushroom body, a brain center for learning and memory. By using a combination of genetic and biochemical assays, we demonstrate that Wnt5 and the PCP signaling proteins Frizzled, Strabismus, and Dishevelled act in concert with the small GTPase Rac1 to activate the actin assembly functions of dDAAM essential for correct targeting of mushroom body axons. Collectively, these data suggest that dDAAM is used as a major molecular effector of the PCP guidance pathway. By uncovering a signaling system from the Wnt5 guidance cue to an actin assembly factor, we propose that the Wnt5/PCP navigation system is linked by dDAAM to the regulation of the growth cone actin cytoskeleton, and thereby growth cone behavior, in a direct way.

  18. Current progress in functions of axon guidance molecule Slit and underlying molecular mechanism%神经轴突导向分子Slit的功能及其分子作用机制研究进展

    Institute of Scientific and Technical Information of China (English)

    于奇; 周启升; 赵晓; 刘庆信

    2012-01-01

    神经轴突导向分子Slit是一种在进化上高度保守的分泌型糖蛋白,Slit对神经轴突导向、神经细胞迁移、神经细胞形态分化、肿瘤转移、血管生成、心脏形态发生等多种生命活动具有调节作用.Slit功能的实现主要是通过其LRR-2结构域与受体Roundabout (Robo)的Igl结构域相结合而实现的,另外硫酸肝素蛋白多糖(heparan sulfate proteoglycans,HSPGs)、GTP酶激活蛋白(GTPase-activating proteins,GAPs)、酪氨酸激酶Abelson、Ca2+、MicroRNA-218和其它轴突导向分子等多种信号分子也参与了Slit功能的实现.slit基因受到Single-minded、Irx4和Midline等转录因子的调控,另外,转录后水平的选择性剪接使slit基因存在多种亚型.Slit导向机制的研究有助于揭示生物神经发育和再生过程中神经网络形成的内在分子基础,同时,也将为预防和治疗人类神经疾病、抑制癌细胞转移等提供理论参考.%The axon guidance molecule Slit is a secreted glucoprotein which is conserved during evolution. Slit has been implicated in regulating a variety of life activities, such as axon guidance, neuronal migration, neuronal morphological differentiation, tumor metastasis, angiogenesis and heart morphogenesis. Slit function mainly depends on the binding of its LRR-2 domain to the Ig1 domain of Roundabout (Robo) receptor, meanwhile Slit function is also mediated by a range of signaling molecules, including the heparan sul-fate proteoglycans (HSPGs), GTPase-activating proteins (GAPs), tyrosine kinase Abelson, calcium ions, MicroRNA-218 and other axon guidance molecules. Several transcription factors, including Single-minded, Irx and Midline, were shown to regulate slit expression. In addition, multiple Slit isoforms exist as a consequence of alternative spliced transcripts. The research on guidance mechanism of Slit will facilitate the understanding of molecular mechanism underlying neural networks formation in the process of

  19. The genetics of axonal transport and axonal transport disorders.

    Directory of Open Access Journals (Sweden)

    Jason E Duncan

    2006-09-01

    Full Text Available Neurons are specialized cells with a complex architecture that includes elaborate dendritic branches and a long, narrow axon that extends from the cell body to the synaptic terminal. The organized transport of essential biological materials throughout the neuron is required to support its growth, function, and viability. In this review, we focus on insights that have emerged from the genetic analysis of long-distance axonal transport between the cell body and the synaptic terminal. We also discuss recent genetic evidence that supports the hypothesis that disruptions in axonal transport may cause or dramatically contribute to neurodegenerative diseases.

  20. AMIGO3 is an NgR1/p75 co-receptor signalling axon growth inhibition in the acute phase of adult central nervous system injury.

    Directory of Open Access Journals (Sweden)

    Zubair Ahmed

    Full Text Available Axon regeneration in the injured adult CNS is reportedly inhibited by myelin-derived inhibitory molecules, after binding to a receptor complex comprised of the Nogo-66 receptor (NgR1 and two transmembrane co-receptors p75/TROY and LINGO-1. However, the post-injury expression pattern for LINGO-1 is inconsistent with its proposed function. We demonstrated that AMIGO3 levels were significantly higher acutely than those of LINGO-1 in dorsal column lesions and reduced in models of dorsal root ganglion neuron (DRGN axon regeneration. Similarly, AMIGO3 levels were raised in the retina immediately after optic nerve crush, whilst levels were suppressed in regenerating optic nerves, induced by intravitreal peripheral nerve implantation. AMIGO3 interacted functionally with NgR1-p75/TROY in non-neuronal cells and in brain lysates, mediating RhoA activation in response to CNS myelin. Knockdown of AMIGO3 in myelin-inhibited adult primary DRG and retinal cultures promoted disinhibited neurite growth when cells were stimulated with appropriate neurotrophic factors. These findings demonstrate that AMIGO3 substitutes for LINGO-1 in the NgR1-p75/TROY inhibitory signalling complex and suggests that the NgR1-p75/TROY-AMIGO3 receptor complex mediates myelin-induced inhibition of axon growth acutely in the CNS. Thus, antagonizing AMIGO3 rather than LINGO-1 immediately after CNS injury is likely to be a more effective therapeutic strategy for promoting CNS axon regeneration when combined with neurotrophic factor administration.

  1. AMIGO3 is an NgR1/p75 co-receptor signalling axon growth inhibition in the acute phase of adult central nervous system injury.

    Science.gov (United States)

    Ahmed, Zubair; Douglas, Michael R; John, Gabrielle; Berry, Martin; Logan, Ann

    2013-01-01

    Axon regeneration in the injured adult CNS is reportedly inhibited by myelin-derived inhibitory molecules, after binding to a receptor complex comprised of the Nogo-66 receptor (NgR1) and two transmembrane co-receptors p75/TROY and LINGO-1. However, the post-injury expression pattern for LINGO-1 is inconsistent with its proposed function. We demonstrated that AMIGO3 levels were significantly higher acutely than those of LINGO-1 in dorsal column lesions and reduced in models of dorsal root ganglion neuron (DRGN) axon regeneration. Similarly, AMIGO3 levels were raised in the retina immediately after optic nerve crush, whilst levels were suppressed in regenerating optic nerves, induced by intravitreal peripheral nerve implantation. AMIGO3 interacted functionally with NgR1-p75/TROY in non-neuronal cells and in brain lysates, mediating RhoA activation in response to CNS myelin. Knockdown of AMIGO3 in myelin-inhibited adult primary DRG and retinal cultures promoted disinhibited neurite growth when cells were stimulated with appropriate neurotrophic factors. These findings demonstrate that AMIGO3 substitutes for LINGO-1 in the NgR1-p75/TROY inhibitory signalling complex and suggests that the NgR1-p75/TROY-AMIGO3 receptor complex mediates myelin-induced inhibition of axon growth acutely in the CNS. Thus, antagonizing AMIGO3 rather than LINGO-1 immediately after CNS injury is likely to be a more effective therapeutic strategy for promoting CNS axon regeneration when combined with neurotrophic factor administration. PMID:23613963

  2. Spatial temperature gradients guide axonal outgrowth

    Science.gov (United States)

    Black, Bryan; Vishwakarma, Vivek; Dhakal, Kamal; Bhattarai, Samik; Pradhan, Prabhakar; Jain, Ankur; Kim, Young-Tae; Mohanty, Samarendra

    2016-07-01

    Formation of neural networks during development and regeneration after injury depends on accuracy of axonal pathfinding, which is primarily believed to be influenced by chemical cues. Recently, there is growing evidence that physical cues can play crucial role in axonal guidance. However, detailed mechanism involved in such guidance cues is lacking. By using weakly-focused near-infrared continuous wave (CW) laser microbeam in the path of an advancing axon, we discovered that the beam acts as a repulsive guidance cue. Here, we report that this highly-effective at-a-distance guidance is the result of a temperature field produced by the near-infrared laser light absorption. Since light absorption by extracellular medium increases when the laser wavelength was red shifted, the threshold laser power for reliable guidance was significantly lower in the near-infrared as compared to the visible spectrum. The spatial temperature gradient caused by the near-infrared laser beam at-a-distance was found to activate temperature-sensitive membrane receptors, resulting in an influx of calcium. The repulsive guidance effect was significantly reduced when extracellular calcium was depleted or in the presence of TRPV1-antagonist. Further, direct heating using micro-heater confirmed that the axonal guidance is caused by shallow temperature-gradient, eliminating the role of any non-photothermal effects.

  3. Immunofluorescence laser confocal expression and localization study of rat nerve growth guidance cues Netrin-1 and Slit2 after spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    LU Yao-jun; XU Nan-wei; YANG Wen-qiang

    2008-01-01

    To observe the expression and distribution of adult rat axon guidance cues Netrin-1 and Slit2 at different time points after spinal cord injury and to investigate the guidance mechanism of regenerated axons.Methods:Twenty adult Sprague Dawley(SD)rats were divided randomly into five groups with 4 in each.Four groups of them were used to make Allen's spinal cord punch models and we took materials randomly from one of them on the 2nd,4th,7th and 14th day respectively after operation.The left one group was taken as the control group.Immunofluorescence laser confocal scan was used to examine the co-expression and localization of Netrin-1 and Slit2 proteins in the injured site of the spinal cord.Results:Within two weeks after SCI,the expression of Netrin-1 and Slit2 proteins increased temporarily and there was co-expression of them on the neuron plasma membrane.Conclusions:Synchronous high expression and co-expression of axon attractant Netrin-1 and repellent Slit2 are found in the adult rat injured spinal cord in the damaged local and vicinity parts,and probably,they act as the key regulators of axon guidance regeneration.

  4. Neuronal Growth as Diffusion in an Effective Potential

    CERN Document Server

    Rizzo, Daniel J; Spedden, Elise; Wiens, Matthew R; Kaplan, David L; Atherton, Timothy J; Staii, Cristian

    2013-01-01

    Current understanding of neuronal growth is mostly qualitative, as the staggering number of physical and chemical guidance cues involved prohibit a fully quantitative description of axonal dynamics. We report on a general approach that describes axonal growth in vitro, on poly-D-lysine coated glass substrates, as diffusion in an effective external potential, representing the collective contribution of all causal influences on the growth cone. We use this approach to obtain effective growth rules that reveal an emergent regulatory mechanism for axonal pathfinding on these substrates.

  5. The trip of the tip: understanding the growth cone machinery.

    Science.gov (United States)

    Lowery, Laura Anne; Van Vactor, David

    2009-05-01

    The central component in the road trip of axon guidance is the growth cone, a dynamic structure that is located at the tip of the growing axon. During its journey, the growth cone comprises both 'vehicle' and 'navigator'. Whereas the 'vehicle' maintains growth cone movement and contains the cytoskeletal structural elements of its framework, a motor to move forward and a mechanism to provide traction on the 'road', the 'navigator' aspect guides this system with spatial bias to translate environmental signals into directional movement. The understanding of the functions and regulation of the vehicle and navigator provides new insights into the cell biology of growth cone guidance.

  6. A Novel and Efficient Gene Transfer Strategy Reduces Glial Reactivity and Improves Neuronal Survival and Axonal Growth In Vitro

    OpenAIRE

    Mathieu Desclaux; Marisa Teigell; Lahouari Amar; Roland Vogel; Minerva Gimenez Y Ribotta; Alain Privat; Jacques Mallet

    2009-01-01

    Background: The lack of axonal regeneration in the central nervous system is attributed among other factors to the formation of a glial scar. This cellular structure is mainly composed of reactive astrocytes that overexpress two intermediate filament proteins, the glial fibrillary acidic protein (GFAP) and vimentin. Indeed, in vitro, astrocytes lacking GFAP or both GFAP and vimentin were shown to be the substrate for increased neuronal plasticity. Moreover, double knockout mice lacking both G...

  7. Diverse modes of axon elaboration in the developing neocortex.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The development of axonal arbors is a critical step in the establishment of precise neural circuits, but relatively little is known about the mechanisms of axonal elaboration in the neocortex. We used in vivo two-photon time-lapse microscopy to image axons in the neocortex of green fluorescent protein-transgenic mice over the first 3 wk of postnatal development. This period spans the elaboration of thalamocortical (TC and Cajal-Retzius (CR axons and cortical synaptogenesis. Layer 1 collaterals of TC and CR axons were imaged repeatedly over time scales ranging from minutes up to days, and their growth and pruning were analyzed. The structure and dynamics of TC and CR axons differed profoundly. Branches of TC axons terminated in small, bulbous growth cones, while CR axon branch tips had large growth cones with numerous long filopodia. TC axons grew rapidly in straight paths, with frequent interstitial branch additions, while CR axons grew more slowly along tortuous paths. For both types of axon, new branches appeared at interstitial sites along the axon shaft and did not involve growth cone splitting. Pruning occurred via retraction of small axon branches (tens of microns, at both CR and TC axons or degeneration of large portions of the arbor (hundreds of microns, for TC axons only. The balance between growth and retraction favored overall growth, but only by a slight margin. Given the identical layer 1 territory upon which CR and TC axons grow, the differences in their structure and dynamics likely reflect distinct intrinsic growth programs for axons of long projection neurons versus local interneurons.

  8. Dragon (repulsive guidance molecule b, RGMb) is a novel gene that promotes colorectal cancer growth.

    Science.gov (United States)

    Shi, Ying; Chen, Guo-Bin; Huang, Xiao-Xiao; Xiao, Chuan-Xing; Wang, Huan-Huan; Li, Ye-Sen; Zhang, Jin-Fang; Li, Shao; Xia, Yin; Ren, Jian-Lin; Guleng, Bayasi

    2015-08-21

    Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer death. However, the molecular mechanisms underlying CRC initiation, growth and metastasis are poorly understood. Dragon (RGMb), a member of the repulsive guidance molecule (RGM) family, has been recently identified as a co-receptor for bone morphogenetic protein (BMP) signaling, but the role of Dragon in CRC development is undefined. Here, we show that Dragon expression was increased in colon cancer tissues compared to control tissues in CAC mouse model and in human patients. Dragon promoted proliferation of CT26.WT and CMT93 colon cancer cells and accelerated tumor growth in the xenograft mouse model. Dragon's action on colon cancer development was mediated via the BMP4-Smad1/5/8 and Erk1/2 pathways. Therefore, our results have revealed that Dragon is a novel gene that promotes CRC growth through the BMP pathway. Dragon may be exploited as a potential therapeutic target for CRC treatment.

  9. Mechanisms of axon degeneration: from development to disease.

    Science.gov (United States)

    Saxena, Smita; Caroni, Pico

    2007-10-01

    Axon degeneration is an active, tightly controlled and versatile process of axon segment self-destruction. Although not involving cell death, it resembles apoptosis in its logics. It involves three distinct steps: induction of competence in specific neurons, triggering of degeneration at defined axon segments of competent neurons, and rapid fragmentation and removal of the segments. The mechanisms that initiate degeneration are specific to individual settings, but the final pathway of pruning is shared; it involves microtubule disassembly, axon swellings, axon fragmentation, and removal of the remnants by locally recruited phagocytes. The tight regulatory properties of axon degeneration distinguish it from passive loss phenomena, and confer significance to processes that involve it. Axon degeneration has prominent roles in development, upon lesions and in disease. In development, it couples the progressive specification of neurons and circuits to the removal of defined axon branches. Competence might involve transcriptional switches, and local triggering can involve axon guidance molecules and synaptic activity patterns. Lesion-induced Wallerian degeneration is inhibited in the presence of Wld(S) fusion protein in neurons; it involves early local, and later, distal degeneration. It has recently become clear that like in other settings, axon degeneration in disease is a rapid and specific process, which should not be confused with a variety of disease-related pathologies. Elucidating the specific mechanisms that initiate axon degeneration should open up new avenues to investigate principles of circuit assembly and plasticity, to uncover mechanisms of disease progression, and to identify ways of protecting synapses and axons in disease.

  10. Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II

    Directory of Open Access Journals (Sweden)

    Drescher Uwe

    2010-06-01

    Full Text Available Abstract Background In the developing hindbrain, cranial motor axon guidance depends on diffusible repellent factors produced by the floor plate. Our previous studies have suggested that candidate molecules for mediating this effect are Slits, Netrin-1 and Semaphorin3A (Sema3A. It is unknown to what extent these factors contribute to floor plate-derived chemorepulsion of motor axons, and the downstream signalling pathways are largely unclear. Results In this study, we have used a combination of in vitro and in vivo approaches to identify the components of floor plate chemorepulsion and their downstream signalling pathways. Using in vitro motor axon deflection assays, we demonstrate that Slits and Netrin-1, but not Sema3A, contribute to floor plate repulsion. We also find that the axon pathways of dorsally projecting branchiomotor neurons are disrupted in Netrin-1 mutant mice and in chick embryos expressing dominant-negative Unc5a receptors, indicating an in vivo role for Netrin-1. We further demonstrate that Slit and Netrin-1 signalling are mediated by Rho-kinase (ROCK and myosin light chain kinase (MLCK, which regulate myosin II activity, controlling actin retrograde flow in the growth cone. We show that MLCK, ROCK and myosin II are required for Slit and Netrin-1-mediated growth cone collapse of cranial motor axons. Inhibition of these molecules in explant cultures, or genetic manipulation of RhoA or myosin II function in vivo causes characteristic cranial motor axon pathfinding errors, including the inability to exit the midline, and loss of turning towards exit points. Conclusions Our findings suggest that both Slits and Netrin-1 contribute to floor plate-derived chemorepulsion of cranial motor axons. They further indicate that RhoA/ROCK, MLCK and myosin II are components of Slit and Netrin-1 signalling pathways, and suggest that these pathways are of key importance in cranial motor axon navigation.

  11. Unc-51/ATG1 controls axonal and dendritic development via kinesin-mediated vesicle transport in the Drosophila brain.

    Directory of Open Access Journals (Sweden)

    Hiroaki Mochizuki

    Full Text Available BACKGROUND: Members of the evolutionary conserved Ser/Thr kinase Unc-51 family are key regulatory proteins that control neural development in both vertebrates and invertebrates. Previous studies have suggested diverse functions for the Unc-51 protein, including axonal elongation, growth cone guidance, and synaptic vesicle transport. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we have investigated the functional significance of Unc-51-mediated vesicle transport in the development of complex brain structures in Drosophila. We show that Unc-51 preferentially accumulates in newly elongating axons of the mushroom body, a center of olfactory learning in flies. Mutations in unc-51 cause disintegration of the core of the developing mushroom body, with mislocalization of Fasciclin II (Fas II, an IgG-family cell adhesion molecule important for axonal guidance and fasciculation. In unc-51 mutants, Fas II accumulates in the cell bodies, calyx, and the proximal peduncle. Furthermore, we show that mutations in unc-51 cause aberrant overshooting of dendrites in the mushroom body and the antennal lobe. Loss of unc-51 function leads to marked accumulation of Rab5 and Golgi components, whereas the localization of dendrite-specific proteins, such as Down syndrome cell adhesion molecule (DSCAM and No distributive disjunction (Nod, remains unaltered. Genetic analyses of kinesin light chain (Klc and unc-51 double heterozygotes suggest the importance of kinesin-mediated membrane transport for axonal and dendritic development. Moreover, our data demonstrate that loss of Klc activity causes similar axonal and dendritic defects in mushroom body neurons, recapitulating the salient feature of the developmental abnormalities caused by unc-51 mutations. CONCLUSIONS/SIGNIFICANCE: Unc-51 plays pivotal roles in the axonal and dendritic development of the Drosophila brain. Unc-51-mediated membrane vesicle transport is important in targeted localization of guidance molecules

  12. Computing along the axon

    Institute of Scientific and Technical Information of China (English)

    Chen Haiming; Tseren-Onolt Ishdorj; Gheorghe Pǎun

    2007-01-01

    A special form of spiking neural P systems, called axon P systems, corresponding to the activity of Ranvier nodes of neuron axon, is considered and a class of SN-like P systems where the computation is done along the axon is introduced and their language generative power is investigated.

  13. The short coiled-coil domain-containing protein UNC-69 cooperates with UNC-76 to regulate axonal outgrowth and normal presynaptic organization in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Tsung Nancy

    2006-05-01

    Full Text Available Abstract Background The nematode Caenorhabditis elegans has been used extensively to identify the genetic requirements for proper nervous system development and function. Key to this process is the direction of vesicles to the growing axons and dendrites, which is required for growth-cone extension and synapse formation in the developing neurons. The contribution and mechanism of membrane traffic in neuronal development are not fully understood, however. Results We show that the C. elegans gene unc-69 is required for axon outgrowth, guidance, fasciculation and normal presynaptic organization. We identify UNC-69 as an evolutionarily conserved 108-amino-acid protein with a short coiled-coil domain. UNC-69 interacts physically with UNC-76, mutations in which produce similar defects to loss of unc-69 function. In addition, a weak reduction-of-function allele, unc-69(ju69, preferentially causes mislocalization of the synaptic vesicle marker synaptobrevin. UNC-69 and UNC-76 colocalize as puncta in neuronal processes and cooperate to regulate axon extension and synapse formation. The chicken UNC-69 homolog is highly expressed in the developing central nervous system, and its inactivation by RNA interference leads to axon guidance defects. Conclusion We have identified a novel protein complex, composed of UNC-69 and UNC-76, which promotes axonal growth and normal presynaptic organization in C. elegans. As both proteins are conserved through evolution, we suggest that the mammalian homologs of UNC-69 and UNC-76 (SCOCO and FEZ, respectively may function similarly.

  14. The fax-1 nuclear hormone receptor regulates axon pathfinding and neurotransmitter expression.

    Science.gov (United States)

    Much, J W; Slade, D J; Klampert, K; Garriga, G; Wightman, B

    2000-02-01

    Specification of neuron identity requires the activation of a number of discrete developmental programs. Among these is pathway selection by growth cones: in order for a neuron's growth cone to respond appropriately to guidance cues presented by other cells or the extracellular matrix, the neuron must express genes to mediate the response. The fax-1 gene of C. elegans is required for pathfinding of axons that extend along the ventral nerve cord. We show that fax-1 is also required for pathfinding of axons in the nerve ring, the largest nerve bundle in the nematode, and for normal expression of FMRFamide-like neurotransmitters in the AVK interneurons. The fax-1 gene encodes a member of the superfamily of nuclear hormone receptors and has a DNA-binding domain related to the human PNR and Drosophila Tailless proteins. We observe fax-1 expression in embryonic neurons, including the AVK interneurons, just prior to axon extension, but after neurogenesis. These data suggest that fax-1 coordinately regulates the transcription of genes that function in the selection of axon pathways, neurotransmitter expression and, perhaps, other aspects of the specification of neuron identity.

  15. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injur y by promoting axonal growth and anti-autophagy

    Institute of Scientific and Technical Information of China (English)

    Fei Yin; Chunyang Meng; Rifeng Lu; Lei Li; Ying Zhang; Hao Chen; Yonggang Qin; Li Guo

    2014-01-01

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after trans-plantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunolfuorescence with subsequent quantiifcation revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-as-sociated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Fur-thermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was signiifcantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neuro-iflament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mes-enchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury.

  16. A nerve guidance conduit with topographical and biochemical cues: potential application using human neural stem cells

    Science.gov (United States)

    Jenkins, Phillip M.; Laughter, Melissa R.; Lee, David J.; Lee, Young M.; Freed, Curt R.; Park, Daewon

    2015-06-01

    Despite major advances in the pathophysiological understanding of peripheral nerve damage, the treatment of nerve injuries still remains an unmet medical need. Nerve guidance conduits present a promising treatment option by providing a growth-permissive environment that 1) promotes neuronal cell survival and axon growth and 2) directs axonal extension. To this end, we designed an electrospun nerve guidance conduit using a blend of polyurea and poly-caprolactone with both biochemical and topographical cues. Biochemical cues were integrated into the conduit by functionalizing the polyurea with RGD to improve cell attachment. Topographical cues that resemble natural nerve tissue were incorporated by introducing intraluminal microchannels aligned with nanofibers. We determined that electrospinning the polymer solution across a two electrode system with dissolvable sucrose fibers produced a polymer conduit with the appropriate biomimetic properties. Human neural stem cells were cultured on the conduit to evaluate its ability to promote neuronal growth and axonal extension. The nerve guidance conduit was shown to enhance cell survival, migration, and guide neurite extension.

  17. SnoN facilitates axonal regeneration after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Jiun L Do

    Full Text Available Adult CNS neurons exhibit a reduced capacity for growth compared to developing neurons, due in part to downregulation of growth-associated genes as development is completed. We tested the hypothesis that SnoN, an embryonically regulated transcription factor that specifies growth of the axonal compartment, can enhance growth in injured adult neurons. In vitro, SnoN overexpression in dissociated adult DRG neuronal cultures significantly enhanced neurite outgrowth. Moreover, TGF-β1, a negative regulator of SnoN, inhibited neurite outgrowth, and SnoN over-expression overcame this inhibition. We then examined whether SnoN influenced axonal regeneration in vivo: indeed, expression of a mutant form of SnoN resistant to degradation significantly enhanced axonal regeneration following cervical spinal cord injury, despite peri-lesional upregulation of TGF-β1. Thus, a developmental mechanism that specifies extension of the axonal compartment also promotes axonal regeneration after adult CNS injury.

  18. Determinants of axonal regeneration

    OpenAIRE

    Frisén, J

    1997-01-01

    Axons often regrow to their targets and lost functions may be restored after an injury in the peripheral nervous system. In contrast, axonal regeneration is generally very limited after injuries in the central nervous system, and functional impairment is usually permanent. The regenerative capacity depends on intrinsic neuronal factors as weil as the interaction of neurons with other cells. Glial cells may, in different situations, either support or inhibit axo...

  19. A Role of Staphyococcus aureus, Interleukin-18, Nerve Growth Factor and Semaphorin 3A, an Axon Guidance Molecule, in Pathogenesis and Treatment of Atopic Dermatitis

    OpenAIRE

    Ikezawa, Zenro; Komori, Junko; Ikezawa, Yuko; Inoue, Yusuke; Kirino, Mio; Katsuyama, Masako; Aihara, Michiko

    2010-01-01

    Staphylococcus aureus (SA) is usually present not only in the skin lesions of atopic dermatitis (AD) but also in the atopic dry skin. SA discharges various toxins and enzymes that injure the skin, results in activation of epidermal keratinocytes, which produce and release IL-18. IL-18 that induces the super Th1 cells secreting IFN-γ and IL-13 is supposed to be involved in development of AD and its pathogenesis. Indeed, the number of SA colonies on the skin surface and the serum IL-18 levels i...

  20. Automated laser guidance of neuronal growth cones using a spatial light modulator.

    Science.gov (United States)

    Carnegie, David J; Cizmár, Tomás; Baumgartl, Jörg; Gunn-Moore, Frank J; Dholakia, Kishan

    2009-11-01

    The growth cone of a developing neuron can be guided using a focused infra-red (IR) laser beam [1]. In previous setups this process has required a significant amount of user intervention to adjust continuously the laser beam to guide the growing neuron. Previously, a system using an acousto-optical deflector (AOD) has been developed to steer the beam [2]. However, to enhance the controllability of this system, here we demonstrate the use of a computer controlled spatial light modulator (SLM) to steer and manipulate the shape of a laser beam for use in guided neuronal growth. This new experimental setup paves the way to enable a comprehensive investigation into beam shaping effects on neuronal growth and we show neuronal growth initiated by a Bessel light mode. This is a robust platform to explore the biochemistry of this novel phenomenon. PMID:19705368

  1. Homer regulates calcium signalling in growth cone turning

    Directory of Open Access Journals (Sweden)

    Thompson Michael JW

    2009-08-01

    Full Text Available Abstract Background Homer proteins are post-synaptic density proteins with known functions in receptor trafficking and calcium homeostasis. While they are key mediators of synaptic plasticity, they are also known to function in axon guidance, albeit by mechanisms that are yet to be elucidated. Homer proteins couple extracellular receptors – such as metabotropic glutamate receptors and the transient receptor potential canonical family of cation channels – to intracellular receptors such as inositol triphosphate and ryanodine receptors on intracellular calcium stores and, therefore, are well placed to regulate calcium dynamics within the neural growth cone. Here we used growth cones from dorsal root ganglia, a well established model in the field of axon guidance, and a growth cone turning assay to examine Homer1 function in axon guidance. Results Homer1 knockdown reversed growth cone turning from attraction to repulsion in response to the calcium-dependent guidance cues brain derived neurotrophic factor and netrin-1. Conversely, Homer1 knockdown had no effect on repulsion to the calcium-independent guidance cue Semaphorin-3A. This reversal of attractive turning suggested a requirement for Homer1 in a molecular switch. Pharmacological experiments confirmed that the operational state of a calcium-calmodulin dependent protein kinase II/calcineurin phosphatase molecular switch was dependent on Homer1 expression. Calcium imaging of motile growth cones revealed that Homer1 is required for guidance-cue-induced rise of cytosolic calcium and the attenuation of spontaneous cytosolic calcium transients. Homer1 knockdown-induced calcium transients and turning were inhibited by antagonists of store-operated channels. In addition, immunocytochemistry revealed the close association of Homer1 with the store-operated proteins TRPC1 and STIM1 within dorsal root ganglia growth cones. Conclusion These experiments provide evidence that Homer1 is an essential

  2. PLR-1, a putative E3 ubiquitin ligase and AEX-3, the GDP/GTP exchange factor homologue for RAB-3, respectively regulate cell polarity and axon navigation of the ventral nerve cord pioneer AVG in Caenorhabditis elegans

    OpenAIRE

    Bhat, Jaffar Mohd

    2015-01-01

    Accurate and precise neuronal circuit formation is the hallmark of a functional nervous system. During development neurons extend axons and dendrites that have to reach their appropriate targets. This process is highly regulated and is achieved by using a set of conserved guidance cues and receptors. ‘Pioneer’ neurons extend axons first and are closely followed by the late outgrowing axons called ‘followers’ to extend upon. In Caenorhabditis elegans, the AVG axon pioneers the right axon tract...

  3. Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane.

    Science.gov (United States)

    Vitriol, Eric A; Zheng, James Q

    2012-03-22

    Growth cones, found at the tip of axonal projections, are the sensory and motile organelles of developing neurons that enable axon pathfinding and target recognition for precise wiring of the neural circuitry. To date, many families of conserved guidance molecules and their corresponding receptors have been identified that work in space and time to ensure billions of axons to reach their targets. Research in the past two decades has also gained significant insight into the ways in which growth cones translate extracellular signals into directional migration. This review aims to examine new progress toward understanding the cellular mechanisms underlying directional motility of the growth cone and to discuss questions that remain to be addressed. Specifically, we will focus on the cellular ensemble of cytoskeleton, adhesion, and membrane and examine how the intricate interplay between these processes orchestrates the directed movement of growth cones.

  4. Brain gangliosides in axon-myelin stability and axon regeneration

    OpenAIRE

    Schnaar, Ronald L.

    2009-01-01

    Gangliosides, sialic acid-bearing glycosphingolipids, are expressed at high abundance and complexity in the brain. Altered ganglioside expression results in neural disorders, including seizures and axon degeneration. Brain gangliosides function, in part, by interacting with a ganglioside-binding lectin, myelin-associated glycoprotein (MAG). MAG, on the innermost wrap of the myelin sheath, binds to gangliosides GD1a and GT1b on axons. MAG-ganglioside binding ensures optimal axon-myelin cell-ce...

  5. Analysis of axon tract formation in the zebrafish brain: the role of territories of gene expression and their boundaries.

    Science.gov (United States)

    Wilson, S W; Brennan, C; Macdonald, R; Brand, M; Holder, N

    1997-11-01

    Mutant analysis in the zebrafish is revealing the genes that are expressed in the early neuroepithelium and that regulate factors responsible for the guidance of commissural axons. We review work on the developing zebrafish brain illustrating the way in which territories of regulatory gene expression influence the formation and positioning of axon pathways. PMID:9321679

  6. Chronic excitotoxin-induced axon degeneration in a compartmented neuronal culture model

    Directory of Open Access Journals (Sweden)

    Katherine A Hosie

    2012-02-01

    Full Text Available Glutamate excitotoxicity is a major pathogenic process implicated in many neurodegenerative conditions, including AD (Alzheimer's disease and following traumatic brain injury. Occurring predominantly from over-stimulation of ionotropic glutamate receptors located along dendrites, excitotoxic axonal degeneration may also occur in white matter tracts. Recent identification of axonal glutamate receptor subunits within axonal nanocomplexes raises the possibility of direct excitotoxic effects on axons. Individual neuronal responses to excitotoxicity are highly dependent on the complement of glutamate receptors expressed by the cell, and the localization of the functional receptors. To enable isolation of distal axons and targeted excitotoxicity, murine cortical neuron cultures were prepared in compartmented microfluidic devices, such that distal axons were isolated from neuronal cell bodies. Within the compartmented culture system, cortical neurons developed to relative maturity at 11 DIV (days in vitro as demonstrated by the formation of dendritic spines and clustering of the presynaptic protein synaptophysin. The isolated distal axons retained growth cone structures in the absence of synaptic targets, and expressed glutamate receptor subunits. Glutamate treatment (100 μM to the cell body chamber resulted in widespread degeneration within this chamber and degeneration of distal axons in the other chamber. Glutamate application to the distal axon chamber triggered a lesser degree of axonal degeneration without degenerative changes in the untreated somal chamber. These data indicate that in addition to current mechanisms of indirect axonal excitotoxicity, the distal axon may be a primary target for excitotoxicity in neurodegenerative conditions.

  7. Axonal PPARγ promotes neuronal regeneration after injury.

    Science.gov (United States)

    Lezana, Juan Pablo; Dagan, Shachar Y; Robinson, Ari; Goldstein, Ronald S; Fainzilber, Mike; Bronfman, Francisca C; Bronfman, Miguel

    2016-06-01

    PPARγ is a ligand-activated nuclear receptor best known for its involvement in adipogenesis and glucose homeostasis. PPARγ activity has also been associated with neuroprotection in different neurological disorders, but the mechanisms involved in PPARγ effects in the nervous system are still unknown. Here we describe a new functional role for PPARγ in neuronal responses to injury. We found both PPAR transcripts and protein within sensory axons and observed an increase in PPARγ protein levels after sciatic nerve crush. This was correlated with increased retrograde transport of PPARγ after injury, increased association of PPARγ with the molecular motor dynein, and increased nuclear accumulation of PPARγ in cell bodies of sensory neurons. Furthermore, PPARγ antagonists attenuated the response of sensory neurons to sciatic nerve injury, and inhibited axonal growth of both sensory and cortical neurons in culture. Thus, axonal PPARγ is involved in neuronal injury responses required for axonal regeneration. Since PPARγ is a major molecular target of the thiazolidinedione (TZD) class of drugs used in the treatment of type II diabetes, several pharmaceutical agents with acceptable safety profiles in humans are available. Our findings provide motivation and rationale for the evaluation of such agents for efficacy in central and peripheral nerve injuries. PMID:26446277

  8. In vivo testing of a 3D bifurcating microchannel scaffold inducing separation of regenerating axon bundles in peripheral nerves

    Science.gov (United States)

    Stoyanova, Irina I.; van Wezel, Richard J. A.; Rutten, Wim L. C.

    2013-12-01

    Artificial nerve guidance channels enhance the regenerative effectiveness in an injured peripheral nerve but the existing design so far has been limited to basic straight tubes simply guiding the growth to bridge the gap. Hence, one of the goals in development of more effective neuroprostheses is to create bidirectional highly selective neuro-electronic interface between a prosthetic device and the severed nerve. A step towards improving selectivity for both recording and stimulation have been made with some recent in vitro studies which showed that three-dimensional (3D) bifurcating microchannels can separate neurites growing on a planar surface and bring them into contact with individual electrodes. Since the growing axons in vivo have the innate tendency to group in bundles surrounded by connective tissue, one of the big challenges in neuro-prosthetic interface design is how to overcome it. Therefore, we performed experiments with 3D bifurcating guidance scaffolds implanted in the sciatic nerve of rats to test if this new channel architecture could trigger separation pattern of ingrowth also in vivo. Our results showed that this new method enabled the re-growth of neurites into channels with gradually diminished width (80, 40 and 20 µm) and facilitated the separation of the axonal bundles with 91% success. It seems that the 3D bifurcating scaffold might contribute towards conveying detailed neural control and sensory feedback to users of prosthetic devices, and thus could improve the quality of their daily life.

  9. Developmental guidance of the retroflex tract at its bending point involves Robo1-Slit2-mediated floor plate repulsion.

    Science.gov (United States)

    Moreno-Bravo, Juan A; Martinez-Lopez, Jesus E; Madrigal, M Pilar; Kim, Minkyung; Mastick, Grant S; Lopez-Bendito, Guillermina; Martinez, Salvador; Puelles, Eduardo

    2016-01-01

    The retroflex tract contains medial habenula efferents that target the hindbrain interpeduncular complex and surrounding areas. This tract displays a singular course. Initially, habenular axons extend ventralwards in front of the pretectum until they reach the basal plate. Next, they avoid crossing the local floor plate, sharply changing course caudalwards (the retroflexion alluded by the tract name) and navigate strictly antero-posteriorly across basal pretectum, midbrain and isthmus. Once they reach rhombomere 1, the habenular axons criss-cross the floor plate several times within the interpeduncular nuclear complex as they innervate it. Here we described the timing and details of growth phenomena as these axons navigate to their target. The first dorsoventral course apparently obeys Ntn1 attraction. We checked the role of local floor plate signaling in the decision to avoid the thalamic floor plate and bend caudalwards. Analyzing the altered floor and basal plates of Gli2 knockout mice, we found a contralateral projection of most habenular axons, plus ulterior bizarre navigation rostralwards. This crossing phenotype was due to a reduced expression of Slit repulsive cues, suggesting involvement of the floor-derived Robo-Slit system in the normal guidance of this tract. Using Slit and Robo mutant mice, open neural tube and co-culture assays, we determined that Robo1-Slit2 interaction is specifically required for impeding that medial habenular axons cross the thalamic floor plate. This pathfinding mechanism is essential to establish the functionally important habenulo-interpeduncular connection.

  10. Novel Radiopaque UHMWPE Sublaminar Wires in a Growth-Guidance System for the Treatment of Early Onset Scoliosis: Feasibility in a Large Animal Study.

    Science.gov (United States)

    Bogie, R; Roth, Ak; Faber, S; de Jong, Jja; Welting, Tjm; Willems, Pc; Arts, Jj; van Rhijn, Lw

    2014-09-29

    Study Design. In vivo analysis in an ovine model.Objective. To evaluate the feasibility of radiopaque UHMWPE sublaminar wires in a growth-guidance spinal system by assessing stability, biocompatibility and growth potential.Summary of Background Data. Several growth-guidance systems have been developed for the treatment of early onset scoliosis (EOS). The use of gliding pedicle screws and metal sublaminar wires during these procedures can cause metal-on-metal debris formation and neurological deficits. Novel radiopaque UHMWPE wires are introduced to safely facilitate longitudinal growth and provide stability in a growth-guidance system for EOS.Methods. Twelve immature sheep received posterior segmental spinal instrumentation; pedicle screws were inserted at L5 and radiopaque UHWMPE (bismuth trioxide) wires were passed sublaminarly at each level between L3 and T11 and fixed to dual cobalt-chromiun rods. Four age-matched, unoperated animals were evaluated to serve as a control group. Radiographs were taken to measure growth of the instrumented segment. After 24 weeks, the animals were sacrificed and the spines were harvested for histological evaluation and high resolution peripheral quantitative computed tomography (HR-pQCT) analysis.Results. No neurological deficits occurred and all instrumentation remained stable. One animal died from an unknown cause. Substantial growth occurred in the instrumented segments (L5-T11) in the intervention group (27± 2 mm), which was not significantly different to the control group, (30 ± 4mm, p = 0.42). HR-pQCT analysis clearly showed safe routing and fixation of the UHMWPE wires and instrumentation. Despite the noted growth, ectopic bone formation with the formation of bony bridges was observed in all animals. Histology revealed no evidence of chronic inflammation or wear debris.Conclusions. This study shows the first results of radiopaque UHMWPE sublaminar wires as part of a growth guidance spinal system. UHMWPE sublaminar wires

  11. Gogo receptor contributes to retinotopic map formation and prevents R1-6 photoreceptor axon bundling.

    Directory of Open Access Journals (Sweden)

    Irina Hein

    Full Text Available BACKGROUND: Topographic maps form the basis of neural processing in sensory systems of both vertebrate and invertebrate species. In the Drosophila visual system, neighboring R1-R6 photoreceptor axons innervate adjacent positions in the first optic ganglion, the lamina, and thereby represent visual space as a continuous map in the brain. The mechanisms responsible for the establishment of retinotopic maps remain incompletely understood. RESULTS: Here, we show that the receptor Golden goal (Gogo is required for R axon lamina targeting and cartridge elongation in a partially redundant fashion with local guidance cues provided by neighboring axons. Loss of function of Gogo in large clones of R axons results in aberrant R1-R6 fascicle spacing. Gogo affects target cartridge selection only indirectly as a consequence of the disordered lamina map. Interestingly, small clones of gogo deficient R axons perfectly integrate into a proper retinotopic map suggesting that surrounding R axons of the same or neighboring fascicles provide complementary spatial guidance. Using single photoreceptor type rescue, we show that Gogo expression exclusively in R8 cells is sufficient to mediate targeting of all photoreceptor types in the lamina. Upon lamina targeting and cartridge selection, R axons elongate within their individual cartridges. Interestingly, here Gogo prevents bundling of extending R1-6 axons. CONCLUSION: Taken together, we propose that Gogo contributes to retinotopic map formation in the Drosophila lamina by controlling the distribution of R1-R6 axon fascicles. In a later developmental step, the regular position of R1-R6 axons along the lamina plexus is crucial for target cartridge selection. During cartridge elongation, Gogo allows R1-R6 axons to extend centrally in the lamina cartridge.

  12. Axon Branch-Specific Semaphorin-1a Signaling in Drosophila Mushroom Body Development

    Science.gov (United States)

    Zwarts, Liesbeth; Goossens, Tim; Clements, Jason; Kang, Yuan Y.; Callaerts, Patrick

    2016-01-01

    Correct wiring of the mushroom body (MB) neuropil in the Drosophila brain involves appropriate positioning of different axonal lobes, as well as the sister branches that develop from individual axons. This positioning requires the integration of various guidance cues provided by different cell types, which help the axons find their final positions within the neuropil. Semaphorins are well-known for their conserved roles in neuronal development and axon guidance. We investigated the role of Sema-1a in MB development more closely. We show that Sema-1a is expressed in the MBs as well as surrounding structures, including the glial transient interhemispheric fibrous ring, throughout development. By loss- and gain-of-function experiments, we show that the MB axons display lobe and sister branch-specific Sema-1a signaling, which controls different aspects of axon outgrowth and guidance. Furthermore, we demonstrate that these effects are modulated by the integration of MB intrinsic and extrinsic Sema-1a signaling pathways involving PlexA and PlexB. Finally, we also show a role for neuronal- glial interaction in Sema-1a dependent β-lobe outgrowth. PMID:27656129

  13. Transfer of vesicles from Schwann cell to axon: a novel mechanism of communication in the peripheral nervous system

    Directory of Open Access Journals (Sweden)

    María Alejandra eLopez-Verrilli

    2012-06-01

    Full Text Available Schwann cells (SCs are the glial component of the peripheral nervous system, with essential roles during development and maintenance of axons, as well as during regenerative processes after nerve injury. SCs increase conduction velocities by myelinating axons, regulate synaptic activity at presynaptic nerve terminals and are a source of trophic factors to neurons. Thus, development and maintenance of peripheral nerves are crucially dependent on local signalling between SCs and axons. In addition to the classic mechanisms of intercellular signalling, the possibility of communication through secreted vesicles has been poorly explored to date. Interesting recent findings suggest the occurrence of lateral transfer mediated by vesicles from glial cells to axons that could have important roles in axonal growth and axonal regeneration. Here, we review the role of vesicular transfer from SCs to axons and propose the benefits of this means in supporting neuronal and axonal maintenance and regeneration after nerve damage.

  14. An ex vivo laser-induced spinal cord injury model to assess mechanisms of axonal degeneration in real-time.

    Science.gov (United States)

    Okada, Starlyn L M; Stivers, Nicole S; Stys, Peter K; Stirling, David P

    2014-01-01

    Injured CNS axons fail to regenerate and often retract away from the injury site. Axons spared from the initial injury may later undergo secondary axonal degeneration. Lack of growth cone formation, regeneration, and loss of additional myelinated axonal projections within the spinal cord greatly limits neurological recovery following injury. To assess how central myelinated axons of the spinal cord respond to injury, we developed an ex vivo living spinal cord model utilizing transgenic mice that express yellow fluorescent protein in axons and a focal and highly reproducible laser-induced spinal cord injury to document the fate of axons and myelin (lipophilic fluorescent dye Nile Red) over time using two-photon excitation time-lapse microscopy. Dynamic processes such as acute axonal injury, axonal retraction, and myelin degeneration are best studied in real-time. However, the non-focal nature of contusion-based injuries and movement artifacts encountered during in vivo spinal cord imaging make differentiating primary and secondary axonal injury responses using high resolution microscopy challenging. The ex vivo spinal cord model described here mimics several aspects of clinically relevant contusion/compression-induced axonal pathologies including axonal swelling, spheroid formation, axonal transection, and peri-axonal swelling providing a useful model to study these dynamic processes in real-time. Major advantages of this model are excellent spatiotemporal resolution that allows differentiation between the primary insult that directly injures axons and secondary injury mechanisms; controlled infusion of reagents directly to the perfusate bathing the cord; precise alterations of the environmental milieu (e.g., calcium, sodium ions, known contributors to axonal injury, but near impossible to manipulate in vivo); and murine models also offer an advantage as they provide an opportunity to visualize and manipulate genetically identified cell populations and subcellular

  15. FMRP-Mediated Axonal Delivery of miR-181d Regulates Axon Elongation by Locally Targeting Map1b and Calm1

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2015-12-01

    Full Text Available Subcellular targeting and local translation of mRNAs are critical for axon development. However, the precise local control of mRNA translation requires investigation. We report that the Fmr1-encoded protein, FMRP-mediated axonal delivery of miR-181d negatively regulates axon elongation by locally targeting the transcripts of MAP1B (Map1b and calmodulin (Calm1 in primary sensory neurons. miR-181d affected the local synthesis of MAP1B and calmodulin in axons. FMRP was associated with miR-181d, Map1b, and Calm1. Both FMRP deficiency in Fmr1I304N mice and Fmr1 knockdown impeded the axonal delivery of miR-181d, Map1b, and Calm1 and reduced the protein levels of MAP1B and calmodulin in axons. Furthermore, nerve growth factor (NGF induced Map1b and Calm1 release from FMRP and miR-181d-repressing granules, thereby promoting axon elongation. Both miR-181d overexpression and FMRP knockdown impaired NGF-induced axon elongation. Our study reveals a mechanism for the local regulation of translation by miR-181d and FMRP during axon development.

  16. Fcγ receptor-mediated inflammation inhibits axon regeneration.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Anti-glycan/ganglioside antibodies are the most common immune effectors found in patients with Guillain-Barré Syndrome, which is a peripheral autoimmune neuropathy. We previously reported that disease-relevant anti-glycan autoantibodies inhibited axon regeneration, which echo the clinical association of these antibodies and poor recovery in Guillain-Barré Syndrome. However, the specific molecular and cellular elements involved in this antibody-mediated inhibition of axon regeneration are not previously defined. This study examined the role of Fcγ receptors and macrophages in the antibody-mediated inhibition of axon regeneration. A well characterized antibody passive transfer sciatic nerve crush and transplant models were used to study the anti-ganglioside antibody-mediated inhibition of axon regeneration in wild type and various mutant and transgenic mice with altered expression of specific Fcγ receptors and macrophage/microglia populations. Outcome measures included behavior, electrophysiology, morphometry, immunocytochemistry, quantitative real-time PCR, and western blotting. We demonstrate that the presence of autoantibodies, directed against neuronal/axonal cell surface gangliosides, in the injured mammalian peripheral nerves switch the proregenerative inflammatory environment to growth inhibitory milieu by engaging specific activating Fcγ receptors on recruited monocyte-derived macrophages to cause severe inhibition of axon regeneration. Our data demonstrate that the antibody orchestrated Fcγ receptor-mediated switch in inflammation is one mechanism underlying inhibition of axon regeneration. These findings have clinical implications for nerve repair and recovery in antibody-mediated immune neuropathies. Our results add to the complexity of axon regeneration in injured peripheral and central nervous systems as adverse effects of B cells and autoantibodies on neural injury and repair are increasingly recognized.

  17. Vomeronasal receptors: from monogenic expression to axon guidance

    OpenAIRE

    Capello, Luca

    2009-01-01

    Le système olfactif fait face à un devoir remarquable: extraire une information cohérente d'un monde qu'il n'a jamais rencontré. Les outils moléculaires lui permettant d'effectuer cette tâche sont représentés par différents types de chimiorécepteurs, qui sont exprimés par des neurones sensoriels localisés dans le nez. Ceux-ci sont codés par de très grandes familles de gènes, et incluent les récepteurs à odeurs (plus de 1000 gènes chez la souris), les récepteurs TAAR, V1R et V2R, et les récept...

  18. Morphogenesis of the C. elegans Intestine Involves Axon Guidance Genes.

    Science.gov (United States)

    Asan, Alparsan; Raiders, Stephan A; Priess, James R

    2016-04-01

    Genetic and molecular studies have provided considerable insight into how various tissue progenitors are specified in early embryogenesis, but much less is known about how those progenitors create three-dimensional tissues and organs. The C. elegans intestine provides a simple system for studying how a single progenitor, the E blastomere, builds an epithelial tube of 20 cells. As the E descendants divide, they form a primordium that transitions between different shapes over time. We used cell contours, traced from confocal optical z-stacks, to build a 3D graphic reconstruction of intestine development. The reconstruction revealed several new aspects of morphogenesis that extend and clarify previous observations. The first 8 E descendants form a plane of four right cells and four left cells; the plane arises through oriented cell divisions and VANG-1/Van Gogh-dependent repositioning of any non-planar cells. LIN-12/Notch signaling affects the left cells in the E8 primordium, and initiates later asymmetry in cell packing. The next few stages involve cell repositioning and intercalation events that shuttle cells to their final positions, like shifting blocks in a Rubik's cube. Repositioning involves breaking and replacing specific adhesive contacts, and some of these events involve EFN-4/Ephrin, MAB-20/semaphorin-2a, and SAX-3/Robo. Once cells in the primordium align along a common axis and in the correct order, cells at the anterior end rotate clockwise around the axis of the intestine. The anterior rotation appears to align segments of the developing lumen into a continuous structure, and requires the secreted ligand UNC-6/netrin, the receptor UNC-40/DCC, and an interacting protein called MADD-2. Previous studies showed that rotation requires a second round of LIN-12/Notch signaling in cells on the right side of the primordium, and we show that MADD-2-GFP appears to be downregulated in those cells.

  19. Axonal localization of neuritin/CPG15 mRNA in neuronal populations through distinct 5' and 3' UTR elements.

    Science.gov (United States)

    Merianda, Tanuja T; Gomes, Cynthia; Yoo, Soonmoon; Vuppalanchi, Deepika; Twiss, Jeffery L

    2013-08-21

    Many neuronal mRNAs are actively transported into distal axons. The 3' untranslated regions (UTRs) of axonal mRNAs often contain cues for their localization. The 3' UTR of neuritin mRNA was shown to be sufficient for localization into axons of hippocampal neurons. Here, we show that neuritin mRNA localizes into axons of rat sensory neurons, but this is predominantly driven by the 5' rather than 3' UTR. Neuritin mRNA shifts from cell body to axon predominantly after nerve crush injury, suggesting that it encodes a growth-associated protein. Consistent with this, overexpression of neuritin increases axon growth but only when its mRNA localizes into the axons. PMID:23966695

  20. Intra-axonal protein synthesis - a new target for neural repair?

    Institute of Scientific and Technical Information of China (English)

    Jeffery L Twiss; Ashley L Kalinski; Rahul Sachdeva; John D Houle

    2016-01-01

    Although initially argued to be a feature of immature neurons with incomplete polarization, there is clear evidence that neurons in the peripheral nervous system retain the capacity for intra-axonal protein synthe-sis well into adulthood. This localized protein synthesis has been shown to contribute to injury signaling and axon regeneration in peripheral nerves. Recent works point to potential for protein synthesis in axons of the vertebrate central nervous system. mRNAs and protein synthesis machinery have now been docu-mented in lamprey, mouse, and rat spinal cord axons. Intra-axonal protein synthesis appears to be activated in adult vertebrate spinal cord axons when they are regeneration-competent. Rat spinal cord axons regen-erating into a peripheral nerve graft contain mRNAs and markers of activated translational machinery. Indeed, levels of some growth-associated mRNAs in these spinal cord axons are comparable to the regen-erating sciatic nerve. Markers of active translation tend to decrease when these axons stop growing, but can be reactivated by a second axotomy. These emerging observations raise the possibility that mRNA transport into and translation within axons could be targeted to facilitate regeneration in both the peripheral and central nervous systems.

  1. Coculture of elongated neuron axon with poly (D, L-lactide-co-glycolide) biomembrane in vitro

    Institute of Scientific and Technical Information of China (English)

    程飚; 陈峥嵘

    2004-01-01

    Objective: To elongate human nerve axon in culture and search for suitable support matrices for peripheral nervous system transplantation.Methods: Human embryo cortical neuronal cells,seeded on poly ( D, L-lactide-co-glycolide ) ( PLGA )membrane scaffolds, were elongated with a self-made neuro-axon extending device. The growth and morphological changes of neuron axons were observed to measure axolemmal permeability after elongation.Neurofilament protein was stained by immunohistochemical technique.Results: Human embryo neuron axon could be elongated and cultured on the PLGA membrane and retain their normal form and function.Conclusions: Three dimensional scaffolds with elongated neuron axon have the basic characteristics of artificial nerves, indicating a fundemental theory of nerve repair with elongated neuron axon.

  2. Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury

    Science.gov (United States)

    Sachdeva, Rahul; Farrell, Kaitlin; McMullen, Mary-Katharine; Twiss, Jeffery L.; Houle, John D.

    2016-01-01

    Intra-axonal localization of mRNAs and protein synthesis machinery (PSM) endows neurons with the capacity to generate proteins locally, allowing precise spatiotemporal regulation of the axonal response to extracellular stimuli. A number of studies suggest that this local translation is a promising target to enhance the regenerative capacity of damaged axons. Using a model of central nervous system (CNS) axons regenerating into intraspinal peripheral nerve grafts (PNGs) we established that adult regenerating CNS axons contain several different mRNAs and protein synthetic machinery (PSM) components in vivo. After lower thoracic level spinal cord transection, ascending sensory axons regenerate into intraspinal PNGs but axon growth is stalled when they reach the distal end of the PNG (3 versus 7 weeks after grafting, resp.). By immunofluorescence with optical sectioning of axons by confocal microscopy, the total and phosphorylated forms of PSMs are significantly lower in stalled compared with actively regenerating axons. Reinjury of these stalled axons increased axonal localization of the PSM proteins, indicative of possible priming for a subcellular response to axotomy. These results suggest that axons downregulate protein synthetic capacity as they cease growing, yet they retain the ability to upregulate PSM after a second injury.

  3. Distinct roles of neuropilin 1 signaling for radial and tangential extension of callosal axons.

    Science.gov (United States)

    Hatanaka, Yumiko; Matsumoto, Tomoko; Yanagawa, Yuchio; Fujisawa, Hajime; Murakami, Fujio; Masu, Masayuki

    2009-05-20

    Cortical excitatory neurons migrate from their origin in the ventricular zone (VZ) toward the pial surface. During migration, these neurons exhibit a stellate shape in the intermediate zone (IZ), transform into bipolar cells, and then initiate radial migration, extending a trailing process, which may lead to an axon. Here we examined the role of neuropilin 1 (NRP1) in these developmental events. Both NRP1 mRNA and protein were highly expressed in the IZ, where stellate-shaped cells were located. DiI labeling experiments showed that neuronal migration occurred normally in Nrp1 mutant mice up to embryonic day (E) 14.5, the latest day to which the mutant survives, with only subtle axonal defasciculation. However, interference with Nrp1 signaling at a later stage caused pathfinding errors: when a dominant negative form of Nrp1 was electroporated into the cortical VZ cells at E12.5 or E15.5 and examined perinatally, guidance errors were found in tangential axonal extension toward the midline. In contrast, no significant effect was noted on the migration of cortical excitatory neurons. These findings indicate that NRP1 plays an important role in the guidance of callosal axons originating from cortical excitatory neurons but does not support a role in their migration. Moreover, insofar as radial axonal extension within the cortical plate was unaffected, the present findings imply that molecular mechanisms for the axonal extension of excitatory neurons within the cortical plate are distinct from those in the white matter. PMID:19296474

  4. Differential subcellular recruitment of monoacylglycerol lipase generates spatial specificity of 2-arachidonoyl glycerol signaling during axonal pathfinding

    Science.gov (United States)

    Keimpema, Erik; Barabas, Klaudia; Morozov, Yury M.; Tortoriello, Giuseppe; Torii, Masaaki; Cameron, Gary; Yanagawa, Yuchio; Watanabe, Masahiko; Mackie, Ken; Harkany, Tibor

    2010-01-01

    Endocannabinoids, particularly 2-arachidonoyl glycerol (2-AG), impact the directional turning and motility of a developing axon by activating CB1 cannabinoid receptors (CB1Rs) in its growth cone. Recent findings posit that sn-1-diacylglycerol lipases (DAGLα/β) synthesize 2-AG in the motile axon segment of developing pyramidal cells. Coincident axonal targeting of CB1Rs and DAGLs prompts the hypothesis that autocrine 2-AG signaling facilitates axonal outgrowth. However, DAGLs alone are insufficient to account for the spatial specificity and dynamics of 2-AG signaling. Therefore, we hypothesized that local 2-AG degradation by monoacylglycerol lipase (MGL) must play a role. We determined how subcellular recruitment of MGL is temporally and spatially restricted to establish 2-AG’s signaling competence during axonal growth. MGL is expressed in central and peripheral axons of the fetal nervous system by embryonic day 12.5. MGL coexists with DAGLα and CB1Rs in corticofugal axons of pyramidal cells. Here, MGL and DAGLα undergo differential axonal targeting with MGL being excluded from the motile neurite tip. Thus, spatially-confined MGL activity generates a 2-AG-sensing microdomain and configures 2-AG signaling to promote axonal growth. Once synaptogenesis commences, MGL disperses in stationary growth cones. MGL’s axonal polarity is maintained by differential proteasomal degradation since inhibiting the ubiquitin proteasome system also induces axonal MGL redistribution. Since MGL inactivation drives a CB1R-dependent axonal growth response we conclude that 2-AG may act as a focal protrusive signal for developing neurons and whose regulated metabolism is critical for attaining correct axonal complexity. PMID:20962221

  5. Coordinated Eph-ephrin signaling guides migration and axon targeting in the avian auditory system

    Directory of Open Access Journals (Sweden)

    Allen-Sharpley Michelle R

    2012-08-01

    Full Text Available Abstract Background In the avian sound localization circuit, nucleus magnocellularis (NM projects bilaterally to nucleus laminaris (NL, with ipsilateral and contralateral NM axon branches directed to dorsal and ventral NL dendrites, respectively. We previously showed that the Eph receptor EphB2 is expressed in NL neuropil and NM axons during development. Here we tested whether EphB2 contributes to NM-NL circuit formation. Results We found that misexpression of EphB2 in embryonic NM precursors significantly increased the number of axon targeting errors from NM to contralateral NL in a cell-autonomous manner when forward signaling was impaired. We also tested the effects of inhibiting forward signaling of different Eph receptor subclasses by injecting soluble unclustered Fc-fusion proteins at stages when NM axons are approaching their NL target. Again we found an increase in axon targeting errors compared to controls when forward signaling was impaired, an effect that was significantly increased when both Eph receptor subclasses were inhibited together. In addition to axon targeting errors, we also observed morphological abnormalities of the auditory nuclei when EphB2 forward signaling was increased by E2 transfection, and when Eph-ephrin forward signaling was inhibited by E6-E8 injection of Eph receptor fusion proteins. Conclusions These data suggest that EphB signaling has distinct functions in axon guidance and morphogenesis. The results provide evidence that multiple Eph receptors work synergistically in the formation of precise auditory circuitry.

  6. Axon density and axon orientation dispersion in children born preterm

    NARCIS (Netherlands)

    Kelly, Claire E.; Thompson, Deanne K.; Chen, Jian; Leemans, Alexander; Adamson, Christopher L.; Inder, Terrie E.; Cheong, Jeanie L Y; Doyle, Lex W.; Anderson, Peter J.

    2016-01-01

    Background Very preterm birth (VPT, <32 weeks' gestation) is associated with altered white matter fractional anisotropy (FA), the biological basis of which is uncertain but may relate to changes in axon density and/or dispersion, which can be measured using Neurite Orientation Dispersion and Density

  7. PTEN inhibition and axon regeneration and neural repair

    Institute of Scientific and Technical Information of China (English)

    Yosuke Ohtake; Umar Hayat; Shuxin Li

    2015-01-01

    The intrinsic growth ability of all the neurons declines during development although some may grow better than others. Numerous intracellular signaling proteins and transcription factors have been shown to regulate the intrinsic growth capacity in mature neurons. Among them, PI3 kinase/Akt pathway is important for controlling axon elongation. As a negative regulator of this pathway, the tumor suppressor phosphatase and tensin homolog (PTEN) appears critical to con-trol the regenerative ability of young and adult neurons. This review will focus on recent research progress in axon regeneration and neural repair by PTEN inhibition and therapeutic potential of blocking this phosphatase for neurological disorders. Inhibition of PTEN by deletion in con-ditional knockout mice, knockdown by short-hairpin RNA, or blockade by pharmacological approaches, including administration of selective PTEN antagonist peptides, stimulates various degrees of axon regrowth in juvenile or adult rodents with central nervous system injuries. Im-portantly, post-injury PTEN suppression could enhance axonal growth and functional recovery in adult central nervous system after injury.

  8. Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury

    NARCIS (Netherlands)

    F. Hellal (Farida); A. Hurtado (Andres); J. Ruschel (Jörg); K.C. Flynn (Kevin); C.J. Laskowski (Claudia); M. Umlauf (Martina); L.C. Kapitein (Lukas); D. Strikis (Dinara); V. Lemmon (Vance); J. Bixby (John); C.C. Hoogenraad (Casper); F. Bradke (Frank)

    2011-01-01

    textabstractHypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. Here, moderate microtubule stabilization decreased scar formation after spinal cord injury in rodents through va

  9. Axon damage and repair in multiple sclerosis.

    OpenAIRE

    Perry, V.H.; Anthony, D. C.

    1999-01-01

    It is well known that within long-standing multiple sclerosis (MS) lesions there is axonal loss but whether it is an early or late event has been more difficult to establish. The use of immunocytochemical methods that reveal axonal end-bulbs is a valuable approach to investigating acute axonal injury in human pathological material. The application of these techniques to multiple sclerosis tissue reveals evidence of axonal injury in acute lesions; the distribution of the end-bulbs in acute and...

  10. Axonal change in minor head injury.

    Science.gov (United States)

    Povlishock, J T; Becker, D P; Cheng, C L; Vaughan, G W

    1983-05-01

    Anterograde axonal transport of horseradish peroxidase (HRP) in selected cerebral and cerebellar efferents was studied in cats subjected to minor head injury. After trauma, the animals were allowed to survive from one to 24 hours, when they were perfused with aldehydes and processed for the light and electron microscopic visualization of the peroxidase reaction product. By light microscopy, the brain injury elicited an initial intra-axonal peroxidase pooling. With longer post-traumatic survival, HRP pooling increased in size, demonstrated frequent lobulation, and ultimately formed large ball- or club-like swellings which suggested frank axonal separation from the distal axonal segment. Ultrastructural examination revealed that the initial intra-axonal peroxidase pooling was associated with organelle accumulation which occurred without any other form of axonal change or related parenchymal or vascular damage. This accumulation of organelles increased with time and was associated with conspicuous axonal swelling. Ultimately these organelle-laden swellings lost continuity with the distal axonal segment and the axonal swelling was either completely invested by a thin myelin sheath or protruded without myelin investment into the brain parenchyma. This study suggests that axonal change is a consistent feature of minor head injury. Since these axonal changes occurred without any evidence of focal parenchymal or vascular damage, minor brain injury may ultimately disrupt axons without physically shearing or tearing them. PMID:6188807

  11. In vivo study of novel nanofibrous intra-luminal guidance channels to promote nerve regeneration

    Science.gov (United States)

    Koh, H. S.; Yong, T.; Teo, W. E.; Chan, C. K.; Puhaindran, M. E.; Tan, T. C.; Lim, A.; Lim, B. H.; Ramakrishna, S.

    2010-08-01

    A novel nanofibrous construct for promoting peripheral nerve repair was fabricated and tested in a rat sciatic nerve defect model. The conduit is made out of bilayered nanofibrous membranes with the nanofibers longitudinally aligned in the lumen and randomly oriented on the outer surface. The intra-luminal guidance channel is made out of aligned nanofibrous yarns. In addition, biomolecules such as laminin and nerve growth factor were incorporated in the nanofibrous nerve construct to determine their efficacy in in vivo nerve regeneration. Muscle reinnervation, withdrawal reflex latency, histological, axon density and electrophysiology tests were carried out to compare the efficacy of nanofibrous constructs with an autograft. Our study showed mixed results when comparing the artificial constructs with an autograft. In some cases, the nanofibrous conduit with aligned nanofibrous yarn as an intra-luminal guidance channel performs better than the autograft in muscle reinnervation and withdrawal reflex latency tests. However, the axon density count is highest in the autograft at mid-graft. Functional recovery was improved with the use of the nerve construct which suggested that this nerve implant has the potential for clinical usage in reconstructing peripheral nerve defects.

  12. A Purine-Sensitive Pathway Regulates Multiple Genes Involved in Axon Regeneration in Goldfish Retinal Ganglion Cells

    OpenAIRE

    Petrausch, Barbara; Tabibiazar, Raymond; Roser, Timo; Jing, Yun; Goldmann, Daniel; Stürmer, Claudia; Irwin, Nina; Benowitz, Larry I.

    2000-01-01

    In lower vertebrates, retinal ganglion cells (RGCs) can regenerate their axons and reestablish functional connections after optic nerve injury. We show here that in goldfish RGCs, the effects of several trophic factors converge on a purine-sensitive signaling mechanism that controls axonal outgrowth and the expression of multiple growth-associated proteins. In culture, goldfish RGCs regenerate their axons in response to two molecules secreted by optic nerve glia, axogenesis factor-1 (AF-1) an...

  13. Positioning and guidance of neurons on Au by directed assembly of proteins using Atomic Force Microscopy.

    Science.gov (United States)

    Staii, Cristian; Viesselmann, Chris; Ballweg, Jason; Williams, Justin; Dent, Erik; Coppersmith, Susan; Eriksson, Mark

    2009-03-01

    The specific interactions between neurons and guidance factors as well as the mechanism of axonal navigation toward a target in the developing brain are not well understood. To address this problem we present a new approach for controlling the adhesion, growth and interconnectivity of cortical neurons on Au surfaces. Specifically, we use AFM nanolithography to immobilize extracellular matrix proteins at well-defined locations on Au surfaces, and show that these protein patterns can confine neuronal cells and control their growth and interconnectivity. We will compare this method with other nanofabrication techniques and discuss its main advantages: 1) the procedure is carried out in aqueous solutions, so that the proteins retain their bioactivity, 2) a high degree of control over location and shape of the protein patterns can be achieved, and 3) the minimum protein feature size can be as small as 50nm.

  14. A model of fasciculation and sorting in mixed populations of axons

    CERN Document Server

    Chaudhuri, Debasish; Zapotocky, Martin

    2010-01-01

    We extend a recently proposed model (Chaudhuri et al., EPL 87, 20003 (2009)), aiming to describe the formation of fascicles of axons during neural development. The growing axons are represented as paths of interacting directed random walkers in two spatial dimensions. To mimic turnover of axons, whole paths are removed and new walkers are injected with specified rates. In the simplest version of the model, we use strongly adhesive inter-axon interactions that are identical for all pairs of axons. We generalize the model to interactions of finite strengths and to multiple types of axons with type-specific interactions. The dynamic steady state is characterized by the position-dependent distribution of fascicle sizes. With distance in the direction of axon growth, the mean fascicle size and emergent time scales grow monotonically, while the degree of sorting of fascicles by axon type has a maximum at a finite distance. To understand the emergence of slow time scales, we develop an analytical framework to analyz...

  15. Human intraretinal myelination: Axon diameters and axon/myelin thickness ratios

    Science.gov (United States)

    FitzGibbon, Thomas; Nestorovski, Zoran

    2013-01-01

    Purpose: Human intraretinal myelination of ganglion cell axons occurs in about 1% of the population. We examined myelin thickness and axon diameter in human retinal specimens containing myelinated retinal ganglion cell axons. Materials and Methods: Two eyes containing myelinated patches were prepared for electron microscopy. Two areas were examined in one retina and five in the second retina. Measurements were compared to normal retinal and optic nerve samples and the rabbit retina, which normally contains myelinated axons. Measurements were made using a graphics tablet. Results: Mean axon diameter of myelinated axons at all locations were significantly larger than unmyelinated axons (P ≤ 0.01). Myelinated axons within the patches were significantly larger than axons within the optic nerve (P < 0.01). The relationship between axon diameter/fiber diameter (the G-ratio) seen in the retinal sites differed from that in the nerve. G-ratios were higher and myelin thickness was positively correlated to axon diameter (P < 0.01) in the retina but negatively correlated to axon diameter in the nerve (P < 0.001). Conclusion: Intraretinally myelinated axons are larger than non-myelinated axons from the same population and suggests that glial cells can induce diameter changes in retinal axons that are not normally myelinated. This effect is more dramatic on intraretinal axons compared with the normal transition zone as axons enter the optic nerve and these changes are abnormal. Whether intraretinal myelin alters axonal conduction velocity or blocks axonal conduction remains to be clarified and these issues may have different clinical outcomes. PMID:24212308

  16. A Simple Method for 3D Analysis of Immunolabeled Axonal Tracts in a Transparent Nervous System

    Directory of Open Access Journals (Sweden)

    Morgane Belle

    2014-11-01

    Full Text Available Clearing techniques have been developed to transparentize mouse brains, thereby preserving 3D structure, but their complexity has limited their use. Here, we show that immunolabeling of axonal tracts followed by optical clearing with solvents (3DISCO and light-sheet microscopy reveals brain connectivity in mouse embryos and postnatal brains. We show that the Robo3 receptor is selectively expressed by medial habenula axons forming the fasciculus retroflexus (FR and analyzed the development of this commissural tract in mutants of the Slit/Robo and DCC/Netrin pathways. Netrin-1 and DCC are required to attract FR axons to the midline, but the two mutants exhibit specific and heterogeneous axon guidance defects. Moreover, floor-plate-specific deletion of Slit ligands with a conditional Slit2 allele perturbs not only midline crossing by FR axons but also their anteroposterior distribution. In conclusion, this method represents a unique and powerful imaging tool to study axonal connectivity in mutant mice.

  17. Axonal Localization of Neuritin/CPG15 mRNA in Neuronal Populations through Distinct 5′ and 3′ UTR Elements

    Science.gov (United States)

    Merianda, Tanuja T.; Gomes, Cynthia; Yoo, Soonmoon; Vuppalanchi, Deepika

    2013-01-01

    Many neuronal mRNAs are actively transported into distal axons. The 3′ untranslated regions (UTRs) of axonal mRNAs often contain cues for their localization. The 3′ UTR of neuritin mRNA was shown to be sufficient for localization into axons of hippocampal neurons. Here, we show that neuritin mRNA localizes into axons of rat sensory neurons, but this is predominantly driven by the 5′ rather than 3′ UTR. Neuritin mRNA shifts from cell body to axon predominantly after nerve crush injury, suggesting that it encodes a growth-associated protein. Consistent with this, overexpression of neuritin increases axon growth but only when its mRNA localizes into the axons. PMID:23966695

  18. Inhibitory effects of draxin on axonal outgrowth and migration of precerebellar neurons.

    Science.gov (United States)

    Riyadh, M Asrafuzzaman; Shinmyo, Yohei; Ohta, Kunimasa; Tanaka, Hideaki

    2014-06-20

    The rhombic lip, a dorsal stripe of the neuroepithelium lining the edge of the fourth ventricle, is the site of origin of precerebellar neurons (PCN), which migrate tangentially towards the floor plate. After reaching the floor plate, they project their axons to the cerebellum. Although previous studies have shown that the guidance molecules Netrin/DCC and Slit/Robo have critical roles in PCN migration, the molecular mechanisms underlying this process remain poorly understood. Here, we report that draxin, a repulsive axon guidance protein, is involved in PCN development. We found that draxin is expressed in the rhombic lip and migratory stream of some PCN in the developing hindbrain of mice. In addition, draxin inhibited neurite outgrowth and nuclei migration from rhombic lip explants. These results suggest that draxin functions as a repulsive guidance cue for PCN migration. However, we observed no significant differences in PCN distribution between draxin(-/-) and wild type embryos. Thus, draxin and other axon guidance cues may have redundant roles in PCN migration.

  19. The L1-type cell adhesion molecule Neuroglian is necessary for maintenance of sensory axon advance in the Drosophila embryo

    Directory of Open Access Journals (Sweden)

    Martin Veronica

    2008-04-01

    Full Text Available Abstract Background Cell adhesion molecules have long been implicated in the regulation of axon growth, but the precise cellular roles played by individual cell adhesion molecules and the molecular basis for their action are still not well understood. We have used the sensory system of the Drosophila embryo to shed light on the mechanism by which the L1-type cell adhesion molecule Neuroglian regulates axon growth. Results We have found a highly penetrant sensory axon stalling phenotype in neuroglian mutant embryos. Axons stalled at a variety of positions along their normal trajectory, but most commonly in the periphery some distance along the peripheral nerve. All lateral and dorsal cluster sensory neurons examined, except for the dorsal cluster neuron dbd, showed stalling. Sensory axons were never seen to project along inappropriate pathways in neuroglian mutants and stalled axons showed normal patterns of fasciculation within nerves. The growth cones of stalled axons possessed a simple morphology, similar to their appearance in wild-type embryos when advancing along nerves. Driving expression of the wild-type form of Neuroglian in sensory neurons alone rescued the neuroglian mutant phenotype of both pioneering and follower neurons. A partial rescue was achieved by expressing the Neuroglian extracellular domain. Over/mis-expression of Neuroglian in all neurons, oenocytes or trachea had no apparent effect on sensory axon growth. Conclusion We conclude that Neuroglian is necessary to maintain axon advance along axonal substrates, but is not required for initiation of axon outgrowth, axon fasciculation or recognition of correct growth substrates. Expression of Neuroglian in sensory neurons alone is sufficient to promote axon advance and the intracellular region of the molecule is largely dispensable for this function. It is unlikely, therefore, that Nrg acts as a molecular 'clutch' to couple adhesion of F-actin within the growth cone to the

  20. Perturbations of microRNA function in mouse dicer mutants produce retinal defects and lead to aberrant axon pathfinding at the optic chiasm.

    Directory of Open Access Journals (Sweden)

    Rita Pinter

    Full Text Available BACKGROUND: During development axons encounter a variety of choice points where they have to make appropriate pathfinding decisions. The optic chiasm is a major decision point for retinal ganglion cell (RGC axons en route to their target in order to ensure the correct wiring of the visual system. MicroRNAs (miRNAs belong to the class of small non-coding RNA molecules and have been identified as important regulators of a variety of processes during embryonic development. However, their involvement in axon guidance decisions is less clear. METHODOLOGY/PRINCIPAL FINDINGS: We report here that the early loss of Dicer, an essential protein for the maturation of miRNAs, in all cells of the forming retina and optic chiasm leads to severe phenotypes of RGC axon pathfinding at the midline. Using a conditional deletion approach in mice, we find in homozygous Dicer mutants a marked increase of ipsilateral projections, RGC axons extending outside the optic chiasm, the formation of a secondary optic tract and a substantial number of RGC axons projecting aberrantly into the contralateral eye. In addition, the mutant mice display a microphthalmia phenotype. CONCLUSIONS: Our work demonstrates an important role of Dicer controlling the extension of RGC axons to the brain proper. It indicates that miRNAs are essential regulatory elements for mechanisms that ensure correct axon guidance decisions at the midline and thus have a central function in the establishment of circuitry during the development of the nervous system.

  1. Effects of treadmill training after cerebral ischemia on expression in the brain of axonal guidance factor Netrin-4 and its receptor protein%跑台运动训练对脑缺血大鼠轴突导向因子Netrin-4及其受体DCC蛋白表达的影响

    Institute of Scientific and Technical Information of China (English)

    黄欢; 刘楠

    2015-01-01

    目的 观察跑台运动训练对脑缺血大鼠脑组织中轴突导向因子Netrin-4及其受体结直肠癌缺失(DCC)蛋白表达的影响,旨在探讨运动训练促进脑缺血后神经功能恢复的相关机制.方法 取成年雄性SD大鼠63只,按随机数字表法分为假手术组(n=9)、模型组(n=27)和运动组(n=27).模型组和运动组大鼠采用改良的Longa线栓法制备大脑中动脉闭塞(MCAO)脑缺血模型,假手术组大鼠手术方法同模型组和运动组,但是不插入线栓.运动组于造模成功后24 h采用跑台训练器进行运动训练,其余2组则不进行运动训练.采用修正的神经行为学评分方法(mNSS)评价模型组和运动组大鼠造模后第3、7、14天的神经功能,并断头取脑,采用Western blot法以及免疫荧光法检测脑缺血区组织中Netrin-4、DCC蛋白的表达情况.结果 造模后第3、7、14天,运动组和模型组的mNSS评分与假手术组比较,差异均有统计学意义(P<0.01);造模后第7、14天,运动组的mNSS评分分别为(6.89±1.27)分和(5.22±1.09)分,低于模型组同时间点,差异均有统计学意义(P<0.05);造模后第7、14天,运动组的Netrin-4、DCC蛋白表达均较模型组增强(P<0.05);造模后第14天,经免疫荧光法检测发现,Netrin-4主要在脑缺血区的血管和星形胶质细胞中表达,而DCC蛋白主要在脑缺血区的神经元轴突和星形胶质细胞中表达.结论 跑台运动训练可促进脑缺血大鼠神经功能恢复,其机制可能与上调脑缺血区组织中Netrin-4、DCC蛋白的表达,进而增强了神经、血管的再生和重建有关.%Objective To observe the effects of treadmill training on the expression of axonal guidance factor Netrin-4 and its receptor deleted in colorectal cancer (DCC) protein in the brains of rats with cerebral ischemia.Also to explore how training promotes the recovery of neurological function after cerebral ischemia.Methods Sixty-three adult, male Sprague

  2. Constitutively expressed Protocadherin-α regulates the coalescence and elimination of homotypic olfactory axons through its cytoplasmic region

    Directory of Open Access Journals (Sweden)

    Sonoko eHasegawa

    2012-10-01

    Full Text Available Olfactory sensory neuron (OSN axons coalesce into specific glomeruli in the olfactory bulb (OB according to their odorant receptor (OR expression. Several guidance molecules enhance the coalescence of homotypic OSN projections, in an OR-specific- and neural-activity-dependent manner. However, the mechanism by which homotypic OSN axons are organized into glomeruli is unsolved. We previously reported that the clustered protocadherin-α (Pcdh-α family of diverse cadherin-related molecules plays roles in the coalescence and elimination of homotypic OSN axons throughout development. Here we showed that the elimination of small ectopic homotypic glomeruli required the constitutive expression of a Pcdh-α isoform and Pcdh-α’s cytoplasmic region, but not OR specificity or neural activity. These results suggest that Pcdh-α proteins provide a cytoplasmic signal to regulate repulsive activity for homotypic OSN axons independently of OR expression and neural activity. The counterbalancing effect of Pcdh-α proteins for the axonal coalescence mechanisms mediated by other olfactory guidance molecules indicate a possible mechanism for the organization of homotypic OSN axons into glomeruli during development.

  3. Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries

    Directory of Open Access Journals (Sweden)

    Oscar A. Carballo-Molina

    2015-02-01

    Full Text Available Damage caused to neural tissue by disease or injury frequently produces a discontinuity in the nervous system. Such damage generates diverse alterations that are commonly permanent, due to the limited regeneration capacity of the adult nervous system, particularly the Central Nervous System (CNS. The cellular reaction to noxious stimulus leads to several events such as the formation of glial and fibrous scars, which inhibit axonal regeneration in both the CNS and the Peripheral Nervous System (PNS. Although in the PNS there is some degree of nerve regeneration, it is common that the growing axons reinnervate incorrect areas, causing mismatches. Providing a permissive substrate for axonal regeneration in combination with delivery systems for the release of molecules, which enhances axonal growth, could increase regeneration and the recovery of functions in the CNS or the PNS. Currently, there are no effective vehicles to supply growth factors or cells to the damaged/diseased nervous system. Hydrogels are polymers that are biodegradable, biocompatible and have the capacity to deliver a large range of molecules in situ. The inclusion of cultured neural cells into hydrogels forming three-dimensional structures allows the formation of synapses and neuronal survival. There is also evidence showing that hydrogels constitute an amenable substrate for axonal growth of endogenous or grafted cells, overcoming the presence of axonal regeneration inhibitory molecules, in both the central and peripheral nervous systems. Recent experiments suggest that hydrogels can carry and deliver several proteins relevant for improving neuronal survival and axonal growth. Although the use of hydrogels is appealing, its effectiveness is still a matter of discussion, and more results are needed to achieve consistent recovery using different parameters. This review also discusses areas of opportunity where hydrogels can be applied, in order to promote axonal regeneration of

  4. Wnt Signalling Promotes Actin Dynamics during Axon Remodelling through the Actin-Binding Protein Eps8.

    Directory of Open Access Journals (Sweden)

    Eleanna Stamatakou

    Full Text Available Upon arrival at their synaptic targets, axons slow down their growth and extensively remodel before the assembly of presynaptic boutons. Wnt proteins are target-derived secreted factors that promote axonal remodelling and synaptic assembly. In the developing spinal cord, Wnts secreted by motor neurons promote axonal remodelling of NT-3 responsive dorsal root ganglia neurons. Axon remodelling induced by Wnts is characterised by growth cone pausing and enlargement, processes that depend on the re-organisation of microtubules. However, the contribution of the actin cytoskeleton has remained unexplored. Here, we demonstrate that Wnt3a regulates the actin cytoskeleton by rapidly inducing F-actin accumulation in growth cones from rodent DRG neurons through the scaffold protein Dishevelled-1 (Dvl1 and the serine-threonine kinase Gsk3β. Importantly, these changes in actin cytoskeleton occurs before enlargement of the growth cones is evident. Time-lapse imaging shows that Wnt3a increases lamellar protrusion and filopodia velocity. In addition, pharmacological inhibition of actin assembly demonstrates that Wnt3a increases actin dynamics. Through a yeast-two hybrid screen, we identified the actin-binding protein Eps8 as a direct interactor of Dvl1, a scaffold protein crucial for the Wnt signalling pathway. Gain of function of Eps8 mimics Wnt-mediated axon remodelling, whereas Eps8 silencing blocks the axon remodelling activity of Wnt3a. Importantly, blockade of the Dvl1-Eps8 interaction completely abolishes Wnt3a-mediated axonal remodelling. These findings demonstrate a novel role for Wnt-Dvl1 signalling through Eps8 in the regulation of axonal remodeling.

  5. Retinal glia promote dorsal root ganglion axon regeneration.

    Directory of Open Access Journals (Sweden)

    Barbara Lorber

    Full Text Available Axon regeneration in the adult central nervous system (CNS is limited by several factors including a lack of neurotrophic support. Recent studies have shown that glia from the adult rat CNS, specifically retinal astrocytes and Müller glia, can promote regeneration of retinal ganglion cell axons. In the present study we investigated whether retinal glia also exert a growth promoting effect outside the visual system. We found that retinal glial conditioned medium significantly enhanced neurite growth and branching of adult rat dorsal root ganglion neurons (DRG in culture. Furthermore, transplantation of retinal glia significantly enhanced regeneration of DRG axons past the dorsal root entry zone after root crush in adult rats. To identify the factors that mediate the growth promoting effects of retinal glia, mass spectrometric analysis of retinal glial conditioned medium was performed. Apolipoprotein E and secreted protein acidic and rich in cysteine (SPARC were found to be present in high abundance, a finding further confirmed by western blotting. Inhibition of Apolipoprotein E and SPARC significantly reduced the neuritogenic effects of retinal glial conditioned medium on DRG in culture, suggesting that Apolipoprotein E and SPARC are the major mediators of this regenerative response.

  6. Zebrafish foxP2 zinc finger nuclease mutant has normal axon pathfinding.

    Directory of Open Access Journals (Sweden)

    Lingyan Xing

    Full Text Available foxP2, a forkhead-domain transcription factor, is critical for speech and language development in humans, but its role in the establishment of CNS connectivity is unclear. While in vitro studies have identified axon guidance molecules as targets of foxP2 regulation, and cell culture assays suggest a role for foxP2 in neurite outgrowth, in vivo studies have been lacking regarding a role for foxP2 in axon pathfinding. We used a modified zinc finger nuclease methodology to generate mutations in the zebrafish foxP2 gene. Using PCR-based high resolution melt curve analysis (HRMA of G0 founder animals, we screened and identified three mutants carrying nonsense mutations in the 2(nd coding exon: a 17 base-pair (bp deletion, an 8bp deletion, and a 4bp insertion. Sequence analysis of cDNA confirmed that these were frameshift mutations with predicted early protein truncations. Homozygous mutant fish were viable and fertile, with unchanged body morphology, and no apparent differences in CNS apoptosis, proliferation, or patterning at embryonic stages. There was a reduction in expression of the known foxP2 target gene cntnap2 that was rescued by injection of wild-type foxP2 transcript. When we examined axon pathfinding using a pan-axonal marker or transgenic lines, including a foxP2-neuron-specific enhancer, we did not observe any axon guidance errors. Our findings suggest that foxP2 is not necessary for axon pathfinding during development.

  7. AxonSeg: Open Source Software for Axon and Myelin Segmentation and Morphometric Analysis.

    Science.gov (United States)

    Zaimi, Aldo; Duval, Tanguy; Gasecka, Alicja; Côté, Daniel; Stikov, Nikola; Cohen-Adad, Julien

    2016-01-01

    Segmenting axon and myelin from microscopic images is relevant for studying the peripheral and central nervous system and for validating new MRI techniques that aim at quantifying tissue microstructure. While several software packages have been proposed, their interface is sometimes limited and/or they are designed to work with a specific modality (e.g., scanning electron microscopy (SEM) only). Here we introduce AxonSeg, which allows to perform automatic axon and myelin segmentation on histology images, and to extract relevant morphometric information, such as axon diameter distribution, axon density and the myelin g-ratio. AxonSeg includes a simple and intuitive MATLAB-based graphical user interface (GUI) and can easily be adapted to a variety of imaging modalities. The main steps of AxonSeg consist of: (i) image pre-processing; (ii) pre-segmentation of axons over a cropped image and discriminant analysis (DA) to select the best parameters based on axon shape and intensity information; (iii) automatic axon and myelin segmentation over the full image; and (iv) atlas-based statistics to extract morphometric information. Segmentation results from standard optical microscopy (OM), SEM and coherent anti-Stokes Raman scattering (CARS) microscopy are presented, along with validation against manual segmentations. Being fully-automatic after a quick manual intervention on a cropped image, we believe AxonSeg will be useful to researchers interested in large throughput histology. AxonSeg is open source and freely available at: https://github.com/neuropoly/axonseg. PMID:27594833

  8. Axonal interferon responses and alphaherpesvirus neuroinvasion

    Science.gov (United States)

    Song, Ren

    Infection by alphaherpesviruses, including herpes simplex virus (HSV) and pseudorabies virus (PRV), typically begins at a peripheral epithelial surface and continues into the peripheral nervous system (PNS) that innervates this tissue. Inflammatory responses are induced at the infected peripheral site prior to viral invasion of the PNS. PNS neurons are highly polarized cells with long axonal processes that connect to distant targets. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which include type I interferon (e.g. IFNbeta) and type II interferon (i.e. IFNgamma). IFNbeta can be produced by all types of cells, while IFNgamma is secreted by some specific types of immune cells. And both types of IFN induce antiviral responses in surrounding cells that express the IFN receptors. The fundamental question is how do PNS neurons respond to the inflammatory milieu experienced only by their axons. Axons must act as potential front-line barriers to prevent PNS infection and damage. Using compartmented cultures that physically separate neuron axons from cell bodies, I found that pretreating isolated axons with IFNbeta or IFNgamma significantly diminished the number of HSV-1 and PRV particles moving from axons to the cell bodies in an IFN receptor-dependent manner. Furthermore, I found the responses in axons are activated differentially by the two types of IFNs. The response to IFNbeta is a rapid, axon-only response, while the response to IFNgamma involves long distance signaling to the PNS cell body. For example, exposing axons to IFNbeta induced STAT1 phosphorylation (p-STAT1) only in axons, while exposure of axons to IFNgamma induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated IFNgamma-, but not IFNbeta-mediated antiviral effects. Proteomic analysis of IFNbeta- or IFNgamma-treated axons identified several differentially regulated proteins. Therefore

  9. Enzyme-instructed self-assembly of taxol promotes axonal branching

    Science.gov (United States)

    Mei, Bin; Miao, Qingqing; Tang, Anming; Liang, Gaolin

    2015-09-01

    Axonal branching is important for vertebrate neuron signaling. Taxol has a biphasic effect on axonal branching (i.e., high concentration inhibits axonal growth but low concentration restores it). To the best of our knowledge, low concentration of taxol to promote axonal branching has not been reported yet. Herein, we rationally designed a taxol derivative Fmoc-Phe-Phe-Lys(taxol)-Tyr(H2PO4)-OH (1) which could be subjected to alkaline phosphatase (ALP)-catalyzed self-assembly to form taxol nanofibers. We found that, at 10 μM, 1 has a microtubule (MT) condensation effect similar to that of taxol on mammalian cells but with more chronic toxicity than taxol on the cells. At a low concentration of 10 nM, 1 not only promoted neurite elongation as taxol did but also promoted axonal branching which was not achieved by using taxol. We propose that self-assembly of 1 along the MTs prohibited their lateral contacts and thus promoted axonal branching. Our strategy of enzyme-instructed self-assembly (EISA) of a taxol derivative provides a new tool for scientists to study the morphology of neurons, as well as their behaviours.Axonal branching is important for vertebrate neuron signaling. Taxol has a biphasic effect on axonal branching (i.e., high concentration inhibits axonal growth but low concentration restores it). To the best of our knowledge, low concentration of taxol to promote axonal branching has not been reported yet. Herein, we rationally designed a taxol derivative Fmoc-Phe-Phe-Lys(taxol)-Tyr(H2PO4)-OH (1) which could be subjected to alkaline phosphatase (ALP)-catalyzed self-assembly to form taxol nanofibers. We found that, at 10 μM, 1 has a microtubule (MT) condensation effect similar to that of taxol on mammalian cells but with more chronic toxicity than taxol on the cells. At a low concentration of 10 nM, 1 not only promoted neurite elongation as taxol did but also promoted axonal branching which was not achieved by using taxol. We propose that self-assembly of 1

  10. Neurofilament spacing, phosphorylation, and axon diameter in regenerating and uninjured lamprey axons.

    Science.gov (United States)

    Pijak, D S; Hall, G F; Tenicki, P J; Boulos, A S; Lurie, D I; Selzer, M E

    1996-05-13

    It has been postulated that phosphorylation of the carboxy terminus sidearms of neurofilaments (NFs) increases axon diameter through repulsive electrostatic forces that increase sidearm extension and interfilament spacing. To evaluate this hypothesis, the relationships among NF phosphorylation, NF spacing, and axon diameter were examined in uninjured and spinal cord-transected larval sea lampreys (Petromyzon marinus). In untransected animals, axon diameters in the spinal cord varied from 0.5 to 50 microns. Antibodies specific for highly phosphorylated NFs labeled only large axons (> 10 microns), whereas antibodies for lightly phosphorylated NFs labeled medium-sized and small axons more darkly than large axons. For most axons in untransected animals, diameter was inversely related to NF packing density, but the interfilament distances of the largest axons were only 1.5 times those of the smallest axons. In addition, the lightly phosphorylated NFs of the small axons in the dorsal columns were widely spaced, suggesting that phosphorylation of NFs does not rigidly determine their spacing and that NF spacing does not rigidly determine axon diameter. Regenerating neurites of giant reticulospinal axons (GRAs) have diameters only 5-10% of those of their parent axons. If axon caliber is controlled by NF phosphorylation via mutual electrostatic repulsion, then NFs in the slender regenerating neurites should be lightly phosphorylated and densely packed (similar to NFs in uninjured small caliber axons), whereas NFs in the parent GRAs should be highly phosphorylated and loosely packed. However, although linear density of NFs (the number of NFs per micrometer) in these slender regenerating neurites was twice that in their parent axons, they were highly phosphorylated. Following sectioning of these same axons close to the cell body, axon-like neurites regenerated ectopically from dendritic tips. These ectopically regenerating neurites had NF linear densities 2.5 times those of

  11. ApoE4 influences growth cone of neuronal axon through ERK signal pathway%载脂蛋白E亚型通过细胞外信号调节激酶途径影响轴突生长锥的生长

    Institute of Scientific and Technical Information of China (English)

    殷成; 蒋理; 周帅; 孙晓川

    2012-01-01

    目的 观察载脂蛋白E( apolipoprotein E,ApoE)各个亚型对神经元轴突生长锥的影响并探索其机制.方法 体外培养小鼠皮质神经块,加入重组人类ApoE到神经块培养基中,免疫荧光和Western blot检测重组人类ApoE能否进入轴突及其生长锥;鬼丙环肽染色生长锥观察重组人类ApoE2、3、4对生长锥的影响;加入细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)信号通路抑制剂,观察ERK信号通路是否参与ApoE亚型对生长锥的影响.结果 免疫荧光和Western blot显示加入重组人类ApoE后的神经块轴突及其生长锥中ApoE为阳性;加入重组人类ApoE2、3、4组的荧光强度分别为(50.7±19.4)、(58.5±15.4)、(23.4±13.5),其中加入重组人类ApoE4的轴突生长锥荧光强度低于加入重组人类ApoE2、3的生长锥荧光强度(P<0.05);同时加入重组人类ApoE4和ERK信号通路抑制剂的实验组生长锥荧光强度为(32.8±13.2),而仅加入重组人类ApoE4的实验组生长锥荧光强度为(21.9±6.9),实验组生长锥荧光强度高于对照组(P<0.05).结论 重组人类ApoE能进入轴突及其生长锥,ApoE4能负性影响生长锥生长,阻断ERK信号途径能抑制ApoE4对生长锥的负面影响.%Objective To determine the effect of different ApoE subtypes on the growth cones of neuronal axons. Methods Cortical explants were isolated from 1 -day-old ApoE knockout mice, and then cultured in vitro with the treatment of the recombinant human ApoE2, 3 and 4 (20 μg/ml) respectively for 24 h. Immunofluorescence staining and Western blot analysis were used to detect recombinant human ApoE whether entering axons and growth cones. Phalloidin staining was used to dye the growth cones after ApoE2, 3, and 4 treatment. Extracellular signal-regulated kinase ( ERK) inhibitor was added into culture medium to discover ERK pathway whether participating in the process of ApoE subtypes influencing the growth cones. Results

  12. Cable energy function of cortical axons.

    Science.gov (United States)

    Ju, Huiwen; Hines, Michael L; Yu, Yuguo

    2016-01-01

    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na(+)-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na(+)-counting method severely underestimates energy cost in the cable model by 20-70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship. PMID:27439954

  13. Neuronal Development: SAD Kinases Make Happy Axons

    OpenAIRE

    Xing, Lei; Newbern, Jason M.; Snider, William D

    2013-01-01

    The polarity proteins LKB1 and SAD-A/B are key regulators of axon specification in the developing cerebral cortex. Recent studies now show that this mechanism cannot be generalized to other classes of neurons: instead, SAD-A/B functions downstream of neurotrophin signaling in sensory neurons to mediate a later stage of axon development — arborization in the target field.

  14. Axon reflexes in human cold exposed fingers

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ducharme, M.B.

    2000-01-01

    Exposure of fingers to severe cold induces cold induced vasodilation (CIVD). The mechanism of CIVD is still debated. The original theory states that an axon reflex causes CIVD. To test this hypothesis, axon reflexes were evoked by electrical stimulation of the middle fingers of hands immersed in wat

  15. Cable energy function of cortical axons.

    Science.gov (United States)

    Ju, Huiwen; Hines, Michael L; Yu, Yuguo

    2016-01-01

    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na(+)-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na(+)-counting method severely underestimates energy cost in the cable model by 20-70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship.

  16. Cable energy function of cortical axons

    Science.gov (United States)

    Ju, Huiwen; Hines, Michael L.; Yu, Yuguo

    2016-01-01

    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na+-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na+-counting method severely underestimates energy cost in the cable model by 20–70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship. PMID:27439954

  17. The challenges of axon survival: introduction to the special issue on axonal degeneration.

    Science.gov (United States)

    Coleman, Michael P

    2013-08-01

    Early axon loss is a common feature of many neurodegenerative disorders. It renders neurons functionally inactive, or less active if axon branches are lost, in a manner that is often irreversible. In the CNS, there is no long-range axon regeneration and even peripheral nerve axons are unlikely to reinnervate their targets while the cause of the problem persists. In most disorders, axon degeneration precedes cell death so it is not simply a consequence of it, and it is now clear that axons have at least one degeneration mechanism that differs from that of the soma. It is important to understand these degeneration mechanisms and their contribution to axon loss in neurodegenerative disorders. In this way, it should become possible to prevent axon loss as well as cell death. This special edition considers the roles and mechanisms of axon degeneration in amyotrophic lateral sclerosis, Charcot-Marie-Tooth disease, hereditary spastic paraplegia, ischemic injury, traumatic brain injury, Alzheimer's disease, glaucoma, Huntington's disease and Parkinson's disease. Using examples from these and other disorders, this introduction considers some of the reasons for axon vulnerability. It also illustrates how molecular genetics and studies of Wallerian degeneration have contributed to our understanding of axon degeneration mechanisms. PMID:23769907

  18. Sugar Antennae for Guidance Signals: Syndecans and Glypicans Integrate Directional Cues for Navigating Neurons

    OpenAIRE

    Christa Rhiner; Hengartner, Michael O.

    2006-01-01

    Attractive and repulsive signals guide migrating nerve cells in all directions when the nervous system starts to form. The neurons extend thin processes, axons, that connect over wide distances with other brain cells to form a complicated neuronal network. One of the most fascinating questions in neuroscience is how the correct wiring of billions of nerve cells in our brain is controlled. Several protein families are known to serve as guidance cues for navigating neurons and axons. Neverthele...

  19. Dynamics of mitochondrial transport in axons

    Directory of Open Access Journals (Sweden)

    Robert Francis Niescier

    2016-05-01

    Full Text Available The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

  20. Dynamics of Mitochondrial Transport in Axons.

    Science.gov (United States)

    Niescier, Robert F; Kwak, Sang Kyu; Joo, Se Hun; Chang, Karen T; Min, Kyung-Tai

    2016-01-01

    The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons. PMID:27242435

  1. 急性肺损伤大鼠肺组织神经导向因子Slit2及Robo4的表达%Expression of axon guidance cues Slit2 and Robo4 in lung tissue of rat with acute lung injury

    Institute of Scientific and Technical Information of China (English)

    李霖; 卿国忠; 杨靖; 唐卓; 彭正良; 张克娜; 丁灿

    2014-01-01

    .09) vs.(0.50±0.05),F=0.498,P>0.05,(0.55±0.06) vs.(0.56±0.07),F=0.073,P>0.05].结论 对照组大鼠肺组织可表达Slit2及Robo4,盲肠结扎穿孔致ALI大鼠肺组织Slit2表达下降,这可能与ALI发病有关.%Objective To observe the expression of axon guidance cues Slit2 and Robo4 in lung tissue of rat with acute lung injury (ALI) and explore the function of Slit2 and Robo4 in ALI.Methods Forty-eight Sprague-Dawley rats were randomly (random number) divided into control group (n =24) and ALl group (n =24).ALI model was reproduced by cecum ligation and puncture (CLP).The control group only experienced a simulated operation without CLP.Both groups were further divided into 3 subgroups with 8 rats in each subgroup:12 h,24 h,and 48 h subgroups.artery blood gas analysis,lung tissue wet/dry weight (W/D) ratio,lung histopathologic changes,pulmonary microvascular permeability were observed.The serum tumor nocrosis factor-α (TNF-α) was measured with enzyme linked immunosorbent assay (ELISA).The expression of Slit2 and Robo4 mRNA were detected by reverse transcription-polymerase chain reaction (RT-PCR).The expression of Slit2 and Robo4 protein in lung tissues was assessed by immunohistochemistry.Date were analyzed by one-way ANOVA with SPSS version 13.0 software.Statistical significance was established at a P value of less than 0.05.Results Compared with the control group,in ALI rats at different time points,partial pressure of oxygen in arterial blood (PaO2) decreased significantly,lung W/D weight ratio and pulmonary microvascular permeability,the serum TNF-α increased significantly (all P < 0.05),histopathology of lung revealed signs of injury.The expression of Slit2 mRNA in lung tissues was decreased markedly after CLP compared with control group [(0.56±0.13) vs.(0.87±0.05),F=41.39,P<0.05,(0.42±0.10) vs.(0.85±0.07),F=93.54,P<0.05,(0.26±0.08) vs.(0.89 ±0.09),F=227.05,P<0.05].but there were no significant difference in expression of Robo4 mRNA in

  2. Bazooka mediates secondary axon morphology in Drosophila brain lineages

    Directory of Open Access Journals (Sweden)

    Hartenstein Volker

    2011-04-01

    Full Text Available Abstract In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that multiple GAL4 drivers have been mapped to several lineages of the Drosophila brain enables investigation of the role of Bazooka from larval to adult stages Bazooka loss-of-function (LOF clones had abnormal morphologies, including aberrant pathway choice of ventral projection neurons in the BAla1 lineage, ectopic branching in the DALv2 and BAmv1 lineages, and excess BLD5 lineage axon projections in the optic medulla. Exogenous expression of Bazooka protein in BAla1 neurons rescued defective guidance, supporting an intrinsic requirement for Bazooka in the post-mitotic neuron. Elimination of the Par-complex member Par6 recapitulated Bazooka phenotypes in some but not all lineages, suggesting that the Par complex functions in a lineage-dependent manner, and that Bazooka may act independently in some lineages. Importantly, this study highlights the potential of using a multilineage approach when studying gene function during neural development in Drosophila.

  3. Bazooka mediates secondary axon morphology in Drosophila brain lineages.

    Science.gov (United States)

    Spindler, Shana R; Hartenstein, Volker

    2011-01-01

    In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that multiple GAL4 drivers have been mapped to several lineages of the Drosophila brain enables investigation of the role of Bazooka from larval to adult stages Bazooka loss-of-function (LOF) clones had abnormal morphologies, including aberrant pathway choice of ventral projection neurons in the BAla1 lineage, ectopic branching in the DALv2 and BAmv1 lineages, and excess BLD5 lineage axon projections in the optic medulla. Exogenous expression of Bazooka protein in BAla1 neurons rescued defective guidance, supporting an intrinsic requirement for Bazooka in the post-mitotic neuron. Elimination of the Par-complex member Par6 recapitulated Bazooka phenotypes in some but not all lineages, suggesting that the Par complex functions in a lineage-dependent manner, and that Bazooka may act independently in some lineages. Importantly, this study highlights the potential of using a multilineage approach when studying gene function during neural development in Drosophila. PMID:21524279

  4. Sugar Antennae for Guidance Signals: Syndecans and Glypicans Integrate Directional Cues for Navigating Neurons

    Directory of Open Access Journals (Sweden)

    Christa Rhiner

    2006-01-01

    Full Text Available Attractive and repulsive signals guide migrating nerve cells in all directions when the nervous system starts to form. The neurons extend thin processes, axons, that connect over wide distances with other brain cells to form a complicated neuronal network. One of the most fascinating questions in neuroscience is how the correct wiring of billions of nerve cells in our brain is controlled. Several protein families are known to serve as guidance cues for navigating neurons and axons. Nevertheless, the combinatorial potential of these proteins seems to be insufficient to sculpt the entire neuronal network and the appropriate formation of connections. Recently, heparan sulfate proteoglycans (HSPGs, which are present on the cell surface of neurons and in the extracellular matrix through which neurons and axons migrate, have been found to play a role in regulating cell migration and axon guidance. Intriguingly, the large number of distinct modifications that can be put onto the sugar side chains of these PGs would in principle allow for an enormous diversity of HSPGs, which could help in regulating the vast number of guidance choices taken by individual neurons. In this review, we will focus on the role of the cell surface HSPGs syndecan and glypican and specific HS modifications in promoting neuronal migration, axon guidance, and synapse formation.

  5. Gas6 enhances axonal ensheathment by MBP+ membranous processes in human DRG/OL promyelinating co-cultures

    Directory of Open Access Journals (Sweden)

    Kathleen N. O’Guin

    2014-01-01

    Full Text Available The molecular requirements for human myelination are incompletely defined, and further study is needed to fully understand the cellular mechanisms involved during development and in demyelinating diseases. We have established a human co-culture model to study myelination. Our earlier observations showed that addition of human γ-carboxylated growth-arrest-specific protein 6 (Gas6 to human oligodendrocyte progenitor cell (OPC cultures enhanced their survival and maturation. Therefore, we explored the effect of Gas6 in co-cultures of enriched OPCs plated on axons of human fetal dorsal root ganglia explant. Gas6 significantly enhanced the number of myelin basic protein-positive (MBP+ oligodendrocytes with membranous processes parallel with and ensheathing axons relative to co-cultures maintained in defined medium only for 14 days. Gas6 did not increase the overall number of MBP+ oligodendrocytes/culture; however, it significantly increased the length of MBP+ oligodendrocyte processes in contact with and wrapping axons. Multiple oligodendrocytes were in contact with a single axon, and several processes from one oligodendrocyte made contact with one or multiple axons. Electron microscopy supported confocal Z-series microscopy demonstrating axonal ensheathment by MBP+ oligodendrocyte membranous processes in Gas6-treated co-cultures. Contacts between the axonal and oligodendrocyte membranes were evident and multiple wraps of oligodendrocyte membrane around the axon were visible supporting a model system in which to study events in human myelination and aspects of non-compact myelin formation.

  6. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injur y in stroke rats

    Institute of Scientific and Technical Information of China (English)

    Yi Xu; Shiwei Du; Xinguang Yu; Xiao Han; Jincai Hou; Hao Guo

    2014-01-01

    Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that in-travenous transplantation of human bone marrow mesenchymal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including mi-crotubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These ifndings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneifcial effects in-clude resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration.

  7. Enzyme-instructed self-assembly of taxol promotes axonal branching.

    Science.gov (United States)

    Mei, Bin; Miao, Qingqing; Tang, Anming; Liang, Gaolin

    2015-10-14

    Axonal branching is important for vertebrate neuron signaling. Taxol has a biphasic effect on axonal branching (i.e., high concentration inhibits axonal growth but low concentration restores it). To the best of our knowledge, low concentration of taxol to promote axonal branching has not been reported yet. Herein, we rationally designed a taxol derivative Fmoc-Phe-Phe-Lys(taxol)-Tyr(H2PO4)-OH (1) which could be subjected to alkaline phosphatase (ALP)-catalyzed self-assembly to form taxol nanofibers. We found that, at 10 μM, 1 has a microtubule (MT) condensation effect similar to that of taxol on mammalian cells but with more chronic toxicity than taxol on the cells. At a low concentration of 10 nM, 1 not only promoted neurite elongation as taxol did but also promoted axonal branching which was not achieved by using taxol. We propose that self-assembly of 1 along the MTs prohibited their lateral contacts and thus promoted axonal branching. Our strategy of enzyme-instructed self-assembly (EISA) of a taxol derivative provides a new tool for scientists to study the morphology of neurons, as well as their behaviours. PMID:26359218

  8. Matrine protects neuro-axon from CNS inflammation-induced injury.

    Science.gov (United States)

    Kan, Quan-Cheng; Lv, Peng; Zhang, Xiao-Jian; Xu, Yu-Ming; Zhang, Guang-Xian; Zhu, Lin

    2015-02-01

    Neuro-axonal injury in the central nervous system (CNS) is one of the major pathological hallmarks of experimental autoimmune encephalomyelitis (EAE), an experimental model of multiple sclerosis (MS). Matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae Flave, has recently been shown to effectively suppress EAE through an anti-inflammatory mechanism. However, whether MAT can also protect myelin/axons from damage is not known. In the present study we show that, while untreated rats developed severe clinical disease, CNS inflammatory demyelination, and axonal damage, these clinical and pathological signs were significantly reduced by MAT treatment. Consistently, MAT treatment reduced the concentration of myelin basic protein in serum and downregulated expression of β-amyloid (Aβ) and B-site APP cleaving enzyme 1 (BACE-1) in the CNS. Further, the CNS of MAT-treated rats exhibited increased expression of brain-derived neurotrophic factor (BDNF), an important factor for neuronal survival and axonal growth. Together, these results demonstrate that MAT effectively prevented neuro-axonal injury, which can likely be attributed to inhibiting risk factors such as BACE-1 and upregulating neuroprotective factors such as BDNF. We conclude that this novel natural reagent, MAT, which effectively protects neuro-axons from CNS inflammation-induced damage, could be a potential candidate for the treatment of neurodegenerative diseases such as MS.

  9. BDNF promotes target innervation of Xenopus mandibular trigeminal axons in vivo

    Directory of Open Access Journals (Sweden)

    Ishibashi Shoko

    2007-05-01

    Full Text Available Abstract Background Trigeminal nerves consist of ophthalmic, maxillary, and mandibular branches that project to distinct regions of the facial epidermis. In Xenopus embryos, the mandibular branch of the trigeminal nerve extends toward and innervates the cement gland in the anterior facial epithelium. The cement gland has previously been proposed to provide a short-range chemoattractive signal to promote target innervation by mandibular trigeminal axons. Brain derived neurotrophic factor, BDNF is known to stimulate axon outgrowth and branching. The goal of this study is to determine whether BDNF functions as the proposed target recognition signal in the Xenopus cement gland. Results We found that the cement gland is enriched in BDNF mRNA transcripts compared to the other neurotrophins NT3 and NT4 during mandibular trigeminal nerve innervation. BDNF knockdown in Xenopus embryos or specifically in cement glands resulted in the failure of mandibular trigeminal axons to arborise or grow into the cement gland. BDNF expressed ectodermal grafts, when positioned in place of the cement gland, promoted local trigeminal axon arborisation in vivo. Conclusion BDNF is necessary locally to promote end stage target innervation of trigeminal axons in vivo, suggesting that BDNF functions as a short-range signal that stimulates mandibular trigeminal axon arborisation and growth into the cement gland.

  10. Robust Axonal Regeneration Occurs in the Injured CAST/Ei Mouse CNS

    OpenAIRE

    Omura, T; Omura, K.; Tedeschi, A; Riva, P; Painter, MW; L. Rojas; Martin, J.; Lisi, V; Huebner, EA; Latremoliere, A; Yin, Y.; Barrett, LB; Singh, B; Lee, S.; Crisman, T

    2015-01-01

    © 2015 Elsevier Inc. Axon regeneration in the CNS requires reactivating injured neurons' intrinsic growth state and enabling growth in an inhibitory environment. Using an inbred mouse neuronal phenotypic screen, we find that CAST/Ei mouse adult dorsal root ganglion neurons extend axons more on CNS myelin than the other eight strains tested, especially when pre-injured. Injury-primed CAST/Ei neurons also regenerate markedly in the spinal cord and optic nerve more than those from C57BL/6 mice a...

  11. Genetics Home Reference: giant axonal neuropathy

    Science.gov (United States)

    ... in giant axonal neuropathy: new insights into disease mechanisms. Muscle Nerve. 2012 Aug;46(2):246-56. ... with a qualified healthcare professional . About Genetics Home Reference Site Map Contact Us Selection Criteria for Links ...

  12. Co-culture of oligodendrocytes and neurons can be used to assess drugs for axon regeneration in the central nervous system.

    Science.gov (United States)

    Gang, Lin; Yao, Yu-Chen; Liu, Ying-Fu; Li, Yi-Peng; Yang, Kai; Lu, Lei; Cheng, Yuan-Chi; Chen, Xu-Yi; Tu, Yue

    2015-10-01

    We present a novel in vitro model in which to investigate the efficacy of experimental drugs for the promotion of axon regeneration in the central nervous system. We co-cultured rat hippocampal neurons and cerebral cortical oligodendrocytes, and tested the co-culture system using a Nogo-66 receptor antagonist peptide (NEP1-40), which promotes axonal growth. Primary cultured oligodendrocytes suppressed axonal growth in the rat hippocampus, but NEP1-40 stimulated axonal growth in the co-culture system. Our results confirm the validity of the neuron-oligodendrocyte co-culture system as an assay for the evaluation of drugs for axon regeneration in the central nervous system.

  13. Co-culture of oligodendrocytes and neurons can be used to assess drugs for axon regeneration in the central nervous system

    Directory of Open Access Journals (Sweden)

    Lin Gang

    2015-01-01

    Full Text Available We present a novel in vitro model in which to investigate the efficacy of experimental drugs for the promotion of axon regeneration in the central nervous system. We co-cultured rat hippocampal neurons and cerebral cortical oligodendrocytes, and tested the co-culture system using a Nogo-66 receptor antagonist peptide (NEP1-40, which promotes axonal growth. Primary cultured oligodendrocytes suppressed axonal growth in the rat hippocampus, but NEP1-40 stimulated axonal growth in the co-culture system. Our results confirm the validity of the neuron-oligodendrocyte co-culture system as an assay for the evaluation of drugs for axon regeneration in the central nervous system.

  14. NB-3 signaling mediates the cross-talk between post-traumatic spinal axons and scar-forming cells.

    Science.gov (United States)

    Huang, Zhenhui; Gao, Yarong; Sun, Yuhui; Zhang, Chao; Yin, Yue; Shimoda, Yasushi; Watanabe, Kazutada; Liu, Yaobo

    2016-08-15

    Little is known about the molecules mediating the cross-talk between post-traumatic axons and scar-forming cells after spinal cord injury. We found that a sustained NB-3 induction was simultaneously present in the terminations of post-traumatic corticospinal axons and scar-forming cells at the spinal lesion site, where they were in direct contact when axons tried to penetrate the glial scar. The regrowth of corticospinal axons was enhanced in vivo with NB-3 deficiency or interruption of NB-3 trans-homophilic interactions. Biochemical, in vitro and in vivo evidence demonstrated that NB-3 homophilically interacted in trans to initiate a growth inhibitory signal transduction from scar-forming cells to neurons by modulating mTOR activity via CHL1 and PTPσ. NB-3 deficiency promoted BMS scores, electrophysiological transmission, and synapse reformation between regenerative axons and neurons. Our findings demonstrate that NB-3 trans-homophilic interactions mediate the cross-talk between post-traumatic axons and scar-forming cells and impair the intrinsic growth ability of injured axons. PMID:27192985

  15. A Self-Assembling Injectable Biomimetic Microenvironment Encourages Retinal Ganglion Cell Axon Extension in Vitro.

    Science.gov (United States)

    Laughter, Melissa R; Ammar, David A; Bardill, James R; Pena, Brisa; Kahook, Malik Y; Lee, David J; Park, Daewon

    2016-08-17

    Sensory-somatic nervous system neurons, such as retinal ganglion cells (RGCs), are typically thought to be incapable of regenerating. However, it is now known that these cells may be stimulated to regenerate by providing them with a growth permissive environment. We have engineered an injectable microenvironment designed to provide growth-stimulating cues for RGC culture. Upon gelation, this injectable material not only self-assembles into laminar sheets, similar to retinal organization, but also possesses a storage modulus comparable to that of retinal tissue. Primary rat RGCs were grown, stained, and imaged in this three-dimensional scaffold. We were able to show that RGCs grown in this retina-like structure exhibited characteristic long, prominent axons. In addition, RGCs showed a consistent increase in average axon length and neurite-bearing ratio over the 7 day culture period, indicating this scaffold is capable of supporting substantial RGC axon extension. PMID:27434231

  16. Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Y T [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Tian, W M [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Yu, X [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Cui, F Z [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Hou, S P [Beijing Institute of Neuroscience, Capital University of Medical Sciences, Beijing, 100054 (China); Xu, Q Y [Beijing Institute of Neuroscience, Capital University of Medical Sciences, Beijing, 100054 (China); Lee, In-Seop [Institute of Physics and Applied Physics, and Atomic-scale Surface Science Research Center, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2007-09-15

    A biocompatible hydrogel of hyaluronic acid with the neurite-promoting peptide sequence of IKVAV was synthesized. The characterization of the hydrogel shows an open porous structure and a large surface area available for cell interaction. Its ability to promote tissue repair and axonal regeneration in the lesioned rat cerebrum is also evaluated. After implantation, the polymer hydrogel repaired the tissue defect and formed a permissive interface with the host tissue. Axonal growth occurred within the microstructure of the network. Within 6 weeks the polymer implant was invaded by host-derived tissue, glial cells, blood vessels and axons. Such a hydrogel matrix showed the properties of neuron conduction. It has the potential to repair tissue defects in the central nervous system by promoting the formation of a tissue matrix and axonal growth by replacing the lost tissue.

  17. Graphical Turbulence Guidance - Composite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...

  18. The mechanism and key molecules involved in pollen tube guidance.

    Science.gov (United States)

    Higashiyama, Tetsuya; Takeuchi, Hidenori

    2015-01-01

    During sexual reproduction of flowering plants, pollen tube guidance by pistil tissue is critical for the delivery of nonmotile sperm cells to female gametes. Multistep controls of pollen tube guidance can be divided into two phases: preovular guidance and ovular guidance. During preovular guidance, various female molecules, including stimulants for pollen germination and pollen tube growth, are provided to support tube growth toward the ovary, where the ovules are located. After entering the ovary, pollen tubes receive directional cues from their respective target ovules, including attractant peptides for precise, species-preferential attraction. Successful pollen tube guidance in the pistil requires not only nutritional and directional controls but also competency controls to make pollen tubes responsive to guidance cues, regulation to terminate growth once a pollen tube arrives at the target, and strategies to stop ovular attraction depending on the fertilization of female gametes.

  19. Transient axonal glycoprotein-1 induces apoptosis-related gene expression without triggering apoptosis in U251 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Haigang Chang; Xiaodan Jiang; Shanshan Song; Zhongcan Chen; Yaxiao Wang; Lujun Yang; Mouxuan Du; Yiquan Ke; Ruxiang Xu; Baozhe Jin

    2014-01-01

    Previous studies show that transient axonal glycoprotein-1, a ligand of amyloid precursor pro-tein, increases the secretion of amyloid precursor protein intracellular domain and is involved in apoptosis in Alzheimer’s disease. In this study, we examined the effects of transient axonal glyco-protein-1 on U251 glioma cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that transient axonal glycoprotein-1 did not inhibit the proliferation of U251 cells, but promoted cell viability. The terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that transient axonal glycoprotein-1 did not induce U251 cell apoptosis. Real-time PCR revealed that transient axonal glycoprotein-1 substantially upregulated levels of amyloid precursor protein intracellular C-terminal domain, and p53 and epidermal growth factor recep-tor mRNA expression. Thus, transient axonal glycoprotein-1 increased apoptosis-related gene expression in U251 cells without inducing apoptosis. Instead, transient axonal glycoprotein-1 promoted the proliferation of these glioma cells.

  20. Network structure implied by initial axon outgrowth in rodent cortex: empirical measurement and models.

    Science.gov (United States)

    Cahalane, Diarmuid J; Clancy, Barbara; Kingsbury, Marcy A; Graf, Ethan; Sporns, Olaf; Finlay, Barbara L

    2011-01-11

    The developmental mechanisms by which the network organization of the adult cortex is established are incompletely understood. Here we report on empirical data on the development of connections in hamster isocortex and use these data to parameterize a network model of early cortical connectivity. Using anterograde tracers at a series of postnatal ages, we investigate the growth of connections in the early cortical sheet and systematically map initial axon extension from sites in anterior (motor), middle (somatosensory) and posterior (visual) cortex. As a general rule, developing axons extend from all sites to cover relatively large portions of the cortical field that include multiple cortical areas. From all sites, outgrowth is anisotropic, covering a greater distance along the medial/lateral axis than along the anterior/posterior axis. These observations are summarized as 2-dimensional probability distributions of axon terminal sites over the cortical sheet. Our network model consists of nodes, representing parcels of cortex, embedded in 2-dimensional space. Network nodes are connected via directed edges, representing axons, drawn according to the empirically derived anisotropic probability distribution. The networks generated are described by a number of graph theoretic measurements including graph efficiency, node betweenness centrality and average shortest path length. To determine if connectional anisotropy helps reduce the total volume occupied by axons, we define and measure a simple metric for the extra volume required by axons crossing. We investigate the impact of different levels of anisotropy on network structure and volume. The empirically observed level of anisotropy suggests a good trade-off between volume reduction and maintenance of both network efficiency and robustness. Future work will test the model's predictions for connectivity in larger cortices to gain insight into how the regulation of axonal outgrowth may have evolved to achieve efficient

  1. Evidence for a role of srGAP3 in the positioning of commissural axons within the ventrolateral funiculus of the mouse spinal cord.

    Directory of Open Access Journals (Sweden)

    Claire Bacon

    Full Text Available Slit-Robo signaling guides commissural axons away from the floor-plate of the spinal cord and into the longitudinal axis after crossing the midline. In this study we have evaluated the role of the Slit-Robo GTPase activating protein 3 (srGAP3 in commissural axon guidance using a knockout (KO mouse model. Co-immunoprecipitation experiments confirmed that srGAP3 interacts with the Slit receptors Robo1 and Robo2 and immunohistochemistry studies showed that srGAP3 co-localises with Robo1 in the ventral and lateral funiculus and with Robo2 in the lateral funiculus. Stalling axons have been reported in the floor-plate of Slit and Robo mutant spinal cords but our axon tracing experiments revealed no dorsal commissural axon stalling in the floor plate of the srGAP3 KO mouse. Interestingly we observed a significant thickening of the ventral funiculus and a thinning of the lateral funiculus in the srGAP3 KO spinal cord, which has also recently been reported in the Robo2 KO. However, axons in the enlarged ventral funiculus of the srGAP3 KO are Robo1 positive but do not express Robo2, indicating that the thickening of the ventral funiculus in the srGAP3 KO is not a Robo2 mediated effect. We suggest a role for srGAP3 in the lateral positioning of post crossing axons within the ventrolateral funiculus.

  2. Automated Axon Counting in Rodent Optic Nerve Sections with AxonJ

    Science.gov (United States)

    Zarei, Kasra; Scheetz, Todd E.; Christopher, Mark; Miller, Kathy; Hedberg-Buenz, Adam; Tandon, Anamika; Anderson, Michael G.; Fingert, John H.; Abràmoff, Michael David

    2016-05-01

    We have developed a publicly available tool, AxonJ, which quantifies the axons in optic nerve sections of rodents stained with paraphenylenediamine (PPD). In this study, we compare AxonJ’s performance to human experts on 100x and 40x images of optic nerve sections obtained from multiple strains of mice, including mice with defects relevant to glaucoma. AxonJ produced reliable axon counts with high sensitivity of 0.959 and high precision of 0.907, high repeatability of 0.95 when compared to a gold-standard of manual assessments and high correlation of 0.882 to the glaucoma damage staging of a previously published dataset. AxonJ allows analyses that are quantitative, consistent, fully-automated, parameter-free, and rapid on whole optic nerve sections at 40x. As a freely available ImageJ plugin that requires no highly specialized equipment to utilize, AxonJ represents a powerful new community resource augmenting studies of the optic nerve using mice.

  3. Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord.

    Science.gov (United States)

    Wong, Liang-Fong; Yip, Ping K; Battaglia, Anna; Grist, John; Corcoran, Jonathan; Maden, Malcolm; Azzouz, Mimoun; Kingsman, Susan M; Kingsman, Alan J; Mazarakis, Nicholas D; McMahon, Stephen B

    2006-02-01

    The embryonic CNS readily undergoes regeneration, unlike the adult CNS, which has limited axonal repair after injury. Here we tested the hypothesis that retinoic acid receptor beta2 (RARbeta2), critical in development for neuronal growth, may enable adult neurons to grow in an inhibitory environment. Overexpression of RARbeta2 in adult rat dorsal root ganglion cultures increased intracellular levels of cyclic AMP and stimulated neurite outgrowth. Stable RARbeta2 expression in DRG neurons in vitro and in vivo enabled their axons to regenerate across the inhibitory dorsal root entry zone and project into the gray matter of the spinal cord. The regenerated neurons enhanced second-order neuronal activity in the spinal cord, and RARbeta2-treated rats showed highly significant improvement in sensorimotor tasks. These findings show that RARbeta2 induces axonal regeneration programs within injured neurons and may thus offer new therapeutic opportunities for CNS regeneration. PMID:16388307

  4. Adenomatous polyposis coli regulates axon arborization and cytoskeleton organization via its N-terminus.

    Directory of Open Access Journals (Sweden)

    Youjun Chen

    Full Text Available Conditional deletion of APC leads to marked disruption of cortical development and to excessive axonal branching of cortical neurons. However, little is known about the cell biological basis of this neuronal morphological regulation. Here we show that APC deficient cortical neuronal growth cones exhibit marked disruption of both microtubule and actin cytoskeleton. Functional analysis of the different APC domains revealed that axonal branches do not result from stabilized β-catenin, and that the C-terminus of APC containing microtubule regulatory domains only partially rescues the branching phenotype. Surprisingly, the N-terminus of APC containing the oligomerization domain and the armadillo repeats completely rescues the branching and cytoskeletal abnormalities. Our data indicate that APC is required for appropriate axon morphological development and that the N-terminus of APC is important for regulation of the neuronal cytoskeleton.

  5. Nicotinamide mononucleotide adenylyltransferase 1 gene NMNAT1 regulates neuronal dendrite and axon morphogenesis in vitro

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong; ZHANG Jing-yu; YANGZi-chao; LIU Ming; GANG Bao-zhi; ZHAO Qing-jie

    2011-01-01

    Background Wallerian degeneration is a self-destructive process of axonal degeneration that occurs after an axonal injury or during neurodegenerative disorders such as Parkinson's or Alzheimer's disease.Recent studies have found that the activity of the nicotinamide adenine dinucleotide (NAD) synthase enzyme,nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1) can affect the rate of Wallerian degeneration in mice and drosophila.NMNAT1 protects neurons and axons from degeneration.However,the role of NMNAT1 in neurons of central nervous system is still not well understood.Methods We set up the culture of primary mouse neurons in vitro and manipulated the expression level of NMNAT1 by RNA interference and gene overexpression methods.Using electroporation transfection we can up-regulate or down-regulate NMNAT1 in cultured mouse dendrites and axons and study the neuronal morphogenesis by immunocytochemistry.In all functional assays,FK-866 (CAS 658084-64-1),a highly specific non-competitive inhibitor of nicotinamide phosphoribosyltransferase was used as a pharmacological and positive control.Results Our results showed that knocking down NMNAT1 by RNA interference led to a marked decrease in dendrite outgrowth and branching and a significant decrease in axon growth and branching in developing cortical neurons in vitro.Conclusions These findings reveal a novel role for NMNAT1 in the morphogenesis of developing cortical neurons,which indicate that the loss of function of NMNAT1 may contribute to different neurodegenerative disorders in central nervous system.

  6. Frizzled-3a and slit2 genetically interact to modulate midline axon crossing in the telencephalon.

    Science.gov (United States)

    Hofmeister, Wolfgang; Devine, Christine A; Rothnagel, Joseph A; Key, Brian

    2012-07-01

    The anterior commissure forms the first axon connections between the two sides of the embryonic telencephalon. We investigated the role of the transmembrane receptor Frizzled-3a in the development of this commissure using zebrafish as an experimental model. Knock down of Frizzled-3a resulted in complete loss of the anterior commissure. This defect was accompanied by a loss of the glial bridge, expansion of the slit2 expression domain and perturbation of the midline telencephalic-diencephalic boundary. Blocking Slit2 activity following knock down of Frizzled-3a effectively rescued the anterior commissure defect which suggested that Frizzled-3a was indirectly controlling the growth of axons across the rostral midline. We have shown here that Frizzled-3a is essential for normal development of the commissural plate and that loss-of-function causes Slit2-dependent defects in axon midline crossing in the embryonic vertebrate forebrain. These data supports a model whereby Wnt signaling through Frizzled-3a attenuates expression of Slit2 in the rostral midline of the forebrain. The absence of Slit2 facilitates the formation of a midline bridge of glial cells which is used as a substrate for commissural axons. In the absence of this platform of glia, commissural axons fail to cross the rostral midline of the forebrain.

  7. Laminin/β1 integrin signal triggers axon formation by promoting microtubule assembly and stabilization

    Institute of Scientific and Technical Information of China (English)

    Wen-Liang Lei; Shi-Ge Xing; Cai-Yun Deng; Xiang-Chun Ju; Xing-Yu Jiang; Zhen-Ge Luo

    2012-01-01

    Axon specification during neuronal polarization is closely associated with increased microtubule stabilization in one of the neurites of unpolarized neuron,but how this increased microtubule stability is achieved is unclear.Here,we show that extracellular matrix (ECM) component laminin promotes neuronal polarization via regulating directional microtubule assembly through β1 integrin (Itgb1).Contact with laminin coated on culture substrate or polystyrene beads was sufficient for axon specification of undifferentiated neurites in cultured hippocampal neurons and cortical slices.Active Itgb1 was found to be concentrated in laminin-contacting neurites.Axon formation was promoted and abolished by enhancing and attenuating Itgbl signaling,respectively.Interestingly,laminin contact promoted plus-end microtubule assembly in a manner that required Itgbl.Moreover,stabilizing microtubules partially prevented polarization defects caused by ltgbl downregulation.Finally,genetic ablation of ltgbl in dorsal telencephalic progenitors caused deficits in axon development of cortical pyramidal neurons.Thus,laminin/Itgb1 signaling plays an instructive role in axon initiation and growth,both in vitro and in vivo,through the regulation of microtubule assembly.This study has established a linkage between an extrinsic factor and intrinsic cytoskeletai dynamics during neuronal polarization.

  8. Outer Electrospun Polycaprolactone Shell Induces Massive Foreign Body Reaction and Impairs Axonal Regeneration through 3D Multichannel Chitosan Nerve Guides

    OpenAIRE

    Sven Duda; Lutz Dreyer; Peter Behrens; Soenke Wienecke; Tanmay Chakradeo; Birgit Glasmacher; Kirsten Haastert-Talini

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerv...

  9. Combining peripheral nerve grafts and chondroitinase promotes functional axonal regeneration in the chronically injured spinal cord.

    Science.gov (United States)

    Tom, Veronica J; Sandrow-Feinberg, Harra R; Miller, Kassi; Santi, Lauren; Connors, Theresa; Lemay, Michel A; Houlé, John D

    2009-11-25

    Because there currently is no treatment for spinal cord injury, most patients are living with long-standing injuries. Therefore, strategies aimed at promoting restoration of function to the chronically injured spinal cord have high therapeutic value. For successful regeneration, long-injured axons must overcome their poor intrinsic growth potential as well as the inhibitory environment of the glial scar established around the lesion site. Acutely injured axons that regenerate into growth-permissive peripheral nerve grafts (PNGs) reenter host tissue to mediate functional recovery if the distal graft-host interface is treated with chondroitinase ABC (ChABC) to cleave inhibitory chondroitin sulfate proteoglycans in the scar matrix. To determine whether a similar strategy is effective for a chronic injury, we combined grafting of a peripheral nerve into a highly relevant, chronic, cervical contusion site with ChABC treatment of the glial scar and glial cell line-derived neurotrophic factor (GDNF) stimulation of long-injured axons. We tested this combination in two grafting paradigms: (1) a peripheral nerve that was grafted to span a chronic injury site or (2) a PNG that bridged a chronic contusion site with a second, more distal injury site. Unlike GDNF-PBS treatment, GDNF-ChABC treatment facilitated axons to exit the PNG into host tissue and promoted some functional recovery. Electrical stimulation of axons in the peripheral nerve bridge induced c-Fos expression in host neurons, indicative of synaptic contact by regenerating fibers. Thus, our data demonstrate, for the first time, that administering ChABC to a distal graft interface allows for functional axonal regeneration by chronically injured neurons.

  10. Morphometry of Axons in Optic Nerves of Siamese's Twins

    Institute of Scientific and Technical Information of China (English)

    Xinzu Gu; Zhenping Zhang; Qi Lin; Jiongji Liang; Wenyu Lu; Xiulan Ye; A A Sadun

    2002-01-01

    Purpose: To observe the development of optic nerve, we examined four optic nerves from Siameses Twins by absolute counts of axons.Methods: Mean axon diameter, mean axon density, totally axonal population and optic nerve area were noted for each optic nerve. The mean axon diameter and the mean axon density were compared between paraxial (inner sectors)and cortical (outer sectors)areas of the nerves.Results: More myelinated axons were seen in the inner sectors as compared to the outer sectors(average 11 axons/1 000 μm2 in inner sectors and 34 axons/l 000 μm2 in outer sectors( P=0. 036) . The myelinated fibers were also smaller(63 microns) in the outer sectors as compared to the inner sectors(72 microns) ( P = 0. 001 ). The average cross sectors area for the four 40 week stage optical nerves of Siamese Twins was 3.32 × 103 as compared to 1 million axons for 32-week-old normals.Conclusion: Our finding of fewer axonal number and small myelinated fibers in the Siamese Twins suggests hypoplasia. Myelination was more abnormal in the paraxial optic nerve than that in the peripheral sectors, suggesting anomalous development of optic nerve peripherally and delayed developnent centrally. Axonal density is higher in inner sectors than that in outer sectors, suggesting delayed development of the outer nerve sector.

  11. AxonQuant: A Microfluidic Chamber Culture-Coupled Algorithm That Allows High-Throughput Quantification of Axonal Damage

    Directory of Open Access Journals (Sweden)

    Yang Li

    2014-02-01

    Full Text Available Published methods for imaging and quantitatively analyzing morphological changes in neuronal axons have serious limitations because of their small sample sizes, and their time-consuming and nonobjective nature. Here we present an improved microfluidic chamber design suitable for fast and high-throughput imaging of neuronal axons. We developed the AxonQuant algorithm, which is suitable for automatic processing of axonal imaging data. This microfluidic chamber-coupled algorithm allows calculation of an ‘axonal continuity index' that quantitatively measures axonal health status in a manner independent of neuronal or axonal density. This method allows quantitative analysis of axonal morphology in an automatic and nonbiased manner. Our method will facilitate large-scale high-throughput screening for genes or therapeutic compounds for neurodegenerative diseases involving axonal damage. When combined with imaging technologies utilizing different gene markers, this method will provide new insights into the mechanistic basis for axon degeneration. Our microfluidic chamber culture-coupled AxonQuant algorithm will be widely useful for studying axonal biology and neurodegenerative disorders. © 2014 S. Karger AG, Basel

  12. Mislocalization of neuronal mitochondria reveals regulation of Wallerian degeneration and NMNAT/WLDS-mediated axon protection independent of axonal mitochondria

    OpenAIRE

    Kitay, Brandon M.; McCormack, Ryan; Wang, Yunfang; Tsoulfas, Pantelis; Zhai, R. Grace

    2013-01-01

    Axon degeneration is a common and often early feature of neurodegeneration that correlates with the clinical manifestations and progression of neurological disease. Nicotinamide mononucleotide adenylytransferase (NMNAT) is a neuroprotective factor that delays axon degeneration following injury and in models of neurodegenerative diseases suggesting a converging molecular pathway of axon self-destruction. The underlying mechanisms have been under intense investigation and recent reports suggest...

  13. Nerve Growth Factor mRNA Expression in the Regenerating Antler Tip of Red Deer (Cervus elaphus)

    Science.gov (United States)

    Li, Chunyi; Stanton, Jo-Ann L.; Robertson, Tracy M.; Suttie, James M.; Sheard, Philip W.; John Harris, A.; Clark, Dawn E.

    2007-01-01

    Deer antlers are the only mammalian organs that can fully regenerate each year. During their growth phase, antlers of red deer extend at a rate of approximately 10 mm/day, a growth rate matched by the antler nerves. It was demonstrated in a previous study that extracts from deer velvet antler can promote neurite outgrowth from neural explants, suggesting a possible role for Nerve Growth Factor (NGF) in antler innervation. Here we showed using the techniques of Northern blot analysis, denervation, immunohistochemistry and in situ hybridization that NGF mRNA was expressed in the regenerating antler, principally in the smooth muscle of the arteries and arterioles of the growing antler tip. Regenerating axons followed the route of the major blood vessels, located at the interface between the dermis and the reserve mesenchyme of the antler. Denervation experiments suggested a causal relationship exists between NGF mRNA expression in arterial smooth muscle and sensory axons in the antler tip. We hypothesize that NGF expressed in the smooth muscle of the arteries and arterioles promotes and maintains antler angiogenesis and this role positions NGF ahead of axons during antler growth. As a result, NGF can serve a second role, attracting sensory axons into the antler, and thus it can provide a guidance cue to define the nerve track. This would explain the phenomenon whereby re-innervation of the regenerating antler follows vascular ingrowth. The annual growth of deer antler presents a unique opportunity to better understand the factors involved in rapid nerve regeneration. PMID:17215957

  14. Tri-partite complex for axonal transport drug delivery achieves pharmacological effect

    Directory of Open Access Journals (Sweden)

    Frederickson Martyn

    2010-01-01

    Full Text Available Abstract Background Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior. Results We developed chemical synthesis methodologies for assembling these tripartite complexes using a variety of axonal transport facilitators including nerve growth factor, wheat germ agglutinin, and synthetic facilitators derived from phage display work. Loading of up to 100 drug molecules per complex was achieved. Conjugation methods were used that allowed the drugs to be released in active form inside the cell body after transport. Intramuscular and intradermal injection proved effective for introducing pharmacologically effective doses into selected populations of CNS neurons. Pharmacological efficacy with gabapentin in a paw withdrawal latency model revealed a ten fold increase in half life and a 300 fold decrease in necessary dose relative to systemic administration for gabapentin when the drug was delivered by axonal transport using the tripartite vehicle. Conclusion Specific targeting of selected subpopulations of CNS neurons for drug delivery by axonal

  15. Influences of olfactory ensheathing cells transplantation on axonal regeneration in spinal cord of adult rats

    Institute of Scientific and Technical Information of China (English)

    沈慧勇; 唐勇; 吴燕峰; 陈燕涛; 程志安

    2002-01-01

    To observe whether olfactory ensheathing cells could be used to promote axonal regeneration in a spontaneously nonregenerating system. Methods: After laminectomy at the lower thoracic level, the spinal cords of adult rats were exposed and completely transected at T10. A suspension of ensheathing cells was injected into the lesion site in 12 adult rats, and control D/F-12 (1∶1 mixture of DMEM and Hams F-12) was injected in 12 adult rats. Six weeks and ten weeks after cell transplantation, the rats were evaluated by climbing test and motor evoked potentials (MEPs) monitoring. The samples were procured and studied with histologicl and immunohistochemical methods. Results: At the 6th week after cell transplantation, all the rats in both the transplanted and control groups were paraplegic and the MEPs could not be recorded. At the 10th week after cell transplantation, of 7 rats in the control group, 2 rats had muscles contraction of the lower extremities, 2 rats had hips and/or knees active movement; and 5 rats MEPs could be recorded in the hind limbs in the transplanted group (n=7). None of the rats in the control group had functional improvement and no MEPs recorded (n=7). Numerous regenerating axons were observed through the transplantation and continued to regenerate into the denervated host tract. Cell labelling using anti-Myelin Basic Protein (MBP) and anti-Nerve Growth Factor Receptor (anti-NGFR) indicated that the regenerated axons were derived from the appropriate neuronal source and that donor cells migrated into the denervated host tract. But axonal degeneration existed and regenerating axons were not observed within the spinal cords of the adult rats with only D/F-12 injection. Conclusions: The axonal regeneration in the transected adult rat spinal cord is possible after ensheathing cells transplantation.

  16. Dynamic Axonal Translation in Developing and Mature Visual Circuits.

    Science.gov (United States)

    Shigeoka, Toshiaki; Jung, Hosung; Jung, Jane; Turner-Bridger, Benita; Ohk, Jiyeon; Lin, Julie Qiaojin; Amieux, Paul S; Holt, Christine E

    2016-06-30

    Local mRNA translation mediates the adaptive responses of axons to extrinsic signals, but direct evidence that it occurs in mammalian CNS axons in vivo is scant. We developed an axon-TRAP-RiboTag approach in mouse that allows deep-sequencing analysis of ribosome-bound mRNAs in the retinal ganglion cell axons of the developing and adult retinotectal projection in vivo. The embryonic-to-postnatal axonal translatome comprises an evolving subset of enriched genes with axon-specific roles, suggesting distinct steps in axon wiring, such as elongation, pruning, and synaptogenesis. Adult axons, remarkably, have a complex translatome with strong links to axon survival, neurotransmission, and neurodegenerative disease. Translationally co-regulated mRNA subsets share common upstream regulators, and sequence elements generated by alternative splicing promote axonal mRNA translation. Our results indicate that intricate regulation of compartment-specific mRNA translation in mammalian CNS axons supports the formation and maintenance of neural circuits in vivo. PMID:27321671

  17. Motor and dorsal root ganglion axons serve as choice points for the ipsilateral turning of dI3 axons.

    Science.gov (United States)

    Avraham, Oshri; Hadas, Yoav; Vald, Lilach; Hong, Seulgi; Song, Mi-Ryoung; Klar, Avihu

    2010-11-17

    The axons of the spinal intersegmental interneurons are projected longitudinally along various funiculi arrayed along the dorsal-ventral axis of the spinal cord. The roof plate and the floor plate have a profound role in patterning their initial axonal trajectory. However, other positional cues may guide the final architecture of interneuron tracks in the spinal cord. To gain more insight into the organization of specific axonal tracks in the spinal cord, we focused on the trajectory pattern of a genetically defined neuronal population, dI3 neurons, in the chick spinal cord. Exploitation of newly characterized enhancer elements allowed specific labeling of dI3 neurons and axons. dI3 axons are projected ipsilaterally along two longitudinal fascicules at the ventral lateral funiculus (VLF) and the dorsal funiculus (DF). dI3 axons change their trajectory plane from the transverse to the longitudinal axis at two novel checkpoints. The axons that elongate at the DF turn at the dorsal root entry zone, along the axons of the dorsal root ganglion (DRG) neurons, and the axons that elongate at the VLF turn along the axons of motor neurons. Loss and gain of function of the Lim-HD protein Isl1 demonstrate that Isl1 is not required for dI3 cell fate. However, Isl1 is sufficient to impose ipsilateral turning along the motor axons when expressed ectopically in the commissural dI1 neurons. The axonal patterning of dI3 neurons, revealed in this study, highlights the role of established axonal cues-the DRG and motor axons-as intermediate guidepost cues for dI3 axons.

  18. Rapid activity-dependent delivery of the neurotrophic protein CPG15 to the axon surface of neurons in intact Xenopus tadpoles.

    Science.gov (United States)

    Cantallops, Isabel; Cline, Hollis T

    2008-05-01

    CPG15 (aka neuritin) is an activity-induced GPI-anchored axonal protein that promotes dendritic and axonal growth, and accelerates synaptic maturation in vivo. Here we show that CPG15 is distributed inside axons and on the axon surface. CPG15 is trafficked to and from the axonal surface by membrane depolarization. To assess CPG15 trafficking in vivo, we expressed an ecliptic pHluorin (EP)-CPG15 fusion protein in optic tectal explants and in retinal ganglion cells of intact Xenopus tadpoles. Depolarization by KCl increased EP-CPG15 fluorescence on axons. Intraocular kainic acid (KA) injection rapidly increased cell-surface EP-CPG15 in retinotectal axons, but coinjection of TTX and KA did not. Consistent with this, we find that intracellular CPG15 is localized to vesicles and endosomes in presynaptic terminals and colocalizes with synaptic vesicle proteins. The results indicate that the delivery of the neurotrophic protein CPG15 to the axon surface can be regulated on a rapid time scale by activity-dependent mechanisms in vivo. PMID:18383547

  19. Axon Membrane Skeleton Structure is Optimized for Coordinated Sodium Propagation

    CERN Document Server

    Zhang, Yihao; Li, He; Tzingounis, Anastasios V; Lykotrafitis, George

    2016-01-01

    Axons transmit action potentials with high fidelity and minimal jitter. This unique capability is likely the result of the spatiotemporal arrangement of sodium channels along the axon. Super-resolution microscopy recently revealed that the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under entropic tension. Sodium channels also exhibit a periodic distribution pattern, as they bind to ankyrin G, which associates with spectrin. Here, we elucidate the relationship between the axon membrane skeleton structure and the function of the axon. By combining cytoskeletal dynamics and continuum diffusion modeling, we show that spectrin filaments under tension minimize the thermal fluctuations of sodium channels and prevent overlap of neighboring channel trajectories. Importantly, this axon skeletal arrangement allows for a highly reproducible band-like activation of sodium channels leading to coordinated sodium propagation along the axon.

  20. A PKC-dependent recruitment of MMP-2 controls semaphorin-3A growth-promoting effect in cortical dendrites.

    Directory of Open Access Journals (Sweden)

    Bertrand Gonthier

    Full Text Available There is increasing evidence for a crucial role of proteases and metalloproteinases during axon growth and guidance. In this context, we recently described a functional link between the chemoattractive Sema3C and Matrix metalloproteinase 3 (MMP3. Here, we provide data demonstrating the involvement of MMP-2 to trigger the growth-promoting effect of Sema3A in cortical dendrites. The in situ analysis of MMP-2 expression and activity is consistent with a functional growth assay demonstrating in vitro that the pharmacological inhibition of MMP-2 reduces the growth of cortical dendrites in response to Sema3A. Hence, our results suggest that the selective recruitment and activation of MMP-2 in response to Sema3A requires a PKC alpha dependent mechanism. Altogether, we provide a second set of data supporting MMPs as effectors of the growth-promoting effects of semaphorins, and we identify the potential signalling pathway involved.

  1. The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Gnavi, S., E-mail: sara.gnavi@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Fornasari, B.E., E-mail: benedettaelena.fornasari@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Tonda-Turo, C., E-mail: chiara.tondaturo@polito.it [Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10100 (Italy); Ciardelli, G., E-mail: gianluca.ciardelli@polito.it [Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10100 (Italy); CNR-IPCF UOS, Pisa 56124 (Italy); Zanetti, M., E-mail: marco.zanetti@unito.it [Nanostructured Interfaces and Surfaces, Department of Chemistry, University of Torino, Torino 10100 (Italy); Geuna, S., E-mail: stefano.geuna@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Perroteau, I., E-mail: isabelle.perroteau@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy)

    2015-03-01

    Fibrous substrates functioning as temporary extracellular matrices can be prepared easily by electrospinning, yielding fibrous matrices suitable as internal fillers for nerve guidance channels. In this study, gelatin micro- or nano-fibres were prepared by electrospinning by tuning the gelatin concentration and solution flow rate. The effect of gelatin fibre diameter on cell adhesion and proliferation was tested in vitro using explant cultures of Schwann cells (SC) and dorsal root ganglia (DRG). Cell adhesion was assessed by quantifying the cell spreading area, actin cytoskeleton organization and focal adhesion complex formation. Nano-fibres promoted cell spreading and actin cytoskeleton organization, increasing cellular adhesion and the proliferation rate. However, both migration rate and motility, quantified by transwell and time lapse assays respectively, were greater in cells cultured on micro-fibres. Finally, there was more DRG axon outgrowth on micro-fibres. These data suggest that the topography of electrospun gelatin fibres can be adjusted to modulate SC and axon organization and that both nano- and micro-fibres are promising fillers for the design of devices for peripheral nerve repair. - Highlights: • Electrospinning used to produce gelatin nano- and micro-fibre matrices. • Nano-fibre matrices promote Schwann cell organization and increase proliferation rate. • Micro-fibre matrices promote Schwann cell migration. • Micro-fibre matrices promote axonal outgrowth.

  2. The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth

    International Nuclear Information System (INIS)

    Fibrous substrates functioning as temporary extracellular matrices can be prepared easily by electrospinning, yielding fibrous matrices suitable as internal fillers for nerve guidance channels. In this study, gelatin micro- or nano-fibres were prepared by electrospinning by tuning the gelatin concentration and solution flow rate. The effect of gelatin fibre diameter on cell adhesion and proliferation was tested in vitro using explant cultures of Schwann cells (SC) and dorsal root ganglia (DRG). Cell adhesion was assessed by quantifying the cell spreading area, actin cytoskeleton organization and focal adhesion complex formation. Nano-fibres promoted cell spreading and actin cytoskeleton organization, increasing cellular adhesion and the proliferation rate. However, both migration rate and motility, quantified by transwell and time lapse assays respectively, were greater in cells cultured on micro-fibres. Finally, there was more DRG axon outgrowth on micro-fibres. These data suggest that the topography of electrospun gelatin fibres can be adjusted to modulate SC and axon organization and that both nano- and micro-fibres are promising fillers for the design of devices for peripheral nerve repair. - Highlights: • Electrospinning used to produce gelatin nano- and micro-fibre matrices. • Nano-fibre matrices promote Schwann cell organization and increase proliferation rate. • Micro-fibre matrices promote Schwann cell migration. • Micro-fibre matrices promote axonal outgrowth

  3. PI3K-GSK3 signalling regulates mammalian axon regeneration by inducing the expression of Smad1

    Science.gov (United States)

    Saijilafu; Hur, Eun-Mi; Liu, Chang-Mei; Jiao, Zhongxian; Xu, Wen-Lin; Zhou, Feng-Quan

    2013-10-01

    In contrast to neurons in the central nervous system, mature neurons in the mammalian peripheral nervous system (PNS) can regenerate axons after injury, in part, by enhancing intrinsic growth competence. However, the signalling pathways that enhance the growth potential and induce spontaneous axon regeneration remain poorly understood. Here we reveal that phosphatidylinositol 3-kinase (PI3K) signalling is activated in response to peripheral axotomy and that PI3K pathway is required for sensory axon regeneration. Moreover, we show that glycogen synthase kinase 3 (GSK3), rather than mammalian target of rapamycin, mediates PI3K-dependent augmentation of the growth potential in the PNS. Furthermore, we show that PI3K-GSK3 signal is conveyed by the induction of a transcription factor Smad1 and that acute depletion of Smad1 in adult mice prevents axon regeneration in vivo. Together, these results suggest PI3K-GSK3-Smad1 signalling as a central module for promoting sensory axon regeneration in the mammalian nervous system.

  4. Nogo-A is involved in secondary axonal degeneration of thalamus in hypertensive rats with focal cortical infarction.

    Science.gov (United States)

    Wang, Fang; Liang, Zhijian; Hou, Qinghua; Xing, Shihui; Ling, Li; He, Meixia; Pei, Zhong; Zeng, Jinsheng

    2007-05-01

    We investigate whether Nogo-A is involved in the secondary axonal degeneration in the thalamus after distal middle cerebral artery occlusion (MCAO) in stroke-prone renovascular hypertensive rats (RHRSP). The expression of Nogo-A in ipsilateral ventroposterior nucleus (VPN) of the thalamus in RHRSP was observed at 1, 2 and 4 weeks after distal MCAO. In addition, intracerebroventricular infusion of NEP1-40, a Nogo-66 receptor (NgR) antagonist peptide, was administered starting 24 h after MCAO and continued for 1, 2 and 4 weeks, respectively. Axonal damage and regeneration were evaluated by analysis of the immunoreactivity (IR) of amyloid betaA4 precursor protein (APP), growth associated protein 43 (GAP-43) and microtubule associated protein 2 (MAP-2) in ipsilateral VPN of the thalamus at 1, 2 and 4 weeks after distal MCAO. Following ischemia, the expression of Nogo-A in oligodendrocytes increased persistently and its localization became redistributed around damaged axons and dendrites. Administration of NEP1-40 downregulated the expression of Nogo-A, reduced axonal injury and enhanced axonal regeneration. Our data suggest that Nogo-A is involved in secondary axonal degeneration and that inhibition of Nogo-A can reduce neuronal damage in the thalamus after distal MCAO.

  5. Axons of sacral preganglionic neurons in the cat: II. Axon collaterals.

    Science.gov (United States)

    Morgan, C W

    2001-01-01

    Axon collaterals were identified in 21 of 24 preganglionic neurons in the lateral band of the sacral parasympathetic nucleus of the cat. Following the intracellular injection of HRP or neurobiotin the axons from 20 of these neurons were followed and 53 primary axon collaterals were found to originate from unmyelinated segments and from nodes of Ranvier. Detailed mapping done in the five best labeled cells showed bilateral axon collaterals distributions up to 25,000 microm in length with 950 varicosities and unilateral distributions up to 12,561 microm with 491 varicosities. The axon collaterals appeared to be unmyelinated, which was confirmed at EM, and were small in diameter (average 0.3 microm). Varicosities were located mostly in laminae I, V, VII, VIII and X and in the lateral funiculi. Most varicosities were not in contact with visible structures but some were seen in close apposition to Nissl stained somata and proximal dendrites. Varicosities had average minor diameters of 1.3 microm and major diameters of 2.3 microm. Most were boutons en passant while 10-20% were boutons termineaux. EM revealed axodendritic and axoaxonic synapses formed by varicosities and by the axons between varicosities. It is estimated that the most extensive of these axon collaterals systems may contact over 200 spinal neurons in multiple locations. These data lead to the conclusion that sacral preganglionic neurons have multiple functions within the spinal cord in addition to serving their target organ. As most preganglionic neurons in this location innervate the urinary bladder, it is possible that bladder preganglionic neurons have multiple functions.

  6. A retrograde apoptotic signal originating in NGF-deprived distal axons of rat sympathetic neurons in compartmented cultures

    Institute of Scientific and Technical Information of China (English)

    Sue-Ann Mok; Karen Lund; Robert B Campenot

    2009-01-01

    Previous investigations of retrograde survival signaling by nerve growth factor (NGF) and other neurotrophins have supported diverse mechanisms, but all proposed mechanisms have in common the generation of survival sig-nals retrogradely transmitted to the neuronal cell bodies. We report the finding of a retrograde apoptotic signal in axons that is suppressed by local NGF signaling. NGF withdrawal from distal axons alone was sufficient to activate the pro-apoptotic transcription factor, c-jnn, in the cell bodies. Providing NGF directly to cell bodies, thereby restor-ing a source of NGF-induced survival signals, could not prevent c-jun activation caused by NGF withdrawal from the distal axons. This is evidence that c-jun is not activated due to loss of survival signals at the cell bodies. Moreover, blocking axonal transport with colchicine inhibited c-jun activation caused by NGF deprivation suggesting that a retrogradely transported pro-apoptotic signal, rather than loss of a retrogradely transported survival signal, caused c-jun activation. Additional experiments showed that activation of c-jun, pro-caspase-3 cleavage, and apoptosis were blocked by the protein kinase C inhibitors, rottlerin and chelerythrine, only when applied to distal axons suggesting that they block the axon-specific pro-apoptotic signal. The rottlerin-sensitive mechanism was found to regulate glyco-gen synthase kinase 3 (GSK3) activity. The effect of siRNA knockdown, and pharmacological inhibition of GSK3 sug-gests that GSK3 is required for apoptosis caused by NGF deprivation and may function as a retrograde carrier of the axon apoptotic signal. The existence of a retrograde death signaling system in axons that is suppressed by neurotro-phins has broad implications for neurodevelopment and for discovering treatments for neurodegenerative diseases and neurotrauma.

  7. Corporate information management guidance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    At the request of the Department of Energy`s (DOE) Information Management (IM) Council, IM representatives from nearly all Headquarters (HQ) organizations have been meeting over the past year as the Corporate Guidance Group (CGG) to develop useful and sound corporate information management (IM) guidance. The ability of the Department`s IM community to develop such unified guidance continues to be critical to the success of future Departmental IM planning processes and the establishment of a well-coordinated IM environment between Headquarters and field organizations. This report, with 26 specific corporate IM guidance items documented and unanimously agreed to, as well as 12 items recommended for further development and 3 items deferred for future consideration, represents a highly successful effort by the IM community. The effort has proven that the diverse DOE organizations can put aside individual preferences and work together towards a common and mutually beneficial goal. In examining most areas and issues associated with information management in the Department, they have developed specific, far-reaching, and useful guidance. The IM representatives recommend that the documented guidance items provided in this report and approved by the DOE IM Council be followed by all IM organizations. The representatives also strongly recommend that the guidance process developed by the CGG be the single process for developing corporate IM guidance.

  8. Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts

    Directory of Open Access Journals (Sweden)

    Odelberg Shannon J

    2011-01-01

    Full Text Available Abstract Background Newts have the remarkable ability to regenerate their spinal cords as adults. Their spinal cords regenerate with the regenerating tail after tail amputation, as well as after a gap-inducing spinal cord injury (SCI, such as a complete transection. While most studies on newt spinal cord regeneration have focused on events occurring after tail amputation, less attention has been given to events occurring after an SCI, a context that is more relevant to human SCI. Our goal was to use modern labeling and imaging techniques to observe axons regenerating across a complete transection injury and determine how cells and the extracellular matrix in the injury site might contribute to the regenerative process. Results We identify stages of axon regeneration following a spinal cord transection and find that axon regrowth across the lesion appears to be enabled, in part, because meningeal cells and glia form a permissive environment for axon regeneration. Meningeal and endothelial cells regenerate into the lesion first and are associated with a loose extracellular matrix that allows axon growth cone migration. This matrix, paradoxically, consists of both permissive and inhibitory proteins. Axons grow into the injury site next and are closely associated with meningeal cells and glial processes extending from cell bodies surrounding the central canal. Later, ependymal tubes lined with glia extend into the lesion as well. Finally, the meningeal cells, axons, and glia move as a unit to close the gap in the spinal cord. After crossing the injury site, axons travel through white matter to reach synaptic targets, and though ascending axons regenerate, sensory axons do not appear to be among them. This entire regenerative process occurs even in the presence of an inflammatory response. Conclusions These data reveal, in detail, the cellular and extracellular events that occur during newt spinal cord regeneration after a transection injury and

  9. Axonal loss and neuroprotection in optic neuropathies.

    Science.gov (United States)

    Levin, Leonard A

    2007-06-01

    Most optic neuropathies do not have effective treatments. Examples are ischemic optic neuropathy, Leber hereditary optic neuropathy, optic neuritis, and traumatic optic neuropathy. In some cases, the pathophysiology of the optic nerve injury is not fully understood. For example, while the demyelinative aspects of optic neuritis have been studied, the mechanism by which the axonal loss occurs is less apparent. In other cases, although the pathophysiology of the optic neuropathy may be understood, there is difficulty treating the disease, for example, with traumatic optic neuropathy. In response to this therapeutic dearth, the concept of neuroprotection has arisen. Neuroprotection is a therapeutic paradigm for preventing death of neurons from injury and maintaining function. In optic neuropathies, the corresponding neuron is the retinal ganglion cell. These cells are unable to divide, and optic neuropathies irrevocably result in their death; therefore, the primary target of neuroprotection are retinal ganglion cells and their axons. This review emphasizes that most optic neuropathies are axonal and thus good targets for neuroprotection. PMID:17508035

  10. Synaptic Democracy and Vesicular Transport in Axons

    Science.gov (United States)

    Bressloff, Paul C.; Levien, Ethan

    2015-04-01

    Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".

  11. MRI of the diffuse axonal injury

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Yang Gu; Woo, Young Hoon; Suh, Soo Jhi [Keimyung University School of Medicine, Daegu (Korea, Republic of)

    1992-01-15

    CT has facilitated early recognition and treatment of focal brain injuries in patients with head trauma. However, CT shows relatively low sensitivity in identifying non hemorrhage contusion and injuries of white matter. MR is known to be superior to CT in detection of white matter injuries, such as diffuse axonal injury. MR imaging in 14 cases of diffuse axonal injury on 2.0T was studied. The corpus callosum, especially the body portion, was the most commonly involved site. The lesions ranged from 5 to 20mm in size with ovoid to elliptical shape. T2WI was the most sensitive pulse sequence in detecting lesions such as white matter degeneration, hemorrhagic and non hemorrhagic contusion. The lesions were nonspecific as high and low signal intensities on T2WI and T1WI respectively. CT showed white matter abnormality in only 1 case of 14 cases. We propose MR imaging as the primary imaging procedure for the detection of diffuse axonal injury because of its multiplanar capabilities and higher sensitivity.

  12. The Actin-Binding Protein α-Adducin Is Required for Maintaining Axon Diameter

    Directory of Open Access Journals (Sweden)

    Sérgio Carvalho Leite

    2016-04-01

    Full Text Available The actin-binding protein adducin was recently identified as a component of the neuronal subcortical cytoskeleton. Here, we analyzed mice lacking adducin to uncover the function of this protein in actin rings. α-adducin knockout mice presented progressive axon enlargement in the spinal cord and optic and sciatic nerves, followed by axon degeneration and loss. Using stimulated emission depletion super-resolution microscopy, we show that a periodic subcortical actin cytoskeleton is assembled in every neuron type inspected including retinal ganglion cells and dorsal root ganglia neurons. In neurons devoid of adducin, the actin ring diameter increased, although the inter-ring periodicity was maintained. In vitro, the actin ring diameter adjusted as axons grew, suggesting the lattice is dynamic. Our data support a model in which adducin activity is not essential for actin ring assembly and periodicity but is necessary to control the diameter of both actin rings and axons and actin filament growth within rings.

  13. Focal axonal swellings and associated ultrastructural changes attenuate conduction velocity in central nervous system axons: a computer modeling study.

    Science.gov (United States)

    Kolaric, Katarina V; Thomson, Gemma; Edgar, Julia M; Brown, Angus M

    2013-08-01

    The constancy of action potential conduction in the central nervous system (CNS) relies on uniform axon diameter coupled with fidelity of the overlying myelin providing high-resistance, low capacitance insulation. Whereas the effects of demyelination on conduction have been extensively studied/modeled, equivalent studies on the repercussions for conduction of axon swelling, a common early pathological feature of (potentially reversible) axonal injury, are lacking. The recent description of experimentally acquired morphological and electrical properties of small CNS axons and oligodendrocytes prompted us to incorporate these data into a computer model, with the aim of simulating the effects of focal axon swelling on action potential conduction. A single swelling on an otherwise intact axon, as occurs in optic nerve axons of Cnp1 null mice caused a small decrease in conduction velocity. The presence of single swellings on multiple contiguous internodal regions (INR), as likely occurs in advanced disease, caused qualitatively similar results, except the dimensions of the swellings required to produce equivalent attenuation of conduction were significantly decreased. Our simulations of the consequences of metabolic insult to axons, namely, the appearance of multiple swollen regions, accompanied by perturbation of overlying myelin and increased axolemmal permeability, contained within a single INR, revealed that conduction block occurred when the dimensions of the simulated swellings were within the limits of those measured experimentally, suggesting that multiple swellings on a single axon could contribute to axonal dysfunction, and that increased axolemmal permeability is the decisive factor that promotes conduction block. PMID:24303138

  14. Early ultrastructural defects of axons and axon-glia junctions in mice lacking expression of Cnp1.

    Science.gov (United States)

    Edgar, Julia M; McLaughlin, Mark; Werner, Hauke B; McCulloch, Mailis C; Barrie, Jennifer A; Brown, Angus; Faichney, Andrew Blyth; Snaidero, Nicolas; Nave, Klaus-Armin; Griffiths, Ian R

    2009-12-01

    Most axons in the central nervous system (CNS) are surrounded by a multilayered myelin sheath that promotes fast, saltatory conduction of electrical impulses. By insulating the axon, myelin also shields the axoplasm from the extracellular milieu. In the CNS, oligodendrocytes provide support for the long-term maintenance of myelinated axons, independent of the myelin sheath. Here, we use electron microscopy and morphometric analyses to examine the evolution of axonal and oligodendroglial changes in mice deficient in 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and in mice deficient in both CNP and proteolipid protein (PLP/DM20). We show that CNP is necessary for the formation of a normal inner tongue process of oligodendrocytes that myelinate small diameter axons. We also show that axonal degeneration in Cnp1 null mice is present very early in postnatal life. Importantly, compact myelin formed by transplanted Cnp1 null oligodendrocytes induces the same degenerative changes in shiverer axons that normally are dysmyelinated but structurally intact. Mice deficient in both CNP and PLP develop a more severe axonal phenotype than either single mutant, indicating that the two oligodendroglial proteins serve distinct functions in supporting the myelinated axon. These observations support a model in which the trophic functions of oligodendrocytes serve to offset the physical shielding of axons by myelin membranes. PMID:19459211

  15. Dynamics of axon fasciculation in the presence of neuronal turnover

    CERN Document Server

    Chaudhuri, Debasish; Mohanty, P K; Zapotocky, Martin

    2008-01-01

    We formulate and characterize a model aiming to describe the formation of fascicles of axons mediated by contact axon-axon interactions. The growing axons are represented as interacting directed random walks in two spatial dimensions. To mimic axonal turnover in the mammalian olfactory system, the random walkers are injected and removed at specified rates. In the dynamical steady state, the position-dependent distribution of fascicle sizes obeys a scaling law. We identify several distinct time scales that emerge from the dynamics, are sensitive functions of the microscopic parameters of the model, and can exceed the average axonal lifetime by orders of magnitude. We discuss our findings in terms of an analytically tractable, effective model of fascicle dynamics.

  16. Increased demyelination and axonal damage in metallothionein I+II-deficient mice during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Penkowa, M; Espejo, C; Martínez-Cáceres, E M;

    2003-01-01

    , oxidative stress, and apoptotic cell death during EAE were increased by MT-I+II deficiency. We now show for the first time that demyelination and axonal damage are significantly increased in MT-I+II deficient mice during EAE. Furthermore, oligodendroglial regeneration, growth cone formation, and tissue...... repair including expression of trophic factors were significantly reduced in MT-I+II-deficient mice during EAE. Accordingly, MT-I+II have protective and regenerative roles in the brain....

  17. Laser Guidance Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility, which provides for real time, closed loop evaluation of semi-active laser guidance hardware, has and continues to be instrumental in the development...

  18. Assimilation of GOES satellite-based convective initiation and cloud growth observations into the Rapid Refresh and HRRR systems to improve aviation forecast guidance

    Science.gov (United States)

    Mecikalski, John; Smith, Tracy; Weygandt, Stephen

    2014-05-01

    Latent heating profiles derived from GOES satellite-based cloud-top cooling rates are being assimilated into a retrospective version of the Rapid Refresh system (RAP) being run at the Global Systems Division. Assimilation of these data may help reduce the time lag for convection initiation (CI) in both the RAP model forecasts and in 3-km High Resolution Rapid Refresh (HRRR) model runs that are initialized off of the RAP model grids. These data may also improve both the location and organization of developing convective storm clusters, especially in the nested HRRR runs. These types of improvements are critical for providing better convective storm guidance around busy hub airports and aviation corridor routes, especially in the highly congested Ohio Valley - Northeast - Mid-Atlantic region. Additional work is focusing on assimilating GOES-R CI algorithm cloud-top cooling-based latent heating profiles directly into the HRRR model. Because of the small-scale nature of the convective phenomena depicted in the cloud-top cooling rate data (on the order of 1-4 km scale), direct assimilation of these data in the HRRR may be more effective than assimilation in the RAP. The RAP is an hourly assimilation system developed at NOAA/ESRL and was implemented at NCEP as a NOAA operational model in May 2012. The 3-km HRRR runs hourly out to 15 hours as a nest within the ESRL real-time experimental RAP. The RAP and HRRR both use the WRF ARW model core, and the Gridpoint Statistical Interpolation (GSI) is used within an hourly cycle to assimilate a wide variety of observations (including radar data) to initialize the RAP. Within this modeling framework, the cloud-top cooling rate-based latent heating profiles are applied as prescribed heating during the diabatic forward model integration part of the RAP digital filter initialization (DFI). No digital filtering is applied on the 3-km HRRR grid, but similar forward model integration with prescribed heating is used to assimilate

  19. Action potentials reliably invade axonal arbors of rat neocortical neurons

    OpenAIRE

    Cox, Charles L.; Denk, Winfried; Tank, David W.; Svoboda, Karel

    2000-01-01

    Neocortical pyramidal neurons have extensive axonal arborizations that make thousands of synapses. Action potentials can invade these arbors and cause calcium influx that is required for neurotransmitter release and excitation of postsynaptic targets. Thus, the regulation of action potential invasion in axonal branches might shape the spread of excitation in cortical neural networks. To measure the reliability and extent of action potential invasion into axonal arbors, we have used two-photon...

  20. Myelin sheath survival after guanethidine-induced axonal degeneration

    OpenAIRE

    1992-01-01

    Membrane-membrane interactions between axons and Schwann cells are required for initial myelin formation in the peripheral nervous system. However, recent studies of double myelination in sympathetic nerve have indicated that myelin sheaths continue to exist after complete loss of axonal contact (Kidd, G. J., and J. W. Heath. 1988. J. Neurocytol. 17:245-261). This suggests that myelin maintenance may be regulated either by diffusible axonal factors or by nonaxonal mechanisms. To test these hy...

  1. Axon Regeneration in the Peripheral and Central Nervous Systems

    OpenAIRE

    Huebner, Eric A.; Strittmatter, Stephen M

    2009-01-01

    Axon regeneration in the mature mammalian central nervous system (CNS) is extremely limited after injury. Consequently, functional deficits persist after spinal cord injury (SCI), traumatic brain injury, stroke, and related conditions that involve axonal disconnection. This situation differs from that in the mammalian peripheral nervous system (PNS), where long- distance axon regeneration and substantial functional recovery can occur in the adult. Both extracellular molecules and the intrinsi...

  2. Growth Cone Biomechanics in Peripheral and Central Nervous System Neurons

    Science.gov (United States)

    Urbach, Jeffrey; Koch, Daniel; Rosoff, Will; Geller, Herbert

    2012-02-01

    The growth cone, a highly motile structure at the tip of an axon, integrates information about the local environment and modulates outgrowth and guidance, but little is known about effects of external mechanical cues and internal mechanical forces on growth-cone mediated guidance. We have investigated neurite outgrowth, traction forces and cytoskeletal substrate coupling on soft elastic substrates for dorsal root ganglion (DRG) neurons (from the peripheral nervous system) and hippocampal neurons (from the central) to see how the mechanics of the microenvironment affect different populations. We find that the biomechanics of DRG neurons are dramatically different from hippocampal, with DRG neurons displaying relatively large, steady traction forces and maximal outgrowth and forces on substrates of intermediate stiffness, while hippocampal neurons display weak, intermittent forces and limited dependence of outgrowth and forces on substrate stiffness. DRG growth cones have slower rates of retrograde actin flow and higher density of localized paxillin (a protein associated with substrate adhesion complexes) compared to hippocampal neurons, suggesting that the difference in force generation is due to stronger adhesions and therefore stronger substrate coupling in DRG growth cones.

  3. Axonal autophagy during regeneration of the rat sciatic nerve

    Institute of Scientific and Technical Information of China (English)

    Kangrong Lu; Zhongxian Piao; Zhenxi Liu; Weiwang Gu; Wanshan Wang; Nngjie Piao

    2008-01-01

    BACKGROUND: The removal of degenerated axonal debris during Wallerian degeneration is very important for nerve regeneration. However, the mechanism by which debris is removed is not been completely understood. Considerable controversy remains as to the clearance pathway and cells that are involved. OBJECTIVE: To investigate axonal autophagy during removal of degenerated axonal debris by transecting the sciatic nerve in a rat Wallerian degeneration model.DESIGN, TIME AND SETTING: Experimental neuropathological analysis. The experiment was conducted at the Laboratory Animal Service Center of the Southern Medical University between January and June 2005. MATERIALS: Fifty-four adult, Wistar rats of either sex, weighing 180-250 g, were obtained from the Laboratory Animal Service Center of the Southern Medical University. Animals were randomly divided into nine groups of six rats. METHODS: Wallerian degeneration was induced by transecting the rat sciatic nerve, and tissue samples from the distal stump were obtained 0.2, 0.4, 1, 2, 3, 4, 7, 10, and 15 days post-transection. Ultrathin sections were prepared for electron microscopy to study ultrastructure and enzyme cytochemistry staining. MAIN OUTCOME MEASURES: Ultrastructure (axon body, autophagic body, and cystoskeleton) of axons and myelin sheaths observed with electron microscopy; acidic phosphatase activity detected by Gomori staining using electron microscopy. RESULTS: The major changes of degenerating axons after transection were axoplasm swelling and separation of axons from their myelin sheath between five hours and two days post-transection. At four days post-transection, the axoplasm condensed and axons were completely separated from the myelin sheath, forming dissociative axon bodies. Vacuoles of different sizes formed in axons during the early phase after lesion. Larger dissociative axon bodies were formed when the axons were completely separated from the myelin sheath during a late phase. The axolemma

  4. Differences in excitability properties of FDI and ADM motor axons.

    Science.gov (United States)

    Bae, Jong Seok; Sawai, Setsu; Misawa, Sonoko; Kanai, Kazuaki; Isose, Sagiri; Kuwabara, Satoshi

    2009-03-01

    The first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles are innervated by the same ulnar nerve, but studies have shown that the former is much more severely affected in amyotrophic lateral sclerosis. In this study, threshold tracking was used to investigate whether membrane properties differ between FDI and ADM motor axons. In 12 normal subjects, compound muscle action potentials were recorded from FDI and ADM after ulnar nerve stimulation at the wrist. The strength-duration time constant was significantly longer in the FDI axons than in the ADM axons, and latent addition studies showed greater threshold changes at the conditioning-test stimulus of 0.2 ms in FDI than in ADM axons. These findings suggest that nodal persistent sodium conductances are more prominent in FDI axons than in ADM axons, and therefore excitability is physiologically higher in FDI axons. Even in the same nerve at the same sites, membrane properties of FDI and ADM motor axons differ significantly, and thus their axonal/neuronal responses to disease may also differ.

  5. Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations.

    Science.gov (United States)

    Zheng, T; Wilson, C J

    2002-02-01

    The complete striatal axonal arborizations of 16 juxtacellularly stained cortical pyramidal cells were analyzed. Corticostriatal neurons were located in the medial agranular or anterior cingulate cortex of rats. All axons were of the extended type and formed synaptic contacts in both the striosomal and matrix compartments as determined by counterstaining for the mu-opiate receptor. Six axonal arborizations were from collaterals of brain stem-projecting cells and the other 10 from bilaterally projecting cells with no brain stem projections. The distribution of synaptic boutons along the axons were convolved with the average dendritic tree volume of spiny projection neurons to obtain an axonal innervation volume and innervation density map for each axon. Innervation volumes varied widely, with single axons occupying between 0.4 and 14.2% of the striatum (average = 4%). The total number of boutons formed by individual axons ranged from 25 to 2,900 (average = 879). Within the innervation volume, the density of innervation was extremely sparse but inhomogeneous. The pattern of innervation resembled matrisomes, as defined by bulk labeling and functional mapping experiments, superimposed on a low background innervation. Using this sample as representative of all corticostriatal axons, the total number of corticostriatal neurons was estimated to be 17 million, about 10 times the number of striatal projection neurons.

  6. Present status of studies on diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    Jie Ma; Chonggong Zhang; Yi Li

    2006-01-01

    OBJECTIVE: To explain the present status of study on diffuse axonal injury,investigate its pathogenesis and pathophysiological changes ,and suggest principles for the diagnosis and treatment.DATA SOURCES: Articles about diffuse axonal injury published in English from January 1994 to October 2006 were searched in Pubmed database using the keywords of "diffuse axonal injury,pathogenesis,therapy".STUDY SELECTION: The collected articles were primarily screened to select those associated with diffuse axonal injury,the obviously irrelated articles were excluded,and the rest ones were retrieved manually,and the full-texes were searched.DATA EXTRACTION: Totally 98 articles were collected,41 of them were involved.and the other 57 were excluded.DATA SYNTHESIS: Diffuse axonal injury is mainly caused by acceleratory or deceleratory injury,and its pathophysiological change is a progressive duration,local axonal injury finally develops to axonal breakage,mainly includes inactivation of natrium channel,intracellular Ca2+ overloading,activation of calcium protease,caspase etc.,and mitochondrial injury.At present,there is still lack of effective therapeutic methods for diffuse axonal injury,so we should actively explore more effective methods to relieve the pain of patients and improve their prognosis.CONCLUSION: At present,diffuse axonal injury has not attracted enough attentions in China,the mechanisms for its diagnosis and attack are still unclear,and the treatments are mainly aiming at the symptoms.

  7. Meta-Narrative on Guidance and Counselling in Schools

    Science.gov (United States)

    Thamarasseri, Ismail

    2014-01-01

    The purposes of guidance and counselling provide emphasis and strength to the educational program. The major goals of counselling are to promote personal growth and to prepare students to become motivated workers and responsible citizens. The chief aim of an educational guidance is to develop the ability of co-ordinating with the school…

  8. Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2 regulates axon integrity in the mouse embryo.

    Directory of Open Access Journals (Sweden)

    Amy N Hicks

    Full Text Available Using transposon-mediated gene-trap mutagenesis, we have generated a novel mouse mutant termed Blad (Bloated Bladder. Homozygous mutant mice die perinatally showing a greatly distended bladder, underdeveloped diaphragm and a reduction in total skeletal muscle mass. Wild type and heterozygote mice appear normal. Using PCR, we identified a transposon insertion site in the first intron of Nmnat2 (Nicotinamide mononucleotide adenyltransferase 2. Nmnat2 is expressed predominantly in the brain and nervous system and has been linked to the survival of axons. Expression of this gene is undetectable in Nmnat2(blad/blad mutants. Examination of the brains of E18.5 Nmnat2(blad/blad mutant embryos did not reveal any obvious morphological changes. In contrast, E18.5 Nmnat2(blad/blad homozygotes showed an approximate 60% reduction of spinal motoneurons in the lumbar region and a more than 80% reduction in the sensory neurons of the dorsal root ganglion (DRG. In addition, facial motoneuron numbers were severely reduced, and there was virtually a complete absence of axons in the hind limb. Our observations suggest that during embryogenesis, Nmnat2 plays an important role in axonal growth or maintenance. It appears that in the absence of Nmnat2, major target organs and tissues (e.g., muscle are not functionally innervated resulting in perinatal lethality. In addition, neither Nmnat1 nor 3 can compensate for the loss of Nmnat2. Whilst there have been recent suggestions that Nmnat2 may be an endogenous modulator of axon integrity, this work represents the first in vivo study demonstrating that Nmnat2 is involved in axon development or survival in a mammal.

  9. Focal axonal swellings and associated ultrastructural changes attenuate conduction velocity in central nervous system axons: a computer modeling study

    OpenAIRE

    Kolaric, Katarina V; Thomson, Gemma; Edgar, Julia M; Brown, Angus M.

    2013-01-01

    The constancy of action potential conduction in the central nervous system (CNS) relies on uniform axon diameter coupled with fidelity of the overlying myelin providing high-resistance, low capacitance insulation. Whereas the effects of demyelination on conduction have been extensively studied/modeled, equivalent studies on the repercussions for conduction of axon swelling, a common early pathological feature of (potentially reversible) axonal injury, are lacking. The recent description of ex...

  10. Cutaneous collateral axonal sprouting re-innervates the skin component and restores sensation of denervated Swine osteomyocutaneous alloflaps.

    Directory of Open Access Journals (Sweden)

    Zuhaib Ibrahim

    Full Text Available Reconstructive transplantation such as extremity and face transplantation is a viable treatment option for select patients with devastating tissue loss. Sensorimotor recovery is a critical determinant of overall success of such transplants. Although motor function recovery has been extensively studied, mechanisms of sensory re-innervation are not well established. Recent clinical reports of face transplants confirm progressive sensory improvement even in cases where optimal repair of sensory nerves was not achieved. Two forms of sensory nerve regeneration are known. In regenerative sprouting, axonal outgrowth occurs from the transected nerve stump while in collateral sprouting, reinnervation of denervated tissue occurs through growth of uninjured axons into the denervated tissue. The latter mechanism may be more important in settings where transected sensory nerves cannot be re-apposed. In this study, denervated osteomyocutaneous alloflaps (hind- limb transplants from Major Histocompatibility Complex (MHC-defined MGH miniature swine were performed to specifically evaluate collateral axonal sprouting for cutaneous sensory re-innervation. The skin component of the flap was externalized and serial skin sections extending from native skin to the grafted flap were biopsied. In order to visualize regenerating axonal structures in the dermis and epidermis, 50 um frozen sections were immunostained against axonal and Schwann cell markers. In all alloflaps, collateral axonal sprouts from adjacent recipient skin extended into the denervated skin component along the dermal-epidermal junction from the periphery towards the center. On day 100 post-transplant, regenerating sprouts reached 0.5 cm into the flap centripetally. Eight months following transplant, epidermal fibers were visualized 1.5 cm from the margin (rate of regeneration 0.06 mm per day. All animals had pinprick sensation in the periphery of the transplanted skin within 3 months post

  11. CAREER GUIDANCE EXPERIENCE ABROAD

    Directory of Open Access Journals (Sweden)

    Sergey N. Tolstoguzov

    2015-01-01

    Full Text Available The aim of this paper is to describe the experience of careeroriented activities carried out with students of schools in developed and developing countries. Career Guidance in Russia, despite the vast experience of its implementation, is experiencing serious difficulties. In this regard, it is important to take into account the international experience career-oriented activities, such as in the developed countries of North America and the European Union as well as in several Asian countries with rapidly growing economies and a large demographic potential, taking into account the best variants for the Russian education system. Methods. The experience of career-oriented work undertaken with pupils of the USA, Canada, Israel, France, UK, Germany, Denmark, Sweden, Japan, Singapore, China and India is shown on the basis of the comparative analysis of different publications and information sources. The author has made an attempt to generalize the principles of psycho-pedagogical and administrative assistance in professional self-determination of senior pupils abroad. Scientific novelty. The approaches to career-oriented activities in countries with different levels of economic development are compared for the first time. Some principles are revealed. Firstly, the higher the income level per capita in the country, the greater attention is given to vocational guidance. The politics in the developed countries is based on interests of the individual: children’s acquaintance with the world of professions begins already at younger school and the moment of definitive selfdetermination is postponed till the end of their senior stage of education; the possibility of direction change of professional preparation in case of detection of discrepancy of qualities of the pupil to originally selected profile is provided. Career-oriented activity in developing countries, on the contrary, is rigidly coordinated to requirements of economy and a labour market

  12. Inhibition of kinesin-5, a microtubule-based motor protein, as a strategy for enhancing regeneration of adult axons

    OpenAIRE

    Lin, Shen; Liu, Mei; Son, Young-Jin; Himes, B. Timothy; Snow, Diane M.; Yu, Wenqian; Baas, Peter W.

    2011-01-01

    Developing neurons express a motor protein called kinesin-5 (also called kif11 or Eg5) which acts as a “brake” on the advance of the microtubule array during axonal growth. Pharmacological inhibition of kinesin-5 causes the developing axon to grow at a faster rate, retract less, and grow past cues that would other wise cause it to turn. Here we demonstrate that kinesin-5 is also expressed in adult neurons, albeit at lower levels than during development. We hypothesized that inhibiting kinesin...

  13. My view on occupation guidance

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Occupation instruction needs to the support of theories,in the case of the occupation guidance theory is not very developed in our country,It has very important sense that absorbing and drawing lessons from the advanced occupation guidance theory,and targeting guidance to occupation guidance work,.

  14. Developmental guidance of embryonic corneal innervation: roles of Semaphorin3A and Slit2.

    Science.gov (United States)

    Kubilus, James K; Linsenmayer, Thomas F

    2010-08-01

    The cornea is one of the most densely innervated structures of the body. In the developing chicken embryo, nerves from the ophthalmic trigeminal ganglion (OTG) innervate the cornea in a series of spatially and temporally regulated events. However, little is known concerning the signals that regulate these events. Here we have examined the involvement of the axon guidance molecules Semaphorin3A and Slit2, and their respective receptors, Neuropilin-1 and Robo2. Expression analyses of early corneas suggest an involvement of both Semaphorin3A and Slit2 in preventing nerves from entering the corneal stroma until the proper time (i.e., they serve as negative regulators), and analyses of their receptors support this conclusion. At later stages of development the expression of Semaphorin3A is again consistent with its serving as a negative regulator-this time for nerves entering the corneal epithelium. However, expression analyses of Robo2 at this stage raised the possibility that Slit2 had switched from a negative regulator to a positive regulator. In support of such a switch, functional analyses-by addition of recombinant Slit2 protein or immunoneutralization with a Slit2 antibody-showed that at an early stage Slit2 negatively regulates the outgrowth of nerves from the OTG, whereas at the later stage it positively regulated the growth of nerves by increasing nerve branching within the corneal epithelium.

  15. Inhibiting poly(ADP-ribosylation) improves axon regeneration

    Science.gov (United States)

    Byrne, Alexandra B; McWhirter, Rebecca D; Sekine, Yuichi; Strittmatter, Stephen M; Miller, David M; Hammarlund, Marc

    2016-01-01

    The ability of a neuron to regenerate its axon after injury depends in part on its intrinsic regenerative potential. Here, we identify novel intrinsic regulators of axon regeneration: poly(ADP-ribose) glycohodrolases (PARGs) and poly(ADP-ribose) polymerases (PARPs). PARGs, which remove poly(ADP-ribose) from proteins, act in injured C. elegans GABA motor neurons to enhance axon regeneration. PARG expression is regulated by DLK signaling, and PARGs mediate DLK function in enhancing axon regeneration. Conversely, PARPs, which add poly(ADP-ribose) to proteins, inhibit axon regeneration of both C. elegans GABA neurons and mammalian cortical neurons. Furthermore, chemical PARP inhibitors improve axon regeneration when administered after injury. Our results indicate that regulation of poly(ADP-ribose) levels is a critical function of the DLK regeneration pathway, that poly-(ADP ribosylation) inhibits axon regeneration across species, and that chemical inhibition of PARPs can elicit axon regeneration. DOI: http://dx.doi.org/10.7554/eLife.12734.001

  16. New insights into mRNA trafficking in axons

    NARCIS (Netherlands)

    Gumy, Laura; Katrukha, Eugene; Kapitein, Lukas; Hoogenraad, Casper

    2014-01-01

    In recent years, it has been demonstrated that mRNAs localize to axons of young and mature central and peripheral nervous system neurons in culture and in vivo. Increasing evidence is supporting a fundamental role for the local translation of these mRNAs in neuronal function by regulating axon growt

  17. Spontaneous axonal regeneration in rodent spinal cord after ischemic injury

    DEFF Research Database (Denmark)

    von Euler, Mia; Janson, A M; Larsen, Jytte Overgaard;

    2002-01-01

    Here we present evidence for spontaneous and long-lasting regeneration of CNS axons after spinal cord lesions in adult rats. The length of 200 kD neurofilament (NF)-immunolabeled axons was estimated after photochemically induced ischemic spinal cord lesions using a stereological tool. The total l...

  18. Axon Transport and Neuropathy: Relevant Perspectives on the Etiopathogenesis of Familial Dysautonomia.

    Science.gov (United States)

    Tourtellotte, Warren G

    2016-03-01

    Peripheral neuropathies are highly prevalent and are most often associated with chronic disease, side effects from chemotherapy, or toxic-metabolic abnormalities. Neuropathies are less commonly caused by genetic mutations, but studies of the normal function of mutated proteins have identified particular vulnerabilities that often implicate mitochondrial dynamics and axon transport mechanisms. Hereditary sensory and autonomic neuropathies are a group of phenotypically related diseases caused by monogenic mutations that primarily affect sympathetic and sensory neurons. Here, I review evidence to indicate that many genetic neuropathies are caused by abnormalities in axon transport. Moreover, in hereditary sensory and autonomic neuropathies. There may be specific convergence on gene mutations that disrupt nerve growth factor signaling, upon which sympathetic and sensory neurons critically depend. PMID:26724390

  19. Receptor Tyrosine Kinases: Molecular Switches Regulating CNS Axon Regeneration

    Directory of Open Access Journals (Sweden)

    Vasanthy Vigneswara

    2012-01-01

    Full Text Available The poor or lack of injured adult central nervous system (CNS axon regeneration results in devastating consequences and poor functional recovery. The interplay between the intrinsic and extrinsic factors contributes to robust inhibition of axon regeneration of injured CNS neurons. The insufficient or lack of trophic support for injured neurons is considered as one of the major obstacles contributing to their failure to survive and regrow their axons after injury. In the CNS, many of the signalling pathways associated with neuronal survival and axon regeneration are regulated by several classes of receptor tyrosine kinases (RTK that respond to a variety of ligands. This paper highlights and summarises the most relevant recent findings pertinent to different classes of the RTK family of molecules, with a particular focus on elucidating their role in CNS axon regeneration.

  20. Brain injury tolerance limit based on computation of axonal strain.

    Science.gov (United States)

    Sahoo, Debasis; Deck, Caroline; Willinger, Rémy

    2016-07-01

    Traumatic brain injury (TBI) is the leading cause of death and permanent impairment over the last decades. In both the severe and mild TBIs, diffuse axonal injury (DAI) is the most common pathology and leads to axonal degeneration. Computation of axonal strain by using finite element head model in numerical simulation can enlighten the DAI mechanism and help to establish advanced head injury criteria. The main objective of this study is to develop a brain injury criterion based on computation of axonal strain. To achieve the objective a state-of-the-art finite element head model with enhanced brain and skull material laws, was used for numerical computation of real world head trauma. The implementation of new medical imaging data such as, fractional anisotropy and axonal fiber orientation from Diffusion Tensor Imaging (DTI) of 12 healthy patients into the finite element brain model was performed to improve the brain constitutive material law with more efficient heterogeneous anisotropic visco hyper-elastic material law. The brain behavior has been validated in terms of brain deformation against Hardy et al. (2001), Hardy et al. (2007), and in terms of brain pressure against Nahum et al. (1977) and Trosseille et al. (1992) experiments. Verification of model stability has been conducted as well. Further, 109 well-documented TBI cases were simulated and axonal strain computed to derive brain injury tolerance curve. Based on an in-depth statistical analysis of different intra-cerebral parameters (brain axonal strain rate, axonal strain, first principal strain, Von Mises strain, first principal stress, Von Mises stress, CSDM (0.10), CSDM (0.15) and CSDM (0.25)), it was shown that axonal strain was the most appropriate candidate parameter to predict DAI. The proposed brain injury tolerance limit for a 50% risk of DAI has been established at 14.65% of axonal strain. This study provides a key step for a realistic novel injury metric for DAI. PMID:27038501

  1. Calsyntenin-1 shelters APP from proteolytic processing during anterograde axonal transport

    Directory of Open Access Journals (Sweden)

    Martin Steuble

    2012-06-01

    Endocytosis of amyloid-β precursor protein (APP is thought to represent the major source of substrate for the production of the amyloidogenic Aβ peptide by the β-secretase BACE1. The irreversible nature of proteolytic cleavage implies the existence of an efficient replenishment route for APP from its sites of synthesis to the cell surface. We recently found that APP exits the trans-Golgi network in intimate association with calsyntenin-1, a transmembrane cargo-docking protein for Kinesin-1-mediated vesicular transport. Here we characterized the function of calsyntenin-1 in neuronal APP transport using selective immunoisolation of intracellular trafficking organelles, immunocytochemistry, live-imaging, and RNAi. We found that APP is co-transported with calsyntenin-1 along axons to early endosomes in the central region of growth cones in carriers that exclude the α-secretase ADAM10. Intriguingly, calsyntenin-1/APP organelles contained BACE1, suggesting premature cleavage of APP along its anterograde path. However, we found that APP contained in calsyntenin-1/APP organelles was stable. We further analyzed vesicular trafficking of APP in cultured hippocampal neurons, in which calsyntenin-1 was reduced by RNAi. We found a markedly increased co-localization of APP and ADAM10 in axons and growth cones, along with increased proteolytic processing of APP and Aβ secretion in these neurons. This suggested that the reduced capacity for calsyntenin-1-dependent APP transport resulted in mis-sorting of APP into additional axonal carriers and, therefore, the premature encounter of unprotected APP with its ectodomain proteases. In combination, our results characterize calsyntenin-1/APP organelles as carriers for sheltered anterograde axonal transport of APP.

  2. Extensive cell migration, axon regeneration, and improved function with polysialic acid-modified Schwann cells after spinal cord injury.

    Science.gov (United States)

    Ghosh, Mousumi; Tuesta, Luis M; Puentes, Rocio; Patel, Samik; Melendez, Kiara; El Maarouf, Abderrahman; Rutishauser, Urs; Pearse, Damien Daniel

    2012-05-01

    Schwann cell (SC) implantation after spinal cord injury (SCI) promotes axonal regeneration, remyelination repair, and functional recovery. Reparative efficacy, however, may be limited because of the inability of SCs to migrate outward from the lesion-implant site. Altering SC cell surface properties by overexpressing polysialic acid (PSA) has been shown to promote SC migration. In this study, a SCI contusion model was used to evaluate the migration, supraspinal axon growth support, and functional recovery associated with polysialyltransferase (PST)-overexpressing SCs [PST-green fluorescent protein (GFP) SCs] or controls (GFP SCs). Compared with GFP SCs, which remained confined to the injection site at the injury center, PST-GFP SCs migrated across the lesion:host cord interface for distances of up to 4.4 mm within adjacent host tissue. In addition, with PST-GFP SCs, there was extensive serotonergic and corticospinal axon in-growth within the implants that was limited in the GFP SC controls. The enhanced migration of PST-GFP SCs was accompanied by significant growth of these axons caudal to lesion. Animals receiving PST-GFP SCs exhibited improved functional outcome, both in the open-field and on the gridwalk test, beyond the modest improvements provided by GFP SC controls. This study for the first time demonstrates that a lack of migration by SCs may hinder their reparative benefits and that cell surface overexpression of PSA enhances the ability of implanted SCs to associate with and support the growth of corticospinal axons. These results provide further promise that PSA-modified SCs will be a potent reparative approach for SCI. © 2012 Wiley Periodicals, Inc. PMID:22460918

  3. Clinical features of diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To analyze the mechanism of diffuse axonal injury (DAI) and study the relationship between DAI and brain concussion, brain contusion, and primary brain stem injury.Methods: The clinical data and iconographic characteristics of 56 patients with DAI were analyzed retrospectively.Results: Traffic accidents were the main cause of DAI. Among the 56 cases, 34 were injured for at least twice, and 71.43% of the patients were complicated with contusion.Conclusions: It is considered that DAI is a common pattern of primary brain injury, which is often underestimated. And DAI includes cerebral concussion and primary brain injury, and is often complicated by cerebral cortex contusion. Therefore, it is very simple and practical to divide primary brain injuries into local and diffuse injuries.

  4. Regulatory guidance document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-01

    The Office of Civilian Radioactive Waste Management (OCRWM) Program Management System Manual requires preparation of the OCRWM Regulatory Guidance Document (RGD) that addresses licensing, environmental compliance, and safety and health compliance. The document provides: regulatory compliance policy; guidance to OCRWM organizational elements to ensure a consistent approach when complying with regulatory requirements; strategies to achieve policy objectives; organizational responsibilities for regulatory compliance; guidance with regard to Program compliance oversight; and guidance on the contents of a project-level Regulatory Compliance Plan. The scope of the RGD includes site suitability evaluation, licensing, environmental compliance, and safety and health compliance, in accordance with the direction provided by Section 4.6.3 of the PMS Manual. Site suitability evaluation and regulatory compliance during site characterization are significant activities, particularly with regard to the YW MSA. OCRWM`s evaluation of whether the Yucca Mountain site is suitable for repository development must precede its submittal of a license application to the Nuclear Regulatory Commission (NRC). Accordingly, site suitability evaluation is discussed in Chapter 4, and the general statements of policy regarding site suitability evaluation are discussed in Section 2.1. Although much of the data and analyses may initially be similar, the licensing process is discussed separately in Chapter 5. Environmental compliance is discussed in Chapter 6. Safety and Health compliance is discussed in Chapter 7.

  5. PIV Logon Configuration Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Glen Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-04

    This document details the configurations and enhancements implemented to support the usage of federal Personal Identity Verification (PIV) Card for logon on unclassified networks. The guidance is a reference implementation of the configurations and enhancements deployed at the Los Alamos National Laboratory (LANL) by Network and Infrastructure Engineering – Core Services (NIE-CS).

  6. The Counseling & Guidance Curriculum.

    Science.gov (United States)

    Ediger, Marlow

    Counseling and guidance services are vital in any school curriculum. Counselors may themselves be dealing with students of diverse abilities and handicaps. Counselors may have to work with students affected by drug addiction, fetal alcohol syndrome, homelessness, poverty, Acquired Immune Deficiency Syndrome (AIDS) and divorce. Students may present…

  7. Regulatory guidance document

    International Nuclear Information System (INIS)

    The Office of Civilian Radioactive Waste Management (OCRWM) Program Management System Manual requires preparation of the OCRWM Regulatory Guidance Document (RGD) that addresses licensing, environmental compliance, and safety and health compliance. The document provides: regulatory compliance policy; guidance to OCRWM organizational elements to ensure a consistent approach when complying with regulatory requirements; strategies to achieve policy objectives; organizational responsibilities for regulatory compliance; guidance with regard to Program compliance oversight; and guidance on the contents of a project-level Regulatory Compliance Plan. The scope of the RGD includes site suitability evaluation, licensing, environmental compliance, and safety and health compliance, in accordance with the direction provided by Section 4.6.3 of the PMS Manual. Site suitability evaluation and regulatory compliance during site characterization are significant activities, particularly with regard to the YW MSA. OCRWM's evaluation of whether the Yucca Mountain site is suitable for repository development must precede its submittal of a license application to the Nuclear Regulatory Commission (NRC). Accordingly, site suitability evaluation is discussed in Chapter 4, and the general statements of policy regarding site suitability evaluation are discussed in Section 2.1. Although much of the data and analyses may initially be similar, the licensing process is discussed separately in Chapter 5. Environmental compliance is discussed in Chapter 6. Safety and Health compliance is discussed in Chapter 7

  8. Career guidance on the move

    DEFF Research Database (Denmark)

    Thomsen, Rie

    2013-01-01

    This article is about how the notion of place can be used in an analysis of career guidance practices and their development. It is about how a focus on the context of career guidance can develop an awareness of the place where guidance is practiced and support the development of career guidance...... in new places. In this article I introduce an analytical perspective on place; I give the example of the guidance café a practice development that took place into serious consideration because it was an attempt to develop career guidance practice through relocating it....

  9. Mirror movement-like defects in startle behavior of zebrafish dcc mutants are caused by aberrant midline guidance of identified descending hindbrain neurons.

    Science.gov (United States)

    Jain, Roshan A; Bell, Hannah; Lim, Amy; Chien, Chi-Bin; Granato, Michael

    2014-02-19

    Mirror movements are involuntary movements on one side of the body that occur simultaneously with intentional movements on the contralateral side. Humans with heterozygous mutations in the axon guidance receptor DCC display such mirror movements, where unilateral stimulation results in inappropriate bilateral motor output. Currently, it is unclear whether mirror movements are caused by incomplete midline crossing and reduced commissural connectivity of DCC-dependent descending pathways or by aberrant ectopic ipsilateral axonal projections of normally commissural neurons. Here, we show that in response to unilateral tactile stimuli, zebrafish dcc mutant larvae perform involuntary turns on the inappropriate body side. We show that these mirror movement-like deficits are associated with axonal guidance defects of two identified groups of commissural reticulospinal hindbrain neurons. Moreover, we demonstrate that in dcc mutants, axons of these identified neurons frequently fail to cross the midline and instead project ipsilaterally. Whereas laser ablation of these neurons in wild-type animals does not affect turning movements, their ablation in dcc mutants restores turning movements. Thus, our results demonstrate that in dcc mutants, turns on the inappropriate side of the body are caused by aberrant ipsilateral axonal projections, and suggest that aberrant ipsilateral connectivity of a very small number of descending axons is sufficient to induce incorrect movement patterns.

  10. Transgenic inhibition of astroglial NF-κB leads to increased axonal sparing and sprouting following spinal cord injury

    Science.gov (United States)

    Brambilla, Roberta; Hurtado, Andres; Persaud, Trikaldarshi; Esham, Kim; Pearse, Damien D.; Oudega, Martin; Bethea, John R.

    2014-01-01

    We previously showed that NF-κB inactivation in astrocytes leads to improved functional recovery following spinal cord injury (SCI). This correlated with reduced expression of pro-inflammatory mediators and chondroitin sulphate proteoglycans, and increased white matter preservation. Hence we hypothesized that inactivation of astrocytic NF-κB would create a more permissive environment for axonal sprouting and regeneration. We induced both contusive and complete transection SCI in GFAP-IκBα-dn and WT mice and performed retrograde (fluorogold) and anterograde (biotinylated dextran amine) tracing eight weeks after injury. Following contusive SCI, more fluorogold-labeled cells were found in motor cortex, reticular formation, and raphe nuclei of transgenic mice. Spared and sprouting biotinylated dextran amine-positive corticospinal axons were found caudal to the lesion in GFAP-IκBα-dn mice. Higher numbers of fluorogold-labeled neurons were detected immediately rostral to the lesion in GFAP-IκBα-dn mice, accompanied by increased expression of synaptic and axonal growth-associated molecules. After transection, however, no fluorogold-labeled neurons or biotinylated dextran amine-filled axons were found rostral and caudal to the lesion, respectively, in either genotype. These data demonstrated that inhibiting astroglial NF-κB resulted in a growth-supporting terrain promoting sparing and sprouting, rather than regeneration, of supraspinal and propriospinal circuitries essential for locomotion, hence contributing to the improved functional recovery observed after SCI in GFAP-IκBα-dn mice. PMID:19522780

  11. Possible Cis-acting signal that could be involved in the localization of different mRNAs in neuronal axons

    Directory of Open Access Journals (Sweden)

    Manzo Jorge

    2005-08-01

    Full Text Available Abstract Background Messenger RNA (mRNA comprises three major parts: a 5'-UTR (UnTranslated Region, a coding region, and a 3'-UTR. The 3'-UTR contains signal sequences involved in polyadenylation, degradation and localization/stabilization processes. Some sequences in the 3'-UTR are involved in the localization of mRNAs in (e.g. neurons, epithelial cells, oocytes and early embryos, but such localization has been most thoroughly studied in neurons. Neuronal polarity is maintained by the microtubules (MTs found along both dendrites and axon and is partially influenced by sub-cellular mRNA localization. A widely studied mRNA is that for Tau protein, which is located in the axon hillock and growth cone; its localization depends on the well-characterized cis-acting signal (U-rich region in the 3'-UTR. Methods We compared the cis-acting signal of Tau with mRNAs in the axonal regions of neurons using the ClustalW program for alignment of sequences and the Mfold program for analysis of secondary structures. Results We found that at least 3 out of 12 mRNA analyzed (GRP75, cofilin and synuclein have a sequence similar to the cis-acting signal of Tau in the 3'-UTR. This could indicate that these messengers are localized specifically in the axon. The Mfold program showed that these mRNAs have a similar "bubble" structure in the putative sequence signal. Conclusion Hence, we suggest that a U-rich sequence in the 3'-UTR region of the mRNA could act as a signal for its localization in the axon in neuronal cells. Sequences homologous to the DTE sequence of BC1 mRNA could direct the messenger to the dendrites. Messengers with homologues of both types of sequence, e.g. β-actin, might be located in both dendrites and axon.

  12. Intra-axonal myosin and actin in nerve regeneration.

    Science.gov (United States)

    McQuarrie, Irvine G; Lund, Linda M

    2009-10-01

    A focused review of sciatic nerve regeneration in the rat model, based on research conducted by the authors, is presented. We examine structural proteins carried distally in the axon by energy-requiring motor enzymes, using protein chemistry and molecular biology techniques in combination with immunohistochemistry. Relevant findings from other laboratories are cited and discussed. The general conclusion is that relatively large amounts of actin and tubulin are required to construct a regenerating axon and that these materials mainly originate in the parent axon. The motor enzymes that carry these proteins forward as macromolecules include kinesin and dynein but probably also include myosin. PMID:19927086

  13. MiR-133b ameliorates axon degeneration induced by MPP(+) via targeting RhoA.

    Science.gov (United States)

    Niu, M; Xu, R; Wang, J; Hou, B; Xie, A

    2016-06-14

    Increasing evidence suggests that microRNAs (miRs) play a significant role in the pathogenesis of Parkinson's disease (PD). MiR-133b, which is significantly decreased in the PD midbrain, has recently been shown to promote neurite outgrowth and enhance neural functional recovery. However, the role of miR-133b in PD has not been clearly established. Here, using a well-established PD model culture based on the neurotoxin 1-methyl-4-phenyl-pyridinium (MPP(+)), we demonstrated that miR-133b could promote axon outgrowth in dopaminergic neurons (DNs) and ameliorated MPP(+)-induced axon degeneration. Additional experiments suggested that the mechanisms of this miR-133b-mediated effect might rely on RhoA inhibition. We demonstrated that RhoA, an inhibitor of axonal growth, was increased in DNs under MPP(+) treatment, and this increase could be attenuated by miR-133b overexpression. Moreover, we demonstrated that the induced expression of miR-133b could inhibit α-synuclein, which is critically involved in the pathological process of PD. Furthermore, we found that overexpression of miR-133b abrogated the MPP(+)-induced decrease in the Bcl-2/Bax ratio and upregulated phosphorylated Akt (p-Akt), which is a pro-survival kinase. Together these findings reveal novel roles for miR-133b in the pathogenesis of PD and provide new therapeutic avenues for the treatment of the disease. PMID:27012608

  14. New Interpretations of Guidance Role

    Science.gov (United States)

    Kerlan, Julius H.; Ryan, Charles W.

    1972-01-01

    A panoramic view of Guidance Division general sessions and workshops covering some exemplary career guidance programs, as well as such topics as career choice, leadership, evaluation, and program development and management. Presented at the Guidance division session of the American Vocational Association 1971 annual meeting. (Editor/MU)

  15. 有序PCL支架的制备与对细胞的定向生长作用%Fabrication of Aligned PCL Scaffold and Its Guidance for Cell Growth

    Institute of Scientific and Technical Information of China (English)

    李红; 郭振招; Li Xiaowei; Liu Xiaoyan; Wen Xuejun; 薛博

    2012-01-01

    Aligned and random poly(ε-caprolactone)(PCL) fibrous scaffolds were fabricated via the eletrospinning technique.The morphology,crystallization and mechanical properties of the electrospun scaffolds were characterized by scanning electron microscopy(SEM),wide angle X-ray diffraction(WAXD) and an universal machine test.Osteoblasts were seeded on electrospun scaffolds and the cell growth was evaluated by laser scanning confocal microscope(LSCM) and SEM.The results indicate that the electrospun fibers are smooth and uniform,and about 86.14% fibers are aligned along the selected direction.The tensile strength of the aligned fibers is(27.63±0.75) MPa,which is 232% stronger than that of the random fibers.The elastic modulus does not change significantly,and the elongation at break decreases significantly.The aligned fibers could provide a better guidance towards the cell growth.%利用静电纺丝技术制备了有序和无序聚己内酯(PCL)纤维支架。通过扫描电镜(SEM)、X射线衍射(XRD)和万能试验机对支架结构与形态、结晶性能及力学性能进行了表征;将体外培养的细胞接种至支架表面,用激光共聚焦显微镜(LSCM)和SEM观察了细胞在支架表面的生长情况。研究结果表明,电纺丝得到的纤维直径均一,有序化纤维支架中86.14%的纤维沿着确定方向有序排列;有序纤维拉伸强度为(27.63±0.75)MPa,比无序纤维的拉伸强度增大了232%。弹性模量基本不变,断裂伸长率明显降低;有序纤维对细胞的定向生长具有良好的引导作用。

  16. Environmental guidance regulatory bulletin

    International Nuclear Information System (INIS)

    This document describes the background on expanding public participation in the Resource Conservation and Recovery Act and DOE's response. The bulletin also describes the changes made by the final rule to existing regulations, guidance provided by EPA in the preamble and in the revised RCRA Public Participation Manual, the relationship between public participation and environmental justice, and DOE's recent public participation and environmental justice initiatives

  17. Functional Impact of Corticotropin-Releasing Factor Exposure on Tau Phosphorylation and Axon Transport.

    Directory of Open Access Journals (Sweden)

    Michelle H Le

    Full Text Available Stress exposure or increased levels of corticotropin-releasing factor (CRF induce hippocampal tau phosphorylation (tau-P in rodent models, a process that is dependent on the type-1 CRF receptor (CRFR1. Although these preclinical studies on stress-induced tau-P provide mechanistic insight for epidemiological work that identifies stress as a risk factor for Alzheimer's disease (AD, the actual impact of stress-induced tau-P on neuronal function remains unclear. To determine the functional consequences of stress-induced tau-P, we developed a novel mouse neuronal cell culture system to explore the impact of acute (0.5hr and chronic (2hr CRF treatment on tau-P and integral cell processes such as axon transport. Consistent with in vivo reports, we found that chronic CRF treatment increased tau-P levels and caused globular accumulations of phosphorylated tau in dendritic and axonal processes. Furthermore, while both acute and chronic CRF treatment led to significant reduction in CREB activation and axon transport of brain-derived neurotrophic factor (BDNF, this was not the case with mitochondrial transport. Acute CRF treatment caused increased mitochondrial velocity and distance traveled in neurons, while chronic CRF treatment modestly decreased mitochondrial velocity and greatly increased distance traveled. These results suggest that transport of cellular energetics may take priority over growth factors during stress. Tau-P was required for these changes, as co-treatment of CRF with a GSK kinase inhibitor prevented CRF-induced tau-P and all axon transport changes. Collectively, our results provide mechanistic insight into the consequences of stress peptide-induced tau-P and provide an explanation for how chronic stress via CRF may lead to neuronal vulnerability in AD.

  18. Differential effects of human L1CAM mutations on complementing guidance and synaptic defects in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Sirisha Kudumala

    Full Text Available A large number of different pathological L1CAM mutations have been identified that result in a broad spectrum of neurological and non-neurological phenotypes. While many of these mutations have been characterized for their effects on homophilic and heterophilic interactions, as well as expression levels in vitro, there are only few studies on their biological consequences in vivo. The single L1-type CAM gene in Drosophila, neuroglian (nrg, has distinct functions during axon guidance and synapse formation and the phenotypes of nrg mutants can be rescued by the expression of human L1CAM. We previously showed that the highly conserved intracellular FIGQY Ankyrin-binding motif is required for L1CAM-mediated synapse formation, but not for neurite outgrowth or axon guidance of the Drosophila giant fiber (GF neuron. Here, we use the GF as a model neuron to characterize the pathogenic L120V, Y1070C, C264Y, H210Q, E309K and R184Q extracellular L1CAM missense mutations and a L1CAM protein with a disrupted ezrin-moesin-radixin (ERM binding site to investigate the signaling requirements for neuronal development. We report that different L1CAM mutations have distinct effects on axon guidance and synapse formation. Furthermore, L1CAM homophilic binding and signaling via the ERM motif is essential for axon guidance in Drosophila. In addition, the human pathological H210Q, R184Q and Y1070C, but not the E309K and L120V L1CAM mutations affect outside-in signaling via the FIGQY Ankyrin binding domain which is required for synapse formation. Thus, the pathological phenotypes observed in humans are likely to be caused by the disruption of signaling required for both, guidance and synaptogenesis.

  19. Axon diameter mapping in crossing fibers with diffusion MRI

    DEFF Research Database (Denmark)

    Zhang, Hui; Dyrby, Tim B; Alexander, Daniel C

    2011-01-01

    tissue than measures derived from diffusion tensor imaging. Most existing techniques for axon diameter mapping assume a single axon orientation in the tissue model, which limits their application to only the most coherently oriented brain white matter, such as the corpus callosum, where the single...... orientation assumption is a reasonable one. However, fiber crossings and other complex configurations are widespread in the brain. In such areas, the existing techniques will fail to provide useful axon diameter indices for any of the individual fiber populations. We propose a novel crossing fiber tissue...... of the technique by establishing reasonable axon diameter indices in the crossing region at the interface of the cingulum and the corpus callosum....

  20. Internodal function in normal and regenerated mammalian axons

    DEFF Research Database (Denmark)

    Moldovan, M; Krarup, C

    2007-01-01

    human nerves. CONCLUSION: The data suggest that persistently shorter regenerated internodes lead to increased Na+/K+-pump activity in response to increased Na+ entry during conduction. This may impair axonal function during prolonged repetitive activity and drain the energy reserves of the axons.......AIM: Following Wallerian degeneration, peripheral myelinated axons have the ability to regenerate and, given a proper pathway, establish functional connections with targets. In spite of this capacity, the clinical outcome of nerve regeneration remains unsatisfactory. Early studies have found...... that regenerated internodes remain persistently short though this abnormality did not seem to influence recovery in conduction. It remains unclear to which extent abnormalities in axonal function itself may contribute to the poor outcome of nerve regeneration. METHODS: We review experimental evidence indicating...

  1. Structural plasticity of axon terminals in the adult.

    Science.gov (United States)

    Gogolla, Nadine; Galimberti, Ivan; Caroni, Pico

    2007-10-01

    There is now conclusive evidence for widespread ongoing structural plasticity of presynaptic boutons and axon side-branches in the adult brain. The plasticity complements that of postsynaptic spines, but axonal plasticity samples larger volumes of neuropil, and has a larger impact on circuit remodeling. Axons from distinct neurons exhibit unique ratios of stable (t1/2>9 months) and dynamic (t1/2 5-20 days) boutons, which persist as spatially intermingled subgroups along terminal arbors. In addition, phases of side-branch dynamics mediate larger scale remodeling guided by synaptogenesis. The plasticity is most pronounced during critical periods; its patterns and outcome are controlled by Hebbian mechanisms and intrinsic neuronal factors. Novel experience, skill learning, life-style, and age can persistently modify local circuit structure through axonal structural plasticity.

  2. Neurons in the lateral part of the lumbar spinal cord show distinct novel axon trajectories and are excited by short propriospinal ascending inputs.

    Science.gov (United States)

    Antal, Zs; Luz, L L; Safronov, B V; Antal, M; Szücs, Peter

    2016-05-01

    The role of spinal dorsal horn propriospinal connections in nociceptive processing is not yet established. Recently described, rostrocaudally oriented axon collaterals of lamina I projection and local-circuit neurons (PNs and LCNs) running in the dorsolateral funiculus (DLF) may serve as the anatomical substrate for intersegmental processing. Putative targets of these axons include lateral dendrites of superficial dorsal horn neurons, including PNs, and also neurons in the lateral spinal nucleus (LSN) that are thought to be important integrator units receiving, among others, visceral sensory information. Here we used an intact spinal cord preparation to study intersegmental connections within the lateral part of the superficial dorsal horn. We detected brief monosynaptic and prolonged polysynaptic excitation of lamina I and LSN neurons when stimulating individual dorsal horn neurons located caudally, even in neighboring spinal cord segments. These connections, however, were infrequent. We also revealed that some projection neurons outside the dorsal grey matter and in the LSN have distinct, previously undescribed course of their projection axon. Our findings indicate that axon collaterals of lamina I PNs and LCNs in the DLF rarely form functional connections with other lamina I and LSN neurons and that the majority of their targets are on other elements of the dorsal horn. The unique axon trajectories of neurons in the dorsolateral aspect of the spinal cord, including the LSN do not fit our present understanding of midline axon guidance and suggest that their function and development differ from the neurons inside lamina I. These findings emphasize the importance of understanding the connectivity matrix of the superficial dorsal horn in order to decipher spinal sensory information processing. PMID:25912439

  3. Changes in prefrontal axons may disrupt the network in autism

    OpenAIRE

    Zikopoulos, Basilis; Barbas, Helen

    2010-01-01

    Neural communication is disrupted in autism by unknown mechanisms. Here we examined whether in autism there are changes in axons, which are the conduit for neural communication. We investigated single axons and their ultrastructure in the white matter of post-mortem human brain tissue below the anterior cingulate cortex (ACC), orbitofrontal (OFC), and lateral (LPFC) prefrontal cortices, which are associated with attention, social interactions, and emotions and have been consistently implicate...

  4. Axonal neuropathy associated with monoclonal gammopathy of undetermined significance

    OpenAIRE

    GORSON, K.; Ropper, A.

    1997-01-01

    OBJECTIVE—The neuropathy associated with monoclonal gammopathy of undetermined significance (MGUS) is typically a predominantly demyelinating process that may have additional features of axonal degeneration. Sixteen patients with MGUS and a pure or predominantly axonal neuropathy are reported and compared with 20 consecutive patients with demyelinating neuropathy and MGUS who were seen during the same period.
METHODS—Retrospective review of a consecutive series of patients w...

  5. 6-Sulphated chondroitins have a positive influence on axonal regeneration.

    Directory of Open Access Journals (Sweden)

    Rachel Lin

    Full Text Available Chondroitin sulphate proteoglycans (CSPGs upregulated in the glial scar inhibit axon regeneration via their sulphated glycosaminoglycans (GAGs. Chondroitin 6-sulphotransferase-1 (C6ST-1 is upregulated after injury leading to an increase in 6-sulphated GAG. In this study, we ask if this increase in 6-sulphated GAG is responsible for the increased inhibition within the glial scar, or whether it represents a partial reversion to the permissive embryonic state dominated by 6-sulphated glycosaminoglycans (GAGs. Using C6ST-1 knockout mice (KO, we studied post-injury changes in chondroitin sulphotransferase (CSST expression and the effect of chondroitin 6-sulphates on both central and peripheral axon regeneration. After CNS injury, wild-type animals (WT showed an increase in mRNA for C6ST-1, C6ST-2 and C4ST-1, but KO did not upregulate any CSSTs. After PNS injury, while WT upregulated C6ST-1, KO showed an upregulation of C6ST-2. We examined regeneration of nigrostriatal axons, which demonstrate mild spontaneous axon regeneration in the WT. KO showed many fewer regenerating axons and more axonal retraction than WT. However, in the PNS, repair of the median and ulnar nerves led to similar and normal levels of axon regeneration in both WT and KO. Functional tests on plasticity after the repair also showed no evidence of enhanced plasticity in the KO. Our results suggest that the upregulation of 6-sulphated GAG after injury makes the extracellular matrix more permissive for axon regeneration, and that the balance of different CSs in the microenvironment around the lesion site is an important factor in determining the outcome of nervous system injury.

  6. Axonal maintenance, glia, exosomes, and heat shock proteins

    OpenAIRE

    Michael Tytell; Lasek, Raymond J.; Harold Gainer

    2016-01-01

    Of all cellular specializations, the axon is especially distinctive because it is a narrow cylinder of specialized cytoplasm called axoplasm with a length that may be orders of magnitude greater than the diameter of the cell body from which it originates. Thus, the volume of axoplasm can be much greater than the cytoplasm in the cell body. This fact raises a logistical problem with regard to axonal maintenance. Many of the components of axoplasm, such as soluble proteins and cytoskeleton, are...

  7. Differing semaphorin 3A concentrations trigger distinct signaling mechanisms in growth cone collapse.

    Science.gov (United States)

    Manns, Richard P C; Cook, Geoffrey M W; Holt, Christine E; Keynes, Roger J

    2012-06-20

    Semaphorin-3A (Sema3A) is a major guidance cue in the developing nervous system. Previous studies have revealed a dependence of responses to Sema3A on local protein synthesis (PS) in axonal growth cones, but a recent study has called this dependence into question. To understand the basis of this discrepancy we used the growth cone collapse assay on chick dorsal root ganglion neurons. We show that the dependence of growth cone collapse on protein synthesis varies according to Sema3A concentration, from near-total at low concentration (625 ng/ml). Further, we show that neuropilin-1 (NP-1) mediates both PS-dependent and PS-independent collapse. Our findings are consistent with the operation of at least two distinct Sema3A signaling pathways: one that is PS-dependent, involving mammalian target of rapamycin, and one that is PS-independent, involving GSK-3β activation and operative at all concentrations of Sema3A examined. The results provide a plausible explanation for the discrepancy in PS-dependence reported in the literature, and indicate that different signaling pathways activated within growth cones can be modulated by changing the concentration of the same guidance cue.

  8. Axon-glia interaction and membrane traffic in myelin formation

    Directory of Open Access Journals (Sweden)

    Robin eWhite

    2014-01-01

    Full Text Available In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialised glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarisation followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasising the central role of the Src-family kinase Fyn during CNS myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of PLP (proteolipid protein transport by SNARE proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.

  9. Neuropilin-2 promotes melanoma growth and progression in vivo.

    Science.gov (United States)

    Moriarty, Whei F; Kim, Edward; Gerber, Stephanie A; Hammers, Hans; Alani, Rhoda M

    2016-08-01

    Tumor cell interactions with their microenvironment, and neighboring endothelial cells in particular, are critical for tumor cell survival and the metastatic process. Within the spectrum of tumors, melanomas are notorious for their ability to metastasize at a relatively early stage of development; however, little is known about the molecular pathways mediating this process. We recently performed a screen to assess critical mediators of melanoma metastasis by evaluating melanoma-endothelial cell communication. Neuropilin-2 (NRP2), a cell surface receptor involved in angiogenesis and axonal guidance, was found to be an important mediator of melanoma-endothelial cell cross-talk in these studies. Here we seek to further define the role of NRP2 in melanoma growth and progression. We use stable gene silencing of NRP2 in melanomas from varying stages of tumor progression to define the role of NRP2 in melanoma growth, migration, invasion, and metastasis. We found that NRP2 gene silencing in metastatic melanoma cell lines inhibited tumor cell growth in vitro; furthermore, knockdown of NRP2 expression in the metastatic melanoma cell line 1205Lu significantly inhibited in-vivo tumor growth and metastasis. We conclude that NRP2 plays an important role in mediating melanoma growth and metastasis and suggest that targeting this cell surface molecule may represent a significant therapeutic strategy for patients diagnosed with aggressive forms of melanoma. PMID:26881875

  10. Ultrastructural observation of effect of moderate hypothermia on axonal damage in an animal model of diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    孙晓川; 唐文渊; 郑履平

    2002-01-01

    Objective: To investigate the effect of moderate hypothermia on responses of axonal cytoskeleton to axonal injury in the acute stage of injury. Methods: Of fifteen adult guinea pigs, twelve animals were subjected to stretch injury to the right optic nerves and divided into the normothermic group (n=6) in which the animal's core temperature was maintained at 36.0-37.5℃ and the hypothermia group (n=6) in which the core temperature was reduced to 32.0-32.5℃ after stretch injury. Remaining three animals sustained no injury to the right optic nerves and served as control group. Half of injured animals (n=3) of either normothermic group or hypothermic group were killed at either 2 hours or 4 hours after injury. The ultrastructural changes of axonal cytoskeleton of the right optic nerve fibers from the animals were examined under a transmission electron microscope and analyzed by quantitative analysis with a computer image analysis system. Results: At 2 hours after stretch injury, there was a significant reduction in the mean number of microtubules (P<0.001), and a significant increase in the mean intermicrotubule spacing (P<0.05 or P<0.01) in axons of all sizes in normothermic animals. The mean number of neurofilaments also decreased statistically (P<0.01) in large and medium subgroups of axons in the same experimental group at 2 hours. By 4 hours, the large subgroup of axons in normothermic animals still demonstrated a significant decline in the mean number of microtubules (P<0.01) and an increase in the mean intermicrotubule spacing (P<0.05), while the medium and small subgroups of axons displayed a significant increase in the mean number of neurofilaments (P<0.05) and reduction in the mean interneurofilament spacing (P<0.05). On the contrary, either the mean number of microtubules and the mean intermicrotubule spacing, or the mean number of neurofilaments and interneurofilament spacing in axons of all sizes in hypothermic stretch-injured animals was not

  11. Guidance of Nonlinear Systems

    Science.gov (United States)

    Meyer, George

    1997-01-01

    The paper describes a method for guiding a dynamic system through a given set of points. The paradigm is a fully automatic aircraft subject to air traffic control (ATC). The ATC provides a sequence of way points through which the aircraft trajectory must pass. The way points typically specify time, position, and velocity. The guidance problem is to synthesize a system state trajectory which satisfies both the ATC and aircraft constraints. Complications arise because the controlled process is multi-dimensional, multi-axis, nonlinear, highly coupled, and the state space is not flat. In addition, there is a multitude of possible operating modes, which may number in the hundreds. Each such mode defines a distinct state space model of the process by specifying the state space coordinatization, the partition of the controls into active controls and configuration controls, and the output map. Furthermore, mode transitions must be smooth. The guidance algorithm is based on the inversion of the pure feedback approximations, which is followed by iterative corrections for the effects of zero dynamics. The paper describes the structure and modules of the algorithm, and the performance is illustrated by several example aircraft maneuvers.

  12. Cholesterol Perturbation in Mice Results in p53 Degradation and Axonal Pathology through p38 MAPK and Mdm2 Activation.

    Directory of Open Access Journals (Sweden)

    Qingyu Qin

    Full Text Available Perturbation of lipid metabolism, especially of cholesterol homeostasis, can be catastrophic to mammalian brain, as it has the highest level of cholesterol in the body. This notion is best illustrated by the severe progressive neurodegeneration in Niemann-Pick Type C (NPC disease, one of the lysosomal storage diseases, caused by mutations in the NPC1 or NPC2 gene. In this study, we found that growth cone collapse induced by genetic or pharmacological disruption of cholesterol egress from late endosomes/lysosomes was directly related to a decrease in axonal and growth cone levels of the phosphorylated form of the tumor suppressor factor p53. Cholesterol perturbation-induced growth cone collapse and decrease in phosphorylated p53 were reduced by inhibition of p38 mitogen-activated protein kinase (MAPK and murine double minute (Mdm2 E3 ligase. Growth cone collapse induced by genetic (npc1-/- or pharmacological modification of cholesterol metabolism was Rho kinase (ROCK-dependent and associated with increased RhoA protein synthesis; both processes were significantly reduced by P38 MAPK or Mdm2 inhibition. Finally, in vivo ROCK inhibition significantly increased phosphorylated p53 levels and neurofilaments in axons, and axonal bundle size in npc1-/- mice. These results indicate that NPC-related and cholesterol perturbation-induced axonal pathology is associated with an abnormal signaling pathway consisting in p38 MAPK activation leading to Mdm2-mediated p53 degradation, followed by ROCK activation. These results also suggest new targets for pharmacological treatment of NPC disease and other diseases associated with disruption of cholesterol metabolism.

  13. Repulsive Guidance Molecule-a Is Involved in Th17-Cell-Induced Neurodegeneration in Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Shogo Tanabe

    2014-11-01

    Full Text Available Multiple sclerosis (MS is a chronic autoimmune disease characterized by inflammation, demyelination, and neurodegeneration in the CNS. Although it is important to prevent neurodegeneration for alleviating neurological disability, the molecular mechanism of neurodegeneration remains largely unknown. Here, we report that repulsive guidance molecule-a (RGMa, known to regulate axonal growth, is associated with neurodegeneration in experimental autoimmune encephalomyelitis (EAE, a mouse model of MS. RGMa is highly expressed in interleukin-17-producing CD4+ T cells (Th17 cells. We induced EAE by adoptive transfer of myelin oligodendrocyte glycoprotein (MOG-specific Th17 cells and then inhibited RGMa with a neutralizing antibody. Inhibition of RGMa improves EAE scores and reduces neuronal degeneration without altering immune or glial responses. Th17 cells induce cultured cortical neuron death through RGMa-neogenin and Akt dephosphorylation. Our results demonstrate that RGMa is involved in Th17-cell-mediated neurodegeneration and that RGMa-specific antibody may have a therapeutic effect in MS.

  14. Non-cable vehicle guidance

    Energy Technology Data Exchange (ETDEWEB)

    Daugela, G.C.; Willott, A.M.; Chopiuk, R.G.; Thornton, S.E.

    1988-06-01

    The purpose is to determine the most promising driverless mine vehicle guidance systems that are not dependent on buried cables, and to plan their development. The project is presented in two phases: a preliminary study and literature review to determine whether suitable technologies exist to justify further work; and an in-depth assessment and selection of technologies for vehicle guidance. A large number of guidance elements are involved in a completely automated vehicle. The technologies that hold the best potential for development of guidance systems for mine vehicles are ultrasonics, radar, lasers, dead reckoning, and guidance algorithms. The best approach to adaptation of these technologies is on a step by step basis. Guidance modules that are complete in themselves and are designed to be integrated with other modules can provide short term benefits. Two modules are selected for development: the dragline operations monitor and automated machine control for optimized mining (AMCOM). 99 refs., 20 figs., 40 tabs.

  15. Regulation of Microtubule Dynamics in Axon Regeneration: Insights from C. elegans [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Ngang Heok Tang

    2016-04-01

    Full Text Available The capacity of an axon to regenerate is regulated by its external environment and by cell-intrinsic factors. Studies in a variety of organisms suggest that alterations in axonal microtubule (MT dynamics have potent effects on axon regeneration. We review recent findings on the regulation of MT dynamics during axon regeneration, focusing on the nematode Caenorhabditis elegans. In C. elegans the dual leucine zipper kinase (DLK promotes axon regeneration, whereas the exchange factor for Arf6 (EFA-6 inhibits axon regeneration. Both DLK and EFA-6 respond to injury and control axon regeneration in part via MT dynamics. How the DLK and EFA-6 pathways are related is a topic of active investigation, as is the mechanism by which EFA-6 responds to axonal injury. We evaluate potential candidates, such as the MT affinity-regulating kinase PAR-1/MARK, in regulation of EFA-6 and axonal MT dynamics in regeneration.

  16. Insulin and IGF-II, but not IGF-I, stimulate the in vitro regeneration of adult frog sciatic sensory axons

    DEFF Research Database (Denmark)

    Edbladh, M; Svenningsen, Åsa Fex; Ekström, P A;

    1994-01-01

    We used the in vitro regenerating frog sciatic nerve to look for effects of insulin and insulin-like growth factors I and II (IGF-I, IGF-II) on regeneration of sensory axons and on injury induced support cell proliferation in the outgrowth region. In nerves cultured for 11 days, a physiological...

  17. A novel technique using hydrophilic polymers to promote axonal fusion

    Institute of Scientific and Technical Information of China (English)

    Ravinder Bamba; D Colton Riley; Nathaniel D Kelm; Mark D Does; Richard D Dortch; Wesley P hTayer

    2016-01-01

    The management of traumatic peripheral nerve injury remains a considerable concern for clinicians. With minimal innovations in surgical technique and a limited number of specialists trained to treat peripheral nerve injury, outcomes of surgical intervention have been unpredictable. The inability to manipulate the pathophysiology of nerve injury (i.e., Wallerian degeneration) has left scientists and clinicians depending on the slow and lengthy process of axonal regeneration (~1 mm/day). When axons are severed, the endings undergo calcium-mediated plasmalemmal sealing, which limits the ability of the axon to be primarily re-paired. Polythethylene glycol (PEG) in combination with a bioengineered process overcomes the inability to fuse axons. The mechanism for PEG axonal fusion is not clearly understood, but multiple studies have shown that a providing a calcium-free environment is essential to the process known as PEG fusion. The proposed mechanism is PEG-induced lipid bilayer fusion by removing the hydration barrier surrounding the axolemma and reducing the activation energy required for membrane fusion to occur. This review highlights PEG fusion, its past and current studies, and future directions in PEG fusion.

  18. Subtypes of GABAergic neurons project axons in the neocortex

    Directory of Open Access Journals (Sweden)

    Shigeyoshi Higo

    2009-11-01

    Full Text Available γ-aminobutyric acid (GABAergic neurons in the neocortex have been regarded as interneurons and speculated to modulate the activity of neurons locally. Recently, however, several experiments revealed that neuronal nitric oxide synthase (nNOS-positive GABAergic neurons project cortico-cortically with long axons. In this study, we illustrate Golgi-like images of the nNOS-positive GABAergic neurons using a nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d reaction and follow the emanating axon branches in cat brain sections. These axon branches projected cortico-cortically with other non-labeled arcuate fibers, contra-laterally via the corpus callosum and anterior commissure. The labeled fibers were not limited to the neocortex but found also in the fimbria of the hippocampus. In order to have additional information on these GABAergic neuron projections, we investigated green fluorescent protein (GFP-labeled GABAergic neurons in GAD67-Cre knock-in / GFP Cre-reporter mice. GFP-labeled axons emanate densely, especially in the fimbria, a small number in the anterior commissure, and very sparsely in the corpus callosum. These two different approaches confirm that not only nNOS-positive GABAergic neurons but also other subtypes of GABAergic neurons project long axons in the cerebral cortex and are in a position to be involved in information processing.

  19. Role of ERK1/2 MAPK signaling in the maintenance of myelin and axonal integrity in the adult CNS.

    Science.gov (United States)

    Ishii, Akihiro; Furusho, Miki; Dupree, Jeffrey L; Bansal, Rashmi

    2014-11-26

    Oligodendrocytes form myelin during postnatal development and then maintain a functional myelin sheath throughout adult life. While many regulators of developmental myelination have been identified, the signal transduction mechanisms that regulate oligodendrocyte functions in adulthood are not well understood. The extracellular signal-regulated kinases-1 and -2 (ERK1/2), downstream mediators of mitogen-activated protein kinases (MAPKs), have emerged as prominent regulators of myelin formation. Here, we investigated whether these signaling molecules are also required for myelin maintenance in the adult CNS. Inducible conditional ablation of Erk1/2 in oligodendrocytes of the adult CNS resulted in a downregulation of myelin gene expression. Although myelin thickness was reduced and some axons were demyelinated, the majority of axons were wrapped by intact myelin sheaths that appeared structurally normal. However, late onset of progressive axonal degeneration, accompanied by astrogliosis, microglial activation, partial loss of oligodendrocytes, and functional impairment, occurred in the adult mice lacking ERK1/2 activity. Conditional ablation of Fibroblast Growth Factor receptors-1 and -2 (FGFR1/2) in oligodendrocytes also resulted in downregulation of myelin gene expression and development of axonal degeneration as the mice aged. Further, the level of the key transcription factor myelin gene regulatory factor (Myrf) was downregulated or upregulated in mice with genetic loss or gain of ERK1/2 function, respectively. Together, our studies demonstrate that ERK1/2-MAPK signaling is required for the long-term maintenance of myelin and axonal integrity in the adult CNS and suggest that FGFR1/2 and Myrf may, in part, contribute to signaling upstream and downstream of ERK1/2 in maintaining these oligodendrocyte functions during adulthood. PMID:25429144

  20. Growth

    Science.gov (United States)

    Waag, Andreas

    This chapter is devoted to the growth of ZnO. It starts with various techniques to grow bulk samples and presents in some detail the growth of epitaxial layers by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), and pulsed laser deposition (PLD). The last section is devoted to the growth of nanorods. Some properties of the resulting samples are also presented. If a comparison between GaN and ZnO is made, very often the huge variety of different growth techniques available to fabricate ZnO is said to be an advantage of this material system. Indeed, growth techniques range from low cost wet chemical growth at almost room temperature to high quality MOCVD growth at temperatures above 1, 000∘C. In most cases, there is a very strong tendency of c-axis oriented growth, with a much higher growth rate in c-direction as compared to other crystal directions. This often leads to columnar structures, even at relatively low temperatures. However, it is, in general, not straight forward to fabricate smooth ZnO thin films with flat surfaces. Another advantage of a potential ZnO technology is said to be the possibility to grow thin films homoepitaxially on ZnO substrates. ZnO substrates are mostly fabricated by vapor phase transport (VPT) or hydrothermal growth. These techniques are enabling high volume manufacturing at reasonable cost, at least in principle. The availability of homoepitaxial substrates should be beneficial to the development of ZnO technology and devices and is in contrast to the situation of GaN. However, even though a number of companies are developing ZnO substrates, only recently good quality substrates have been demonstrated. However, these substrates are not yet widely available. Still, the situation concerning ZnO substrates seems to be far from low-cost, high-volume production. The fabrication of dense, single crystal thin films is, in general, surprisingly difficult, even when ZnO is grown on a ZnO substrate. However

  1. Steerable-filter based quantification of axonal populations at the developing optic chiasm reveal significant defects in Slit2−/− as well as Slit1−/−Slit2−/− embryos

    Directory of Open Access Journals (Sweden)

    Down Matthew

    2013-01-01

    Full Text Available Abstract Background Previous studies have suggested that the axon guidance proteins Slit1 and Slit2 co-operate to establish the optic chiasm in its correct position at the ventral diencephalic midline. This is based on the observation that, although both Slit1 and Slit2 are expressed around the ventral midline, mice defective in either gene alone exhibit few or no axon guidance defects at the optic chiasm whereas embryos lacking both Slit1 and Slit2 develop a large additional chiasm anterior to the chiasm’s normal position. Here we used steerable-filters to quantify key properties of the population of axons at the chiasm in wild-type, Slit1−/−, Slit2−/− and Slit1−/−Slit2−/− embryos. Results We applied the steerable-filter algorithm successfully to images of embryonic retinal axons labelled from a single eye shortly after they have crossed the midline. We combined data from multiple embryos of the same genotype and made statistical comparisons of axonal distributions, orientations and curvatures between genotype groups. We compared data from the analysis of axons with data on the expression of Slit1 and Slit2. The results showed a misorientation and a corresponding anterior shift in the position of many axons at the chiasm of both Slit2−/− and Slit1−/−Slit2−/− mutants. There were very few axon defects at the chiasm of Slit1−/− mutants. Conclusions We found defects of the chiasms of Slit1−/−Slit2−/− and Slit1−/− mutants similar to those reported previously. In addition, we discovered previously unreported defects resulting from loss of Slit2 alone. This indicates the value of a quantitative approach to complex pathway analysis and shows that Slit2 can act alone to control aspects of retinal axon routing across the ventral diencephalic midline.

  2. Cellulose/soy protein composite-based nerve guidance conduits with designed microstructure for peripheral nerve regeneration

    Science.gov (United States)

    Gan, Li; Zhao, Lei; Zhao, Yanteng; Li, Ke; Tong, Zan; Yi, Li; Wang, Xiong; Li, Yinping; Tian, Weiqun; He, Xiaohua; Zhao, Min; Li, Yan; Chen, Yun

    2016-10-01

    Objective. The objective of this work was to develop nerve guidance conduits from natural polymers, cellulose and soy protein isolate (SPI), by evaluating the effects of cellulose/SPI film-based conduit (CSFC) and cellulose/SPI sponge-based conduit (CSSC) on regeneration of nerve defects in rats. Approach. CSFC and CSSC with the same chemical components were fabricated from cellulose and SPI. Effects of CSSC and CSFC on regeneration of the defective nerve were comparatively investigated in rats with a 10 mm long gap in sciatic nerve. The outcomes of peripheral nerve repair were evaluated by a combination of electrophysiological assessment, Fluoro-Gold retrograde tracing, double NF200/S100 immunofluorescence analysis, toluidine blue staining, and electron microscopy. The probable molecular mechanism was investigated using quantitative real-time PCR (qPCR) analysis. Main results. Compared with CSFC, CSSC had 2.69 times higher porosity and 5.07 times higher water absorption, thus ensuring much higher permeability. The nerve defects were successfully bridged and repaired by CSSC and CSFC. Three months after surgery, the CSSC group had a higher compound muscle action potential amplitude ratio, a higher percentage of positive NF200 and S100 staining, and a higher axon diameter and myelin sheath thickness than the CSFC group, showing the repair efficiency of CSSC was higher than that of CSFC. qPCR analysis indicated the mRNA levels of nerve growth factor, IL-10, IL-6, and growth-associated protein 43 (GAP-43) were higher in the CSSC group. This also indicated that there was better nerve repair with CSSC due to the higher porosity and permeability of CSSC providing a more favourable microenvironment for nerve regeneration than CSFC. Significance. A promising nerve guidance conduit was developed from cellulose/SPI sponge that showed potential for application in the repair of nerve defect. This work also suggests that nerve guidance conduits with better repair efficiency

  3. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats

    Institute of Scientific and Technical Information of China (English)

    LIANG Peng; JIN Lian-hong; LIANG Tao; LIU En-zhong; ZHAO Shi-guang

    2006-01-01

    Background Axonal regeneration in lesioned mammalian central nervous system is abortive, and this causes permanent disabilities in individuals with spinal cord injuries. This paper studied the action of neural stem cell (NSC) in promoting corticospinal axons regeneration and synapse reformation in rats with injured spinal cord.Methods NSCs were isolated from the cortical tissue of spontaneous aborted human fetuses in accordance with the ethical request. The cells were discarded from the NSC culture to acquire NSC-conditioned medium. Sixty adult Wistar rats were randomly divided into four groups (n=15 in each): NSC graft, NSC medium, graft control and medium control groups. Microsurgical transection of the spinal cord was performed in all the rats at the T11. The NSC graft group received stereotaxic injections of NSCs suspension into both the spinal cord stumps immediately after transection; graft control group received DMEM injection. In NSC medium group,NSC-conditioned medium was administered into the spinal cord every week; NSC culture medium was administered to the medium control group. Hindlimb motor function was assessed using the BBB Locomotor Rating Scale. Regeneration of biotin dextran amine (BDA) labeled corticospinal tract was assessed. Differentiation of NSCs and the expression of synaptophysin at the distal end of the injured spinal cord were observed under a confocal microscope. Group comparisons of behavioral data were analyzed with ANOVA.Results NSCs transplantation resulted in extensive growth of corticospinal axons and locomotor recovery in adult rats after complete spinal cord transection, the mean BBB scores reached 12.5 in NSC graft group and 2.5 in graft control group (P< 0.05). There was also significant difference in BBB score between the NSC medium (11.7) and medium control groups (3.7, P< 0.05). BDA traces regenerated fibers sprouted across the lesion site and entered the caudal part of the spinal cord. Synaptophysin expression

  4. Fast and reliable identification of axons, axon initial segments and dendrites with local field potential recording

    Directory of Open Access Journals (Sweden)

    Anders Victor ePetersen

    2015-10-01

    Full Text Available The axon initial segment (AIS is an essential neuronal compartment. It is usually where action potentials are initiated. Recent studies demonstrated that the AIS is a plastic structure that can be regulated by neuronal activity and by the activation of metabotropic receptors. Studying the AIS in live tissue can be difficult because its identification is not always reliable. Here we provide a new technique allowing a fast and reliable identification of the AIS in live brain slice preparations. By simultaneous recoding of extracellular local field potentials and whole-cell patch-clamp recording of neurons, we can detect sinks caused by inward currents flowing across the membrane. We determine the location of the AIS by comparing the timing of these events with the action potential. We demonstrate that this method allows the unequivocal identification of the AIS of different types of neurons from the brain.

  5. An Automated Strategy for Unbiased Morphometric Analyses and Classifications of Growth Cones In Vitro.

    Directory of Open Access Journals (Sweden)

    Daryan Chitsaz

    Full Text Available During neural circuit development, attractive or repulsive guidance cue molecules direct growth cones (GCs to their targets by eliciting cytoskeletal remodeling, which is reflected in their morphology. The experimental power of in vitro neuronal cultures to assay this process and its molecular mechanisms is well established, however, a method to rapidly find and quantify multiple morphological aspects of GCs is lacking. To this end, we have developed a free, easy to use, and fully automated Fiji macro, Conographer, which accurately identifies and measures many morphological parameters of GCs in 2D explant culture images. These measurements are then subjected to principle component analysis and k-means clustering to mathematically classify the GCs as "collapsed" or "extended". The morphological parameters measured for each GC are found to be significantly different between collapsed and extended GCs, and are sufficient to classify GCs as such with the same level of accuracy as human observers. Application of a known collapse-inducing ligand results in significant changes in all parameters, resulting in an increase in 'collapsed' GCs determined by k-means clustering, as expected. Our strategy provides a powerful tool for exploring the relationship between GC morphology and guidance cue signaling, which in particular will greatly facilitate high-throughput studies of the effects of drugs, gene silencing or overexpression, or any other experimental manipulation in the context of an in vitro axon guidance assay.

  6. The Influence of Confucianism: A Narrative Study of Hong Kong Teachers' Understanding and Practices of School Guidance and Counselling

    Science.gov (United States)

    Hue, Ming-Tak

    2008-01-01

    School guidance seeks to promote the whole person growth of students. It is regarded as an integral part of an educational programme. In Hong Kong secondary schools, a team of teachers are responsible for school guidance. This article examines how guidance teachers made sense of their caring work in general and specifically the counselling…

  7. Neurofilament proteins in axonal regeneration and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Haitao Wang; Minfei Wu; Chuanjun Zhan; Enyuan Ma; Maoguang Yang; Xiaoyu Yang; Yingpu Li

    2012-01-01

    Neurofilament protein is a component of the mature neuronal cytoskeleton, and it interacts with the zygosome, which is mediated by neurofilament-related proteins. Neurofilament protein regulates enzyme function and the structure of linker proteins. In addition, neurofilament gene expression plays an important role in nervous system development. Previous studies have shown that neurofilament gene transcriptional regulation is crucial for neurofilament protein expression, especially in axonal regeneration and degenerative diseases. Post-transcriptional regulation increased neurofilament protein gene transcription during axonal regeneration, ultimately resulting in a pattern of neurofilament protein expression. An expression imbalance of post-transcriptional regulatory proteins and other disorders could lead to amyotrophic lateral sclerosis or other neurodegenerative diseases. These findings indicated that after transcription, neurofilament protein regulated expression of related proteins and promoted regeneration of damaged axons, suggesting that regulation disorders could lead to neurodegenerative diseases.

  8. Discussing Diverse Perspectives on Guidance

    Science.gov (United States)

    Gonzalez-Mena, Janet; Shareef, Intisar

    2005-01-01

    Ideas about discipline and guidance get extremely complex when they intersect with culture and oppression. Some groups of people who are targets of racism have to protect their children from the oppressive practices of racist individuals and institutions. Their methods of guidance and discipline may be different from those of groups for whom…

  9. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    Energy Technology Data Exchange (ETDEWEB)

    Menelaou, Evdokia; Paul, Latoya T. [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Perera, Surangi N. [Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States); Svoboda, Kurt R., E-mail: svobodak@uwm.edu [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States)

    2015-04-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  10. Guidance at the educational marketplace

    DEFF Research Database (Denmark)

    Lystbæk, Christian Tang

    in educational policies and institutions. As educational systems have expanded and, further, have been restructured with the expansion of choice opportunities since the 1980s, guidance has become prioritized as a form of counseling or coaching, which can support students. Thus, guidance has become an important...... institution of power in terms of choice opportunities and ´self-develoåment practices” in educational systems, the paper will discuss how the relationship between guidance and consumerism can be conceptualized in order to evaluate (and critically discuss) the consequences of the expansion of consumerism......The paper presents a conceptual framework for the relationship between guidance and consumerism, which can be applied in evaluating (and critically discussing) the consequences of this development for students, institutions and professionals. Guidance has moved from the margins to the center...

  11. Axon Regeneration Is Regulated by Ets-C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways.

    Science.gov (United States)

    Li, Chun; Hisamoto, Naoki; Matsumoto, Kunihiro

    2015-10-01

    The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. In Caenorhabditis elegans, the JNK and p38 MAPK pathways are important for axon regeneration. Axonal injury induces expression of the svh-2 gene encoding a receptor tyrosine kinase, stimulation of which by the SVH-1 growth factor leads to activation of the JNK pathway. Here, we identify ETS-4 and CEBP-1, related to mammalian Ets and C/EBP, respectively, as transcriptional activators of svh-2 expression following axon injury. ETS-4 and CEBP-1 function downstream of the cAMP and Ca2+-p38 MAPK pathways, respectively. We show that PKA-dependent phosphorylation of ETS-4 promotes its complex formation with CEBP-1. Furthermore, activation of both cAMP and Ca2+ signaling is required for activation of svh-2 expression. Thus, the cAMP/Ca2+ signaling pathways cooperatively activate the JNK pathway, which then promotes axon regeneration.

  12. Axon Regeneration Is Regulated by Ets-C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Chun Li

    2015-10-01

    Full Text Available The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. In Caenorhabditis elegans, the JNK and p38 MAPK pathways are important for axon regeneration. Axonal injury induces expression of the svh-2 gene encoding a receptor tyrosine kinase, stimulation of which by the SVH-1 growth factor leads to activation of the JNK pathway. Here, we identify ETS-4 and CEBP-1, related to mammalian Ets and C/EBP, respectively, as transcriptional activators of svh-2 expression following axon injury. ETS-4 and CEBP-1 function downstream of the cAMP and Ca2+-p38 MAPK pathways, respectively. We show that PKA-dependent phosphorylation of ETS-4 promotes its complex formation with CEBP-1. Furthermore, activation of both cAMP and Ca2+ signaling is required for activation of svh-2 expression. Thus, the cAMP/Ca2+ signaling pathways cooperatively activate the JNK pathway, which then promotes axon regeneration.

  13. Axon-glial interactions in the central nervous system

    OpenAIRE

    Butt, Arthur; Bay, Virginia

    2011-01-01

    Axon-glial interactions are critical for brain information transmission and processing. In the CNS, this is a function of the major types of glia – astrocytes, oligodendrocytes and novel NG2-glia. This special issue of the Journal of Anatomy comprises contributions arising from a symposium entitled ‘Axon-glial interactions in the CNS’, held at the University of Portsmouth, UK in July 2010. The aim of the special issue is to bring together an international group of experts to demonstrate the c...

  14. Giant Axonal Neuropathy Among Two Siblings - A Case Report

    Directory of Open Access Journals (Sweden)

    John Jhon. K

    2001-01-01

    Full Text Available Giant axonal neuropathy is a rate disorder with an autosomal recessive inheritance. It should be differentiated from toxic neuropathies, and hereditary degenerative disorders of nervous system like Friedreich′s ataxia and HMSN. Thick curly hair, though may not be present always is a useful clinical clue to identify cases. Prognosis is generally poor though course of the illness is variable. We report here a clinically and hisopathologically characteristic familial case of giant axonal neuropathy, which occurred in a 17-year-old boy, and his 21-year-old sister.

  15. The reggie/flotillin connection to growth.

    Science.gov (United States)

    Stuermer, Claudia A O

    2010-01-01

    The proteins reggie-1 and reggie-2 were originally discovered in neurons during axon regeneration. Subsequently, they were independently identified as markers of lipid rafts in flotation assays and were hence named flotillins. Since then, reggie/flotillin proteins have been found to be evolutionarily conserved and are present in all vertebrate cells - yet their function has remained elusive and controversial. Recent results now show that reggie/flotillin proteins are indeed necessary for axon regeneration and growth: no axons form when reggies/flotillins are downregulated and signaling pathways controlling actin dynamics are perturbed. Their widespread expression and conservation, however, suggest that these proteins regulate basic cellular functions beyond regeneration. It is argued here that the reggie/flotillin proteins regulate processes vital to all cells - the targeted delivery of bulk membrane and specific membrane proteins from internal vesicle pools to strategically important sites including cell contact sites, the T cell cap, regenerating axons and growth cones and other protrusions. PMID:19896850

  16. RH Packaging Program Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-11-07

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: "...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." It further states: "...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with 10 Code of Federal Regulations (CFR) §71.8, "Deliberate Misconduct." Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. In accordance with 10 CFR Part 71, "Packaging and Transportation of Radioactive Material," certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, "Reporting of Defects and Noncompliance," regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to

  17. RH Packaging Program Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2008-01-12

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package (also known as the "RH-TRU 72-B cask") and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: "...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." It further states: "...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8, "Deliberate Misconduct." Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, "Packaging and Transportation of Radioactive Material," certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, "Reporting of Defects and Noncompliance," regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a

  18. Networks of Polarized Actin Filaments in the Axon Initial Segment Provide a Mechanism for Sorting Axonal and Dendritic Proteins

    Directory of Open Access Journals (Sweden)

    Kaori Watanabe

    2012-12-01

    Full Text Available Trafficking of proteins specifically to the axonal or somatodendritic membrane allows neurons to establish and maintain polarized compartments with distinct morphology and function. Diverse evidence suggests that an actin-dependent vesicle filter within the axon initial segment (AIS plays a critical role in polarized trafficking; however, no distinctive actin-based structures capable of comprising such a filter have been found within the AIS. Here, using correlative light and scanning electron microscopy, we visualized networks of actin filaments several microns wide within the AIS of cortical neurons in culture. Individual filaments within these patches are predominantly oriented with their plus ends facing toward the cell body, consistent with models of filter selectivity. Vesicles carrying dendritic proteins are much more likely to stop in regions occupied by the actin patches than in other regions, indicating that the patches likely prevent movement of dendritic proteins to the axon and thereby act as a vesicle filter.

  19. Targeted GAS6 delivery to the CNS protects axons from damage during experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Gruber, Ross C; Ray, Alex K; Johndrow, Christopher T; Guzik, Hillary; Burek, Dominika; de Frutos, Pablo García; Shafit-Zagardo, Bridget

    2014-12-01

    Growth arrest-specific protein 6 (GAS6) is a soluble agonist of the TYRO3, AXL, MERTK (TAM) family of receptor tyrosine kinases identified to have anti-inflammatory, neuroprotective, and promyelinating properties. During experimental autoimmune encephalomyelitis (EAE), wild-type (WT) mice demonstrate a significant induction of Gas6, Axl, and Mertk but not Pros1 or Tyro3 mRNA. We tested the hypothesis that intracerebroventricular delivery of GAS6 directly into the CNS of WT mice during myelin oligodendrocyte glycoprotein (MOG)-induced EAE would improve the clinical course of disease relative to artificial CSF (ACSF)-treated mice. GAS6 did not delay disease onset, but significantly reduced the clinical scores during peak and chronic EAE. Mice receiving GAS6 for 28 d had preserved SMI31(+) neurofilament immunoreactivity, significantly fewer SMI32(+) axonal swellings and spheroids and less demyelination relative to ACSF-treated mice. Alternate-day subcutaneous IFNβ injection did not enhance GAS6 treatment effectiveness. Gas6(-/-) mice sensitized with MOG35-55 peptide exhibit higher clinical scores during late peak to early chronic disease, with significantly increased SMI32(+) axonal swellings and Iba1(+) microglia/macrophages, enhanced expression of several proinflammatory mRNA molecules, and decreased expression of early oligodendrocyte maturation markers relative to WT mouse spinal cords with scores for 8 consecutive days. During acute EAE, flow cytometry showed significantly more macrophages but not T-cell infiltrates in Gas6(-/-) spinal cords than WT spinal cords. Our data are consistent with GAS6 being protective during EAE by dampening the inflammatory response, thereby preserving axonal integrity and myelination. PMID:25471571

  20. Rabies Virus Hijacks and accelerates the p75NTR retrograde axonal transport machinery.

    Science.gov (United States)

    Gluska, Shani; Zahavi, Eitan Erez; Chein, Michael; Gradus, Tal; Bauer, Anja; Finke, Stefan; Perlson, Eran

    2014-08-01

    Rabies virus (RABV) is a neurotropic virus that depends on long distance axonal transport in order to reach the central nervous system (CNS). The strategy RABV uses to hijack the cellular transport machinery is still not clear. It is thought that RABV interacts with membrane receptors in order to internalize and exploit the endosomal trafficking pathway, yet this has never been demonstrated directly. The p75 Nerve Growth Factor (NGF) receptor (p75NTR) binds RABV Glycoprotein (RABV-G) with high affinity. However, as p75NTR is not essential for RABV infection, the specific role of this interaction remains in question. Here we used live cell imaging to track RABV entry at nerve terminals and studied its retrograde transport along the axon with and without the p75NTR receptor. First, we found that NGF, an endogenous p75NTR ligand, and RABV, are localized in corresponding domains along nerve tips. RABV and NGF were internalized at similar time frames, suggesting comparable entry machineries. Next, we demonstrated that RABV could internalize together with p75NTR. Characterizing RABV retrograde movement along the axon, we showed the virus is transported in acidic compartments, mostly with p75NTR. Interestingly, RABV is transported faster than NGF, suggesting that RABV not only hijacks the transport machinery but can also manipulate it. Co-transport of RABV and NGF identified two modes of transport, slow and fast, that may represent a differential control of the trafficking machinery by RABV. Finally, we determined that p75NTR-dependent transport of RABV is faster and more directed than p75NTR-independent RABV transport. This fast route to the neuronal cell body is characterized by both an increase in instantaneous velocities and fewer, shorter stops en route. Hence, RABV may employ p75NTR-dependent transport as a fast mechanism to facilitate movement to the CNS.

  1. Membrane potential dynamics of axons in cultured hippocampal neurons probed by second-harmonic-generation imaging

    Science.gov (United States)

    Nuriya, Mutsuo; Yasui, Masato

    2010-03-01

    The electrical properties of axons critically influence the nature of communication between neurons. However, due to their small size, direct measurement of membrane potential dynamics in intact and complex mammalian axons has been a challenge. Furthermore, quantitative optical measurements of axonal membrane potential dynamics have not been available. To characterize the basic principles of somatic voltage signal propagation in intact axonal arbors, second-harmonic-generation (SHG) imaging is applied to cultured mouse hippocampal neurons. When FM4-64 is applied extracellularly to dissociated neurons, whole axonal arbors are visualized by SHG imaging. Upon action potential generation by somatic current injection, nonattenuating action potentials are recorded in intact axonal arbors. Interestingly, however, both current- and voltage-clamp recordings suggest that nonregenerative subthreshold somatic voltage changes at the soma are poorly conveyed to these axonal sites. These results reveal the nature of membrane potential dynamics of cultured hippocampal neurons, and further show the possibility of SHG imaging in physiological investigations of axons.

  2. Diminished Schwann cell repair responses underlie age-associated impaired axonal regeneration.

    Science.gov (United States)

    Painter, Michio W; Brosius Lutz, Amanda; Cheng, Yung-Chih; Latremoliere, Alban; Duong, Kelly; Miller, Christine M; Posada, Sean; Cobos, Enrique J; Zhang, Alice X; Wagers, Amy J; Havton, Leif A; Barres, Ben; Omura, Takao; Woolf, Clifford J

    2014-07-16

    The regenerative capacity of the peripheral nervous system declines with age. Why this occurs, however, is unknown. We demonstrate that 24-month-old mice exhibit an impairment of functional recovery after nerve injury compared to 2-month-old animals. We find no difference in the intrinsic growth capacity between aged and young sensory neurons in vitro or in their ability to activate growth-associated transcriptional programs after injury. Instead, using age-mismatched nerve transplants in vivo, we show that the extent of functional recovery depends on the age of the nerve graft, and not the age of the host. Molecular interrogation of the sciatic nerve reveals that aged Schwann cells (SCs) fail to rapidly activate a transcriptional repair program after injury. Functionally, aged SCs exhibit impaired dedifferentiation, myelin clearance, and macrophage recruitment. These results suggest that the age-associated decline in axonal regeneration results from diminished Schwann cell plasticity, leading to slower myelin clearance. PMID:25033179

  3. Comparison of the fastest regenerating motor and sensory myelinated axons in the same peripheral nerve

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Sørensen, Jesper; Krarup, Christian

    2006-01-01

    the question of differences in growth rates of different nerve fibre populations led to conflicting results. We developed an animal model to compare growth and maturation of the fastest growing sensory and motor fibres within the same mixed nerve after Wallerian degeneration. Regeneration of cat tibial nerve......Functional outcome after peripheral nerve regeneration is often poor, particularly involving nerve injuries far from their targets. Comparison of sensory and motor axon regeneration before target reinnervation is not possible in the clinical setting, and previous experimental studies addressing...... after crush (n = 13) and section (n = 7) was monitored for up to 140 days, using implanted cuff electrodes placed around the sciatic and tibial nerves and wire electrodes at plantar muscles. To distinguish between sensory and motor fibres, recordings were carried out from L6-S2 spinal roots using cuff...

  4. Axon diameter and intra-axonal volume fraction of the corticospinal tract in idiopathic normal pressure hydrocephalus measured by q-space imaging.

    Directory of Open Access Journals (Sweden)

    Kouhei Kamiya

    Full Text Available PURPOSE: Previous studies suggest that compression and stretching of the corticospinal tract (CST potentially cause treatable gait disturbance in patients with idiopathic normal pressure hydrocephalus (iNPH. Measurement of axon diameter with diffusion MRI has recently been used to investigate microstructural alterations in neurological diseases. In this study, we investigated alterations in the axon diameter and intra-axonal fraction of the CST in iNPH by q-space imaging (QSI analysis. METHODS: Nineteen patients with iNPH and 10 age-matched controls were recruited. QSI data were obtained with a 3-T system by using a single-shot echo planar imaging sequence with the diffusion gradient applied parallel to the antero-posterior axis. By using a two-component low-q fit model, the root mean square displacements of intra-axonal space ( =  axon diameter and intra-axonal volume fraction of the CST were calculated at the levels of the internal capsule and body of the lateral ventricle, respectively. RESULTS: Wilcoxon's rank-sum test revealed a significant increase in CST intra-axonal volume fraction at the paraventricular level in patients (p<0.001, whereas no significant difference was observed in the axon diameter. At the level of the internal capsule, neither axon diameter nor intra-axonal volume fraction differed significantly between the two groups. CONCLUSION: Our results suggest that in patients with iNPH, the CST does not undergo irreversible axonal damage but is rather compressed and/or stretched owing to pressure from the enlarged ventricle. These analyses of axon diameter and intra-axonal fraction yield insights into microstructural alterations of the CST in iNPH.

  5. Transgenic inhibition of astroglial NF-kappa B leads to increased axonal sparing and sprouting following spinal cord injury.

    Science.gov (United States)

    Brambilla, Roberta; Hurtado, Andres; Persaud, Trikaldarshi; Esham, Kim; Pearse, Damien D; Oudega, Martin; Bethea, John R

    2009-07-01

    We previously showed that Nuclear Factor kappaB (NF-kappaB) inactivation in astrocytes leads to improved functional recovery following spinal cord injury (SCI). This correlated with reduced expression of pro-inflammatory mediators and chondroitin sulfate proteoglycans, and increased white matter preservation. Hence we hypothesized that inactivation of astrocytic NF-kappaB would create a more permissive environment for axonal sprouting and regeneration. We induced both contusive and complete transection SCI in GFAP-Inhibitor of kappaB-dominant negative (GFAP-IkappaBalpha-dn) and wild-type (WT) mice and performed retrograde [fluorogold (FG)] and anterograde [biotinylated dextran amine (BDA)] tracing 8 weeks after injury. Following contusive SCI, more FG-labeled cells were found in motor cortex, reticular formation, and raphe nuclei of transgenic mice. Spared and sprouting BDA-positive corticospinal axons were found caudal to the lesion in GFAP-IkappaBalpha-dn mice. Higher numbers of FG-labeled neurons were detected immediately rostral to the lesion in GFAP-IkappaBalpha-dn mice, accompanied by increased expression of synaptic and axonal growth-associated molecules. After transection, however, no FG-labeled neurons or BDA-filled axons were found rostral and caudal to the lesion, respectively, in either genotype. These data demonstrated that inhibiting astroglial NF-kappaB resulted in a growth-supporting terrain promoting sparing and sprouting, rather than regeneration, of supraspinal and propriospinal circuitries essential for locomotion, hence contributing to the improved functional recovery observed after SCI in GFAP-IkappaBalpha-dn mice.

  6. Differential Axonal Projection of Mitral and Tufted Cells in the Mouse Main Olfactory System

    Directory of Open Access Journals (Sweden)

    Shin Nagayama

    2010-09-01

    Full Text Available In the past decade, much has been elucidated regarding the functional organization of the axonal connection of olfactory sensory neurons to olfactory bulb (OB glomeruli. However, the manner in which projection neurons of the OB process odorant input and send this information to higher brain centers remains unclear. Here, we report long-range, large-scale tracing of the axonal projection patterns of OB neurons using two-photon microscopy. Tracer injection into a single glomerulus demonstrated widely distributed mitral/tufted cell axonal projections on the lateroventral surface of the mouse brain, including the anterior/posterior piriform cortex (PC and olfactory tubercle (OT. We noted two distinct groups of labeled axons: PC-orienting axons and OT-orienting axons. Each group occupied distinct parts of the lateral olfactory tract. PC-orienting axons projected axon collaterals to a wide area of the PC but only a few collaterals to the OT. OT-orienting axons densely projected axon collaterals primarily to the anterolateral OT (alOT. Different colored dye injections into the superficial and deep portions of the OB external plexiform layer revealed that the PC-orienting axon populations originated in presumed mitral cells and the OT-orienting axons in presumed tufted cells. These data suggest that although mitral and tufted cells receive similar odor signals from a shared glomerulus, they process the odor information in different ways and send their output to different higher brain centers via the PC and alOT.

  7. Spectrins in axonal cytoskeletons: Dynamics revealed by extensions and fluctuations

    Science.gov (United States)

    Lai, Lipeng; Cao, Jianshu

    2014-07-01

    The macroscopic properties, the properties of individual components, and how those components interact with each other are three important aspects of a composited structure. An understanding of the interplay between them is essential in the study of complex systems. Using axonal cytoskeleton as an example system, here we perform a theoretical study of slender structures that can be coarse-grained as a simple smooth three-dimensional curve. We first present a generic model for such systems based on the fundamental theorem of curves. We use this generic model to demonstrate the applicability of the well-known worm-like chain (WLC) model to the network level and investigate the situation when the system is stretched by strong forces (weakly bending limit). We specifically studied recent experimental observations that revealed the hitherto unknown periodic cytoskeleton structure of axons and measured the longitudinal fluctuations. Instead of focusing on single molecules, we apply analytical results from the WLC model to both single molecule and network levels and focus on the relations between extensions and fluctuations. We show how this approach introduces constraints to possible local dynamics of the spectrin tetramers in the axonal cytoskeleton and finally suggests simple but self-consistent dynamics of spectrins in which the spectrins in one spatial period of axons fluctuate in-sync.

  8. Life-or-death decisions upon axonal damage.

    Science.gov (United States)

    Roselli, Francesco; Caroni, Pico

    2012-02-01

    In this issue of Neuron, Hu et al. (2012) report that upon axonal damage, CHOP and XBP1 unfolded protein response pathways are not recruited equally and have opposite effects on neuronal survival. XBP1 pathway boosting may represent a valuable neuroprotective strategy.

  9. IFNgamma enhances microglial reactions to hippocampal axonal degeneration

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Lomholt, N D;

    2000-01-01

    periods. Message for the immune cytokine interferon-gamma (IFNgamma) was undetectable, and glial reactivity to axonal lesions occurred as normal in IFNgamma-deficient mice. Microglial responses to lesion-induced neuronal injury were markedly enhanced in myelin basic protein promoter-driven transgenic mice...

  10. Analysis of laser-induced heating in optical neuronal guidance

    DEFF Research Database (Denmark)

    Ebbesen, Christian L.; Bruus, Henrik

    2012-01-01

    Recently, it has been shown that it is possible to control the growth direction of neuronal growth cones by stimulation with weak laser light; an effect dubbed optical neuronal guidance. The effect exists for a broad range of laser wavelengths, spot sizes, spot intensities, optical intensity...... guided neuron have been neglected in the optical neuronal guidance literature. The results of our finite-element-method simulations show the relevance of the temperature field in optical guidance experiments and are consistent with published experimental results and modeling in the field of optical traps....... Furthermore, we propose two experiments designed to test this hypotheses experimentally. For one of these experiments, we have designed a microfluidic platform, to be made using standard microfabrication techniques, for incubation of neurons in temperature gradients on micrometer lengthscales....

  11. Activity-dependent development of cortical axon terminations in the spinal cord and brain stem.

    Science.gov (United States)

    Martin, J H; Kably, B; Hacking, A

    1999-03-01

    Corticospinal (CS) axon terminations in several species are widespread early in development but are subsequently refined into a spatially more restricted distribution. We studied the role of neural activity in sensorimotor cortex in shaping postnatal development of CS terminations in cats. We continuously infused muscimol unilaterally into sensorimotor cortex to silence neurons during the postnatal CS refinement period (weeks 3-7). Using anterograde transport of WGA-HRP, we examined the laterality of terminations from the muscimol-infused (i.e., silenced) and active sides in the spinal cord, as well as in the cuneate nucleus and red nucleus. We found that CS terminations from the muscimol-infused cortex were very sparse and limited to the contralateral side, while those from the active cortex maintained an immature bilateral topography. Controls (saline infusion, noninfusion) had dense, predominantly contralateral, CS terminations. There was a substantial decrease in the spinal gray matter area occupied by terminations from the side receiving the blockade and a concomitant increase in the area occupied by ipsilateral terminations from the active cortex. Optical density measurements of HRP reaction product from the active cortex in muscimol-infused animals showed substantial increases over controls in the ratio of ipsilateral to contralateral CS terminations for all laminae examined (IV-V, VI, VII). Our findings suggest that ipsilateral dorsal horn terminations reflect new axon growth during the refinement period because they are not present there earlier in development. Those in the ventral horn are present earlier in development and thus could reflect maintenance of transient terminations. Increased ipsilateral terminations from active cortex were due to recrossing of CS axons in lamina X and not to an increase in labeled CS axons in the ipsilateral white matter. Examination of brain stem terminations suggested that, between postnatal weeks 3 and 7, development of

  12. Poly-l-lysine-coated magnetic nanoparticles as intracellular actuators for neural guidance

    Directory of Open Access Journals (Sweden)

    Riggio C

    2012-06-01

    Full Text Available Cristina Riggio,1,* Maria Pilar Calatayud,2,* Clare Hoskins,3 Josephine Pinkernelle,4 Beatriz Sanz,2 Teobaldo Enrique Torres,2,5 Manuel Ricardo Ibarra,2,5 Lijun Wang,3 Gerburg Keilhoff,4 Gerardo Fabian Goya,2,5 Vittoria Raffa,1,6 Alfred Cuschieri1,3 1Institute of Life Science, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà, Pisa, Italy; 2Instituto de Nanociencia de Aragón, Universidad de Zaragoza. Mariano Esquillor, Zaragoza, Spain; 3IMSaT, Institute for Medical Science and Technology, University of Dundee, Dundee, Scotland; 4Otto-von-Guericke University, Institute of Biochemistry and Cell Biology, Magdeburg, Germany; 5Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza. Cerbuna 12, Zaragoza, Spain; 6Department of Biology, Università di Pisa, Pisa, Italy*These authors contributed equally to this workPurpose: It has been proposed in the literature that Fe3O4 magnetic nanoparticles (MNPs could be exploited to enhance or accelerate nerve regeneration and to provide guidance for regenerating axons. MNPs could create mechanical tension that stimulates the growth and elongation of axons. Particles suitable for this purpose should possess (1 high saturation magnetization, (2 a negligible cytotoxic profile, and (3 a high capacity to magnetize mammalian cells. Unfortunately, the materials currently available on the market do not satisfy these criteria; therefore, this work attempts to overcome these deficiencies.Methods: Magnetite particles were synthesized by an oxidative hydrolysis method and characterized based on their external morphology and size distribution (high-resolution transmission electron microscopy [HR-TEM] as well as their colloidal (Z potential and magnetic properties (Superconducting QUantum Interference Devices [SQUID]. Cell viability was assessed via Trypan blue dye exclusion assay, cell doubling time, and MTT cell proliferation assay and reactive oxygen species production

  13. Satellite glial cells can promote the extension of neuronal axons in vitro

    Institute of Scientific and Technical Information of China (English)

    Jiu-Hong Zhao; Yi-Di Huang; Xi-Nan Yi; Quan-Peng Zhang; Xian-Fang Zhang; Xu Dong; Gang Luo; Hai-Ying Zhang; Kun-Ju Wang; Mei-Li Lao

    2015-01-01

    Objective: To study the influence of satellite glial cells (SGCs) on the outgrowth of neuronal neurite and the role of Slit1 protein and the contact with neurons in this process, in vitro. Methods: Neurons culture and SGC-neuron co-culture were used as the cell models. The length of axons and dendrites were measured via immunofluorescence to observe the influence of SGCs on the outgrowth of neuronal neurite. The Slit1 protein was added into SGC-neuron co-culture model. The length of dendrites was measured via immunofluorescence at different point times. Result: The anatomical relationship between neurons and SGCs changed as culture period expand. At 12 h after culture, SGCs all surrounded neurons; by 72 h after culture, SGCs were all off neurons. SGCs can promote the growth of neuronal axos, but inhibit the growth of its dendrites; when SGCs closely contact with neurons, the effect of Slit1 on promoting the dendritic growth is not obvious, but when SGCs were off neurons, the effect of Slit1 on promoting the dendritic growth is significant. Conclusion: SGCs can promote the growth of neuronal axos, but inhibit the growth of its dendrites; Slit- Robo signaling pathways and contact with neurons play a role in this process.

  14. Response to work activity guidance

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This memorandum is concerning the request from the FY95 Platte-Kansas Rivers Ecosystem Work Activity Guidance for refuge managers to review the purposes of refuges...

  15. Outer Electrospun Polycaprolactone Shell Induces Massive Foreign Body Reaction and Impairs Axonal Regeneration through 3D Multichannel Chitosan Nerve Guides

    Directory of Open Access Journals (Sweden)

    Sven Duda

    2014-01-01

    Full Text Available We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT. The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts.

  16. Outer Electrospun Polycaprolactone Shell Induces Massive Foreign Body Reaction and Impairs Axonal Regeneration through 3D Multichannel Chitosan Nerve Guides

    Science.gov (United States)

    Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts. PMID:24818158

  17. Guidance Systems of Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    K.N. Rajanikanth

    2005-07-01

    Full Text Available Mission performance of a fighter aircraft is crucial for survival and strike capabilities in todays' aerial warfare scenario. The guidance functions of such an aircraft play a vital role inmeeting the requirements and accomplishing the mission success. This paper presents the requirements of precision guidance for various missions of a fighter aircraft. The concept ofguidance system as a pilot-in-loop system is pivotal in understanding and designing such a system. Methodologies of designing such a system are described.

  18. Axonal regeneration and development of de novo axons from distal dendrites of adult feline commissural interneurons after a proximal axotomy

    DEFF Research Database (Denmark)

    Fenrich, Keith K; Skelton, Nicole; MacDermid, Victoria E;

    2007-01-01

    the soma or a very proximal dendrite. L-ALPs were devoid of MAP2a/b immunoreactivity. Some of these L-ALPs projected through the lesion and formed bouton-like swellings. These results suggest that proximally axotomized spinal interneurons have the potential to form new connections via de novo axons...

  19. White matter involvement after TBI: Clues to axon and myelin repair capacity.

    Science.gov (United States)

    Armstrong, Regina C; Mierzwa, Amanda J; Marion, Christina M; Sullivan, Genevieve M

    2016-01-01

    Impact-acceleration forces to the head cause traumatic brain injury (TBI) with damage in white matter tracts comprised of long axons traversing the brain. White matter injury after TBI involves both traumatic axonal injury (TAI) and myelin pathology that evolves throughout the post-injury time course. The axon response to initial mechanical forces and secondary insults follows the process of Wallerian degeneration, which initiates as a potentially reversible phase of intra-axonal damage and proceeds to an irreversible phase of axon fragmentation. Distal to sites of axon disconnection, myelin sheaths remain for prolonged periods, which may activate neuroinflammation and inhibit axon regeneration. In addition to TAI, TBI can cause demyelination of intact axons. These evolving features of axon and myelin pathology also represent opportunities for repair. In experimental TBI, demyelinated axons exhibit remyelination, which can serve to both protect axons and facilitate recovery of function. Myelin remodeling may also contribute to neuroplasticity. Efficient clearance of myelin debris is a potential target to attenuate the progression of chronic pathology. During the early phase of Wallerian degeneration, interventions that prevent the transition from reversible damage to axon disconnection warrant the highest priority, based on the poor regenerative capacity of axons in the CNS. Clinical evaluation of TBI will need to address the challenge of accurately detecting the extent and stage of axon damage. Distinguishing the complex white matter changes associated with axons and myelin is necessary for interpreting advanced neuroimaging approaches and for identifying a broader range of therapeutic opportunities to improve outcome after TBI. PMID:25697845

  20. IH activity is increased in populations of slow versus fast motor axons of the rat.

    Directory of Open Access Journals (Sweden)

    Chad eLorenz

    2014-09-01

    Full Text Available Much is known about the electrophysiological variation in motoneuron somata across different motor units. However comparatively less is known about electrophysiological variation in motor axons and how this could impact function or electrodiagnosis in healthy or diseased states. We performed nerve excitability testing on two groups of motor axons in Sprague-Dawley rats that are known to differ significantly in their chronic daily activity patterns and in the relative proportion of motor unit types: one group innervating the soleus (slow motor axons and the other group innervating the tibialis anterior (fast motor axons muscles. We found that slow motor axons have significantly larger accommodation compared to fast motor axons upon application of a 100 ms hyperpolarizing conditioning stimulus that is 40% of axon threshold (Z = 3.24, p = 0.001 or 20% of axon threshold (Z = 2.67, p = 0.008. Slow motor axons had larger accommodation to hyperpolarizing currents in the current-threshold measurement (-80% Z = 3.07, p = 0.002; -90% Z = 2.98, p = 0.003. In addition, we found that slow motor axons have a significantly smaller rheobase than fast motor axons (Z = -1.99, p = 0.047 accompanied by a lower threshold in stimulus-response curves. The results provide evidence that slow motor axons have greater activity of the hyperpolarization-activated inwardly rectifying cation conductance (IH than fast motor axons. It is possible that this difference between fast and slow axons is caused by an adaptation to their chronic differences in daily activity patterns, and that this adaptation might have a functional effect on the motor unit. Moreover, these findings indicate that slow and fast motor axons may react differently to pathological conditions.

  1. Issues and Trends in Secondary Guidance and Counseling Programs

    Science.gov (United States)

    Pietrofesa, John J.

    1970-01-01

    Utilization of counseling groups leads to (1) variety of approaches, (2) more directive counseling, (3) counselees with varied backgrounds, (4) growth of groups for interracial harmony. Changes in counselor role by use of: (1) paraprofessionals, (2) guidance workers, (3) cybernetics, (4) developmental approach in an existential framework. (EK)

  2. Ameliorative Effects of p75NTR-ED-Fc on Axonal Regeneration and Functional Recovery in Spinal Cord-Injured Rats.

    Science.gov (United States)

    Wang, Yong-Tang; Lu, Xiu-Min; Zhu, Feng; Huang, Peng; Yu, Ying; Long, Zai-Yun; Wu, Ya-Min

    2015-12-01

    As a co-receptor of Nogo-66 receptor (NgR) and a critical receptor for paired immunoglobulin-like receptor (PirB), p75 neurotrophin receptor (p75NTR) mediates the inhibitory effects of myelin-associated inhibitors on axonal regeneration after spinal cord injury. Therefore, the p75NTR antagonist, such as recombinant p75NTR protein or its homogenates may block the inhibitory effects of myelin and promote the axonal regeneration and functional recovery. The purposes of this study are to subclone and express the extracellular domain gene of human p75NTR with IgG-Fc (hp75NTR-ED-Fc) in prokaryotic expression system and investigate the effects of the recombinant protein on axonal regeneration and functional recovery in spinal cord-injured rats. The hp75NTR-ED-Fc coding sequence was amplified from pcDNA-hp75NTR-ED-Fc by polymerase chain reaction (PCR) and subcloned into vector pET32a (+), then the effects of the purified recombinant protein on neurite outgrowth of dorsal root ganglion (DRG) neurons cultured with myelin-associated glycoprotein (MAG) were determined, and the effects of the fusion protein on axonal regeneration, functional recovery, and its possible mechanisms in spinal cord-injured rats were further investigated. The results indicated that the purified infusion protein could promote neurite outgrowth of DRG neurons, promote axonal regeneration and functional recovery, and decrease RhoA activation in spinal cord-injured rats. Taken together, the findings revealed that p75NTR still may be a potential and novel target for therapeutic intervention for spinal cord injury and that the hp75NTR-ED-Fc fusion protein treatment enhances functional recovery by limiting tissue loss and stimulating axonal growth in spinal cord-injured rats, which may result from decreasing the activation of RhoA.

  3. Complementary effects of two growth factors in multifunctionalized silk nanofibers for nerve reconstruction.

    Directory of Open Access Journals (Sweden)

    Tony M Dinis

    Full Text Available With the aim of forming bioactive guides for peripheral nerve regeneration, silk fibroin was electrospun to obtain aligned nanofibers. These fibers were functionalized by incorporating Nerve Growth Factor (NGF and Ciliary NeuroTrophic Factor (CNTF during electrospinning. PC12 cells grown on the fibers confirmed the bioavailability and bioactivity of the NGF, which was not significantly released from the fibers. Primary neurons from rat dorsal root ganglia (DRGs were grown on the nanofibers and anchored to the fibers and grew in a directional fashion based on the fiber orientation, and as confirmed by growth cone morphology. These biofunctionalized nanofibers led to a 3-fold increase in neurite length at their contact, which was likely due to the NGF. Glial cell growth, alignment and migration were stimulated by the CNTF in the functionalized nanofibers. Organotypic culture of rat fetal DRGs confirmed the complementary effect of both growth factors in multifunctionalized nanofibers, which allowed glial cell migration, alignment and parallel axonal growth in structures resembling the 'bands of Bungner' found in situ. Graftable multi-channel conduits based on biofunctionalized aligned silk nanofibers were developed as an organized 3D scaffold. Our bioactive silk tubes thus represent new options for a biological and biocompatible nerve guidance conduit.

  4. Neuregulin1 displayed on motor axons regulates terminal Schwann cell-mediated synapse elimination at developing neuromuscular junctions.

    Science.gov (United States)

    Lee, Young Il; Li, Yue; Mikesh, Michelle; Smith, Ian; Nave, Klaus-Armin; Schwab, Markus H; Thompson, Wesley J

    2016-01-26

    Synaptic connections in the nervous system are rearranged during development and in adulthood as a feature of growth, plasticity, aging, and disease. Glia are implicated as active participants in these changes. Here we investigated a signal that controls the participation of peripheral glia, the terminal Schwann cells (SCs), at the neuromuscular junction (NMJ) in mice. Transgenic manipulation of the levels of membrane-tethered neuregulin1 (NRG1-III), a potent activator of SCs normally presented on motor axons, alters the rate of loss of motor inputs at NMJs during developmental synapse elimination. In addition, NMJs of adult transgenic mice that expressed excess axonal NRG1-III exhibited continued remodeling, in contrast to the more stable morphologies of controls. In fact, synaptic SCs of these adult mice with NRG1-III overexpression exhibited behaviors evident in wild type neonates during synapse elimination, including an affinity for the postsynaptic myofiber surface and phagocytosis of nerve terminals. Given that levels of NRG1-III expression normally peak during the period of synapse elimination, our findings identify axon-tethered NRG1 as a molecular determinant for SC-driven neuromuscular synaptic plasticity.

  5. Alterations of mitochondrial dynamics allow retrograde propagation of locally initiated axonal insults.

    Science.gov (United States)

    Lassus, Benjamin; Magifico, Sebastien; Pignon, Sandra; Belenguer, Pascale; Miquel, Marie-Christine; Peyrin, Jean-Michel

    2016-01-01

    In chronic neurodegenerative syndromes, neurons progressively die through a generalized retraction pattern triggering retrograde axonal degeneration toward the cell bodies, which molecular mechanisms remain elusive. Recent observations suggest that direct activation of pro-apoptotic signaling in axons triggers local degenerative events associated with early alteration of axonal mitochondrial dynamics. This raises the question of the role of mitochondrial dynamics on both axonal vulnerability stress and their implication in the spreading of damages toward unchallenged parts of the neuron. Here, using microfluidic chambers, we assessed the consequences of interfering with OPA1 and DRP1 proteins on axonal degeneration induced by local application of rotenone. We found that pharmacological inhibition of mitochondrial fission prevented axonal damage induced by rotenone, in low glucose conditions. While alteration of mitochondrial dynamics per se did not lead to spontaneous axonal degeneration, it dramatically enhanced axonal vulnerability to rotenone, which had no effect in normal glucose conditions, and promoted retrograde spreading of axonal degeneration toward the cell body. Altogether, our results suggest a mitochondrial priming effect in axons as a key process of axonal degeneration. In the context of neurodegenerative diseases, like Parkinson's and Alzheimer's, mitochondria fragmentation could hasten neuronal death and initiate spatial dispersion of locally induced degenerative events. PMID:27604820

  6. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons

    Science.gov (United States)

    Kirkpatrick, L. L.; Witt, A. S.; Payne, H. R.; Shine, H. D.; Brady, S. T.

    2001-01-01

    Altered axon-Schwann cell interactions in PNS myelin-deficient Trembler mice result in changed axonal transport rates, neurofilament and microtubule-associated protein phosphorylation, neurofilament density, and microtubule stability. To determine whether PNS and CNS myelination have equivalent effects on axons, neurofilaments, and microtubules in CNS, myelin-deficient shiverer axons were examined. The genetic defect in shiverer is a deletion in the myelin basic protein (MBP) gene, an essential component of CNS myelin. As a result, shiverer mice have little or no compact CNS myelin. Slow axonal transport rates in shiverer CNS axons were significantly increased, in contrast to the slowing in demyelinated PNS nerves. Even more striking were substantial changes in the composition and properties of microtubules in shiverer CNS axons. The density of axonal microtubules is increased, reflecting increased expression of tubulin in shiverer, and the stability of microtubules is drastically reduced in shiverer axons. Shiverer transgenic mice with two copies of a wild-type myelin basic protein transgene have an intermediate level of compact myelin, making it possible to determine whether the actual level of compact myelin is an important regulator of axonal microtubules. Both increased microtubule density and reduced microtubule stability were still observed in transgenic mouse nerves, indicating that signals beyond synaptogenesis and the mere presence of compact myelin are required for normal regulation of the axonal microtubule cytoskeleton.

  7. Hierarchical patterning of multifunctional conducting polymer nanoparticles as a bionic platform for topographic contact guidance.

    Science.gov (United States)

    Ho, Dominic; Zou, Jianli; Chen, Xianjue; Munshi, Alaa; Smith, Nicole M; Agarwal, Vipul; Hodgetts, Stuart I; Plant, Giles W; Bakker, Anthony J; Harvey, Alan R; Luzinov, Igor; Iyer, K Swaminathan

    2015-02-24

    The use of programmed electrical signals to influence biological events has been a widely accepted clinical methodology for neurostimulation. An optimal biocompatible platform for neural activation efficiently transfers electrical signals across the electrode-cell interface and also incorporates large-area neural guidance conduits. Inherently conducting polymers (ICPs) have emerged as frontrunners as soft biocompatible alternatives to traditionally used metal electrodes, which are highly invasive and elicit tissue damage over long-term implantation. However, fabrication techniques for the ICPs suffer a major bottleneck, which limits their usability and medical translation. Herein, we report that these limitations can be overcome using colloidal chemistry to fabricate multimodal conducting polymer nanoparticles. Furthermore, we demonstrate that these polymer nanoparticles can be precisely assembled into large-area linear conduits using surface chemistry. Finally, we validate that this platform can act as guidance conduits for neurostimulation, whereby the presence of electrical current induces remarkable dendritic axonal sprouting of cells.

  8. Regulation of neuronal axon specification by glia-neuron gap junctions in C. elegans

    Science.gov (United States)

    Meng, Lingfeng; Zhang, Albert; Jin, Yishi; Yan, Dong

    2016-01-01

    Axon specification is a critical step in neuronal development, and the function of glial cells in this process is not fully understood. Here, we show that C. elegans GLR glial cells regulate axon specification of their nearby GABAergic RME neurons through GLR-RME gap junctions. Disruption of GLR-RME gap junctions causes misaccumulation of axonal markers in non-axonal neurites of RME neurons and converts microtubules in those neurites to form an axon-like assembly. We further uncover that GLR-RME gap junctions regulate RME axon specification through activation of the CDK-5 pathway in a calcium-dependent manner, involving a calpain clp-4. Therefore, our study reveals the function of glia-neuron gap junctions in neuronal axon specification and shows that calcium originated from glial cells can regulate neuronal intracellular pathways through gap junctions. DOI: http://dx.doi.org/10.7554/eLife.19510.001 PMID:27767956

  9. Interplay between kinesin-1 and cortical dynein during axonal outgrowth and microtubule organization in Drosophila neurons.

    Science.gov (United States)

    del Castillo, Urko; Winding, Michael; Lu, Wen; Gelfand, Vladimir I

    2015-12-28

    In this study, we investigated how microtubule motors organize microtubules in Drosophila neurons. We showed that, during the initial stages of axon outgrowth, microtubules display mixed polarity and minus-end-out microtubules push the tip of the axon, consistent with kinesin-1 driving outgrowth by sliding antiparallel microtubules. At later stages, the microtubule orientation in the axon switches from mixed to uniform polarity with plus-end-out. Dynein knockdown prevents this rearrangement and results in microtubules of mixed orientation in axons and accumulation of microtubule minus-ends at axon tips. Microtubule reorganization requires recruitment of dynein to the actin cortex, as actin depolymerization phenocopies dynein depletion, and direct recruitment of dynein to the membrane bypasses the actin requirement. Our results show that cortical dynein slides 'minus-end-out' microtubules from the axon, generating uniform microtubule arrays. We speculate that differences in microtubule orientation between axons and dendrites could be dictated by differential activity of cortical dynein.

  10. Quality in career guidance: The Danish case

    DEFF Research Database (Denmark)

    Plant, Peter

    2011-01-01

    Quality assurance systems are introduced in career guidance to monitor, control and develop guidance interventions. The Danish case represents at centrally driven, top-down approach......Quality assurance systems are introduced in career guidance to monitor, control and develop guidance interventions. The Danish case represents at centrally driven, top-down approach...

  11. Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury

    Science.gov (United States)

    Gey, Manuel; Wanner, Renate; Schilling, Corinna; Pedro, Maria T.; Sinske, Daniela

    2016-01-01

    Axon injury in the peripheral nervous system (PNS) induces a regeneration-associated gene (RAG) response. Atf3 (activating transcription factor 3) is such a RAG and ATF3's transcriptional activity might induce ‘effector’ RAGs (e.g. small proline rich protein 1a (Sprr1a), Galanin (Gal), growth-associated protein 43 (Gap43)) facilitating peripheral axon regeneration. We provide a first analysis of Atf3 mouse mutants in peripheral nerve regeneration. In Atf3 mutant mice, facial nerve regeneration and neurite outgrowth of adult ATF3-deficient primary dorsal root ganglia neurons was decreased. Using genome-wide transcriptomics, we identified a neuropeptide-encoding RAG cluster (vasoactive intestinal peptide (Vip), Ngf, Grp, Gal, Pacap) regulated by ATF3. Exogenous administration of neuropeptides enhanced neurite growth of Atf3 mutant mice suggesting that these molecules might be effector RAGs of ATF3's pro-regenerative function. In addition to the induction of growth-promoting molecules, we present data that ATF3 suppresses growth-inhibiting molecules such as chemokine (C-C motif) ligand 2. In summary, we show a pro-regenerative ATF3 function during PNS nerve regeneration involving transcriptional activation of a neuropeptide-encoding RAG cluster. ATF3 is a general injury-inducible factor, therefore ATF3-mediated mechanisms identified herein might apply to other cell and injury types. PMID:27581653

  12. Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury.

    Science.gov (United States)

    Gey, Manuel; Wanner, Renate; Schilling, Corinna; Pedro, Maria T; Sinske, Daniela; Knöll, Bernd

    2016-08-01

    Axon injury in the peripheral nervous system (PNS) induces a regeneration-associated gene (RAG) response. Atf3 (activating transcription factor 3) is such a RAG and ATF3's transcriptional activity might induce 'effector' RAGs (e.g. small proline rich protein 1a (Sprr1a), Galanin (Gal), growth-associated protein 43 (Gap43)) facilitating peripheral axon regeneration. We provide a first analysis of Atf3 mouse mutants in peripheral nerve regeneration. In Atf3 mutant mice, facial nerve regeneration and neurite outgrowth of adult ATF3-deficient primary dorsal root ganglia neurons was decreased. Using genome-wide transcriptomics, we identified a neuropeptide-encoding RAG cluster (vasoactive intestinal peptide (Vip), Ngf, Grp, Gal, Pacap) regulated by ATF3. Exogenous administration of neuropeptides enhanced neurite growth of Atf3 mutant mice suggesting that these molecules might be effector RAGs of ATF3's pro-regenerative function. In addition to the induction of growth-promoting molecules, we present data that ATF3 suppresses growth-inhibiting molecules such as chemokine (C-C motif) ligand 2. In summary, we show a pro-regenerative ATF3 function during PNS nerve regeneration involving transcriptional activation of a neuropeptide-encoding RAG cluster. ATF3 is a general injury-inducible factor, therefore ATF3-mediated mechanisms identified herein might apply to other cell and injury types. PMID:27581653

  13. Antiretroviral Therapy-Associated Acute Motor and Sensory Axonal Neuropathy

    Directory of Open Access Journals (Sweden)

    Kimberly N. Capers

    2011-01-01

    Full Text Available Guillain-Barré syndrome (GBS has been reported in HIV-infected patients in association with the immune reconstitution syndrome whose symptoms can be mimicked by highly active antiretroviral therapy (HAART-mediated mitochondrial toxicity. We report a case of a 17-year-old, HIV-infected patient on HAART with a normal CD4 count and undetectable viral load, presenting with acute lower extremity weakness associated with lactatemia. Electromyography/nerve conduction studies revealed absent sensory potentials and decreased compound muscle action potentials, consistent with a diagnosis of acute motor and sensory axonal neuropathy. Lactatemia resolved following cessation of HAART; however, neurological deficits minimally improved over several months in spite of immune modulatory therapy. This case highlights the potential association between HAART, mitochondrial toxicity and acute axonal neuropathies in HIV-infected patients, distinct from the immune reconstitution syndrome.

  14. Missed connections: photoreceptor axon seeks target neuron for synaptogenesis.

    Science.gov (United States)

    Astigarraga, Sergio; Hofmeyer, Kerstin; Treisman, Jessica E

    2010-08-01

    Extending axons must choose the appropriate synaptic target cells in order to assemble functional neural circuitry. The axons of the Drosophila color-sensitive photoreceptors R7 and R8 project as a single fascicle from each ommatidium, but their terminals are segregated into distinct layers within their target region. Recent studies have begun to reveal the molecular mechanisms that establish this projection pattern. Both homophilic adhesion molecules and specific ligand-receptor interactions make important contributions to stabilizing R7 and R8 terminals in the appropriate target layers. These cell recognition molecules are regulated by the same transcription factors that control R7 and R8 cell fates. Autocrine and repulsive signaling mechanisms prevent photoreceptor terminals from encroaching on their neighbors, preserving the spatial resolution of visual information. PMID:20434326

  15. 78 FR 56752 - Interim Staff Guidance Specific Environmental Guidance for Integral Pressurized Water Reactors...

    Science.gov (United States)

    2013-09-13

    ... COMMISSION Interim Staff Guidance Specific Environmental Guidance for Integral Pressurized Water Reactors... and operate integral pressurized water reactors (iPWR). This guidance applies to environmental reviews... Environmental Guidance for iPWR Reviews.'' The purpose of this ISG is to clarify the NRC guidance...

  16. Difference in trafficking of brain-derived neurotrophic factor between axons and dendrites of cortical neurons, revealed by live-cell imaging

    Directory of Open Access Journals (Sweden)

    Kohara Keigo

    2005-06-01

    Full Text Available Abstract Background Brain-derived neurotrophic factor (BDNF, which is sorted into a regulated secretory pathway of neurons, is supposed to act retrogradely through dendrites on presynaptic neurons or anterogradely through axons on postsynaptic neurons. Depending on which is the case, the pattern and direction of trafficking of BDNF in dendrites and axons are expected to be different. To address this issue, we analyzed movements of green fluorescent protein (GFP-tagged BDNF in axons and dendrites of living cortical neurons by time-lapse imaging. In part of the experiments, the expression of BDNF tagged with cyan fluorescent protein (CFP was compared with that of nerve growth factor (NGF tagged with yellow fluorescent protein (YFP, to see whether fluorescent protein-tagged BDNF is expressed in a manner specific to this neurotrophin. Results We found that BDNF tagged with GFP or CFP was expressed in a punctated manner in dendrites and axons in about two-thirds of neurons into which plasmid cDNAs had been injected, while NGF tagged with GFP or YFP was diffusely expressed even in dendrites in about 70% of the plasmid-injected neurons. In neurons in which BDNF-GFP was expressed as vesicular puncta in axons, 59 and 23% of the puncta were moving rapidly in the anterograde and retrograde directions, respectively. On the other hand, 64% of BDNF-GFP puncta in dendrites did not move at all or fluttered back and forth within a short distance. The rest of the puncta in dendrites were moving relatively smoothly in either direction, but their mean velocity of transport, 0.47 ± 0.23 (SD μm/s, was slower than that of the moving puncta in axons (0.73 ± 0.26 μm/s. Conclusion The present results show that the pattern and velocity of the trafficking of fluorescence protein-tagged BDNF are different between axons and dendrites, and suggest that the anterograde transport in axons may be the dominant stream of BDNF to release sites.

  17. Estimating neuronal connectivity from axonal and dendritic density fields

    Directory of Open Access Journals (Sweden)

    Jaap evan Pelt

    2013-11-01

    Full Text Available Neurons innervate space by extending axonal and dendritic arborizations. When axons and dendrites come in close proximity of each other, synapses between neurons can be formed. Neurons vary greatly in their morphologies and synaptic connections with other neurons. The size and shape of the arborizations determine the way neurons innervate space. A neuron may therefore be characterized by the spatial distribution of its axonal and dendritic 'mass'. A population mean 'mass' density field of a particular neuron type can be obtained by averaging over the individual variations in neuron geometries. Connectivity in terms of candidate synaptic contacts between neurons can be determined directly on the basis of their arborizations but also indirectly on the basis of their density fields. To decide when a candidate synapse can be formed, we previously developed a criterion defining that axonal and dendritic line pieces should cross in 3D and have an orthogonal distance less than a threshold value. In this paper, we developed new methodology for applying this criterion to density fields. We show that estimates of the number of contacts between neuron pairs calculated from their density fields are fully consistent with the number of contacts calculated from the actual arborizations. However, the estimation of the connection probability and the expected number of contacts per connection cannot be calculated directly from density fields, because density fields do not carry anymore the correlative structure in the spatial distribution of synaptic contacts. Alternatively, these two connectivity measures can be estimated from the expected number of contacts by using empirical mapping functions. The neurons used for the validation studies were generated by our neuron simulator NETMORPH. An example is given of the estimation of average connectivity and Euclidean pre- and postsynaptic distance distributions in a network of neurons represented by their population

  18. Bazooka mediates secondary axon morphology in Drosophila brain lineages

    OpenAIRE

    Hartenstein Volker; Spindler Shana R

    2011-01-01

    Abstract In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that mul...

  19. Tau phosphorylation affects its axonal transport and degradation

    OpenAIRE

    Rodríguez-Martín, Teresa; Cuchillo-Ibáñez, Inmaculada; Noble, Wendy; Nyenya, Fanon; Anderton, Brian H; Hanger, Diane P.

    2013-01-01

    Phosphorylated forms of microtubule-associated protein tau accumulate in neurofibrillary tangles in Alzheimer's disease. To investigate the effects of specific phosphorylated tau residues on its function, wild type or phosphomutant tau was expressed in cells. Elevated tau phosphorylation decreased its microtubule binding and bundling, and increased the number of motile tau particles, without affecting axonal transport kinetics. In contrast, reducing tau phosphorylation enhanced the amount of ...

  20. Adult motor axons preferentially reinnervate predegenerated muscle nerve

    OpenAIRE

    M. Abdullah; O'Daly, A.; A Vyas; Rohde, C.; Brushart, T.M.

    2013-01-01

    Preferential motor reinnervation (PMR) is the tendency for motor axons regenerating after repair of mixed nerve to reinnervate muscle nerve and/or muscle rather than cutaneous nerve or skin. PMR may occur in response to the peripheral nerve pathway alone in juvenile rats (Brushart, 1993; Redett et al., 2005), yet the ability to identify and respond to specific pathway markers is reportedly lost in adults (Uschold et al., 2007). The experiments reported here evaluate the relative roles of path...

  1. Neuritin 1 promotes retinal ganglion cell survival and axonal regeneration following optic nerve crush.

    Science.gov (United States)

    Sharma, T P; Liu, Y; Wordinger, R J; Pang, I-H; Clark, A F

    2015-01-01

    Neuritin 1 (Nrn1) is an extracellular glycophosphatidylinositol-linked protein that stimulates axonal plasticity, dendritic arborization and synapse maturation in the central nervous system (CNS). The purpose of this study was to evaluate the neuroprotective and axogenic properties of Nrn1 on axotomized retinal ganglion cells (RGCs) in vitro and on the in vivo optic nerve crush (ONC) mouse model. Axotomized cultured RGCs treated with recombinant hNRN1 significantly increased survival of RGCs by 21% (n=6-7, P<0.01) and neurite outgrowth in RGCs by 141% compared to controls (n=15, P<0.05). RGC transduction with AAV2-CAG-hNRN1 prior to ONC promoted RGC survival (450%, n=3-7, P<0.05) and significantly preserved RGC function by 70% until 28 days post crush (dpc) (n=6, P<0.05) compared with the control AAV2-CAG-green fluorescent protein transduction group. Significantly elevated levels of RGC marker, RNA binding protein with multiple splicing (Rbpms; 73%, n=5-8, P<0.001) and growth cone marker, growth-associated protein 43 (Gap43; 36%, n=3, P<0.01) were observed 28 dpc in the retinas of the treatment group compared with the control group. Significant increase in Gap43 (100%, n=5-6, P<0.05) expression was observed within the optic nerves of the AAV2-hNRN1 group compared to controls. In conclusion, Nrn1 exhibited neuroprotective, regenerative effects and preserved RGC function on axotomized RGCs in vitro and after axonal injury in vivo. Nrn1 is a potential therapeutic target for CNS neurodegenerative diseases. PMID:25719245

  2. Axonal Transport Impairment in Chemotherapy-Induced Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Gabriella Nicolini

    2015-08-01

    Full Text Available Chemotherapy-Induced Peripheral Neuropathy (CIPN is a dose-limiting side effect of several antineoplastic drugs which significantly reduces patients’ quality of life. Although different molecular mechanisms have been investigated, CIPN pathobiology has not been clarified yet. It has largely been recognized that Dorsal Root Ganglia are the main targets of chemotherapy and that the longest nerves are the most damaged, together with fast axonal transport. Indeed, this bidirectional cargo-specific transport has a pivotal role in neuronal function and its impairment is involved in several neurodegenerative and neurodevelopmental diseases. Literature data demonstrate that, despite different mechanisms of action, all antineoplastic agents impair the axonal trafficking to some extent and the severity of the neuropathy correlates with the degree of damage on this bidirectional transport. In this paper, we will examine the effect of the main old and new chemotherapeutic drug categories on axonal transport, with the aim of clarifying their potential mechanisms of action, and, if possible, of identifying neuroprotective strategies, based on the knowledge of the alterations induced by each drugs.

  3. EEG functional connectivity, axon delays and white matter disease

    Science.gov (United States)

    Nunez, Paul L.; Srinivasan, Ramesh; Fields, R. Douglas

    2016-01-01

    Objective Both structural and functional brain connectivities are closely linked to white matter disease. We discuss several such links of potential interest to neurologists, neurosurgeons, radiologists, and non-clinical neuroscientists. Methods Treatment of brains as genuine complex systems suggests major emphasis on the multi-scale nature of brain connectivity and dynamic behavior. Cross-scale interactions of local, regional, and global networks are apparently responsible for much of EEG's oscillatory behaviors. Finite axon propagation speed, often assumed to be infinite in local network models, is central to our conceptual framework. Results Myelin controls axon speed, and the synchrony of impulse traffic between distant cortical regions appears to be critical for optimal mental performance and learning. Results Several experiments suggest that axon conduction speed is plastic, thereby altering the regional and global white matter connections that facilitate binding of remote local networks. Conclusions Combined EEG and high resolution EEG can provide distinct multi-scale estimates of functional connectivity in both healthy and diseased brains with measures like frequency and phase spectra, covariance, and coherence. Significance White matter disease may profoundly disrupt normal EEG coherence patterns, but currently these kinds of studies are rare in scientific labs and essentially missing from clinical environments. PMID:24815984

  4. Dysregulated axonal RNA translation in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Yasuda, Kyota; Mili, Stavroula

    2016-09-01

    Amyotrophic lateral sclerosis (ALS) is an adult-onset motor neuron disease that has been associated with a diverse array of genetic changes. Prominent among these are mutations in RNA-binding proteins (RBPs) or repeat expansions that give rise to toxic RNA species. RBPs are additionally central components of pathologic aggregates that constitute a disease hallmark, suggesting that dysregulation of RNA metabolism underlies disease progression. In the context of neuronal physiology, transport of RNAs and localized RNA translation in axons are fundamental to neuronal survival and function. Several lines of evidence suggest that axonal RNA translation is a central process perturbed by various pathogenic events associated with ALS. Dysregulated translation of specific RNA groups could underlie feedback effects that connect and reinforce disease manifestations. Among such candidates are RNAs encoding proteins involved in the regulation of microtubule dynamics. Further understanding of axonally dysregulated RNA targets and of the feedback mechanisms they induce could provide useful therapeutic insights. WIREs RNA 2016, 7:589-603. doi: 10.1002/wrna.1352 For further resources related to this article, please visit the WIREs website. PMID:27038103

  5. Axon clinical chemistry analyzer evaluated according to ECCLS protocol.

    Science.gov (United States)

    Brenna, S; Prencipe, L

    1992-10-01

    We assessed the analytical performance of the Axon system (Bayer Diagnostici), according to the European Committee for Clinical Laboratory Standards guidelines, for assay of 12 analytes: cholesterol, creatinine, glucose, total protein, urea, uric acid, alkaline phosphatase, alpha-amylase, aspartate aminotransferase, creatine kinase, sodium, and potassium. The field evaluation lasted approximately 5 months and involved the collection of approximately 10,000 data points with the Axon. The following results were obtained: The highest CVs for controls and human sera at different concentration/activity values were 2.2% for within-run imprecision (n = 60; 3 days, pooled estimate) and 3.5% for the between-day imprecision (n = 20 days). Close correlation was found with results for patients' specimens assayed with comparative instruments (Hitachi 717 for substrates and enzymes, Beckman Synchron EL/E4A for electrolytes). No drift was observed during 8 h of operation. The linearity range was broad, sometimes exceeding the manufacturer's claims. No sample-, reagent-, or cuvette-related carryover was found. Measurement of control sera gave results within +/- 5% of the assigned values. We conclude that good reliability and practicability make the Axon system suitable for laboratories with various needs.

  6. Axonal Dysfunction Precedes Motor Neuronal Death in Amyotrophic Lateral Sclerosis.

    Directory of Open Access Journals (Sweden)

    Yuta Iwai

    Full Text Available Wide-spread fasciculations are a characteristic feature in amyotrophic lateral sclerosis (ALS, suggesting motor axonal hyperexcitability. Previous excitability studies have shown increased nodal persistent sodium conductances and decreased potassium currents in motor axons of ALS patients, both of the changes inducing hyperexcitability. Altered axonal excitability potentially contributes to motor neuron death in ALS, but the relationship of the extent of motor neuronal death and abnormal excitability has not been fully elucidated. We performed multiple nerve excitability measurements in the median nerve at the wrist of 140 ALS patients and analyzed the relationship of compound muscle action potential (CMAP amplitude (index of motor neuronal loss and excitability indices, such as strength-duration time constant, threshold electrotonus, recovery cycle and current-threshold relationships. Compared to age-matched normal controls (n = 44, ALS patients (n = 140 had longer strength-duration time constant (SDTC: a measure of nodal persistent sodium current; p 5mV. Regression analyses showed that SDTC (R = -0.22 and depolarizing threshold electrotonus (R = -0.22 increased with CMAP decline. These findings suggest that motor nerve hyperexcitability occurs in the early stage of the disease, and precedes motor neuronal loss in ALS. Modulation of altered ion channel function could be a treatment option for ALS.

  7. Axonal Dysfunction Precedes Motor Neuronal Death in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Iwai, Yuta; Shibuya, Kazumoto; Misawa, Sonoko; Sekiguchi, Yukari; Watanabe, Keisuke; Amino, Hiroshi; Kuwabara, Satoshi

    2016-01-01

    Wide-spread fasciculations are a characteristic feature in amyotrophic lateral sclerosis (ALS), suggesting motor axonal hyperexcitability. Previous excitability studies have shown increased nodal persistent sodium conductances and decreased potassium currents in motor axons of ALS patients, both of the changes inducing hyperexcitability. Altered axonal excitability potentially contributes to motor neuron death in ALS, but the relationship of the extent of motor neuronal death and abnormal excitability has not been fully elucidated. We performed multiple nerve excitability measurements in the median nerve at the wrist of 140 ALS patients and analyzed the relationship of compound muscle action potential (CMAP) amplitude (index of motor neuronal loss) and excitability indices, such as strength-duration time constant, threshold electrotonus, recovery cycle and current-threshold relationships. Compared to age-matched normal controls (n = 44), ALS patients (n = 140) had longer strength-duration time constant (SDTC: a measure of nodal persistent sodium current; p CMAP (> 5mV). Regression analyses showed that SDTC (R = -0.22) and depolarizing threshold electrotonus (R = -0.22) increased with CMAP decline. These findings suggest that motor nerve hyperexcitability occurs in the early stage of the disease, and precedes motor neuronal loss in ALS. Modulation of altered ion channel function could be a treatment option for ALS. PMID:27383069

  8. Growth cone collapse assay.

    Science.gov (United States)

    Cook, Geoffrey M W; Jareonsettasin, Prem; Keynes, Roger J

    2014-01-01

    The growth cone collapse assay has proved invaluable in detecting and purifying axonal repellents. Glycoproteins/proteins present in detergent extracts of biological tissues are incorporated into liposomes, added to growth cones in culture and changes in morphology are then assessed. Alternatively purified or recombinant molecules in aqueous solution may be added directly to the cultures. In both cases after a defined period of time (up to 1 h), the cultures are fixed and then assessed by inverted phase contrast microscopy for the percentage of growth cones showing a collapsed profile with loss of flattened morphology, filopodia, and lamellipodia.

  9. A developmental approach to predicting neuronal connectivity from small biological datasets: a gradient-based neuron growth model.

    Science.gov (United States)

    Borisyuk, Roman; Al Azad, Abul Kalam; Conte, Deborah; Roberts, Alan; Soffe, Stephen R

    2014-01-01

    Relating structure and function of neuronal circuits is a challenging problem. It requires demonstrating how dynamical patterns of spiking activity lead to functions like cognitive behaviour and identifying the neurons and connections that lead to appropriate activity of a circuit. We apply a "developmental approach" to define the connectome of a simple nervous system, where connections between neurons are not prescribed but appear as a result of neuron growth. A gradient based mathematical model of two-dimensional axon growth from rows of undifferentiated neurons is derived for the different types of neurons in the brainstem and spinal cord of young tadpoles of the frog Xenopus. Model parameters define a two-dimensional CNS growth environment with three gradient cues and the specific responsiveness of the axons of each neuron type to these cues. The model is described by a nonlinear system of three difference equations; it includes a random variable, and takes specific neuron characteristics into account. Anatomical measurements are first used to position cell bodies in rows and define axon origins. Then a generalization procedure allows information on the axons of individual neurons from small anatomical datasets to be used to generate larger artificial datasets. To specify parameters in the axon growth model we use a stochastic optimization procedure, derive a cost function and find the optimal parameters for each type of neuron. Our biologically realistic model of axon growth starts from axon outgrowth from the cell body and generates multiple axons for each different neuron type with statistical properties matching those of real axons. We illustrate how the axon growth model works for neurons with axons which grow to the same and the opposite side of the CNS. We then show how, by adding a simple specification for dendrite morphology, our model "developmental approach" allows us to generate biologically-realistic connectomes.

  10. Sensory axon-derived neuregulin-1 is required for axoglial signaling and normal sensory function but not for long-term axon maintenance

    DEFF Research Database (Denmark)

    Fricker, F.R.; Zhu, N.; Tsantoulas, C.;

    2009-01-01

    " pockets. The total number of axons in the sural nerve was unchanged, but a greater proportion was unmyelinated. In addition, we observed large-diameter axons that were in a 1:1 relationship with Schwann cells, surrounded by a basal lamina but not myelinated. There was no evidence of DRG or Schwann cell...

  11. Agent Based Individual Traffic guidance

    DEFF Research Database (Denmark)

    Wanscher, Jørgen Bundgaard

    2004-01-01

    can be obtained through cellular phone tracking or GPS systems. This information can then be used to provide individual traffic guidance as opposed to the mass information systems of today -- dynamic roadsigns and trafficradio. The goal is to achieve better usage of road and time. The main topic......When working with traffic planning or guidance it is common practice to view the vehicles as a combined mass. >From this models are employed to specify the vehicle supply and demand for each region. As the models are complex and the calculations are equally demanding the regions and the detail...

  12. Irregular geometries in normal unmyelinated axons: a 3D serial EM analysis.

    Science.gov (United States)

    Greenberg, M M; Leitao, C; Trogadis, J; Stevens, J K

    1990-12-01

    Axons have generally been represented as straight cylinders. It is not at all uncommon for anatomists to take single cross-sections of an axonal bundle, and from the axonal diameter compute expected conduction velocities. This assumes that each cross-section represents a slice through a perfect cylinder. We have examined the three-dimensional geometry of 98 central and peripheral unmyelinated axons, using computer-assisted serial electron microscopy. These reconstructions reveal that virtually all unmyelinated axons have highly irregular axial shapes consisting of periodic varicosities. The varicosities were, without exception, filled with membranous organelles frequently including mitochondria, and have obligatory volumes similar to that described in other neurites. The mitochondria make contact with microtubules, while the other membraneous organelles were frequently found free floating in the cytoplasm. We conclude that unmyelinated axons are fundamentally varicose structures created by the presence of organelles, and that an axon's calibre is dynamic in both space and time. These irregular axonal geometries raise serious doubts about standard two dimensional morphometric analysis and suggest that electrical properties may be more heterogeneous than expected from single section data. These results also suggest that the total number of microtubules contained in an axon, rather than its single section diameter, may prove to be a more accurate predictor of properties such as conduction velocity. Finally, these results offer an explanation for a number of pathological changes that have been described in unmyelinated axons. PMID:2292722

  13. Regulation of action potential waveforms by axonal GABAA receptors in cortical pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Yang Xia

    Full Text Available GABAA receptors distributed in somatodendritic compartments play critical roles in regulating neuronal activities, including spike timing and firing pattern; however, the properties and functions of GABAA receptors at the axon are still poorly understood. By recording from the cut end (bleb of the main axon trunk of layer -5 pyramidal neurons in prefrontal cortical slices, we found that currents evoked by GABA iontophoresis could be blocked by picrotoxin, indicating the expression of GABAA receptors in axons. Stationary noise analysis revealed that single-channel properties of axonal GABAA receptors were similar to those of somatic receptors. Perforated patch recording with gramicidin revealed that the reversal potential of the GABA response was more negative than the resting membrane potential at the axon trunk, suggesting that GABA may hyperpolarize the axonal membrane potential. Further experiments demonstrated that the activation of axonal GABAA receptors regulated the amplitude and duration of action potentials (APs and decreased the AP-induced Ca2+ transients at the axon. Together, our results indicate that the waveform of axonal APs and the downstream Ca2+ signals are modulated by axonal GABAA receptors.

  14. Soluble axoplasm enriched from injured CNS axons reveals the early modulation of the actin cytoskeleton.

    Directory of Open Access Journals (Sweden)

    Patrick Garland

    Full Text Available Axon injury and degeneration is a common consequence of diverse neurological conditions including multiple sclerosis, traumatic brain injury and spinal cord injury. The molecular events underlying axon degeneration are poorly understood. We have developed a novel method to enrich for axoplasm from rodent optic nerve and characterised the early events in Wallerian degeneration using an unbiased proteomics screen. Our detergent-free method draws axoplasm into a dehydrated hydrogel of the polymer poly(2-hydroxyethyl methacrylate, which is then recovered using centrifugation. This technique is able to recover axonal proteins and significantly deplete glial contamination as confirmed by immunoblotting. We have used iTRAQ to compare axoplasm-enriched samples from naïve vs injured optic nerves, which has revealed a pronounced modulation of proteins associated with the actin cytoskeleton. To confirm the modulation of the actin cytoskeleton in injured axons we focused on the RhoA pathway. Western blotting revealed an augmentation of RhoA and phosphorylated cofilin in axoplasm-enriched samples from injured optic nerve. To investigate the localisation of these components of the RhoA pathway in injured axons we transected axons of primary hippocampal neurons in vitro. We observed an early modulation of filamentous actin with a concomitant redistribution of phosphorylated cofilin in injured axons. At later time-points, RhoA is found to accumulate in axonal swellings and also colocalises with filamentous actin. The actin cytoskeleton is a known sensor of cell viability across multiple eukaryotes, and our results suggest a similar role for the actin cytoskeleton following axon injury. In agreement with other reports, our data also highlights the role of the RhoA pathway in axon degeneration. These findings highlight a previously unexplored area of axon biology, which may open novel avenues to prevent axon degeneration. Our method for isolating CNS axoplasm

  15. Spatiotemporal expression of repulsive guidance molecules (RGMs and their receptor neogenin in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Dianne M A van den Heuvel

    Full Text Available Neogenin has been implicated in a variety of developmental processes such as neurogenesis, neuronal differentiation, apoptosis, migration and axon guidance. Binding of repulsive guidance molecules (RGMs to Neogenin inhibits axon outgrowth of different neuronal populations. This effect requires Neogenin to interact with co-receptors of the uncoordinated locomotion-5 (Unc5 family to activate downstream Rho signaling. Although previous studies have reported RGM, Neogenin, and/or Unc5 expression, a systematic comparison of RGM and Neogenin expression in the developing nervous system is lacking, especially at later developmental stages. Furthermore, information on RGM and Neogenin expression at the protein level is limited. To fill this void and to gain further insight into the role of RGM-Neogenin signaling during mouse neural development, we studied the expression of RGMa, RGMb, Neogenin and Unc5A-D using in situ hybridization, immunohistochemistry and RGMa section binding. Expression patterns in the primary olfactory system, cortex, hippocampus, habenula, and cerebellum were studied in more detail. Characteristic cell layer-specific expression patterns were detected for RGMa, RGMb, Neogenin and Unc5A-D. Furthermore, strong expression of RGMa, RGMb and Neogenin protein was found on several major axon tracts such as the primary olfactory projections, anterior commissure and fasciculus retroflexus. These data not only hint at a role for RGM-Neogenin signaling during the development of different neuronal systems, but also suggest that Neogenin partners with different Unc5 family members in different systems. Overall, the results presented here will serve as a framework for further dissection of the role of RGM-Neogenin signaling during neural development.

  16. Guidance for evidence-informed policies about health systems: rationale for and challenges of guidance development.

    Science.gov (United States)

    Bosch-Capblanch, Xavier; Lavis, John N; Lewin, Simon; Atun, Rifat; Røttingen, John-Arne; Dröschel, Daniel; Beck, Lise; Abalos, Edgardo; El-Jardali, Fadi; Gilson, Lucy; Oliver, Sandy; Wyss, Kaspar; Tugwell, Peter; Kulier, Regina; Pang, Tikki; Haines, Andy

    2012-01-01

    In the first paper in a three-part series on health systems guidance, Xavier Bosch-Capblanch and colleagues examine how guidance is currently formulated in low- and middle-income countries, and the challenges to developing such guidance.

  17. MeCP2 deficiency disrupts axonal guidance, fasciculation, and targeting by altering Semaphorin 3F function

    NARCIS (Netherlands)

    Degano, Alicia L.; Pasterkamp, R. Jeroen; Ronnett, Gabriele V.

    2009-01-01

    Rett syndrome (RTT) is an autism spectrum disorder that results from mutations in the transcriptional regulator methyl-CpG binding protein 2 (MECP2). In the present work, we demonstrate that MeCP2 deficiency disrupts the establishment of neural connections before synaptogenesis. Using both in vitro

  18. Teacher Guidance of Knowledge Construction

    Science.gov (United States)

    Schwarz, Baruch; Dreyfus, Tommy; Hadas, Nurit; Hershkowitz, Rina

    2004-01-01

    This paper focuses on how teachers guide construction of knowledge in classrooms. We suggest that guidance hinges on the kind of dialogue teachers choose to engage students in. We propose several classroom dialogue types relevant for the construction of knowledge and suggest that critical dialogue is particularly effective for knowledge…

  19. DOE Waste Treatability Group Guidance

    International Nuclear Information System (INIS)

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the sole basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level

  20. DOE Waste Treatability Group Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, T.D.

    1995-01-01

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the sole basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.

  1. Systematic policy and forward guidance

    OpenAIRE

    Plosser, Charles I.

    2014-01-01

    Money Marketeers of New York University, Inc., Down Town Association, March 25, 2014, New York, NY President Charles Plosser discusses the relationship between systematic policy and forward guidance. He explains how understanding both practices can provide insights into effective monetary policy in normal and unusual times, or in extreme conditions when policy is constrained by the zero lower bound on nominal interest rates.

  2. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination.

    Science.gov (United States)

    Lappe-Siefke, Corinna; Goebbels, Sandra; Gravel, Michel; Nicksch, Eva; Lee, John; Braun, Peter E; Griffiths, Ian R; Nave, Klaus-Armin

    2003-03-01

    Myelination of axons by oligodendrocytes enables rapid impulse propagation in the central nervous system. But long-term interactions between axons and their myelin sheaths are poorly understood. Here we show that Cnp1, which encodes 2',3'-cyclic nucleotide phosphodiesterase in oligodendrocytes, is essential for axonal survival but not for myelin assembly. In the absence of glial cyclic nucleotide phosphodiesterase, mice developed axonal swellings and neurodegeneration throughout the brain, leading to hydrocephalus and premature death. But, in contrast to previously studied myelin mutants, the ultrastructure, periodicity and physical stability of myelin were not altered in these mice. Genetically, the chief function of glia in supporting axonal integrity can thus be completely uncoupled from its function in maintaining compact myelin. Oligodendrocyte dysfunction, such as that in multiple sclerosis lesions, may suffice to cause secondary axonal loss. PMID:12590258

  3. Length-scale mediated adhesion and directed growth of neural cells by surface-patterned poly(ethylene glycol) hydrogels.

    Science.gov (United States)

    Krsko, Peter; McCann, Thomas E; Thach, Thu-Trang; Laabs, Tracy L; Geller, Herbert M; Libera, Matthew R

    2009-02-01

    We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes but that prevent the adhesion of astrocytes. This effect was achieved based on the spatial distribution of sub-micron-sized cell-repulsive poly(ethylene glycol) [PEG] hydrogels patterned on an otherwise cell-adhesive substrate. Patterns were identified that promoted cellular responses ranging from complete non-attachment, selective attachment, and directed growth at both cellular and subcellular length scales. At the highest patterning density where the individual hydrogels almost overlapped, there was no cellular adhesion. As the spacing between individual hydrogels was increased, patterns were identified where neurites could grow on the adhesive surface between hydrogels while astrocytes were unable to adhere. Patterns such as lines or arrays were identified that could direct the growth of these subcellular neuronal processes. At higher hydrogel spacings, both neurons and astrocytes adhered and grew in a manner approaching that of unpatterned control surfaces. Patterned lines could once again direct growth at cellular length scales. Significantly, we have demonstrated that the patterning of sub-micron/nano scale cell-repulsive features at microscale lengths on an otherwise cell-adhesive surface can differently control the adhesion and growth of cells and cell processes based on the difference in their characteristic sizes. This concept could potentially be applied to an implantable nerve-guidance device that would selectively enable regrowing axons to bridge a spinal-cord injury without interference from the glial scar.

  4. In vivo testing of a 3D bifurcating microchannel scaffold inducing separation of regenerating axon bundles in peripheral nerves

    NARCIS (Netherlands)

    Stoyanova, Irina I.; Wezel, van Richard J.A.; Rutten, Wim L.C.

    2013-01-01

    Artificial nerve guidance channels enhance the regenerative effectiveness in an injured peripheral nerve but the existing design so far has been limited to basic straight tubes simply guiding the growth to bridge the gap. Hence, one of the goals in development of more effective neuroprostheses is to

  5. X11/Mint Genes Control Polarized Localization of Axonal Membrane Proteins in Vivo

    OpenAIRE

    Garrett G Gross; Lone, G. Mohiddin; Leung, Lok Kwan; Hartenstein, Volker; Guo, Ming

    2013-01-01

    Mislocalization of axonal proteins can result in misassembly and/or miswiring of neural circuits, causing disease. To date, only a handful of genes that control polarized localization of axonal membrane proteins have been identified. Here we report that Drosophila X11/Mint proteins are required for targeting several proteins, including human amyloid precursor protein (APP) and Drosophila APP-like protein (APPL), to axonal membranes and for their exclusion from dendrites of the mushroom body i...

  6. Directional specificity and patterning of sensory axons in trigeminal ganglion–whisker pad cocultures

    OpenAIRE

    Gunhan-Agar, Emine; Haeberle, Adam; Erzurumlu, Reha S.

    2000-01-01

    In the rodent trigeminal pathway, trigeminal axons invade the developing whisker pad from a caudal to rostral direction. We investigated directional specificity of embryonic day (E). 15 rat trigeminal axons within this peripheral target field using explant cocultures. E15 trigeminal axons readily grow into the same age whisker pad explants and form follicle-related patterns along a caudal to rostral direction. They also can grow into this target from its lateral aspects. In contrast, they are...

  7. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury

    Institute of Scientific and Technical Information of China (English)

    Christian Witzel; Werner Reutter; G Bjrn Stark; Georgios Koulaxouzidis

    2015-01-01

    Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modiifed in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp) increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the inlfuence of systemic ManNProp application using a speciifc in vivo mouse model. Using mice expressing axonal lfuorescent proteins, we quantiifed the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow lfuorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg) or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection). ManNProp signiifcantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm;P<0.005) and the number of arborizing axons (21%vs. 16%;P=0.008) 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoen-gineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.

  8. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Christian Witzel

    2015-01-01

    Full Text Available Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modified in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the influence of systemic ManNProp application using a specific in vivo mouse model. Using mice expressing axonal fluorescent proteins, we quantified the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow fluorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection. ManNProp significantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm; P < 0.005 and the number of arborizing axons (21% vs. 16% P = 0.008 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoengineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.

  9. NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD+ depletion

    Science.gov (United States)

    Sasaki, Yo; Nakagawa, Takashi; Mao, Xianrong; DiAntonio, Aaron; Milbrandt, Jeffrey

    2016-01-01

    Overexpression of the NAD+ biosynthetic enzyme NMNAT1 leads to preservation of injured axons. While increased NAD+ or decreased NMN levels are thought to be critical to this process, the mechanism(s) of this axon protection remain obscure. Using steady-state and flux analysis of NAD+ metabolites in healthy and injured mouse dorsal root ganglion axons, we find that rather than altering NAD+ synthesis, NMNAT1 instead blocks the injury-induced, SARM1-dependent NAD+ consumption that is central to axon degeneration. DOI: http://dx.doi.org/10.7554/eLife.19749.001 PMID:27735788

  10. Studying Axonal Regeneration by Laser Microsurgery and High-Resolution Videomicroscopy.

    Science.gov (United States)

    Xiao, Yan; López-Schier, Hernán

    2016-01-01

    Heterogeneous and unpredictable environmental insult, disease, or trauma can affect the integrity and function of neuronal circuits, leading to irreversible neural dysfunction. The peripheral nervous system can robustly regenerate axons after damage to recover the capacity to transmit sensory information to the brain. The mechanisms that allow axonal repair remain incompletely understood. Here we present a preparation in zebrafish that combines laser microsurgery of sensory axons and videomicroscopy of neurons in multicolor transgenic specimens. This simple protocol allows controlled damage of axons and dynamic high-resolution visualization and quantification of repair. PMID:27464814

  11. Odorant receptors regulate the final glomerular coalescence of olfactory sensory neuron axons.

    Science.gov (United States)

    Rodriguez-Gil, Diego J; Bartel, Dianna L; Jaspers, Austin W; Mobley, Arie S; Imamura, Fumiaki; Greer, Charles A

    2015-05-01

    Odorant receptors (OR) are strongly implicated in coalescence of olfactory sensory neuron (OSN) axons and the formation of olfactory bulb (OB) glomeruli. However, when ORs are first expressed relative to basal cell division and OSN axon extension is unknown. We developed an in vivo fate-mapping strategy that enabled us to follow OSN maturation and axon extension beginning at basal cell division. In parallel, we mapped the molecular development of OSNs beginning at basal cell division, including the onset of OR expression. Our data show that ORs are first expressed around 4 d following basal cell division, 24 h after OSN axons have reached the OB. Over the next 6+ days the OSN axons navigate the OB nerve layer and ultimately coalesce in glomeruli. These data provide a previously unidentified perspective on the role of ORs in homophilic OSN axon adhesion and lead us to propose a new model dividing axon extension into two phases. Phase I is OR-independent and accounts for up to 50% of the time during which axons approach the OB and begin navigating the olfactory nerve layer. Phase II is OR-dependent and concludes as OSN axons coalesce in glomeruli.

  12. Engineering Guidance: A Human Resource Development.

    Science.gov (United States)

    Snarponis, Joseph M.; Prien, John D.

    1979-01-01

    Describes the role of The National Society of Professional Engineers (NSPE) in providing guidance activities for students. Discusses structional organization, goals, and guidance activities for engineering and technical and professional societies. (MA)

  13. Anti-obesity sodium tungstate treatment triggers axonal and glial plasticity in hypothalamic feeding centers.

    Directory of Open Access Journals (Sweden)

    Marta Amigó-Correig

    Full Text Available This study aims at exploring the effects of sodium tungstate treatment on hypothalamic plasticity, which is known to have an important role in the control of energy metabolism.Adult lean and high-fat diet-induced obese mice were orally treated with sodium tungstate. Arcuate and paraventricular nuclei and lateral hypothalamus were separated and subjected to proteomic analysis by DIGE and mass spectrometry. Immunohistochemistry and in vivo magnetic resonance imaging were also performed.Sodium tungstate treatment reduced body weight gain, food intake, and blood glucose and triglyceride levels. These effects were associated with transcriptional and functional changes in the hypothalamus. Proteomic analysis revealed that sodium tungstate modified the expression levels of proteins involved in cell morphology, axonal growth, and tissue remodeling, such as actin, CRMP2 and neurofilaments, and of proteins related to energy metabolism. Moreover, immunohistochemistry studies confirmed results for some targets and further revealed tungstate-dependent regulation of SNAP25 and HPC-1 proteins, suggesting an effect on synaptogenesis as well. Functional test for cell activity based on c-fos-positive cell counting also suggested that sodium tungstate modified hypothalamic basal activity. Finally, in vivo magnetic resonance imaging showed that tungstate treatment can affect neuronal organization in the hypothalamus.Altogether, these results suggest that sodium tungstate regulates proteins involved in axonal and glial plasticity. The fact that sodium tungstate could modulate hypothalamic plasticity and networks in adulthood makes it a possible and interesting therapeutic strategy not only for obesity management, but also for other neurodegenerative illnesses like Alzheimer's disease.

  14. Neuroinflammation triggered by β-glucan/dectin-1 signaling enables CNS axon regeneration.

    Science.gov (United States)

    Baldwin, Katherine T; Carbajal, Kevin S; Segal, Benjamin M; Giger, Roman J

    2015-02-24

    Innate immunity can facilitate nervous system regeneration, yet the underlying cellular and molecular mechanisms are not well understood. Here we show that intraocular injection of lipopolysaccharide (LPS), a bacterial cell wall component, or the fungal cell wall extract zymosan both lead to rapid and comparable intravitreal accumulation of blood-derived myeloid cells. However, when combined with retro-orbital optic nerve crush injury, lengthy growth of severed retinal ganglion cell (RGC) axons occurs only in zymosan-injected mice, and not in LPS-injected mice. In mice deficient for the pattern recognition receptor dectin-1 but not Toll-like receptor-2 (TLR2), zymosan-mediated RGC regeneration is greatly reduced. The combined loss of dectin-1 and TLR2 completely blocks the proregenerative effects of zymosan. In the retina, dectin-1 is expressed by microglia and dendritic cells, but not by RGCs. Dectin-1 is also present on blood-derived myeloid cells that accumulate in the vitreous. Intraocular injection of the dectin-1 ligand curdlan [a particulate form of β(1, 3)-glucan] promotes optic nerve regeneration comparable to zymosan in WT mice, but not in dectin-1(-/-) mice. Particulate β(1, 3)-glucan leads to increased Erk1/2 MAP-kinase signaling and cAMP response element-binding protein (CREB) activation in myeloid cells in vivo. Loss of the dectin-1 downstream effector caspase recruitment domain 9 (CARD9) blocks CREB activation and attenuates the axon-regenerative effects of β(1, 3)-glucan. Studies with dectin-1(-/-)/WT reciprocal bone marrow chimeric mice revealed a requirement for dectin-1 in both retina-resident immune cells and bone marrow-derived cells for β(1, 3)-glucan-elicited optic nerve regeneration. Collectively, these studies identify a molecular framework of how innate immunity enables repair of injured central nervous system neurons. PMID:25675510

  15. Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients.

    Directory of Open Access Journals (Sweden)

    Jan Jessen Krut

    Full Text Available Prevalence of neurocognitive impairment in HIV-1 infected patients is reported to be high. Whether this is a result of active HIV-related neurodegeneration is unclear. We examined axonal injury in HIV-1 patients by measuring the light subunit of neurofilament protein (NFL in CSF with a novel, sensitive method.With a cross-sectional design, CSF concentrations of neurofilament protein light (NFL (marker of neuronal injury, neopterin (intrathecal immunoactivation and CSF/Plasma albumin ratio (blood-brain barrier integrity were analyzed on CSF from 252 HIV-infected patients, subdivided into untreated neuroasymptomatics (n = 200, HIV-associated dementia (HAD (n = 14 and on combinations antiretroviral treatment (cART (n = 85, and healthy controls (n = 204. 46 HIV-infected patients were included in both treated and untreated groups, but sampled at different timepoints. Furthermore, 78 neuroasymptomatic patients were analyzed before and after treatment initiation.While HAD patients had the highest NFL concentrations, elevated CSF NFL was also found in 33% of untreated neuroasymptomatic patients, mainly in those with blood CD4+ cell counts below 250 cells/μL. CSF NFL concentrations in the untreated neuroasymptomatics and treated groups were equivalent to controls 18.5 and 3.9 years older, respectively. Neopterin correlated with NFL levels in untreated groups while the albumin ratio correlated with NFL in both untreated and treated groups.Increased CSF NFL indicates ongoing axonal injury in many neuroasymptomatic patients. Treatment decreases NFL, but treated patients retain higher levels than controls, indicating either continued virus-related injury or an aging-like effect of HIV infection. NFL correlates with neopterin and albumin ratio, suggesting an association between axonal injury, neuroinflammation and blood-brain barrier permeability. NFL appears to be a sensitive biomarker of subclinical and clinical brain injury in HIV and warrants further

  16. Excitability properties of motor axons in adults with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Cliff S. Klein

    2015-06-01

    Full Text Available Cerebral Palsy (CP is a permanent disorder caused by a lesion to the developing brain that significantly impairs motor function. The neurophysiological mechanisms underlying motor impairment are not well understood. Specifically, few have addressed whether motoneuron or peripheral axon properties are altered in CP, even though disruption of descending inputs to the spinal cord may cause them to change. In the present study, we have compared nerve excitability properties in seven adults with CP and fourteen healthy controls using threshold tracking techniques by stimulating the median nerve at the wrist and recording the compound muscle action potential (CMAP over the abductor pollicis brevis. The excitability properties in the CP subjects were found to be abnormal. Early and late depolarizing and hyperpolarizing threshold electrotonus was significantly larger (i.e., fanning out, and resting current-threshold (I/V slope was smaller, in CP compared to control. In addition resting threshold and rheobase tended to be larger in CP. According to a modeling analysis of the data, an increase in leakage current under or through the myelin sheath, i.e., the Barrett-Barrett conductance (GBB, combined with a slight hyperpolarization of the resting membrane potential, best explained the group differences in excitability properties. There was a trend for those with greater impairment in gross motor function to have more abnormal axon properties. The findings indicate plasticity of motor axon properties far removed from the site of the lesion. We suspect that this plasticity is caused by disruption of descending inputs to the motoneurons at an early age around the time of their injury.

  17. Mechanisms of hyperpolarization in regenerated mature motor axons in cat

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Krarup, Christian

    2004-01-01

    We found persistent abnormalities in the recovery of membrane excitability in long-term regenerated motor nerve fibres in the cat as indicated in the companion paper. These abnormalities could partly be explained by membrane hyperpolarization. To further investigate this possibility, we compared...... the changes in excitability in control nerves and long-term regenerated cat nerves (3-5 years after tibial nerve crush) during manoeuvres known to alter axonal membrane Na(+)-K(+) pump function: polarization, cooling to 20 degrees C, reperfusion after 10 min ischaemia, and up to 60 s of repetitive stimulation...

  18. Abundant expression of guidance and synaptogenic molecules in the injured spinal cord.

    Directory of Open Access Journals (Sweden)

    Anne Jacobi

    Full Text Available BACKGROUND: Spinal interneurons have emerged as crucial targets of supraspinal input during post-injury axonal remodelling. For example, lesioned corticospinal projections use propriospinal neurons as relay stations to form intraspinal detour circuits that circumvent the lesion site and contribute to functional recovery. While a number of the molecules that determine the formation of neuronal circuits in the developing nervous system have been identified, it is much less understood which of these cues are also expressed in the injured spinal cord and can thus guide growing collaterals and initiate synaptogenesis during circuit remodelling. METHODOLOGY/PRINCIPAL FINDINGS: To address this question we characterized the expression profile of a number of guidance and synaptogenic molecules in the cervical spinal cord of healthy and spinal cord-injured mice by in situ hybridization. To assign the expression of these molecules to distinct populations of interneurons we labeled short and long propriospinal neurons by retrograde tracing and glycinergic neurons using a transgenically expressed fluorescent protein. Interestingly, we found that most of the molecules studied including members of slit-, semaphorin-, synCAM-, neuroligin- and ephrin- families as well as their receptors are also present in the adult CNS. While many of these molecules were abundantly expressed in all interneurons examined, some molecules including slits, semaphorin 7a, synCAM4 and neuroligin 1 showed preferential expression in propriospinal interneurons. Overall the expression pattern of guidance and synaptogenic molecules in the cervical spinal cord appeared to be stable over time and was not substantially altered following a midthoracic spinal cord injury. CONCLUSIONS: Taken together, our study indicates that many of the guidance and synaptogenic cues that regulate neuronal circuit formation in development are also present in the adult CNS and therefore likely contribute to the

  19. Quality Assurance in University Guidance Services

    Science.gov (United States)

    Simon, Alexandra

    2014-01-01

    In Europe there is no common quality assurance framework for the delivery of guidance in higher education. Using a case study approach in four university career guidance services in England, France and Spain, this article aims to study how quality is implemented in university career guidance services in terms of strategy, standards and models,…

  20. Providing Career Guidance for Young Women.

    Science.gov (United States)

    Colby, Pamela G.

    This module is directed at personnel working or planning to work in the areas of guidance, counseling, placement and follow-through in junior and senior high school settings, grades 7-12. The module topic is career guidance for young women of junior and senior high school age, aand the focus will be on providing nonbiased career guidance which…

  1. The Self in Guidance: Assumptions and Challenges.

    Science.gov (United States)

    Edwards, Richard; Payne, John

    1997-01-01

    Examines the assumptions of "self" made in the professional and managerial discourses of guidance. Suggests that these assumptions obstruct the capacity of guidance workers to explain their own practices. Drawing on contemporary debates over identity, modernity, and postmodernity, argues for a more explicit debate about the self in guidance. (RJM)

  2. Guidance manual for constructed wetlands.

    OpenAIRE

    Ellis, John Bryan; Shutes, R. Brian E.; Revitt, D. Mike

    2003-01-01

    This Guidance Manual was produced to provide up to date information on the design, costs, construction, operation and maintenance of constructed wetlands used for the treatment of highway runoff. Information is provided on the different types of wetlands and their mode of operation, the design and planting of a wetland system and the retrofitting of treatment structures, the performance and costs of wetlands and their operation and maintenance requirements. The benefits of wetlands in encoura...

  3. Current materiality guidance for auditors

    OpenAIRE

    McKee, Thomas E.; Eilifsen, Aasmund

    2000-01-01

    Auditors have to make materiality judgments on every audit. This is a difficult process, as both quantitative and qualitative factors have to be evaluated. Additionally, there is no formal guidance for how to implement the materiality concepts discussed in the auditing standards. Although they are sometimes difficult to make, good materiality judgments are crucial for the conduct of a successful audit as poor judgments can result in an audit that is ineffective and/or inefficient. This report...

  4. Abnormal morphology of myelin and axon pathology in murine models of multiple sclerosis.

    Science.gov (United States)

    Bando, Yoshio; Nomura, Taichi; Bochimoto, Hiroki; Murakami, Koichi; Tanaka, Tatsuhide; Watanabe, Tsuyoshi; Yoshida, Shigetaka

    2015-02-01

    Demyelination and axonal damage are responsible for neurological deficits in multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system. However, the pathology of axonal damage in MS is not fully understood. In this study, histological analysis of morphological changes of axonal organelles during demyelination in murine models was investigated by scanning electron microscopy (SEM) using an osmium-maceration method. In cuprizone-induced demyelination, SEM showed typical morphology of demyelination in the corpus callosum of mouse brain. In contrast, SEM displayed variations in ultrastructural abnormalities of myelin structures and axonal organelles in spinal cord white matter of experimental autoimmune encephalomyelitis (EAE) mice, an animal model of MS. Myelin detachment and excessive myelin formation were observed as typical morphological myelin abnormalities in EAE. In addition, well-developed axoplasmic reticulum-like structures and accumulated mitochondria were observed in tortuous degenerating/degenerated axons and the length of mitochondria in axons of EAE spinal cord was shorter compared with naïve spinal cord. Immunohistochemistry also revealed dysfunction of mitochondrial fusion/fission machinery in EAE spinal cord axons. Moreover, the number of Y-shaped mitochondria was significantly increased in axons of the EAE spinal cord. Axonal morphologies in myelin basic protein-deficient shiverer mice were similar to those in EAE. However, shiverer mice had "tortuous" (S-curve shaped mitochondria) and larger mitochondria compared with wild-type and EAE mice. Lastly, analysis of human MS patient autopsied brains also demonstrated abnormal myelin structures in demyelinating lesions. These results indicate that morphological abnormalities of myelin and axonal organelles play important role on the pathogenesis of axonal injury in demyelinating diseases.

  5. Bushen Yisui Capsule ameliorates axonal injury in experimental autoimmune encephalomyelitis

    Institute of Scientific and Technical Information of China (English)

    Ling Fang; Lei Wang; Qi Zheng; Tao Yang; Hui Zhao; Qiuxia Zhang; Kangning Li; Li Zhou; Haiyang Gong; Yongping Fan

    2013-01-01

    A preliminary clinical study by our group demonstrated Bushen Yisui Capsule (formerly cal ed Er-huang Formula) in combination with conventional therapy is an effective prescription for the treat-ment of multiple sclerosis. However, its effect on axonal injury during early multiple sclerosis re-mains unclear. In this study, a MOG 35-55-immunized C57BL/6 mouse model of experimental au-toimmune encephalomyelitis was intragastrical y administered Bushen Yisui Capsule. The results showed that Bushen Yisui Capsule effectively improved clinical symptoms and neurological function of experimental autoimmune encephalomyelitis. In addition, amyloid precursor protein expression was down-regulated and microtubule-associated protein 2 was up-regulated. Experimental findings indicate that the disease-preventive mechanism of Bushen Yisui Capsule in experimental autoim-mune encephalomyelitis was mediated by amelioration of axonal damage and promotion of rege-neration. But the effects of the high-dose Bushen Yisui Capsule group was not better than that of the medium-dose and low-dose Bushen Yisui Capsule group in preventing neurological dysfunction.

  6. An analysis of conductance changes in squid axon.

    Science.gov (United States)

    MULLINS, L J

    1959-05-20

    The membrane of the squid axon is considered on the basis of a pore model in which the distribution of the pore sizes strongly favors K(+) transfer when there is no potential. Electrical asymmetry causes non-penetrating ions on the membrane capacitor to exert a mechanical force on both membrane surfaces and this force results in a deformation of the membrane pore system such that it assumes a distribution of sizes favoring the ions exerting mechanical force. The ions involved appear to be Ca(++) on the outside of the membrane and isethionate(-), (i(-)) on the inside; as Ca(++) is equivalent in size to Na(+), the charged membrane is potentially able to transfer Na(+), when the ions deforming the membrane pore distribution are removed. A depolarization of the membrane leads to an opening of pores that will allow Na(+) penetration and a release of the membrane from deformation. The pores revert to the zero-potential pore size distribution hence the Na permeability change is a transient. Calculation shows that the potassium conductance vs. displacement of membrane potential curve for the squid axon and the "inactivation" function, h, can be obtained directly from the assumed membrane distortion without the introduction of arbitrary parameters. The sodium conductance, because it is a transient, requires assumptions about the time constants with which ions unblock pores at the outside and the inside of the membrane.

  7. Optimum PN Guidance Law for Maneuvering Target

    Institute of Scientific and Technical Information of China (English)

    SUN Bao-cai; QI Zai-kang

    2007-01-01

    An optimum PN guidance law for maneuvering target is developed using optimal control theory. By estimating the target position and setting the cost function, the guidance law can be deduced even without knowing the missile lateral acceleration. Since the quadratic cost function can make a compromise between the miss distance andthe control constraint, the optimum guidance law obtained is more general. Also, introduced line of sight rate as the input, a practical form of this guidance law is derived. The simulation results show the effectiveness of the guidance laws.

  8. Serotonin axons of the neostriatum show a higher affinity for striatal than for ventral mesencephalic transplants: a quantitative study in adult and immature recipient rats.

    Science.gov (United States)

    Pierret, P; Vallée, A; Bosler, O; Dorais, M; Moukhles, H; Abbaszadeh, R; Lepage, Y; Doucet, G

    1998-07-01

    maintained, even though their growth capacity decreases irrespective of the target tissue considered. This experimental model may prove useful for the identification of the receptors and ligands that are responsible for target recognition by 5-HT axons and to test the possibility that the progressive decrease of axonal growth capacity from neonatal age to adulthood be related to a downregulation of such molecules.

  9. Shank3 is localized in axons and presynaptic specializations of developing hippocampal neurons and involved in the modulation of NMDA receptor levels at axon terminals.

    Science.gov (United States)

    Halbedl, Sonja; Schoen, Michael; Feiler, Marisa S; Boeckers, Tobias M; Schmeisser, Michael J

    2016-04-01

    Autism-related Shank1, Shank2, and Shank3 are major postsynaptic scaffold proteins of excitatory glutamatergic synapses. A few studies, however, have already indicated that within a neuron, the presence of Shank family members is not limited to the postsynaptic density. By separating axons from dendrites of developing hippocampal neurons in microfluidic chambers, we show that RNA of all three Shank family members is present within axons. Immunostaining confirms these findings as all three Shanks are indeed found within separated axons and further co-localize with well-known proteins of the presynaptic specialization in axon terminals. Therefore, Shank proteins might not only serve as postsynaptic scaffold proteins, but also play a crucial role during axonal outgrowth and presynaptic development and function. This is supported by our findings that shRNA-mediated knockdown of Shank3 results in up-regulation of the NMDA receptor subunit GluN1 in axon terminals. Taken together, our findings will have major implications for the future analysis of neuronal Shank biology in both health and disease. Shank1, Shank2, and Shank3 are major postsynaptic scaffold proteins of excitatory glutamatergic synapses strongly related to several neuropsychiatric disorders. However, a few studies have already implicated a functional role of the Shanks beyond the postsynaptic density (PSD). We here show that all three Shanks are localized in both axons and pre-synaptic specializiations of developing hippocampal neurons in culture. We further provide evidence that Shank3 is involved in the modulation of NMDA receptor levels at axon terminals. Taken together, our study will open up novel avenues for the future analysis of neuronal Shank biology in both health and disease.

  10. Inhibition of kinesin-5 improves regeneration of injured axons by a novel microtubule-based mechanism

    Institute of Scientific and Technical Information of China (English)

    Peter W. Baas; Andrew J. Matamoros

    2015-01-01

    Microtubules have been identiifed as a powerful target for augmenting regeneration of injured adult axons in the central nervous system. Drugs that stabilize microtubules have shown some promise, but there are concerns that abnormally stabilizing microtubules may have only limited beneifts for regeneration, while at the same time may be detrimental to the normal work that microtubules perform for the axon. Kinesin-5 (also called kif11 or Eg5), a molecular motor protein best known for its crucial role in mitosis, acts as a brake on microtubule movements by other motor proteins in the axon. Drugs that inhibit kinesin-5, originally developed to treat cancer, result in greater mobility of microtubules in the axon and an overall shift in the forces on the microtubule array. As a result, the axon grows faster, retracts less, and more readily enters environments that are inhibitory to axonal regeneration. Thus, drugs that inhibit kinesin-5 offer a novel microtubule-based means to boost axonal regeneration without the concerns that ac-company abnormal stabilization of the microtubule array. Even so, inhibiting kinesin-5 is not without its own caveats, such as potential problems with navigation of the regenerating axon to its target, as well as morphological effects on dendrites that could affect learning and memory if the drugs reach the brain.

  11. Axon-somatic back-propagation in detailed models of spinal alpha motoneurons

    Directory of Open Access Journals (Sweden)

    Pietro eBalbi

    2015-02-01

    Full Text Available Antidromic action potentials following distal stimulation of motor axons occasionally fail to invade the soma of alpha motoneurons in spinal cord, due to their passing through regions of high non-uniformity.Morphologically detailed conductance-based models of cat spinal alpha motoneurons have been developed, with the aim to reproduce and clarify some aspects of the electrophysiological behavior of the antidromic axon-somatic spike propagation. Fourteen 3D morphologically detailed somata and dendrites of cat spinal alpha motoneurons have been imported from an open-access web-based database of neuronal morphologies, NeuroMorpho.org, and instantiated in neurocomputational models. An axon hillock, an axonal initial segment and a myelinated axon are added to each model.By sweeping the diameter of the axonal initial segment (AIS and the axon hillock, as well as the maximal conductances of sodium channels at the AIS and at the soma, the developed models are able to show the relationships between different geometric and electrophysiological configurations and the voltage attenuation of the antidromically travelling wave.In particular, a greater than usually admitted sodium conductance at AIS is necessary and sufficient to overcome the dramatic voltage attenuation occurring during antidromic spike propagation both at the myelinated axon-AIS and at the AIS-soma transitions.

  12. The central role of mitochondria in axonal degeneration in multiple sclerosis.

    Science.gov (United States)

    Campbell, Graham R; Worrall, Joseph T; Mahad, Don J

    2014-12-01

    Neurodegeneration in multiple sclerosis (MS) is related to inflammation and demyelination. In acute MS lesions and experimental autoimmune encephalomyelitis focal immune attacks damage axons by injuring axonal mitochondria. In progressive MS, however, axonal damage occurs in chronically demyelinated regions, myelinated regions and also at the active edge of slowly expanding chronic lesions. How axonal energy failure occurs in progressive MS is incompletely understood. Recent studies show that oligodendrocytes supply lactate to myelinated axons as a metabolic substrate for mitochondria to generate ATP, a process which will be altered upon demyelination. In addition, a number of studies have identified mitochondrial abnormalities within neuronal cell bodies in progressive MS, leading to a deficiency of mitochondrial respiratory chain complexes or enzymes. Here, we summarise the mitochondrial abnormalities evident within neurons and discuss how these grey matter mitochondrial abnormalities may increase the vulnerability of axons to degeneration in progressive MS. Although neuronal mitochondrial abnormalities will culminate in axonal degeneration, understanding the different contributions of mitochondria to the degeneration of myelinated and demyelinated axons is an important step towards identifying potential therapeutic targets for progressive MS.

  13. C. elegans: a new model organism for studies of axon regeneration

    OpenAIRE

    Ghosh-Roy, Anindya; Chisholm, Andrew D.

    2010-01-01

    Axonal regeneration in C. elegans was first reported five years ago. Individual GFP-labeled axons can be severed using laser microsurgery and their regrowth followed in vivo. Several neuron types display robust regrowth after injury, including motor and sensory neurons. The small size and transparency of C. elegans make possible large-scale genetic and pharmacological screens for regeneration phenotypes.

  14. Distribution of neurofilaments in myelinated axons of the optic nerve of goldfish (Carassius auratus L.).

    Science.gov (United States)

    Matheson, D F; Diocee, M S; Roots, B I

    1980-11-01

    Neurofilaments were counted in myelinated axons of the optic nerve of goldfish which were acclimated to 5 degrees and 25 degrees C. The number of neurofilaments increases markedly with increasing axonal size; axons of less than 0.1 micrometer 2 in area contain between 25 and 60 neurofilaments, while in the larger axons of area greater than 1.0 micrometer 2 there are approximately 190. The densities of the neurofilaments in the small axons are noticeably higher than in the larger ones (507 and 160, respectively). A variety of fixation procedures i.e. osmium tetroxide (OsO4) in phosphate buffer, glutaraldehyde (4%) in phosphate buffer or in ethyleneglycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) and piperazine-N-N'-bis-(2-ethanesulphonic acid) (PIPES) and post-fixed with OsO4 had no effect on the numbers of neurofilaments relative to the size of axon. The anaesthetic MS-222 (tricaine methanesulphonate) likewise had no effect on the numbers of neurofilaments. It is proposed that temperature acclimation alters the axon diameter concomitant with an alteration in the number of neurofilaments to fit the new diameter of the axons. PMID:6253602

  15. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF.

    Science.gov (United States)

    Pun, San; Santos, Alexandre Ferrão; Saxena, Smita; Xu, Lan; Caroni, Pico

    2006-03-01

    Neurodegenerative diseases can have long preclinical phases and insidious progression patterns, but the mechanisms of disease progression are poorly understood. Because quantitative accounts of neuronal circuitry affected by disease have been lacking, it has remained unclear whether disease progression reflects processes of stochastic loss or temporally defined selective vulnerabilities of distinct synapses or axons. Here we derive a quantitative topographic map of muscle innervation in the hindlimb. We show that in two mouse models of motoneuron disease (G93A SOD1 and G85R SOD1), axons of fast-fatiguable motoneurons are affected synchronously, long before symptoms appear. Fast-fatigue-resistant motoneuron axons are affected at symptom-onset, whereas axons of slow motoneurons are resistant. Axonal vulnerability leads to synaptic vesicle stalling and accumulation of BC12a1-a, an anti-apoptotic protein. It is alleviated by ciliary neurotrophic factor and triggers proteasome-dependent pruning of peripheral axon branches. Thus, motoneuron disease involves predictable, selective vulnerability patterns by physiological subtypes of axons, episodes of abrupt pruning in the target region and compensation by resistant axons.

  16. CD8+ T cells cause disability and axon loss in a mouse model of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Chandra Deb

    Full Text Available BACKGROUND: The objective of this study was to test the hypothesis that CD8+ T cells directly mediate motor disability and axon injury in the demyelinated central nervous system. We have previously observed that genetic deletion of the CD8+ T cell effector molecule perforin leads to preservation of motor function and preservation of spinal axons in chronically demyelinated mice. METHODOLOGY/PRINCIPAL FINDINGS: To determine if CD8+ T cells are necessary and sufficient to directly injure demyelinated axons, we adoptively transferred purified perforin-competent CD8+ spinal cord-infiltrating T cells into profoundly demyelinated but functionally preserved perforin-deficient host mice. Transfer of CD8+ spinal cord-infiltrating T cells rapidly and irreversibly impaired motor function, disrupted spinal cord motor conduction, and reduced the number of medium- and large-caliber spinal axons. Likewise, immunodepletion of CD8+ T cells from chronically demyelinated wildtype mice preserved motor function and limited axon loss without altering other disease parameters. CONCLUSIONS/SIGNIFICANCE: In multiple sclerosis patients, CD8+ T cells outnumber CD4+ T cells in active lesions and the number of CD8+ T cells correlates with the extent of ongoing axon injury and functional disability. Our findings suggest that CD8+ T cells may directly injure demyelinated axons and are therefore a viable therapeutic target to protect axons and motor function in patients with multiple sclerosis.

  17. Fast and simplified mapping of mean axon diameter using temporal diffusion spectroscopy.

    Science.gov (United States)

    Xu, Junzhong; Li, Hua; Li, Ke; Harkins, Kevin D; Jiang, Xiaoyu; Xie, Jingping; Kang, Hakmook; Dortch, Richard D; Anderson, Adam W; Does, Mark D; Gore, John C

    2016-04-01

    Mapping axon diameter is of interest for the potential diagnosis and monitoring of various neuronal pathologies. Advanced diffusion-weighted MRI methods have been developed to measure mean axon diameters non-invasively, but suffer major drawbacks that prevent their direct translation into clinical practice, such as complex non-linear data fitting and, more importantly, long scanning times that are usually not tolerable for most human subjects. In the current study, temporal diffusion spectroscopy using oscillating diffusion gradients was used to measure mean axon diameters with high sensitivity to small axons in the central nervous system. Axon diameters have been found to be correlated with a novel metric, DDR⊥ (the rate of dispersion of the perpendicular diffusion coefficient with gradient frequency), which is a model-free quantity that does not require complex data analyses and can be obtained from two diffusion coefficient measurements in clinically relevant times with conventional MRI machines. A comprehensive investigation including computer simulations and animal experiments ex vivo showed that measurements of DDR⊥ agree closely with histological data. In humans in vivo, DDR⊥ was also found to correlate well with reported mean axon diameters in human corpus callosum, and the total scan time was only about 8 min. In conclusion, DDR⊥ may have potential to serve as a fast, simple and model-free approach to map the mean axon diameter of white matter in clinics for assessing axon diameter changes. PMID:27077155

  18. Blast overpressure induced axonal injury changes in rat brainstem and spinal cord

    Directory of Open Access Journals (Sweden)

    Srinivasu Kallakuri

    2015-01-01

    Full Text Available Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s of blast overpressure (OP induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM tracts of cervical spinal cord are limited. Objective: The purpose of this study was to assess the extent of axonal injury in WM tracts of cervical spinal cord in male Sprague Dawley rats subjected to a single insult of blast OP. Materials and Methods: Sagittal brainstem sections and horizontal cervical spinal cord sections from blast and sham animals were stained by neurofilament light (NF-L chain and beta amyloid precursor protein immunocytochemistry and observed for axonal injury changes. Results: Observations from this preliminary study demonstrate axonal injury changes in the form of prominent swellings, retraction bulbs, and putative signs of membrane disruptions in the brainstem and cervical spinal cord WM tracts of rats subjected to blast OP. Conclusions: Prominent axonal injury changes following the blast OP exposure in brainstem and cervical spinal WM tracts underscores the need for careful evaluation of blast induced injury changes and associated symptoms. NF-L immunocytochemistry can be considered as an additional tool to assess the blast OP induced axonal injury.

  19. The autophagy gene Wdr45/Wipi4 regulates learning and memory function and axonal homeostasis.

    Science.gov (United States)

    Zhao, Yan G; Sun, Le; Miao, Guangyan; Ji, Cuicui; Zhao, Hongyu; Sun, Huayu; Miao, Lin; Yoshii, Saori R; Mizushima, Noboru; Wang, Xiaoqun; Zhang, Hong

    2015-01-01

    WDR45/WIPI4, encoding a WD40 repeat-containing PtdIns(3)P binding protein, is essential for the basal autophagy pathway. Mutations in WDR45 cause the neurodegenerative disease β-propeller protein-associated neurodegeneration (BPAN), a subtype of NBIA. We generated CNS-specific Wdr45 knockout mice, which exhibit poor motor coordination, greatly impaired learning and memory, and extensive axon swelling with numerous axon spheroids. Autophagic flux is defective and SQSTM1 (sequestosome-1)/p62 and ubiquitin-positive protein aggregates accumulate in neurons and swollen axons. Nes-Wdr45(fl/Y) mice recapitulate some hallmarks of BPAN, including cognitive impairment and defective axonal homeostasis, providing a model for revealing the disease pathogenesis of BPAN and also for investigating the possible role of autophagy in axon maintenance.

  20. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS.

    Science.gov (United States)

    Ito, Yasushi; Ofengeim, Dimitry; Najafov, Ayaz; Das, Sudeshna; Saberi, Shahram; Li, Ying; Hitomi, Junichi; Zhu, Hong; Chen, Hongbo; Mayo, Lior; Geng, Jiefei; Amin, Palak; DeWitt, Judy Park; Mookhtiar, Adnan Kasim; Florez, Marcus; Ouchida, Amanda Tomie; Fan, Jian-bing; Pasparakis, Manolis; Kelliher, Michelle A; Ravits, John; Yuan, Junying

    2016-08-01

    Mutations in the optineurin (OPTN) gene have been implicated in both familial and sporadic amyotrophic lateral sclerosis (ALS). However, the role of this protein in the central nervous system (CNS) and how it may contribute to ALS pathology are unclear. Here, we found that optineurin actively suppressed receptor-interacting kinase 1 (RIPK1)-dependent signaling by regulating its turnover. Loss of OPTN led to progressive dysmyelination and axonal degeneration through engagement of necroptotic machinery in the CNS, including RIPK1, RIPK3, and mixed lineage kinase domain-like protein (MLKL). Furthermore, RIPK1- and RIPK3-mediated axonal pathology was commonly observed in SOD1(G93A) transgenic mice and pathological samples from human ALS patients. Thus, RIPK1 and RIPK3 play a critical role in mediating progressive axonal degeneration. Furthermore, inhibiting RIPK1 kinase may provide an axonal protective strategy for the treatment of ALS and other human degenerative diseases characterized by axonal degeneration. PMID:27493188

  1. Matrix metalloproteinase 2 and membrane type 1 matrix metalloproteinase co-regulate axonal outgrowth of mouse retinal ganglion cells

    DEFF Research Database (Denmark)

    Gaublomme, Djoere; Buyens, Tom; De Groef, Lies;

    2014-01-01

    , we were able to show that broad-spectrum MMP inhibition reduces axon outgrowth of mouse retinal ganglion cells (RGCs), implicating MMPs as beneficial factors in axonal regeneration. Additional studies, using more specific MMP inhibitors and MMP-deficient mice, disclosed that both MMP-2 and MT1-MMP...... mouse retinal explants. Our data indicate MMP-2 and MT1-MMP as promising axonal outgrowth-promoting molecules and show a possible link between MMP-2 and β1-integrin in axon outgrowth....

  2. Interleukin (IL)-8 immunoreactivity of injured axons and surrounding oligodendrocytes in traumatic head injury.

    Science.gov (United States)

    Hayashi, Takahito; Ago, Kazutoshi; Nakamae, Takuma; Higo, Eri; Ogata, Mamoru

    2016-06-01

    Interleukin (IL)-8 has been suggested to be a positive regulator of myelination in the central nervous system, in addition to its principal role as a chemokine for neutrophils. Immunostaining for beta-amyloid precursor protein (AβPP) is an effective tool for detecting traumatic axonal injury, although AβPP immunoreactivity can also indicate axonal injury due to hypoxic causes. In this study, we examined IL-8 and AβPP immunoreactivity in sections of corpus callosum obtained from deceased patients with blunt head injury and from equivalent control tissue. AβPP immunoreactivity was detected in injured axons, such as axonal bulbs and varicose axons, in 24 of 44 head injury cases. These AβPP immunoreactive cases had survived for more than 3h. The AβPP immunostaining pattern can be classified into two types: traumatic (Pattern 1) and non-traumatic (Pattern 2) axonal injuries, which we described previously [Hayashi et al. Int. J. Legal Med. 129 (2015) 1085-1090]. Three of 44 control cases also showed AβPP immunoreactive injured axons as Pattern 2. In contrast, IL-8 immunoreactivity was detected in 7 AβPP immunoreactive and in 2 non-AβPP immunoreactive head injury cases, but was not detected in any of the 44 control cases, including the 3 AβPP immunoreactive control cases. The IL-8 immunoreactive cases had survived from 3 to 24 days, whereas those cases who survived less than 3 days (n=29) and who survived 90 days (n=1) were not IL-8 immunoreactive. Moreover, IL-8 was detected as Pattern 1 axons only. In addition, double immunofluorescence analysis showed that IL-8 is expressed by oligodendrocytes surrounding injured axons. In conclusion, our results suggest that immunohistochemical detection of IL-8 may be useful as a complementary diagnostic marker of traumatic axonal injury.

  3. Guidance on accidents involving radioactivity

    International Nuclear Information System (INIS)

    This annex contains advice to Health Authorities on their response to accidents involving radioactivity. The guidance is in six parts:-(1) planning the response required to nuclear accidents overseas, (2) planning the response required to UK nuclear accidents a) emergency plans for nuclear installations b) nuclear powered satellites, (3) the handling of casualties contaminated with radioactive substances, (4) background information for dealing with queries from the public in the event of an accident, (5) the national arrangements for incident involving radioactivity (NAIR), (6) administrative arrangements. (author)

  4. The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field.

    Science.gov (United States)

    Riggio, Cristina; Calatayud, M Pilar; Giannaccini, Martina; Sanz, Beatriz; Torres, Teobaldo E; Fernández-Pacheco, Rodrigo; Ripoli, Andrea; Ibarra, Manuel Ricardo; Dente, Luciana; Cuschieri, Alfred; Goya, Gerardo F; Raffa, Vittoria

    2014-10-01

    There is a growing body of evidence indicating the importance of physical stimuli for neuronal growth and development. Specifically, results from published experimental studies indicate that forces, when carefully controlled, can modulate neuronal regeneration. Here, we validate a non-invasive approach for physical guidance of nerve regeneration based on the synergic use of magnetic nanoparticles (MNPs) and magnetic fields (Ms). The concept is that the application of a tensile force to a neuronal cell can stimulate neurite initiation or axon elongation in the desired direction, the MNPs being used to generate this tensile force under the effect of a static external magnetic field providing the required directional orientation. In a neuron-like cell line, we have confirmed that MNPs direct the neurite outgrowth preferentially along the direction imposed by an external magnetic field, by inducing a net angle displacement (about 30°) of neurite direction. From the clinical editor: This study validates that non-invasive approaches for physical guidance of nerve regeneration based on the synergic use of magnetic nanoparticles and magnetic fields are possible. The hypothesis was confirmed by observing preferential neurite outgrowth in a cell culture system along the direction imposed by an external magnetic field.

  5. The Perceptions of Elementary Guidance In the Virginia Beach City Public Schools

    OpenAIRE

    Torma, Susan C.

    1998-01-01

    This study examines perceptions of the stakeholders (parents, administrators, faculty members, counselors, and fifth grade students) about the Virginia Beach Elementary Guidance and Counseling Program. A survey was developed by examining guidance goals and a previous study of the program (1993). Questions covered four domains: (1) home-school relationships, (2) student personal development, (3) support for academic growth, and (4) program value. Results are reported in descriptive statist...

  6. Regional node-like membrane specializations in non-myelinated axons of rat retinal nerve fiber layer.

    Science.gov (United States)

    Hildebrand, C; Waxman, S G

    1983-01-01

    The axons in the nerve fiber layer (NFL) of the adult rat retina were examined by transmission electron microscopy. NFL axons range in size from 0.12 to about 2.0 microm, with a peak at 0.3-0.4 microm. In addition to conventional small mitochondria in the NFL axons contain some large ones, which are similar to astrocytic gliosomes. Two types of regional axon membrane specialization are found in the NFL. One of these represents portions of the initial axon segments of retinal ganglion cells. Apart from features typical for initial axon segments in general, a corona of lamelliform, villous or blunt glial processes is always present. The glial processes originate from MUller cells. The other regional axon membrane specialization consists of patches of an electron-dense subaxolemmal undercoating with associated tufts of Miller cell processes. These patches cover a varying but always limited proportion of the axon circumference and their longitudinal extent varies between 0.5 and 5.0 microm. They are clearly distinct from the initial axon segment and from the initial heminode in the optic nerve. Similar undercoated patches in the optic disc axons are apposed by astrocytic processes. It is concluded that rat NFL axons represent an example of central non-myelinated axons with distinct regional membrane specializations, which have some structural characteristics in common with nodes of Ranvier. PMID:24010160

  7. Neural signal registration and analysis of axons grown in microchannels

    Science.gov (United States)

    Pigareva, Y.; Malishev, E.; Gladkov, A.; Kolpakov, V.; Bukatin, A.; Mukhina, I.; Kazantsev, V.; Pimashkin, A.

    2016-08-01

    Registration of neuronal bioelectrical signals remains one of the main physical tools to study fundamental mechanisms of signal processing in the brain. Neurons generate spiking patterns which propagate through complex map of neural network connectivity. Extracellular recording of isolated axons grown in microchannels provides amplification of the signal for detailed study of spike propagation. In this study we used neuronal hippocampal cultures grown in microfluidic devices combined with microelectrode arrays to investigate a changes of electrical activity during neural network development. We found that after 5 days in vitro after culture plating the spiking activity appears first in microchannels and on the next 2-3 days appears on the electrodes of overall neural network. We conclude that such approach provides a convenient method to study neural signal processing and functional structure development on a single cell and network level of the neuronal culture.

  8. Diagnosis and treatment of diffuse axonal injury in 169 patients

    Institute of Scientific and Technical Information of China (English)

    YANG Jia-yong; YANG Zhen-jiu; FENG Cheng-xuan; LI Hong-wei; LI Wei-ping; ZHANG Jun; ZHANG Hong

    2005-01-01

    Objective: To evaluate current diagnosis and therapeutic effect and outcome of diffuse axonal injury (DAI) in 169 patients.Methods: The data of 169 DAI patients treated in the Second, Sixth, Eighth and Ninth Hospitals of Shenzhen and Shekou Hospital from January 2001 to January 2005 were collected. The imaging features, classification, GCS (Glasgow coma scale), treatment and outcome of the 169patients were retrospectively analyzed.Results: The simpler the imaging features, the closer the focus of DAI to the periphery of hemisphere and the higher the GCS score, the better the prognoses of DAI patients will be.Conclusions: The prognoses of DAI patients are closely related to the imaging features and classification,GCS and clinical treatment.

  9. Multimodal transition and stochastic antiresonance in squid giant axons

    CERN Document Server

    Borkowski, L S

    2010-01-01

    The experimental data of N. Takahashi, Y. Hanyu, T. Musha, R. Kubo, and G. Matsumoto, Physica D \\textbf{43}, 318 (1990), on the response of squid giant axons stimulated by periodic sequence of short current pulses is interpreted within the Hodgkin-Huxley model. The minimum of the firing rate as a function of the stimulus amplitude $I_0$ in the high-frequency regime is due to the multimodal transition. Below this singular point only odd multiples of the driving period remain and the system is highly sensitive to noise. The coefficient of variation has a maximum and the firing rate has a minimum as a function of the noise intensity which is an indication of the stochastic coherence antiresonance. The model calculations reproduce the frequency of occurrence of the most common modes in the vicinity of the transition. A linear relation of output frequency vs. $I_0$ for above the transition is also confirmed.

  10. Video Object Tracking in Neural Axons with Fluorescence Microscopy Images

    Directory of Open Access Journals (Sweden)

    Liang Yuan

    2014-01-01

    tracking. In this paper, we describe two automated tracking methods for analyzing neurofilament movement based on two different techniques: constrained particle filtering and tracking-by-detection. First, we introduce the constrained particle filtering approach. In this approach, the orientation and position of a particle are constrained by the axon’s shape such that fewer particles are necessary for tracking neurofilament movement than object tracking techniques based on generic particle filtering. Secondly, a tracking-by-detection approach to neurofilament tracking is presented. For this approach, the axon is decomposed into blocks, and the blocks encompassing the moving neurofilaments are detected by graph labeling using Markov random field. Finally, we compare two tracking methods by performing tracking experiments on real time-lapse image sequences of neurofilament movement, and the experimental results show that both methods demonstrate good performance in comparison with the existing approaches, and the tracking accuracy of the tracing-by-detection approach is slightly better between the two.

  11. Flight Guidance System Requirements Specification

    Science.gov (United States)

    Miller, Steven P.; Tribble, Alan C.; Carlson, Timothy M.; Danielson, Eric J.

    2003-01-01

    This report describes a requirements specification written in the RSML-e language for the mode logic of a Flight Guidance System of a typical regional jet aircraft. This model was created as one of the first steps in a five-year project sponsored by the NASA Langley Research Center, Rockwell Collins Inc., and the Critical Systems Research Group of the University of Minnesota to develop new methods and tools to improve the safety of avionics designs. This model will be used to demonstrate the application of a variety of methods and techniques, including safety analysis of system and subsystem requirements, verification of key properties using theorem provers and model checkers, identification of potential sources mode confusion in system designs, partitioning of applications based on the criticality of system hazards, and autogeneration of avionics quality code. While this model is representative of the mode logic of a typical regional jet aircraft, it does not describe an actual or planned product. Several aspects of a full Flight Guidance System, such as recovery from failed sensors, have been omitted, and no claims are made regarding the accuracy or completeness of this specification.

  12. Diffuse axonal injury at ultra-high field MRI.

    Directory of Open Access Journals (Sweden)

    Christoph Moenninghoff

    Full Text Available Diffuse axonal injury (DAI is a specific type of traumatic brain injury caused by shearing forces leading to widespread tearing of axons and small vessels. Traumatic microbleeds (TMBs are regarded as a radiological marker for DAI. This study aims to compare DAI-associated TMBs at 3 Tesla (T and 7 T susceptibility weighted imaging (SWI to evaluate possible diagnostic benefits of ultra-high field (UHF MRI.10 study participants (4 male, 6 female, age range 20-74 years with known DAI were included. All MR exams were performed with a 3 T MR system (Magnetom Skyra and a 7 T MR research system (Magnetom 7 T, Siemens AG, Healthcare Sector, Erlangen, Germany each in combination with a 32-channel-receive coil. The average time interval between trauma and imaging was 22 months. Location and count of TMBs were independently evaluated by two neuroradiologists on 3 T and 7 T SWI images with similar and additionally increased spatial resolution at 7 T. Inter- and intraobserver reliability was assessed using the interclass correlation coefficient (ICC. Count and diameter of TMB were evaluated with Wilcoxon signed rank test.Susceptibility weighted imaging revealed a total of 485 TMBs (range 1-190, median 25 at 3 T, 584 TMBs (plus 20%, range 1-262, median 30.5 at 7 T with similar spatial resolution, and 684 TMBs (plus 41%, range 1-288, median 39.5 at 7 T with 10-times higher spatial resolution. Hemorrhagic DAI appeared significantly larger at 7 T compared to 3 T (p = 0.005. Inter- and intraobserver correlation regarding the counted TMB was high and almost equal 3 T and 7 T.7 T SWI improves the depiction of small hemorrhagic DAI compared to 3 T and may be supplementary to lower field strengths for diagnostic in inconclusive or medicolegal cases.

  13. Collective cell migration: guidance principles and hierarchies.

    Science.gov (United States)

    Haeger, Anna; Wolf, Katarina; Zegers, Mirjam M; Friedl, Peter

    2015-09-01

    Collective cell migration results from the establishment and maintenance of collective polarization, mechanocoupling, and cytoskeletal kinetics. The guidance of collective cell migration depends on a reciprocal process between cell-intrinsic multicellular organization with leader-follower cell behavior and results in mechanosensory integration of extracellular guidance cues. Important guidance mechanisms include chemotaxis, haptotaxis, durotaxis, and strain-induced mechanosensing to move cell groups along interfaces and paths of least resistance. Additional guidance mechanisms steering cell groups during specialized conditions comprise electrotaxis and passive drift. To form higher-order cell and tissue structures during morphogenesis and cancer invasion, these guidance principles act in parallel and are integrated for collective adaptation to and shaping of varying tissue environments. We review mechanochemical and electrical inputs and multiparameter signal integration underlying collective guidance, decision making, and outcome. PMID:26137890

  14. Optimal terminal guidance for exoatmospheric interception

    Institute of Scientific and Technical Information of China (English)

    Yu Wenbin; Chen Wanchun; Yang Liang; Liu Xiaoming; Zhou Hao

    2016-01-01

    In this study, two optimal terminal guidance (OTG) laws, one of which takes into account the final velocity vector constraint, are developed for exoatmospheric interception using optimal control theory. In exoatmospheric interception, because the proposed guidance laws give full consideration to the effect of gravity, they consume much less fuel than the traditional guidance laws while requiring a light computational load. In the development of the guidance laws, a unified optimal guidance problem is put forward, where the final velocity vector constraint can be consid-ered or neglected by properly adjusting a parameter in the cost function. To make this problem ana-lytically solvable, a linear model is used to approximate the gravity difference, the difference of the gravitational accelerations of the target and interceptor. Additionally, an example is provided to show that some achievements of this study can be used to significantly improve the fuel efficiency of the pulsed guidance employed by the interceptor whose divert thrust level is fixed.

  15. Orthodenticle Is Required for the Expression of Principal Recognition Molecules That Control Axon Targeting in the Drosophila Retina.

    Directory of Open Access Journals (Sweden)

    Chiara Mencarelli

    2015-06-01

    Full Text Available Parallel processing of neuronal inputs relies on assembling neural circuits into distinct synaptic-columns and layers. This is orchestrated by matching recognition molecules between afferent growth cones and target areas. Controlling the expression of these molecules during development is crucial but not well understood. The developing Drosophila visual system is a powerful genetic model for addressing this question. In this model system, the achromatic R1-6 photoreceptors project their axons in the lamina while the R7 and R8 photoreceptors, which are involved in colour detection, project their axons to two distinct synaptic-layers in the medulla. Here we show that the conserved homeodomain transcription factor Orthodenticle (Otd, which in the eye is a main regulator of rhodopsin expression, is also required for R1-6 photoreceptor synaptic-column specific innervation of the lamina. Our data indicate that otd function in these photoreceptors is largely mediated by the recognition molecules flamingo (fmi and golden goal (gogo. In addition, we find that otd regulates synaptic-layer targeting of R8. We demonstrate that during this process, otd and the R8-specific transcription factor senseless/Gfi1 (sens function as independent transcriptional inputs that are required for the expression of fmi, gogo and the adhesion molecule capricious (caps, which govern R8 synaptic-layer targeting. Our work therefore demonstrates that otd is a main component of the gene regulatory network that regulates synaptic-column and layer targeting in the fly visual system.

  16. Effects of Valproic Acid on Axonal Regeneration and Recovery of Motor Function after Peripheral Nerve Injury in the Rat

    Directory of Open Access Journals (Sweden)

    Ting Rao

    2014-03-01

    Full Text Available Background:   Valproic acid (VPA is used to be an effective anti-epileptic drug and mood stabilizer. It has recently been demonstrated that VPA could promote neurite outgrowth, activate the extracellular signal regulated kinase pathway, and increases bcl-2 and growth cone-associated protein 43 levels in spinal cord. In the present research we demonstrate the effect of VPA on peripheral nerve regeneration and recovery of motor function following sciatic nerve transaction in rats. Methods:   The rats in VPA group and control group were administered with valproic acid (300mg/kg and sodium chloride respectively after operation. Each animal was observed sciatic nerve index (SFI at 2-week intervals and studied electrophysiology at 4-week intervals for 12 weeks. Histological and morphometrical analyses were performed 12 weeks after operation. Using the digital image-analysis system, thickness of the myelin sheath was measured, and total numbers of regenerated axons were counted. Results:   There was a significant difference in SFI, electrophysiological index (motor-nerve conduct velocity, and morphometrical results (regenerated axon number and thickness of myelin sheath in nerve regeneration between the VPA group and controls (   P

  17. Dihydrotestosterone ameliorates degeneration in muscle, axons and motoneurons and improves motor function in amyotrophic lateral sclerosis model mice.

    Directory of Open Access Journals (Sweden)

    Young-Eun Yoo

    Full Text Available Amyotrophic lateral sclerosis (ALS is a lethal disease characterized by a progressive loss of motoneurons. The clinical symptoms include skeletal muscle weakness and atrophy, which impairs motor performance and eventually leads to respiratory failure. We tested whether dihydrotestosterone (DHT, which has both anabolic effects on muscle and neuroprotective effects on axons and motoneurons, can ameliorate clinical symptoms in ALS. A silastic tube containing DHT crystals was implanted subcutaneously in SOD1-G93A mice at early symptomatic age when decreases in body weight and grip-strength were observed as compared to wild-type mice. DHT-treated SOD1-G93A mice demonstrated ameliorated muscle atrophy and increased body weight, which was associated with stronger grip-strength. DHT treatment increased the expression of insulin-like growth factor-1 in muscle, which can exert myotrophic as well as neurotrophic effects through retrograde transport. DHT treatment attenuated neuromuscular junction denervation, and axonal and motoneuron loss. DHT-treated SOD1-G93A mice demonstrated improvement in motor behavior as assessed by rota-rod and gait analyses, and an increased lifespan. Application of DHT is a relatively simple and non-invasive procedure, which may be translated into therapy to improve the quality of life for ALS patients.

  18. Health Service use of ionising radiations: Guidance

    International Nuclear Information System (INIS)

    This booklet gives outline guidance on the use of ionising radiations in the Health Service in the United Kingdom. Extensive reference is made to documents where more detailed information may be found. The guidance covers general advice on the medical use of ionising radiations, statutory requirements, and guidance on selected Health Service issues such as patient identification procedures, information management systems, deviations from prescribed radiation dose, imaging and radiotherapy. (57 references) (U.K.)

  19. The use of proteomic analysis to study trafficking defects in axons.

    Science.gov (United States)

    Fu, Xiaoqin; Brown, Kristy J; Rayavarapu, Sree; Nagaraju, Kanneboyina; Liu, Judy S

    2016-01-01

    Mutations in microtubule subunits and microtubule-associated proteins are the causes of many neurological disorders. These human conditions are usually associated with axonal tract defects or degeneration. The molecular mechanisms of these axonal dysfunction are still largely unknown. Conventional methods may not yield a complete analysis of downstream molecules related to axonal dysfunctions. Therefore, we devised a simple unbiased method to screen molecular motors and axonal molecules, which might be involved in axonal defects. We performed our analysis in the mouse with a targeted deletion in the doublecortin (Dcx) gene. Dcx is a microtubule-associated protein with direct effects on microtubule motors. Furthermore, the knockout of Dcx and its functionally redundant structurally similar paralog, doublecortin-like kinase 1 (Dclk1), in mouse results in thinner or absent axon tracts, including the corpus callosum and anterior commissures. We compared protein profiles of corpus callosum from Dcx knockout and wild-type mouse of P0-P2 using mass spectrometry. This strategy allowed us to identify novel candidates downstream of Dcx involved in axon transport.

  20. Effect of fetal spinal cord graft with different methods on axonal pathology after spinal cord contusion

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the effect of fetal spinal cord (FSC) graft with different methods on axonal pathology and neurological function recovery after spinal cord injury (SCI).   Methods: Forty Wistar rats were divided into 4 groups. In Group A, the spinal cord was injured and hemisected. In Group B, fetal spinal cord (FSC) was transferred into the injured site. In Group C, after having done as Group B, the upper and lower spinal nerve roots were anastomosed. And in Group D, after having done as Group B, the pedicled omentum was transferred into the hemisection cavity. At 6 weeks after operation, light and electronic microscopes were used to examine the axonal pathology. The neurological function was assessed with inclined plane tests in the open field. The number of axons was quantitated by a computer image analysis system.   Results: A greater loss of axons was observed in Group A than that of other groups at 6 weeks. The sequence of the reduced rate of the axons was as following, Group A>Group B>Group C>Group D (P<0.05). The remaining axons were paralleled with the significant improvement in neurological function recovery of the rats.   Conclusions: It indicates that FSC and pedicled omentum grafts after SCI can protect the axons and promote the neurological function recovery of the rats.

  1. Differential expression of axon-sorting molecules in mouse olfactory sensory neurons.

    Science.gov (United States)

    Ihara, Naoki; Nakashima, Ai; Hoshina, Naosuke; Ikegaya, Yuji; Takeuchi, Haruki

    2016-08-01

    In the mouse olfactory system, the axons of olfactory sensory neurons that express the same type of odorant receptor (OR) converge to a specific set of glomeruli in the olfactory bulb (OB). It is widely accepted that expressed OR molecules instruct glomerular segregation by regulating the expression of axon-sorting molecules. Although the relationship between the expression of axon-sorting molecules and OR types has been analyzed in detail, those between the expressions of axon-sorting molecules remain to be elucidated. Here we collected the expression profiles of four axon-sorting molecules from a large number of glomeruli in the OB. These molecules demonstrated position-independent mosaic expressions, but their patterns were not identical in the OB. Comparing their expressions identified positive and negative correlations between several pairs of genes even though they showed various expressions. Furthermore, the principal component analysis revealed that the factor loadings in the principal component 1, which explain the largest amount of variation, were most likely to reflect the degree of the cyclic nucleotide-gated (CNG) channel dependence on the expression of axon-sorting molecules. Thus, neural activity generated through the CNG channel is a major component in the generation of a wide variety of expressions of axon-sorting molecules in glomerular segregation. PMID:27207328

  2. The gene ten-1 contributes to axon regeneration accuracy following femtosecond laser axotomy in C. elegans

    Science.gov (United States)

    Stevens, Dylan T.; Mathew, Manoj; Goksör, Mattias; Pilon, Marc

    2012-10-01

    The precise cutting of axons in C. elegans using short laser pulses permits the investigation of parameters that may influence axonal regeneration. This study began by building and optimizing a femtosecond laser axotomy setup that we first used to monitor the effect of cutting axons near or far from the cell body of the PLM mechanosensory neurons in C. elegans. To assess regeneration, we developed a scoring system where the angle between the regenerating trajectory and its direct line to the target is measured; we called this measurement the "angle of regeneration". The results indicate that axons cut near the cell body regenerate better than those cut far from the cell body but nearer their target. The role of teneurins, which are transmembrane proteins with a large extracellular domain that are thought to regulate the remodelling of the extracellular matrix, has not yet been explored as a potential contributor to axon regeneration. We cut PLM axons in wild-type or ten-1 mutant worms, and measured the angle of regeneration 48 hours later, and the frequency of reconnection to the target. Our results show that functional ten-1 contributes to successful axon regeneration.

  3. Effects of axonal topology on the somatic modulation of synaptic outputs.

    Science.gov (United States)

    Sasaki, Takuya; Matsuki, Norio; Ikegaya, Yuji

    2012-02-22

    Depolarization of the neuronal soma augments synaptic output onto postsynaptic neurons via long-range, axonal cable properties. Here, we report that the range of this somatic influence is spatially restricted by not only axonal path length but also a branching-dependent decrease in axon diameter. Cell-attached recordings of action potentials (APs) from multiple axon branches of a rat hippocampal CA3 pyramidal cell revealed that an AP was broadened following a 20 mV depolarization of the soma and reverted to a normal width during propagation down the axon. The narrowing of the AP depended on the distance traveled by the AP and on the number of axon branch points through which the AP passed. These findings were confirmed by optical imaging of AP-induced calcium elevations in presynaptic boutons, suggesting that the somatic membrane potential modifies synaptic outputs near the soma but not long-projection outputs. Consistent with this prediction, whole-cell recordings from synaptically connected neurons revealed that depolarization of presynaptic CA3 pyramidal cells facilitated synaptic transmission to nearby CA3 pyramidal cells, but not to distant pyramidal cells in CA3 or CA1. Therefore, axonal geometry enables the differential modulation of synaptic output depending on target location.

  4. Serial Section Registration of Axonal Confocal Microscopy Datasets for Long-Range Neural Circuit Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Hogrebe, Luke; Paiva, Antonio R.; Jurrus, Elizabeth R.; Christensen, Cameron; Bridge, Michael; Dai, Li; Pfeiffer, Rebecca; Hof, Patrick; Roysam, Badrinath; Korenberg, Julie; Tasdizen, Tolga

    2012-06-15

    In the context of long-range digital neural circuit reconstruction, this paper investigates an approach for registering axons across histological serial sections. Tracing distinctly labeled axons over large distances allows neuroscientists to study very explicit relationships between the brain's complex interconnects and, for example, diseases or aberrant development. Large scale histological analysis requires, however, that the tissue be cut into sections. In immunohistochemical studies thin sections are easily distorted due to the cutting, preparation, and slide mounting processes. In this work we target the registration of thin serial sections containing axons. Sections are first traced to extract axon centerlines, and these traces are used to define registration landmarks where they intersect section boundaries. The trace data also provides distinguishing information regarding an axon's size and orientation within a section. We propose the use of these features when pairing axons across sections in addition to utilizing the spatial relationships amongst the landmarks. The global rotation and translation of an unregistered section are accounted for using a random sample consensus (RANSAC) based technique. An iterative nonrigid refinement process using B-spline warping is then used to reconnect axons and produce the sought after connectivity information.

  5. Hybrid Guidance System for Relative Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA architectures and missions will involve many distributed platforms that must work together. This in turn requires guidance, navigation and control...

  6. gamma-Diketone neuropathy: axon atrophy and the role of cytoskeletal protein adduction.

    Science.gov (United States)

    LoPachin, Richard M; DeCaprio, Anthony P

    2004-08-15

    Multifocal giant neurofilamentous axonal swellings and secondary distal degeneration have been historically considered the hallmark features of gamma-diketone neuropathy. Accordingly, research conducted over the past 25 years has been directed toward discerning mechanisms of axonal swelling. However, this neuropathological convention has been challenged by recent observations that swollen axons were an exclusive product of long-term 2.5-hexanedione (HD) intoxication at lower daily dose-rates (e.g., 175 mg/kg/day); that is, higher HD dose-rates (e.g., 400 mg/kg/day) produced neurological deficits in the absence of axonal swellings. The observation that neurological toxicity can be expressed without axonal swelling suggests that this lesion is not an important pathophysiological event. Instead, several research groups have now shown that axon atrophy is prevalent in nervous tissues of laboratory animals intoxicated over a wide range of HD dose-rates. The well-documented nerve conduction defects associated with axon atrophy, in conjunction with the temporal correspondence between this lesion and the onset of neurological deficits, strongly suggest that atrophy has pathophysiological significance. In this commentary, we present evidence that supports a pathognomonic role for axon atrophy in gamma-diketone neuropathy and suggests that the functional consequences of this lesion mediate the corresponding neurological toxicity. Previous research has demonstrated that HD interacts with proteins via formation of pyrrole adducts. We therefore discuss the possibility that this chemical process is essential to the mechanism of atrophy. Evidence presented in this review suggests that "distal axonopathy" is an inaccurate classification and future nosological schemes should be based on the apparent primacy of axon atrophy. PMID:15289087

  7. Adaptive Guidance based on Context Profile for Software Process Modeling

    Directory of Open Access Journals (Sweden)

    Hamid Khemissa

    2012-07-01

    Full Text Available This paper aims to define an adaptive guidance for software process modeling. The proposed guidance approach is based on development’s profile context (actor’s role in the process, actor’s qualification and related activities in progress. We introduce new guidance concepts through adaptive guidance meta-model (AGM allowing specific assistance interventions (corrective, constructive and automatic guidance. We illustrate our guidance approach using SPEM formalism extended with these new guidance concepts.

  8. Tumour-induced neoneurogenesis and perineural tumour growth: a mathematical approach

    Science.gov (United States)

    Lolas, Georgios; Bianchi, Arianna; Syrigos, Konstantinos N.

    2016-02-01

    It is well-known that tumours induce the formation of a lymphatic and a blood vasculature around themselves. A similar but far less studied process occurs in relation to the nervous system and is referred to as neoneurogenesis. The relationship between tumour progression and the nervous system is still poorly understood and is likely to involve a multitude of factors. It is therefore relevant to study tumour-nerve interactions through mathematical modelling: this may reveal the most significant factors of the plethora of interacting elements regulating neoneurogenesis. The present work is a first attempt to model the neurobiological aspect of cancer development through a system of differential equations. The model confirms the experimental observations that a tumour is able to promote nerve formation/elongation around itself, and that high levels of nerve growth factor and axon guidance molecules are recorded in the presence of a tumour. Our results also reflect the observation that high stress levels (represented by higher norepinephrine release by sympathetic nerves) contribute to tumour development and spread, indicating a mutually beneficial relationship between tumour cells and neurons. The model predictions suggest novel therapeutic strategies, aimed at blocking the stress effects on tumour growth and dissemination.

  9. Clinical features and molecular modelling of novel MPZ mutations in demyelinating and axonal neuropathies

    OpenAIRE

    Mandich, Paola; Fossa, Paola; Capponi, Simona; Geroldi, Alessandro; Acquaviva, Massimo; Gulli, Rossella; Ciotti, Paola; MANGANELLI, FIORE; Grandis, Marina; Bellone, Emilia

    2009-01-01

    Mutations in the myelin protein zero (MPZ) gene have been associated with different Charcot–Marie–Tooth disease (CMT) phenotypes, including classical demyelinating CMT1B and the axonal form of the disease (CMT2). The MPZ role in the pathogenesis of both demyelinating and axonal inherited neuropathies was evaluated in the Italian population by screening a cohort of 214 patients with CMT1 or CMT2. A MPZ mutation frequency of 7.9% in demyelinating cases and of 4.8% in axonal cases was observed. ...

  10. [A case of acute motor sensory axonal polyneuropathy after Haemophilus influenzae infection].

    Science.gov (United States)

    Oda, M; Udaka, F; Kubori, T; Oka, N; Kameyama, M

    2000-08-01

    A 47-year-old woman developed consciousness disturbance, and experienced hallucinations while traveling abroad, and then went into critical condition. She was placed in the critical care unit, and had flaccid tetraparesis requiring mechanical ventilation. Haemophilus influenzae was cultured from the sputum. The level of protein of the cerebrospinal fluid was elevated to 114 mg/dl, nerve conduction study showed findings of pure axonal damage, and the sural nerve biopsy revealed severe axonal degeneration. She improved gradually by plasma exchange. The diagnosis of acute motor sensory axonal polyneuropathy (AMSAN) based on autoimmune mechanism was made. We speculate that H. influenzae infection may have elicited AMSAN in this case. PMID:11218707

  11. Axonal recovery after severe traumatic brain injury demonstrated in vivo by 1H MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Danielsen, E.R.; Thomsen, C. [Department of Neuroradiology, Section 3023, Rigshospitalet, Copenhagen (Denmark); Christensen, P.B. [Hammel Neurocentre, Department of Neurology, Aarhus University Hospital (Denmark); Arlien-Soeborg, P. [Department of Neurology, Rigshospitalet, Copenhagen (Denmark)

    2003-10-01

    Proton magnetic resonance spectroscopy (MRS) suggested almost complete axonal recovery 21 months after trauma in a patient with severe diffuse axonal injury. MRS while the patient was comatose showed evidence of severe diffuse axonal injury in occipitoparietal white matter, but occipital grey matter was relatively spared. At 21 months N-acetylaspartate was normal. At 33 months examination showed a Functional Independence Measure of 83 and a Rancho Los Amigos Scale of Cognitive Function of 7-8, a remarkable improvement considering all the initial findings, except those of MRS. (orig.)

  12. Hematopoietic progenitors express myelin basic protein and ensheath axons in Shiverer brain.

    Science.gov (United States)

    Goolsby, James; Makar, Tapas; Dhib-Jalbut, Suhayl; Bever, Christopher T; Pessac, Bernard; Trisler, David

    2013-04-15

    Oligodendroglia are cells of the central nervous system (CNS) that form myelin sheath, which insulates neuronal axons. Neuropathologies of the CNS include dysmyelination of axons in multiple sclerosis and CNS trauma. Cell replacement is a promising but largely untested therapy for dysmyelination. Shiverer mouse, a genetic mutant that does not synthesize full-length myelin basic protein (MBP), a critical prerequisite protein in CNS myelin sheath formation, provides an unequivocal model for determining the potential of stem cells to become oligodendroglia. We demonstrate that adult wild-type mouse bone marrow stem cells can express MBP and ensheath axons when transplanted into Shiverer brain.

  13. Diffuse axonal injury: detection of changes in anisotropy of water diffusion by diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J.H.M.; Tsui, E.Y.K.; Yuen, M.K. [Department of Diagnostic Radiology, Tuen Mun Hospital, Tsing Chung Koon Road, Tuen Mun, N.T., Hong Kong (China); Peh, W.C.G. [Department of Diagnostic Radiology, Singapore General Hospital (Singapore); Fong, D.; Fok, K.F.; Leung, K.M. [Department of Neurosurgery, Tuen Mun Hospital (Hong Kong); Fung, K.K.L. [Department of Optometry and Radiography, Hong Kong Polytechnic University (China)

    2003-01-01

    Myelinated axons of white matter demonstrate prominent directional differences in water diffusion. We performed diffusion-weighted imaging on ten patients with head injury to explore the feasibility of using water diffusion anisotropy for quantitating diffuse axonal injury. We showed significant decrease in diffusion anisotropy indices in areas with or without signal abnormality on T2 and T2*-weighted images. We conclude that the water diffusion anisotropy index a potentially useful, sensitive and quantitative way of diagnosing and assessing patients with diffuse axonal injury. (orig.)

  14. In vivo axonal transport deficits in a mouse model of fronto-temporal dementia

    Directory of Open Access Journals (Sweden)

    Tabassum Majid

    2014-01-01

    Discussion: In our study, we identified the presence of age-dependent axonal transport deficits beginning at 3 months of age in rTg4510 mice. We correlated these deficits at 3 months to the presence of hyperphosphorylated tau in the brain and the presence within the olfactory epithelium. We observed tau pathology not only in the soma of these neurons but also within the axons and processes of these neurons. Our characterization of axonal transport in this tauopathy model provides a functional time point that can be used for future therapeutic interventions.

  15. Local protein synthesis in neuronal axons: why and how we study

    OpenAIRE

    Kim, Eunjin; Jung, Hosung

    2015-01-01

    Adaptive brain function and synaptic plasticity rely on dynamic regulation of local proteome. One way for the neuron to introduce new proteins to the axon terminal is to transport those from the cell body, which had long been thought as the only source of axonal proteins. Another way, which is the topic of this review, is synthesizing proteins on site by local mRNA translation. Recent evidence indicates that the axon stores a reservoir of translationally silent mRNAs and regulates their expre...

  16. Agent Based Individual Traffic Guidance

    DEFF Research Database (Denmark)

    Wanscher, Jørgen

    This thesis investigates the possibilities in applying Operations Research (OR) to autonomous vehicular traffic. The explicit difference to most other research today is that we presume that an agent is present in every vehicle - hence Agent Based Individual Traffic guidance (ABIT). The next...... evolutionary step for the in-vehicle route planners is the introduction of two-way communication. We presume that the agent is capable of exactly this. Based on this presumption we discuss the possibilities and define a taxonomy and use this to discuss the ABIT system. Based on a set of scenarios we conclude...... that the system can be divided into two separate constituents. The immediate dispersion, which is used for small areas and quick response, and the individual alleviation, which considers the longer distance decision support. Both of these require intrinsicate models and cost functions which at the beginning...

  17. 78 FR 37231 - Guidance for Industry; Guidance on Abbreviated New Drug Applications: Stability Testing of Drug...

    Science.gov (United States)

    2013-06-20

    ... HUMAN SERVICES Food and Drug Administration Guidance for Industry; Guidance on Abbreviated New Drug... Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA or Agency) is announcing the...) review process more efficient. DATES: Submit either electronic or written comments on Agency guidances...

  18. Driving change : sustainable development action plans Guidance

    OpenAIRE

    Sustainable Development Commission

    2008-01-01

    This guidance builds upon the Sustainable Development Commission’s previous guidance, Getting Started (August 2005), which set out the basic elements that the Sustainable Development Commission would expect to see in a good Sustainable Development Action Plan. Publisher PDF Original published August 2005.

  19. Minimum variation guidance laws for interceptor missiles

    NARCIS (Netherlands)

    Weiss, M.; Shima, T.

    2014-01-01

    This paper introduces a new approach to guidance law design using linear quadratic optimal control theory, minimizing throughout the engagement the variation of the control input as well as the integral control effort. The guidance law is derived for arbitrary order missile dynamics and target maneu

  20. 75 FR 76079 - Sound Incentive Compensation Guidance

    Science.gov (United States)

    2010-12-07

    ... Office of Thrift Supervision Sound Incentive Compensation Guidance AGENCY: Office of Thrift Supervision... collection. Title of Proposal: Sound Incentive Compensation Guidance. OMB Number: 1550-0129. Form Number: N/A... compensation arrangements at a financial institution do not encourage employees to take excessive risks....

  1. 75 FR 53023 - Sound Incentive Compensation Guidance

    Science.gov (United States)

    2010-08-30

    ... Office of Thrift Supervision Sound Incentive Compensation Guidance AGENCY: Office of Thrift Supervision... collection. Title of Proposal: Sound Incentive Compensation Guidance. OMB Number: 1550-0129. Form Number: N/A... compensation arrangements at a financial institution do not encourage employees to take excessive risks....

  2. 75 FR 22679 - Sound Incentive Compensation Guidance

    Science.gov (United States)

    2010-04-29

    ... Office of Thrift Supervision Sound Incentive Compensation Guidance AGENCY: Office of Thrift Supervision... collection. Title of Proposal: Sound Incentive Compensation Guidance. OMB Number: 1550-0NEW. Form Number: N/A... compensation arrangements at a financial institution do not encourage employees to take excessive risks....

  3. Guidance for performing preliminary assessments under CERCLA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-09-01

    EPA headquarters and a national site assessment workgroup produced this guidance for Regional, State, and contractor staff who manage or perform preliminary assessments (PAs). EPA has focused this guidance on the types of sites and site conditions most commonly encountered. The PA approach described in this guidance is generally applicable to a wide variety of sites. However, because of the variability among sites, the amount of information available, and the level of investigative effort required, it is not possible to provide guidance that is equally applicable to all sites. PA investigators should recognize this and be aware that variation from this guidance may be necessary for some sites, particularly for PAs performed at Federal facilities, PAs conducted under EPA`s Environmental Priorities Initiative (EPI), and PAs at sites that have previously been extensively investigated by EPA or others. The purpose of this guidance is to provide instructions for conducting a PA and reporting results. This guidance discusses the information required to evaluate a site and how to obtain it, how to score a site, and reporting requirements. This document also provides guidelines and instruction on PA evaluation, scoring, and the use of standard PA scoresheets. The overall goal of this guidance is to assist PA investigators in conducting high-quality assessments that result in correct site screening or further action recommendations on a nationally consistent basis.

  4. Career Guidance in the Elementary School

    Science.gov (United States)

    Leonard, George E.

    1971-01-01

    The purpose of this column is to discuss, describe and disseminate information regarding career guidance principles and practices in the elementary schools. Specifically the activities of the Developmental Career Guidance Projects in inner city Detroit are described. The activities emphasize action involvement of children while didactic learning…

  5. How Effective Is Central Bank Forward Guidance?

    NARCIS (Netherlands)

    Kool, C.J.M.; Thornton, D.L.

    2012-01-01

    In this paper, we use survey forecasts to investigate the impact of forward guidance on the predictability of future short- and long-term interest rates in four countries: New Zealand, Norway, Sweden, and the United States. New Zealand began providing forward guidance in 1997, Norway in 2005, and Sw

  6. 78 FR 57450 - State Rail Plan Guidance

    Science.gov (United States)

    2013-09-18

    ... authorized in the Act and available under the High-Speed Intercity Passenger Rail program. This guidance... qualifies States to receive grants for high-speed rail only. Response: Operational information about all... Federal Railroad Administration State Rail Plan Guidance AGENCY: Federal Railroad Administration...

  7. Improving rehabilitation exercise performance through visual guidance.

    Science.gov (United States)

    Lam, Agnes W K; HajYasien, Ahmed; Kulic, Dana

    2014-01-01

    In current physical rehabilitation protocols, patients typically perform exercises without feedback or guidance following the initial demonstrations from the physiotherapist. This paper proposes a system providing continuous visual feedback and guidance to patients to improve quality of motion performance and adherence to instructions. The system consists of body-worn inertial measurement units which continuously measure the patient's pose. The measured pose is overlaid with the instructed motion on a visual display shown to the user during exercise performance. Two user studies were conducted with healthy participants to evaluate the usability of the visual guidance tool. Motion data was collected by the inertial measurement sensors and used to evaluate quality of motion, comparing user performance with and without visual feedback and with or without exercise guidance. The quantitative and qualitative results of the studies confirm that performing the exercises with the visual guidance tool promotes more consistent exercise performance and proper technique. PMID:25570311

  8. An Adaptive Weighted Differential Game Guidance Law

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping; FANG Yangwang; ZHANG Fengming; XIAO Bingsong; HU Shiguo; ZONG Shuning

    2012-01-01

    For intercepting modern high maneuverable targets,a novel adaptive weighted differential game guidance law based on the game theory of mixed strategy is proposed,combining two guidance laws which are derived from the perfect and imperfect information pattem,respectively.The weights vary according to the estimated error of the target's acceleration,the guidance law is generated by directly using the estimation of target's acceleration when the estimated error is small,and a differential game guidance law with adaptive penalty coefficient is implemented when the estimated error is large.The adaptive penalty coefficients are not constants and they can be adjusted with current target maneuverability.The superior homing performance of the new guidance law is verified by computer simulations.

  9. An adaptive guidance algorithm for aerospace vehicles

    Science.gov (United States)

    Bradt, J. E.; Hardtla, J. W.; Cramer, E. J.

    The specifications for proposed space transportation systems are placing more emphasis on developing reusable avionics subsystems which have the capability to respond to vehicle evolution and diverse missions while at the same time reducing the cost of ground support for mission planning, contingency response and verification and validation. An innovative approach to meeting these goals is to specify the guidance problem as a multi-point boundary value problen and solve that problem using modern control theory and nonlinear constrained optimization techniques. This approach has been implemented as Gamma Guidance (Hardtla, 1978) and has been successfully flown in the Inertial Upper Stage. The adaptive guidance algorithm described in this paper is a generalized formulation of Gamma Guidance. The basic equations are presented and then applied to four diverse aerospace vehicles to demonstrate the feasibility of using a reusable, explicit, adaptive guidance algorithm for diverse applications and vehicles.

  10. 75 FR 59268 - Draft Guidance for Industry: Acidified Foods; Availability

    Science.gov (United States)

    2010-09-27

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry: Acidified Foods; Availability...) is announcing the availability of a draft guidance entitled ``Guidance for Industry: Acidified Foods... requests for single copies of the draft guidance entitled ``Guidance for Industry: Acidified Foods'' to...

  11. Axonal degeneration stimulates the formation of NG2+ cells and oligodendrocytes in the mouse

    DEFF Research Database (Denmark)

    Nielsen, Helle Hvilsted; Ladeby, Rune; Drøjdahl, Nina;

    2006-01-01

    Proliferation of the adult NG2-expressing oligodendrocyte precursor cells has traditionally been viewed as a remyelination response ensuing from destruction of myelin and oligodendrocytes, and not to the axonal pathology that is also a characteristic of demyelinating disease. To better understand...... the response of the NG2+ cells to the different components of demyelinating pathology, we investigated the response of adult NG2+ cells to axonal degeneration in the absence of primary myelin or oligodendrocyte pathology. Axonal degeneration was induced in the hippocampal dentate gyrus of adult mice...... by transection of the entorhino-dentate perforant path projection. The acutely induced degeneration of axons and terminals resulted in a prompt response of NG2+ cells, consisting of morphological transformation, cellular proliferation, and upregulation of NG2 expression days 2-3 after surgery. This was followed...

  12. Mechanisms of sodium channel clustering and its influence on axonal impulse conduction.

    Science.gov (United States)

    Freeman, Sean A; Desmazières, Anne; Fricker, Desdemona; Lubetzki, Catherine; Sol-Foulon, Nathalie

    2016-02-01

    The efficient propagation of action potentials along nervous fibers is necessary for animals to interact with the environment with timeliness and precision. Myelination of axons is an essential step to ensure fast action potential propagation by saltatory conduction, a process that requires highly concentrated voltage-gated sodium channels at the nodes of Ranvier. Recent studies suggest that the clustering of sodium channels can influence axonal impulse conduction in both myelinated and unmyelinated fibers, which could have major implications in disease, particularly demyelinating pathology. This comprehensive review summarizes the mechanisms governing the clustering of sodium channels at the peripheral and central nervous system nodes and the specific roles of their clustering in influencing action potential conduction. We further highlight the classical biophysical parameters implicated in conduction timing, followed by a detailed discussion on how sodium channel clustering along unmyelinated axons can impact axonal impulse conduction in both physiological and pathological contexts. PMID:26514731

  13. Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation

    Directory of Open Access Journals (Sweden)

    Jan Gründemann

    2015-09-01

    Full Text Available Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, KCa3.1 by local, activity-dependent calcium (Ca2+ influx at nodes of Ranvier via a T-type voltage-gated Ca2+ current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells.

  14. Contrast and stability of the axon diameter index from microstructure imaging with diffusion MRI

    DEFF Research Database (Denmark)

    Dyrby, Tim B; Søgaard, Lise V; Hall, Matt G;

    2013-01-01

    (max) ) on a scanner influence the sensitivity to a range of axon diameters. Multishell high-angular-diffusion-imaging (HARDI) protocols for G(max) of 60, 140, 200, and 300 mT/m were optimized for the pulsed-gradient-spin-echo (PGSE) sequence. Data were acquired on a fixed monkey brain and Monte-Carlo simulations...... supported the results. Increasing G(max) reduces within-voxel variation of the axon diameter index and improves contrast beyond what is achievable with higher signal-to-noise ratio. Simulations reveal an upper bound on the axon diameter (∼10 μm) that pulsed-gradient-spin-echo measurements are sensitive to......(max) for enhancing contrast between axon diameter distributions and are, therefore, relevant in general for microstructure imaging methods and highlight the need for increased G(max) on future commercial systems. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc....

  15. Axonal plasticity elicits long-term changes in oligodendroglia and myelinated fibers

    DEFF Research Database (Denmark)

    Drøjdahl, Nina; Nielsen, Helle Hvilsted; Gardi, Jonathan E;

    2010-01-01

    Axons are linked to induction of myelination during development and to the maintenance of myelin and myelinated tracts in the adult CNS. Currently, it is unknown whether and how axonal plasticity in adult CNS impacts the myelinating cells and their precursors. In this article, we report that newly...... formed axonal sprouts are able to induce a protracted myelination response in adult CNS. We show that newly formed axonal sprouts, induced by lesion of the entorhino-hippocampal perforant pathway, have the ability to induce a myelination response in stratum radiatum and lucidum CA3. The lesion resulted...... in significant recruitment of newly formed myelinating cells, documented by incorporation of the proliferation marker bromodeoxyuridine into chondroitin sulphate NG2 expressing cells in stratum radiatum and lucidum CA3 early after lesion, and the occurrence of a 28% increase in the number of oligodendrocytes...

  16. Calcium-dependent proteasome activation is required for axonal neurofilament degradation.

    Science.gov (United States)

    Park, Joo Youn; Jang, So Young; Shin, Yoon Kyung; Suh, Duk Joon; Park, Hwan Tae

    2013-12-25

    Even though many studies have identified roles of proteasomes in axonal degeneration, the molecular mechanisms by which axonal injury regulates proteasome activity are still unclear. In the present study, we found evidence indicating that extracellular calcium influx is an upstream regulator of proteasome activity during axonal degeneration in injured peripheral nerves. In degenerating axons, the increase in proteasome activity and the degradation of ubiquitinated proteins were significantly suppressed by extracellular calcium chelation. In addition, electron microscopic findings revealed selective inhibition of neurofilament degradation, but not microtubule depolymerization or mitochondrial swelling, by the inhibition of calpain and proteasomes. Taken together, our findings suggest that calcium increase and subsequent proteasome activation are an essential initiator of neurofilament degradation in Wallerian degeneration. PMID:25206662

  17. Calcium-dependent proteasome activation is required for axonal neurofilament degradation

    Institute of Scientific and Technical Information of China (English)

    Joo Youn Park; So Young Jang; Yoon Kyung Shin; Duk Joon Suh; Hwan Tae Park

    2013-01-01

    Even though many studies have identified roles of proteasomes in axonal degeneration, the mo-lecular mechanisms by which axonal injury regulates proteasome activity are stil unclear. In the present study, we found evidence indicating that extracellular calcium influx is an upstream regula-tor of proteasome activity during axonal degeneration in injured peripheral nerves. In degenerating axons, the increase in proteasome activity and the degradation of ubiquitinated proteins were sig-nificantly suppressed by extracellular calcium chelation. In addition, electron microscopic findings revealed selective inhibition of neurofilament degradation, but not microtubule depolymerization or mitochondrial swel ing, by the inhibition of calpain and proteasomes. Taken together, our findings suggest that calcium increase and subsequent proteasome activation are an essential initiator of neurofilament degradation in Wal erian degeneration.

  18. Lentiviral vectors express chondroitinase ABC in cortical projections and promote sprouting of injured corticospinal axons.

    Science.gov (United States)

    Zhao, Rong-Rong; Muir, Elizabeth M; Alves, João Nuno; Rickman, Hannah; Allan, Anna Y; Kwok, Jessica C; Roet, Kasper C D; Verhaagen, Joost; Schneider, Bernard L; Bensadoun, Jean-Charles; Ahmed, Sherif G; Yáñez-Muñoz, Rafael J; Keynes, Roger J; Fawcett, James W; Rogers, John H

    2011-09-30

    Several diseases and injuries of the central nervous system could potentially be treated by delivery of an enzyme, which might most effectively be achieved by gene therapy. In particular, the bacterial enzyme chondroitinase ABC is beneficial in animal models of spinal cord injury. We have adapted the chondroitinase gene so that it can direct secretion of active chondroitinase from mammalian cells, and inserted it into lentiviral vectors. When injected into adult rat brain, these vectors lead to extensive secretion of chondroitinase, both locally and from long-distance axon projections, with activity persisting for more than 4 weeks. In animals which received a simultaneous lesion of the corticospinal tract, the vector reduced axonal die-back and promoted sprouting and short-range regeneration of corticospinal axons. The same beneficial effects on damaged corticospinal axons were observed in animals which received the chondroitinase lentiviral vector directly into the vicinity of a spinal cord lesion.

  19. SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury.

    Science.gov (United States)

    Johnson, Victoria E; Stewart, William; Weber, Maura T; Cullen, D Kacy; Siman, Robert; Smith, Douglas H

    2016-01-01

    Diffuse axonal injury (DAI) is a common feature of severe traumatic brain injury (TBI) and may also be a predominant pathology in mild TBI or "concussion". The rapid deformation of white matter at the instant of trauma can lead to mechanical failure and calcium-dependent proteolysis of the axonal cytoskeleton in association with axonal transport interruption. Recently, a proteolytic fragment of alpha-II spectrin, "SNTF", was detected in serum acutely following mild TBI in patients and was prognostic for poor clinical outcome. However, direct evidence that this fragment is a marker of DAI has yet to be demonstrated in either humans following TBI or in models of mild TBI. Here, we used immunohistochemistry (IHC) to examine for SNTF in brain tissue following both severe and mild TBI. Human severe TBI cases (survival <7d; n = 18) were compared to age-matched controls (n = 16) from the Glasgow TBI archive. We also examined brains from an established model of mild TBI at 6, 48 and 72 h post-injury versus shams. IHC specific for SNTF was compared to that of amyloid precursor protein (APP), the current standard for DAI diagnosis, and other known markers of axonal pathology including non-phosphorylated neurofilament-H (SMI-32), neurofilament-68 (NF-68) and compacted neurofilament-medium (RMO-14) using double and triple immunofluorescent labeling. Supporting its use as a biomarker of DAI, SNTF immunoreactive axons were observed at all time points following both human severe TBI and in the model of mild TBI. Interestingly, SNTF revealed a subpopulation of degenerating axons, undetected by the gold-standard marker of transport interruption, APP. While there was greater axonal co-localization between SNTF and APP after severe TBI in humans, a subset of SNTF positive axons displayed no APP accumulation. Notably, some co-localization was observed between SNTF and the less abundant neurofilament subtype markers. Other SNTF positive axons, however, did not co-localize with any

  20. Human amnion membrane matrix as a substratum for axonal regeneration in the central nervous system.

    Science.gov (United States)

    Gage, F H; Blaker, S N; Davis, G E; Engvall, E; Varon, S; Manthorpe, M

    1988-01-01

    Human Amnion Membrane Matrix (HAMM) was used as a substratum for the regeneration of neuronal axons in the central nervous system. A large piece of HAMM was bound to nitrocellulose paper (NCP) as a supporting material, and cut into small strips. Aspirative lesions of the fimbria-fornix were made in adult rats leaving a cavity separating the septum from the hippocampus. In the same operation a small piece of HAMM-NCP was placed into the cavity with one end abutting the axotomized septum and the other end abutting the denervated hippocampus. At times between 2 weeks and 3 months after surgery the brains of the animals were examined histologically for 1) host response to the implant; 2) maintenance of HAMM-NCP in the originally implanted orientation; 3) growth of acetylcholinesterase (AChE)-positive fibers on the HAMM; 4) growth of the AChE-positive fibers into the denervated hippocampus; and 5) non-neuronal cells on the HAMM. The NCP remained in place over the 3-month period. In most cases the HAMM and NCP remained apposed and caused no greater reaction in the brain beyond that created in response to the aspirative lesion alone. AChE-positive fibers grew out from the septum onto the HAMM by 2 weeks, and by 8 weeks more extensive growth was observed on the HAMM. By 8-weeks, AChE fibers could be clearly seen coming off the membrane and entering the host hippocampus. By double-labelling for the basement membrane side of the HAMM (using anti-human laminin antibodies) and for cholinergic fibers (using AChE histochemistry) in the same sections, it was possible to see fibers clearly growing on the laminin-positive side of the HAMM but little or no growth on the opposing laminin-negative stromal side. The most important variables for extensive growth appeared to be the accurate placement of the implant and the amount of time following the lesions. The placement of the matrix on NCP prior to implantation in the brain made it easier to orient the membrane between the septum