WorldWideScience

Sample records for axon growth guidance

  1. Signaling mechanisms in cortical axon growth, guidance and branching

    Directory of Open Access Journals (Sweden)

    Katherine eKalil

    2011-09-01

    Full Text Available Precise wiring of cortical circuits during development depends upon axon extension, guidance and branching to appropriate targets. Motile growth cones at axon tips navigate through the nervous system by responding to molecular cues, which modulate signaling pathways within axonal growth cones. Intracellular calcium signaling has emerged as a major transducer of guidance cues but exactly how calcium signaling pathways modify the actin and microtubule cytoskeleton to evoke growth cone behaviors and axon branching is still mysterious. Axons must often pause in their outgrowth while their branches extend into targets. Some evidence suggests a competition between growth of axons and branches but the mechanisms are poorly understood. Since it is difficult to study growing axons deep within the mammalian brain, much of what we know about signaling pathways and cytoskeletal dynamics has come from studies of axonal growth cones, in many cases from non-mammalian species, growing in tissue culture. Consequently it is not well understood how guidance cues relevant to mammalian neural development in vivo signal to the growth cone cytoskeleton during axon outgrowth and guidance. In this review we describe our recent work in dissociated cultures of developing rodent sensorimotor cortex in the context of the current literature on molecular guidance cues, calcium signaling pathways and cytoskeletal dynamics that regulate growth cone behaviors. A major challenge is to relate findings in tissue culture to mechanisms of cortical development in vivo. Toward this goal, we describe our recent work in cortical slices, which preserve the complex cellular and molecular environment of the mammalian brain but allow direct visualization of growth cone behaviors and calcium signaling. Findings from this work suggest that mechanisms regulating axon growth and guidance in dissociated culture neurons also underlie development of cortical connectivity in vivo.

  2. Quantifying mechanical force in axonal growth and guidance

    Directory of Open Access Journals (Sweden)

    Ahmad Ibrahim Mahmoud Athamneh

    2015-09-01

    Full Text Available Mechanical force plays a fundamental role in neuronal development, physiology, and regeneration. In particular, research has shown that force is involved in growth cone-mediated axonal growth and guidance as well as stretch-induced elongation when an organism increases in size after forming initial synaptic connections. However, much of the details about the exact role of force in these fundamental processes remain unknown. In this review, we highlight (1 standing questions concerning the role of mechanical force in axonal growth and guidance and (2 different experimental techniques used to quantify forces in axons and growth cones. We believe that satisfying answers to these questions will require quantitative information about the relationship between elongation, forces, cytoskeletal dynamics, axonal transport, signaling, substrate adhesion, and stiffness contributing to directional growth advance. Furthermore, we address why a wide range of force values have been reported in the literature, and what these values mean in the context of neuronal mechanics. We hope that this review will provide a guide for those interested in studying the role of force in development and regeneration of neuronal networks.

  3. Wnt-induced calcium signaling mediates axon growth and guidance in the developing corpus callosum.

    Science.gov (United States)

    Hutchins, B Ian; Li, Li; Kalil, Katherine

    2012-01-10

    Wnt5a gradients guide callosal axons by repulsion through Ryk receptors in vivo. We recently found that Wnt5a repels cortical axons and promotes axon outgrowth through calcium signaling in vitro. Here, using cortical slices, we show that Wnt5a signals through Ryk to guide and promote outgrowth of callosal axons after they cross the midline. Calcium transient frequencies in callosal growth cones positively correlate with axon outgrowth rates in vitro. In cortical slices, calcium release through inositol 1,4,5-trisphosphate (IP(3)) receptors and calcium entry through transient receptor potential channels modulate axon growth and guidance. Knocking down Ryk inhibits calcium signaling in cortical axons, reduces rates of axon outgrowth subsequent to midline crossing, and causes axon guidance defects. Calcium- and calmodulin-dependent protein kinase II (CaMKII) is required downstream of Wnt-induced calcium signaling for postcrossing callosal axon growth and guidance. Taken together, these results suggest that growth and guidance of postcrossing callosal axons by Wnt-Ryk-calcium signaling involves axon repulsion through CaMKII.

  4. Primary neuron culture for nerve growth and axon guidance studies in zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Zheyan Chen

    Full Text Available Zebrafish (Danio rerio is a widely used model organism in genetics and developmental biology research. Genetic screens have proven useful for studying embryonic development of the nervous system in vivo, but in vitro studies utilizing zebrafish have been limited. Here, we introduce a robust zebrafish primary neuron culture system for functional nerve growth and guidance assays. Distinct classes of central nervous system neurons from the spinal cord, hindbrain, forebrain, and retina from wild type zebrafish, and fluorescent motor neurons from transgenic reporter zebrafish lines, were dissociated and plated onto various biological and synthetic substrates to optimize conditions for axon outgrowth. Time-lapse microscopy revealed dynamically moving growth cones at the tips of extending axons. The mean rate of axon extension in vitro was 21.4±1.2 µm hr(-1 s.e.m. for spinal cord neurons, which corresponds to the typical ∼0.5 mm day(-1 growth rate of nerves in vivo. Fluorescence labeling and confocal microscopy demonstrated that bundled microtubules project along axons to the growth cone central domain, with filamentous actin enriched in the growth cone peripheral domain. Importantly, the growth cone surface membrane expresses receptors for chemotropic factors, as detected by immunofluorescence microscopy. Live-cell functional assays of axon extension and directional guidance demonstrated mammalian brain-derived neurotrophic factor (BDNF-dependent stimulation of outgrowth and growth cone chemoattraction, whereas mammalian myelin-associated glycoprotein inhibited outgrowth. High-resolution live-cell Ca(2+-imaging revealed local elevation of cytoplasmic Ca(2+ concentration in the growth cone induced by BDNF application. Moreover, BDNF-induced axon outgrowth, but not basal outgrowth, was blocked by treatments to suppress cytoplasmic Ca(2+ signals. Thus, this primary neuron culture model system may be useful for studies of neuronal development

  5. Extracellular matrix molecules play diverse roles in the growth and guidance of central nervous system axons

    Directory of Open Access Journals (Sweden)

    M.A. Pires-Neto

    1999-05-01

    Full Text Available Axon growth and guidance represent complex biological processes in which probably intervene diverse sets of molecular cues that allow for the appropriate wiring of the central nervous system (CNS. The extracellular matrix (ECM represents a major contributor of molecular signals either diffusible or membrane-bound that may regulate different stages of neural development. Some of the brain ECM molecules form tridimensional structures (tunnels and boundaries that appear during time- and space-regulated events, possibly playing relevant roles in the control of axon elongation and pathfinding. This short review focuses mainly on the recognized roles played by proteoglycans, laminin, fibronectin and tenascin in axonal development during ontogenesis.

  6. Evidence for Dysregulation of Axonal Growth and Guidance in the Etiology of ASD

    Directory of Open Access Journals (Sweden)

    Kathryn eMcFadden

    2013-10-01

    Full Text Available Current theories concerning the cause of autism spectrum disorders (ASDs have converged on the concept of abnormal development of brain connectivity. This concept is supported by accumulating evidence from functional imaging, DTI, and high definition fiber tracking (HDFT studies which suggest altered microstructure in the axonal tracts connecting cortical areas may underly many of the cognitive manifestations of ASD. Additionally, large-scale genomic studies implicate numerous gene candidates known or suspected to mediate neuritic outgrowth and axonal guidance in fetal and perinatal life. Neuropathological observations in postmortem ASD brain samples further support this model and include subtle disturbances of cortical lamination and subcortical axonal morphology. Of note is the relatively common finding of poor differentiation of the gray-white junction associated with an excess superficial white matter or interstitial neurons (INs. INs are thought to be remnants of the fetal subplate, a transient structure which plays a key role in the guidance and morphogenesis of thalamocortical and cortico-cortical connections and the organization of cortical columnar architecture. While not discounting the importance of synaptic dysfunction in the etiology of ASD, this paper will briefly review the cortical abnormalities and genetic evidence supporting a model of dysregulated axonal growth and guidance as key developmental processes underlying the clinical manifestations of ASD.

  7. The discovery of the growth cone and its influence on the study of axon guidance

    Directory of Open Access Journals (Sweden)

    Elisa eTamariz

    2015-05-01

    Full Text Available For over a century, there has been a great deal of interest in understanding how neural connectivity is established during development and regeneration. Interest in the latter arises from the possibility that knowledge of this process can be used to reestablish lost connections after lesion or neurodegeneration. At the end of the XIX century, Santiago Ramón y Cajal discovered that the distal tip of growing axons contained a structure that he called the growth cone. He proposed that this structure enabled the axon’s oriented growth in response to attractants, now known as chemotropic molecules. He further proposed that the physical properties of the surrounding tissues could influence the growth cone and the direction of growth. This seminal discovery afforded a plausible explanation for directed axonal growth and has led to the discovery of axon guidance mechanisms that include diffusible attractants and repellants and guidance cues anchored to cell membranes or extracellular matrix. In this review the major events in the development of this field are discussed.

  8. Partial interchangeability of Fz3 and Fz6 in tissue polarity signaling for epithelial orientation and axon growth and guidance.

    Science.gov (United States)

    Hua, Zhong L; Chang, Hao; Wang, Yanshu; Smallwood, Philip M; Nathans, Jeremy

    2014-10-01

    In mammals, a set of anatomically diverse polarity processes - including axon growth and guidance, hair follicle orientation, and stereociliary bundle orientation in inner ear sensory hair cells - appear to be mechanistically related, as judged by their dependence on vertebrate homologues of core tissue polarity/planar cell polarity (PCP) genes in Drosophila. To explore more deeply the mechanistic similarities between different polarity processes, we have determined the extent to which frizzled 3 (Fz3) can rescue the hair follicle and Merkel cell polarity defects in frizzled 6-null (Fz6(-/-)) mice, and, reciprocally, the extent to which Fz6 can rescue the axon growth and guidance defects in Fz3(-/-) mice. These experiments reveal full rescue of the Fz6(-/-) phenotype by Fz3 and partial rescue of the Fz3(-/-) phenotype by Fz6, implying that these two proteins are likely to act in a conserved manner in these two contexts. Stimulated by these observations, we searched for additional anatomical structures that exhibit macroscopic polarity and that might plausibly use Fz3 and/or Fz6 signaling. This search has revealed a hitherto unappreciated pattern of papillae on the dorsal surface of the tongue that depends, at least in part, on redundant signaling by Fz3 and Fz6. Taken together, these experiments provide compelling evidence for a close mechanistic relationship between multiple anatomically diverse polarity processes.

  9. Axon guidance and neuronal migration research in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Proper migration of neuronal somas and axonal growth cones to designated locations in the developing brain is essential for the assembly of functional neuronal circuits.Rapid progress in research of axon guidance and neuronal migration has been made in the last twenty years.Chinese researchers began their exploration in this field ten years ago and have made significant contributions in clarifying the signal transduction of axon guidance and neuronal migration.Several unique experimental approaches,including the migration assay of single isolated neurons in response to locally delivered guidance cues,have been developed by Chinese neuroscientists to investigate the molecular machinery underlying these guidance events.

  10. Modulators of axonal growth and guidance at the brain midline with special reference to glial heparan sulfate proteoglycans

    Directory of Open Access Journals (Sweden)

    CAVALCANTE LENY A.

    2002-01-01

    Full Text Available Bilaterally symmetric organisms need to exchange information between the left and right sides of their bodies to integrate sensory input and to coordinate motor control. Thus, an important choice point for developing axons is the Central Nervous System (CNS midline. Crossing of this choice point is influenced by highly conserved, soluble or membrane-bound molecules such as the L1 subfamily, laminin, netrins, slits, semaphorins, Eph-receptors and ephrins, etc. Furthermore, there is much circumstantial evidence for a role of proteoglycans (PGs or their glycosaminoglycan (GAG moieties on axonal growth and guidance, most of which was derived from simplified models. A model of intermediate complexity is that of cocultures of young neurons and astroglial carpets (confluent cultures obtained from medial and lateral sectors of the embryonic rodent midbrain soon after formation of its commissures. Neurite production in these cocultures reveals that, irrespective of the previous location of neurons in the midbrain, medial astrocytes exerted an inhibitory or non-permissive effect on neuritic growth that was correlated to a higher content of both heparan and chondroitin sulfates (HS and CS. Treatment with GAG lyases shows minor effects of CS and discloses a major inhibitory or non-permissive role for HS. The results are discussed in terms of available knowledge on the binding of HSPGs to interative proteins and underscore the importance of understanding glial polysaccharide arrays in addition to its protein complement for a better understanding of neuron-glial interactions.

  11. Axon guidance of rat cortical neurons by microcontact printed gradients.

    Science.gov (United States)

    Fricke, Rita; Zentis, Peter D; Rajappa, Lionel T; Hofmann, Boris; Banzet, Marko; Offenhäusser, Andreas; Meffert, Simone H

    2011-03-01

    Substrate-bound gradients expressed in numerous spatio-temporal patterns play a crucial role during the development of complex neural circuits. A deeper understanding of the axon guidance mechanism is provided by studying the effect of a defined substrate-bound cue on a confined neural network. In this study, we constructed a discontinuous substrate-bound gradient to control neuronal cell position, the path of neurite growth, and axon directionality. A variety of gradient patterns, with slight changes in slope, width, and length were designed and fabricated by microcontact printing using laminin/poly-l-lysine (PLL) or PLL alone. The gradients were tested for neurite growth and their impact on axon guidance of embryonic rat cortical neurons. The neurite length was determined and the axon was evaluated by Tau-1 immunostaining. We found that the microgradients of laminin/PLL and PLL directed neurons' adhesion, differentially controlled the neurite growth, and guided up to 84% of the axons. The effect of the protein micropattern on axon guidance and neurite growth depended on the protein and geometric parameters used. Our approach proved to be very successful in guiding axons of single multipolar neurons with very high efficiency. It could thereby be useful to engineer defined neural networks for analyzing signal processing of functional circuits, as well as to unravel fundamental questions of the axon guidance mechanism.

  12. The Caenorhabditis elegans Eph receptor activates NCK and N-WASP, and inhibits Ena/VASP to regulate growth cone dynamics during axon guidance.

    Science.gov (United States)

    Mohamed, Ahmed M; Boudreau, Jeffrey R; Yu, Fabian P S; Liu, Jun; Chin-Sang, Ian D

    2012-01-01

    The Eph receptor tyrosine kinases (RTKs) are regulators of cell migration and axon guidance. However, our understanding of the molecular mechanisms by which Eph RTKs regulate these processes is still incomplete. To understand how Eph receptors regulate axon guidance in Caenorhabditis elegans, we screened for suppressors of axon guidance defects caused by a hyperactive VAB-1/Eph RTK. We identified NCK-1 and WSP-1/N-WASP as downstream effectors of VAB-1. Furthermore, VAB-1, NCK-1, and WSP-1 can form a complex in vitro. We also report that NCK-1 can physically bind UNC-34/Enabled (Ena), and suggest that VAB-1 inhibits the NCK-1/UNC-34 complex and negatively regulates UNC-34. Our results provide a model of the molecular events that allow the VAB-1 RTK to regulate actin dynamics for axon guidance. We suggest that VAB-1/Eph RTK can stop axonal outgrowth by inhibiting filopodia formation at the growth cone by activating Arp2/3 through a VAB-1/NCK-1/WSP-1 complex and by inhibiting UNC-34/Ena activity.

  13. Downstream of guidance receptors: entering the baroque period of axon guidance signaling.

    Science.gov (United States)

    Schmucker, Dietmar

    2003-09-25

    The Roundabout ("Robo") family of transmembrane proteins are the receptors and mediators of the repellent axon guidance signal Slit. However, the molecular mechanisms by which Robo signaling leads to growth cone or neuron repulsion are still poorly understood. A study by Fan et al. in this issue of Neuron expands the repertoire of Robo pathway components and stimulates a new look at axon guidance signaling in general.

  14. Dopaminergic axon guidance: which makes what?

    Directory of Open Access Journals (Sweden)

    Laetitia ePrestoz

    2012-07-01

    Full Text Available Mesotelencephalic pathways in the adult central nervous system have been studied in great detail because of their implication in major physiological functions as well as in psychiatric, neurological and neurodegenerative diseases. However, the ontogeny of these pathways and the molecular mechanisms that guide dopaminergic axons during embryogenesis have been only recently studied. This line of research is of crucial interest for the repair of lesioned circuits in adulthood following neurodegenerative diseases or common traumatic injuries. For instance, in the adult, the anatomic and functional repair of the nigrostriatal pathway following dopaminergic embryonic neuron transplantation suggests that specific guidance cues exist which govern embryonic fibers outgrowth, and suggests that axons from transplanted embryonic cells are able to respond to theses cues, which then guide them to their final targets. In this review, we first synthesize the work that has been performed in the last few years on developing mesotelencephalic pathways, and summarize the current knowledge on the identity of cellular and molecular signals thought to be involved in establishing mesotelencephalic dopaminergic neuronal connectivity during embryogenesis in the central nervous system of rodents. Then, we review the modulation of expression of these molecular signals in the lesioned adult brain and discuss their potential role in remodeling the mesotelencephalic dopaminergic circuitry, with a particular focus on Parkinson’s disease. Identifying guidance molecules involved in the connection of grafted cells may be useful for cellular therapy in Parkinsonian patients, as these molecules may help direct axons from grafted cells along the long distance they have to travel from the substantia nigra to the striatum.

  15. Shh goes multidirectional in axon guidance

    Institute of Scientific and Technical Information of China (English)

    Paola Bovolenta; Luisa Sanchez-Arrones

    2012-01-01

    Shh and Wnts,secreted by the floor and roof plate of the spinal cord,direct longitudinal growth of the axons from the adjacent ventral funiculus and cortico-spinal tract.Whether these midline cues influencethe directionality of axons elongating in more lateral positions of the spinal cord is unexplored.Song and colleagues investigate this possibility and demonstrate that the location of descending raphe-spinal tract in the ventrolateral spinal cord is dictated by the simultaneous repellent activity of Shh gradients in both the anteriorto-posterior (A-P) and medial-tolateral (M-L) axis. The spinal cord is the main pathway for exchange of information between the brain and the rest of the body.Sensory information collected in the body periphery is conveyed to the brain by axonal tracts that ascend along the spinal cord whereas motor information travels from the brain to the periphery in descending tracts.Precise spatial organization of these fiber tracts is thus essential for animal behavior and survival.

  16. Cannabinoid receptor CB2 modulates axon guidance

    DEFF Research Database (Denmark)

    Duff, Gabriel; Argaw, Anteneh; Cecyre, Bruno

    2013-01-01

    Navigation of retinal projections towards their targets is regulated by guidance molecules and growth cone transduction mechanisms. Here, we present in vitro and in vivo evidences that the cannabinoid receptor 2 (CB2R) is expressed along the retino-thalamic pathway and exerts a modulatory action ...

  17. A Microfluidics Approach to Investigate Axon Guidance

    Science.gov (United States)

    2007-03-26

    coat the substrate with PLL. The cells of one dissociated embryonic spinal cord was re-suspended in 3 µl of freshly-prepared Modified Frog Ringer’s...Surround repulsion of spinal sensory axons in higher vertebrate embryos . Neuron 18, 889-897 (1997). 8. Colamarino, S. & Tessier-Lavigne, M. The

  18. A developmental timing switch promotes axon outgrowth independent of known guidance receptors.

    Directory of Open Access Journals (Sweden)

    Katherine Olsson-Carter

    2010-08-01

    Full Text Available To form functional neuronal connections, axon outgrowth and guidance must be tightly regulated across space as well as time. While a number of genes and pathways have been shown to control spatial features of axon development, very little is known about the in vivo mechanisms that direct the timing of axon initiation and elongation. The Caenorhabditis elegans hermaphrodite specific motor neurons (HSNs extend a single axon ventrally and then anteriorly during the L4 larval stage. Here we show the lin-4 microRNA promotes HSN axon initiation after cell cycle withdrawal. Axons fail to form in lin-4 mutants, while they grow prematurely in lin-4-overexpressing animals. lin-4 is required to down-regulate two inhibitors of HSN differentiation--the transcriptional regulator LIN-14 and the "stemness" factor LIN-28--and it likely does so through a cell-autonomous mechanism. This developmental switch depends neither on the UNC-40/DCC and SAX-3/Robo receptors nor on the direction of axon growth, demonstrating that it acts independently of ventral guidance signals to control the timing of HSN axon elongation.

  19. Mechanisms of TSC-mediated control of synapse assembly and axon guidance.

    Directory of Open Access Journals (Sweden)

    Sarah Knox

    Full Text Available Tuberous sclerosis complex is a dominant genetic disorder produced by mutations in either of two tumor suppressor genes, TSC1 and TSC2; it is characterized by hamartomatous tumors, and is associated with severe neurological and behavioral disturbances. Mutations in TSC1 or TSC2 deregulate a conserved growth control pathway that includes Ras homolog enriched in brain (Rheb and Target of Rapamycin (TOR. To understand the function of this pathway in neural development, we have examined the contributions of multiple components of this pathway in both neuromuscular junction assembly and photoreceptor axon guidance in Drosophila. Expression of Rheb in the motoneuron, but not the muscle of the larval neuromuscular junction produced synaptic overgrowth and enhanced synaptic function, while reductions in Rheb function compromised synapse development. Synapse growth produced by Rheb is insensitive to rapamycin, an inhibitor of Tor complex 1, and requires wishful thinking, a bone morphogenetic protein receptor critical for functional synapse expansion. In the visual system, loss of Tsc1 in the developing retina disrupted axon guidance independently of cellular growth. Inhibiting Tor complex 1 with rapamycin or eliminating the Tor complex 1 effector, S6 kinase (S6k, did not rescue axon guidance abnormalities of Tsc1 mosaics, while reductions in Tor function suppressed those phenotypes. These findings show that Tsc-mediated control of axon guidance and synapse assembly occurs via growth-independent signaling mechanisms, and suggest that Tor complex 2, a regulator of actin organization, is critical in these aspects of neuronal development.

  20. Coevolution of axon guidance molecule Slit and its receptor Robo.

    Science.gov (United States)

    Yu, Qi; Li, Xiao-Tong; Zhao, Xiao; Liu, Xun-Li; Ikeo, Kazuho; Gojobori, Takashi; Liu, Qing-Xin

    2014-01-01

    Coevolution is important for the maintenance of the interaction between a ligand and its receptor during evolution. The interaction between axon guidance molecule Slit and its receptor Robo is critical for the axon repulsion in neural tissues, which is evolutionarily conserved from planarians to humans. However, the mechanism of coevolution between Slit and Robo remains unclear. In this study, we found that coordinated amino acid changes took place at interacting sites of Slit and Robo by comparing the amino acids at these sites among different organisms. In addition, the high level correlation between evolutionary rate of Slit and Robo was identified in vertebrates. Furthermore, the sites under positive selection of slit and robo were detected in the same lineage such as mosquito and teleost. Overall, our results provide evidence for the coevolution between Slit and Robo.

  1. Coevolution of axon guidance molecule Slit and its receptor Robo.

    Directory of Open Access Journals (Sweden)

    Qi Yu

    Full Text Available Coevolution is important for the maintenance of the interaction between a ligand and its receptor during evolution. The interaction between axon guidance molecule Slit and its receptor Robo is critical for the axon repulsion in neural tissues, which is evolutionarily conserved from planarians to humans. However, the mechanism of coevolution between Slit and Robo remains unclear. In this study, we found that coordinated amino acid changes took place at interacting sites of Slit and Robo by comparing the amino acids at these sites among different organisms. In addition, the high level correlation between evolutionary rate of Slit and Robo was identified in vertebrates. Furthermore, the sites under positive selection of slit and robo were detected in the same lineage such as mosquito and teleost. Overall, our results provide evidence for the coevolution between Slit and Robo.

  2. Guidance of longitudinally projecting axons in the developing central nervous system

    Directory of Open Access Journals (Sweden)

    Nozomi eSakai

    2012-05-01

    Full Text Available The directed and stereotypical growth of axons to their synaptic targets is a crucial phase of neural circuit formation. Many axons in the developing vertebrate and invertebrate central nervous systems (CNS, including those that remain on their own (ipsilateral, and those that cross over to the opposite (commissural, side of the midline project over long distances along the anterior-posterior body axis within precisely-positioned longitudinally-oriented tracts to facilitate the transmission of information between CNS regions. Despite the widespread distribution and functional importance of these longitudinal tracts, the mechanisms that regulate their formation and projection to poorly characterized synaptic targets remain largely unknown. Nevertheless, recent studies carried out in a variety of invertebrate and vertebrate model systems have begun to elucidate the molecular logic that controls longitudinal axon guidance.

  3. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    Science.gov (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  4. Midline governs axon pathfinding by coordinating expression of two major guidance systems.

    Science.gov (United States)

    Liu, Qing-Xin; Hiramoto, Masaki; Ueda, Hitoshi; Gojobori, Takashi; Hiromi, Yasushi; Hirose, Susumu

    2009-05-15

    Formation of the neural network requires concerted action of multiple axon guidance systems. How neurons orchestrate expression of multiple guidance genes is poorly understood. Here, we show that Drosophila T-box protein Midline controls expression of genes encoding components of two major guidance systems: Frazzled, ROBO, and Slit. In midline mutant, expression of all these molecules are reduced, resulting in severe axon guidance defects, whereas misexpression of Midline induces their expression. Midline is present on the promoter regions of these genes, indicating that Midline controls transcription directly. We propose that Midline controls axon pathfinding through coordinating the two guidance systems.

  5. Traction Force and Tension Fluctuations During Axon Growth

    Directory of Open Access Journals (Sweden)

    Jamison ePolackwich

    2015-10-01

    Full Text Available Actively generated mechanical forces play a central role in axon growthand guidance, but the mechanisms that underly force generation andregulation in growing axons remain poorly understood. We reportmeasurements of the dynamics of traction stresses from growth cones ofactively advancing axons from postnatal rat DRG neurons. By tracking themovement of the growth cone and analyzing the traction stress field froma reference frame that moves with it, we are able to show that there isa clear and consistent average stress field that underlies the complexspatial stresses present at any one time. The average stress field hasstrong maxima on the sides of the growth cone, directed inward towardthe growth cone neck. This pattern represents a contractile stresscontained within the growth cone, and a net force that is balanced bythe axon tension. Using high time-resolution measurements of the growthcone traction stresses, we show that the stress field is composed offluctuating local stress peaks, with a large number peaks that live fora short time, a population of peaks whose lifetime distribution followsan exponential decay, and a small number of very long-lived peaks. Weshow that the high time-resolution data also reveal that the tensionappears to vary randomly over short time scales, roughly consistent withthe lifetime of the stress peaks, suggesting that the tensionfluctuations originate from stochastic adhesion dynamics.

  6. JMJD-1.2/PHF8 controls axon guidance by regulating Hedgehog-like signaling

    DEFF Research Database (Denmark)

    Riveiro, Alba; Mariani, Luca; Malmberg, Kim Emily

    2017-01-01

    . Here, we show that the catalytic activity of a PHF8 homolog in Caenorhabditis elegans, JMJD-1.2, is required non-cell-autonomously for proper axon guidance. Loss of JMJD-1.2 dysregulates transcription of the Hedgehog-related genes wrt-8 and grl-16, the overexpression of which is sufficient to induce...... the axonal defects. Deficiency of either wrt-8 or grl-16, or reduced expression of homologs of genes promoting Hedgehog signaling, restores correct axon guidance in jmjd-1.2 mutants. Genetic and overexpression data indicate that Hedgehog-related genes act on axon guidance through actin remodelers. Thus, our...... study highlights a novel function of jmjd-1.2 in axon guidance that might be relevant for the onset of X-linked mental retardation and provides compelling evidence of a conserved function of the Hedgehog pathway in C. elegans axon migration....

  7. Regulation of Axonal Midline Guidance by Prolyl 4-Hydroxylation in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Torpe, Nanna; Pocock, Roger David John

    2014-01-01

    Neuronal wiring during development requires that the growth cones of axons and dendrites are correctly guided to their appropriate targets. As in other animals, axon growth cones in Caenorhabditis elegans integrate information in their extracellular environment via interactions among transiently...

  8. BmRobo2/3 is required for axon guidance in the silkworm Bombyx mori.

    Science.gov (United States)

    Li, Xiao-Tong; Yu, Qi; Zhou, Qi-Sheng; Zhao, Xiao; Liu, Zhao-Yang; Cui, Wei-Zheng; Liu, Qing-Xin

    2016-02-15

    Axon guidance is critical for proper wiring of the nervous system. During the neural development, the axon guidance molecules play a key role and direct axons to choose the correct way to reach the target. Robo, as the receptor of axon guidance molecule Slit, is evolutionarily conserved from planarians to humans. However, the function of Robo in the silkworm, Bombyx mori, remained unknown. In this study, we cloned robo2/3 from B. mori (Bmrobo2/3), a homologue of robo2/3 in Tribolium castaneum. Moreover, BmRobo2/3 was localized in the neuropil, and RNAi-mediated knockdown of Bmrobo2/3 resulted in the longitudinal connectives forming closer to the midline. These data demonstrate that BmRobo2/3 is required for axon guidance in the silkworm.

  9. TIPsy tour guides: How microtubule plus-end tracking proteins (+TIPs facilitate axon guidance

    Directory of Open Access Journals (Sweden)

    Elizabeth A Bearce

    2015-06-01

    Full Text Available The growth cone is a dynamic cytoskeletal vehicle, which drives the end of a developing axon. It serves to interpret and navigate through the complex landscape and guidance cues of the early nervous system. The growth cone’s distinctive cytoskeletal organization offers a fascinating platform to study how extracellular cues can be translated into mechanical outgrowth and turning behaviors. While many studies of cell motility highlight the importance of actin networks in signaling, adhesion, and propulsion, both seminal and emerging works in the field have highlighted a unique and necessary role for microtubules in growth cone navigation. Here, we focus on the role of singular pioneer microtubules, which extend into the growth cone periphery and are regulated by a diverse family of microtubule plus-end tracking proteins (+TIPs. These +TIPs accumulate at the dynamic ends of microtubules, where they are well-positioned to encounter and respond to key signaling events downstream of guidance receptors, catalyzing immediate changes in microtubule stability and actin cross-talk, that facilitate both axonal outgrowth and turning events.

  10. EFN-4 functions in LAD-2-mediated axon guidance in Caenorhabditis elegans.

    Science.gov (United States)

    Dong, Bingyun; Moseley-Alldredge, Melinda; Schwieterman, Alicia A; Donelson, Cory J; McMurry, Jonathan L; Hudson, Martin L; Chen, Lihsia

    2016-04-01

    During development of the nervous system, growing axons rely on guidance molecules to direct axon pathfinding. A well-characterized family of guidance molecules are the membrane-associated ephrins, which together with their cognate Eph receptors, direct axon navigation in a contact-mediated fashion. InC. elegans, the ephrin-Eph signaling system is conserved and is best characterized for their roles in neuroblast migration during early embryogenesis. This study demonstrates a role for the C. elegans ephrin EFN-4 in axon guidance. We provide both genetic and biochemical evidence that is consistent with the C. elegans divergent L1 cell adhesion molecule LAD-2 acting as a non-canonical ephrin receptor to EFN-4 to promote axon guidance. We also show that EFN-4 probably functions as a diffusible factor because EFN-4 engineered to be soluble can promote LAD-2-mediated axon guidance. This study thus reveals a potential additional mechanism for ephrins in regulating axon guidance and expands the repertoire of receptors by which ephrins can signal.

  11. Giant lens, a gene involved in cell determination and axon guidance in the visual system of Drosophila melanogaster.

    Science.gov (United States)

    Kretzschmar, D; Brunner, A; Wiersdorff, V; Pflugfelder, G O; Heisenberg, M; Schneuwly, S

    1992-01-01

    Mutations in the Drosophila gene giant lens (gil) affect ommatidial development, photoreceptor axon guidance and optic lobe development. We have cloned the gene using an enhancer trap line. Molecular analysis of gil suggests that it encodes a secreted protein with an epidermal-growth-factor-like motif. We have generated mutations at the gil locus by imprecise excision of the enhancer trap P-element. In the absence of gil, additional photoreceptors develop at the expense of pigment cells, suggesting an involvement of gil in cell determination during eye development. In addition, gil mutants show drastic effects on photoreceptor axon guidance and optic lobe development. In wildtype flies, photoreceptor axons grow from the eye disc through the optic stalk into the larval brain hemisphere, where retinal innervation is required for the normal development of the lamina and distal medulla. The projection pattern of these axons in the developing lamina and medulla is highly regular and reproducible. In gil, photoreceptor axons enter the larval brain but fail to establish proper connections in the lamina or medulla. We propose that gil encodes a new type of signalling molecule involved in the process of axon pathfinding and cell determination in the visual system of Drosophila. Images PMID:1628618

  12. Decreased expression of axon-guidance receptors in the anterior cingulate cortex in autism

    Directory of Open Access Journals (Sweden)

    Suda Shiro

    2011-08-01

    Full Text Available Abstract Background Axon-guidance proteins play a crucial role in brain development. As the dysfunction of axon-guidance signaling is thought to underlie the microstructural abnormalities of the brain in people with autism, we examined the postmortem brains of people with autism to identify any changes in the expression of axon-guidance proteins. Results The mRNA and protein expression of axon-guidance proteins, including ephrin (EFNA4, eEFNB3, plexin (PLXNA4, roundabout 2 (ROBO2 and ROBO3, were examined in the anterior cingulate cortex and primary motor cortex of autistic brains (n = 8 and n = 7, respectively and control brains (n = 13 and n = 8, respectively using real-time reverse-transcriptase PCR (RT-PCR and western blotting. Real-time RT-PCR revealed that the relative expression levels of EFNB3, PLXNA4A and ROBO2 were significantly lower in the autistic group than in the control group. The protein levels of these three genes were further analyzed by western blotting, which showed that the immunoreactive values for PLXNA4 and ROBO2, but not for EFNB3, were significantly reduced in the ACC of the autistic brains compared with control brains. Conclusions In this study, we found decreased expression of axon-guidance proteins such as PLXNA4 and ROBO2 in the brains of people with autism, and suggest that dysfunctional axon-guidance protein expression may play an important role in the pathophysiology of autism.

  13. Genetic analyses of roundabout (ROBO) axon guidance receptors in autism.

    Science.gov (United States)

    Anitha, A; Nakamura, Kazuhiko; Yamada, Kazuo; Suda, Shiro; Thanseem, Ismail; Tsujii, Masatsugu; Iwayama, Yoshimi; Hattori, Eiji; Toyota, Tomoko; Miyachi, Taishi; Iwata, Yasuhide; Suzuki, Katsuaki; Matsuzaki, Hideo; Kawai, Masayoshi; Sekine, Yoshimoto; Tsuchiya, Kenji; Sugihara, Gen-Ichi; Ouchi, Yasuomi; Sugiyama, Toshiro; Koizumi, Keita; Higashida, Haruhiro; Takei, Nori; Yoshikawa, Takeo; Mori, Norio

    2008-10-05

    Autism is a pervasive developmental disorder diagnosed in early childhood. Abnormalities of serotonergic neurotransmission have been reported in autism. Serotonin transporter (SERT) modulates serotonin levels, and is a major therapeutic target in autism. Factors that regulate SERT expression might be implicated in the pathophysiology of autism. One candidate SERT regulatory protein is the roundabout axon guidance molecule, ROBO. SerT expression in Drosophila is regulated by robo; it plays a vital role in mammalian neurodevelopment also. Here, we examined the associations of ROBO3 and ROBO4 with autism, in a trio association study using DNA from 252 families recruited to AGRE. Four SNPs of ROBO3 (rs3923890, P = 0.023; rs7925879, P = 0.017; rs4606490, P = 0.033; and rs3802905, P = 0.049) and a single SNP of ROBO4 (rs6590109, P = 0.009) showed associations with autism; the A/A genotype of rs3923890 showed lower ADI-R_A scores, which reflect social interaction. Significant haplotype associations were also observed for ROBO3 and ROBO4. We further compared the mRNA expressions of ROBO1, ROBO2, ROBO3, and ROBO4 in the lymphocytes of 19 drug-naïve autistic patients and 20 age- and sex-matched controls. Expressions of ROBO1 (P = 0.018) and ROBO2 (P = 0.023) were significantly reduced in the autistic group; the possibility of using the altered expressions of ROBO as peripheral markers for autism, may be explored. In conclusion, we suggest a possible role of ROBO in the pathogenesis of autism. Abnormalities of ROBO may lead to autism either by interfering with serotonergic system, or by disrupting neurodevelopment. To the best of our knowledge, this is the first report relating ROBO with autism.

  14. Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay

    DEFF Research Database (Denmark)

    Colak, Dilek; Ji, Sheng-Jian; Porse, Bo T

    2013-01-01

    show that Robo3.2, a receptor for the Slit family of guidance cues, is synthesized locally within axons of commissural neurons. Robo3.2 translation is induced by floor-plate-derived signals as axons cross the spinal cord midline. Robo3.2 is also a predicted target of the nonsense-mediated mRNA decay...... (NMD) pathway. We find that NMD regulates Robo3.2 synthesis by inducing the degradation of Robo3.2 transcripts in axons that encounter the floor plate. Commissural neurons deficient in NMD proteins exhibit aberrant axonal trajectories after crossing the midline, consistent with misregulation of Robo3...

  15. A multi-component model of the developing retinocollicular pathway incorporating axonal and synaptic growth.

    Directory of Open Access Journals (Sweden)

    Keith B Godfrey

    2009-12-01

    Full Text Available During development, neurons extend axons to different brain areas and produce stereotypical patterns of connections. The mechanisms underlying this process have been intensively studied in the visual system, where retinal neurons form retinotopic maps in the thalamus and superior colliculus. The mechanisms active in map formation include molecular guidance cues, trophic factor release, spontaneous neural activity, spike-timing dependent plasticity (STDP, synapse creation and retraction, and axon growth, branching and retraction. To investigate how these mechanisms interact, a multi-component model of the developing retinocollicular pathway was produced based on phenomenological approximations of each of these mechanisms. Core assumptions of the model were that the probabilities of axonal branching and synaptic growth are highest where the combined influences of chemoaffinity and trophic factor cues are highest, and that activity-dependent release of trophic factors acts to stabilize synapses. Based on these behaviors, model axons produced morphologically realistic growth patterns and projected to retinotopically correct locations in the colliculus. Findings of the model include that STDP, gradient detection by axonal growth cones and lateral connectivity among collicular neurons were not necessary for refinement, and that the instructive cues for axonal growth appear to be mediated first by molecular guidance and then by neural activity. Although complex, the model appears to be insensitive to variations in how the component developmental mechanisms are implemented. Activity, molecular guidance and the growth and retraction of axons and synapses are common features of neural development, and the findings of this study may have relevance beyond organization in the retinocollicular pathway.

  16. The cytoskeleton-associated protein SCHIP1 is involved in axon guidance, and is required for piriform cortex and anterior commissure development.

    Science.gov (United States)

    Klingler, Esther; Martin, Pierre-Marie; Garcia, Marta; Moreau-Fauvarque, Caroline; Falk, Julien; Chareyre, Fabrice; Giovannini, Marco; Chédotal, Alain; Girault, Jean-Antoine; Goutebroze, Laurence

    2015-06-01

    SCHIP1 is a cytoplasmic partner of cortical cytoskeleton ankyrins. The IQCJ-SCHIP1 isoform is a component of axon initial segments and nodes of Ranvier of mature axons in peripheral and central nervous systems, where it associates with membrane complexes comprising cell adhesion molecules. SCHIP1 is also expressed in the mouse developing central nervous system during embryonic stages of active axonogenesis. Here, we identify a new and early role for SCHIP1 during axon development and establishment of the anterior commissure (AC). The AC is composed of axons from the piriform cortex, the anterior olfactory nucleus and the amygdala. Schip1 mutant mice displayed early defects in AC development that might result from impaired axon growth and guidance. In addition, mutant mice presented a reduced thickness of the piriform cortex, which affected projection neurons in layers 2/3 and was likely to result from cell death rather than from impairment of neuron generation or migration. Piriform cortex neurons from E14.5 mutant embryos displayed axon initiation/outgrowth delay and guidance defects in vitro. The sensitivity of growth cones to semaphorin 3F and Eph receptor B2, two repulsive guidance cues crucial for AC development, was increased, providing a possible basis for certain fiber tract alterations. Thus, our results reveal new evidence for the involvement of cortical cytoskeleton-associated proteins in the regulation of axon development and their importance for the formation of neuronal circuits.

  17. Distinct protein domains and expression patterns confer divergent axon guidance functions for Drosophila Robo receptors.

    Science.gov (United States)

    Spitzweck, Bettina; Brankatschk, Marko; Dickson, Barry J

    2010-02-05

    The orthogonal array of axon pathways in the Drosophila CNS is constructed in part under the control of three Robo family axon guidance receptors: Robo1, Robo2 and Robo3. Each of these receptors is responsible for a distinct set of guidance decisions. To determine the molecular basis for these functional specializations, we used homologous recombination to create a series of 9 "robo swap" alleles: expressing each of the three Robo receptors from each of the three robo loci. We demonstrate that the lateral positioning of longitudinal axon pathways relies primarily on differences in gene regulation, not distinct combinations of Robo proteins as previously thought. In contrast, specific features of the Robo1 and Robo2 proteins contribute to their distinct functions in commissure formation. These specializations allow Robo1 to prevent crossing and Robo2 to promote crossing. These data demonstrate how diversification of expression and structure within a single family of guidance receptors can shape complex patterns of neuronal wiring.

  18. Drosophila Ryks and their roles in axon and muscle guidance

    NARCIS (Netherlands)

    Lahaye, Liza Lucia

    2015-01-01

    In the last decade it has become clear that a number of the molecular mechanisms that are required for proper navigation of axons in complex nervous systems are also employed to guide muscles to their appropriate attachment sites. Among the gene families that mediate these diverse processes is the R

  19. Chlorpyrifos-Oxon Disrupts Zebrafish Axonal Growth and Motor Behavior

    OpenAIRE

    Yang, Dongren; Lauridsen, Holly; Buels, Kalmia; Chi, Lai-Har; La Du, Jane; Bruun, Donald A.; Olson, James R.; Tanguay, Robert L.; Lein, Pamela J.

    2011-01-01

    Axonal morphology is a critical determinant of neuronal connectivity, and perturbation of the rate or extent of axonal growth during development has been linked to neurobehavioral deficits in animal models and humans. We previously demonstrated that the organophosphorus pesticide (OP) chlorpyrifos (CPF) inhibits axonal growth in cultured neurons. In this study, we used a zebrafish model to determine whether CPF, its oxon metabolite (CPFO), or the excreted metabolite trichloro-2-pyridinol (TCP...

  20. Neural Progenitor Cells Promote Axonal Growth and Alter Axonal mRNA Localization in Adult Neurons

    Science.gov (United States)

    Merianda, Tanuja T.; Jin, Ying

    2017-01-01

    Abstract The inhibitory environment of the spinal cord and the intrinsic properties of neurons prevent regeneration of axons following CNS injury. However, both ascending and descending axons of the injured spinal cord have been shown to regenerate into grafts of embryonic neural progenitor cells (NPCs). Previous studies have shown that grafts composed of glial-restricted progenitors (GRPs) and neural-restricted progenitors (NRPs) can provide a permissive microenvironment for axon growth. We have used cocultures of adult rat dorsal root ganglion (DRG) neurons together with NPCs, which have shown significant enhancement of axon growth by embryonic rat GRP and GRPs/NRPs, both in coculture conditions and when DRGs are exposed to conditioned medium from the NPC cultures. This growth-promoting effect of NPC-conditioned medium was also seen in injury-conditioned neurons. DRGs cocultured with GRPs/NRPs showed altered expression of regeneration-associated genes at transcriptional and post-transcriptional levels. We found that levels of GAP-43 mRNA increased in DRG cell bodies and axons. However, hepcidin antimicrobial peptide (HAMP) mRNA decreased in the cell bodies of DRGs cocultured with GRPs/NRPs, which is distinct from the increase in cell body HAMP mRNA levels seen in DRGs after injury conditioning. Endogenous GAP-43 and β-actin mRNAs as well as reporter RNAs carrying axonally localizing 3'UTRs of these transcripts showed significantly increased levels in distal axons in the DRGs cocultured with GRPs/NRPs. These results indicate that axon growth promoted by NPCs is associated not only with enhanced transcription of growth-associated genes but also can increase localization of some mRNAs into growing axons. PMID:28197547

  1. RGM is a repulsive guidance molecule for retinal axons

    DEFF Research Database (Denmark)

    Monnier, Philippe P; Sierra, Ana; Macchi, Paolo;

    2002-01-01

    the temporal half, is guided by repulsive cues expressed in a graded fashion in the optic tectum, part of the midbrain. Here we report the cloning and functional characterization of a membrane-associated glycoprotein, which we call RGM (repulsive guidance molecule). This molecule shares no sequence homology...

  2. Asymmetric axonal edge guidance: a new paradigm for building oriented neuronal networks.

    Science.gov (United States)

    Renault, Renaud; Durand, Jean-Baptiste; Viovy, Jean-Louis; Villard, Catherine

    2016-06-21

    We present a novel kind of directional axon guides for brain-on-a-chip applications. Contrarily to previous works, the directionality in our design is created by rerouting axons growing in the unwanted direction back to their original compartment while leaving the other growth direction unaffected. This design yields state-of-the-art levels of directionality without the disadvantages of previously reported technologies.

  3. [Current progress in functions of axon guidance molecule Robo and underlying molecular mechanism].

    Science.gov (United States)

    Li, Xiao-Tong; Zhou, Qi-Sheng; Yu, Qi; Zhao, Xiao; Liu, Qing-Xin

    2014-06-25

    The axon guidance molecule Robo is a transmembrane protein which is conserved during evolution. Robo and its ligand, Slit, have been implicated in regulating many developmental processes, such as axon guidance, neuronal migration, tumor metastasis, angiogenesis, lung morphogenesis, kidney morphogenesis, heart morphogenesis, ovary development and gonad development. Robo function mainly depends on the binding of its Ig1 domain to the LRR-2 domain of Slit ligand. Meanwhile, Robo function is also mediated by binding to some signaling molecules, including the heparan sulfate proteoglycans (HSPGs), GTPase-activating proteins (GAPs) and tyrosine kinase Abelson. Several transcription factors, including Hox, Midline and Nkx2.9, were shown to regulate robo expression. In addition, alternative splicing and transport regulation also affect Robo function. In this review, we summarized the studies on the molecular structure, functions and molecular mechanism of Robo, which would propose a novel strategy for the research of neural development, as well as prevention and treatment of nervous system diseases and cancers.

  4. Draxin, an axon guidance protein, affects chick trunk neural crest migration.

    Science.gov (United States)

    Su, Yuhong; Naser, Iftekhar B; Islam, Shahidul M; Zhang, Sanbing; Ahmed, Giasuddin; Chen, Sandy; Shinmyo, Yohei; Kawakami, Minoru; Yamamura, Ken-ichi; Tanaka, Hideaki

    2009-12-01

    The neural crest is a multipotent population of migratory cells that arises in the central nervous system and subsequently migrates along defined stereotypic pathways. In the present work, we analyzed the role of a repulsive axon guidance protein, draxin, in the migration of neural crest cells. Draxin is expressed in the roof plate of the chick trunk spinal cord and around the early migration pathway of neural crest cells. Draxin modulates chick neural crest cell migration in vitro by reducing the polarization of these cells. When exposed to draxin, the velocity of migrating neural crest cells was reduced, and the cells changed direction so frequently that the net migration distance was also reduced. Overexpression of draxin also caused some early migrating neural crest cells to change direction to the dorsolateral pathway in the chick trunk region, presumably due to draxin's inhibitory activity. These results demonstrate that draxin, an axon guidance protein, can also affect trunk neural crest migration in the chick embryo.

  5. Functional diversity of Robo receptor immunoglobulin domains promotes distinct axon guidance decisions.

    Science.gov (United States)

    Evans, Timothy A; Bashaw, Greg J

    2010-03-23

    Recognition molecules of the immunoglobulin (Ig) superfamily control axon guidance in the developing nervous system. Ig-like domains are among the most widely represented protein domains in the human genome, and the number of Ig superfamily proteins is strongly correlated with cellular complexity. In Drosophila, three Roundabout (Robo) Ig superfamily receptors respond to their common Slit ligand to regulate axon guidance at the midline: Robo and Robo2 mediate midline repulsion, Robo2 and Robo3 control longitudinal pathway selection, and Robo2 can promote midline crossing. How these closely related receptors mediate distinct guidance functions is not understood. We report that the differential functions of Robo2 and Robo3 are specified by their ectodomains and do not reflect differences in cytoplasmic signaling. Functional modularity of Robo2's ectodomain facilitates multiple guidance decisions: Ig1 and Ig3 of Robo2 confer lateral positioning activity, whereas Ig2 confers promidline crossing activity. Robo2's distinct functions are not dependent on greater Slit affinity but are instead due in part to differences in multimerization and receptor-ligand stoichiometry conferred by Robo2's Ig domains. Together, our findings suggest that diverse responses to the Slit guidance cue are imparted by intrinsic structural differences encoded in the extracellular Ig domains of the Robo receptors.

  6. Guidance of Drosophila Mushroom Body Axons Depends upon DRL-Wnt Receptor Cleavage in the Brain Dorsomedial Lineage Precursors

    Directory of Open Access Journals (Sweden)

    Elodie Reynaud

    2015-05-01

    Full Text Available In vivo axon pathfinding mechanisms in the neuron-dense brain remain relatively poorly characterized. We study the Drosophila mushroom body (MB axons, whose α and β branches connect to different brain areas. We show that the Ryk family WNT5 receptor, DRL (derailed, which is expressed in the dorsomedial lineages, brain structure precursors adjacent to the MBs, is required for MB α branch axon guidance. DRL acts to capture and present WNT5 to MB axons rather than transduce a WNT5 signal. DRL’s ectodomain must be cleaved and shed to guide α axons. DRL-2, another Ryk, is expressed within MB axons and functions as a repulsive WNT5 signaling receptor. Finally, our biochemical data support the existence of a ternary complex composed of the cleaved DRL ectodomain, WNT5, and DRL-2. Thus, the interaction of MB-extrinsic and -intrinsic Ryks via their common ligand acts to guide MB α axons.

  7. Functional complexity of the axonal growth cone: a proteomic analysis.

    Directory of Open Access Journals (Sweden)

    Adriana Estrada-Bernal

    Full Text Available The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥ 99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions.

  8. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance

    Science.gov (United States)

    Tischfield, Max A.; Baris, Hagit N.; Wu, Chen; Rudolph, Guenther; Van Maldergem, Lionel; He, Wei; Chan, Wai-Man; Andrews, Caroline; Demer, Joseph L.; Robertson, Richard L.; Mackey, David A.; Ruddle, Jonathan B.; Bird, Thomas D.; Gottlob, Irene; Pieh, Christina; Traboulsi, Elias I.; Pomeroy, Scott L.; Hunter, David G.; Soul, Janet S.; Newlin, Anna; Sabol, Louise J.; Doherty, Edward J.; de Uzcátegui, Clara E.; de Uzcátegui, Nicolas; Collins, Mary Louise Z.; Sener, Emin C.; Wabbels, Bettina; Hellebrand, Heide; Meitinger, Thomas; de Berardinis, Teresa; Magli, Adriano; Schiavi, Costantino; Pastore-Trossello, Marco; Koc, Feray; Wong, Agnes M.; Levin, Alex V.; Geraghty, Michael T.; Descartes, Maria; Flaherty, Maree; Jamieson, Robyn V.; Møller, H. U.; Meuthen, Ingo; Callen, David F.; Kerwin, Janet; Lindsay, Susan; Meindl, Alfons; Gupta, Mohan L.; Pellman, David; Engle, Elizabeth C.

    2011-01-01

    We report that eight heterozygous missense mutations in TUBB3, encoding the neuron-specific β-tubulin isotype III, result in a spectrum of human nervous system disorders we now call the TUBB3 syndromes. Each mutation causes the ocular motility disorder CFEOM3, whereas some also result in intellectual and behavioral impairments, facial paralysis, and/or later-onset axonal sensorimotor polyneuropathy. Neuroimaging reveals a spectrum of abnormalities including hypoplasia of oculomotor nerves, and dysgenesis of the corpus callosum, anterior commissure, and corticospinal tracts. A knock-in disease mouse model reveals axon guidance defects without evidence of cortical cell migration abnormalities. We show the disease-associated mutations can impair tubulin heterodimer formation in vitro, although folded mutant heterodimers can still polymerize into microtubules. Modeling each mutation in yeast tubulin demonstrates that all alter dynamic instability whereas a subset disrupts the interaction of microtubules with kinesin motors. These findings demonstrate normal TUBB3 is required for axon guidance and maintenance in mammals. PMID:20074521

  9. Low-density Lipoprotein Receptor-related Proteins in a Novel Mechanism of Axon Guidance and Peripheral Nerve Regeneration.

    Science.gov (United States)

    Landowski, Lila M; Pavez, Macarena; Brown, Lachlan S; Gasperini, Robert; Taylor, Bruce V; West, Adrian K; Foa, Lisa

    2016-01-15

    The low-density lipoprotein receptor-related protein receptors 1 and 2 (LRP1 and LRP2) are emerging as important cell signaling mediators in modulating neuronal growth and repair. We examined whether LRP1 and LRP2 are able to mediate a specific aspect of neuronal growth: axon guidance. We sought to identify LRP1 and LRP2 ligands that could induce axonal chemoattraction, which might have therapeutic potential. Using embryonic sensory neurons (rat dorsal root ganglia) in a growth cone turning assay, we tested a range of LRP1 and LRP2 ligands for the ability to guide growth cone navigation. Three ligands were chemorepulsive: α-2-macroglobulin, tissue plasminogen activator, and metallothionein III. Conversely, only one LRP ligand, metallothionein II, was found to be chemoattractive. Chemoattraction toward a gradient of metallothionein II was calcium-dependent, required the expression of both LRP1 and LRP2, and likely involves further co-receptors such as the tropomyosin-related kinase A (TrkA) receptor. The potential for LRP-mediated chemoattraction to mediate axonal regeneration was examined in vivo in a model of chemical denervation in adult rats. In these in vivo studies, metallothionein II was shown to enhance epidermal nerve fiber regeneration so that it was complete within 7 days compared with 14 days in saline-treated animals. Our data demonstrate that both LRP1 and LRP2 are necessary for metallothionein II-mediated chemotactic signal transduction and that they may form part of a signaling complex. Furthermore, the data suggest that LRP-mediated chemoattraction represents a novel, non-classical signaling system that has therapeutic potential as a disease-modifying agent for the injured peripheral nervous system.

  10. The importance of combinatorial gene expression in early mammalian thalamic patterning and thalamocortical axonal guidance

    Directory of Open Access Journals (Sweden)

    David J Price

    2012-03-01

    Full Text Available The thalamus is essential for sensory perception. In mammals, work on the mouse has taught us most of what we know about how it develops and connects to the cortex. The mature thalamus of all mammalian species comprises numerous anatomically distinct collections of neurons called nuclei that differ in function, connectivity and molecular constitution. At the time of its initial appearance as a distinct structure following neural tube closure, the thalamus is already patterned by the regional expression of numerous regulatory genes. This patterning, which lays down the blueprint for later development of thalamic nuclei, predates the development of thalamocortical projections. In this review we apply novel analytical methods to gene expression data available in the Allen Developing Mouse Brain Atlas to highlight the complex organized molecular heterogeneity already present among cells in the thalamus from the earliest stages at which it contains differentiating neurons. This early patterning is likely to invest in axons growing from different parts of the thalamus the ability to navigate in an ordered way to their appropriate area in the cerebral cortex. We review the mechanisms and cues that thalamic axons use, encounter and interpret to attain the cortex. Mechanisms include guidance by previously-generated guidepost cells, such as those in the subpallium that maintain thalamic axonal order and direction, and axons such as those of reciprocal projections from intermediate structures or from the cortex itself back towards the thalamus. We show how thalamocortical pathfinding involves numerous guidance cues operating at a series of steps along their route. We stress the importance of the combinatorial actions of multiple genes for the development of the numerous specific identities and functions of cells in this exquisitely complex system and their orderly innervation of the cortex.

  11. Repulsive axon guidance by Draxin is mediated by protein Kinase B (Akt), glycogen synthase kinase-3β (GSK-3β) and microtubule-associated protein 1B.

    Science.gov (United States)

    Meli, Rajeshwari; Weisová, Petronela; Propst, Friedrich

    2015-01-01

    Draxin is an important axon guidance cue necessary for the formation of forebrain commissures including the corpus callosum, but the molecular details of draxin signaling are unknown. To unravel how draxin signals are propagated we used murine cortical neurons and genetic and pharmacological approaches. We found that draxin-induced growth cone collapse critically depends on draxin receptors (deleted in colorectal cancer, DCC), inhibition of protein kinase B/Akt, activation of GSK-3β (glycogen synthase kinase-3β) and the presence of microtubule-associated protein MAP1B. This study, for the first time elucidates molecular events in draxin repulsion, links draxin and DCC to MAP1B and identifies a novel MAP1B-depenent GSK-3β pathway essential for chemo-repulsive axon guidance cue signaling.

  12. Convergent differential regulation of SLIT-ROBO axon guidance genes in the brains of vocal learners.

    Science.gov (United States)

    Wang, Rui; Chen, Chun-Chun; Hara, Erina; Rivas, Miriam V; Roulhac, Petra L; Howard, Jason T; Chakraborty, Mukta; Audet, Jean-Nicolas; Jarvis, Erich D

    2015-04-15

    Only a few distantly related mammals and birds have the trait of complex vocal learning, which is the ability to imitate novel sounds. This ability is critical for speech acquisition and production in humans, and is attributed to specialized forebrain vocal control circuits that have several unique connections relative to adjacent brain circuits. As a result, it has been hypothesized that there could exist convergent changes in genes involved in neural connectivity of vocal learning circuits. In support of this hypothesis, expanding on our related study (Pfenning et al. [2014] Science 346: 1256846), here we show that the forebrain part of this circuit that makes a relatively rare direct connection to brainstem vocal motor neurons in independent lineages of vocal learning birds (songbird, parrot, and hummingbird) has specialized regulation of axon guidance genes from the SLIT-ROBO molecular pathway. The SLIT1 ligand was differentially downregulated in the motor song output nucleus that makes the direct projection, whereas its receptor ROBO1 was developmentally upregulated during critical periods for vocal learning. Vocal nonlearning bird species and male mice, which have much more limited vocal plasticity and associated circuits, did not show comparable specialized regulation of SLIT-ROBO genes in their nonvocal motor cortical regions. These findings are consistent with SLIT and ROBO gene dysfunctions associated with autism, dyslexia, and speech sound language disorders and suggest that convergent evolution of vocal learning was associated with convergent changes in the SLIT-ROBO axon guidance pathway.

  13. The Axon Guidance Receptor Gene ROBO1 Is a Candidate Gene for Developmental Dyslexia.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples, the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.

  14. The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia.

    Directory of Open Access Journals (Sweden)

    Katariina Hannula-Jouppi

    2005-10-01

    Full Text Available Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples, the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.

  15. The planar cell polarity protein Vangl2 is required for retinal axon guidance.

    Science.gov (United States)

    Leung, Vicki; Iliescu, Alexandra; Jolicoeur, Christine; Gravel, Michel; Apuzzo, Sergio; Torban, Elena; Cayouette, Michel; Gros, Philippe

    2016-02-01

    Vangl2 plays a critical role in the establishment of planar cell polarity (PCP). Previously, we detected expression of Vangl2 in the developing retina during late embryogenesis, which led us to investigate the possible role of Vangl2-mediated PCP signaling in eye development. We have generated a Vangl2(BGeo) knock-in mouse allowing us to evaluate Vangl2 mRNA expression during retinal development, and used an isoform-specific antibody to examine Vangl2 protein expression in cryosections. To investigate the role of Vangl2 in retinal development, we examined eyes taken from embryos homozygous for independent alleles of Looptail (Lp, Lp(m1jus) ) mutant mice. We found that Vangl2 mRNA and protein are dynamically expressed in the developing embryonic and postnatal retina, with Vangl2 expression becoming progressively restricted to the ganglion cell layer and optic nerve as the retina matures. The expression pattern of Vangl2 transcript and protein is most prominent in retinal ganglion cells (RGC), and their axons. Additionally, we show that Vangl2 is required for retinal and optic nerve development as Vangl2 (Lp/Lp) mutant embryos display a significantly reduced eye size, marked thickening of the retina, and striking abnormalities in the morphology of the optic nerve (significant hypoplasia, and aberrant exit trajectory). Notably, we identified a salient intraretinal axon guidance defect in Vangl2 (Lp/Lp) mutant embryos through which axon bundles traverse the entire thickness of the retina and become trapped within the subretinal space. Our observations identify a new and essential role for Vangl2-dependent PCP signaling in the intraretinal path-finding of RGC axons.

  16. Fasciculation and guidance of spinal motor axons in the absence of FGFR2 signaling.

    Directory of Open Access Journals (Sweden)

    Rosa-Eva Huettl

    Full Text Available During development, fibroblast growth factors (FGF are essential for early patterning events along the anterior-posterior axis, conferring positional identity to spinal motor neurons by activation of different Hox codes. In the periphery, signaling through one of four fibroblast growth factor receptors supports the development of the skeleton, as well as induction and maintenance of extremities. In previous studies, FGF receptor 2 (FGFR2 was found to interact with axon bound molecules involved in axon fasciculation and extension, thus rendering this receptor an interesting candidate for the promotion of proper peripheral innervation. However, while the involvement of FGFR2 in limb bud induction has been extensively studied, its role during axon elongation and formation of distinct nervous projections has not been addressed so far. We show here that motor neurons in the spinal cord express FGFR2 and other family members during the establishment of motor connections to the forelimb and axial musculature. Employing a conditional genetic approach to selectively ablate FGFR2 from motor neurons we found that the patterning of motor columns and the expression patterns of other FGF receptors and Sema3A in the motor columns of mutant embryos are not altered. In the absence of FGFR2 signaling, pathfinding of motor axons is intact, and also fasciculation, distal advancement of motor nerves and gross morphology and positioning of axonal projections are not altered. Our findings therefore show that FGFR2 is not required cell-autonomously in motor neurons during the formation of initial motor projections towards limb and axial musculature.

  17. A neuron-benign microfluidic gradient generator for studying the response of mammalian neurons towards axon guidance factors.

    Science.gov (United States)

    Bhattacharjee, Nirveek; Li, Nianzhen; Keenan, Thomas M; Folch, Albert

    2010-11-01

    Investigation of biochemical cues in isolation or in combinations in cell culture systems is crucial for unraveling the mechanisms that govern neural development and repair. The most widely used experimental paradigms that elicit axon guidance in vitro utilize as the source of the gradient a pulsatile pipette, transfected cells, or a loaded gel, producing time-varying gradients of poor reproducibility which are not well suited for studying slow-growing mammalian cells. Although microfluidic device design have allowed for generating stable, complex gradients of diffusible molecules, the flow-induced shear forces in a microchannel has made it impossible to maintain viable mammalian neuronal cultures for sufficiently long times. In this paper, we describe axonal responses of mouse cortical neurons in a "neuron-benign" gradient-generator device based on an open chamber that can establish highly stable gradients of diffusible molecules for at least 6 h with negligible shear stress, and also allows the neurons to thrive for at least 2 weeks. Except for the period when the gradient is on, the cells in the gradient are under the same conditions as the cells on the control surfaces, which ensure a consistent set of micro-environmental variables. The gradient stability and uniformity over the cell culture surface achieved by the device, together with our software platform for acquiring, post-processing and quantitatively analyzing the large number of images allowed us to extract valuable information even from small datasets. We report a directed response of primary mammalian neurons (from E14 embryonic mice cortex) to a diffusible gradient of netrin in vitro. We infer from our studies that a large majority (∼73%) of the neurons that extend axons during the gradient application grow towards the netrin source, and our data analysis also indicates that netrin acts as a growth factor for this same population of neurons.

  18. Axon growth inhibition by RhoA/ROCK in the central nervous system

    Directory of Open Access Journals (Sweden)

    Toshihide eYamashita

    2014-10-01

    Full Text Available Rho kinase (ROCK is a serine/threonine kinase and a downstream target of the small GTPase Rho. The RhoA/ROCK pathway is associated with various neuronal functions such as migration, dendrite development, and axonal extension. Evidence from animal studies reveals that RhoA/ROCK signaling is involved in various central nervous system (CNS diseases, including optic nerve and spinal cord injuries, stroke, and neurodegenerative diseases. Given that RhoA/ROCK plays a critical role in the pathophysiology of CNS diseases, the development of therapeutic agents targeting this pathway is expected to contribute to the treatment of CNS diseases. The RhoA/ROCK pathway mediates the effects of myelin-associated axon growth inhibitors—Nogo, myelin-associated glycoprotein (MAG, oligodendrocyte-myelin glycoprotein (OMgp, and repulsive guidance molecule (RGM. Blocking RhoA/ROCK signaling can reverse the inhibitory effects of these molecules on axon outgrowth, and promotes axonal sprouting and functional recovery in animal models of CNS injury. To date, several RhoA/ROCK inhibitors have been under development or in clinical trials as therapeutic agents for neurological disorders. In this review, we focus on the RhoA/ROCK signaling pathway in neurological disorders. We also discuss the potential therapeutic approaches of RhoA/ROCK inhibitors for various neurological disorders.

  19. SYD-1C, UNC-40 (DCC) and SAX-3 (Robo) function interdependently to promote axon guidance by regulating the MIG-2 GTPase.

    Science.gov (United States)

    Xu, Yan; Taru, Hidenori; Jin, Yishi; Quinn, Christopher C

    2015-04-01

    During development, axons must integrate directional information encoded by multiple guidance cues and their receptors. Axon guidance receptors, such as UNC-40 (DCC) and SAX-3 (Robo), can function individually or combinatorially with other guidance receptors to regulate downstream effectors. However, little is known about the molecular mechanisms that mediate combinatorial guidance receptor signaling. Here, we show that UNC-40, SAX-3 and the SYD-1 RhoGAP-like protein function interdependently to regulate the MIG-2 (Rac) GTPase in the HSN axon of C. elegans. We find that SYD-1 mediates an UNC-6 (netrin) independent UNC-40 activity to promote ventral axon guidance. Genetic analysis suggests that SYD-1 function in axon guidance requires both UNC-40 and SAX-3 activity. Moreover, the cytoplasmic domains of UNC-40 and SAX-3 bind to SYD-1 and SYD-1 binds to and negatively regulates the MIG-2 (Rac) GTPase. We also find that the function of SYD-1 in axon guidance is mediated by its phylogenetically conserved C isoform, indicating that the role of SYD-1 in guidance is distinct from its previously described roles in synaptogenesis and axonal specification. Our observations reveal a molecular mechanism that can allow two guidance receptors to function interdependently to regulate a common downstream effector, providing a potential means for the integration of guidance signals.

  20. SYD-1C, UNC-40 (DCC and SAX-3 (Robo function interdependently to promote axon guidance by regulating the MIG-2 GTPase.

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2015-04-01

    Full Text Available During development, axons must integrate directional information encoded by multiple guidance cues and their receptors. Axon guidance receptors, such as UNC-40 (DCC and SAX-3 (Robo, can function individually or combinatorially with other guidance receptors to regulate downstream effectors. However, little is known about the molecular mechanisms that mediate combinatorial guidance receptor signaling. Here, we show that UNC-40, SAX-3 and the SYD-1 RhoGAP-like protein function interdependently to regulate the MIG-2 (Rac GTPase in the HSN axon of C. elegans. We find that SYD-1 mediates an UNC-6 (netrin independent UNC-40 activity to promote ventral axon guidance. Genetic analysis suggests that SYD-1 function in axon guidance requires both UNC-40 and SAX-3 activity. Moreover, the cytoplasmic domains of UNC-40 and SAX-3 bind to SYD-1 and SYD-1 binds to and negatively regulates the MIG-2 (Rac GTPase. We also find that the function of SYD-1 in axon guidance is mediated by its phylogenetically conserved C isoform, indicating that the role of SYD-1 in guidance is distinct from its previously described roles in synaptogenesis and axonal specification. Our observations reveal a molecular mechanism that can allow two guidance receptors to function interdependently to regulate a common downstream effector, providing a potential means for the integration of guidance signals.

  1. Pro-neurotrophins secreted from retinal ganglion cell axons are necessary for ephrinA-p75NTR-mediated axon guidance

    Directory of Open Access Journals (Sweden)

    Broom Emma R

    2010-11-01

    Full Text Available Abstract Background Retinotectal map formation develops via topographically specific guidance and branching of retinal axons in their target area. This process is controlled, in part, by reverse signalling of ephrinAs expressed on retinal axons. As glycosylphosphatidylinositol-anchored molecules, ephrinAs require transmembrane co-receptors to exert this function, for which the two neurotrophin receptors, p75NTR and TrkB, were recently proposed. Results We show here that the ligands for these receptors, the brain-derived neurotrophic factor precursor (proBDNF and its processed form, BDNF, respectively, control the branching of retinal axons antagonistically, which they mediate by inducing the corresponding neurotrophin receptor-ephrinA complexes. Moreover, scavenging proneurotrophins, by adding antibodies specific for the pro-domain of proBNDF or a soluble extracellular domain of p75NTR, abolish repellent ephrinA reverse signalling in the stripe assay. Conclusions This indicates that retinal cells secrete proneurotrophins, inducing the ephrinA-p75NTR interaction and enabling repellent axon guidance. The antagonistic functions of proBDNF and BDNF raise the possibility that topographic branching is controlled by local control of processing of proneurotrophins.

  2. Efficient simulations of tubulin-driven axonal growth.

    Science.gov (United States)

    Diehl, Stefan; Henningsson, Erik; Heyden, Anders

    2016-08-01

    This work concerns efficient and reliable numerical simulations of the dynamic behaviour of a moving-boundary model for tubulin-driven axonal growth. The model is nonlinear and consists of a coupled set of a partial differential equation (PDE) and two ordinary differential equations. The PDE is defined on a computational domain with a moving boundary, which is part of the solution. Numerical simulations based on standard explicit time-stepping methods are too time consuming due to the small time steps required for numerical stability. On the other hand standard implicit schemes are too complex due to the nonlinear equations that needs to be solved in each step. Instead, we propose to use the Peaceman-Rachford splitting scheme combined with temporal and spatial scalings of the model. Simulations based on this scheme have shown to be efficient, accurate, and reliable which makes it possible to evaluate the model, e.g. its dependency on biological and physical model parameters. These evaluations show among other things that the initial axon growth is very fast, that the active transport is the dominant reason over diffusion for the growth velocity, and that the polymerization rate in the growth cone does not affect the final axon length.

  3. Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF).

    Science.gov (United States)

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Hirabayashi, Masumi; Watabe, Kazuhiko; Jimbo, Yasuhiko; Kodama, Itsuo; Komuro, Issei

    2013-01-01

    Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF) promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs) and sympathetic neurons (SNs) isolated from neonatal rat ventricles and superior cervical ganglia were cultured at a close distance. Then, morphological and functional coupling between SNs and VMs was assessed in response to GDNF (10 ng/ml) or nerve growth factor (50 ng/ml). As a result, fractions of neurofilament-M-positive axons and synapsin-I-positive area over the surface of VMs were markedly increased with GDNF by 9-fold and 25-fold, respectively, compared to control without neurotrophic factors. Pre- and post-synaptic stimulation of β1-adrenergic receptors (BAR) with nicotine and noradrenaline, respectively, resulted in an increase of the spontaneous beating rate of VMs co-cultured with SNs in the presence of GDNF. GDNF overexpressing VMs by adenovirus vector (AdGDNF-VMs) attracted more axons from SNs compared with mock-transfected VMs. In vivo, axon outgrowth toward the denervated myocardium in adult rat hearts after cryoinjury was also enhanced significantly by adenovirus-mediated GDNF overexpression. GDNF acts as a potent chemoattractant for sympathetic innervation of ventricular myocytes, and is a promising molecular target for regulation of cardiac function in diseased hearts.

  4. Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF.

    Directory of Open Access Journals (Sweden)

    Keiko Miwa

    Full Text Available Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs and sympathetic neurons (SNs isolated from neonatal rat ventricles and superior cervical ganglia were cultured at a close distance. Then, morphological and functional coupling between SNs and VMs was assessed in response to GDNF (10 ng/ml or nerve growth factor (50 ng/ml. As a result, fractions of neurofilament-M-positive axons and synapsin-I-positive area over the surface of VMs were markedly increased with GDNF by 9-fold and 25-fold, respectively, compared to control without neurotrophic factors. Pre- and post-synaptic stimulation of β1-adrenergic receptors (BAR with nicotine and noradrenaline, respectively, resulted in an increase of the spontaneous beating rate of VMs co-cultured with SNs in the presence of GDNF. GDNF overexpressing VMs by adenovirus vector (AdGDNF-VMs attracted more axons from SNs compared with mock-transfected VMs. In vivo, axon outgrowth toward the denervated myocardium in adult rat hearts after cryoinjury was also enhanced significantly by adenovirus-mediated GDNF overexpression. GDNF acts as a potent chemoattractant for sympathetic innervation of ventricular myocytes, and is a promising molecular target for regulation of cardiac function in diseased hearts.

  5. Pαx6 expression in postmitotic neurons mediates the growth of axons in response to SFRP1.

    Directory of Open Access Journals (Sweden)

    Alvaro Sebastián-Serrano

    Full Text Available During development, the mechanisms that specify neuronal subclasses are coupled to those that determine their axonal response to guidance cues. Pax6 is a homedomain transcription factor required for the specification of a variety of neural precursors. After cell cycle exit, Pax6 expression is often shut down in the precursor progeny and most postmitotic neurons no longer express detectable levels of the protein. There are however exceptions and high Pax6 protein levels are found, for example, in postmitotic retinal ganglion cells (RGCs, dopaminergic neurons of the olfactory bulb and the limbic system in the telencephalon. The function of Pax6 in these differentiating neurons remains mostly elusive. Here, we demonstrate that Pax6 mediates the response of growing axons to SFRP1, a secreted molecule expressed in several Pax6-positive forebrain territories. Forced expression of Pax6 in cultured postmitotic cortical neurons, which do not normally express Pax6, was sufficient to increment axonal length. Growth was blocked by the addition of anti-SFRP1 antibodies, whereas exogenously added SFRP1 increased axonal growth of Pax6-transfected neurons but not that of control or untransfected cortical neurons. In the reverse scenario, shRNA-mediated knock-down of Pax6 in mouse retinal explants specifically abolished RGCs axonal growth induced by SFRP1, but had no effect on RGCs differentiation and it did not modify the effect of Shh or Netrin on axon growth. Taken together these results demonstrate that expression of Pax6 is necessary and sufficient to render postmitotic neurons competent to respond to SFRP1. These results reveal a novel and unexpected function of Pax6 in postmitotic neurons and situate Pax6 and SFRP1 as pair regulators of axonal connectivity.

  6. Pαx6 Expression in Postmitotic Neurons Mediates the Growth of Axons in Response to SFRP1

    Science.gov (United States)

    Sebastián-Serrano, Alvaro; Sandonis, Africa; Cardozo, Marcos; Rodríguez-Tornos, Fernanda M.; Bovolenta, Paola; Nieto, Marta

    2012-01-01

    During development, the mechanisms that specify neuronal subclasses are coupled to those that determine their axonal response to guidance cues. Pax6 is a homedomain transcription factor required for the specification of a variety of neural precursors. After cell cycle exit, Pax6 expression is often shut down in the precursor progeny and most postmitotic neurons no longer express detectable levels of the protein. There are however exceptions and high Pax6 protein levels are found, for example, in postmitotic retinal ganglion cells (RGCs), dopaminergic neurons of the olfactory bulb and the limbic system in the telencephalon. The function of Pax6 in these differentiating neurons remains mostly elusive. Here, we demonstrate that Pax6 mediates the response of growing axons to SFRP1, a secreted molecule expressed in several Pax6-positive forebrain territories. Forced expression of Pax6 in cultured postmitotic cortical neurons, which do not normally express Pax6, was sufficient to increment axonal length. Growth was blocked by the addition of anti-SFRP1 antibodies, whereas exogenously added SFRP1 increased axonal growth of Pax6-transfected neurons but not that of control or untransfected cortical neurons. In the reverse scenario, shRNA-mediated knock-down of Pax6 in mouse retinal explants specifically abolished RGCs axonal growth induced by SFRP1, but had no effect on RGCs differentiation and it did not modify the effect of Shh or Netrin on axon growth. Taken together these results demonstrate that expression of Pax6 is necessary and sufficient to render postmitotic neurons competent to respond to SFRP1. These results reveal a novel and unexpected function of Pax6 in postmitotic neurons and situate Pax6 and SFRP1 as pair regulators of axonal connectivity. PMID:22359602

  7. Slit/Robo-mediated axon guidance in Tribolium and Drosophila: divergent genetic programs build insect nervous systems.

    Science.gov (United States)

    Evans, Timothy A; Bashaw, Greg J

    2012-03-01

    As the complexity of animal nervous systems has increased during evolution, developmental control of neuronal connectivity has become increasingly refined. How has functional diversification within related axon guidance molecules contributed to the evolution of nervous systems? To address this question, we explore the evolution of functional diversity within the Roundabout (Robo) family of axon guidance receptors. In Drosophila, Robo and Robo2 promote midline repulsion, while Robo2 and Robo3 specify the position of longitudinal axon pathways. The Robo family has expanded by gene duplication in insects; robo2 and robo3 exist as distinct genes only within dipterans, while other insects, like the flour beetle Tribolium castaneum, retain an ancestral robo2/3 gene. Both Robos from Tribolium can mediate midline repulsion in Drosophila, but unlike the fly Robos cannot be down-regulated by Commissureless. The overall architecture and arrangement of longitudinal pathways are remarkably conserved in Tribolium, despite it having only two Robos. Loss of TcSlit causes midline collapse of axons in the beetle, a phenotype recapitulated by simultaneous knockdown of both Robos. Single gene knockdowns reveal that beetle Robos have specialized axon guidance functions: TcRobo is dedicated to midline repulsion, while TcRobo2/3 also regulates longitudinal pathway formation. TcRobo2/3 knockdown reproduces aspects of both Drosophila robo2 and robo3 mutants, suggesting that TcRobo2/3 has two functions that in Drosophila are divided between Robo2 and Robo3. The ability of Tribolium to organize longitudinal axons into three discrete medial-lateral zones with only two Robo receptors demonstrates that beetle and fly achieve equivalent developmental outcomes using divergent genetic programs.

  8. Overexpression of Pax6 results in microphthalmia, retinal dysplasia and defective retinal ganglion cell axon guidance

    Directory of Open Access Journals (Sweden)

    Jeffery Glen

    2008-05-01

    contralateral optic tracts at the optic chiasm vary differently with gene dosage. Increasing dosage increases the proportion projecting ipsilaterally regardless of the size of the total projection. Conclusion Pax6 overexpression does not obviously impair the initial formation of the eye and its major cell-types but prevents normal development of the retina from about E14.5, leading eventually to severe retinal degeneration in postnatal life. This sequence is different to that underlying microphthalmia in Pax6+/- heterozygotes, which is due primarily to defects in the initial stages of lens formation. Before the onset of severe retinal dysplasia, Pax6 overexpression causes defects of retinal axons, preventing their normal growth and navigation through the optic chiasm.

  9. SAX-3 (Robo) and UNC-40 (DCC) regulate a directional bias for axon guidance in response to multiple extracellular cues.

    Science.gov (United States)

    Tang, Xia; Wadsworth, William G

    2014-01-01

    Axons in Caenorhabditis elegans are guided by multiple extracellular cues, including UNC-6 (netrin), EGL-20 (wnt), UNC-52 (perlecan), and SLT-1 (slit). How multiple extracellular cues determine the direction of axon guidance is not well understood. We have proposed that an axon's response to guidance cues can be modeled as a random walk, i.e., a succession of randomly directed movement. Guidance cues dictate the probability of axon outgrowth activity occurring in each direction, which over time creates a directional bias. Here we provide further evidence for this model. We describe the effects that the UNC-40 (DCC) and SAX-3 (Robo) receptors and the UNC-6, EGL-20, UNC-52, and SLT-1 extracellular cues have on the directional bias of the axon outgrowth activity for the HSN and AVM neurons. We find that the directional bias created by the cues depend on UNC-40 or SAX-3. UNC-6 and EGL-20 affect the directional bias for both neurons, whereas UNC-52 and SLT-1 only affect the directional bias for HSN and AVM, respectively. The direction of the bias created by the loss of a cue can vary and the direction depends on the other cues. The random walk model predicts this combinatorial regulation. In a random walk a probability is assigned for each direction of outgrowth, thus creating a probability distribution. The probability distribution for each neuron is determined by the collective effect of all the cues. Since the sum of the probabilities must equal one, each cue affects the probability of outgrowth in multiple directions.

  10. Trafifc lights for axon growth:proteoglycans and their neuronal receptors

    Institute of Scientific and Technical Information of China (English)

    Yingjie Shen

    2014-01-01

    Axon growth is a central event in the development and post-injury plasticity of the nervous system. Growing axons encounter a wide variety of environmental instructions. Much like trafifc lights in controlling the migrating axons, chondroitin sulfate proteoglycans (CSPGs) and hepa-ran sulfate proteoglycans (HSPGs) often lead to“stop”and“go”growth responses in the axons, respectively. Recently, the LAR family and NgR family molecules were identified as neuronal receptors for CSPGs and HSPGs. These discoveries provided molecular tools for further study of mechanisms underlying axon growth regulation. More importantly, the identiifcation of these proteoglycan receptors offered potential therapeutic targets for promoting post-injury axon re-generation.

  11. The Alzheimer's β-secretase enzyme BACE1 is required for accurate axon guidance of olfactory sensory neurons and normal glomerulus formation in the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Rajapaksha Tharinda W

    2011-12-01

    Full Text Available Abstract Background The β-secretase, β-site amyloid precursor protein cleaving enzyme 1 (BACE1, is a prime therapeutic target for lowering cerebral β-amyloid (Aβ levels in Alzheimer's disease (AD. Clinical development of BACE1 inhibitors is being intensely pursued. However, little is known about the physiological functions of BACE1, and the possibility exists that BACE1 inhibition may cause mechanism-based side effects. Indeed, BACE1-/- mice exhibit a complex neurological phenotype. Interestingly, BACE1 co-localizes with presynaptic neuronal markers, indicating a role in axons and/or terminals. Moreover, recent studies suggest axon guidance molecules are potential BACE1 substrates. Here, we used a genetic approach to investigate the function of BACE1 in axon guidance of olfactory sensory neurons (OSNs, a well-studied model of axon targeting in vivo. Results We bred BACE1-/- mice with gene-targeted mice in which GFP is expressed from the loci of two odorant-receptors (ORs, MOR23 and M72, and olfactory marker protein (OMP to produce offspring that were heterozygous for MOR23-GFP, M72-GFP, or OMP-GFP and were either BACE1+/+ or BACE1-/-. BACE1-/- mice had olfactory bulbs (OBs that were smaller and weighed less than OBs of BACE1+/+ mice. In wild-type mice, BACE1 was present in OSN axon terminals in OB glomeruli. In whole-mount preparations and tissue sections, many OB glomeruli from OMP-GFP; BACE1-/- mice were malformed compared to wild-type glomeruli. MOR23-GFP; BACE1-/- mice had an irregular MOR23 glomerulus that was innervated by randomly oriented, poorly fasciculated OSN axons compared to BACE1+/+ mice. Most importantly, M72-GFP; BACE1-/- mice exhibited M72 OSN axons that were mis-targeted to ectopic glomeruli, indicating impaired axon guidance in BACE1-/- mice. Conclusions Our results demonstrate that BACE1 is required for the accurate targeting of OSN axons and the proper formation of glomeruli in the OB, suggesting a role for BACE1 in

  12. Thiazolidinediones Promote Axonal Growth through the Activation of the JNK Pathway

    Science.gov (United States)

    Quintanilla, Rodrigo A.; Godoy, Juan A.; Alfaro, Ivan; Cabezas, Deny; von Bernhardi, Rommy; Bronfman, Miguel; Inestrosa, Nibaldo C.

    2013-01-01

    The axon is a neuronal process involved in protein transport, synaptic plasticity, and neural regeneration. It has been suggested that their structure and function are profoundly impaired in neurodegenerative diseases. Previous evidence suggest that Peroxisome Proliferator-Activated Receptors-γ (PPARγ promote neuronal differentiation on various neuronal cell types. In addition, we demonstrated that activation of PPARγby thiazolidinediones (TZDs) drugs that selectively activate PPARγ prevent neurite loss and axonal damage induced by amyloid-β (Aβ). However, the potential role of TZDs in axonal elongation and neuronal polarity has not been explored. We report here that the activation of PPARγ by TZDs promoted axon elongation in primary hippocampal neurons. Treatments with different TZDs significantly increased axonal growth and branching area, but no significant effects were observed in neurite elongation compared to untreated neurons. Treatment with PPARγ antagonist (GW 9662) prevented TZDs-induced axonal growth. Recently, it has been suggested that the c-Jun N-terminal kinase (JNK) plays an important role regulating axonal growth and neuronal polarity. Interestingly, in our studies, treatment with TZDs induced activation of the JNK pathway, and the pharmacological blockage of this pathway prevented axon elongation induced by TZDs. Altogether, these results indicate that activation of JNK induced by PPARγactivators stimulates axonal growth and accelerates neuronal polarity. These novel findings may contribute to the understanding of the effects of PPARγ on neuronal differentiation and validate the use of PPARγ activators as therapeutic agents in neurodegenerative diseases. PMID:23741474

  13. Bimodal control of dendritic and axonal growth by the dual leucine zipper kinase pathway.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available Knowledge of the molecular and genetic mechanisms underlying the separation of dendritic and axonal compartments is not only crucial for understanding the assembly of neural circuits, but also for developing strategies to correct defective dendrites or axons in diseases with subcellular precision. Previous studies have uncovered regulators dedicated to either dendritic or axonal growth. Here we investigate a novel regulatory mechanism that differentially directs dendritic and axonal growth within the same neuron in vivo. We find that the dual leucine zipper kinase (DLK signaling pathway in Drosophila, which consists of Highwire and Wallenda and controls axonal growth, regeneration, and degeneration, is also involved in dendritic growth in vivo. Highwire, an evolutionarily conserved E3 ubiquitin ligase, restrains axonal growth but acts as a positive regulator for dendritic growth in class IV dendritic arborization neurons in the larva. While both the axonal and dendritic functions of highwire require the DLK kinase Wallenda, these two functions diverge through two downstream transcription factors, Fos and Knot, which mediate the axonal and dendritic regulation, respectively. This study not only reveals a previously unknown function of the conserved DLK pathway in controlling dendrite development, but also provides a novel paradigm for understanding how neuronal compartmentalization and the diversity of neuronal morphology are achieved.

  14. N-docosahexaenoylethanolamine regulates Hedgehog signaling and promotes growth of cortical axons

    Directory of Open Access Journals (Sweden)

    Giorgi Kharebava

    2015-12-01

    Full Text Available Axonogenesis, a process for the establishment of neuron connectivity, is central to brain function. The role of metabolites derived from docosahexaenoic acid (DHA, 22:6n-3 that is specifically enriched in the brain, has not been addressed in axon development. In this study, we tested if synaptamide (N-docosahexaenoylethanolamine, an endogenous metabolite of DHA, affects axon growth in cultured cortical neurons. We found that synaptamide increased the average axon length, inhibited GLI family zinc finger 1 (GLI1 transcription and sonic hedgehog (Shh target gene expression while inducing cAMP elevation. Similar effects were produced by cyclopamine, a regulator of the Shh pathway. Conversely, Shh antagonized elevation of cAMP and blocked synaptamide-mediated increase in axon length. Activation of Shh pathway by a smoothened (SMO agonist (SAG or overexpression of SMO did not inhibit axon growth mediated by synaptamide or cyclopamine. Instead, adenylate cyclase inhibitor SQ22536 abolished synaptamide-mediated axon growth indicating requirement of cAMP elevation for this process. Our findings establish that synaptamide promotes axon growth while Shh antagonizes synaptamide-mediated cAMP elevation and axon growth by a SMO-independent, non-canonical pathway.

  15. Gene expression of axon growth promoting factors in the deer antler.

    Directory of Open Access Journals (Sweden)

    Wolfgang Pita-Thomas

    Full Text Available The annual regeneration cycle of deer (Cervidae, Artiodactyla antlers represents a unique model of epimorphic regeneration and rapid growth in adult mammals. Regenerating antlers are innervated by trigeminal sensory axons growing through the velvet, the modified form of skin that envelopes the antler, at elongation velocities that reach one centimetre per day in the common deer (Cervus elaphus. Several axon growth promoters like NT-3, NGF or IGF-1 have been described in the antler. To increase the knowledge on the axon growth environment, we have combined different gene-expression techniques to identify and characterize the expression of promoting molecules not previously described in the antler velvet. Cross-species microarray analyses of deer samples on human arrays allowed us to build up a list of 90 extracellular or membrane molecules involved in axon growth that were potentially being expressed in the antler. Fifteen of these genes were analysed using PCR and sequencing techniques to confirm their expression in the velvet and to compare it with the expression in other antler and skin samples. Expression of 8 axon growth promoters was confirmed in the velvet, 5 of them not previously described in the antler. In conclusion, our work shows that antler velvet provides growing axons with a variety of promoters of axon growth, sharing many of them with deer's normal and pedicle skin.

  16. The homeodomain transcription factor Hb9 controls axon guidance in Drosophila through the regulation of Robo receptors.

    Science.gov (United States)

    Santiago, Celine; Labrador, Juan-Pablo; Bashaw, Greg J

    2014-04-10

    Transcription factors establish neural diversity and wiring specificity; however, how they orchestrate changes in cell morphology remains poorly understood. The Drosophila Roundabout (Robo) receptors regulate connectivity in the CNS, but how their precise expression domains are established is unknown. Here, we show that the homeodomain transcription factor Hb9 acts upstream of Robo2 and Robo3 to regulate axon guidance in the Drosophila embryo. In ventrally projecting motor neurons, hb9 is required for robo2 expression, and restoring Robo2 activity in hb9 mutants rescues motor axon defects. Hb9 requires its conserved repressor domain and functions in parallel with Nkx6 to regulate robo2. Moreover, hb9 can regulate the medio-lateral position of axons through robo2 and robo3, and restoring robo3 expression in hb9 mutants rescues the lateral position defects of a subset of neurons. Altogether, these data identify Robo2 and Robo3 as key effectors of Hb9 in regulating nervous system development.

  17. GDNF reverses the inhibitory properties of reactive astrocytes allowing robust axonal regeneration through Schwann cell-seeded guidance channels after spinal cord injury

    OpenAIRE

    Deng, Ling-Xiao; Hu, Jianguo; Liu, Naikui; Wang, Xiaofei; Smith, George M.; Wen, Xuejun; Xu, Xiao-Ming

    2011-01-01

    Reactive astrogliosis has been considered as a major impediment for axonal regeneration after injuries in the mammalian central nervous system (CNS). Here we report that glial cell line-derived neurotrophic factor (GDNF), combined with transplanted Schwann cells (SCs), effectively reversed the inhibitory properties of astrocytes at graft-host interfaces allowing robust axonal regeneration, concomitant with vigorous migration of host astrocytes, into SC-seeded semi-permeable guidance channels ...

  18. Expression of the Wnt signaling system in central nervous system axon guidance and regeneration

    Directory of Open Access Journals (Sweden)

    Edmund eHollis

    2012-02-01

    Full Text Available Wnt signaling is essential for axon wiring throughout the development of the nervous system in vertebrates and invertebrates. In vertebrates, Wnts are expressed in gradients that span the entire anterior-posterior axis in the spinal cord and the medial-lateral axis in the superior colliculus. In the brainstem, Wnts are expressed in more complex gradients along the anterior-posterior axis. These gradients provide directional information for axon pathfinding and positional information for topographic mapping and are detected by cell polarity signaling pathways. The gradient expression of Wnts and the coordinated expression of Wnt signaling systems are regulated by mechanisms which are currently unknown. Injury to the adult spinal cord results in the re-induction of Wnts in multiple cell types around the lesion site and their signaling system in injured axons. Reinduced Wnts form gradients around the lesion site, with the lesion site being the peak. The reinduced Wnts may be responsible for the well-known retraction of descending motor axons through the atypical kinase receptor Ryk. Wnt signaling is an appealing therapeutic target for CNS repair. The mechanisms regulating the reinduction will be informative for therapeutic design.

  19. Sprouty2 down-regulation promotes axon growth by adult sensory neurons.

    Science.gov (United States)

    Hausott, Barbara; Vallant, Natalie; Auer, Maria; Yang, Lin; Dai, Fangping; Brand-Saberi, Beate; Klimaschewski, Lars

    2009-12-01

    Fibroblast growth factors (FGFs) play a prominent role in axonal growth during development and repair. Treatment with FGF-2 or overexpression of FGF receptors promotes peripheral axon regeneration mainly by activation of extracellular signal-regulated kinase (ERK). The Ras/Raf/ERK pathway is under the control of Sprouty proteins acting as negative feedback inhibitors. We investigated the expression of Sprouty isoforms in adult sensory neurons of dorsal root ganglia (DRG) as well as the effects of Sprouty inhibition on axon growth by small interfering RNAs (siRNAs). Sprouty2 revealed the highest expression level in DRG neurons. Down-regulation of Sprouty2 promoted elongative axon growth by adult sensory neurons accompanied by enhanced FGF-2-induced activation of ERK and Ras, whereas Sprouty2 overexpression inhibited axon growth. Sprouty2 was not regulated in vivo in response to a sciatic nerve lesion. Together, our results imply that Sprouty2 is highly expressed in adult peripheral neurons and its down-regulation strongly promotes elongative axon growth by activation of the Ras/Raf/ERK pathway.

  20. R-type calcium channels are crucial for semaphorin 3A-induced DRG axon growth cone collapse.

    Directory of Open Access Journals (Sweden)

    Rimantas Treinys

    Full Text Available Semaphorin 3A (Sema3A is a secreted protein involved in axon path-finding during nervous system development. Calcium signaling plays an important role during axonal growth in response to different guidance cues; however it remains unclear whether this is also the case for Sema3A. In this study we used intracellular calcium imaging to figure out whether Sema3A-induced growth cone collapse is a Ca2+ dependent process. Intracellular Ca2+ imaging results using Fura-2 AM showed Ca2+ increase in E15 mice dorsal root ganglia neurons upon Sema3A treatment. Consequently we analyzed Sema3A effect on growth cones after blocking or modifying intracellular and extracellular Ca2+ channels that are expressed in E15 mouse embryos. Our results demonstrate that Sema3A increased growth cone collapse rate is blocked by the non-selective R- and T- type Ca2+ channel blocker NiCl2 and by the selective R-type Ca2+ channel blocker SNX482. These Ca2+ channel blockers consistently decreased the Sema3A-induced intracellular Ca2+ concentration elevation. Overall, our results demonstrate that Sema3A-induced growth cone collapses are intimately related with increase in intracellular calcium concentration mediated by R-type calcium channels.

  1. The role of microtubule-associated protein 1B in axonal growth and neuronal migration in the central nervous system

    Institute of Scientific and Technical Information of China (English)

    Maoguang Yang; Xiaoyu Yang; Minfei Wu; Peng Xia; Chunxin Wang; Peng Yan; Qi Gao; Jian Liu; Haitao Wang; Xingwei Duan

    2012-01-01

    In this review, we discuss the role of microtubule-associated protein 1B (MAP1B) and its phosphorylation in axonal development and regeneration in the central nervous system. MAP1B exhibits similar functions during axonal development and regeneration. MAP1B and phosphorylated MAP1B in neurons and axons maintain a dynamic balance between cytoskeletal components, and regulate the stability and interaction of microtubules and actin to promote axonal growth, neural connectivity and regeneration in the central nervous system.

  2. Aberrant expression of miR-218 and miR-204 in human mesial temporal lobe epilepsy and hippocampal sclerosis-Convergence on axonal guidance

    DEFF Research Database (Denmark)

    Kaalund, Sanne Simone; Venø, Morten T; Bak, Mads

    2014-01-01

    R-204 and miR-218 showed strong changes in expression during fetal development of the hippocampus in pigs, and we identified four target genes, involved in axonal guidance and synaptic plasticity, ROBO1, GRM1, SLC1A2, and GNAI2, as bona fide targets of miR-218. GRM1 was also shown to be a direct target...

  3. The H3K4me3/2 histone demethylase RBR-2 controls axon guidance by repressing the actin-remodeling gene wsp-1

    DEFF Research Database (Denmark)

    Mariani, Luca; Lussi, Yvonne C.; Vandamme, Julien;

    2016-01-01

    . Here, we show that RBR-2, the sole homolog of the KDM5 family of H3K4me3/2 demethylases in Caenorhabditis elegans, ensures correct axon guidance by controlling the expression of the actin regulator wsp-1. Loss of rbr-2 results in increased levels of H3K4me3 at the transcriptional start site of wsp-1...

  4. p250GAP is a novel player in the Cdh1-APC/Smurf1 pathway of axon growth regulation.

    Directory of Open Access Journals (Sweden)

    Madhuvanthi Kannan

    Full Text Available Axon growth is an essential process during brain development. The E3 ubiquitin ligase Cdh1-APC has emerged as a critical regulator of intrinsic axon growth control. Here, we identified the RhoGAP p250GAP as a novel interactor of the E3 ubiquitin ligase Cdh1-APC and found that p250GAP promotes axon growth downstream of Cdh1-APC. We also report that p250GAP undergoes non-proteolytic ubiquitination and associates with the Cdh1 substrate Smurf1 to synergistically regulate axon growth. Finally, we found that in vivo knockdown of p250GAP in the developing cerebellar cortex results in impaired migration and axonal growth. Taken together, our data indicate that Cdh1-APC together with the RhoA regulators p250GAP and Smurf1 controls axon growth in the mammalian brain.

  5. Selective regulation of axonal growth from developing hippocampal neurons by tumor necrosis factor superfamily member APRIL☆

    Science.gov (United States)

    Osório, Catarina; Chacón, Pedro J.; White, Matthew; Kisiswa, Lilian; Wyatt, Sean; Rodríguez-Tébar, Alfredo; Davies, Alun M.

    2014-01-01

    APRIL (A Proliferation-Inducing Ligand, TNFSF13) is a member of the tumor necrosis factor superfamily that regulates lymphocyte survival and activation and has been implicated in tumorigenesis and autoimmune diseases. Here we report the expression and first known activity of APRIL in the nervous system. APRIL and one of its receptors, BCMA (B-Cell Maturation Antigen, TNFRSF17), are expressed by hippocampal pyramidal cells of fetal and postnatal mice. In culture, these neurons secreted APRIL, and function-blocking antibodies to either APRIL or BCMA reduced axonal elongation. Recombinant APRIL enhanced axonal elongation, but did not influence dendrite elongation. The effect of APRIL on axon elongation was inhibited by anti-BCMA and the expression of a signaling-defective BCMA mutant in these neurons, suggesting that the axon growth-promoting effect of APRIL is mediated by BCMA. APRIL promoted phosphorylation and activation of ERK1, ERK2 and Akt and serine phosphorylation and inactivation of GSK-3β in cultured hippocampal pyramidal cells. Inhibition of MEK1/MEK2 (activators of ERK1/ERK2), PI3-kinase (activator of Akt) or Akt inhibited the axon growth-promoting action of APRIL, as did pharmacological activation of GSK-3β and the expression of a constitutively active form of GSK-3β. These findings suggest that APRIL promotes axon elongation by a mechanism that depends both on ERK signaling and PI3-kinase/Akt/GSK-3β signaling. PMID:24444792

  6. Dscam1 Forms a Complex with Robo1 and the N-Terminal Fragment of Slit to Promote the Growth of Longitudinal Axons

    Science.gov (United States)

    Alavi, Maryam; Song, Minmin; Gillis, Taylor; Bousum, Adam; Miller, Amanda; Kidd, Thomas

    2016-01-01

    The Slit protein is a major midline repellent for central nervous system (CNS) axons. In vivo, Slit is proteolytically cleaved into N- and C-terminal fragments, but the biological significance of this is unknown. Analysis in the Drosophila ventral nerve cord of a slit allele (slit-UC) that cannot be cleaved revealed that midline repulsion is still present but longitudinal axon guidance is disrupted, particularly across segment boundaries. Double mutants for the Slit receptors Dscam1 and robo1 strongly resemble the slit-UC phenotype, suggesting they cooperate in longitudinal axon guidance, and through biochemical approaches, we found that Dscam1 and Robo1 form a complex dependent on Slit-N. In contrast, Robo1 binding alone shows a preference for full-length Slit, whereas Dscam1 only binds Slit-N. Using a variety of transgenes, we demonstrated that Dscam1 appears to modify the output of Robo/Slit complexes so that signaling is no longer repulsive. Our data suggest that the complex is promoting longitudinal axon growth across the segment boundary. The ability of Dscam1 to modify the output of other receptors in a ligand-dependent fashion may be a general principle for Dscam proteins. PMID:27654876

  7. Lazarillo, a neuronal lipocalin in grasshoppers with a role in axon guidance.

    Science.gov (United States)

    Sánchez, D; Ganfornina, M D; Bastiani, M J

    2000-10-18

    In this report we present a review on the grasshopper lipocalin Lazarillo with special emphasis on how its molecular properties could account for its known function: the guidance of pioneer neurons during nervous system development. The expression and function of Lazarillo in a subset of developing neurons, its heavy glycosylation and its glycosylphosphatidylinositol linkage to the plasma membrane, make Lazarillo a unique member of the lipocalin family. We have built a model of the tertiary structure of Lazarillo in which we have studied the exposed surfaces in search for clues about ligand and protein interactions with Lazarillo. Our hypotheses about how this lipocalin can exert its function are discussed.

  8. Arrest of myelination and reduced axon growth when Schwann cells lack mTOR.

    Science.gov (United States)

    Sherman, Diane L; Krols, Michiel; Wu, Lai-Man N; Grove, Matthew; Nave, Klaus-Armin; Gangloff, Yann-Gaël; Brophy, Peter J

    2012-02-01

    In developing peripheral nerves, differentiating Schwann cells sort individual axons from bundles and ensheath them to generate multiple layers of myelin. In recent years, there has been an increased understanding of the extracellular and intracellular factors that initiate and stimulate Schwann cell myelination, together with a growing appreciation of some of the signaling pathways involved. However, our knowledge of how Schwann cell growth is regulated during myelination is still incomplete. The mammalian target of rapamycin (mTOR) is a core kinase in two major complexes, mTORC1 and mTORC2, that regulate cell growth and differentiation in a variety of mammalian cells. Here we show that elimination of mTOR from murine Schwann cells prevented neither radial sorting nor the initiation of myelination. However, normal postnatal growth of myelinating Schwann cells, both radially and longitudinally, was highly retarded. The myelin sheath in the mutant was much thinner than normal; nevertheless, sheath thickness relative to axon diameter (g-ratio) remained constant in both wild-type and mutant nerves from P14 to P90. Although axon diameters were normal in the mutant at the initiation of myelination, further growth as myelination proceeded was retarded, and this was associated with reduced phosphorylation of neurofilaments. Consistent with thinner axonal diameters and internodal lengths, conduction velocities in mutant quadriceps nerves were also reduced. These data establish a critical role for mTOR signaling in both the longitudinal and radial growth of the myelinating Schwann cell.

  9. Flipping the transcriptional switch from myelin inhibition to axon growth in the CNS

    Directory of Open Access Journals (Sweden)

    Jason B Carmel

    2015-07-01

    Full Text Available Poor regeneration of severed axons in the central nervous system (CNS limits functional recovery. Regeneration failure involves an interplay of inhibitory environmental elements and the growth state of the neuron. To find internal changes in gene expression that might overcome inhibitory environmental cues, we compared several paradigms that allow growth in the inhibitory environment. Conditions that allow axon growth by axotomized and cultured dorsal root ganglion (DRG neurons on CNS myelin include immaturity (the first few postnatal days, high levels of cyclic adenosine mono phosphate (cAMP, and conditioning with a peripheral nerve lesion before explant. This shift from inhibition to growth depends on transcription. Seeking to understand the transcriptome changes that allow axon growth in the CNS, we collaborated with the Marie Filbin laboratory to identify several mRNAs that are functionally relevant, as determined by gain- and loss-of-function studies. In this Perspective, we review evidence from these experiments and discuss the merits of comparing multiple regenerative paradigms to identify a core transcriptional program for CNS axon regeneration.

  10. Role of Rb during Neurogenesis and Axonal Guidance in the Developing Olfactory System

    Science.gov (United States)

    Jaafar, Carine; Omais, Saad; Al Lafi, Sawsan; El Jamal, Nadim; Noubani, Mohammad; Skaf, Larissa; Ghanem, Noël

    2016-01-01

    The Retinoblastoma protein, Rb, was shown to regulate distinct aspects of neurogenesis in the embryonic and adult brain besides its primary role in cell cycle control. It is still unknown, however, whether Rb is required for tissue morphogenesis and the establishment of synaptic connections between adjacent tissues during development. We have investigated here the role of Rb during development of the olfactory system (OS), which heavily relies on reciprocal interactions between the olfactory epithelium (OE) and the olfactory bulb (OB). We show that mice carrying a telencephalic-specific deletion of Rb display several neurogenic defects in the OS during late development. In the OE, loss of Rb leads to ectopic proliferation of late-born progenitors (Tuj-1+), abnormal radial migration and terminal maturation of olfactory sensory neurons (OSNs). In the OB, deletion of Rb causes severe lamination defects with loss of clear boundaries between distinct layers. Importantly, starting around E15.5 when OB glomerulogenesis is initiated, many OSNs axons that project along the olfactory nerve layer (ONL) fail to properly innervate the nascent bulb, thus resulting in partial loss of connectivity between OE-OB and gradual neuronal degeneration in both tissues peaking at birth. This deficiency correlates with deregulated expressions of two key chemo-repellant molecules, Robo2/Slit1 and Nrp2/Sema3F that control the formation of dorsal-ventral topographic map of OSNs connections with OB glomeruli. This study highlights a critical requirement for Rb during neurogenesis and the establishment of proper synaptic connections inside the OS during development. PMID:27667971

  11. Wnt-signaling and planar cell polarity genes regulate axon guidance along the anteroposterior axis in C. elegans.

    Science.gov (United States)

    Ackley, Brian D

    2014-08-01

    During the development of the nervous system, neurons encounter signals that inform their outgrowth and polarization. Understanding how these signals combinatorially function to pattern the nervous system is of considerable interest to developmental neurobiologists. The Wnt ligands and their receptors have been well characterized in polarizing cells during asymmetric cell division. The planar cell polarity (PCP) pathway is also critical for cell polarization in the plane of an epithelium. The core set of PCP genes include members of the conserved Wnt-signaling pathway, such as Frizzled and Disheveled, but also the cadherin-domain protein Flamingo. In Drosophila, the Fat and Dachsous cadherins also function in PCP, but in parallel to the core PCP components. C. elegans also have two Fat-like and one Dachsous-like cadherins, at least one of which, cdh-4, contributes to neural development. In C. elegans Wnt ligands and the conserved PCP genes have been shown to regulate a number of different events, including embryonic cell polarity, vulval morphogenesis, and cell migration. As is also observed in vertebrates, the Wnt and PCP genes appear to function to primarily provide information about the anterior to posterior axis of development. Here, we review the recent work describing how mutations in the Wnt and core PCP genes affect axon guidance and synaptogenesis in C. elegans.

  12. Axon guidance factor SLIT2 inhibits neural invasion and metastasis in pancreatic cancer.

    Science.gov (United States)

    Göhrig, Andreas; Detjen, Katharina M; Hilfenhaus, Georg; Körner, Jan L; Welzel, Martina; Arsenic, Ruza; Schmuck, Rosa; Bahra, Marcus; Wu, Jane Y; Wiedenmann, Bertram; Fischer, Christian

    2014-03-01

    Pancreatic ductal adenocarcinoma (PDAC) metastasizes by neural, vascular, and local invasion routes, which limit patient survival. In nerves and vessels, SLIT2 and its ROBO receptors constitute repellent guidance cues that also direct epithelial branching. Thus, the SLIT2-ROBO system may represent a key pinch point to regulate PDAC spread. In this study, we examined the hypothesis that escaping from repellent SLIT2-ROBO signaling is essential to enable PDAC cells to appropriate their local stromal infrastructure for dissemination. Through immunohistochemical analysis, we detected SLIT2 receptors ROBO1 and ROBO4 on epithelia, nerves, and vessels in healthy pancreas and PDAC specimens, respectively. SLIT2 mRNA expression was reduced in PDAC compared with nontransformed pancreatic tissues and cell lines, suggesting a reduction in SLIT2-ROBO pathway activity in PDAC. In support of this interpretation, restoring the SLIT2 expression in SLIT2-deficient PDAC cells inhibited their bidirectional chemoattraction with neural cells, and more specifically, impaired unidirectional PDAC cell navigation along outgrowing neurites in models of neural invasion. Restoring autocrine/paracrine SLIT2 signaling was also sufficient to inhibit the directed motility of PDAC cells, but not their random movement. Conversely, RNA interference-mediated silencing of ROBO1 stimulated the motility of SLIT2-competent PDAC cells. Furthermore, culture supernatants from SLIT2-competent PDAC cells impaired migration of endothelial cells (human umbilical vein endothelial cells), whereas an N-terminal SLIT2 cleavage fragment stimulated such migration. In vivo investigations of pancreatic tumors with restored SLIT2 expression demonstrated reduced invasion, metastasis, and vascularization, with opposing effects produced by ROBO1 silencing in tumor cells or sequestration of endogenous SLIT2. Analysis of clinical specimens of PDAC showed that those with low SLIT2 mRNA expression exhibited a higher incidence

  13. Transcriptional control of axonal guidance and sorting in dorsal interneurons by the Lim-HD proteins Lhx9 and Lhx1

    Directory of Open Access Journals (Sweden)

    Schejter Adi

    2009-06-01

    Full Text Available Abstract Background Lim-HD proteins control crucial aspects of neuronal differentiation, including subtype identity and axonal guidance. The Lim-HD proteins Lhx2/9 and Lhx1/5 are expressed in the dorsal spinal interneuron populations dI1 and dI2, respectively. While they are not required for cell fate acquisition, their role in patterning the axonal trajectory of dI1 and dI2 neurons remains incompletely understood. Results Using newly identified dI1- and dI2-specific enhancers to trace axonal trajectories originating from these interneurons, we found that each population is subdivided into several distinct groups according to their axonal pathways. dI1 neurons project axons rostrally, either ipsi- or contra-laterally, while dI2 are mostly commissural neurons that project their axons rostrally and caudally. The longitudinal axonal tracks of each neuronal population self-fasciculate to form dI1- and dI2-specific bundles. The dI1 bundles are spatially located ventral relative to dI2 bundles. To examine the functional contribution of Lim-HD proteins to establishment of dI axonal projections, the Lim-HD code of dI neurons was altered by cell-specific ectopic expression. Expression of Lhx1 in dI1 neurons caused a repression of Lhx2/9 and imposed caudal projection to the caudal commissural dI1 neurons. Complementarily, when expressed in dI2 neurons, Lhx9 repressed Lhx1/5 and triggered a bias toward rostral projection in otherwise caudally projecting dI2 neurons, and ventral shift of the longitudinal axonal fascicule. Conclusion The Lim-HD proteins Lhx9 and Lhx1 serve as a binary switch in controlling the rostral versus caudal longitudinal turning of the caudal commissural axons. Lhx1 determines caudal turning and Lhx9 triggers rostral turning.

  14. Integration of shallow gradients of Shh and Netrin-1 guides commissural axons.

    Science.gov (United States)

    Sloan, Tyler F W; Qasaimeh, Mohammad A; Juncker, David; Yam, Patricia T; Charron, Frédéric

    2015-03-01

    During nervous system development, gradients of Sonic Hedgehog (Shh) and Netrin-1 attract growth cones of commissural axons toward the floor plate of the embryonic spinal cord. Mice defective for either Shh or Netrin-1 signaling have commissural axon guidance defects, suggesting that both Shh and Netrin-1 are required for correct axon guidance. However, how Shh and Netrin-1 collaborate to guide axons is not known. We first quantified the steepness of the Shh gradient in the spinal cord and found that it is mostly very shallow. We then developed an in vitro microfluidic guidance assay to simulate these shallow gradients. We found that axons of dissociated commissural neurons respond to steep but not shallow gradients of Shh or Netrin-1. However, when we presented axons with combined Shh and Netrin-1 gradients, they had heightened sensitivity to the guidance cues, turning in response to shallower gradients that were unable to guide axons when only one cue was present. Furthermore, these shallow gradients polarized growth cone Src-family kinase (SFK) activity only when Shh and Netrin-1 were combined, indicating that SFKs can integrate the two guidance cues. Together, our results indicate that Shh and Netrin-1 synergize to enable growth cones to sense shallow gradients in regions of the spinal cord where the steepness of a single guidance cue is insufficient to guide axons, and we identify a novel type of synergy that occurs when the steepness (and not the concentration) of a guidance cue is limiting.

  15. Developmental Axon Stretch Stimulates Neuron Growth While Maintaining Normal Electrical Activity, Intracellular Calcium Flux, and Somatic Morphology

    Directory of Open Access Journals (Sweden)

    Joseph R Loverde

    2015-08-01

    Full Text Available Elongation of nerve fibers intuitively occurs throughout mammalian development, and is synchronized with expansion of the growing body. While most tissue systems enlarge through mitosis and differentiation, elongation of nerve fibers is remarkably unique. The emerging paradigm suggests that axons undergo stretch as contiguous tissues enlarge between the proximal and distal segments of spanning nerve fibers. While stretch is distinct from growth, tension is a known stimulus which regulates the growth of axons. Here, we hypothesized that the axon stretch-growth process may be a natural form of injury, whereby regenerative processes fortify elongating axons in order to prevent disconnection. Harnessing the live imaging capability of our axon stretch-growth bioreactors, we assessed neurons both during and following stretch for biomarkers associated with injury. Utilizing whole-cell patch clamp recording, we found no evidence of changes in spontaneous action potential activity or degradation of elicited action potentials during real-time axon stretch at strains of up to 18 % applied over 5 minutes. Unlike traumatic axonal injury, functional calcium imaging of the soma revealed no shifts in free intracellular calcium during axon stretch. Finally, the cross-sectional areas of nuclei and cytoplasms were normal, with no evidence of chromatolysis following week-long stretch-growth limited to the lower of 25 % strain or 3 mm total daily stretch. The neuronal growth cascade coupled to stretch was concluded to be independent of the changes in membrane potential, action potential generation, or calcium flux associated with traumatic injury. While axon stretch-growth is likely to share overlap with regenerative processes, we conclude that developmental stretch is a distinct stimulus from traumatic axon injury.

  16. Drosophila as a genetic and cellular model for studies on axonal growth

    Directory of Open Access Journals (Sweden)

    Whitington Paul

    2007-05-01

    Full Text Available Abstract One of the most fascinating processes during nervous system development is the establishment of stereotypic neuronal networks. An essential step in this process is the outgrowth and precise navigation (pathfinding of axons and dendrites towards their synaptic partner cells. This phenomenon was first described more than a century ago and, over the past decades, increasing insights have been gained into the cellular and molecular mechanisms regulating neuronal growth and navigation. Progress in this area has been greatly assisted by the use of simple and genetically tractable invertebrate model systems, such as the fruit fly Drosophila melanogaster. This review is dedicated to Drosophila as a genetic and cellular model to study axonal growth and demonstrates how it can and has been used for this research. We describe the various cellular systems of Drosophila used for such studies, insights into axonal growth cones and their cytoskeletal dynamics, and summarise identified molecular signalling pathways required for growth cone navigation, with particular focus on pathfinding decisions in the ventral nerve cord of Drosophila embryos. These Drosophila-specific aspects are viewed in the general context of our current knowledge about neuronal growth.

  17. Arrest of Myelination and Reduced Axon Growth when Schwann Cells Lack mTOR

    OpenAIRE

    Sherman, Diane L; Krols, Michiel; Wu, Lai-Man N; Grove, Matthew; Nave, Klaus-Armin; Gangloff, Yann-Gaël; Brophy, Peter J.

    2012-01-01

    In developing peripheral nerves differentiating Schwann cells sort individual axons from bundles and ensheath them to generate multiple layers of myelin. In recent years there has been an increasing understanding of the extracellular and intracellular factors that initiate and stimulate Schwann cell myelination together with a growing appreciation of some of the signalling pathways involved. However, our knowledge of how Schwann cell growth is regulated during myelination is still incomplete....

  18. P90 Ribosomal s6 kinase 2 negatively regulates axon growth in motoneurons.

    Science.gov (United States)

    Fischer, Matthias; Pereira, Patricia Marques; Holtmann, Bettina; Simon, Christian M; Hanauer, Andre; Heisenberg, Martin; Sendtner, Michael

    2009-10-01

    Mutations in Ribosomal s6 kinase 2 (Rsk2) are associated with severe neuronal dysfunction in Coffin-Lowry syndrome (CLS) patients, flies and mice. So far, the mechanisms of how Rsk2 regulates development, maintenance and activity of neurons are not understood. We have investigated the consequences of Rsk2 deficiency in mouse spinal motoneurons. Survival of isolated Rsk2 deficient motoneurons is not reduced, but these cells grow significantly longer neurites. Conversely, overexpression of a constitutively active form of Rsk2 leads to reduced axon growth. Increased axon growth in Rsk2 deficient neurons was accompanied by higher Erk 1/2 phosphorylation, and the knockout phenotype could be rescued by pharmacological inhibition of MAPK/Erk kinase (Mek). These data indicate that Rsk2 negatively regulates axon elongation via the MAPK pathway. Thus, the functional defects observed in the nervous system of CLS patients and animal models with Rsk2 deficiency might be caused by dysregulated neurite growth rather than primary neurodegeneration.

  19. Regulation of Intracellular Structural Tension by Talin in the Axon Growth and Regeneration.

    Science.gov (United States)

    Dingyu, Wang; Fanjie, Meng; Zhengzheng, Ding; Baosheng, Huang; Chao, Yang; Yi, Pan; Huiwen, Wu; Jun, Guo; Gang, Hu

    2016-09-01

    Intracellular tension is the most important characteristic of neuron polarization as well as the growth and regeneration of axons, which can be generated by motor proteins and conducted along the cytoskeleton. To better understand this process, we created Förster resonance energy transfer (FRET)-based tension probes that can be incorporated into microfilaments to provide a real-time measurement of forces in neuron cytoskeletons. We found that our probe could be used to assess the structural tension of neuron polarity. Nerve growth factor (NGF) upregulated structural forces, whereas the glial-scar inhibitors chondroitin sulfate proteoglycan (CSPG) and aggrecan weakened such forces. Notably, the tension across axons was distributed uniformly and remarkably stronger than that in the cell body in NGF-stimulated neurons. The mechanosensors talin/vinculin could antagonize the effect of glial-scar inhibitors via structural forces. However, E-cadherin was closely associated with glial-scar inhibitor-induced downregulation of structural forces. Talin/vinculin was involved in the negative regulation of E-cadherin transcription through the nuclear factor-kappa B pathway. Collectively, this study clarified the mechanism underlying intracellular tension in the growth and regeneration of axons which, conversely, can be regulated by talin and E-cadherin.

  20. Sonic Hedgehog Guides Axons via Zipcode Binding Protein 1-Mediated Local Translation.

    Science.gov (United States)

    Lepelletier, Léa; Langlois, Sébastien D; Kent, Christopher B; Welshhans, Kristy; Morin, Steves; Bassell, Gary J; Yam, Patricia T; Charron, Frédéric

    2017-02-15

    Sonic hedgehog (Shh) attracts spinal cord commissural axons toward the floorplate. How Shh elicits changes in the growth cone cytoskeleton that drive growth cone turning is unknown. We find that the turning of rat commissural axons up a Shh gradient requires protein synthesis. In particular, Shh stimulation increases β-actin protein at the growth cone even when the cell bodies have been removed. Therefore, Shh induces the local translation of β-actin at the growth cone. We hypothesized that this requires zipcode binding protein 1 (ZBP1), an mRNA-binding protein that transports β-actin mRNA and releases it for local translation upon phosphorylation. We found that Shh stimulation increases phospho-ZBP1 levels in the growth cone. Disruption of ZBP1 phosphorylation in vitro abolished the turning of commissural axons toward a Shh gradient. Disruption of ZBP1 function in vivo in mouse and chick resulted in commissural axon guidance errors. Therefore, ZBP1 is required for Shh to guide commissural axons. This identifies ZBP1 as a new mediator of noncanonical Shh signaling in axon guidance.SIGNIFICANCE STATEMENT Sonic hedgehog (Shh) guides axons via a noncanonical signaling pathway that is distinct from the canonical Hedgehog signaling pathway that specifies cell fate and morphogenesis. Axon guidance is driven by changes in the growth cone in response to gradients of guidance molecules. Little is known about the molecular mechanism of how Shh orchestrates changes in the growth cone cytoskeleton that are required for growth cone turning. Here, we show that the guidance of axons by Shh requires protein synthesis. Zipcode binding protein 1 (ZBP1) is an mRNA-binding protein that regulates the local translation of proteins, including actin, in the growth cone. We demonstrate that ZBP1 is required for Shh-mediated axon guidance, identifying a new member of the noncanonical Shh signaling pathway.

  1. Sporophytic control of pollen tube growth and guidance in maize.

    Science.gov (United States)

    Lausser, Andreas; Kliwer, Irina; Srilunchang, Kanok-orn; Dresselhaus, Thomas

    2010-03-01

    Pollen tube germination, growth, and guidance (progamic phase) culminating in sperm discharge is a multi-stage process including complex interactions between the male gametophyte as well as sporophytic tissues and the female gametophyte (embryo sac), respectively. Inter- and intra-specific crossing barriers in maize and Tripsacum have been studied and a precise description of progamic pollen tube development in maize is reported here. It was found that pollen germination and initial tube growth are rather unspecific, but an early, first crossing barrier was detected before arrival at the transmitting tract. Pollination of maize silks with Tripsacum pollen and incompatible pollination of Ga1s/Ga1s-maize silks with ga1-maize pollen revealed another two incompatibility barriers, namely transmitting tract mistargeting and insufficient growth support. Attraction and growth support by the transmitting tract seem to play key roles for progamic pollen tube growth. After leaving transmitting tracts, pollen tubes have to navigate across the ovule in the ovular cavity. Pollination of an embryo sac-less maize RNAi-line allowed the role of the female gametophyte for pollen tube guidance to be determined in maize. It was found that female gametophyte controlled guidance is restricted to a small region around the micropyle, approximately 50-100 microm in diameter. This area is comparable to the area of influence of previously described ZmEA1-based short-range female gametophyte signalling. In conclusion, the progamic phase is almost completely under sporophytic control in maize.

  2. Quantification of dendritic and axonal growth after injury to the auditory system of the adult cricket Gryllus bimaculatus

    Directory of Open Access Journals (Sweden)

    Alexandra ePfister

    2013-08-01

    Full Text Available Dendrite and axon growth and branching during development are regulated by a complex set of intracellular and external signals. However, the cues that maintain or influence adult neuronal morphology are less well understood. Injury and deafferentation tend to have negative effects on adult nervous systems. An interesting example of injury-induced compensatory growth is seen in the cricket, Gryllus bimaculatus. After unilateral loss of an ear in the adult cricket, auditory neurons within the central nervous system sprout to compensate for the injury. Specifically, after being deafferented, ascending neurons (AN-1 and AN-2 send dendrites across the midline of the prothoracic ganglion where they receive input from auditory afferents that project through the contralateral auditory nerve (N5. Deafferentation also triggers contralateral N5 axonal growth. In this study, we quantified AN dendritic and N5 axonal growth at 30 hours, as well as at 3, 5, 7, 14 and 20 days after deafferentation in adult crickets. Significant differences in the rates of dendritic growth between males and females were noted. In females, dendritic growth rates were non-linear; a rapid burst of dendritic extension in the first few days was followed by a plateau reached at 3 days after deafferentation. In males, however, dendritic growth rates were linear, with dendrites growing steadily over time and reaching lengths, on average, twice as long as in females. On the other hand, rates of N5 axonal growth showed no significant sexual dimorphism and were linear. Within each animal, the growth rates of dendrites and axons were not correlated, indicating that independent factors likely influence dendritic and axonal growth in response to injury in this system. Our findings provide a basis for future study of the cellular features that allow differing dendrite and axon growth patterns as well as sexually dimorphic dendritic growth in response to deafferentation.

  3. Quantification of dendritic and axonal growth after injury to the auditory system of the adult cricket Gryllus bimaculatus.

    Science.gov (United States)

    Pfister, Alexandra; Johnson, Amy; Ellers, Olaf; Horch, Hadley W

    2013-01-01

    Dendrite and axon growth and branching during development are regulated by a complex set of intracellular and external signals. However, the cues that maintain or influence adult neuronal morphology are less well understood. Injury and deafferentation tend to have negative effects on adult nervous systems. An interesting example of injury-induced compensatory growth is seen in the cricket, Gryllus bimaculatus. After unilateral loss of an ear in the adult cricket, auditory neurons within the central nervous system (CNS) sprout to compensate for the injury. Specifically, after being deafferented, ascending neurons (AN-1 and AN-2) send dendrites across the midline of the prothoracic ganglion where they receive input from auditory afferents that project through the contralateral auditory nerve (N5). Deafferentation also triggers contralateral N5 axonal growth. In this study, we quantified AN dendritic and N5 axonal growth at 30 h, as well as at 3, 5, 7, 14, and 20 days after deafferentation in adult crickets. Significant differences in the rates of dendritic growth between males and females were noted. In females, dendritic growth rates were non-linear; a rapid burst of dendritic extension in the first few days was followed by a plateau reached at 3 days after deafferentation. In males, however, dendritic growth rates were linear, with dendrites growing steadily over time and reaching lengths, on average, twice as long as in females. On the other hand, rates of N5 axonal growth showed no significant sexual dimorphism and were linear. Within each animal, the growth rates of dendrites and axons were not correlated, indicating that independent factors likely influence dendritic and axonal growth in response to injury in this system. Our findings provide a basis for future study of the cellular features that allow differing dendrite and axon growth patterns as well as sexually dimorphic dendritic growth in response to deafferentation.

  4. Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury.

    Science.gov (United States)

    Zhu, Y; Soderblom, C; Krishnan, V; Ashbaugh, J; Bethea, J R; Lee, J K

    2015-02-01

    Spinal cord injury (SCI) leads to formation of a fibrotic scar that is inhibitory to axon regeneration. Recent evidence indicates that the fibrotic scar is formed by perivascular fibroblasts, but the mechanism by which they are recruited to the injury site is unknown. Using bone marrow transplantation in mouse model of spinal cord injury, we show that fibroblasts in the fibrotic scar are associated with hematogenous macrophages rather than microglia, which are limited to the surrounding astroglial scar. Depletion of hematogenous macrophages results in reduced fibroblast density and basal lamina formation that is associated with increased axonal growth in the fibrotic scar. Cytokine gene expression analysis after macrophage depletion indicates that decreased Tnfsf8, Tnfsf13 (tumor necrosis factor superfamily members) and increased BMP1-7 (bone morphogenetic proteins) expression may serve as anti-fibrotic mechanisms. Our study demonstrates that hematogenous macrophages are necessary for fibrotic scar formation and macrophage depletion results in changes in multiple cytokines that make the injury site less fibrotic and more conducive to axonal growth.

  5. Diet and energy-sensing inputs affect TorC1-mediated axon misrouting but not TorC2-directed synapse growth in a Drosophila model of tuberous sclerosis.

    Directory of Open Access Journals (Sweden)

    Brian Dimitroff

    Full Text Available The Target of Rapamycin (TOR growth regulatory system is influenced by a number of different inputs, including growth factor signaling, nutrient availability, and cellular energy levels. While the effects of TOR on cell and organismal growth have been well characterized, this pathway also has profound effects on neural development and behavior. Hyperactivation of the TOR pathway by mutations in the upstream TOR inhibitors TSC1 (tuberous sclerosis complex 1 or TSC2 promotes benign tumors and neurological and behavioral deficits, a syndrome known as tuberous sclerosis (TS. In Drosophila, neuron-specific overexpression of Rheb, the direct downstream target inhibited by Tsc1/Tsc2, produced significant synapse overgrowth, axon misrouting, and phototaxis deficits. To understand how misregulation of Tor signaling affects neural and behavioral development, we examined the influence of growth factor, nutrient, and energy sensing inputs on these neurodevelopmental phenotypes. Neural expression of Pi3K, a principal mediator of growth factor inputs to Tor, caused synapse overgrowth similar to Rheb, but did not disrupt axon guidance or phototaxis. Dietary restriction rescued Rheb-mediated behavioral and axon guidance deficits, as did overexpression of AMPK, a component of the cellular energy sensing pathway, but neither was able to rescue synapse overgrowth. While axon guidance and behavioral phenotypes were affected by altering the function of a Tor complex 1 (TorC1 component, Raptor, or a TORC1 downstream element (S6k, synapse overgrowth was only suppressed by reducing the function of Tor complex 2 (TorC2 components (Rictor, Sin1. These findings demonstrate that different inputs to Tor signaling have distinct activities in nervous system development, and that Tor provides an important connection between nutrient-energy sensing systems and patterning of the nervous system.

  6. Mats made from fibronectin support oriented growth of axons in the damaged spinal cord of the adult rat.

    Science.gov (United States)

    King, Von R; Henseler, Manuel; Brown, Robert A; Priestley, John V

    2003-08-01

    A variety of biological as well as synthetic implants have been used to attempt to promote regeneration into the damaged spinal cord. We have implanted mats made from fibronectin (FN) into the damaged spinal cord to determine their effectiveness as a substrate for regeneration of axons. These mats contain oriented pores and can take up and release growth factors. Lesion cavities 1 mm in width and depth and 2 mm in length were created on one side of the spinal cord of adult rats. FN mats containing neurotrophins or saline were placed into the lesion. Mats were well integrated into surrounding tissue and showed robust well-oriented growth of calcitonin gene-related peptide, substance P, GABAergic, cholinergic, glutamatergic, and noradrenergic axons into FN mats. Transganglionic tracing using cholera toxin B indicated large-diameter primary afferents had grown into FN implants. Schwann cells had also infiltrated FN mats. Electron microscopy confirmed the presence of axons within implants sites, with most axons either ensheathed or myelinated by Schwann cells. Mats incubated in brain-derived neurotrophic factor and neurotrophin-3 showed significantly more neurofilament-positive and glutamatergic fibers compared to saline- and nerve growth factor-incubated mats, while mats incubated with nerve growth factor showed more calcitonin gene-related peptide-positive axons. In contrast, neurotrophin treatment had no effect on PGP 9.5-positive axons. In addition, in some animals with neurotrophin-3-incubated mats, cholera toxin B-labelled fibers had grown from the mat into adjoining intact areas of spinal cord. The results indicate that FN mats provide a substrate that is permissive for robust oriented axonal growth in the damaged spinal cord, and that this growth is supported by Schwann cells.

  7. TGF-β Controls miR-181/ERK Regulatory Network during Retinal Axon Specification and Growth.

    Directory of Open Access Journals (Sweden)

    Sabrina Carrella

    Full Text Available Retinal axon specification and growth are critically sensitive to the dosage of numerous signaling molecules and transcription factors. Subtle variations in the expression levels of key molecules may result in a variety of axonal growth anomalies. miR-181a and miR-181b are two eye-enriched microRNAs whose inactivation in medaka fish leads to alterations of the proper establishment of connectivity and function in the visual system. miR-181a/b are fundamental regulators of MAPK signaling and their role in retinal axon growth and specification is just beginning to be elucidated. Here we demonstrate that miR-181a/b are key nodes in the interplay between TGF-β and MAPK/ERK within the functional pathways that control retinal axon specification and growth. Using a variety of in vivo and in vitro approaches in medaka fish, we demonstrate that TGF-β signaling controls the miR-181/ERK regulatory network, which in turn strengthens the TGF-β-mediated regulation of RhoA degradation. Significantly, these data uncover the role of TGF-β signaling in vivo, for the first time, in defining the correct wiring and assembly of functional retina neural circuits and further highlight miR-181a/b as key factors in axon specification and growth.

  8. The language of GABA in pollen tube growth and guidance

    Institute of Scientific and Technical Information of China (English)

    Guanghui YU; Yan CHEN

    2008-01-01

    The achievement of double fertilization in higher plants requires the successful transport of sperm cells to the female gametes, the ovules. Pollen tubes, the tubular structure protruding from pollens, carrying the sperms play an important role in this process. How a pollen tube precisely guides its direction to gain its goal is of mystery. Previous investigation indicated that mul-tiple signal clues from the pistils function as the route signs to regulate the pathway of pollen tube growth. Among the signal clues, γ-aminobutyric acid (GABA) seems to be universal. Its gradient concentration has been found both in tobacco and Arabidopsis pollen tube guid-ance. In the communication of pollens and pistils, what on earth GABA tells pollen tubes is of great interest. The GABA receptors on the pollen membrane are thought to be the hinge in the language conversation. In this review, the mechanism of GABA gradient formation is investigated. The possible GABA receptor on the pollen membrane is examined and its function is discussed. To decipher the possible language of GABA in pollen tube growth and guidance, multiple methods are needed. The combination of transcriptome and proteomics assay is expected to unveil the secret.

  9. The NAV2 homolog Sickie regulates F-actin-mediated axonal growth in Drosophila mushroom body neurons via the non-canonical Rac-Cofilin pathway.

    Science.gov (United States)

    Abe, Takashi; Yamazaki, Daisuke; Murakami, Satoshi; Hiroi, Makoto; Nitta, Yohei; Maeyama, Yuko; Tabata, Tetsuya

    2014-12-01

    The Rac-Cofilin pathway is essential for cytoskeletal remodeling to control axonal development. Rac signals through the canonical Rac-Pak-LIMK pathway to suppress Cofilin-dependent axonal growth and through a Pak-independent non-canonical pathway to promote outgrowth. Whether this non-canonical pathway converges to promote Cofilin-dependent F-actin reorganization in axonal growth remains elusive. We demonstrate that Sickie, a homolog of the human microtubule-associated protein neuron navigator 2, cell-autonomously regulates axonal growth of Drosophila mushroom body (MB) neurons via the non-canonical pathway. Sickie was prominently expressed in the newborn F-actin-rich axons of MB neurons. A sickie mutant exhibited axonal growth defects, and its phenotypes were rescued by exogenous expression of Sickie. We observed phenotypic similarities and genetic interactions among sickie and Rac-Cofilin signaling components. Using the MARCM technique, distinct F-actin and phospho-Cofilin patterns were detected in developing axons mutant for sickie and Rac-Cofilin signaling regulators. The upregulation of Cofilin function alleviated the axonal defect of the sickie mutant. Epistasis analyses revealed that Sickie suppresses the LIMK overexpression phenotype and is required for Pak-independent Rac1 and Slingshot phosphatase to counteract LIMK. We propose that Sickie regulates F-actin-mediated axonal growth via the non-canonical Rac-Cofilin pathway in a Slingshot-dependent manner.

  10. Transcriptional control in embryonic Drosophila midline guidance assessed through a whole genome approach

    Directory of Open Access Journals (Sweden)

    Tomancak Pavel

    2007-07-01

    Full Text Available Abstract Background During the development of the Drosophila central nervous system the process of midline crossing is orchestrated by a number of guidance receptors and ligands. Many key axon guidance molecules have been identified in both invertebrates and vertebrates, but the transcriptional regulation of growth cone guidance remains largely unknown. It is established that translational regulation plays a role in midline crossing, and there are indications that transcriptional regulation is also involved. To investigate this issue, we conducted a genome-wide study of transcription in Drosophila embryos using wild type and a number of well-characterized Drosophila guidance mutants and transgenics. We also analyzed a previously published microarray time course of Drosophila embryonic development with an axon guidance focus. Results Using hopach, a novel clustering method which is well suited to microarray data analysis, we identified groups of genes with similar expression patterns across guidance mutants and transgenics. We then systematically characterized the resulting clusters with respect to their relevance to axon guidance using two complementary controlled vocabularies: the Gene Ontology (GO and anatomical annotations of the Atlas of Pattern of Gene Expression (APoGE in situ hybridization database. The analysis indicates that regulation of gene expression does play a role in the process of axon guidance in Drosophila. We also find a strong link between axon guidance and hemocyte migration, a result that agrees with mounting evidence that axon guidance molecules are co-opted in vertebrate vascularization. Cell cyclin activity in the context of axon guidance is also suggested from our array data. RNA and protein expression patterns of cell cyclins in axon guidance mutants and transgenics support this possible link. Conclusion This study provides important insights into the regulation of axon guidance in vivo.

  11. Whole Genome Sequencing of Newly Established Pancreatic Cancer Lines Identifies Novel Somatic Mutation (c.2587G>A in Axon Guidance Receptor Plexin A1 as Enhancer of Proliferation and Invasion.

    Directory of Open Access Journals (Sweden)

    Rebecca Sorber

    Full Text Available The genetic profile of human pancreatic cancers harbors considerable heterogeneity, which suggests a possible explanation for the pronounced inefficacy of single therapies in this disease. This observation has led to a belief that custom therapies based on individual tumor profiles are necessary to more effectively treat pancreatic cancer. It has recently been discovered that axon guidance genes are affected by somatic structural variants in up to 25% of human pancreatic cancers. Thus far, however, some of these mutations have only been correlated to survival probability and no function has been assigned to these observed axon guidance gene mutations in pancreatic cancer. In this study we established three novel pancreatic cancer cell lines and performed whole genome sequencing to discover novel mutations in axon guidance genes that may contribute to the cancer phenotype of these cells. We discovered, among other novel somatic variants in axon guidance pathway genes, a novel mutation in the PLXNA1 receptor (c.2587G>A in newly established cell line SB.06 that mediates oncogenic cues of increased invasion and proliferation in SB.06 cells and increased invasion in 293T cells upon stimulation with the receptor's natural ligand semaphorin 3A compared to wild type PLXNA1 cells. Mutant PLXNA1 signaling was associated with increased Rho-GTPase and p42/p44 MAPK signaling activity and cytoskeletal expansion, but not changes in E-cadherin, vimentin, or metalloproteinase 9 expression levels. Pharmacologic inhibition of the Rho-GTPase family member CDC42 selectively abrogated PLXNA1 c.2587G>A-mediated increased invasion. These findings provide in-vitro confirmation that somatic mutations in axon guidance genes can provide oncogenic gain-of-function signals and may contribute to pancreatic cancer progression.

  12. Eph:ephrin-B1 forward signaling controls fasciculation of sensory and motor axons.

    Science.gov (United States)

    Luxey, Maëva; Jungas, Thomas; Laussu, Julien; Audouard, Christophe; Garces, Alain; Davy, Alice

    2013-11-15

    Axon fasciculation is one of the processes controlling topographic innervation during embryonic development. While axon guidance steers extending axons in the accurate direction, axon fasciculation allows sets of co-extending axons to grow in tight bundles. The Eph:ephrin family has been involved both in axon guidance and fasciculation, yet it remains unclear how these two distinct types of responses are elicited. Herein we have characterized the role of ephrin-B1, a member of the ephrinB family in sensory and motor innervation of the limb. We show that ephrin-B1 is expressed in sensory axons and in the limb bud mesenchyme while EphB2 is expressed in motor and sensory axons. Loss of ephrin-B1 had no impact on the accurate dorso-ventral innervation of the limb by motor axons, yet EfnB1 mutants exhibited decreased fasciculation of peripheral motor and sensory nerves. Using tissue-specific excision of EfnB1 and in vitro experiments, we demonstrate that ephrin-B1 controls fasciculation of axons via a surround repulsion mechanism involving growth cone collapse of EphB2-expressing axons. Altogether, our results highlight the complex role of Eph:ephrin signaling in the development of the sensory-motor circuit innervating the limb.

  13. Brain-derived neurotrophic factor is required for axonal growth of selective groups of neurons in the arcuate nucleus

    Directory of Open Access Journals (Sweden)

    Guey-Ying Liao

    2015-06-01

    Conclusion: This study shows that the majority of TrkB neurons in the ARH are distinct from known neuronal populations and that BDNF plays a critical role in directing projections from these neurons to the DMH and PVH. We propose that hyperphagic obesity due to BDNF deficiency is in part attributable to impaired axonal growth of TrkB-expressing ARH neurons.

  14. Transcriptome Profiling Identifies Multiplexin as a Target of SAGA Deubiquitinase Activity in Glia Required for Precise Axon Guidance During Drosophila Visual Development

    Directory of Open Access Journals (Sweden)

    Jingqun Ma

    2016-08-01

    Full Text Available The Spt-Ada-Gcn5 Acetyltransferase (SAGA complex is a transcriptional coactivator with histone acetylase and deubiquitinase activities that plays an important role in visual development and function. In Drosophila melanogaster, four SAGA subunits are required for the deubiquitination of monoubiquitinated histone H2B (ubH2B: Nonstop, Sgf11, E(y2, and Ataxin 7. Mutations that disrupt SAGA deubiquitinase activity cause defects in neuronal connectivity in the developing Drosophila visual system. In addition, mutations in SAGA result in the human progressive visual disorder spinocerebellar ataxia type 7 (SCA7. Glial cells play a crucial role in both the neuronal connectivity defect in nonstop and sgf11 flies, and in the retinal degeneration observed in SCA7 patients. Thus, we sought to identify the gene targets of SAGA deubiquitinase activity in glia in the Drosophila larval central nervous system. To do this, we enriched glia from wild-type, nonstop, and sgf11 larval optic lobes using affinity-purification of KASH-GFP tagged nuclei, and then examined each transcriptome using RNA-seq. Our analysis showed that SAGA deubiquitinase activity is required for proper expression of 16% of actively transcribed genes in glia, especially genes involved in proteasome function, protein folding and axon guidance. We further show that the SAGA deubiquitinase-activated gene Multiplexin (Mp is required in glia for proper photoreceptor axon targeting. Mutations in the human ortholog of Mp, COL18A1, have been identified in a family with a SCA7-like progressive visual disorder, suggesting that defects in the expression of this gene in SCA7 patients could play a role in the retinal degeneration that is unique to this ataxia.

  15. The multiple sclerosis drug fingolimod (FTY720) stimulates neuronal gene expression, axonal growth and regeneration.

    Science.gov (United States)

    Anastasiadou, Sofia; Knöll, Bernd

    2016-05-01

    Fingolimod (FTY720) is a new generation oral treatment for multiple sclerosis (MS). So far, FTY720 was mainly considered to target trafficking of immune cells but not brain cells such as neurons. Herein, we analyzed FTY720's potential to directly alter neuronal function. In CNS neurons, we identified a FTY720 governed gene expression response. FTY720 upregulated immediate early genes (IEGs) encoding for neuronal activity associated transcription factors such as c-Fos, FosB, Egr1 and Egr2 and induced actin cytoskeleton associated genes (actin isoforms, tropomyosin, calponin). Stimulation of primary neurons with FTY720 enhanced neurite growth and altered growth cone morphology. In accordance, FTY720 enhanced axon regeneration in mice upon facial nerve axotomy. We identified components of a FTY720 engaged signaling cascade including S1P receptors, G12/13G-proteins, RhoA-GTPases and the transcription factors SRF/MRTF. In summary, we uncovered a broader cellular and therapeutic operation mode of FTY720, suggesting beneficial FTY720 effects also on CNS neurons during MS therapy and for treatment of other neurodegenerative diseases requiring neuroprotective and neurorestorative processes.

  16. Optimal myelin elongation relies on YAP activation by axonal growth and inhibition by Crb3/Hippo pathway

    Science.gov (United States)

    Fernando, Ruani N.; Cotter, Laurent; Perrin-Tricaud, Claire; Berthelot, Jade; Bartolami, Sylvain; Pereira, Jorge A.; Gonzalez, Sergio; Suter, Ueli; Tricaud, Nicolas

    2016-01-01

    Fast nerve conduction relies on successive myelin segments that electrically isolate axons. Segment geometry—diameter and length—is critical for the optimization of nerve conduction and the molecular mechanisms allowing this optimized geometry are partially known. We show here that peripheral myelin elongation is dynamically regulated by stimulation of YAP (Yes-associated protein) transcription cofactor activity during axonal elongation and limited by inhibition of YAP activity via the Hippo pathway. YAP promotes myelin and non-myelin genes transcription while the polarity protein Crb3, localized at the tips of the myelin sheath, activates the Hippo pathway to temper YAP activity, therefore allowing for optimal myelin growth. Dystrophic Dy2j/2j mice mimicking human peripheral neuropathy with reduced internodal lengths have decreased nuclear YAP which, when corrected, leads to longer internodes. These data show a novel mechanism controlling myelin growth and nerve conduction, and provide a molecular ground for disease with short myelin segments. PMID:27435623

  17. Vertebrate Fidgetin Restrains Axonal Growth by Severing Labile Domains of Microtubules

    Directory of Open Access Journals (Sweden)

    Lanfranco Leo

    2015-09-01

    Full Text Available Individual microtubules (MTs in the axon consist of a stable domain that is highly acetylated and a labile domain that is not. Traditional MT-severing proteins preferentially cut the MT in the stable domain. In Drosophila, fidgetin behaves in this fashion, with targeted knockdown resulting in neurons with a higher fraction of acetylated (stable MT mass in their axons. Conversely, in a fidgetin knockout mouse, the fraction of MT mass that is acetylated is lower than in the control animal. When fidgetin is depleted from cultured rodent neurons, there is a 62% increase in axonal MT mass, all of which is labile. Concomitantly, there are more minor processes and a longer axon. Together with experimental data showing that vertebrate fidgetin targets unacetylated tubulin, these results indicate that vertebrate fidgetin (unlike its fly ortholog regulates neuronal development by tamping back the expansion of the labile domains of MTs.

  18. IN-1 combined with neurotrophin-3 for axonal growth-related gene expression after spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Ruisen Zhan; Jinbo Xu; Weiguo Wang; Zhiyue Li; Shijie Chen; Shuangxi Sun

    2011-01-01

    A spinal cord hemisection injury model was established in rats.Treatment with IN-1 and/or neurotrophin-3 was found to regulate the expression of growth-associated protein 43, nerve growth factor, and basic fibroblast growth factor genes in the injured spinal cord tissues; transcript levels were first increased and then decreased.Expression levels reached a peak at days 7 (growth-associated protein 43) or 14 (nerve growth factor and basic fibroblast growth factor) following spinal cord injury.Combined treatment with neurotrophin-3 and IN-1 achieved the most apparent effect on the expression and recovery of motor function.These findings confirm that combined therapy with neurotrophin-3 and IN-1 can increase expression of growth factors in the injured spinal cord tissues and promote the axonal regeneration.

  19. NF-Protocadherin Regulates Retinal Ganglion Cell Axon Behaviour in the Developing Visual System.

    Directory of Open Access Journals (Sweden)

    Louis C Leung

    Full Text Available Cell adhesion molecules play a central role in mediating axonal tract development within the nascent nervous system. NF-protocadherin (NFPC, a member of the non-clustered protocadherin family, has been shown to regulate retinal ganglion cell (RGC axon and dendrite initiation, as well as influencing axonal navigation within the mid-optic tract. However, whether NFPC mediates RGC axonal behaviour at other positions within the optic pathway remains unclear. Here we report that NFPC plays an important role in RGC axonogenesis, but not in intraretinal guidance. Moreover, axons with reduced NFPC levels exhibit insensitivity to Netrin-1, an attractive guidance cue expressed at the optic nerve head. Netrin-1 induces rapid turnover of NFPC localized to RGC growth cones, suggesting that the regulation of NFPC protein levels may underlie Netrin-1-mediated entry of RGC axons into the optic nerve head. At the tectum, we further reveal a function for NFPC in controlling RGC axonal entry into the final target area. Collectively, our results expand our understanding of the role of NFPC in RGC guidance and illustrate that this adhesion molecule contributes to axon behaviour at multiple points in the optic pathway.

  20. Vector-induced NT-3 expression in rats promotes collateral growth of injured corticospinal tract axons far rostral to a spinal cord injury.

    Science.gov (United States)

    Weishaupt, N; Mason, A L O; Hurd, C; May, Z; Zmyslowski, D C; Galleguillos, D; Sipione, S; Fouad, K

    2014-07-11

    Rewiring the injured corticospinal tract (CST) by promoting connections between CST axons and spared neurons is a strategy being explored experimentally to achieve improved recovery of motor function after spinal cord injury (SCI). Reliable interventions to promote and direct growth of collaterals from injured CST axons are in high demand to promote functionally relevant detour pathways. A promising tool is neurotrophin-3 (NT-3), which has shown growth-stimulating and chemo-attractive effects for spared CST axons caudal to a CST lesion. Yet, efforts to promote growth of injured CST axons rostral to a SCI with NT-3 have been less successful to date. Evidence indicates that immune activation in the local growth environment, either intrinsic or induced by the endotoxin lipopolysaccharide (LPS), can play a decisive role in the CST's responsiveness to NT-3. Here, we test the potential of NT-3 as a tool to enhance and direct collateral growth from the injured CST rostral to a SCI (1) using long-term expression of NT-3 by adeno-associated viral vectors, (2) with and without stimulating the immune system with LPS. Our results indicate that inducing a growth response from injured CST axons into a region of vector-mediated NT-3 expression is possible in the environment of the spinal cord rostral to a SCI, but seems dependent on the distance between the responding axon and the source of NT-3. Our findings also suggest that injured CST axons do not increase their growth response to NT-3 after immune activation with LPS in this environment. In conclusion, this is to our knowledge the first demonstration that NT-3 can be effective at promoting growth of injured CST collaterals far rostral to a SCI. Making NT-3 available in close proximity to CST target axons may be the key to success when using NT-3 to rewire the injured CST in future investigations.

  1. Plexin A3 and turnout regulate motor axonal branch morphogenesis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Rajiv Sainath

    Full Text Available During embryogenesis motor axons navigate to their target muscles, where individual motor axons develop complex branch morphologies. The mechanisms that control axonal branching morphogenesis have been studied intensively, yet it still remains unclear when branches begin to form or how branch locations are determined. Live cell imaging of individual zebrafish motor axons reveals that the first axonal branches are generated at the ventral extent of the myotome via bifurcation of the growth cone. Subsequent branches are generated by collateral branching restricted to their synaptic target field along the distal portion of the axon. This precisely timed and spatially restricted branching process is disrupted in turnout mutants we identified in a forward genetic screen. Molecular genetic mapping positioned the turnout mutation within a 300 kb region encompassing eight annotated genes, however sequence analysis of all eight open reading frames failed to unambiguously identify the turnout mutation. Chimeric analysis and single cell labeling reveal that turnout function is required cell non-autonomously for intraspinal motor axon guidance and peripheral branch formation. turnout mutant motor axons form the first branch on time via growth cone bifurcation, but unlike wild-type they form collateral branches precociously, when the growth cone is still navigating towards the ventral myotome. These precocious collateral branches emerge along the proximal region of the axon shaft typically devoid of branches, and they develop into stable, permanent branches. Furthermore, we find that null mutants of the guidance receptor plexin A3 display identical motor axon branching defects, and time lapse analysis reveals that precocious branch formation in turnout and plexin A3 mutants is due to increased stability of otherwise short-lived axonal protrusions. Thus, plexin A3 dependent intrinsic and turnout dependent extrinsic mechanisms suppress collateral branch

  2. Developmental expression profiles of axon guidance signaling and the immune system in the marmoset cortex: potential molecular mechanisms of pruning of dendritic spines during primate synapse formation in late infancy and prepuberty (I).

    Science.gov (United States)

    Sasaki, Tetsuya; Oga, Tomofumi; Nakagaki, Keiko; Sakai, Kazuhisa; Sumida, Kayo; Hoshino, Kohei; Miyawaki, Izuru; Saito, Koichi; Suto, Fumikazu; Ichinohe, Noritaka

    2014-02-14

    The synapse number and the related dendritic spine number in the cerebral cortex of primates shows a rapid increase after birth. Depending on the brain region and species, the number of synapses reaches a peak before adulthood, and pruning takes place after this peak (overshoot-type synaptic formation). Human mental disorders, such as autism and schizophrenia, are hypothesized to be a result of either too weak or excessive pruning after the peak is reached. Thus, it is important to study the molecular mechanisms underlying overshoot-type synaptic formation, particularly the pruning phase. To examine the molecular mechanisms, we used common marmosets (Callithrix jacchus). Microarray analysis of the marmoset cortex was performed in the ventrolateral prefrontal, inferior temporal, and primary visual cortices, where changes in the number of dendritic spines have been observed. The spine number of all the brain regions above showed a peak at 3 months (3 M) after birth and gradually decreased (e.g., at 6 M and in adults). In this study, we focused on genes that showed differential expression between ages of 3 M and 6 M and on the differences whose fold change (FC) was greater than 1.2. The selected genes were subjected to canonical pathway analysis, and in this study, we describe axon guidance signaling, which had high plausibility. The results showed a large number of genes belonging to subsystems within the axon guidance signaling pathway, macrophages/immune system, glutamate system, and others. We divided the data and discussion of these results into 2 papers, and this is the first paper, which deals with the axon guidance signaling and macrophage/immune system. Other systems will be described in the next paper. Many components of subsystems within the axon guidance signaling underwent changes in gene expression from 3 M to 6 M so that the synapse/dendritic spine number would decrease at 6 M. Thus, axon guidance signaling probably contributes to the decrease in

  3. Spatial gradients of chemotropic factors from immobilized patterns to guide axonal growth and regeneration.

    Science.gov (United States)

    Joddar, Binata; Guy, Adam T; Kamiguchi, Hiroyuki; Ito, Yoshihiro

    2013-12-01

    In this study, we investigated the effect of varying localized concentration gradients of NGF and Sema3A on the axonal outgrowth of embryonic chick DRG explants and primary neurons in vitro. Immobilized 2D NGF or Sema3A micropatterns were produced using photolithography on tissue culture cover slips. Two distinct regions were identified: slow, with little or no change in concentration of chemotropic factor; and steep, with a transition from low to high. The direction of axonal outgrowth was defined as proximal or distal, with proximal growing towards the higher concentration of immobilized NGF/Sema3A and vice versa for distal. Axons grew preferentially in the proximal direction when explants were seeded onto steep NGF, and distally in response to steep Sema3A. On slow NGF, or on slow Sema3A there was no difference in the directional specificity of axonal outgrowth. DRG primary neurons seeded onto steep NGF migrated proximally, whereas neurons seeded onto slow NGF migrated in all directions. Conversely, neurons seeded onto steep or slow Sema3A did not extend any axons. Our 2D immobilized micropatterns of chemotropic factors show promise for further development of in vitro nerve tissue engineering studies.

  4. The Extract of Roots of Sophora flavescens Enhances the Recovery of Motor Function by Axonal Growth in Mice with a Spinal Cord Injury

    Science.gov (United States)

    Tanabe, Norio; Kuboyama, Tomoharu; Kazuma, Kohei; Konno, Katsuhiro; Tohda, Chihiro

    2016-01-01

    Although axonal extension to reconstruct spinal tracts should be effective for restoring function after spinal cord injury (SCI), chondroitin sulfate proteoglycan (CSPG) levels increase at spinal cord lesion sites, and inhibit axonal regrowth. In this study, we found that the water extract of roots of Sophora flavescens extended the axons of mouse cortical neurons, even on a CSPG-coated surface. Consecutive oral administrations of S. flavescens extract to SCI mice for 31 days increased the density of 5-HT-positive axons at the lesion site and improved the motor function. Further, the active constituents in the S. flavescens extract were identified. The water and alkaloid fractions of the S. flavescens extract each exhibited axonal extension activity in vitro. LC/MS analysis revealed that these fractions mainly contain matrine and/or oxymatrine, which are well-known major compounds in S. flavescens. Matrine and oxymatrine promoted axonal extension on the CSPG-coated surface. This study is the first to demonstrate that S. flavescens extract, matrine, and oxymatrine enhance axonal growth in vitro, even on a CSPG-coated surface, and that S. flavescens extract improves motor function and increases axonal density in SCI mice. PMID:26834638

  5. The extract of roots of Sophora flavescens enhances the recovery of motor function by axonal growth in mice with a spinal cord injury

    Directory of Open Access Journals (Sweden)

    Norio eTanabe

    2016-01-01

    Full Text Available Although axonal extension to reconstruct spinal tracts should be effective for restoring function after spinal cord injury (SCI, chondroitin sulfate proteoglycan (CSPG levels increase at spinal cord lesion sites and inhibit axonal regrowth. In this study, we found that the water extract of roots of Sophora flavescens extended the axons of mouse cortical neurons, even on a CSPG-coated surface. Consecutive oral administrations of S. flavescens extract to SCI mice for 31 days increased the density of 5-HT-positive axons at the lesion site and improved the motor function. Further, the active constituents in the S. flavescens extract were identified. The water and alkaloid fractions of the S. flavescens extract each exhibited axonal extension activity in vitro. LC/MS analysis revealed that these fractions mainly contain matrine and/or oxymatrine, which are well-known major compounds in S. flavescens. Matrine and oxymatrine promoted axonal extension on the CSPG-coated surface. This study is the first to demonstrate that S. flavescens extract, matrine and oxymatrine enhance axonal growth in vitro, even on a CSPG-coated surface, and that S. flavescens extract improves motor function and increases axonal density in SCI mice.

  6. Growth of White Matter in the Adolescent Brain: Myelin or Axon?

    Science.gov (United States)

    Paus, Tomas

    2010-01-01

    White matter occupies almost half of the human brain. It contains axons connecting spatially segregated modules and, as such, it is essential for the smooth flow of information in functional networks. Structural maturation of white matter continues during adolescence, as reflected in age-related changes in its volume, as well as in its…

  7. A novel and efficient gene transfer strategy reduces glial reactivity and improves neuronal survival and axonal growth in vitro.

    Directory of Open Access Journals (Sweden)

    Mathieu Desclaux

    Full Text Available BACKGROUND: The lack of axonal regeneration in the central nervous system is attributed among other factors to the formation of a glial scar. This cellular structure is mainly composed of reactive astrocytes that overexpress two intermediate filament proteins, the glial fibrillary acidic protein (GFAP and vimentin. Indeed, in vitro, astrocytes lacking GFAP or both GFAP and vimentin were shown to be the substrate for increased neuronal plasticity. Moreover, double knockout mice lacking both GFAP and vimentin presented lower levels of glial reactivity in vivo, significant axonal regrowth and improved functional recovery in comparison with wild-type mice after spinal cord hemisection. From these results, our objective was to develop a novel therapeutic strategy for axonal regeneration, based on the targeted suppression of astroglial reactivity and scarring by lentiviral-mediated RNA-interference (RNAi. METHODS AND FINDINGS: In this study, we constructed two lentiviral vectors, Lv-shGFAP and Lv-shVIM, which allow efficient and stable RNAi-mediated silencing of endogenous GFAP or vimentin in vitro. In cultured cortical and spinal reactive astrocytes, the use of these vectors resulted in a specific, stable and highly significant decrease in the corresponding protein levels. In a second model -- scratched primary cultured astrocytes -- Lv-shGFAP, alone or associated with Lv-shVIM, decreased astrocytic reactivity and glial scarring. Finally, in a heterotopic coculture model, cortical neurons displayed higher survival rates and increased neurite growth when cultured with astrocytes in which GFAP and vimentin had been invalidated by lentiviral-mediated RNAi. CONCLUSIONS: Lentiviral-mediated knockdown of GFAP and vimentin in astrocytes show that GFAP is a key target for modulating reactive gliosis and monitoring neuron/glia interactions. Thus, manipulation of reactive astrocytes with the Lv-shGFAP vector constitutes a promising therapeutic strategy for

  8. Characterizing Semaphorin-Mediated Effects on Sensory and Motor Axon Pathfinding and Connectivity During Embryonic Development.

    Science.gov (United States)

    Huettl, Rosa Eva; Huber, Andrea B

    2017-01-01

    How are precise connectivity to peripheral targets and corresponding sensory-motor networks established during developmental innervation of the vertebrate extremities? The formation of functional sensory-motor circuits requires highly appropriate temporal and spatial regulation of axon growth which is achieved through the combination of different molecular mechanisms such as communication between heterotypic fiber systems, axon-environment, or axon-glia interactions that ensure proper fasciculation and accurate pathfinding to distal targets. Family members of the class 3 semaphorins and their cognate receptors, the neuropilins, were shown to govern various events during wiring of central and peripheral circuits, with mice lacking Sema3-Npn signaling showing deficits in timing of growth, selective fasciculation, guidance fidelity, and coupling of sensory axon growth to motor axons at developmental time points. Given the accuracy with which these processes have to interact in a stepwise manner, deficiency of the smallest cog in the wheel may impact severely on the faithful establishment and functionality of peripheral circuitries, ultimately leading to behavioral impairments or even cause the death of the animal. Reliable quantitative analyses of sensory-motor fasciculation, extension, and guidance of axons to their cognate target muscles and the skin during development, but also assessment of physiological and behavioral consequences at adult age, are therefore a necessity to extend our understanding of the molecular mechanisms of peripheral circuit formation. In this chapter we provide a detailed methodology to characterize class 3 semaphorin-mediated effects on peripheral sensory and motor axon pathfinding and connectivity during embryonic development.

  9. A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program

    Science.gov (United States)

    Chandran, Vijayendran; Coppola, Giovanni; Nawabi, Homaira; Omura, Takao; Versano, Revital; Huebner, Eric A.; Zhang, Alice; Costigan, Michael; Yekkirala, Ajay; Barrett, Lee; Blesch, Armin; Michaelevski, Izhak; Davis-Turak, Jeremy; Gao, Fuying; Langfelder, Peter; Horvath, Steve; He, Zhigang; Benowitz, Larry; Fainzilber, Mike; Tuszynski, Mark; Woolf, Clifford J.; Geschwind, Daniel H.

    2016-01-01

    SUMMARY The regenerative capacity of the injured CNS in adult mammals is severely limited, yet axons in the peripheral nervous system (PNS) regrow, albeit to a limited extent, after injury. We reasoned that coordinate regulation of gene expression in injured neurons involving multiple pathways was central to PNS regenerative capacity. To provide a framework for revealing pathways involved in PNS axon regrowth after injury, we applied a comprehensive systems biology approach, starting with gene expression profiling of dorsal root ganglia (DRGs) combined with multi-level bioinformatic analyses and experimental validation of network predictions. We used this rubric to identify a drug that accelerates DRG neurite outgrowth in vitro and optic nerve outgrowth in vivo by inducing elements of the identified network. The work provides a functional genomics foundation for understanding neural repair and proof of the power of such approaches in tackling complex problems in nervous system biology. PMID:26898779

  10. Myelin-based inhibitors of oligodendrocyte myelination: clues from axonal growth and regeneration

    Institute of Scientific and Technical Information of China (English)

    Feng Mei; S.Y.Christin Chong; Jonah R.Chan

    2013-01-01

    The differentiation of and myelination by oligodendrocytes (OLs) are exquisitely regulated by a series of intrinsic and extrinsic mechanisms.As each OL can make differing numbers of myelin segments with variable lengths along similar axon tracts,myelination can be viewed as a graded process shaped by inhibitory/inductive cues during development.Myelination by OLs is a prime example of an adaptive process determined by the microenvironment and architecture of the central nervous system (CNS).In this review,we discuss how myelin formation by OLs may be controlled by the heterogeneous microenvironment of the CNS.Then we address recent findings demonstrating that neighboring OLs may compete for available axon space,and highlight our current understanding of myelin-based inhibitors of axonal regeneration that are potentially responsible for the reciprocal dialogue between OLs and determine the numbers and lengths of myelin internodes.Understanding the mechanisms that control the spatiotemporal regulation of myelinogenic potential during development may provide valuable insight into therapeutic strategies for promoting remyelination in an inhibitory microenvironment.

  11. Myelin-based inhibitors of oligodendrocyte myelination: clues from axonal growth and regeneration.

    Science.gov (United States)

    Mei, Feng; Christin Chong, S Y; Chan, Jonah R

    2013-04-01

    The differentiation of and myelination by oligodendrocytes (OLs) are exquisitely regulated by a series of intrinsic and extrinsic mechanisms. As each OL can make differing numbers of myelin segments with variable lengths along similar axon tracts, myelination can be viewed as a graded process shaped by inhibitory/inductive cues during development. Myelination by OLs is a prime example of an adaptive process determined by the microenvironment and architecture of the central nervous system (CNS). in this review, we discuss how myelin formation by OLs may be controlled by the heterogeneous microenvironment of the CNS. Then we address recent findings demonstrating that neighboring OLs may compete for available axon space, and highlight our current understanding of myelin-based inhibitors of axonal regeneration that are potentially responsible for the reciprocal dialogue between OLs and determine the numbers and lengths of myelin internodes. Understanding the mechanisms that control the spatiotemporal regulation of myelinogenic potential during development may provide valuable insight into therapeutic strategies for promoting remyelination in an inhibitory microenvironment.

  12. Neuronal development and axon growth are altered by glyphosate through a WNT non-canonical signaling pathway.

    Science.gov (United States)

    Coullery, Romina P; Ferrari, María E; Rosso, Silvana B

    2016-01-01

    The growth and morphological differentiation of neurons are critical events in the establishment of proper neuronal connectivity and functioning. The developing nervous system is highly susceptible to damage caused by exposure to environmental contaminants. Glyphosate-containing herbicides are the most used agrochemicals in the world, particularly on genetically modified plants. Previous studies have demonstrated that glyphosate induces neurotoxicity in mammals. Therefore, its action mechanism on the nervous system needs to be determined. In this study, we report about impaired neuronal development caused by glyphosate exposure. Particularly, we observed that the initial axonal differentiation and growth of cultured neurons is affected by glyphosate since most treated cells remained undifferentiated after 1 day in culture. Although they polarized at 2 days in vitro, they elicited shorter and unbranched axons and they also developed less complex dendritic arbors compared to controls. To go further, we attempted to identify the cellular mechanism by which glyphosate affected neuronal morphology. Biochemical approaches revealed that glyphosate led to a decrease in Wnt5a level, a key factor for the initial neurite development and maturation, as well as inducing a down-regulation of CaMKII activity. This data suggests that the morphological defects would likely be a consequence of the decrease in both Wnt5a expression and CaMKII activity induced by glyphosate. Additionally, these changes might be reflected in a subsequent neuronal dysfunction. Therefore, our findings highlight the importance of establishing rigorous control on the use of glyphosate-based herbicides in order to protect mammals' health.

  13. Diverse roles for Wnt7a in ventral midbrain neurogenesis and dopaminergic axon morphogenesis.

    Science.gov (United States)

    Fernando, Chathurini V; Kele, Julianna; Bye, Christopher R; Niclis, Jonathan C; Alsanie, Walaa; Blakely, Brette D; Stenman, Jan; Turner, Brad J; Parish, Clare L

    2014-09-01

    During development of the central nervous system, trophic, together with genetic, cues dictate the balance between cellular proliferation and differentiation. Subsequent to the birth of new neurons, additional intrinsic and extrinsic signals regulate the connectivity of these cells. While a number of regulators of ventral midbrain (VM) neurogenesis and dopaminergic (DA) axon guidance are known, we identify a number of novel roles for the secreted glycoprotein, Wnt7a, in this context. We demonstrate a temporal and spatial expression of Wnt7a in the VM, indicative of roles in neurogenesis, differentiation, and axonal growth and guidance. In primary VM cultures, and validated in Wnt7a-deficient mice, we show that the early expression within the VM is important for regulating VM progenitor proliferation, cell cycle progression, and cell survival, thereby dictating the number of midbrain Nurr1 precursors and DA neurons. During early development of the midbrain DA pathways, Wnt7a promotes axonal elongation and repels DA neurites out of the midbrain. Later, Wnt7a expression in the VM midline suggests a role in preventing axonal crossing while expression in regions flanking the medial forebrain bundle (thalamus and hypothalamus) ensured appropriate trajectory of DA axons en route to their forebrain targets. We show that the effects of Wnt7a in VM development are mediated, at least in part, by the β-catenin/canonical pathways. Together, these findings identify Wnt7a as a new regulator of VM neurogenesis and DA axon growth and guidance.

  14. A requirement for filopodia extension toward Slit during Robo-mediated axon repulsion.

    Science.gov (United States)

    McConnell, Russell E; Edward van Veen, J; Vidaki, Marina; Kwiatkowski, Adam V; Meyer, Aaron S; Gertler, Frank B

    2016-04-25

    Axons navigate long distances through complex 3D environments to interconnect the nervous system during development. Although the precise spatiotemporal effects of most axon guidance cues remain poorly characterized, a prevailing model posits that attractive guidance cues stimulate actin polymerization in neuronal growth cones whereas repulsive cues induce actin disassembly. Contrary to this model, we find that the repulsive guidance cue Slit stimulates the formation and elongation of actin-based filopodia from mouse dorsal root ganglion growth cones. Surprisingly, filopodia form and elongate toward sources of Slit, a response that we find is required for subsequent axonal repulsion away from Slit. Mechanistically, Slit evokes changes in filopodium dynamics by increasing direct binding of its receptor, Robo, to members of the actin-regulatory Ena/VASP family. Perturbing filopodium dynamics pharmacologically or genetically disrupts Slit-mediated repulsion and produces severe axon guidance defects in vivo. Thus, Slit locally stimulates directional filopodial extension, a process that is required for subsequent axonal repulsion downstream of the Robo receptor.

  15. Guidance Receptors in the Nervous and Cardiovascular Systems.

    Science.gov (United States)

    Rubina, K A; Tkachuk, V A

    2015-10-01

    Blood vessels and nervous fibers grow in parallel, for they express similar receptors for chemokine substances. Recently, much attention is being given to studying guidance receptors and their ligands besides the growth factors, cytokines, and chemokines necessary to form structures in the nervous and vascular systems. Such guidance molecules determine trajectory for growing axons and vessels. Guidance molecules include Ephrins and their receptors, Neuropilins and Plexins as receptors for Semaphorins, Robos as receptors for Slit-proteins, and UNC5B receptors binding Netrins. Apart from these receptors and their ligands, urokinase and its receptor (uPAR) and T-cadherin are also classified as guidance molecules. The urokinase system mediates local proteolysis at the leading edge of cells, thereby providing directed migration. T-cadherin is a repellent molecule that regulates the direction of growing axons and blood vessels. Guidance receptors also play an important role in the diseases of the nervous and cardiovascular systems.

  16. Increased axonal regeneration through a biodegradable amnionic tube nerve conduit: effect of local delivery and incorporation of nerve growth factor/hyaluronic acid media.

    Science.gov (United States)

    Mohammad, J A; Warnke, P H; Pan, Y C; Shenaq, S

    2000-01-01

    The authors emphasize the possible pharmacological enhancement of axonal regeneration using a specific growth factor/ extracellular media incorporated in a biodegradable nonneural nerve conduit material. They investigated the early effects on nerve regeneration of continuous local delivery of nerve growth factor (NGF) and the local incorporation of hyaluronic acid (HA) inside a newly manufactured nerve conduit material from fresh human amnionic membrane. Human amnionic membrane contains important biochemical factors that play a major neurotrophic role in the nerve regeneration process. The process of manufacturing a nerve conduit from fresh human amnionic membrane is described. This nerve conduit system was used in rabbits to bridge a 25-mm nerve gap over 3 months. NGF was released locally, over 28 days, at the distal end of the tube via a system of slow release, and HA was incorporated inside the lumen of the tube at the time of surgery. NGF/HA treatment promoted axonal regeneration across the amnionic tube nerve conduit (8,962 +/- 383 myelinated axons) 45% better than the nontreated amnionic tube group (6,180 +/- 353 myelinated axons). The authors demonstrate that NGF/HA media enhances additional axonal regeneration in the amnionic tube nerve conduit. This result is secondary to the effect of the amnion promoting biochemical factors, in combination with the NGF/HA effect on facilitating early events in the nerve regeneration process.

  17. Single neuron transcriptomics identify SRSF/SR protein B52 as a regulator of axon growth and Choline acetyltransferase splicing

    Science.gov (United States)

    Liu, Boyin; Bossing, Torsten

    2016-01-01

    We removed single identified neurons from living Drosophila embryos to gain insight into the transcriptional control of developing neuronal networks. The microarray analysis of the transcriptome of two sibling neurons revealed seven differentially expressed transcripts between both neurons (threshold: log21.4). One transcript encodes the RNA splicing factor B52. Loss of B52 increases growth of axon branches. B52 function is also required for Choline acetyltransferase (ChAT ) splicing. At the end of embryogenesis, loss of B52 function impedes splicing of ChAT, reduces acetylcholine synthesis, and extends the period of uncoordinated muscle twitches during larval hatching. ChAT regulation by SRSF proteins may be a conserved feature since changes in SRSF5 expression and increased acetylcholine levels in brains of bipolar disease patients have been reported recently. PMID:27725692

  18. Interstitial guidance of cancer invasion.

    Science.gov (United States)

    Gritsenko, Pavlo G; Ilina, Olga; Friedl, Peter

    2012-01-01

    Cancer cell invasion into healthy tissues develops preferentially along pre-existing tracks of least resistance, followed by secondary tissue remodelling and destruction. The tissue scaffolds supporting or preventing guidance of invasion vary in structure and molecular composition between organs. In the brain, the guidance is provided by myelinated axons, astrocyte processes, and blood vessels which are used as invasion routes by glioma cells. In the human breast, containing interstitial collagen-rich connective tissue, disseminating breast cancer cells preferentially invade along bundled collagen fibrils and the surface of adipocytes. In both invasion types, physical guidance prompted by interfaces and space is complemented by molecular guidance. Generic mechanisms shared by most, if not all, tissues include (i) guidance by integrins towards fibrillar interstitial collagen and/or laminins and type IV collagen in basement membranes decorating vessels and adipocytes, and, likely, CD44 engaging with hyaluronan; (ii) haptotactic guidance by chemokines and growth factors; and likely (iii) physical pushing mechanisms. Tissue-specific, resticted guidance cues include ECM proteins with restricted expression (tenascins, lecticans), cell-cell interfaces, and newly secreted matrix molecules decorating ECM fibres (laminin-332, thrombospondin-1, osteopontin, periostin). We here review physical and molecular guidance mechanisms in interstitial tissue and brain parenchyma and explore shared principles and organ-specific differences, and their implications for experimental model design and therapeutic targeting of tumour cell invasion.

  19. BmRobo1a and BmRobo1b control axon repulsion in the silkworm Bombyx mori.

    Science.gov (United States)

    Li, Xiao-Tong; Yu, Qi; Zhou, Qi-Sheng; Zhao, Xiao; Liu, Zhao-Yang; Cui, Wei-Zheng; Liu, Qing-Xin

    2016-02-15

    The development of the nervous system is based on the growth and connection of axons, and axon guidance molecules are the dominant regulators during this course. Robo, as the receptor of axon guidance molecule Slit, plays a key role as a conserved repellent cue for axon guidance during the development of the central nervous system. However, the function of Robo in the silkworm Bombyx mori is unknown. In this study, we cloned two novel robo genes in B. mori (Bmrobo1a and Bmrobo1b). BmRobo1a and BmRobo1b lack an Ig and a FNIII domain in the extracellular region and the CC0 and CC2 motifs in the intracellular region. BmRobo1a and BmRobo1b were colocalized with BmSlit in the neuropil. Knock-down of Bmrobo1a and Bmrobo1b by RNA interference (RNAi) resulted in abnormal development of axons. Our results suggest that BmRobo1a and BmRobo1b have repulsive function in axon guidance, even though their structures are different from Robo1 of other species.

  20. Comparison of cellular architecture, axonal growth, and blood vessel formation through cell-loaded polymer scaffolds in the transected rat spinal cord.

    Science.gov (United States)

    Madigan, Nicolas N; Chen, Bingkun K; Knight, Andrew M; Rooney, Gemma E; Sweeney, Eva; Kinnavane, Lisa; Yaszemski, Michael J; Dockery, Peter; O'Brien, Timothy; McMahon, Siobhan S; Windebank, Anthony J

    2014-11-01

    The use of multichannel polymer scaffolds in a complete spinal cord transection injury serves as a deconstructed model that allows for control of individual variables and direct observation of their effects on regeneration. In this study, scaffolds fabricated from positively charged oligo[poly(ethylene glycol)fumarate] (OPF(+)) hydrogel were implanted into rat spinal cords following T9 complete transection. OPF(+) scaffold channels were loaded with either syngeneic Schwann cells or mesenchymal stem cells derived from enhanced green fluorescent protein transgenic rats (eGFP-MSCs). Control scaffolds contained extracellular matrix only. The capacity of each scaffold type to influence the architecture of regenerated tissue after 4 weeks was examined by detailed immunohistochemistry and stereology. Astrocytosis was observed in a circumferential peripheral channel compartment. A structurally separate channel core contained scattered astrocytes, eGFP-MSCs, blood vessels, and regenerating axons. Cells double-staining with glial fibrillary acid protein (GFAP) and S-100 antibodies populated each scaffold type, demonstrating migration of an immature cell phenotype into the scaffold from the animal. eGFP-MSCs were distributed in close association with blood vessels. Axon regeneration was augmented by Schwann cell implantation, while eGFP-MSCs did not support axon growth. Methods of unbiased stereology provided physiologic estimates of blood vessel volume, length and surface area, mean vessel diameter, and cross-sectional area in each scaffold type. Schwann cell scaffolds had high numbers of small, densely packed vessels within the channels. eGFP-MSC scaffolds contained fewer, larger vessels. There was a positive linear correlation between axon counts and vessel length density, surface density, and volume fraction. Increased axon number also correlated with decreasing vessel diameter, implicating the importance of blood flow rate. Radial diffusion distances in vessels

  1. Drosophila Ten-m and filamin affect motor neuron growth cone guidance.

    Directory of Open Access Journals (Sweden)

    Lihua Zheng

    Full Text Available The Drosophila Ten-m (also called Tenascin-major, or odd Oz (odz gene has been associated with a pair-rule phenotype. We identified and characterized new alleles of Drosophila Ten-m to establish that this gene is not responsible for segmentation defects but rather causes defects in motor neuron axon routing. In Ten-m mutants the inter-segmental nerve (ISN often crosses segment boundaries and fasciculates with the ISN in the adjacent segment. Ten-m is expressed in the central nervous system and epidermal stripes during the stages when the growth cones of the neurons that form the ISN navigate to their targets. Over-expression of Ten-m in epidermal cells also leads to ISN misrouting. We also found that Filamin, an actin binding protein, physically interacts with the Ten-m protein. Mutations in cheerio, which encodes Filamin, cause defects in motor neuron axon routing like those of Ten-m. During embryonic development, the expression of Filamin and Ten-m partially overlap in ectodermal cells. These results suggest that Ten-m and Filamin in epidermal cells might together influence growth cone progression.

  2. Current progress in functions of axon guidance molecule Slit and underlying molecular mechanism%神经轴突导向分子Slit的功能及其分子作用机制研究进展

    Institute of Scientific and Technical Information of China (English)

    于奇; 周启升; 赵晓; 刘庆信

    2012-01-01

    神经轴突导向分子Slit是一种在进化上高度保守的分泌型糖蛋白,Slit对神经轴突导向、神经细胞迁移、神经细胞形态分化、肿瘤转移、血管生成、心脏形态发生等多种生命活动具有调节作用.Slit功能的实现主要是通过其LRR-2结构域与受体Roundabout (Robo)的Igl结构域相结合而实现的,另外硫酸肝素蛋白多糖(heparan sulfate proteoglycans,HSPGs)、GTP酶激活蛋白(GTPase-activating proteins,GAPs)、酪氨酸激酶Abelson、Ca2+、MicroRNA-218和其它轴突导向分子等多种信号分子也参与了Slit功能的实现.slit基因受到Single-minded、Irx4和Midline等转录因子的调控,另外,转录后水平的选择性剪接使slit基因存在多种亚型.Slit导向机制的研究有助于揭示生物神经发育和再生过程中神经网络形成的内在分子基础,同时,也将为预防和治疗人类神经疾病、抑制癌细胞转移等提供理论参考.%The axon guidance molecule Slit is a secreted glucoprotein which is conserved during evolution. Slit has been implicated in regulating a variety of life activities, such as axon guidance, neuronal migration, neuronal morphological differentiation, tumor metastasis, angiogenesis and heart morphogenesis. Slit function mainly depends on the binding of its LRR-2 domain to the Ig1 domain of Roundabout (Robo) receptor, meanwhile Slit function is also mediated by a range of signaling molecules, including the heparan sul-fate proteoglycans (HSPGs), GTPase-activating proteins (GAPs), tyrosine kinase Abelson, calcium ions, MicroRNA-218 and other axon guidance molecules. Several transcription factors, including Single-minded, Irx and Midline, were shown to regulate slit expression. In addition, multiple Slit isoforms exist as a consequence of alternative spliced transcripts. The research on guidance mechanism of Slit will facilitate the understanding of molecular mechanism underlying neural networks formation in the process of

  3. The Formin DAAM Functions as Molecular Effector of the Planar Cell Polarity Pathway during Axonal Development in Drosophila.

    Science.gov (United States)

    Gombos, Rita; Migh, Ede; Antal, Otilia; Mukherjee, Anindita; Jenny, Andreas; Mihály, József

    2015-07-15

    Recent studies established that the planar cell polarity (PCP) pathway is critical for various aspects of nervous system development and function, including axonal guidance. Although it seems clear that PCP signaling regulates actin dynamics, the mechanisms through which this occurs remain elusive. Here, we establish a functional link between the PCP system and one specific actin regulator, the formin DAAM, which has previously been shown to be required for embryonic axonal morphogenesis and filopodia formation in the growth cone. We show that dDAAM also plays a pivotal role during axonal growth and guidance in the adult Drosophila mushroom body, a brain center for learning and memory. By using a combination of genetic and biochemical assays, we demonstrate that Wnt5 and the PCP signaling proteins Frizzled, Strabismus, and Dishevelled act in concert with the small GTPase Rac1 to activate the actin assembly functions of dDAAM essential for correct targeting of mushroom body axons. Collectively, these data suggest that dDAAM is used as a major molecular effector of the PCP guidance pathway. By uncovering a signaling system from the Wnt5 guidance cue to an actin assembly factor, we propose that the Wnt5/PCP navigation system is linked by dDAAM to the regulation of the growth cone actin cytoskeleton, and thereby growth cone behavior, in a direct way.

  4. Snapin Recruits Dynein to BDNF-TrkB Signaling Endosomes for Retrograde Axonal Transport and Is Essential for Dendrite Growth of Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Bing Zhou

    2012-07-01

    Full Text Available Neurotrophin signaling is crucial for neuron growth. While the “signaling endosomes” hypothesis is one of the accepted models, the molecular machinery that drives retrograde axonal transport of TrkB signaling endosomes is largely unknown. In particular, mechanisms recruiting dynein to TrkB signaling endosomes have not been elucidated. Here, using snapin deficient mice and gene rescue experiments combined with compartmentalized cultures of live cortical neurons, we reveal that Snapin, as a dynein adaptor, mediates retrograde axonal transport of TrkB signaling endosomes. Such a role is essential for dendritic growth of cortical neurons. Deleting snapin or disrupting Snapin-dynein interaction abolishes TrkB retrograde transport, impairs BDNF-induced retrograde signaling from axonal terminals to the nucleus, and decreases dendritic growth. Such defects were rescued by reintroducing the snapin gene. Our study indicates that Snapin-dynein coupling is one of the primary mechanisms driving BDNF-TrkB retrograde transport, thus providing mechanistic insights into the regulation of neuronal growth and survival.

  5. Regenerative Responses and Axon Pathfinding of Retinal Ganglion Cells in Chronically Injured Mice

    Science.gov (United States)

    Yungher, Benjamin J.; Ribeiro, Márcio; Park, Kevin K.

    2017-01-01

    Purpose Enhanced regeneration of retinal ganglion cell (RGC) axons can be achieved by modification of numerous neuronal-intrinsic factors. However, axon growth initiation and the pathfinding behavior of these axons after traumatic injury remain poorly understood outside of acute injury paradigms, despite the clinical relevance of more chronic settings. We therefore examined RGC axon regeneration following therapeutic delivery that is postponed until 2 months after optic nerve crush injury. Methods Optic nerve regeneration was induced by virally mediated (adeno-associated virus) ciliary neurotrophic factor (AAV-CNTF) administered either immediately or 56 days after optic nerve crush in wild-type or Bax knockout (KO) mice. Retinal ganglion nerve axon regeneration was assessed 21 and 56 days after viral injection. Immunohistochemical analysis of RGC injury signals and extrinsic factors in the optic nerve were also examined at 5 and 56 days post crush. Results In addition to sustained expression of injury response proteins in surviving RGCs, we observe axon regrowth in wild-type and apoptosis-deficient Bax KO mice following AAV-CNTF treatment. Fewer instances of aberrant axon growth are seen, at least in the area near the lesion site, in animals given treatment 56 days after crush injury compared to the animals given treatment immediately after injury. We also find evidence of long distance growth into a visual target in Bax KO mice despite postponed initiation of this regenerative program. Conclusions These studies provide evidence against an intrinsic critical period for RGC axon regeneration or degradation of injury signals. Regeneration results from Bax KO mice imply highly sustained regenerative capacity in RGCs, highlighting the importance of long-lasting neuroprotective strategies as well as of RGC axon guidance research in chronically injured animals. PMID:28324115

  6. Immunofluorescence laser confocal expression and localization study of rat nerve growth guidance cues Netrin-1 and Slit2 after spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    LU Yao-jun; XU Nan-wei; YANG Wen-qiang

    2008-01-01

    To observe the expression and distribution of adult rat axon guidance cues Netrin-1 and Slit2 at different time points after spinal cord injury and to investigate the guidance mechanism of regenerated axons.Methods:Twenty adult Sprague Dawley(SD)rats were divided randomly into five groups with 4 in each.Four groups of them were used to make Allen's spinal cord punch models and we took materials randomly from one of them on the 2nd,4th,7th and 14th day respectively after operation.The left one group was taken as the control group.Immunofluorescence laser confocal scan was used to examine the co-expression and localization of Netrin-1 and Slit2 proteins in the injured site of the spinal cord.Results:Within two weeks after SCI,the expression of Netrin-1 and Slit2 proteins increased temporarily and there was co-expression of them on the neuron plasma membrane.Conclusions:Synchronous high expression and co-expression of axon attractant Netrin-1 and repellent Slit2 are found in the adult rat injured spinal cord in the damaged local and vicinity parts,and probably,they act as the key regulators of axon guidance regeneration.

  7. AMIGO3 is an NgR1/p75 co-receptor signalling axon growth inhibition in the acute phase of adult central nervous system injury.

    Directory of Open Access Journals (Sweden)

    Zubair Ahmed

    Full Text Available Axon regeneration in the injured adult CNS is reportedly inhibited by myelin-derived inhibitory molecules, after binding to a receptor complex comprised of the Nogo-66 receptor (NgR1 and two transmembrane co-receptors p75/TROY and LINGO-1. However, the post-injury expression pattern for LINGO-1 is inconsistent with its proposed function. We demonstrated that AMIGO3 levels were significantly higher acutely than those of LINGO-1 in dorsal column lesions and reduced in models of dorsal root ganglion neuron (DRGN axon regeneration. Similarly, AMIGO3 levels were raised in the retina immediately after optic nerve crush, whilst levels were suppressed in regenerating optic nerves, induced by intravitreal peripheral nerve implantation. AMIGO3 interacted functionally with NgR1-p75/TROY in non-neuronal cells and in brain lysates, mediating RhoA activation in response to CNS myelin. Knockdown of AMIGO3 in myelin-inhibited adult primary DRG and retinal cultures promoted disinhibited neurite growth when cells were stimulated with appropriate neurotrophic factors. These findings demonstrate that AMIGO3 substitutes for LINGO-1 in the NgR1-p75/TROY inhibitory signalling complex and suggests that the NgR1-p75/TROY-AMIGO3 receptor complex mediates myelin-induced inhibition of axon growth acutely in the CNS. Thus, antagonizing AMIGO3 rather than LINGO-1 immediately after CNS injury is likely to be a more effective therapeutic strategy for promoting CNS axon regeneration when combined with neurotrophic factor administration.

  8. The genetics of axonal transport and axonal transport disorders.

    Directory of Open Access Journals (Sweden)

    Jason E Duncan

    2006-09-01

    Full Text Available Neurons are specialized cells with a complex architecture that includes elaborate dendritic branches and a long, narrow axon that extends from the cell body to the synaptic terminal. The organized transport of essential biological materials throughout the neuron is required to support its growth, function, and viability. In this review, we focus on insights that have emerged from the genetic analysis of long-distance axonal transport between the cell body and the synaptic terminal. We also discuss recent genetic evidence that supports the hypothesis that disruptions in axonal transport may cause or dramatically contribute to neurodegenerative diseases.

  9. Acute Putrescine Supplementation with Schwann Cell Implantation Improves Sensory and Serotonergic Axon Growth and Functional Recovery in Spinal Cord Injured Rats.

    Science.gov (United States)

    Iorgulescu, J Bryan; Patel, Samik P; Louro, Jack; Andrade, Christian M; Sanchez, Andre R; Pearse, Damien D

    2015-01-01

    Schwann cell (SC) transplantation exhibits significant potential for spinal cord injury (SCI) repair and its use as a therapeutic modality has now progressed to clinical trials for subacute and chronic human SCI. Although SC implants provide a receptive environment for axonal regrowth and support functional recovery in a number of experimental SCI models, axonal regeneration is largely limited to local systems and the behavioral improvements are modest without additional combinatory approaches. In the current study we investigated whether the concurrent delivery of the polyamine putrescine, started either 30 min or 1 week after SCI, could enhance the efficacy of SCs when implanted subacutely (1 week after injury) into the contused rat spinal cord. Polyamines are ubiquitous organic cations that play an important role in the regulation of the cell cycle, cell division, cytoskeletal organization, and cell differentiation. We show that the combination of putrescine with SCs provides a significant increase in implant size, an enhancement in axonal (sensory and serotonergic) sparing and/or growth, and improved open field locomotion after SCI, as compared to SC implantation alone. These findings demonstrate that polyamine supplementation can augment the effectiveness of SCs when used as a therapeutic approach for subacute SCI repair.

  10. Ascending Midbrain Dopaminergic Axons Require Descending GAD65 Axon Fascicles for Normal Pathfinding

    Directory of Open Access Journals (Sweden)

    Claudia Marcela Garcia-Peña

    2014-06-01

    Full Text Available The Nigrostriatal pathway (NSP is formed by dopaminergic axons that project from the ventral midbrain to the dorsolateral striatum as part of the medial forebrain bundle. Previous studies have implicated chemotropic proteins in the formation of the NSP during development but little is known of the role of substrate-anchored signals in this process. We observed in mouse and rat embryos that midbrain dopaminergic axons ascend in close apposition to descending GAD65-positive axon bundles throughout their trajectory to the striatum. To test whether such interaction is important for dopaminergic axon pathfinding, we analyzed transgenic mouse embryos in which the GAD65 axon bundle was reduced by the conditional expression of the diphtheria toxin. In these embryos we observed dopaminergic misprojection into the hypothalamic region and abnormal projection in the striatum. In addition, analysis of Robo1/2 and Slit1/2 knockout embryos revealed that the previously described dopaminergic misprojection in these embryos is accompanied by severe alterations in the GAD65 axon scaffold. Additional studies with cultured dopaminergic neurons and whole embryos suggest that NCAM and Robo proteins are involved in the interaction of GAD65 and dopaminergic axons. These results indicate that the fasciculation between descending GAD65 axon bundles and ascending dopaminergic axons is required for the stereotypical NSP formation during brain development and that known guidance cues may determine this projection indirectly by instructing the pathfinding of the axons that are part of the GAD65 axon scaffold.

  11. The trip of the tip: understanding the growth cone machinery.

    Science.gov (United States)

    Lowery, Laura Anne; Van Vactor, David

    2009-05-01

    The central component in the road trip of axon guidance is the growth cone, a dynamic structure that is located at the tip of the growing axon. During its journey, the growth cone comprises both 'vehicle' and 'navigator'. Whereas the 'vehicle' maintains growth cone movement and contains the cytoskeletal structural elements of its framework, a motor to move forward and a mechanism to provide traction on the 'road', the 'navigator' aspect guides this system with spatial bias to translate environmental signals into directional movement. The understanding of the functions and regulation of the vehicle and navigator provides new insights into the cell biology of growth cone guidance.

  12. Dragon (repulsive guidance molecule b, RGMb) is a novel gene that promotes colorectal cancer growth.

    Science.gov (United States)

    Shi, Ying; Chen, Guo-Bin; Huang, Xiao-Xiao; Xiao, Chuan-Xing; Wang, Huan-Huan; Li, Ye-Sen; Zhang, Jin-Fang; Li, Shao; Xia, Yin; Ren, Jian-Lin; Guleng, Bayasi

    2015-08-21

    Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer death. However, the molecular mechanisms underlying CRC initiation, growth and metastasis are poorly understood. Dragon (RGMb), a member of the repulsive guidance molecule (RGM) family, has been recently identified as a co-receptor for bone morphogenetic protein (BMP) signaling, but the role of Dragon in CRC development is undefined. Here, we show that Dragon expression was increased in colon cancer tissues compared to control tissues in CAC mouse model and in human patients. Dragon promoted proliferation of CT26.WT and CMT93 colon cancer cells and accelerated tumor growth in the xenograft mouse model. Dragon's action on colon cancer development was mediated via the BMP4-Smad1/5/8 and Erk1/2 pathways. Therefore, our results have revealed that Dragon is a novel gene that promotes CRC growth through the BMP pathway. Dragon may be exploited as a potential therapeutic target for CRC treatment.

  13. Diverse modes of axon elaboration in the developing neocortex.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The development of axonal arbors is a critical step in the establishment of precise neural circuits, but relatively little is known about the mechanisms of axonal elaboration in the neocortex. We used in vivo two-photon time-lapse microscopy to image axons in the neocortex of green fluorescent protein-transgenic mice over the first 3 wk of postnatal development. This period spans the elaboration of thalamocortical (TC and Cajal-Retzius (CR axons and cortical synaptogenesis. Layer 1 collaterals of TC and CR axons were imaged repeatedly over time scales ranging from minutes up to days, and their growth and pruning were analyzed. The structure and dynamics of TC and CR axons differed profoundly. Branches of TC axons terminated in small, bulbous growth cones, while CR axon branch tips had large growth cones with numerous long filopodia. TC axons grew rapidly in straight paths, with frequent interstitial branch additions, while CR axons grew more slowly along tortuous paths. For both types of axon, new branches appeared at interstitial sites along the axon shaft and did not involve growth cone splitting. Pruning occurred via retraction of small axon branches (tens of microns, at both CR and TC axons or degeneration of large portions of the arbor (hundreds of microns, for TC axons only. The balance between growth and retraction favored overall growth, but only by a slight margin. Given the identical layer 1 territory upon which CR and TC axons grow, the differences in their structure and dynamics likely reflect distinct intrinsic growth programs for axons of long projection neurons versus local interneurons.

  14. New developments in the treatment of early-onset spinal deformity: role of the Shilla growth guidance system

    Directory of Open Access Journals (Sweden)

    Morell SM

    2016-07-01

    Full Text Available Sean M Morell,1 Richard E McCarthy2 1Department of Orthopaedics, University of Arkansas for Medical Sciences, 2Department of Orthopaedics, Arkansas Children’s Hospital, Little Rock, AR, USA Abstract: Early-onset scoliosis is a complex condition with multiple facets. The goal of treating any spinal deformity is to improve the condition of the patient with the least intervention necessary. A system that allows for continuation of natural spinal growth while correcting the deformity should be the goal of treating this complex condition. The SHILLA growth guidance system allows for continued growth of the pediatric spine while correcting and guiding the apex and guiding the future growth of the curvature. The system involves selective fusion across the apex of the curvature, and minimally invasive instrumentation is then used above and below the apex to allow for continued growth of the spine. A review of recent literature on the SHILLA growth guidance system shows promising results. Early animal models showed continued growth across unfused levels with minimal facet articular damage. Comparative studies to traditional growing rods showed significantly less total surgeries along with comparable correction and longitudinal growth. The SHILLA growth guidance system is a good option for this complex patient group. Results are comparable with other growing constructs with significantly less operative interventions. The SHILLA system allows for natural growth of the pediatric spine while correcting the scoliotic deformity in a minimally invasive method. The goal of this article is to present a comprehensive review of the SHILLA system surgical technique and the associated literature concerning this topic. Keywords: scoliosis, SHILLA, growing, early-onset, growth friendly

  15. Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization.

    Science.gov (United States)

    Dresselhaus, Thomas; Franklin-Tong, Noni

    2013-07-01

    Sperm cells of flowering plants are non-motile and thus require transportation to the egg apparatus via the pollen tube to execute double fertilization. During its journey, the pollen tube interacts with various sporophytic cell types that support its growth and guide it towards the surface of the ovule. The final steps of tube guidance and sperm delivery are controlled by the cells of the female gametophyte. During fertilization, cell-cell communication events take place to achieve and maximize reproductive success. Additional layers of crosstalk exist, including self-recognition and specialized processes to prevent self-fertilization and consequent inbreeding. In this review, we focus on intercellular communication between the pollen grain/pollen tube including the sperm cells with the various sporophytic maternal tissues and the cells of the female gametophyte. Polymorphic-secreted peptides and small proteins, especially those belonging to various subclasses of small cysteine-rich proteins (CRPs), reactive oxygen species (ROS)/NO signaling, and the second messenger Ca(2+), play center stage in most of these processes.

  16. Mechanisms of axon degeneration: from development to disease.

    Science.gov (United States)

    Saxena, Smita; Caroni, Pico

    2007-10-01

    Axon degeneration is an active, tightly controlled and versatile process of axon segment self-destruction. Although not involving cell death, it resembles apoptosis in its logics. It involves three distinct steps: induction of competence in specific neurons, triggering of degeneration at defined axon segments of competent neurons, and rapid fragmentation and removal of the segments. The mechanisms that initiate degeneration are specific to individual settings, but the final pathway of pruning is shared; it involves microtubule disassembly, axon swellings, axon fragmentation, and removal of the remnants by locally recruited phagocytes. The tight regulatory properties of axon degeneration distinguish it from passive loss phenomena, and confer significance to processes that involve it. Axon degeneration has prominent roles in development, upon lesions and in disease. In development, it couples the progressive specification of neurons and circuits to the removal of defined axon branches. Competence might involve transcriptional switches, and local triggering can involve axon guidance molecules and synaptic activity patterns. Lesion-induced Wallerian degeneration is inhibited in the presence of Wld(S) fusion protein in neurons; it involves early local, and later, distal degeneration. It has recently become clear that like in other settings, axon degeneration in disease is a rapid and specific process, which should not be confused with a variety of disease-related pathologies. Elucidating the specific mechanisms that initiate axon degeneration should open up new avenues to investigate principles of circuit assembly and plasticity, to uncover mechanisms of disease progression, and to identify ways of protecting synapses and axons in disease.

  17. Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II

    Directory of Open Access Journals (Sweden)

    Drescher Uwe

    2010-06-01

    Full Text Available Abstract Background In the developing hindbrain, cranial motor axon guidance depends on diffusible repellent factors produced by the floor plate. Our previous studies have suggested that candidate molecules for mediating this effect are Slits, Netrin-1 and Semaphorin3A (Sema3A. It is unknown to what extent these factors contribute to floor plate-derived chemorepulsion of motor axons, and the downstream signalling pathways are largely unclear. Results In this study, we have used a combination of in vitro and in vivo approaches to identify the components of floor plate chemorepulsion and their downstream signalling pathways. Using in vitro motor axon deflection assays, we demonstrate that Slits and Netrin-1, but not Sema3A, contribute to floor plate repulsion. We also find that the axon pathways of dorsally projecting branchiomotor neurons are disrupted in Netrin-1 mutant mice and in chick embryos expressing dominant-negative Unc5a receptors, indicating an in vivo role for Netrin-1. We further demonstrate that Slit and Netrin-1 signalling are mediated by Rho-kinase (ROCK and myosin light chain kinase (MLCK, which regulate myosin II activity, controlling actin retrograde flow in the growth cone. We show that MLCK, ROCK and myosin II are required for Slit and Netrin-1-mediated growth cone collapse of cranial motor axons. Inhibition of these molecules in explant cultures, or genetic manipulation of RhoA or myosin II function in vivo causes characteristic cranial motor axon pathfinding errors, including the inability to exit the midline, and loss of turning towards exit points. Conclusions Our findings suggest that both Slits and Netrin-1 contribute to floor plate-derived chemorepulsion of cranial motor axons. They further indicate that RhoA/ROCK, MLCK and myosin II are components of Slit and Netrin-1 signalling pathways, and suggest that these pathways are of key importance in cranial motor axon navigation.

  18. Unc-51/ATG1 controls axonal and dendritic development via kinesin-mediated vesicle transport in the Drosophila brain.

    Directory of Open Access Journals (Sweden)

    Hiroaki Mochizuki

    Full Text Available BACKGROUND: Members of the evolutionary conserved Ser/Thr kinase Unc-51 family are key regulatory proteins that control neural development in both vertebrates and invertebrates. Previous studies have suggested diverse functions for the Unc-51 protein, including axonal elongation, growth cone guidance, and synaptic vesicle transport. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we have investigated the functional significance of Unc-51-mediated vesicle transport in the development of complex brain structures in Drosophila. We show that Unc-51 preferentially accumulates in newly elongating axons of the mushroom body, a center of olfactory learning in flies. Mutations in unc-51 cause disintegration of the core of the developing mushroom body, with mislocalization of Fasciclin II (Fas II, an IgG-family cell adhesion molecule important for axonal guidance and fasciculation. In unc-51 mutants, Fas II accumulates in the cell bodies, calyx, and the proximal peduncle. Furthermore, we show that mutations in unc-51 cause aberrant overshooting of dendrites in the mushroom body and the antennal lobe. Loss of unc-51 function leads to marked accumulation of Rab5 and Golgi components, whereas the localization of dendrite-specific proteins, such as Down syndrome cell adhesion molecule (DSCAM and No distributive disjunction (Nod, remains unaltered. Genetic analyses of kinesin light chain (Klc and unc-51 double heterozygotes suggest the importance of kinesin-mediated membrane transport for axonal and dendritic development. Moreover, our data demonstrate that loss of Klc activity causes similar axonal and dendritic defects in mushroom body neurons, recapitulating the salient feature of the developmental abnormalities caused by unc-51 mutations. CONCLUSIONS/SIGNIFICANCE: Unc-51 plays pivotal roles in the axonal and dendritic development of the Drosophila brain. Unc-51-mediated membrane vesicle transport is important in targeted localization of guidance molecules

  19. The short coiled-coil domain-containing protein UNC-69 cooperates with UNC-76 to regulate axonal outgrowth and normal presynaptic organization in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Tsung Nancy

    2006-05-01

    Full Text Available Abstract Background The nematode Caenorhabditis elegans has been used extensively to identify the genetic requirements for proper nervous system development and function. Key to this process is the direction of vesicles to the growing axons and dendrites, which is required for growth-cone extension and synapse formation in the developing neurons. The contribution and mechanism of membrane traffic in neuronal development are not fully understood, however. Results We show that the C. elegans gene unc-69 is required for axon outgrowth, guidance, fasciculation and normal presynaptic organization. We identify UNC-69 as an evolutionarily conserved 108-amino-acid protein with a short coiled-coil domain. UNC-69 interacts physically with UNC-76, mutations in which produce similar defects to loss of unc-69 function. In addition, a weak reduction-of-function allele, unc-69(ju69, preferentially causes mislocalization of the synaptic vesicle marker synaptobrevin. UNC-69 and UNC-76 colocalize as puncta in neuronal processes and cooperate to regulate axon extension and synapse formation. The chicken UNC-69 homolog is highly expressed in the developing central nervous system, and its inactivation by RNA interference leads to axon guidance defects. Conclusion We have identified a novel protein complex, composed of UNC-69 and UNC-76, which promotes axonal growth and normal presynaptic organization in C. elegans. As both proteins are conserved through evolution, we suggest that the mammalian homologs of UNC-69 and UNC-76 (SCOCO and FEZ, respectively may function similarly.

  20. Computing along the axon

    Institute of Scientific and Technical Information of China (English)

    Chen Haiming; Tseren-Onolt Ishdorj; Gheorghe Pǎun

    2007-01-01

    A special form of spiking neural P systems, called axon P systems, corresponding to the activity of Ranvier nodes of neuron axon, is considered and a class of SN-like P systems where the computation is done along the axon is introduced and their language generative power is investigated.

  1. The fax-1 nuclear hormone receptor regulates axon pathfinding and neurotransmitter expression.

    Science.gov (United States)

    Much, J W; Slade, D J; Klampert, K; Garriga, G; Wightman, B

    2000-02-01

    Specification of neuron identity requires the activation of a number of discrete developmental programs. Among these is pathway selection by growth cones: in order for a neuron's growth cone to respond appropriately to guidance cues presented by other cells or the extracellular matrix, the neuron must express genes to mediate the response. The fax-1 gene of C. elegans is required for pathfinding of axons that extend along the ventral nerve cord. We show that fax-1 is also required for pathfinding of axons in the nerve ring, the largest nerve bundle in the nematode, and for normal expression of FMRFamide-like neurotransmitters in the AVK interneurons. The fax-1 gene encodes a member of the superfamily of nuclear hormone receptors and has a DNA-binding domain related to the human PNR and Drosophila Tailless proteins. We observe fax-1 expression in embryonic neurons, including the AVK interneurons, just prior to axon extension, but after neurogenesis. These data suggest that fax-1 coordinately regulates the transcription of genes that function in the selection of axon pathways, neurotransmitter expression and, perhaps, other aspects of the specification of neuron identity.

  2. Axonal regeneration and remyelination evaluation of chitosan/gelatin-based nerve guide combined with transforming growth factor-β1 and Schwann cells.

    Science.gov (United States)

    Nie, Xin; Deng, Manjing; Yang, Maojin; Liu, Luchuan; Zhang, Yongjie; Wen, Xiujie

    2014-01-01

    Despite efforts in peripheral nerve injury and regeneration, it is difficult to achieve a functional recovery following extended peripheral nerve lesions. Even if artificial nerve conduit, cell components and growth factors can enhance nerve regeneration, integration in peripheral nerve repair and regeneration remains yet to be explored. For this study, we used chitosan/gelatin nerve graft constructed with collagenous matrices as a vehicle for Schwann cells and transforming growth factor-β1 to bridge a 10-mm gap of the sciatic nerve and explored the feasibility of improving regeneration and reinnervation in rats. The nerve regeneration was assessed with functional recovery, electrophysiological test, retrograde labeling, and immunohistochemistry analysis during the post-operative period of 16 weeks. The results showed that the internal sides of the conduits were compact enough to prevent the connective tissues from ingrowth. Nerve conduction velocity, average regenerated myelin area, and myelinated axon count were similar to those treated with autograft (p > 0.05) but significantly higher than those bridged with chitosan/gelatin nerve graft alone (p regeneration and remyelination. A designed graft incorporating all of the tissue-engineering strategies for peripheral nerve regeneration may provide great progress in tissue engineering for nerve repair.

  3. Slits and Robo-2 regulate the coalescence of subsets of olfactory sensory neuron axons within the ventral region of the olfactory bulb.

    Science.gov (United States)

    Cho, Jin H; Kam, Joseph W K; Cloutier, Jean-François

    2012-11-15

    Olfactory sensory neurons (OSNs) project their axons to second-order neurons in the olfactory bulb (OB) to form a precise glomerular map and these stereotypic connections are crucial for accurate odorant information processing by animals. To form these connections, olfactory sensory neuron (OSN) axons respond to axon guidance molecules that direct their growth and coalescence. We have previously implicated the axon guidance receptor Robo-2 in the accurate coalescence of OSN axons within the dorsal region of the OB (Cho et al., 2011). Herein, we have examined whether Robo-2 and its ligands, the Slits, contribute to the formation of an accurate glomerular map within more ventral regions of the OB. We have ablated expression of Robo-2 in OSNs and assessed the targeting accuracy of axons expressing either the P2 or MOR28 olfactory receptors, which innervate two different regions of the ventral OB. We show that P2-positive axons, which express Robo-2, coalesce into glomeruli more ventrally and form additional glomeruli in the OB of robo-2(lox/lox);OMP-Cre mice. We also demonstrate that Robo-2-mediated targeting of P2 axons along the dorsoventral axis of the OB is controlled by Slit-1 and Slit-3 expression. Interestingly, although MOR28-positive OSNs only express low levels of Robo-2, a reduced number of MOR28-positive glomeruli is observed in the OB of robo-2(lox/lox);OMP-Cre mice. Taken together, our results demonstrate that Slits and Robo-2 are required for the formation of an accurate glomerular map in the ventral region of the OB.

  4. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injur y by promoting axonal growth and anti-autophagy

    Institute of Scientific and Technical Information of China (English)

    Fei Yin; Chunyang Meng; Rifeng Lu; Lei Li; Ying Zhang; Hao Chen; Yonggang Qin; Li Guo

    2014-01-01

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after trans-plantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunolfuorescence with subsequent quantiifcation revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-as-sociated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Fur-thermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was signiifcantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neuro-iflament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mes-enchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury.

  5. Neurons derived from human embryonic stem cells extend long–distance axonal projections through growth along host white matter tracts after intra-cerebral transplantation.

    Directory of Open Access Journals (Sweden)

    Mark eDenham

    2012-03-01

    Full Text Available Human pluripotent stem cells have the capacity for directed differentiation into a wide variety of neuronal subtypes that may be useful for brain repair. While a substantial body of research has lead to a detailed understanding of the ability of neurons in fetal tissue grafts to structurally and functionally integrate after intra-cerebral transplantation, we are only just beginning to understand the in vivo properties of neurons derived from human pluripotent stem cells. Here we have utilised the human embryonic stem (ES cell line Envy, which constitutively expresses green fluorescent protein (GFP, in order to study the in vivo properties of neurons derived from human ES cells. Rapid and efficient neural induction, followed by differentiation as neurospheres resulted in a GFP+ neural precursor population with traits of neuroepithelial and dorsal forebrain identity. Ten weeks after transplantation into neonatal rats, GFP+ fibre patterns revealed extensive axonal growth in the host brain, particularly along host white matter tracts, although innervation of adjacent nuclei was limited. The grafts were composed of a mix of neural cell types including differentiated neurons and glia, but also dividing neural progenitors and migrating neuroblasts, indicating an incomplete state of maturation at 10 weeks. This was reflected in patch-clamp recordings showing stereotypical properties appropriate for mature functional neurons, including the ability to generate action potentials, as well profiles consistent for more immature neurons. These findings illustrate the intrinsic capacity for neurons derived from human ES cells to integrate at a structural and functional level following transplantation.

  6. Guidance molecules in lung cancer

    OpenAIRE

    Nasarre, Patrick; Potiron, Vincent; Drabkin, Harry; Roche, Joëlle

    2010-01-01

    Guidance molecules were first described in the nervous system to control axon outgrowth direction. They are also widely expressed outside the nervous system where they control cell migration, tissue development and establishment of the vascular network. In addition, they are involved in cancer development, tumor angiogenesis and metastasis. This review is primarily focused on their functions in lung cancer and their involvement in lung development is also presented. Five guidance molecule fam...

  7. Axon injury triggers EFA-6 mediated destabilization of axonal microtubules via TACC and doublecortin like kinase.

    Science.gov (United States)

    Chen, Lizhen; Chuang, Marian; Koorman, Thijs; Boxem, Mike; Jin, Yishi; Chisholm, Andrew D

    2015-09-04

    Axon injury triggers a series of changes in the axonal cytoskeleton that are prerequisites for effective axon regeneration. In Caenorhabditis elegans the signaling protein Exchange Factor for ARF-6 (EFA-6) is a potent intrinsic inhibitor of axon regrowth. Here we show that axon injury triggers rapid EFA-6-dependent inhibition of axonal microtubule (MT) dynamics, concomitant with relocalization of EFA-6. EFA-6 relocalization and axon regrowth inhibition require a conserved 18-aa motif in its otherwise intrinsically disordered N-terminal domain. The EFA-6 N-terminus binds the MT-associated proteins TAC-1/Transforming-Acidic-Coiled-Coil, and ZYG-8/Doublecortin-Like-Kinase, both of which are required for regenerative growth cone formation, and which act downstream of EFA-6. After injury TAC-1 and EFA-6 transiently relocalize to sites marked by the MT minus end binding protein PTRN-1/Patronin. We propose that EFA-6 acts as a bifunctional injury-responsive regulator of axonal MT dynamics, acting at the cell cortex in the steady state and at MT minus ends after injury.

  8. SnoN facilitates axonal regeneration after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Jiun L Do

    Full Text Available Adult CNS neurons exhibit a reduced capacity for growth compared to developing neurons, due in part to downregulation of growth-associated genes as development is completed. We tested the hypothesis that SnoN, an embryonically regulated transcription factor that specifies growth of the axonal compartment, can enhance growth in injured adult neurons. In vitro, SnoN overexpression in dissociated adult DRG neuronal cultures significantly enhanced neurite outgrowth. Moreover, TGF-β1, a negative regulator of SnoN, inhibited neurite outgrowth, and SnoN over-expression overcame this inhibition. We then examined whether SnoN influenced axonal regeneration in vivo: indeed, expression of a mutant form of SnoN resistant to degradation significantly enhanced axonal regeneration following cervical spinal cord injury, despite peri-lesional upregulation of TGF-β1. Thus, a developmental mechanism that specifies extension of the axonal compartment also promotes axonal regeneration after adult CNS injury.

  9. Axonal GABAA receptors.

    Science.gov (United States)

    Trigo, Federico F; Marty, Alain; Stell, Brandon M

    2008-09-01

    Type A GABA receptors (GABA(A)Rs) are well established as the main inhibitory receptors in the mature mammalian forebrain. In recent years, evidence has accumulated showing that GABA(A)Rs are prevalent not only in the somatodendritic compartment of CNS neurons, but also in their axonal compartment. Evidence for axonal GABA(A)Rs includes new immunohistochemical and immunogold data: direct recording from single axonal terminals; and effects of local applications of GABA(A)R modulators on action potential generation, on axonal calcium signalling, and on neurotransmitter release. Strikingly, whereas presynaptic GABA(A)Rs have long been considered inhibitory, the new studies in the mammalian brain mostly indicate an excitatory action. Depending on the neuron that is under study, axonal GABA(A)Rs can be activated by ambient GABA, by GABA spillover, or by an autocrine action, to increase either action potential firing and/or transmitter release. In certain neurons, the excitatory effects of axonal GABA(A)Rs persist into adulthood. Altogether, axonal GABA(A)Rs appear as potent neuronal modulators of the mammalian CNS.

  10. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system.

    Science.gov (United States)

    Lopez-Verrilli, María Alejandra; Picou, Frederic; Court, Felipe A

    2013-11-01

    Axonal regeneration in the peripheral nervous system is greatly supported by Schwann cells (SCs). After nerve injury, SCs dedifferentiate to a progenitor-like state and efficiently guide axons to their original target tissues. Contact and soluble factors participate in the crosstalk between SCs and axons during axonal regeneration. Here we show that dedifferentiated SCs secrete nano-vesicles known as exosomes which are specifically internalized by axons. Surprisingly, SC-derived exosomes markedly increase axonal regeneration in vitro and enhance regeneration after sciatic nerve injury in vivo. Exosomes shift the growth cone morphology to a pro-regenerating phenotype and decrease the activity of the GTPase RhoA, involved in growth cone collapse and axon retraction. Altogether, our work identifies a novel mechanism by which SCs communicate with neighboring axons during regenerative processes. We propose that SC exosomes represent an important mechanism by which these cells locally support axonal maintenance and regeneration after nerve damage.

  11. Sonic hedgehog regulates its own receptor on postcrossing commissural axons in a glypican1-dependent manner.

    Science.gov (United States)

    Wilson, Nicole H; Stoeckli, Esther T

    2013-08-07

    Upon reaching their intermediate target, the floorplate, commissural axons acquire responsiveness to repulsive guidance cues, allowing the axons to exit the midline and adopt a contralateral, longitudinal trajectory. The molecular mechanisms that regulate this switch from attraction to repulsion remain poorly defined. Here, we show that the heparan sulfate proteoglycan Glypican1 (GPC1) is required as a coreceptor for the Shh-dependent induction of Hedgehog-interacting protein (Hhip) in commissural neurons. In turn, Hhip is required for postcrossing axons to respond to a repulsive anteroposterior Shh gradient. Thus, Shh is a cue with dual function. In precrossing axons it acts as an attractive guidance molecule in a transcription-independent manner. At the same time, Shh binds to GPC1 to induce the expression of its own receptor, Hhip, which mediates the repulsive response of postcrossing axons to Shh. Our study characterizes a molecular mechanism by which navigating axons switch their responsiveness at intermediate targets.

  12. Multifunctional Silk Nerve Guides for Axon Outgrowth

    Science.gov (United States)

    Tupaj, Marie C.

    Peripheral nerve regeneration is a critical issue as 2.8% of trauma patients present with this type of injury, estimating a total of 200,000 nerve repair procedures yearly in the United States. While the peripheral nervous system exhibits slow regeneration, at a rate of 0.5 mm -- 9 mm/day following trauma, this regenerative ability is only possible under certain conditions. Clinical repairs have changed slightly in the last 30 years and standard methods of treatment include suturing damaged nerve ends, allografting, and autografting, with the autograft the gold standard of these approaches. Unfortunately, the use of autografts requires a second surgery and there is a shortage of nerves available for grafting. Allografts are a second option however allografts have lower success rates and are accompanied by the need of immunosuppressant drugs. Recently there has been a focus on developing nerve guides as an "off the shelf" approach. Although some natural and synthetic guidance channels have been approved by the FDA, these nerve guides are unfunctionalized and repair only short gaps, less than 3 cm in length. The goal of this project was to identify strategies for functionalizing peripheral nerve conduits for the outgrowth of neuron axons in vitro . To accomplish this, two strategies (bioelectrical and biophysical) were indentified for increasing axon outgrowth and promoting axon guidance. Bioelectrical strategies exploited electrical stimulation for increasing neurite outgrowth. Biophysical strategies tested a range of surface topographies for axon guidance. Novel methods were developed for integrating electrical and biophysical strategies into silk films in 2D. Finally, a functionalized nerve conduit system was developed that integrated all strategies for the purpose of attaching, elongating, and guiding nervous tissue in vitro. Future directions of this work include silk conduit translation into a rat sciatic nerve model in vivo for the purpose of repairing long

  13. Axons take a dive

    Science.gov (United States)

    Tong, Cheuk Ka; Cebrián-Silla, Arantxa; Paredes, Mercedes F; Huang, Eric J; García-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo

    2015-01-01

    In the walls of the lateral ventricles of the adult mammalian brain, neural stem cells (NSCs) and ependymal (E1) cells share the apical surface of the ventricular–subventricular zone (V–SVZ). In a recent article, we show that supraependymal serotonergic (5HT) axons originating from the raphe nuclei in mice form an extensive plexus on the walls of the lateral ventricles where they contact E1 cells and NSCs. Here we further characterize the contacts between 5HT supraependymal axons and E1 cells in mice, and show that suprependymal axons tightly associated to E1 cells are also present in the walls of the human lateral ventricles. These observations raise interesting questions about the function of supraependymal axons in the regulation of E1 cells. PMID:26413556

  14. Homer regulates calcium signalling in growth cone turning

    Directory of Open Access Journals (Sweden)

    Thompson Michael JW

    2009-08-01

    Full Text Available Abstract Background Homer proteins are post-synaptic density proteins with known functions in receptor trafficking and calcium homeostasis. While they are key mediators of synaptic plasticity, they are also known to function in axon guidance, albeit by mechanisms that are yet to be elucidated. Homer proteins couple extracellular receptors – such as metabotropic glutamate receptors and the transient receptor potential canonical family of cation channels – to intracellular receptors such as inositol triphosphate and ryanodine receptors on intracellular calcium stores and, therefore, are well placed to regulate calcium dynamics within the neural growth cone. Here we used growth cones from dorsal root ganglia, a well established model in the field of axon guidance, and a growth cone turning assay to examine Homer1 function in axon guidance. Results Homer1 knockdown reversed growth cone turning from attraction to repulsion in response to the calcium-dependent guidance cues brain derived neurotrophic factor and netrin-1. Conversely, Homer1 knockdown had no effect on repulsion to the calcium-independent guidance cue Semaphorin-3A. This reversal of attractive turning suggested a requirement for Homer1 in a molecular switch. Pharmacological experiments confirmed that the operational state of a calcium-calmodulin dependent protein kinase II/calcineurin phosphatase molecular switch was dependent on Homer1 expression. Calcium imaging of motile growth cones revealed that Homer1 is required for guidance-cue-induced rise of cytosolic calcium and the attenuation of spontaneous cytosolic calcium transients. Homer1 knockdown-induced calcium transients and turning were inhibited by antagonists of store-operated channels. In addition, immunocytochemistry revealed the close association of Homer1 with the store-operated proteins TRPC1 and STIM1 within dorsal root ganglia growth cones. Conclusion These experiments provide evidence that Homer1 is an essential

  15. Axonal pathfinding mechanisms at the cortical midline and in the development of the corpus callosum

    Directory of Open Access Journals (Sweden)

    Richards L.J.

    2002-01-01

    Full Text Available The corpus callosum is a large fiber tract that connects neurons in the right and left cerebral hemispheres. Agenesis of the corpus callosum (ACC is associated with a large number of human syndromes but little is known about why ACC occurs. In most cases of ACC, callosal axons are able to grow toward the midline but are unable to cross it, continuing to grow into large swirls of axons known as Probst bundles. This phenotype suggests that in some cases ACC may be due to defects in axonal guidance at the midline. General guidance mechanisms that influence the development of axons include chemoattraction and chemorepulsion, presented by either membrane-bound or diffusible molecules. These molecules are not only expressed by the final target but by intermediate targets along the pathway, and by pioneering axons that act as guides for later arriving axons. Midline glial populations are important intermediate targets for commissural axons in the spinal cord and brain, including the corpus callosum. The role of midline glial populations and pioneering axons in the formation of the corpus callosum are discussed. Finally the differential guidance of the ipsilaterally projecting perforating pathway and the contralaterally projecting corpus callosum is addressed. Development of the corpus callosum involves the coordination of a number of different guidance mechanisms and the probable involvement of a large number of molecules.

  16. Axonal bleb recording

    Institute of Scientific and Technical Information of China (English)

    Wenqin Hu; Yousheng Shu

    2012-01-01

    Patch-clamp recording requires direct accessibility of the cell membrane to patch pipettes and allows the investigation of ion channel properties and functions in specific cellular compartments.The cell body and relatively thick dendrites are the most accessible compartments of a neuron,due to their large diameters and therefore great membrane surface areas.However,axons are normally inaccessible to patch pipettes because of their thin structure; thus studies of axon physiology have long been hampered by the lack of axon recording methods.Recently,a new method of patchclamp recording has been developed,enabling direct and tight-seal recording from cortical axons.These recordings are performed at the enlarged structure (axonal bleb) formed at the cut end of an axon after slicing procedures.This method has facilitated studies of the mechanisms underlying the generation and propagation of the main output signal,the action potential,and led to the finding that cortical neurons communicate not only in action potential-mediated digital mode but also in membrane potential-dependent analog mode.

  17. Axonal regeneration and development of de novo axons from distal dendrites of adult feline commissural interneurons after a proximal axotomy

    DEFF Research Database (Denmark)

    Fenrich, Keith K; Skelton, Nicole; MacDermid, Victoria E

    2007-01-01

    at 4-5 weeks post injury. The somata of axotomized CINs were identified by the presence of immunoreactivity for the axonal growth-associated protein-43 (GAP-43). Nearly half of the CINs had de novo axons that emerged from distal dendrites. These axons lacked immunoreactivity for the dendritic protein......Following proximal axotomy, several types of neurons sprout de novo axons from distal dendrites. These processes may represent a means of forming new circuits following spinal cord injury. However, it is not know whether mammalian spinal interneurons, axotomized as a result of a spinal cord injury......, develop de novo axons. Our goal was to determine whether spinal commissural interneurons (CINs), axotomized by 3-4-mm midsagittal transection at C3, form de novo axons from distal dendrites. All experiments were performed on adult cats. CINs in C3 were stained with extracellular injections of Neurobiotin...

  18. The actin-binding protein Canoe/AF-6 forms a complex with Robo and is required for Slit-Robo signaling during axon pathfinding at the CNS midline.

    Science.gov (United States)

    Slováková, Jana; Speicher, Stephan; Sánchez-Soriano, Natalia; Prokop, Andreas; Carmena, Ana

    2012-07-18

    Axon guidance is a key process during nervous system development and regeneration. One of the best established paradigms to study the mechanisms underlying this process is the axon decision of whether or not to cross the midline in the Drosophila CNS. An essential regulator of that decision is the well conserved Slit-Robo signaling pathway. Slit guidance cues act through Robo receptors to repel axons from the midline. Despite good progress in our knowledge about these proteins, the intracellular mechanisms associated with Robo function remain poorly defined. In this work, we found that the scaffolding protein Canoe (Cno), the Drosophila orthologue of AF-6/Afadin, is essential for Slit-Robo signaling. Cno is expressed along longitudinal axonal pioneer tracts, and longitudinal Robo/Fasciclin2-positive axons aberrantly cross the midline in cno mutant embryos. cno mutant primary neurons show a significant reduction of Robo localized in growth cone filopodia and Cno forms a complex with Robo in vivo. Moreover, the commissureless (comm) phenotype (i.e., lack of commissures due to constitutive surface presentation of Robo in all neurons) is suppressed in comm, cno double-mutant embryos. Specific genetic interactions between cno, slit, robo, and genes encoding other components of the Robo pathway, such as Neurexin-IV, Syndecan, and Rac GTPases, further confirm that Cno functionally interacts with the Slit-Robo pathway. Our data argue that Cno is a novel regulator of the Slit-Robo signaling pathway, crucial for regulating the subcellular localization of Robo and for transducing its signaling to the actin cytoskeleton during axon guidance at the midline.

  19. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering.

    Science.gov (United States)

    Chiono, Valeria; Tonda-Turo, Chiara

    2015-08-01

    The current trend of peripheral nerve tissue engineering is the design of advanced nerve guidance channels (NGCs) acting as physical guidance for regeneration of nerves across lesions. NGCs should present multifunctional properties aiming to direct the sprouting of axons from the proximal nerve end, to concentrate growth factors secreted by the injured nerve ends, and to reduce the ingrowth of scar tissue into the injury site. A critical aspect in the design of NGCs is conferring them the ability to provide topographic, chemotactic and haptotactic cues that lead to functional nerve regeneration thus increasing the axon growth rate and avoiding or minimizing end-organ (e.g. muscle) atrophy. The present work reviews the recent state of the art in NGCs engineering and defines the external guide and internal fillers structural and compositional requirements that should be satisfied to improve nerve regeneration, especially in the case of large gaps (>2 cm). Techniques for NGCs fabrication were described highlighting the innovative approaches direct to enhance the regeneration of axon stumps compared to current clinical treatments. Furthermore, the possibility to apply stem cells as internal cues to the NGCs was discussed focusing on scaffold properties necessary to ensure cell survival. Finally, the optimized features for NGCs design were summarized showing as multifunctional cues are needed to produce NGCs having improved results in clinics.

  20. A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues.

    Science.gov (United States)

    Joanne Wang, C; Li, Xiong; Lin, Benjamin; Shim, Sangwoo; Ming, Guo-Li; Levchenko, Andre

    2008-02-01

    Neuronal growth cones contain sophisticated molecular machinery precisely regulating their migration in response to complex combinatorial gradients of diverse external cues. The details of this regulation are still largely unknown, in part due to limitations of the currently available experimental techniques. Microfluidic devices have been shown to be capable of generating complex, stable and precisely controlled chemical gradients, but their use in studying growth cone migration has been limited in part due to the effects of shear stress. Here we describe a microfluidics-based turning-assay chip designed to overcome this issue. In addition to generating precise gradients of soluble guidance cues, the chip can also fabricate complex composite gradients of diffusible and surface-bound guidance cues that mimic the conditions the growth cones realistically counter in vivo. Applying this assay to Xenopus embryonic spinal neurons, we demonstrate that the presence of a surface-bound laminin gradient can finely tune the polarity of growth cone responses (repulsion or attraction) to gradients of brain-derived neurotrophic factor (BDNF), with the guidance outcome dependent on the mean BDNF concentration. The flexibility inherent in this assay holds significant potential for refinement of our understanding of nervous system development and regeneration, and can be extended to elucidate other cellular processes involving chemotaxis of shear sensitive cells.

  1. Glia to axon RNA transfer.

    Science.gov (United States)

    Sotelo, José Roberto; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José Roberto; Calliari, Aldo; Cal, Karina; Bresque, Mariana; Dipaolo, Andrés; Farias, Joaquina; Mercer, John A

    2014-03-01

    The existence of RNA in axons has been a matter of dispute for decades. Evidence for RNA and ribosomes has now accumulated to a point at which it is difficult to question, much of the disputes turned to the origin of these axonal RNAs. In this review, we focus on studies addressing the origin of axonal RNAs and ribosomes. The neuronal soma as the source of most axonal RNAs has been demonstrated and is indisputable. However, the surrounding glial cells may be a supplemental source of axonal RNAs, a matter scarcely investigated in the literature. Here, we review the few papers that have demonstrated that glial-to-axon RNA transfer is not only feasible, but likely. We describe this process in both invertebrate axons and vertebrate axons. Schwann cell to axon ribosomes transfer was conclusively demonstrated (Court et al. [2008]: J. Neurosci 28:11024-11029; Court et al. [2011]: Glia 59:1529-1539). However, mRNA transfer still remains to be demonstrated in a conclusive way. The intercellular transport of mRNA has interesting implications, particularly with respect to the integration of glial and axonal function. This evolving field is likely to impact our understanding of the cell biology of the axon in both normal and pathological conditions. Most importantly, if the synthesis of proteins in the axon can be controlled by interacting glia, the possibilities for clinical interventions in injury and neurodegeneration are greatly increased.

  2. Novel Radiopaque UHMWPE Sublaminar Wires in a Growth-Guidance System for the Treatment of Early Onset Scoliosis: Feasibility in a Large Animal Study.

    Science.gov (United States)

    Bogie, R; Roth, Ak; Faber, S; de Jong, Jja; Welting, Tjm; Willems, Pc; Arts, Jj; van Rhijn, Lw

    2014-09-29

    Study Design. In vivo analysis in an ovine model.Objective. To evaluate the feasibility of radiopaque UHMWPE sublaminar wires in a growth-guidance spinal system by assessing stability, biocompatibility and growth potential.Summary of Background Data. Several growth-guidance systems have been developed for the treatment of early onset scoliosis (EOS). The use of gliding pedicle screws and metal sublaminar wires during these procedures can cause metal-on-metal debris formation and neurological deficits. Novel radiopaque UHMWPE wires are introduced to safely facilitate longitudinal growth and provide stability in a growth-guidance system for EOS.Methods. Twelve immature sheep received posterior segmental spinal instrumentation; pedicle screws were inserted at L5 and radiopaque UHWMPE (bismuth trioxide) wires were passed sublaminarly at each level between L3 and T11 and fixed to dual cobalt-chromiun rods. Four age-matched, unoperated animals were evaluated to serve as a control group. Radiographs were taken to measure growth of the instrumented segment. After 24 weeks, the animals were sacrificed and the spines were harvested for histological evaluation and high resolution peripheral quantitative computed tomography (HR-pQCT) analysis.Results. No neurological deficits occurred and all instrumentation remained stable. One animal died from an unknown cause. Substantial growth occurred in the instrumented segments (L5-T11) in the intervention group (27± 2 mm), which was not significantly different to the control group, (30 ± 4mm, p = 0.42). HR-pQCT analysis clearly showed safe routing and fixation of the UHMWPE wires and instrumentation. Despite the noted growth, ectopic bone formation with the formation of bony bridges was observed in all animals. Histology revealed no evidence of chronic inflammation or wear debris.Conclusions. This study shows the first results of radiopaque UHMWPE sublaminar wires as part of a growth guidance spinal system. UHMWPE sublaminar wires

  3. Effects of Allicin on RhoA Activity and Axonal Growth in Neuron-like PC1 2 Cells%蒜素对神经样细胞RhoA活性和轴突生长的影响

    Institute of Scientific and Technical Information of China (English)

    吕润潇; 吴锦辉; 卢春闻; 丁慕晨; 王超; 石志才

    2016-01-01

    Obj ective]To observe the effects of allicin on RhoA activity and axonal growth in neuron-like PC1 2 cells and to explore the relationship between allicin-promoting PC1 2 cells axon growth and RhoA/ROCK signaling activity.[Methods]The effects of Allicin on the growth of PC1 2 cells were detected by MTT assay. The low,medium,and high concentrations of Allicin,which had no effect on the growth of PC1 2 cells,were selected.PC1 2 cells were cultured in medium with LPA to induce the activation of RhoA/ROCK signaling pathway and intervened with low,medium,and high concentrations of Allicin.Western blotting was used to detect the expression of ROCK1,ROCK2,RhoA,NF,synapsin and synaptophysin.[Results]The three Alli-cin concentrations (10 ng/ml,100 ng/ml and 1μg/ml)had no effect on the growth of PC12 cells.The expres-sion of RhoA,ROCK1 and ROCK2 were significantly increased and the expression of NF,synapsin and syn-aptophysin were dramatically reduced in PC1 2 cells treatment with LPA.Allicin could effectively reduced RhoA,ROCK1 and ROCK2 expression and recover the expression of NF,synapsin and synaptophysin.[Con-clusion]Allicin intervention can effectively alleviate RhoA activation and inhibitory effects for axon growth in-duced by LPA.Allicin can promote the growth of axons through inhibiting the activation of RhoA.%【目的】探讨蒜素(Allicin)对神经样 PC12细胞 Rho 亚家族蛋白 A(RhoA)活性和轴突生长的影响。【方法】体外培养神经样PC12细胞,RhoA激动剂溶血磷脂酸(1 ysophosphatidic acid,LPA)诱导 RhoA活化,并使用 Allicin干预,Western blot检测 RhoA、相关卷曲螺旋形成蛋白激酶1(R0ck1)、相关卷曲螺旋形成蛋白激酶2(Rock2)、轴突生长蛋白神经微丝(NF)、突触蛋白(synapsin)、突触素(synaptophysin)表达并比较。【结果】LPA作用诱导 RhoA活化,RhoA、ROCK1、ROCK2过表达,NF、synapsin、synaptophysin 表达显著降低。Allicin干预处理后,RhoA 活化被抑制,RhoA、ROCK1、ROCK2

  4. Npn-1 contributes to axon-axon interactions that differentially control sensory and motor innervation of the limb.

    Directory of Open Access Journals (Sweden)

    Rosa-Eva Huettl

    2011-02-01

    Full Text Available The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1 in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG, we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs.

  5. Npn-1 contributes to axon-axon interactions that differentially control sensory and motor innervation of the limb.

    Science.gov (United States)

    Huettl, Rosa-Eva; Soellner, Heidi; Bianchi, Elisa; Novitch, Bennett G; Huber, Andrea B

    2011-02-01

    The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1) in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG), we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs.

  6. Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane.

    Science.gov (United States)

    Vitriol, Eric A; Zheng, James Q

    2012-03-22

    Growth cones, found at the tip of axonal projections, are the sensory and motile organelles of developing neurons that enable axon pathfinding and target recognition for precise wiring of the neural circuitry. To date, many families of conserved guidance molecules and their corresponding receptors have been identified that work in space and time to ensure billions of axons to reach their targets. Research in the past two decades has also gained significant insight into the ways in which growth cones translate extracellular signals into directional migration. This review aims to examine new progress toward understanding the cellular mechanisms underlying directional motility of the growth cone and to discuss questions that remain to be addressed. Specifically, we will focus on the cellular ensemble of cytoskeleton, adhesion, and membrane and examine how the intricate interplay between these processes orchestrates the directed movement of growth cones.

  7. Developmental guidance of the retroflex tract at its bending point involves Robo1-Slit2-mediated floor plate repulsion.

    Science.gov (United States)

    Moreno-Bravo, Juan A; Martinez-Lopez, Jesus E; Madrigal, M Pilar; Kim, Minkyung; Mastick, Grant S; Lopez-Bendito, Guillermina; Martinez, Salvador; Puelles, Eduardo

    2016-01-01

    The retroflex tract contains medial habenula efferents that target the hindbrain interpeduncular complex and surrounding areas. This tract displays a singular course. Initially, habenular axons extend ventralwards in front of the pretectum until they reach the basal plate. Next, they avoid crossing the local floor plate, sharply changing course caudalwards (the retroflexion alluded by the tract name) and navigate strictly antero-posteriorly across basal pretectum, midbrain and isthmus. Once they reach rhombomere 1, the habenular axons criss-cross the floor plate several times within the interpeduncular nuclear complex as they innervate it. Here we described the timing and details of growth phenomena as these axons navigate to their target. The first dorsoventral course apparently obeys Ntn1 attraction. We checked the role of local floor plate signaling in the decision to avoid the thalamic floor plate and bend caudalwards. Analyzing the altered floor and basal plates of Gli2 knockout mice, we found a contralateral projection of most habenular axons, plus ulterior bizarre navigation rostralwards. This crossing phenotype was due to a reduced expression of Slit repulsive cues, suggesting involvement of the floor-derived Robo-Slit system in the normal guidance of this tract. Using Slit and Robo mutant mice, open neural tube and co-culture assays, we determined that Robo1-Slit2 interaction is specifically required for impeding that medial habenular axons cross the thalamic floor plate. This pathfinding mechanism is essential to establish the functionally important habenulo-interpeduncular connection.

  8. In vivo testing of a 3D bifurcating microchannel scaffold inducing separation of regenerating axon bundles in peripheral nerves

    Science.gov (United States)

    Stoyanova, Irina I.; van Wezel, Richard J. A.; Rutten, Wim L. C.

    2013-12-01

    Artificial nerve guidance channels enhance the regenerative effectiveness in an injured peripheral nerve but the existing design so far has been limited to basic straight tubes simply guiding the growth to bridge the gap. Hence, one of the goals in development of more effective neuroprostheses is to create bidirectional highly selective neuro-electronic interface between a prosthetic device and the severed nerve. A step towards improving selectivity for both recording and stimulation have been made with some recent in vitro studies which showed that three-dimensional (3D) bifurcating microchannels can separate neurites growing on a planar surface and bring them into contact with individual electrodes. Since the growing axons in vivo have the innate tendency to group in bundles surrounded by connective tissue, one of the big challenges in neuro-prosthetic interface design is how to overcome it. Therefore, we performed experiments with 3D bifurcating guidance scaffolds implanted in the sciatic nerve of rats to test if this new channel architecture could trigger separation pattern of ingrowth also in vivo. Our results showed that this new method enabled the re-growth of neurites into channels with gradually diminished width (80, 40 and 20 µm) and facilitated the separation of the axonal bundles with 91% success. It seems that the 3D bifurcating scaffold might contribute towards conveying detailed neural control and sensory feedback to users of prosthetic devices, and thus could improve the quality of their daily life.

  9. Discoidin domain receptors guide axons along longitudinal tracts in C. elegans.

    Science.gov (United States)

    Unsoeld, Thomas; Park, Ja-On; Hutter, Harald

    2013-02-01

    Discoidin domain receptors are a family of receptor tyrosine kinases activated by collagens. Here we characterize the role of the two discoidin domain receptors, ddr-1 and ddr-2, of the nematode C. elegans during nervous system development. ddr-2 mutant animals exhibit axon guidance defects in major longitudinal tracts most prominently in the ventral nerve cord. ddr-1 mutants show no significant phenotype on their own but significantly enhance guidance defects of ddr-2 in double mutants. ddr-1 and ddr-2 GFP-reporter constructs are expressed in neurons with axons in all affected nerve tracts. DDR-1 and DDR-2 GFP fusion proteins localize to axons. DDR-2 is required cell-autonomously in the PVPR neuron for the guidance of the PVPR pioneer axon, which establishes the left ventral nerve cord tract and serves as substrate for later outgrowing follower axons. Our results provide the first insight on discoidin domain receptor function in invertebrates and establish a novel role for discoidin domain receptors in axon navigation and axon tract formation.

  10. Unc5B associates with LARG to mediate the action of repulsive guidance molecule.

    Science.gov (United States)

    Hata, Katsuhiko; Kaibuchi, Kozo; Inagaki, Shinobu; Yamashita, Toshihide

    2009-03-09

    Neuronal axons are guided by attractive and repulsive cues in their local environment. Because the repulsive guidance molecule A (RGMa) was originally identified as an axon repellent in the visual system, diverse functions in the developing and adult central nervous system have been ascribed to it. RGMa binding to its receptor neogenin induces RhoA activation, leading to inhibitory/repulsive behavior and collapse of the neuronal growth cone. However, the precise mechanisms that regulate RhoA activation are poorly understood. In this study, we show that Unc5B, a member of the netrin receptor family, interacts with neogenin as a coreceptor for RGMa. Moreover, leukemia-associated guanine nucleotide exchange factor (LARG) associates with Unc5B to transduce the RhoA signal. Focal adhesion kinase (FAK) is involved in RGMa-induced tyrosine phosphorylation of LARG as well as RhoA activation. These findings uncover the molecular basis for diverse functions mediated by RGMa.

  11. Chronic excitotoxin-induced axon degeneration in a compartmented neuronal culture model

    Directory of Open Access Journals (Sweden)

    Katherine A Hosie

    2012-02-01

    Full Text Available Glutamate excitotoxicity is a major pathogenic process implicated in many neurodegenerative conditions, including AD (Alzheimer's disease and following traumatic brain injury. Occurring predominantly from over-stimulation of ionotropic glutamate receptors located along dendrites, excitotoxic axonal degeneration may also occur in white matter tracts. Recent identification of axonal glutamate receptor subunits within axonal nanocomplexes raises the possibility of direct excitotoxic effects on axons. Individual neuronal responses to excitotoxicity are highly dependent on the complement of glutamate receptors expressed by the cell, and the localization of the functional receptors. To enable isolation of distal axons and targeted excitotoxicity, murine cortical neuron cultures were prepared in compartmented microfluidic devices, such that distal axons were isolated from neuronal cell bodies. Within the compartmented culture system, cortical neurons developed to relative maturity at 11 DIV (days in vitro as demonstrated by the formation of dendritic spines and clustering of the presynaptic protein synaptophysin. The isolated distal axons retained growth cone structures in the absence of synaptic targets, and expressed glutamate receptor subunits. Glutamate treatment (100 μM to the cell body chamber resulted in widespread degeneration within this chamber and degeneration of distal axons in the other chamber. Glutamate application to the distal axon chamber triggered a lesser degree of axonal degeneration without degenerative changes in the untreated somal chamber. These data indicate that in addition to current mechanisms of indirect axonal excitotoxicity, the distal axon may be a primary target for excitotoxicity in neurodegenerative conditions.

  12. Expression of Neurotrophic Factors, Apoptosis Related Factors and Axon Guidance Factors in Rat Neural Tube Defects%神经营养因子、凋亡相关因子和轴突导向因子在大鼠神经管畸形发育中的表达

    Institute of Scientific and Technical Information of China (English)

    曾洪艳; 李力燕; 郭小兵; 高维; 赵晓姝; 王廷华

    2012-01-01

    Objective To observe the changes in the expression of the neurotrophic factors (NT-3, CNTF, IGF-1 and PDGF) , apoptosis related factors ( Caspase-3 and Bcl-xl) and axon guidance factor (Netrin) in rat neural tube defects. Methods The pregnancy rats were divided into normal ( Nothing was done for the peragnancy rats in normal group) , control (olive was intragastic administrated by 50mg per kilogram in E10d peragnancy day one time in contral group ) and experimental groups (All-trans Retinoic Acid (ATRA) was dissolved in the olive, ATRA was intragastric administrated by 50mg per kilogram in ElOd peragnancy day one time) randomly. Each group was subdivide into E15d, E16d, E17d, E18d, E19d and E20d groups, and five anmals in each group were used for Rever Transcription Poly-merase Chain Reaction (RT-PCR) experiment. Results 1. In experiment group, dead embryo, cranical meningocele, no tail deformities, and nondevelpoment of the hind limbs occurred in about 66% embryo. 2. The expression of neurotrophic factors (NT-3, CNTF, IGF-1 and PDGF) , apoptosis related factors (Caspase-3 and Bcl-xl) and axon guidance factor (Netrin) was found in normal and neural tube defects rats on E15d ~ E20d. The expression of IGF-1 had a decreasing tendency in neural tube defects rats on E16d, and had a fluctuation in experiment groups. The expression of CNTF was downregulated in experiment groups on E17d, compared with control group. There were statistically significant differences in the above changes. The expression of Caspase-3, Bcl-xl, and Netrin had no statistically significant changes. Conclusions 1. The neurotrophic factors ( NT-3, CNTF, IGF-1 and PDGF) , apoptosis related factors (Caspase-3 and Bcl-xl) and axon guidance factor (Netrin) play important roles in the development of neural tubes of normal and defected rats on E15d ~ E20d. 2. The expression of IGF-1 and CNTF mRNA in experimental group is downregulated in experiment groups, compared with the normal control group

  13. Retinoic acid signaling in axonal regeneration

    Directory of Open Access Journals (Sweden)

    Radhika ePuttagunta

    2012-01-01

    Full Text Available Following an acute central nervous system injury, axonal regeneration and functional recovery are extremely limited. This is due to an extrinsic inhibitory growth environment and the lack of intrinsic growth competence. Retinoic acid (RA signaling, essential in developmental dorsoventral patterning and specification of spinal motor neurons, has been shown through its receptor, the transcription factor RA receptor β2 (RARß2, to induce axonal regeneration following spinal cord injury (SCI. Recently, it has been shown that in dorsal root ganglia neurons, cAMP levels were greatly increased by lentiviral RARβ2 expression and contributed to neurite outgrowth. Moreover, RARβ agonists, in cerebellar granule neurons and in the brain in vivo, induced phosphoinositide 3-kinase dependent phosphorylation of AKT that was involved in RARβ-dependent neurite outgrowth. More recently, RA-RARß pathways were shown to directly transcriptionally repress a member of the inhibitory Nogo receptor complex, Lingo-1, under an axonal growth inhibitory environment in vitro as well as following spinal injury in vivo. This perspective focuses on these newly discovered molecular mechanisms and future directions in the field.

  14. Slit-Dependent Endocytic Trafficking of the Robo Receptor Is Required for Son of Sevenless Recruitment and Midline Axon Repulsion.

    Science.gov (United States)

    Chance, Rebecca K; Bashaw, Greg J

    2015-09-01

    Understanding how axon guidance receptors are activated by their extracellular ligands to regulate growth cone motility is critical to learning how proper wiring is established during development. Roundabout (Robo) is one such guidance receptor that mediates repulsion from its ligand Slit in both invertebrates and vertebrates. Here we show that endocytic trafficking of the Robo receptor in response to Slit-binding is necessary for its repulsive signaling output. Dose-dependent genetic interactions and in vitro Robo activation assays support a role for Clathrin-dependent endocytosis, and entry into both the early and late endosomes as positive regulators of Slit-Robo signaling. We identify two conserved motifs in Robo's cytoplasmic domain that are required for its Clathrin-dependent endocytosis and activation in vitro; gain of function and genetic rescue experiments provide strong evidence that these trafficking events are required for Robo repulsive guidance activity in vivo. Our data support a model in which Robo's ligand-dependent internalization from the cell surface to the late endosome is essential for receptor activation and proper repulsive guidance at the midline by allowing recruitment of the downstream effector Son of Sevenless in a spatially constrained endocytic trafficking compartment.

  15. Slit-Dependent Endocytic Trafficking of the Robo Receptor Is Required for Son of Sevenless Recruitment and Midline Axon Repulsion.

    Directory of Open Access Journals (Sweden)

    Rebecca K Chance

    2015-09-01

    Full Text Available Understanding how axon guidance receptors are activated by their extracellular ligands to regulate growth cone motility is critical to learning how proper wiring is established during development. Roundabout (Robo is one such guidance receptor that mediates repulsion from its ligand Slit in both invertebrates and vertebrates. Here we show that endocytic trafficking of the Robo receptor in response to Slit-binding is necessary for its repulsive signaling output. Dose-dependent genetic interactions and in vitro Robo activation assays support a role for Clathrin-dependent endocytosis, and entry into both the early and late endosomes as positive regulators of Slit-Robo signaling. We identify two conserved motifs in Robo's cytoplasmic domain that are required for its Clathrin-dependent endocytosis and activation in vitro; gain of function and genetic rescue experiments provide strong evidence that these trafficking events are required for Robo repulsive guidance activity in vivo. Our data support a model in which Robo's ligand-dependent internalization from the cell surface to the late endosome is essential for receptor activation and proper repulsive guidance at the midline by allowing recruitment of the downstream effector Son of Sevenless in a spatially constrained endocytic trafficking compartment.

  16. Evidence for the Role of MAP1B in Axon Formation

    Science.gov (United States)

    Gonzalez-Billault, Christian; Avila, Jesus; Cáceres, Alfredo

    2001-01-01

    Cultured neurons obtained from a hypomorphous MAP1B mutant mouse line display a selective and significant inhibition of axon formation that reflects a delay in axon outgrowth and a reduced rate of elongation. This phenomenon is paralleled by decreased microtubule formation and dynamics, which is dramatic at the distal axonal segment, as well as in growth cones, where the more recently assembled microtubule polymer normally predominates. These neurons also have aberrant growth cone formation and increased actin-based protrusive activity. Taken together, this study provides direct evidence showing that by promoting microtubule dynamics and regulating cytoskeletal organization MAP1B has a crucial role in axon formation. PMID:11452005

  17. Morphogenesis of the C. elegans Intestine Involves Axon Guidance Genes.

    Directory of Open Access Journals (Sweden)

    Alparsan Asan

    2016-04-01

    Full Text Available Genetic and molecular studies have provided considerable insight into how various tissue progenitors are specified in early embryogenesis, but much less is known about how those progenitors create three-dimensional tissues and organs. The C. elegans intestine provides a simple system for studying how a single progenitor, the E blastomere, builds an epithelial tube of 20 cells. As the E descendants divide, they form a primordium that transitions between different shapes over time. We used cell contours, traced from confocal optical z-stacks, to build a 3D graphic reconstruction of intestine development. The reconstruction revealed several new aspects of morphogenesis that extend and clarify previous observations. The first 8 E descendants form a plane of four right cells and four left cells; the plane arises through oriented cell divisions and VANG-1/Van Gogh-dependent repositioning of any non-planar cells. LIN-12/Notch signaling affects the left cells in the E8 primordium, and initiates later asymmetry in cell packing. The next few stages involve cell repositioning and intercalation events that shuttle cells to their final positions, like shifting blocks in a Rubik's cube. Repositioning involves breaking and replacing specific adhesive contacts, and some of these events involve EFN-4/Ephrin, MAB-20/semaphorin-2a, and SAX-3/Robo. Once cells in the primordium align along a common axis and in the correct order, cells at the anterior end rotate clockwise around the axis of the intestine. The anterior rotation appears to align segments of the developing lumen into a continuous structure, and requires the secreted ligand UNC-6/netrin, the receptor UNC-40/DCC, and an interacting protein called MADD-2. Previous studies showed that rotation requires a second round of LIN-12/Notch signaling in cells on the right side of the primordium, and we show that MADD-2-GFP appears to be downregulated in those cells.

  18. Morphogenesis of the C. elegans Intestine Involves Axon Guidance Genes.

    Science.gov (United States)

    Asan, Alparsan; Raiders, Stephan A; Priess, James R

    2016-04-01

    Genetic and molecular studies have provided considerable insight into how various tissue progenitors are specified in early embryogenesis, but much less is known about how those progenitors create three-dimensional tissues and organs. The C. elegans intestine provides a simple system for studying how a single progenitor, the E blastomere, builds an epithelial tube of 20 cells. As the E descendants divide, they form a primordium that transitions between different shapes over time. We used cell contours, traced from confocal optical z-stacks, to build a 3D graphic reconstruction of intestine development. The reconstruction revealed several new aspects of morphogenesis that extend and clarify previous observations. The first 8 E descendants form a plane of four right cells and four left cells; the plane arises through oriented cell divisions and VANG-1/Van Gogh-dependent repositioning of any non-planar cells. LIN-12/Notch signaling affects the left cells in the E8 primordium, and initiates later asymmetry in cell packing. The next few stages involve cell repositioning and intercalation events that shuttle cells to their final positions, like shifting blocks in a Rubik's cube. Repositioning involves breaking and replacing specific adhesive contacts, and some of these events involve EFN-4/Ephrin, MAB-20/semaphorin-2a, and SAX-3/Robo. Once cells in the primordium align along a common axis and in the correct order, cells at the anterior end rotate clockwise around the axis of the intestine. The anterior rotation appears to align segments of the developing lumen into a continuous structure, and requires the secreted ligand UNC-6/netrin, the receptor UNC-40/DCC, and an interacting protein called MADD-2. Previous studies showed that rotation requires a second round of LIN-12/Notch signaling in cells on the right side of the primordium, and we show that MADD-2-GFP appears to be downregulated in those cells.

  19. Modality-Specific Axonal Regeneration: Towards selective regenerative neural interfaces

    Directory of Open Access Journals (Sweden)

    Parisa eLotfi

    2011-10-01

    Full Text Available Regenerative peripheral nerve interfaces have been proposed as viable alternatives for the natural control of robotic prosthetic devices. However, sensory and motor axons at the neural interface are of mixed submodality types, which difficult the specific recording from motor axons and the eliciting of precise sensory modalities through selective stimulation. Here we evaluated the possibility of using type-specific neurotrophins to preferentially entice the regeneration of defined axonal populations from transected peripheral nerves into separate compartments. Segregation of mixed sensory fibers from dorsal root ganglion neurons was evaluated in vitro by compartmentalized diffusion delivery of nerve growth factor (NGF and neurotrophin-3 (NT-3, to preferentially entice the growth of TrkA+ nociceptive and TrkC+ proprioceptive subsets of sensory neurons, respectively. The average axon length in the NGF channel increased 2.5 fold compared to that in saline or NT-3, whereas the number of branches increased 3 fold in the NT-3 channels. These results were confirmed using a 3-D Y-shaped in vitro assay showing that the arm containing NGF was able to entice a 5-fold increase in axonal length of unbranched fibers. To address if such segregation can be enticed in vivo, a Y-shaped tubing was used to allow regeneration of the transected adult rat sciatic nerve into separate compartments filled with either NFG or NT-3. A significant increase in the number of CGRP+ pain fibers were attracted towards the sural nerve, while N-52+ large diameter axons were observed in the tibial and NT-3 compartments. This study demonstrates the guided enrichment of sensory axons in specific regenerative chambers, and supports the notion that neurotrophic factors can be used to segregate sensory and perhaps motor axons in separate peripheral interfaces.

  20. Promoting Axon Regeneration in the Adult CNS by Modulation of the PTEN/mTOR Pathway

    OpenAIRE

    2008-01-01

    The failure of axons to regenerate is a major obstacle for functional recovery after central nervous system (CNS) injury. Removing extracellular inhibitory molecules results in limited axon regeneration in vivo. To test for the role of intrinsic impediments to axon regrowth, we analyzed cell growth control genes using a virus-assisted in vivo conditional knockout approach. Deletion of PTEN (phosphatase and tensin homolog), a negative regulator of the mammalian target of rapamycin (mTOR) pathw...

  1. Transfer of vesicles from Schwann cell to axon: a novel mechanism of communication in the peripheral nervous system

    Directory of Open Access Journals (Sweden)

    María Alejandra eLopez-Verrilli

    2012-06-01

    Full Text Available Schwann cells (SCs are the glial component of the peripheral nervous system, with essential roles during development and maintenance of axons, as well as during regenerative processes after nerve injury. SCs increase conduction velocities by myelinating axons, regulate synaptic activity at presynaptic nerve terminals and are a source of trophic factors to neurons. Thus, development and maintenance of peripheral nerves are crucially dependent on local signalling between SCs and axons. In addition to the classic mechanisms of intercellular signalling, the possibility of communication through secreted vesicles has been poorly explored to date. Interesting recent findings suggest the occurrence of lateral transfer mediated by vesicles from glial cells to axons that could have important roles in axonal growth and axonal regeneration. Here, we review the role of vesicular transfer from SCs to axons and propose the benefits of this means in supporting neuronal and axonal maintenance and regeneration after nerve damage.

  2. Polarized targeting of L1-CAM regulates axonal and dendritic bundling in vitro.

    Science.gov (United States)

    Barry, Joshua; Gu, Yuanzheng; Gu, Chen

    2010-11-01

    Proper axonal and dendritic bundling is essential for the establishment of neuronal connections and the synchronization of synaptic inputs, respectively. Cell adhesion molecules of the L1-CAM (L1-cell adhesion molecule) family regulate axon guidance and fasciculation, neuron migration, dendrite morphology, and synaptic plasticity. It remains unclear how these molecules play so many different roles. Here we show that polarized axon-dendrite targeting of an avian L1-CAM protein, NgCAM (neuron-glia cell adhesion molecule), can regulate the switch of bundling of the two major compartments of rat hippocampal neurons. Using a new in-vitro model for studying neurite-neurite interactions, we found that expressed axonal NgCAM induced robust axonal bundling via the trans-homophilic interaction of immunoglobulin domains. Interestingly, dendritic bundling was induced by the dendritic targeting of NgCAM, caused by either deleting its fibronectin repeats or blocking activities of protein kinases. Consistent with the NgCAM results, expression of mouse L1-CAM also induced axonal bundling and blocking kinase activities disrupted its axonal targeting. Furthermore, the trans-homophilic interaction stabilized the bundle formation, probably through recruiting NgCAM proteins to contact sites and promoting guided axon outgrowth. Taken together, our results suggest that precise localization of L1-CAM is important for establishing proper cell-cell contacts in neural circuits.

  3. RabGDI controls axonal midline crossing by regulating Robo1 surface expression

    Directory of Open Access Journals (Sweden)

    Philipp Melanie

    2012-11-01

    Full Text Available Abstract Background Axons navigate to their future synaptic targets with the help of choice points, intermediate targets that express axon guidance cues. Once they reach a choice point, axons need to switch their response from attraction to repulsion in order to move on with the next stage of their journey. The mechanisms underlying the change in axonal responsiveness are poorly understood. Commissural axons become sensitive to the repulsive activity of Slits when they cross the ventral midline of the CNS. Responsiveness to Slits depends on surface expression of Robo receptors. In Drosophila, Commissureless (Comm plays a crucial regulatory role in midline crossing by keeping Robo levels low on precommissural axons. Interestingly, to date no vertebrate homolog of comm has been identified. Robo3/Rig1 has been shown to control Slit sensitivity before the midline, but without affecting Robo1 surface expression. Results We had identified RabGDI, a gene linked to human mental retardation and an essential component of the vesicle fusion machinery, in a screen for differentially expressed floor-plate genes. Downregulation of RabGDI by in ovo RNAi caused commissural axons to stall in the floor plate, phenocopying the effect observed after downregulation of Robo1. Conversely, premature expression of RabGDI prevented commissural axons from entering the floor plate. Furthermore, RabGDI triggered Robo1 surface expression in cultured commissural neurons. Taken together, our results identify RabGDI as a component of the switching mechanism that is required for commissural axons to change their response from attraction to repulsion at the intermediate target. Conclusion RabGDI takes over the functional role of fly Comm by regulating the surface expression of Robo1 on commissural axons in vertebrates. This in turn allows commissural axons to switch from attraction to repulsion at the midline of the spinal cord.

  4. Midbrain dopaminergic axons are guided longitudinally through the diencephalon by Slit/Robo signals.

    Science.gov (United States)

    Dugan, James P; Stratton, Andrea; Riley, Hilary P; Farmer, W Todd; Mastick, Grant S

    2011-01-01

    Dopaminergic neurons from the ventral mesencephalon/diencephalon (mesodiencephalon) form vital pathways constituting the majority of the brain's dopamine systems. Mesodiencephalic dopaminergic (mdDA) neurons extend longitudinal projections anteriorly through the diencephalon, ascending toward forebrain targets. The mechanisms by which mdDA axons initially navigate through the diencephalon are poorly understood. Recently the Slit family of secreted axon guidance proteins, and their Robo receptors, have been identified as important guides for descending longitudinal axons. To test the potential roles of Slit/Robo guidance in ascending trajectories, we examined tyrosine hydroxylase-positive (TH+) projections from mdDA neurons in mutant mouse embryos. We found that mdDA axons grow out of and parallel to Slit-positive ventral regions within the diencephalon, and that subsets of the mdDA axons likely express Robo1 and possibly also Robo2. Slit2 was able to directly inhibit TH axon outgrowth in explant co-culture assays. The mdDA axons made significant pathfinding errors in Slit1/2 and Robo1/2 knockout mice, including spreading out in the diencephalon to form a wider tract. The wider tract resulted from a combination of invasion of the ventral midline, consistent with Slit repulsion, but also axons wandering dorsally, away from the ventral midline. Aberrant dorsal trajectories were prominent in Robo1 and Robo1/2 knockout mice, suggesting that an aspect of Robo receptor function is Slit-independent. These results indicate that Slit/Robo signaling is critical during the initial establishment of dopaminergic pathways, with roles in the dorsoventral positioning and precise pathfinding of these ascending longitudinal axons.

  5. Intra-axonal protein synthesis - a new target for neural repair?

    Directory of Open Access Journals (Sweden)

    Jeffery L Twiss

    2016-01-01

    Full Text Available Although initially argued to be a feature of immature neurons with incomplete polarization, there is clear evidence that neurons in the peripheral nervous system retain the capacity for intra-axonal protein synthesis well into adulthood. This localized protein synthesis has been shown to contribute to injury signaling and axon regeneration in peripheral nerves. Recent works point to potential for protein synthesis in axons of the vertebrate central nervous system. mRNAs and protein synthesis machinery have now been documented in lamprey, mouse, and rat spinal cord axons. Intra-axonal protein synthesis appears to be activated in adult vertebrate spinal cord axons when they are regeneration-competent. Rat spinal cord axons regenerating into a peripheral nerve graft contain mRNAs and markers of activated translational machinery. Indeed, levels of some growth-associated mRNAs in these spinal cord axons are comparable to the regenerating sciatic nerve. Markers of active translation tend to decrease when these axons stop growing, but can be reactivated by a second axotomy. These emerging observations raise the possibility that mRNA transport into and translation within axons could be targeted to facilitate regeneration in both the peripheral and central nervous systems.

  6. Intra-axonal protein synthesis - a new target for neural repair?

    Science.gov (United States)

    Twiss, Jeffery L; Kalinski, Ashley L; Sachdeva, Rahul; Houle, John D

    2016-09-01

    Although initially argued to be a feature of immature neurons with incomplete polarization, there is clear evidence that neurons in the peripheral nervous system retain the capacity for intra-axonal protein synthesis well into adulthood. This localized protein synthesis has been shown to contribute to injury signaling and axon regeneration in peripheral nerves. Recent works point to potential for protein synthesis in axons of the vertebrate central nervous system. mRNAs and protein synthesis machinery have now been documented in lamprey, mouse, and rat spinal cord axons. Intra-axonal protein synthesis appears to be activated in adult vertebrate spinal cord axons when they are regeneration-competent. Rat spinal cord axons regenerating into a peripheral nerve graft contain mRNAs and markers of activated translational machinery. Indeed, levels of some growth-associated mRNAs in these spinal cord axons are comparable to the regenerating sciatic nerve. Markers of active translation tend to decrease when these axons stop growing, but can be reactivated by a second axotomy. These emerging observations raise the possibility that mRNA transport into and translation within axons could be targeted to facilitate regeneration in both the peripheral and central nervous systems.

  7. Intra-axonal protein synthesis - a new target for neural repair?

    Institute of Scientific and Technical Information of China (English)

    Jeffery L Twiss; Ashley L Kalinski; Rahul Sachdeva; John D Houle

    2016-01-01

    Although initially argued to be a feature of immature neurons with incomplete polarization, there is clear evidence that neurons in the peripheral nervous system retain the capacity for intra-axonal protein synthe-sis well into adulthood. This localized protein synthesis has been shown to contribute to injury signaling and axon regeneration in peripheral nerves. Recent works point to potential for protein synthesis in axons of the vertebrate central nervous system. mRNAs and protein synthesis machinery have now been docu-mented in lamprey, mouse, and rat spinal cord axons. Intra-axonal protein synthesis appears to be activated in adult vertebrate spinal cord axons when they are regeneration-competent. Rat spinal cord axons regen-erating into a peripheral nerve graft contain mRNAs and markers of activated translational machinery. Indeed, levels of some growth-associated mRNAs in these spinal cord axons are comparable to the regen-erating sciatic nerve. Markers of active translation tend to decrease when these axons stop growing, but can be reactivated by a second axotomy. These emerging observations raise the possibility that mRNA transport into and translation within axons could be targeted to facilitate regeneration in both the peripheral and central nervous systems.

  8. Collagen containing neurotrophin 3 (NT 3) attracts regrowing injured corticospinal axons in the adult rat spinal cord and promotes partial functional recovery

    NARCIS (Netherlands)

    Gispen, W.H.; Houweling, D.A.; Lankhorst, A.J.; Bär, P.R; Joosten, E.A.J.

    1998-01-01

    During development, neurotrophic factors play an important role in the guidance and outgrowth of axons. Our working hypothesis is that neurotrophic factors involved in the development of axons of a particular CNS tract are among the most promising candidates for stimulating and directing the regrowt

  9. Coculture of elongated neuron axon with poly (D, L-lactide-co-glycolide) biomembrane in vitro

    Institute of Scientific and Technical Information of China (English)

    程飚; 陈峥嵘

    2004-01-01

    Objective: To elongate human nerve axon in culture and search for suitable support matrices for peripheral nervous system transplantation.Methods: Human embryo cortical neuronal cells,seeded on poly ( D, L-lactide-co-glycolide ) ( PLGA )membrane scaffolds, were elongated with a self-made neuro-axon extending device. The growth and morphological changes of neuron axons were observed to measure axolemmal permeability after elongation.Neurofilament protein was stained by immunohistochemical technique.Results: Human embryo neuron axon could be elongated and cultured on the PLGA membrane and retain their normal form and function.Conclusions: Three dimensional scaffolds with elongated neuron axon have the basic characteristics of artificial nerves, indicating a fundemental theory of nerve repair with elongated neuron axon.

  10. Motor neuron synapse and axon defects in a C. elegans alpha-tubulin mutant.

    Directory of Open Access Journals (Sweden)

    Renee Baran

    Full Text Available Regulation of microtubule dynamics underlies many fundamental cellular mechanisms including cell division, cell motility, and transport. In neurons, microtubules play key roles in cell migration, axon outgrowth, control of axon and synapse growth, and the regulated transport of vesicles and structural components of synapses. Loss of synapse and axon integrity and disruption of axon transport characterize many neurodegenerative diseases. Recently, mutations that specifically alter the assembly or stability of microtubules have been found to directly cause neurodevelopmental defects or neurodegeneration in vertebrates. We report here the characterization of a missense mutation in the C-terminal domain of C. elegans alpha-tubulin, tba-1(ju89, that disrupts motor neuron synapse and axon development. Mutant ju89 animals exhibit reduction in the number and size of neuromuscular synapses, altered locomotion, and defects in axon extension. Although null mutations of tba-1 show a nearly wild-type pattern, similar axon outgrowth defects were observed in animals lacking the beta-tubulin TBB-2. Genetic analysis reveals that tba-1(ju89 affects synapse development independent of its role in axon outgrowth. tba-1(ju89 is an altered function allele that most likely perturbs interactions between TBA-1 and specific microtubule-associated proteins that control microtubule dynamics and transport of components needed for synapse and axon growth.

  11. Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Rahul Sachdeva

    2016-01-01

    Full Text Available Intra-axonal localization of mRNAs and protein synthesis machinery (PSM endows neurons with the capacity to generate proteins locally, allowing precise spatiotemporal regulation of the axonal response to extracellular stimuli. A number of studies suggest that this local translation is a promising target to enhance the regenerative capacity of damaged axons. Using a model of central nervous system (CNS axons regenerating into intraspinal peripheral nerve grafts (PNGs we established that adult regenerating CNS axons contain several different mRNAs and protein synthetic machinery (PSM components in vivo. After lower thoracic level spinal cord transection, ascending sensory axons regenerate into intraspinal PNGs but axon growth is stalled when they reach the distal end of the PNG (3 versus 7 weeks after grafting, resp.. By immunofluorescence with optical sectioning of axons by confocal microscopy, the total and phosphorylated forms of PSMs are significantly lower in stalled compared with actively regenerating axons. Reinjury of these stalled axons increased axonal localization of the PSM proteins, indicative of possible priming for a subcellular response to axotomy. These results suggest that axons downregulate protein synthetic capacity as they cease growing, yet they retain the ability to upregulate PSM after a second injury.

  12. Platelet-derived growth factor delays oligodendrocyte differentiation and axonal myelination in vivo in the anterior medullary velum of the developing rat.

    Science.gov (United States)

    Butt, A M; Hornby, M F; Kirvell, S; Berry, M

    1997-06-15

    The AA dimeric form of platelet-derived growth factor (PDGF-AA) is implicated in the differentiation of cells of the oligodendrocyte lineage, which express PDGF receptors of the alpha subunit type (PDGF-alphaR). In the present study, we show that a single injection of PDGF-AA into the cerebrospinal fluid of neonatal rats delays oligodendrocyte differentiation and interrupts the progress of myelination in the anterior medullary velum (AMV), a white matter tract roofing the IVth ventricle of the brain. PDGF-AA or saline was injected intrathecally in postnatal day (P) 7 rats, and the AMV was subsequently removed and immunolabelled with the oligodendrocyte-specific antibody Rip, at P9, P12, and P21, corresponding to postinjection days (PID) 2, 5, and 14. At P9 (PID2), myelination was retarded in PDGF-AA-treated rats as opposed to saline-treated controls but progressed rapidly after P12 (PID5). Quantification supported the qualitative observations that PDGF-AA mediated an acute decrease in the number of Rip+ oligodendrocytes at P9-12, which largely recovered by P21, suggesting that PDGF-AA may have delayed recruitment of myelinating oligodendrocytes. However, the definitive number of Rip+ oligodendrocytes in the AMV was not increased, suggesting that its action as a promoter of early oligodendrocyte survival may not ultimately affect the definitive number of myelinating oliogdendrocytes in vivo. We discuss the possibilities that excess PDGF-AA may have acted on early oligodendrocytes (precursors or preoligodendrocytes) to either (1) delay their differentiation by maintaining them in the cell cycle or (2) accelerate their differentiation, which may result in premature cell death in the absence of synchronised survival signals. This study supports a role for PDGF-AA in the timing of oligodendrocyte differentiation in vivo, as has been shown in vitro.

  13. A Drosophila homolog of cyclase-associated proteins collaborates with the Abl tyrosine kinase to control midline axon pathfinding.

    Science.gov (United States)

    Wills, Zachary; Emerson, Mark; Rusch, Jannette; Bikoff, Jay; Baum, Buzz; Perrimon, Norbert; Van Vactor, David

    2002-11-14

    We demonstrate that Drosophila capulet (capt), a homolog of the adenylyl cyclase-associated protein that binds and regulates actin in yeast, associates with Abl in Drosophila cells, suggesting a functional relationship in vivo. We find a robust and specific genetic interaction between capt and Abl at the midline choice point where the growth cone repellent Slit functions to restrict axon crossing. Genetic interactions between capt and slit support a model where Capt and Abl collaborate as part of the repellent response. Further support for this model is provided by genetic interactions that both capt and Abl display with multiple members of the Roundabout receptor family. These studies identify Capulet as part of an emerging pathway linking guidance signals to regulation of cytoskeletal dynamics and suggest that the Abl pathway mediates signals downstream of multiple Roundabout receptors.

  14. Transcellular degradation of axonal mitochondria.

    Science.gov (United States)

    Davis, Chung-ha O; Kim, Keun-Young; Bushong, Eric A; Mills, Elizabeth A; Boassa, Daniela; Shih, Tiffany; Kinebuchi, Mira; Phan, Sebastien; Zhou, Yi; Bihlmeyer, Nathan A; Nguyen, Judy V; Jin, Yunju; Ellisman, Mark H; Marsh-Armstrong, Nicholas

    2014-07-01

    It is generally accepted that healthy cells degrade their own mitochondria. Here, we report that retinal ganglion cell axons of WT mice shed mitochondria at the optic nerve head (ONH), and that these mitochondria are internalized and degraded by adjacent astrocytes. EM demonstrates that mitochondria are shed through formation of large protrusions that originate from otherwise healthy axons. A virally introduced tandem fluorophore protein reporter of acidified mitochondria reveals that acidified axonal mitochondria originating from the retinal ganglion cell are associated with lysosomes within columns of astrocytes in the ONH. According to this reporter, a greater proportion of retinal ganglion cell mitochondria are degraded at the ONH than in the ganglion cell soma. Consistently, analyses of degrading DNA reveal extensive mtDNA degradation within the optic nerve astrocytes, some of which comes from retinal ganglion cell axons. Together, these results demonstrate that surprisingly large proportions of retinal ganglion cell axonal mitochondria are normally degraded by the astrocytes of the ONH. This transcellular degradation of mitochondria, or transmitophagy, likely occurs elsewhere in the CNS, because structurally similar accumulations of degrading mitochondria are also found along neurites in superficial layers of the cerebral cortex. Thus, the general assumption that neurons or other cells necessarily degrade their own mitochondria should be reconsidered.

  15. A standardized randomized 6-month aerobic exercise-training down-regulated pro-inflammatory genes, but up-regulated anti-inflammatory, neuron survival and axon growth-related genes.

    Science.gov (United States)

    Iyalomhe, Osigbemhe; Chen, Yuanxiu; Allard, Joanne; Ntekim, Oyonumo; Johnson, Sheree; Bond, Vernon; Goerlitz, David; Li, James; Obisesan, Thomas O

    2015-09-01

    There is considerable support for the view that aerobic exercise may confer cognitive benefits to mild cognitively impaired elderly persons. However, the biological mechanisms mediating these effects are not entirely clear. As a preliminary step towards informing this gap in knowledge, we enrolled older adults confirmed to have mild cognitive impairment (MCI) in a 6-month exercise program. Male and female subjects were randomized into a 6-month program of either aerobic or stretch (control) exercise. Data collected from the first 10 completers, aerobic exercise (n=5) or stretch (control) exercise (n=5), were used to determine intervention-induced changes in the global gene expression profiles of the aerobic and stretch groups. Using microarray, we identified genes with altered expression (relative to baseline values) in response to the 6-month exercise intervention. Genes whose expression were altered by at least two-fold, and met the p-value cutoff of 0.01 were inputted into the Ingenuity Pathway Knowledge Base Library to generate gene-interaction networks. After a 6-month aerobic exercise-training, genes promoting inflammation became down-regulated, whereas genes having anti-inflammatory properties and those modulating immune function or promoting neuron survival and axon growth, became up-regulated (all fold change≥±2.0, paerobic program as opposed to the stretch group. We conclude that three distinct cellular pathways may collectively influence the training effects of aerobic exercise in MCI subjects. We plan to confirm these effects using rt-PCR and correlate such changes with the cognitive phenotype.

  16. Positioning and guidance of neurons on Au by directed assembly of proteins using Atomic Force Microscopy.

    Science.gov (United States)

    Staii, Cristian; Viesselmann, Chris; Ballweg, Jason; Williams, Justin; Dent, Erik; Coppersmith, Susan; Eriksson, Mark

    2009-03-01

    The specific interactions between neurons and guidance factors as well as the mechanism of axonal navigation toward a target in the developing brain are not well understood. To address this problem we present a new approach for controlling the adhesion, growth and interconnectivity of cortical neurons on Au surfaces. Specifically, we use AFM nanolithography to immobilize extracellular matrix proteins at well-defined locations on Au surfaces, and show that these protein patterns can confine neuronal cells and control their growth and interconnectivity. We will compare this method with other nanofabrication techniques and discuss its main advantages: 1) the procedure is carried out in aqueous solutions, so that the proteins retain their bioactivity, 2) a high degree of control over location and shape of the protein patterns can be achieved, and 3) the minimum protein feature size can be as small as 50nm.

  17. PTEN inhibition and axon regeneration and neural repair

    Institute of Scientific and Technical Information of China (English)

    Yosuke Ohtake; Umar Hayat; Shuxin Li

    2015-01-01

    The intrinsic growth ability of all the neurons declines during development although some may grow better than others. Numerous intracellular signaling proteins and transcription factors have been shown to regulate the intrinsic growth capacity in mature neurons. Among them, PI3 kinase/Akt pathway is important for controlling axon elongation. As a negative regulator of this pathway, the tumor suppressor phosphatase and tensin homolog (PTEN) appears critical to con-trol the regenerative ability of young and adult neurons. This review will focus on recent research progress in axon regeneration and neural repair by PTEN inhibition and therapeutic potential of blocking this phosphatase for neurological disorders. Inhibition of PTEN by deletion in con-ditional knockout mice, knockdown by short-hairpin RNA, or blockade by pharmacological approaches, including administration of selective PTEN antagonist peptides, stimulates various degrees of axon regrowth in juvenile or adult rodents with central nervous system injuries. Im-portantly, post-injury PTEN suppression could enhance axonal growth and functional recovery in adult central nervous system after injury.

  18. Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury

    NARCIS (Netherlands)

    F. Hellal (Farida); A. Hurtado (Andres); J. Ruschel (Jörg); K.C. Flynn (Kevin); C.J. Laskowski (Claudia); M. Umlauf (Martina); L.C. Kapitein (Lukas); D. Strikis (Dinara); V. Lemmon (Vance); J. Bixby (John); C.C. Hoogenraad (Casper); F. Bradke (Frank)

    2011-01-01

    textabstractHypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. Here, moderate microtubule stabilization decreased scar formation after spinal cord injury in rodents through va

  19. Axon extension in the fast and slow lanes: substratum-dependent engagement of myosin II functions.

    Science.gov (United States)

    Ketschek, Andrea R; Jones, Steven L; Gallo, Gianluca

    2007-09-01

    Axon extension involves the coordinated regulation of the neuronal cytoskeleton. Actin filaments drive protrusion of filopodia and lamellipodia while microtubules invade the growth cone, thereby providing structural support for the nascent axon. Furthermore, in order for axons to extend the growth cone must attach to the substratum. Previous work indicates that myosin II activity inhibits the advance of microtubules into the periphery of growth cones, and myosin II has also been implicated in mediating integrin-dependent cell attachment. However, it is not clear how the functions of myosin II in regulating substratum attachment and microtubule advance are integrated during axon extension. We report that inhibition of myosin II function decreases the rate of axon extension on laminin, but surprisingly promotes extension rate on polylysine. The differential effects of myosin II inhibition on axon extension rate are attributable to myosin II having the primary function of mediating substratum attachment on laminin, but not on polylysine. Conversely, on polylysine the primary function of myosin II is to inhibit microtubule advance into growth cones. Thus, the substratum determines the role of myosin II in axon extension by controlling the functions of myosin II that contribute to extension.

  20. Action-potential modulation during axonal conduction.

    Science.gov (United States)

    Sasaki, Takuya; Matsuki, Norio; Ikegaya, Yuji

    2011-02-04

    Once initiated near the soma, an action potential (AP) is thought to propagate autoregeneratively and distribute uniformly over axonal arbors. We challenge this classic view by showing that APs are subject to waveform modulation while they travel down axons. Using fluorescent patch-clamp pipettes, we recorded APs from axon branches of hippocampal CA3 pyramidal neurons ex vivo. The waveforms of axonal APs increased in width in response to the local application of glutamate and an adenosine A(1) receptor antagonist to the axon shafts, but not to other unrelated axon branches. Uncaging of calcium in periaxonal astrocytes caused AP broadening through ionotropic glutamate receptor activation. The broadened APs triggered larger calcium elevations in presynaptic boutons and facilitated synaptic transmission to postsynaptic neurons. This local AP modification may enable axonal computation through the geometry of axon wiring.

  1. Mechanochemical regulation of growth cone motility

    Directory of Open Access Journals (Sweden)

    Patrick C Kerstein

    2015-07-01

    Full Text Available Neuronal growth cones are exquisite sensory-motor machines capable of transducing features contacted in their local extracellular environment into guided process extension during development. Extensive research has shown that chemical ligands activate cell surface receptors on growth cones leading to intracellular signals that direct cytoskeletal changes. However, the environment also provides mechanical support for growth cone adhesion and traction forces that stabilize leading edge protrusions. Interestingly, recent work suggests that both the mechanical properties of the environment and mechanical forces generated within growth cones influence axon guidance. In this review we discuss novel molecular mechanisms involved in growth cone force production and detection, and speculate how these processes may be necessary for the development of proper neuronal morphogenesis.

  2. Effects of surface asymmetry on neuronal growth

    Science.gov (United States)

    Staii, Cristian

    Understanding the brain is of tremendous fundamental importance, but it is immensely challenging because of the complexity of both its architecture and function. A growing body of evidence shows that physical stimuli (stiffness of the growth substrate, gradients of various molecular species, geometry of the surrounding environment, traction forces etc.) play a key role in the wiring up of the nervous system. I will present a systematic experimental and theoretical investigation of neuronal growth on substrates with asymmetric geometries and textures. The experimental results show unidirectional axonal growth on these substrates. We demonstrate that the unidirectional bias is imparted by the surface ratchet geometry and quantify the geometrical guidance cues that control neuronal growth. Our results provide new insight into the role played by physical cues in neuronal growth, and could lead to new methods for stimulating neuronal regeneration and the engineering of artificial neuronal tissue. We acknowledge support from NSF through CBET 1067093.

  3. Low Piconewton Towing of CNS Axons against Diffusing and Surface-Bound Repellents Requires the Inhibition of Motor Protein-Associated Pathways

    Science.gov (United States)

    Kilinc, Devrim; Blasiak, Agata; O'Mahony, James J.; Lee, Gil U.

    2014-11-01

    Growth cones, dynamic structures at axon tips, integrate chemical and physical stimuli and translate them into coordinated axon behaviour, e.g., elongation or turning. External force application to growth cones directs and enhances axon elongation in vitro; however, direct mechanical stimulation is rarely combined with chemotactic stimulation. We describe a microfluidic device that exposes isolated cortical axons to gradients of diffusing and substrate-bound molecules, and permits the simultaneous application of piconewton (pN) forces to multiple individual growth cones via magnetic tweezers. Axons treated with Y-27632, a RhoA kinase inhibitor, were successfully towed against Semaphorin 3A gradients, which repel untreated axons, with less than 12 pN acting on a small number of neural cell adhesion molecules. Treatment with Y-27632 or monastrol, a kinesin-5 inhibitor, promoted axon towing on substrates coated with chondroitin sulfate proteoglycans, potent axon repellents. Thus, modulating key molecular pathways that regulate contractile stress generation in axons counteracts the effects of repellent molecules and promotes tension-induced growth. The demonstration of parallel towing of axons towards inhibitory environments with minute forces suggests that mechanochemical stimulation may be a promising therapeutic approach for the repair of the damaged central nervous system, where regenerating axons face repellent factors over-expressed in the glial scar.

  4. PACSIN1, a Tau-interacting protein, regulates axonal elongation and branching by facilitating microtubule instability.

    Science.gov (United States)

    Liu, Yingying; Lv, Kaosheng; Li, Zenglong; Yu, Albert C H; Chen, Jianguo; Teng, Junlin

    2012-11-16

    Tau is a major member of the neuronal microtubule-associated proteins. It promotes tubulin assembly and stabilizes axonal microtubules. Previous studies have demonstrated that Tau forms cross-bridges between microtubules, with some particles located on cross-bridges, suggesting that some proteins interact with Tau and might be involved in regulating Tau-related microtubule dynamics. This study reports that PACSIN1 interacts with Tau in axon. PACSIN1 blockade results in impaired axonal elongation and a higher number of primary axonal branches in mouse dorsal root ganglia neurons, which is induced by increasing the binding ability of Tau to microtubules. In PACSIN1-blocked dorsal root ganglia neurons, a greater amount of Tau is inclined to accumulate in the central domain of growth cones, and it promotes the stability of the microtubule network. Taken together, these results suggest that PACSIN1 is an important Tau binding partner in regulating microtubule dynamics and forming axonal plasticity.

  5. Wnt/planar cell polarity signaling controls the anterior-posterior organization of monoaminergic axons in the brainstem.

    Science.gov (United States)

    Fenstermaker, Ali G; Prasad, Asheeta A; Bechara, Ahmad; Adolfs, Youri; Tissir, Fadel; Goffinet, Andre; Zou, Yimin; Pasterkamp, R Jeroen

    2010-11-24

    Monoaminergic neurons [serotonergic (5-HT) and dopaminergic (mdDA)] in the brainstem project axons along the anterior-posterior axis. Despite their important physiological functions and implication in disease, the molecular mechanisms that dictate the formation of these projections along the anterior-posterior axis remain unknown. Here we reveal a novel requirement for Wnt/planar cell polarity signaling in the anterior-posterior organization of the monoaminergic system. We find that 5-HT and mdDA axons express the core planar cell polarity components Frizzled3, Celsr3, and Vangl2. In addition, monoaminergic projections show anterior-posterior guidance defects in Frizzled3, Celsr3, and Vangl2 mutant mice. The only known ligands for planar cell polarity signaling are Wnt proteins. In culture, Wnt5a attracts 5-HT but repels mdDA axons, and Wnt7b attracts mdDA axons. However, mdDA axons from Frizzled3 mutant mice are unresponsive to Wnt5a and Wnt7b. Both Wnts are expressed in gradients along the anterior-posterior axis, consistent with their role as directional cues. Finally, Wnt5a mutants show transient anterior-posterior guidance defects in mdDA projections. Furthermore, we observe during development that the cell bodies of migrating descending 5-HT neurons eventually reorient along the direction of their axons. In Frizzled3 mutants, many 5-HT and mdDA neuron cell bodies are oriented abnormally along the direction of their aberrant axon projections. Overall, our data suggest that Wnt/planar cell polarity signaling may be a global anterior-posterior guidance mechanism that controls axonal and cellular organization beyond the spinal cord.

  6. A Simple Method for 3D Analysis of Immunolabeled Axonal Tracts in a Transparent Nervous System

    Directory of Open Access Journals (Sweden)

    Morgane Belle

    2014-11-01

    Full Text Available Clearing techniques have been developed to transparentize mouse brains, thereby preserving 3D structure, but their complexity has limited their use. Here, we show that immunolabeling of axonal tracts followed by optical clearing with solvents (3DISCO and light-sheet microscopy reveals brain connectivity in mouse embryos and postnatal brains. We show that the Robo3 receptor is selectively expressed by medial habenula axons forming the fasciculus retroflexus (FR and analyzed the development of this commissural tract in mutants of the Slit/Robo and DCC/Netrin pathways. Netrin-1 and DCC are required to attract FR axons to the midline, but the two mutants exhibit specific and heterogeneous axon guidance defects. Moreover, floor-plate-specific deletion of Slit ligands with a conditional Slit2 allele perturbs not only midline crossing by FR axons but also their anteroposterior distribution. In conclusion, this method represents a unique and powerful imaging tool to study axonal connectivity in mutant mice.

  7. Strategies for regenerating injured axons after spinal cord injury – insights from brain development

    Directory of Open Access Journals (Sweden)

    Masaki Ueno

    2008-06-01

    Full Text Available Masaki Ueno, Toshihide YamashitaDepartment of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, JapanAbstract: Axonal regeneration does not occur easily after an adult central nervous system (CNS injury. Various attempts have partially succeeded in promoting axonal regeneration after the spinal cord injury (SCI. Interestingly, several recent therapeutic concepts have emerged from or been tightly linked to the researches on brain development. In a developing brain, remarkable and dynamic axonal elongation and sprouting occur even after the injury; this finding is essential to the development of a therapy for SCI. In this review, we overview the revealed mechanism of axonal tract formation and plasticity in the developing brain and compare the differences between a developing brain and a lesion site in an adult brain. One of the differences is that mature glial cells participate in the repair process in the case of adult injuries. Interestingly, these cells express inhibitory molecules that impede axonal regeneration such as myelin-associated proteins and the repulsive guidance molecules found originally in the developing brain for navigating axons to specific routes. Some reports have clearly elucidated that any treatment designed to suppress these inhibitory cues is beneficial for promoting regeneration and plasticity after an injury. Thus, understanding the developmental process will provide us with an important clue for designing therapeutic strategies for recovery from SCI.Keywords: development, regeneration, spinal cord injury

  8. Inhibitory effects of draxin on axonal outgrowth and migration of precerebellar neurons.

    Science.gov (United States)

    Riyadh, M Asrafuzzaman; Shinmyo, Yohei; Ohta, Kunimasa; Tanaka, Hideaki

    2014-06-20

    The rhombic lip, a dorsal stripe of the neuroepithelium lining the edge of the fourth ventricle, is the site of origin of precerebellar neurons (PCN), which migrate tangentially towards the floor plate. After reaching the floor plate, they project their axons to the cerebellum. Although previous studies have shown that the guidance molecules Netrin/DCC and Slit/Robo have critical roles in PCN migration, the molecular mechanisms underlying this process remain poorly understood. Here, we report that draxin, a repulsive axon guidance protein, is involved in PCN development. We found that draxin is expressed in the rhombic lip and migratory stream of some PCN in the developing hindbrain of mice. In addition, draxin inhibited neurite outgrowth and nuclei migration from rhombic lip explants. These results suggest that draxin functions as a repulsive guidance cue for PCN migration. However, we observed no significant differences in PCN distribution between draxin(-/-) and wild type embryos. Thus, draxin and other axon guidance cues may have redundant roles in PCN migration.

  9. Robust regeneration of CNS axons through a track depleted of CNS glia.

    Science.gov (United States)

    Moon, L D; Brecknell, J E; Franklin, R J; Dunnett, S B; Fawcett, J W

    2000-01-01

    Transected CNS axons do not regenerate spontaneously but may do so if given an appropriate environment through which to grow. Since molecules associated with CNS macroglia are thought to be inhibitory to axon regeneration, we have tested the hypothesis that removing these cell types from an area of brain will leave an environment more permissive for axon regeneration. Adult rats received unilateral knife cuts of the nigrostriatal tract and ethidium bromide (EB) was used to create a lesion devoid of astrocytes, oligodendrocytes, intact myelin sheaths, and NG2 immunoreactive cells from the site of the knife cut to the ipsilateral striatum (a distance of 6 mm). The regenerative response and the EB lesion environment was examined with immunostaining and electron microscopy at different timepoints following surgery. We report that large numbers of dopaminergic nigral axons regenerated for over 4 mm through EB lesions. At 4 days postlesion dopaminergic sprouting was maximal and the axon growth front had reached the striatum, but there was no additional growth into the striatum after 7 days. Regenerating axons did not leave the EB lesion to form terminals in the striatum, there was no recovery of function, and the end of axon growth correlated with increasing glial immunoreactivity around the EB lesion. We conclude that the removal of CNS glia promotes robust axon regeneration but that this becomes limited by the reappearance of nonpermissive CNS glia. These results suggest, first, that control of the glial reaction is likely to be an important feature in brain repair and, second, that reports of axon regeneration must be interpreted with caution since extensive regeneration can occur simply as a result of a major glia-depleting lesion, rather than as the result of some other specific intervention.

  10. Perturbations of microRNA function in mouse dicer mutants produce retinal defects and lead to aberrant axon pathfinding at the optic chiasm.

    Directory of Open Access Journals (Sweden)

    Rita Pinter

    Full Text Available BACKGROUND: During development axons encounter a variety of choice points where they have to make appropriate pathfinding decisions. The optic chiasm is a major decision point for retinal ganglion cell (RGC axons en route to their target in order to ensure the correct wiring of the visual system. MicroRNAs (miRNAs belong to the class of small non-coding RNA molecules and have been identified as important regulators of a variety of processes during embryonic development. However, their involvement in axon guidance decisions is less clear. METHODOLOGY/PRINCIPAL FINDINGS: We report here that the early loss of Dicer, an essential protein for the maturation of miRNAs, in all cells of the forming retina and optic chiasm leads to severe phenotypes of RGC axon pathfinding at the midline. Using a conditional deletion approach in mice, we find in homozygous Dicer mutants a marked increase of ipsilateral projections, RGC axons extending outside the optic chiasm, the formation of a secondary optic tract and a substantial number of RGC axons projecting aberrantly into the contralateral eye. In addition, the mutant mice display a microphthalmia phenotype. CONCLUSIONS: Our work demonstrates an important role of Dicer controlling the extension of RGC axons to the brain proper. It indicates that miRNAs are essential regulatory elements for mechanisms that ensure correct axon guidance decisions at the midline and thus have a central function in the establishment of circuitry during the development of the nervous system.

  11. Constitutively expressed Protocadherin-α regulates the coalescence and elimination of homotypic olfactory axons through its cytoplasmic region

    Directory of Open Access Journals (Sweden)

    Sonoko eHasegawa

    2012-10-01

    Full Text Available Olfactory sensory neuron (OSN axons coalesce into specific glomeruli in the olfactory bulb (OB according to their odorant receptor (OR expression. Several guidance molecules enhance the coalescence of homotypic OSN projections, in an OR-specific- and neural-activity-dependent manner. However, the mechanism by which homotypic OSN axons are organized into glomeruli is unsolved. We previously reported that the clustered protocadherin-α (Pcdh-α family of diverse cadherin-related molecules plays roles in the coalescence and elimination of homotypic OSN axons throughout development. Here we showed that the elimination of small ectopic homotypic glomeruli required the constitutive expression of a Pcdh-α isoform and Pcdh-α’s cytoplasmic region, but not OR specificity or neural activity. These results suggest that Pcdh-α proteins provide a cytoplasmic signal to regulate repulsive activity for homotypic OSN axons independently of OR expression and neural activity. The counterbalancing effect of Pcdh-α proteins for the axonal coalescence mechanisms mediated by other olfactory guidance molecules indicate a possible mechanism for the organization of homotypic OSN axons into glomeruli during development.

  12. The L1-type cell adhesion molecule Neuroglian is necessary for maintenance of sensory axon advance in the Drosophila embryo

    Directory of Open Access Journals (Sweden)

    Martin Veronica

    2008-04-01

    Full Text Available Abstract Background Cell adhesion molecules have long been implicated in the regulation of axon growth, but the precise cellular roles played by individual cell adhesion molecules and the molecular basis for their action are still not well understood. We have used the sensory system of the Drosophila embryo to shed light on the mechanism by which the L1-type cell adhesion molecule Neuroglian regulates axon growth. Results We have found a highly penetrant sensory axon stalling phenotype in neuroglian mutant embryos. Axons stalled at a variety of positions along their normal trajectory, but most commonly in the periphery some distance along the peripheral nerve. All lateral and dorsal cluster sensory neurons examined, except for the dorsal cluster neuron dbd, showed stalling. Sensory axons were never seen to project along inappropriate pathways in neuroglian mutants and stalled axons showed normal patterns of fasciculation within nerves. The growth cones of stalled axons possessed a simple morphology, similar to their appearance in wild-type embryos when advancing along nerves. Driving expression of the wild-type form of Neuroglian in sensory neurons alone rescued the neuroglian mutant phenotype of both pioneering and follower neurons. A partial rescue was achieved by expressing the Neuroglian extracellular domain. Over/mis-expression of Neuroglian in all neurons, oenocytes or trachea had no apparent effect on sensory axon growth. Conclusion We conclude that Neuroglian is necessary to maintain axon advance along axonal substrates, but is not required for initiation of axon outgrowth, axon fasciculation or recognition of correct growth substrates. Expression of Neuroglian in sensory neurons alone is sufficient to promote axon advance and the intracellular region of the molecule is largely dispensable for this function. It is unlikely, therefore, that Nrg acts as a molecular 'clutch' to couple adhesion of F-actin within the growth cone to the

  13. Electric field stimulation through a biodegradable polypyrrole-co-polycaprolactone substrate enhances neural cell growth.

    Science.gov (United States)

    Nguyen, Hieu T; Sapp, Shawn; Wei, Claudia; Chow, Jacqueline K; Nguyen, Alvin; Coursen, Jeff; Luebben, Silvia; Chang, Emily; Ross, Robert; Schmidt, Christine E

    2014-08-01

    Nerve guidance conduits (NGCs) are FDA-approved devices used to bridge gaps across severed nerve cables and help direct axons sprouting from the proximal end toward the distal stump. In this article, we present the development of a novel electrically conductive, biodegradable NGC made from a polypyrrole-block-polycaprolactone (PPy-PCL) copolymer material laminated with poly(lactic-co-glycolic acid) (PLGA). The PPy-PCL has a bulk conductivity ranging 10-20 S/cm and loses 40 wt % after 7 months under physiologic conditions. Dorsal root ganglia (DRG) grown on flat PPy-PCL/PLGA material exposed to direct current electric fields (EF) of 100 mV/cm for 2 h increased axon growth by 13% (± 2%) toward either electrode of a 2-electrode setup, compared with control grown on identical substrates without EF exposure. Alternating current increased axon growth by 21% (±3%) without an observable directional preference, compared with the same control group. The results from this study demonstrate PLGA-coated PPy-PCL is a unique biodegradable material that can deliver substrate EF stimulation to improve axon growth for peripheral nerve repair.

  14. Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries

    Directory of Open Access Journals (Sweden)

    Oscar A. Carballo-Molina

    2015-02-01

    Full Text Available Damage caused to neural tissue by disease or injury frequently produces a discontinuity in the nervous system. Such damage generates diverse alterations that are commonly permanent, due to the limited regeneration capacity of the adult nervous system, particularly the Central Nervous System (CNS. The cellular reaction to noxious stimulus leads to several events such as the formation of glial and fibrous scars, which inhibit axonal regeneration in both the CNS and the Peripheral Nervous System (PNS. Although in the PNS there is some degree of nerve regeneration, it is common that the growing axons reinnervate incorrect areas, causing mismatches. Providing a permissive substrate for axonal regeneration in combination with delivery systems for the release of molecules, which enhances axonal growth, could increase regeneration and the recovery of functions in the CNS or the PNS. Currently, there are no effective vehicles to supply growth factors or cells to the damaged/diseased nervous system. Hydrogels are polymers that are biodegradable, biocompatible and have the capacity to deliver a large range of molecules in situ. The inclusion of cultured neural cells into hydrogels forming three-dimensional structures allows the formation of synapses and neuronal survival. There is also evidence showing that hydrogels constitute an amenable substrate for axonal growth of endogenous or grafted cells, overcoming the presence of axonal regeneration inhibitory molecules, in both the central and peripheral nervous systems. Recent experiments suggest that hydrogels can carry and deliver several proteins relevant for improving neuronal survival and axonal growth. Although the use of hydrogels is appealing, its effectiveness is still a matter of discussion, and more results are needed to achieve consistent recovery using different parameters. This review also discusses areas of opportunity where hydrogels can be applied, in order to promote axonal regeneration of

  15. Zebrafish foxP2 zinc finger nuclease mutant has normal axon pathfinding.

    Directory of Open Access Journals (Sweden)

    Lingyan Xing

    Full Text Available foxP2, a forkhead-domain transcription factor, is critical for speech and language development in humans, but its role in the establishment of CNS connectivity is unclear. While in vitro studies have identified axon guidance molecules as targets of foxP2 regulation, and cell culture assays suggest a role for foxP2 in neurite outgrowth, in vivo studies have been lacking regarding a role for foxP2 in axon pathfinding. We used a modified zinc finger nuclease methodology to generate mutations in the zebrafish foxP2 gene. Using PCR-based high resolution melt curve analysis (HRMA of G0 founder animals, we screened and identified three mutants carrying nonsense mutations in the 2(nd coding exon: a 17 base-pair (bp deletion, an 8bp deletion, and a 4bp insertion. Sequence analysis of cDNA confirmed that these were frameshift mutations with predicted early protein truncations. Homozygous mutant fish were viable and fertile, with unchanged body morphology, and no apparent differences in CNS apoptosis, proliferation, or patterning at embryonic stages. There was a reduction in expression of the known foxP2 target gene cntnap2 that was rescued by injection of wild-type foxP2 transcript. When we examined axon pathfinding using a pan-axonal marker or transgenic lines, including a foxP2-neuron-specific enhancer, we did not observe any axon guidance errors. Our findings suggest that foxP2 is not necessary for axon pathfinding during development.

  16. AxonSeg: Open Source Software for Axon and Myelin Segmentation and Morphometric Analysis.

    Science.gov (United States)

    Zaimi, Aldo; Duval, Tanguy; Gasecka, Alicja; Côté, Daniel; Stikov, Nikola; Cohen-Adad, Julien

    2016-01-01

    Segmenting axon and myelin from microscopic images is relevant for studying the peripheral and central nervous system and for validating new MRI techniques that aim at quantifying tissue microstructure. While several software packages have been proposed, their interface is sometimes limited and/or they are designed to work with a specific modality (e.g., scanning electron microscopy (SEM) only). Here we introduce AxonSeg, which allows to perform automatic axon and myelin segmentation on histology images, and to extract relevant morphometric information, such as axon diameter distribution, axon density and the myelin g-ratio. AxonSeg includes a simple and intuitive MATLAB-based graphical user interface (GUI) and can easily be adapted to a variety of imaging modalities. The main steps of AxonSeg consist of: (i) image pre-processing; (ii) pre-segmentation of axons over a cropped image and discriminant analysis (DA) to select the best parameters based on axon shape and intensity information; (iii) automatic axon and myelin segmentation over the full image; and (iv) atlas-based statistics to extract morphometric information. Segmentation results from standard optical microscopy (OM), SEM and coherent anti-Stokes Raman scattering (CARS) microscopy are presented, along with validation against manual segmentations. Being fully-automatic after a quick manual intervention on a cropped image, we believe AxonSeg will be useful to researchers interested in large throughput histology. AxonSeg is open source and freely available at: https://github.com/neuropoly/axonseg.

  17. The Precision of Axon Targeting of Mouse Olfactory Sensory Neurons Requires the BACE1 Protease

    OpenAIRE

    Rickenbacher, Gregory T.; Moulia, Thomas W.; Cao, Luxiang; Rodriguez, Steven; Albers, Mark W.

    2012-01-01

    The \\(\\beta\\)-site amyloid precursor protein cleaving enzyme 1 (BACE1) is necessary to generate the A\\(\\beta\\) peptide, which is implicated in Alzheimer's disease pathology. Studies show that the expression of BACE1 and its protease activity are tightly regulated, but the physiological function of BACE1 remains poorly understood. Recently, numerous axon guidance proteins were identified as potential substrates of BACE1. Here, we examined the consequences of loss of BACE1 function in a well-de...

  18. ApoE4 influences growth cone of neuronal axon through ERK signal pathway%载脂蛋白E亚型通过细胞外信号调节激酶途径影响轴突生长锥的生长

    Institute of Scientific and Technical Information of China (English)

    殷成; 蒋理; 周帅; 孙晓川

    2012-01-01

    目的 观察载脂蛋白E( apolipoprotein E,ApoE)各个亚型对神经元轴突生长锥的影响并探索其机制.方法 体外培养小鼠皮质神经块,加入重组人类ApoE到神经块培养基中,免疫荧光和Western blot检测重组人类ApoE能否进入轴突及其生长锥;鬼丙环肽染色生长锥观察重组人类ApoE2、3、4对生长锥的影响;加入细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)信号通路抑制剂,观察ERK信号通路是否参与ApoE亚型对生长锥的影响.结果 免疫荧光和Western blot显示加入重组人类ApoE后的神经块轴突及其生长锥中ApoE为阳性;加入重组人类ApoE2、3、4组的荧光强度分别为(50.7±19.4)、(58.5±15.4)、(23.4±13.5),其中加入重组人类ApoE4的轴突生长锥荧光强度低于加入重组人类ApoE2、3的生长锥荧光强度(P<0.05);同时加入重组人类ApoE4和ERK信号通路抑制剂的实验组生长锥荧光强度为(32.8±13.2),而仅加入重组人类ApoE4的实验组生长锥荧光强度为(21.9±6.9),实验组生长锥荧光强度高于对照组(P<0.05).结论 重组人类ApoE能进入轴突及其生长锥,ApoE4能负性影响生长锥生长,阻断ERK信号途径能抑制ApoE4对生长锥的负面影响.%Objective To determine the effect of different ApoE subtypes on the growth cones of neuronal axons. Methods Cortical explants were isolated from 1 -day-old ApoE knockout mice, and then cultured in vitro with the treatment of the recombinant human ApoE2, 3 and 4 (20 μg/ml) respectively for 24 h. Immunofluorescence staining and Western blot analysis were used to detect recombinant human ApoE whether entering axons and growth cones. Phalloidin staining was used to dye the growth cones after ApoE2, 3, and 4 treatment. Extracellular signal-regulated kinase ( ERK) inhibitor was added into culture medium to discover ERK pathway whether participating in the process of ApoE subtypes influencing the growth cones. Results

  19. Axonal interferon responses and alphaherpesvirus neuroinvasion

    Science.gov (United States)

    Song, Ren

    Infection by alphaherpesviruses, including herpes simplex virus (HSV) and pseudorabies virus (PRV), typically begins at a peripheral epithelial surface and continues into the peripheral nervous system (PNS) that innervates this tissue. Inflammatory responses are induced at the infected peripheral site prior to viral invasion of the PNS. PNS neurons are highly polarized cells with long axonal processes that connect to distant targets. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which include type I interferon (e.g. IFNbeta) and type II interferon (i.e. IFNgamma). IFNbeta can be produced by all types of cells, while IFNgamma is secreted by some specific types of immune cells. And both types of IFN induce antiviral responses in surrounding cells that express the IFN receptors. The fundamental question is how do PNS neurons respond to the inflammatory milieu experienced only by their axons. Axons must act as potential front-line barriers to prevent PNS infection and damage. Using compartmented cultures that physically separate neuron axons from cell bodies, I found that pretreating isolated axons with IFNbeta or IFNgamma significantly diminished the number of HSV-1 and PRV particles moving from axons to the cell bodies in an IFN receptor-dependent manner. Furthermore, I found the responses in axons are activated differentially by the two types of IFNs. The response to IFNbeta is a rapid, axon-only response, while the response to IFNgamma involves long distance signaling to the PNS cell body. For example, exposing axons to IFNbeta induced STAT1 phosphorylation (p-STAT1) only in axons, while exposure of axons to IFNgamma induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated IFNgamma-, but not IFNbeta-mediated antiviral effects. Proteomic analysis of IFNbeta- or IFNgamma-treated axons identified several differentially regulated proteins. Therefore

  20. Sugar Antennae for Guidance Signals: Syndecans and Glypicans Integrate Directional Cues for Navigating Neurons

    Directory of Open Access Journals (Sweden)

    Christa Rhiner

    2006-01-01

    Full Text Available Attractive and repulsive signals guide migrating nerve cells in all directions when the nervous system starts to form. The neurons extend thin processes, axons, that connect over wide distances with other brain cells to form a complicated neuronal network. One of the most fascinating questions in neuroscience is how the correct wiring of billions of nerve cells in our brain is controlled. Several protein families are known to serve as guidance cues for navigating neurons and axons. Nevertheless, the combinatorial potential of these proteins seems to be insufficient to sculpt the entire neuronal network and the appropriate formation of connections. Recently, heparan sulfate proteoglycans (HSPGs, which are present on the cell surface of neurons and in the extracellular matrix through which neurons and axons migrate, have been found to play a role in regulating cell migration and axon guidance. Intriguingly, the large number of distinct modifications that can be put onto the sugar side chains of these PGs would in principle allow for an enormous diversity of HSPGs, which could help in regulating the vast number of guidance choices taken by individual neurons. In this review, we will focus on the role of the cell surface HSPGs syndecan and glypican and specific HS modifications in promoting neuronal migration, axon guidance, and synapse formation.

  1. Enzyme-instructed self-assembly of taxol promotes axonal branching

    Science.gov (United States)

    Mei, Bin; Miao, Qingqing; Tang, Anming; Liang, Gaolin

    2015-09-01

    Axonal branching is important for vertebrate neuron signaling. Taxol has a biphasic effect on axonal branching (i.e., high concentration inhibits axonal growth but low concentration restores it). To the best of our knowledge, low concentration of taxol to promote axonal branching has not been reported yet. Herein, we rationally designed a taxol derivative Fmoc-Phe-Phe-Lys(taxol)-Tyr(H2PO4)-OH (1) which could be subjected to alkaline phosphatase (ALP)-catalyzed self-assembly to form taxol nanofibers. We found that, at 10 μM, 1 has a microtubule (MT) condensation effect similar to that of taxol on mammalian cells but with more chronic toxicity than taxol on the cells. At a low concentration of 10 nM, 1 not only promoted neurite elongation as taxol did but also promoted axonal branching which was not achieved by using taxol. We propose that self-assembly of 1 along the MTs prohibited their lateral contacts and thus promoted axonal branching. Our strategy of enzyme-instructed self-assembly (EISA) of a taxol derivative provides a new tool for scientists to study the morphology of neurons, as well as their behaviours.Axonal branching is important for vertebrate neuron signaling. Taxol has a biphasic effect on axonal branching (i.e., high concentration inhibits axonal growth but low concentration restores it). To the best of our knowledge, low concentration of taxol to promote axonal branching has not been reported yet. Herein, we rationally designed a taxol derivative Fmoc-Phe-Phe-Lys(taxol)-Tyr(H2PO4)-OH (1) which could be subjected to alkaline phosphatase (ALP)-catalyzed self-assembly to form taxol nanofibers. We found that, at 10 μM, 1 has a microtubule (MT) condensation effect similar to that of taxol on mammalian cells but with more chronic toxicity than taxol on the cells. At a low concentration of 10 nM, 1 not only promoted neurite elongation as taxol did but also promoted axonal branching which was not achieved by using taxol. We propose that self-assembly of 1

  2. 急性肺损伤大鼠肺组织神经导向因子Slit2及Robo4的表达%Expression of axon guidance cues Slit2 and Robo4 in lung tissue of rat with acute lung injury

    Institute of Scientific and Technical Information of China (English)

    李霖; 卿国忠; 杨靖; 唐卓; 彭正良; 张克娜; 丁灿

    2014-01-01

    .09) vs.(0.50±0.05),F=0.498,P>0.05,(0.55±0.06) vs.(0.56±0.07),F=0.073,P>0.05].结论 对照组大鼠肺组织可表达Slit2及Robo4,盲肠结扎穿孔致ALI大鼠肺组织Slit2表达下降,这可能与ALI发病有关.%Objective To observe the expression of axon guidance cues Slit2 and Robo4 in lung tissue of rat with acute lung injury (ALI) and explore the function of Slit2 and Robo4 in ALI.Methods Forty-eight Sprague-Dawley rats were randomly (random number) divided into control group (n =24) and ALl group (n =24).ALI model was reproduced by cecum ligation and puncture (CLP).The control group only experienced a simulated operation without CLP.Both groups were further divided into 3 subgroups with 8 rats in each subgroup:12 h,24 h,and 48 h subgroups.artery blood gas analysis,lung tissue wet/dry weight (W/D) ratio,lung histopathologic changes,pulmonary microvascular permeability were observed.The serum tumor nocrosis factor-α (TNF-α) was measured with enzyme linked immunosorbent assay (ELISA).The expression of Slit2 and Robo4 mRNA were detected by reverse transcription-polymerase chain reaction (RT-PCR).The expression of Slit2 and Robo4 protein in lung tissues was assessed by immunohistochemistry.Date were analyzed by one-way ANOVA with SPSS version 13.0 software.Statistical significance was established at a P value of less than 0.05.Results Compared with the control group,in ALI rats at different time points,partial pressure of oxygen in arterial blood (PaO2) decreased significantly,lung W/D weight ratio and pulmonary microvascular permeability,the serum TNF-α increased significantly (all P < 0.05),histopathology of lung revealed signs of injury.The expression of Slit2 mRNA in lung tissues was decreased markedly after CLP compared with control group [(0.56±0.13) vs.(0.87±0.05),F=41.39,P<0.05,(0.42±0.10) vs.(0.85±0.07),F=93.54,P<0.05,(0.26±0.08) vs.(0.89 ±0.09),F=227.05,P<0.05].but there were no significant difference in expression of Robo4 mRNA in

  3. Cable energy function of cortical axons.

    Science.gov (United States)

    Ju, Huiwen; Hines, Michael L; Yu, Yuguo

    2016-01-01

    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na(+)-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na(+)-counting method severely underestimates energy cost in the cable model by 20-70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship.

  4. Motor axon excitability during Wallerian degeneration

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez, Susana; Krarup, Christian

    2008-01-01

    , action potential propagation and structural integrity of the distal segment are maintained. The aim of this study was to investigate in vivo the changes in membrane function of motor axons during the 'latent' phase of Wallerian degeneration. Multiple indices of axonal excitability of the tibial nerve...

  5. Commissural axons of the mouse cochlear nucleus.

    Science.gov (United States)

    Brown, M Christian; Drottar, Marie; Benson, Thane E; Darrow, Keith

    2013-05-01

    The axons of commissural neurons that project from one cochlear nucleus to the other were studied after labeling with anterograde tracer. Injections were made into the dorsal subdivision of the cochlear nucleus in order to restrict labeling only to the group of commissural neurons that gave off collaterals to, or were located in, this subdivision. The number of labeled commissural axons in each injection was correlated with the number of labeled radiate multipolar neurons, suggesting radiate neurons as the predominant origin of the axons. The radiate commissural axons are thick and myelinated, and they exit the dorsal acoustic stria of the injected cochlear nucleus to cross the brainstem in the dorsal half, near the crossing position of the olivocochlear bundle. They enter the opposite cochlear nucleus via the dorsal and ventral acoustic stria and at its medial border. Reconstructions of single axons demonstrate that terminations are mostly in the core and typically within a single subdivision of the cochlear nucleus. Extents of termination range from narrow to broad along both the dorsoventral (i.e., tonotopic) and the rostrocaudal dimensions. In the electron microscope, labeled swellings form synapses that are symmetric (in that there is little postsynaptic density), a characteristic of inhibitory synapses. Our labeled axons do not appear to include excitatory commissural axons that end in edge regions of the nucleus. Radiate commissural axons could mediate the broadband inhibition observed in responses to contralateral sound, and they may balance input from the two ears with a quick time course.

  6. Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies...... not require NCAM-mediated fibroblast growth factor receptor activation....... on axon guidance in Drosophila suggest that NCAM also regulates the epidermal growth factor receptor (EGFR) (Molecular and Cellular Neuroscience, 28, 2005, 141). A possible interaction between NCAM and EGFR in mammalian cells has not been investigated. The present study demonstrates for the first time...

  7. Early events in axon/dendrite polarization.

    Science.gov (United States)

    Cheng, Pei-lin; Poo, Mu-ming

    2012-01-01

    Differentiation of axons and dendrites is a critical step in neuronal development. Here we review the evidence that axon/dendrite formation during neuronal polarization depends on the intrinsic cytoplasmic asymmetry inherited by the postmitotic neuron, the exposure of the neuron to extracellular chemical factors, and the action of anisotropic mechanical forces imposed by the environment. To better delineate the functions of early signals among a myriad of cellular components that were shown to influence axon/dendrite formation, we discuss their functions by distinguishing their roles as determinants, mediators, or modulators and consider selective degradation of these components as a potential mechanism for axon/dendrite polarization. Finally, we examine whether these early events of axon/dendrite formation involve local autocatalytic activation and long-range inhibition, as postulated by Alan Turing for the morphogenesis of patterned biological structure.

  8. Dynamics of mitochondrial transport in axons

    Directory of Open Access Journals (Sweden)

    Robert Francis Niescier

    2016-05-01

    Full Text Available The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

  9. NGF regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte differentiation and myelination.

    Science.gov (United States)

    Lee, Xinhua; Yang, Zhongshu; Shao, Zhaohui; Rosenberg, Sheila S; Levesque, Melissa; Pepinsky, R Blake; Qiu, Mengsheng; Miller, Robert H; Chan, Jonah R; Mi, Sha

    2007-01-03

    Neurons and glia share a mutual dependence in establishing a functional relationship, and none is more evident than the process by which axons control myelination. Here, we identify LRR and Ig domain-containing, Nogo receptor-interacting protein (LINGO-1) as a potent axonal inhibitor of oligodendrocyte differentiation and myelination that is regulated by nerve growth factor and its cognate receptor TrkA in a dose-dependent manner. Whereas LINGO-1 expressed by oligodendrocyte progenitor cells was previously identified as an inhibitor of differentiation, we demonstrate that axonal expression of LINGO-1 inhibits differentiation with equal potency. Disruption of LINGO-1 on either cell type is sufficient to overcome the inhibitory action and promote differentiation and myelination, independent of axon diameter. Furthermore, these results were recapitulated in transgenic mice overexpressing the full length LINGO-1 under the neuronal promoter synapsin. Myelination was greatly inhibited in the presence of enforced axonal LINGO-1. The implications of these results relate specifically to the development of potential therapeutics targeting extrinsic growth factors that may regulate the axonal expression of modulators of oligodendrocyte development.

  10. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway.

    Science.gov (United States)

    Park, Kevin Kyungsuk; Liu, Kai; Hu, Yang; Smith, Patrice D; Wang, Chen; Cai, Bin; Xu, Bengang; Connolly, Lauren; Kramvis, Ioannis; Sahin, Mustafa; He, Zhigang

    2008-11-07

    The failure of axons to regenerate is a major obstacle for functional recovery after central nervous system (CNS) injury. Removing extracellular inhibitory molecules results in limited axon regeneration in vivo. To test for the role of intrinsic impediments to axon regrowth, we analyzed cell growth control genes using a virus-assisted in vivo conditional knockout approach. Deletion of PTEN (phosphatase and tensin homolog), a negative regulator of the mammalian target of rapamycin (mTOR) pathway, in adult retinal ganglion cells (RGCs) promotes robust axon regeneration after optic nerve injury. In wild-type adult mice, the mTOR activity was suppressed and new protein synthesis was impaired in axotomized RGCs, which may contribute to the regeneration failure. Reactivating this pathway by conditional knockout of tuberous sclerosis complex 1, another negative regulator of the mTOR pathway, also leads to axon regeneration. Thus, our results suggest the manipulation of intrinsic growth control pathways as a therapeutic approach to promote axon regeneration after CNS injury.

  11. Molecular mechanisms of the suppression of axon regeneration by KLF transcription factors

    Institute of Scientific and Technical Information of China (English)

    Akintomide Apara; Jeffrey L.Goldberg

    2014-01-01

    Molecular mechanisms of the Kr̈uppel-like family of transcription factors (KLFs) have been studied more in proliferating cells than in post-mitotic cells such as neurons. We recently found that KLFs regulate intrinsic axon growth ability in central nervous system (CNS) neurons in-cluding retinal ganglion cells, and hippocampal and cortical neurons. With at least 15 of 17 KLF family members expressed in neurons and at least 5 structurally unique subfamilies, it is import-ant to determine how this complex family functions in neurons to regulate the intricate genetic programs of axon growth and regeneration. By characterizing the molecular mechanisms of the KLF family in the nervous system, including binding partners and gene targets, and comparing them to deifned mechanisms deifned outside the nervous system, we may better understand how KLFs regulate neurite growth and axon regeneration.

  12. The mechanism and key molecules involved in pollen tube guidance.

    Science.gov (United States)

    Higashiyama, Tetsuya; Takeuchi, Hidenori

    2015-01-01

    During sexual reproduction of flowering plants, pollen tube guidance by pistil tissue is critical for the delivery of nonmotile sperm cells to female gametes. Multistep controls of pollen tube guidance can be divided into two phases: preovular guidance and ovular guidance. During preovular guidance, various female molecules, including stimulants for pollen germination and pollen tube growth, are provided to support tube growth toward the ovary, where the ovules are located. After entering the ovary, pollen tubes receive directional cues from their respective target ovules, including attractant peptides for precise, species-preferential attraction. Successful pollen tube guidance in the pistil requires not only nutritional and directional controls but also competency controls to make pollen tubes responsive to guidance cues, regulation to terminate growth once a pollen tube arrives at the target, and strategies to stop ovular attraction depending on the fertilization of female gametes.

  13. Laser-based single-axon transection for high-content axon injury and regeneration studies.

    Directory of Open Access Journals (Sweden)

    Darío Kunik

    Full Text Available The investigation of the regenerative response of the neurons to axonal injury is essential to the development of new axoprotective therapies. Here we study the retinal neuronal RGC-5 cell line after laser transection, demonstrating that the ability of these cells to initiate a regenerative response correlates with axon length and cell motility after injury. We show that low energy picosecond laser pulses can achieve transection of unlabeled single axons in vitro and precisely induce damage with micron precision. We established the conditions to achieve axon transection, and characterized RGC-5 axon regeneration and cell body response using time-lapse microscopy. We developed an algorithm to analyze cell trajectories and established correlations between cell motility after injury, axon length, and the initiation of the regeneration response. The characterization of the motile response of axotomized RGC-5 cells showed that cells that were capable of repair or regrowth of damaged axons migrated more slowly than cells that could not. Moreover, we established that RGC-5 cells with long axons could not recover their injured axons, and such cells were much more motile. The platform we describe allows highly controlled axonal damage with subcellular resolution and the performance of high-content screening in cell cultures.

  14. Graphical Turbulence Guidance - Composite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...

  15. On guidance and volatility

    NARCIS (Netherlands)

    Billings, M.B.; Jennings, R.; Lev, B.

    2013-01-01

    Survey evidence suggests that managers voluntarily disclose information, particularly earnings guidance, with an aim toward dampening share price volatility. Yet, consultants and influential institutions advise against providing guidance — citing fears of litigation and market penalties associated w

  16. Ectopic expression of transcription factor AP-2δ in developing retina: effect on PSA-NCAM and axon routing.

    Science.gov (United States)

    Li, Xiaodong; Monckton, Elizabeth A; Godbout, Roseline

    2014-04-01

    Retinal ganglion cells transmit the visual signal from the retina to the brain. We have previously shown that the activator protein 2 (AP-2)δ (TFAP2D) transcription factor is expressed in one third of ganglion cells in developing retina suggesting a specialized role for these AP-2δ-expressing cells. Here, we address the role of AP-2δ in retina by in ovo electroporation of RCAS/AP-2δ retroviral constructs into the eyes of chick embryos at day 2 of gestation. Ectopic expression of AP-2δ does not affect lineage differentiation in the developing retina. However, immunostaining of retinal tissue with markers associated with axonal growth such as growth-associated protein 43 and polysialic acid-neural cell adhesion molecule (PSA-NCAM) demonstrates axonal misrouting and abnormal axonal bundling. Treatment of AP-2δ-misexpressing retinal cell cultures with endoneuraminidase, an enzyme that removes PSA from NCAM, decreases AP-2δ-induced axonal bundling. Our data suggest a role for AP-2δ in polysialylation of NCAM, with ectopic expression of AP-2δ resulting in premature bundling of emerging axons and misrouting of axons. We propose that expression of AP-2δ in a subset of ganglion cells contributes to the fine-tuning of axonal growth in the developing retina.

  17. Strategies for neurotrophin-3 and chondroitinase ABC release from freeze-cast chitosan-alginate nerve-guidance scaffolds.

    Science.gov (United States)

    Francis, Nicola L; Hunger, Philipp M; Donius, Amalie E; Wegst, Ulrike G K; Wheatley, Margaret A

    2017-01-01

    Freeze casting, or controlled unidirectional solidification, can be used to fabricate chitosan-alginate (C-A) scaffolds with highly aligned porosity that are suitable for use as nerve-guidance channels. To augment the guidance of growth across a spinal cord injury lesion, these scaffolds are now evaluated in vitro to assess their ability to release neurotrophin-3 (NT-3) and chondroitinase ABC (chABC) in a controlled manner. Protein-loaded microcapsules were incorporated into C-A scaffolds prior to freeze casting without affecting the original scaffold architecture. In vitro protein release was not significantly different when comparing protein loaded directly into the scaffolds with release from scaffolds containing incorporated microcapsules. NT-3 was released from the C-A scaffolds for 8 weeks in vitro, while chABC was released for up to 7 weeks. Low total percentages of protein released from the scaffolds over this time period were attributed to limitation of diffusion by the interpenetrating polymer network matrix of the scaffold walls. NT-3 and chABC released from the scaffolds retained bioactivity, as determined by a neurite outgrowth assay, and the promotion of neurite growth across an inhibitory barrier of chondroitin sulphate proteoglycans. This demonstrates the potential of these multifunctional scaffolds for enhancing axonal regeneration through growth-inhibiting glial scars via the sustained release of chABC and NT-3. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy.

    Science.gov (United States)

    Kole, Maarten H P; Letzkus, Johannes J; Stuart, Greg J

    2007-08-16

    Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action potential waveform in the axon initial segment (AIS) of layer 5 pyramidal neurons independent of the soma. Cell-attached recordings revealed a 10-fold increase in Kv1 channel density over the first 50 microm of the AIS. Inactivation of AIS and proximal axonal Kv1 channels, as occurs during slow subthreshold somatodendritic depolarizations, led to a distance-dependent broadening of axonal action potentials, as well as an increase in synaptic strength at proximal axonal terminals. Thus, Kv1 channels are strategically positioned to integrate slow subthreshold signals, providing control of the presynaptic action potential waveform and synaptic coupling in local cortical circuits.

  19. Matrine protects neuro-axon from CNS inflammation-induced injury.

    Science.gov (United States)

    Kan, Quan-Cheng; Lv, Peng; Zhang, Xiao-Jian; Xu, Yu-Ming; Zhang, Guang-Xian; Zhu, Lin

    2015-02-01

    Neuro-axonal injury in the central nervous system (CNS) is one of the major pathological hallmarks of experimental autoimmune encephalomyelitis (EAE), an experimental model of multiple sclerosis (MS). Matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae Flave, has recently been shown to effectively suppress EAE through an anti-inflammatory mechanism. However, whether MAT can also protect myelin/axons from damage is not known. In the present study we show that, while untreated rats developed severe clinical disease, CNS inflammatory demyelination, and axonal damage, these clinical and pathological signs were significantly reduced by MAT treatment. Consistently, MAT treatment reduced the concentration of myelin basic protein in serum and downregulated expression of β-amyloid (Aβ) and B-site APP cleaving enzyme 1 (BACE-1) in the CNS. Further, the CNS of MAT-treated rats exhibited increased expression of brain-derived neurotrophic factor (BDNF), an important factor for neuronal survival and axonal growth. Together, these results demonstrate that MAT effectively prevented neuro-axonal injury, which can likely be attributed to inhibiting risk factors such as BACE-1 and upregulating neuroprotective factors such as BDNF. We conclude that this novel natural reagent, MAT, which effectively protects neuro-axons from CNS inflammation-induced damage, could be a potential candidate for the treatment of neurodegenerative diseases such as MS.

  20. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injur y in stroke rats

    Institute of Scientific and Technical Information of China (English)

    Yi Xu; Shiwei Du; Xinguang Yu; Xiao Han; Jincai Hou; Hao Guo

    2014-01-01

    Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that in-travenous transplantation of human bone marrow mesenchymal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including mi-crotubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These ifndings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneifcial effects in-clude resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration.

  1. Myelin Lipids Inhibit Axon Regeneration Following Spinal Cord Injury: a Novel Perspective for Therapy.

    Science.gov (United States)

    Mar, Fernando M; da Silva, Tiago F; Morgado, Marlene M; Rodrigues, Lorena G; Rodrigues, Daniel; Pereira, Marta I L; Marques, Ana; Sousa, Vera F; Coentro, João; Sá-Miranda, Clara; Sousa, Mónica M; Brites, Pedro

    2016-03-01

    Lack of axon regeneration following spinal cord injury has been mainly ascribed to the inhibitory environment of the injury site, i.e., to chondroitin sulfate proteoglycans (CSPGs) and myelin-associated inhibitors (MAIs). Here, we used shiverer (shi) mice to assess axon regeneration following spinal cord injury in the presence of MAIs and CSPG but in the absence of compact myelin. Although in vitro shi neurons displayed a similar intrinsic neurite outgrowth to wild-type neurons, in vivo, shi fibers had increased regenerative capacity, suggesting that the wild-type spinal cord contains additional inhibitors besides MAIs and CSPG. Our data show that besides myelin protein, myelin lipids are highly inhibitory for neurite outgrowth and suggest that this inhibitory effect is released in the shi spinal cord given its decreased lipid content. Specifically, we identified cholesterol and sphingomyelin as novel myelin-associated inhibitors that operate through a Rho-dependent mechanism and have inhibitory activity in multiple neuron types. We further demonstrated the inhibitory action of myelin lipids in vivo, by showing that delivery of 2-hydroxypropyl-β-cyclodextrin, a drug that reduces the levels of lipids specifically in the injury site, leads to increased axon regeneration of wild-type (WT) dorsal column axons following spinal cord injury. In summary, our work shows that myelin lipids are important modulators of axon regeneration that should be considered together with protein MAIs as critical targets in strategies aiming at improving axonal growth following injury.

  2. Axonal degeneration and regeneration in rat uterus during the estrous cycle.

    Science.gov (United States)

    Zoubina, E V; Smith, P G

    2000-11-01

    Uterine innervation of the adult virgin rat changes throughout the estrous cycle. Nerves immunoreactive for the pan-neuronal marker protein gene product 9.5 and the sympathetic marker dopamine beta-hydroxylase are maximal at diestrus and minimal at estrus, whereas presumptive sensory and parasympathetic axons are unchanged. In the present study, we used quantitative electron microscopy to determine if depletion of immunoreactive nerves from the myometrium is due to loss of structurally intact axons, and whether this occurs through degeneration or retraction. Numbers of intact myometrial axons per unit sectional area were greatest at diestrus and least at estrus, while myometrial area was smallest at diestrus and greatest at estrus. However, depletion of intact axons at estrus was evident even after correcting for changes in uterine size. Varicosities adjacent to smooth muscle cells did not vary significantly with respect to their ultrastructural features or distance to the nearest smooth muscle target cell. Because retracting axons show increases in organelle content and distances to target cells, retraction probably does not play a major role in reducing uterine innervation. In contrast, axons with ultrastructural features consistent with degeneration (organelle and axolemmal disintegration, abnormal electron opacity, dense inclusion bodies) were significantly increased at proestrus and estrus. Growth cones were observed only at metestrus and diestrus. We conclude that cyclical degeneration and regeneration of myometrial innervation is a normal feature of the virgin adult rat.

  3. Genetics Home Reference: giant axonal neuropathy

    Science.gov (United States)

    ... R. Proteomic analysis in giant axonal neuropathy: new insights into disease mechanisms. Muscle Nerve. 2012 Aug;46( ... healthcare professional . About Genetics Home Reference Site Map Customer Support Selection Criteria for Links USA.gov Copyright ...

  4. Genetic dissection of myelinated axons in zebrafish

    OpenAIRE

    2009-01-01

    In the vertebrate nervous system, the myelin sheath allows for rapid and efficient conduction of action potentials along axons. Despite the essential function of myelin, many questions remain unanswered about the mechanisms that govern the development of myelinated axons. The fundamental properties of myelin are widely shared among vertebrates, and the zebrafish has emerged as a powerful system to study myelination in vivo. This review will highlight recent advances from genetic screens in ze...

  5. Co-culture of oligodendrocytes and neurons can be used to assess drugs for axon regeneration in the central nervous system

    Directory of Open Access Journals (Sweden)

    Lin Gang

    2015-01-01

    Full Text Available We present a novel in vitro model in which to investigate the efficacy of experimental drugs for the promotion of axon regeneration in the central nervous system. We co-cultured rat hippocampal neurons and cerebral cortical oligodendrocytes, and tested the co-culture system using a Nogo-66 receptor antagonist peptide (NEP1-40, which promotes axonal growth. Primary cultured oligodendrocytes suppressed axonal growth in the rat hippocampus, but NEP1-40 stimulated axonal growth in the co-culture system. Our results confirm the validity of the neuron-oligodendrocyte co-culture system as an assay for the evaluation of drugs for axon regeneration in the central nervous system.

  6. Co-culture of oligodendrocytes and neurons can be used to assess drugs for axon regeneration in the central nervous system.

    Science.gov (United States)

    Gang, Lin; Yao, Yu-Chen; Liu, Ying-Fu; Li, Yi-Peng; Yang, Kai; Lu, Lei; Cheng, Yuan-Chi; Chen, Xu-Yi; Tu, Yue

    2015-10-01

    We present a novel in vitro model in which to investigate the efficacy of experimental drugs for the promotion of axon regeneration in the central nervous system. We co-cultured rat hippocampal neurons and cerebral cortical oligodendrocytes, and tested the co-culture system using a Nogo-66 receptor antagonist peptide (NEP1-40), which promotes axonal growth. Primary cultured oligodendrocytes suppressed axonal growth in the rat hippocampus, but NEP1-40 stimulated axonal growth in the co-culture system. Our results confirm the validity of the neuron-oligodendrocyte co-culture system as an assay for the evaluation of drugs for axon regeneration in the central nervous system.

  7. Crossing axons in the third nerve nucleus.

    Science.gov (United States)

    Bienfang, D C

    1975-12-01

    The research presented in this paper studied the pathway taken by the crossed fibers of the third nerve nucleus in an animal whose nucleus has been well mapped and found to correlate well with higher mammals and man. Autoradiography using tritiated amino acid labeled the cell bodies an axons of the left side of the oculomotor nucleus of the cat. Axons so labeled could be seen emerging from the ventral portion of the left nucleus through the median longitudinal fasciculus (mlf) to join the left oculomotor nerve. Labeled axons were also seen to emerge from the medial border of the caudal left nucleus, cross the midline, and pass through the right nucleus and the right mlf to join the right oculomotor nerve. These latter axons must be the crossed axons of the superior rectus and levator palpebrae subnuclei. Since the path of these crossed axons is through the caudal portion of the nucleus of the opposite side, the destruction of one lateral half of the oculomotor nucleus would result in a bilateral palsy of the crossed subnuclei. Bilateral palsy of the superior rectus and bilateral assymetrical palsy of the levator palpebrae muscles would result.

  8. Templated agarose scaffolds for the support of motor axon regeneration into sites of complete spinal cord transection.

    Science.gov (United States)

    Gao, Mingyong; Lu, Paul; Bednark, Bridget; Lynam, Dan; Conner, James M; Sakamoto, Jeff; Tuszynski, Mark H

    2013-02-01

    Bioengineered scaffolds have the potential to support and guide injured axons after spinal cord injury, contributing to neural repair. In previous studies we have reported that templated agarose scaffolds can be fabricated into precise linear arrays and implanted into the partially injured spinal cord, organizing growth and enhancing the distance over which local spinal cord axons and ascending sensory axons extend into a lesion site. However, most human injuries are severe, sparing only thin rims of spinal cord tissue in the margins of a lesion site. Accordingly, in the present study we examined whether template agarose scaffolds seeded with bone marrow stromal cells secreting Brain-Derived Neurotrophic Factor (BDNF) would support regeneration into severe, complete spinal cord transection sites. Moreover, we tested responses of motor axon populations originating from the brainstem. We find that templated agarose scaffolds support motor axon regeneration into a severe spinal cord injury model and organize axons into fascicles of highly linear configuration. BDNF significantly enhances axonal growth. Collectively, these findings support the feasibility of scaffold implantation for enhancing central regeneration after even severe central nervous system injury.

  9. Dissecting Repulsive Guidance Molecule/Neogenin function and signaling during neural development

    NARCIS (Netherlands)

    van den Heuvel, D.M.A.

    2013-01-01

    During neural development a series of precisely ordered cellular processes acts to establish a functional brain comprising millions of neurons and many more neuronal connections. Neogenin and its repulsive guidance molecule (RGM) ligands contribute to neuronal network formation by inducing axon repu

  10. Initiation to end point: the multiple roles of fibroblast growth factors in neural development.

    Science.gov (United States)

    Mason, Ivor

    2007-08-01

    From a wealth of experimental findings, derived from both in vitro and in vivo experiments, it is becoming clear that fibroblast growth factors regulate processes that are central to all aspects of nervous system development. Some of these functions are well known, whereas others, such as the roles of these proteins in axon guidance and synaptogenesis, have been established only recently. The emergent picture is one of remarkable economy, in which this family of ligands is deployed and redeployed at successive developmental stages to sculpt the nervous system.

  11. Steering neuronal growth cones by shifting the imbalance between exocytosis and endocytosis.

    Science.gov (United States)

    Tojima, Takuro; Itofusa, Rurika; Kamiguchi, Hiroyuki

    2014-05-21

    Extracellular molecular cues guide migrating growth cones along specific routes during development of axon tracts. Such processes rely on asymmetric elevation of cytosolic Ca(2+) concentrations across the growth cone that mediates its attractive or repulsive turning toward or away from the side with Ca(2+) elevation, respectively. Downstream of these Ca(2+) signals, localized activation of membrane trafficking steers the growth cone bidirectionally, with endocytosis driving repulsion and exocytosis causing attraction. However, it remains unclear how Ca(2+) can differentially regulate these opposite membrane-trafficking events. Here, we show that growth cone turning depends on localized imbalance between exocytosis and endocytosis and identify Ca(2+)-dependent signaling pathways mediating such imbalance. In embryonic chicken dorsal root ganglion neurons, repulsive Ca(2+) signals promote clathrin-mediated endocytosis through a 90 kDa splice variant of phosphatidylinositol-4-phosphate 5-kinase type-1γ (PIPKIγ90). In contrast, attractive Ca(2+) signals facilitate exocytosis but suppress endocytosis via Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (Cdk5) that can inactivate PIPKIγ90. Blocking CaMKII or Cdk5 leads to balanced activation of both exocytosis and endocytosis that causes straight growth cone migration even in the presence of guidance signals, whereas experimentally perturbing the balance restores the growth cone's turning response. Remarkably, the direction of this resumed turning depends on relative activities of exocytosis and endocytosis, but not on the type of guidance signals. Our results suggest that navigating growth cones can be redirected by shifting the imbalance between exocytosis and endocytosis, highlighting the importance of membrane-trafficking imbalance for axon guidance and, possibly, for polarized cell migration in general.

  12. Draxin from neocortical neurons controls the guidance of thalamocortical projections into the neocortex.

    Science.gov (United States)

    Shinmyo, Yohei; Asrafuzzaman Riyadh, M; Ahmed, Giasuddin; Bin Naser, Iftekhar; Hossain, Mahmud; Takebayashi, Hirohide; Kawasaki, Hiroshi; Ohta, Kunimasa; Tanaka, Hideaki

    2015-12-14

    The thalamocortical tract carries sensory information to the neocortex. It has long been recognized that the neocortical pioneer axons of subplate neurons are essential for thalamocortical development. Herein we report that an axon guidance cue, draxin, is expressed in early-born neocortical neurons, including subplate neurons, and is necessary for thalamocortical development. In draxin(-/-) mice, thalamocortical axons do not enter the neocortex. This phenotype is sufficiently rescued by the transgenic expression of draxin in neocortical neurons. Genetic interaction data suggest that draxin acts through Deleted in colorectal cancer (DCC) and Neogenin (Neo1), to regulate thalamocortical projections in vivo. Draxin promotes the outgrowth of thalamic axons in vitro and this effect is abolished in thalamic neurons from Dcc and Neo1 double mutants. These results suggest that draxin from neocortical neurons controls thalamocortical projections into the neocortex, and that this effect is mediated through the DCC and Neo1 receptors.

  13. Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Y T [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Tian, W M [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Yu, X [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Cui, F Z [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Hou, S P [Beijing Institute of Neuroscience, Capital University of Medical Sciences, Beijing, 100054 (China); Xu, Q Y [Beijing Institute of Neuroscience, Capital University of Medical Sciences, Beijing, 100054 (China); Lee, In-Seop [Institute of Physics and Applied Physics, and Atomic-scale Surface Science Research Center, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2007-09-15

    A biocompatible hydrogel of hyaluronic acid with the neurite-promoting peptide sequence of IKVAV was synthesized. The characterization of the hydrogel shows an open porous structure and a large surface area available for cell interaction. Its ability to promote tissue repair and axonal regeneration in the lesioned rat cerebrum is also evaluated. After implantation, the polymer hydrogel repaired the tissue defect and formed a permissive interface with the host tissue. Axonal growth occurred within the microstructure of the network. Within 6 weeks the polymer implant was invaded by host-derived tissue, glial cells, blood vessels and axons. Such a hydrogel matrix showed the properties of neuron conduction. It has the potential to repair tissue defects in the central nervous system by promoting the formation of a tissue matrix and axonal growth by replacing the lost tissue.

  14. Inhibition of Rho-kinase differentially affects axon regeneration of peripheral motor and sensory nerves.

    Science.gov (United States)

    Joshi, Abhijeet R; Bobylev, Ilja; Zhang, Gang; Sheikh, Kazim A; Lehmann, Helmar C

    2015-01-01

    The small GTPase RhoA and its down-stream effector Rho-kinase (ROCK) are important effector molecules of the neuronal cytoskeleton. Modulation of the RhoA/ROCK pathway has been shown to promote axonal regeneration, however in vitro and animal studies are inconsistent regarding the extent of axonal outgrowth induced by pharmacological inhibition of ROCK. We hypothesized that injury to sensory and motor nerves result in diverse activation levels of RhoA, which may impact the response of those nerve fiber modalities to ROCK inhibition. We therefore examined the effects of Y-27632, a chemical ROCK inhibitor, on the axonal outgrowth of peripheral sensory and motor neurons grown in the presence of growth-inhibiting chondroitin sulfate proteoglycans (CSPGs). In addition we examined the effects of three different doses of Y-27632 on nerve regeneration of motor and sensory nerves in animal models of peripheral nerve crush. In vitro, sensory neurons were less responsive to Y-27632 compared to motor neurons in a non-growth permissive environment. These differences were associated with altered expression and activation of RhoA in sensory and motor axons. In vivo, systemic treatment with high doses of Y-27632 significantly enhanced the regeneration of motor axons over short distances, while the regeneration of sensory fibers remained largely unchanged. Our results support the concept that in a growth non-permissive environment, the regenerative capacity of sensory and motor axons is differentially affected by the RhoA/ROCK pathway, with motor neurons being more responsive compared to sensory. Future treatments, that are aimed to modulate RhoA activity, should consider this functional diversity.

  15. How Schwann Cells Sort Axons: New Concepts.

    Science.gov (United States)

    Feltri, M Laura; Poitelon, Yannick; Previtali, Stefano Carlo

    2016-06-01

    Peripheral nerves contain large myelinated and small unmyelinated (Remak) fibers that perform different functions. The choice to myelinate or not is dictated to Schwann cells by the axon itself, based on the amount of neuregulin I-type III exposed on its membrane. Peripheral axons are more important in determining the final myelination fate than central axons, and the implications for this difference in Schwann cells and oligodendrocytes are discussed. Interestingly, this choice is reversible during pathology, accounting for the remarkable plasticity of Schwann cells, and contributing to the regenerative potential of the peripheral nervous system. Radial sorting is the process by which Schwann cells choose larger axons to myelinate during development. This crucial morphogenetic step is a prerequisite for myelination and for differentiation of Remak fibers, and is arrested in human diseases due to mutations in genes coding for extracellular matrix and linkage molecules. In this review we will summarize progresses made in the last years by a flurry of reverse genetic experiments in mice and fish. This work revealed novel molecules that control radial sorting, and contributed unexpected ideas to our understanding of the cellular and molecular mechanisms that control radial sorting of axons.

  16. Protein phosphorylation: Localization in regenerating optic axons

    Energy Technology Data Exchange (ETDEWEB)

    Larrivee, D. (Cornell Univ. Medical College, New York, NY (USA))

    1990-09-01

    A number of axonal proteins display changes in phosphorylation during goldfish optic nerve regeneration. (1) To determine whether the phosphorylation of these proteins was closely linked to their synthesis in the retinal ganglion cell body, cycloheximide was injected intraocularly into goldfish whose optic nerves had been regenerating for 3 weeks. Cycloheximide reduced the incorporation of (3H)proline and 32P orthophosphate into total nerve protein by 84% and 46%, respectively. Of the 20 individual proteins examined, 17 contained less than 15% of the (3H)proline label measured in corresponding controls, whereas 18 proteins contained 50% or more of the 32P label, suggesting that phosphorylation was largely independent of synthesis. (2) To determine whether the proteins were phosphorylated in the ganglion cell axons, axonal transport of proteins was blocked by intraocular injection of vincristine. Vincristine reduced (3H)proline labeling of total protein by 88% and 32P labeling by 49%. Among the individual proteins (3H)proline labeling was reduced by 90% or more in 18 cases but 32P labeling was reduced only by 50% or less. (3) When 32P was injected into the cranial cavity near the ends of the optic axons, all of the phosphoproteins were labeled more intensely in the optic tract than in the optic nerve. These results suggest that most of the major phosphoproteins that undergo changes in phosphorylation in the course of regeneration are phosphorylated in the optic axons.

  17. Evidence for a role of srGAP3 in the positioning of commissural axons within the ventrolateral funiculus of the mouse spinal cord.

    Directory of Open Access Journals (Sweden)

    Claire Bacon

    Full Text Available Slit-Robo signaling guides commissural axons away from the floor-plate of the spinal cord and into the longitudinal axis after crossing the midline. In this study we have evaluated the role of the Slit-Robo GTPase activating protein 3 (srGAP3 in commissural axon guidance using a knockout (KO mouse model. Co-immunoprecipitation experiments confirmed that srGAP3 interacts with the Slit receptors Robo1 and Robo2 and immunohistochemistry studies showed that srGAP3 co-localises with Robo1 in the ventral and lateral funiculus and with Robo2 in the lateral funiculus. Stalling axons have been reported in the floor-plate of Slit and Robo mutant spinal cords but our axon tracing experiments revealed no dorsal commissural axon stalling in the floor plate of the srGAP3 KO mouse. Interestingly we observed a significant thickening of the ventral funiculus and a thinning of the lateral funiculus in the srGAP3 KO spinal cord, which has also recently been reported in the Robo2 KO. However, axons in the enlarged ventral funiculus of the srGAP3 KO are Robo1 positive but do not express Robo2, indicating that the thickening of the ventral funiculus in the srGAP3 KO is not a Robo2 mediated effect. We suggest a role for srGAP3 in the lateral positioning of post crossing axons within the ventrolateral funiculus.

  18. Network structure implied by initial axon outgrowth in rodent cortex: empirical measurement and models.

    Science.gov (United States)

    Cahalane, Diarmuid J; Clancy, Barbara; Kingsbury, Marcy A; Graf, Ethan; Sporns, Olaf; Finlay, Barbara L

    2011-01-11

    The developmental mechanisms by which the network organization of the adult cortex is established are incompletely understood. Here we report on empirical data on the development of connections in hamster isocortex and use these data to parameterize a network model of early cortical connectivity. Using anterograde tracers at a series of postnatal ages, we investigate the growth of connections in the early cortical sheet and systematically map initial axon extension from sites in anterior (motor), middle (somatosensory) and posterior (visual) cortex. As a general rule, developing axons extend from all sites to cover relatively large portions of the cortical field that include multiple cortical areas. From all sites, outgrowth is anisotropic, covering a greater distance along the medial/lateral axis than along the anterior/posterior axis. These observations are summarized as 2-dimensional probability distributions of axon terminal sites over the cortical sheet. Our network model consists of nodes, representing parcels of cortex, embedded in 2-dimensional space. Network nodes are connected via directed edges, representing axons, drawn according to the empirically derived anisotropic probability distribution. The networks generated are described by a number of graph theoretic measurements including graph efficiency, node betweenness centrality and average shortest path length. To determine if connectional anisotropy helps reduce the total volume occupied by axons, we define and measure a simple metric for the extra volume required by axons crossing. We investigate the impact of different levels of anisotropy on network structure and volume. The empirically observed level of anisotropy suggests a good trade-off between volume reduction and maintenance of both network efficiency and robustness. Future work will test the model's predictions for connectivity in larger cortices to gain insight into how the regulation of axonal outgrowth may have evolved to achieve efficient

  19. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans

    Science.gov (United States)

    Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang

    2005-10-01

    Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.

  20. Corporate information management guidance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    At the request of the Department of Energy`s (DOE) Information Management (IM) Council, IM representatives from nearly all Headquarters (HQ) organizations have been meeting over the past year as the Corporate Guidance Group (CGG) to develop useful and sound corporate information management (IM) guidance. The ability of the Department`s IM community to develop such unified guidance continues to be critical to the success of future Departmental IM planning processes and the establishment of a well-coordinated IM environment between Headquarters and field organizations. This report, with 26 specific corporate IM guidance items documented and unanimously agreed to, as well as 12 items recommended for further development and 3 items deferred for future consideration, represents a highly successful effort by the IM community. The effort has proven that the diverse DOE organizations can put aside individual preferences and work together towards a common and mutually beneficial goal. In examining most areas and issues associated with information management in the Department, they have developed specific, far-reaching, and useful guidance. The IM representatives recommend that the documented guidance items provided in this report and approved by the DOE IM Council be followed by all IM organizations. The representatives also strongly recommend that the guidance process developed by the CGG be the single process for developing corporate IM guidance.

  1. Role of sensory-motor cortex activity in postnatal development of corticospinal axon terminals in the cat.

    Science.gov (United States)

    Friel, Kathleen M; Martin, John H

    2005-04-25

    The initial pattern of corticospinal (CS) terminations, as axons grow into the spinal gray matter, bears little resemblance to the pattern later in development and in maturity. This is because of extensive axon pruning and local axon terminal growth during early postnatal development. Pruning is driven by activity-dependent competition between the CS systems on each side during postnatal weeks (PW) 3-7. It is not known whether CS axon terminal growth and final topography are activity dependent. We examined the activity dependence of CS axon terminal growth and topography at different postnatal times. We inactivated sensory-motor cortex by infusion of the gamma-aminobutyric acid type A (GABA(A)) agonist muscimol and traced CS axons from the inactivated side. Inactivation between PW5 and PW7 produced permanent changes in projection topography, reduced local axon branching, and prevented development of dense clusters of presynaptic sites, which are normally characteristic of CS terminals. Inactivation at younger (PW3-5) and older (PW8-12) ages did not affect projection topography but impeded development of local axon branching and presynaptic site clusters. These effects were not due to increased cortical cell death during inactivation. Neural activity plays an important role in determining the morphology of CS terminals during the entire period of development, but, for the projection topography, the role of activity is exercised during a very brief period. This points to a complex, and possibly independent, regulation of termination topography and terminal morphology. Surprisingly, when a CS neuron's activity is blocked during early development, it does not recover lost connections later in development once activity resumes.

  2. Shuttle entry guidance revisited

    Science.gov (United States)

    Mease, Kenneth D.; Kremer, Jean-Paul

    1992-01-01

    The Shuttle entry guidance concept is reviewed which is aimed at tracking a reference drag trajectory that leads to the specified range and velocity for the initiation of the terminal energy management phase. An approximate method of constructing the domain of attraction is proposed, and its validity is ascertained by simulation. An alternative guidance law yielding global exponential tracking in the absence of control saturation is derived using a feedback linearization method. It is noted that the alternative guidance law does not improve on the stability and performance of the current guidance law, for the operating domain and control capability of the Shuttle. It is suggested that the new guidance law with a larger operating domain and increased lift-to-drag capability would be superior.

  3. Shuttle entry guidance

    Science.gov (United States)

    Harpold, J. C.; Graves, C. A., Jr.

    1978-01-01

    This paper describes the design of the entry guidance for the Space Shuttle Orbiter. This guidance provides the steering commands for trajectory control from initial penetration of the earth's atmosphere until the terminal area guidance is activated at an earth-relative speed of 2500 fps. At this point, the Orbiter is at a distance of about 50 nmi from the runway threshold, and at an altitude of about 80,000 ft. The entry guidance design is based on an analytic solution of the equations of motion defining the drag acceleration profile that meets the terminal criteria of the entry flight while maintaining the flight within systems and operational constraints. Guidance commands, which are based on a control law that ensures damping of oscillatory type trajectory motion, are computed to steer the Orbiter to this drag acceleration profile.

  4. Shuttle entry guidance revisited

    Science.gov (United States)

    Mease, Kenneth D.; Kremer, Jean-Paul

    1992-08-01

    The Shuttle entry guidance concept is reviewed which is aimed at tracking a reference drag trajectory that leads to the specified range and velocity for the initiation of the terminal energy management phase. An approximate method of constructing the domain of attraction is proposed, and its validity is ascertained by simulation. An alternative guidance law yielding global exponential tracking in the absence of control saturation is derived using a feedback linearization method. It is noted that the alternative guidance law does not improve on the stability and performance of the current guidance law, for the operating domain and control capability of the Shuttle. It is suggested that the new guidance law with a larger operating domain and increased lift-to-drag capability would be superior.

  5. Automated Axon Counting in Rodent Optic Nerve Sections with AxonJ

    Science.gov (United States)

    Zarei, Kasra; Scheetz, Todd E.; Christopher, Mark; Miller, Kathy; Hedberg-Buenz, Adam; Tandon, Anamika; Anderson, Michael G.; Fingert, John H.; Abràmoff, Michael David

    2016-05-01

    We have developed a publicly available tool, AxonJ, which quantifies the axons in optic nerve sections of rodents stained with paraphenylenediamine (PPD). In this study, we compare AxonJ’s performance to human experts on 100x and 40x images of optic nerve sections obtained from multiple strains of mice, including mice with defects relevant to glaucoma. AxonJ produced reliable axon counts with high sensitivity of 0.959 and high precision of 0.907, high repeatability of 0.95 when compared to a gold-standard of manual assessments and high correlation of 0.882 to the glaucoma damage staging of a previously published dataset. AxonJ allows analyses that are quantitative, consistent, fully-automated, parameter-free, and rapid on whole optic nerve sections at 40x. As a freely available ImageJ plugin that requires no highly specialized equipment to utilize, AxonJ represents a powerful new community resource augmenting studies of the optic nerve using mice.

  6. Adenomatous polyposis coli regulates axon arborization and cytoskeleton organization via its N-terminus.

    Directory of Open Access Journals (Sweden)

    Youjun Chen

    Full Text Available Conditional deletion of APC leads to marked disruption of cortical development and to excessive axonal branching of cortical neurons. However, little is known about the cell biological basis of this neuronal morphological regulation. Here we show that APC deficient cortical neuronal growth cones exhibit marked disruption of both microtubule and actin cytoskeleton. Functional analysis of the different APC domains revealed that axonal branches do not result from stabilized β-catenin, and that the C-terminus of APC containing microtubule regulatory domains only partially rescues the branching phenotype. Surprisingly, the N-terminus of APC containing the oligomerization domain and the armadillo repeats completely rescues the branching and cytoskeletal abnormalities. Our data indicate that APC is required for appropriate axon morphological development and that the N-terminus of APC is important for regulation of the neuronal cytoskeleton.

  7. Tracking Quantum-Dot labeled neurotropic factors transport along primary neuronal axons in compartmental microfluidic chambers.

    Science.gov (United States)

    Gluska, Shani; Chein, Michael; Rotem, Nimrod; Ionescu, Ariel; Perlson, Eran

    2016-01-01

    Neurons are highly polarized cells, with very long axons. Neurotrophic factors like the neuronal growth factor (NGF) are secreted from neuronal targets to promote neuron survival and proper function. These neurotrophic factors must undergo retrograde axonal transport towards the cell body, wherein they initiate signaling pathways important for neurons' various functions and overall health. This process of long-distance axonal signaling is conducted by the dynein motor protein, which transmits signaling endosomes of ligand-receptor complexes retrogradely along microtubule tracks. Here we describe step by step the use of polydimethylsiloxane (PDMS) compartmentalized microfluidic chambers for tracking axonal transport of trophic factors, with a focus on labeled NGF. We describe in detail how to fabricate the molds, assemble the PDMS platform, plate neurons and image, as well as analyze NGF transport along the axon. This method is useful for studying molecular communication mechanisms within the neuron's different compartments as well as between the neuron and its diverse microenvironments, both in health and under pathological conditions.

  8. Nicotinamide mononucleotide adenylyltransferase 1 gene NMNAT1 regulates neuronal dendrite and axon morphogenesis in vitro

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong; ZHANG Jing-yu; YANGZi-chao; LIU Ming; GANG Bao-zhi; ZHAO Qing-jie

    2011-01-01

    Background Wallerian degeneration is a self-destructive process of axonal degeneration that occurs after an axonal injury or during neurodegenerative disorders such as Parkinson's or Alzheimer's disease.Recent studies have found that the activity of the nicotinamide adenine dinucleotide (NAD) synthase enzyme,nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1) can affect the rate of Wallerian degeneration in mice and drosophila.NMNAT1 protects neurons and axons from degeneration.However,the role of NMNAT1 in neurons of central nervous system is still not well understood.Methods We set up the culture of primary mouse neurons in vitro and manipulated the expression level of NMNAT1 by RNA interference and gene overexpression methods.Using electroporation transfection we can up-regulate or down-regulate NMNAT1 in cultured mouse dendrites and axons and study the neuronal morphogenesis by immunocytochemistry.In all functional assays,FK-866 (CAS 658084-64-1),a highly specific non-competitive inhibitor of nicotinamide phosphoribosyltransferase was used as a pharmacological and positive control.Results Our results showed that knocking down NMNAT1 by RNA interference led to a marked decrease in dendrite outgrowth and branching and a significant decrease in axon growth and branching in developing cortical neurons in vitro.Conclusions These findings reveal a novel role for NMNAT1 in the morphogenesis of developing cortical neurons,which indicate that the loss of function of NMNAT1 may contribute to different neurodegenerative disorders in central nervous system.

  9. Frizzled-3a and slit2 genetically interact to modulate midline axon crossing in the telencephalon.

    Science.gov (United States)

    Hofmeister, Wolfgang; Devine, Christine A; Rothnagel, Joseph A; Key, Brian

    2012-07-01

    The anterior commissure forms the first axon connections between the two sides of the embryonic telencephalon. We investigated the role of the transmembrane receptor Frizzled-3a in the development of this commissure using zebrafish as an experimental model. Knock down of Frizzled-3a resulted in complete loss of the anterior commissure. This defect was accompanied by a loss of the glial bridge, expansion of the slit2 expression domain and perturbation of the midline telencephalic-diencephalic boundary. Blocking Slit2 activity following knock down of Frizzled-3a effectively rescued the anterior commissure defect which suggested that Frizzled-3a was indirectly controlling the growth of axons across the rostral midline. We have shown here that Frizzled-3a is essential for normal development of the commissural plate and that loss-of-function causes Slit2-dependent defects in axon midline crossing in the embryonic vertebrate forebrain. These data supports a model whereby Wnt signaling through Frizzled-3a attenuates expression of Slit2 in the rostral midline of the forebrain. The absence of Slit2 facilitates the formation of a midline bridge of glial cells which is used as a substrate for commissural axons. In the absence of this platform of glia, commissural axons fail to cross the rostral midline of the forebrain.

  10. ATP7A (Menkes protein) functions in axonal targeting and synaptogenesis.

    Science.gov (United States)

    El Meskini, Rajaâ; Crabtree, Kelli L; Cline, Laura B; Mains, Richard E; Eipper, Betty A; Ronnett, Gabriele V

    2007-03-01

    Menkes disease (MD) is a neurodegenerative disorder caused by mutations in the copper transporter, ATP7A, a P-type ATPase. We previously used the olfactory system to demonstrate that ATP7A expression is developmentally, not constitutive, regulated, peaking during synaptogenesis when it is highly expressed in extending axons in a copper-independent manner. Although not known to be associated with axonal functions, we explored the possibility that the inability of mutant ATP7A to support axon outgrowth contributes to the neurodegeneration seen in MD. In vivo analysis of the olfactory system in mottled brindled (Atp7aMobr) mice, a rodent model for MD, demonstrates that ATP7A deficiency affects olfactory sensory neuron (OSN) maturation. Disrupted OSN axonal projections and mitral/tufted cell dendritic growth lead to altered synapse integrity and glomerular disorganization in the olfactory bulbs of Atp7aMobr mice. Our data indicate that the neuronal abnormalities observed in MD are a result of specific age-dependent developmental defects. This study demonstrates a role for ATP7A and/or copper in axon outgrowth and synaptogenesis, and will further help identify the cause of the neuropathology that characterizes MD.

  11. Laminin/β1 integrin signal triggers axon formation by promoting microtubule assembly and stabilization

    Institute of Scientific and Technical Information of China (English)

    Wen-Liang Lei; Shi-Ge Xing; Cai-Yun Deng; Xiang-Chun Ju; Xing-Yu Jiang; Zhen-Ge Luo

    2012-01-01

    Axon specification during neuronal polarization is closely associated with increased microtubule stabilization in one of the neurites of unpolarized neuron,but how this increased microtubule stability is achieved is unclear.Here,we show that extracellular matrix (ECM) component laminin promotes neuronal polarization via regulating directional microtubule assembly through β1 integrin (Itgb1).Contact with laminin coated on culture substrate or polystyrene beads was sufficient for axon specification of undifferentiated neurites in cultured hippocampal neurons and cortical slices.Active Itgb1 was found to be concentrated in laminin-contacting neurites.Axon formation was promoted and abolished by enhancing and attenuating Itgbl signaling,respectively.Interestingly,laminin contact promoted plus-end microtubule assembly in a manner that required Itgbl.Moreover,stabilizing microtubules partially prevented polarization defects caused by ltgbl downregulation.Finally,genetic ablation of ltgbl in dorsal telencephalic progenitors caused deficits in axon development of cortical pyramidal neurons.Thus,laminin/Itgb1 signaling plays an instructive role in axon initiation and growth,both in vitro and in vivo,through the regulation of microtubule assembly.This study has established a linkage between an extrinsic factor and intrinsic cytoskeletai dynamics during neuronal polarization.

  12. IGF-1 Induces GHRH Neuronal Axon Elongation during Early Postnatal Life in Mice

    Science.gov (United States)

    Clemessy, Maud; Heurtier, Victor; Ledent, Tatiana; Robinson, Iain C.; Mollard, Patrice; Epelbaum, Jacques; Meaney, Michael J.; Garel, Sonia; Le Bouc, Yves; Kappeler, Laurent

    2017-01-01

    Nutrition during the perinatal period programs body growth. Growth hormone (GH) secretion from the pituitary regulates body growth and is controlled by Growth Hormone Releasing Hormone (GHRH) neurons located in the arcuate nucleus of the hypothalamus. We observed that dietary restriction during the early postnatal period (i.e. lactation) in mice influences postnatal growth by permanently altering the development of the somatotropic axis in the pituitary gland. This alteration may be due to a lack of GHRH signaling during this critical developmental period. Indeed, underfed pups showed decreased insulin-like growth factor I (IGF-I) plasma levels, which are associated with lower innervation of the median eminence by GHRH axons at 10 days of age relative to normally fed pups. IGF-I preferentially stimulated axon elongation of GHRH neurons in in vitro arcuate explant cultures from 7 day-old normally fed pups. This IGF-I stimulating effect was selective since other arcuate neurons visualized concomitantly by neurofilament labeling, or AgRP immunochemistry, did not significantly respond to IGF-I stimulation. Moreover, GHRH neurons in explants from age-matched underfed pups lost the capacity to respond to IGF-I stimulation. Molecular analyses indicated that nutritional restriction was associated with impaired activation of AKT. These results highlight a role for IGF-I in axon elongation that appears to be cell selective and participates in the complex cellular mechanisms that link underfeeding during the early postnatal period with programming of the growth trajectory. PMID:28076448

  13. Combining peripheral nerve grafts and chondroitinase promotes functional axonal regeneration in the chronically injured spinal cord.

    Science.gov (United States)

    Tom, Veronica J; Sandrow-Feinberg, Harra R; Miller, Kassi; Santi, Lauren; Connors, Theresa; Lemay, Michel A; Houlé, John D

    2009-11-25

    Because there currently is no treatment for spinal cord injury, most patients are living with long-standing injuries. Therefore, strategies aimed at promoting restoration of function to the chronically injured spinal cord have high therapeutic value. For successful regeneration, long-injured axons must overcome their poor intrinsic growth potential as well as the inhibitory environment of the glial scar established around the lesion site. Acutely injured axons that regenerate into growth-permissive peripheral nerve grafts (PNGs) reenter host tissue to mediate functional recovery if the distal graft-host interface is treated with chondroitinase ABC (ChABC) to cleave inhibitory chondroitin sulfate proteoglycans in the scar matrix. To determine whether a similar strategy is effective for a chronic injury, we combined grafting of a peripheral nerve into a highly relevant, chronic, cervical contusion site with ChABC treatment of the glial scar and glial cell line-derived neurotrophic factor (GDNF) stimulation of long-injured axons. We tested this combination in two grafting paradigms: (1) a peripheral nerve that was grafted to span a chronic injury site or (2) a PNG that bridged a chronic contusion site with a second, more distal injury site. Unlike GDNF-PBS treatment, GDNF-ChABC treatment facilitated axons to exit the PNG into host tissue and promoted some functional recovery. Electrical stimulation of axons in the peripheral nerve bridge induced c-Fos expression in host neurons, indicative of synaptic contact by regenerating fibers. Thus, our data demonstrate, for the first time, that administering ChABC to a distal graft interface allows for functional axonal regeneration by chronically injured neurons.

  14. Myelin-associated glycoprotein and its axonal receptors.

    Science.gov (United States)

    Schnaar, Ronald L; Lopez, Pablo H H

    2009-11-15

    Myelin-associated glycoprotein (MAG) is expressed on the innermost myelin membrane wrap, directly apposed to the axon surface. Although it is not required for myelination, MAG enhances long-term axon-myelin stability, helps to structure nodes of Ranvier, and regulates the axon cytoskeleton. In addition to its role in axon-myelin stabilization, MAG inhibits axon regeneration after injury; MAG and a discrete set of other molecules on residual myelin membranes at injury sites actively signal axons to halt elongation. Both the stabilizing and the axon outgrowth inhibitory effects of MAG are mediated by complementary MAG receptors on the axon surface. Two MAG receptor families have been described, sialoglycans (specifically gangliosides GD1a and GT1b) and Nogo receptors (NgRs). Controversies remain about which receptor(s) mediates which of MAG's biological effects. Here we review the findings and challenges in associating MAG's biological effects with specific receptors.

  15. The pathophysiology of axonal transport in alzheimer’s disease

    OpenAIRE

    Vicario Orri, Elena; Opazo, Carlos; Muñoz López, Francisco José, 1964-

    2015-01-01

    Neurons communicate in the nervous system by carrying out information along the length of their axons to finally transmit it at the synapse. Proper function of axons and axon terminals relies on the transport of proteins, organelles, vesicles, and other elements from the site of synthesis in the cell body. Conversely, neurotrophins secreted from axonal targets and other components at nerve terminals need to travel toward the cell body for clearance. Molecular motors, namely kinesins and dynei...

  16. A PKC-dependent recruitment of MMP-2 controls semaphorin-3A growth-promoting effect in cortical dendrites.

    Directory of Open Access Journals (Sweden)

    Bertrand Gonthier

    Full Text Available There is increasing evidence for a crucial role of proteases and metalloproteinases during axon growth and guidance. In this context, we recently described a functional link between the chemoattractive Sema3C and Matrix metalloproteinase 3 (MMP3. Here, we provide data demonstrating the involvement of MMP-2 to trigger the growth-promoting effect of Sema3A in cortical dendrites. The in situ analysis of MMP-2 expression and activity is consistent with a functional growth assay demonstrating in vitro that the pharmacological inhibition of MMP-2 reduces the growth of cortical dendrites in response to Sema3A. Hence, our results suggest that the selective recruitment and activation of MMP-2 in response to Sema3A requires a PKC alpha dependent mechanism. Altogether, we provide a second set of data supporting MMPs as effectors of the growth-promoting effects of semaphorins, and we identify the potential signalling pathway involved.

  17. Intermediate Progenitors Facilitate Intracortical Progression of Thalamocortical Axons and Interneurons through CXCL12 Chemokine Signaling.

    Science.gov (United States)

    Abe, Philipp; Molnár, Zoltán; Tzeng, Yi-Shiuan; Lai, Dar-Ming; Arnold, Sebastian J; Stumm, Ralf

    2015-09-23

    Glutamatergic principal neurons, GABAergic interneurons and thalamocortical axons (TCAs) are essential elements of the cerebrocortical network. Principal neurons originate locally from radial glia and intermediate progenitors (IPCs), whereas interneurons and TCAs are of extrinsic origin. Little is known how the assembly of these elements is coordinated. C-X-C motif chemokine 12 (CXCL12), which is known to guide axons outside the neural tube and interneurons in the cortex, is expressed in the meninges and IPCs. Using mouse genetics, we dissected the influence of IPC-derived CXCL12 on TCAs and interneurons by showing that Cxcl12 ablation in IPCs, leaving meningeal Cxcl12 intact, attenuates intracortical TCA growth and disrupts tangential interneuron migration in the subventricular zone. In accordance with strong CXCR4 expression in the forming thalamus and TCAs, we identified a CXCR4-dependent growth-promoting effect of CXCL12 on TCAs in thalamus explants. Together, our findings indicate a cell-autonomous role of CXCR4 in promoting TCA growth. We propose that CXCL12 signals from IPCs link cortical neurogenesis to the progression of TCAs and interneurons spatially and temporally. Significance statement: The cerebral cortex exerts higher brain functions including perceptual and emotional processing. Evolutionary expansion of the mammalian cortex is mediated by intermediate progenitors, transient amplifying cells generating cortical excitatory neurons. During the peak period of cortical neurogenesis, migrating precursors of inhibitory interneurons originating in subcortical areas and thalamic axons invade the cortex. Although defects in the assembly of cortical network elements cause neurological and mental disorders, little is known how neurogenesis, interneuron recruitment, and axonal ingrowth are coordinated. We demonstrate that intermediate progenitors release the chemotactic cytokine CXCL12 to promote intracortical interneuron migration and growth of thalamic axons

  18. Modeling molecular mechanisms in the axon

    Science.gov (United States)

    de Rooij, R.; Miller, K. E.; Kuhl, E.

    2017-03-01

    Axons are living systems that display highly dynamic changes in stiffness, viscosity, and internal stress. However, the mechanistic origin of these phenomenological properties remains elusive. Here we establish a computational mechanics model that interprets cellular-level characteristics as emergent properties from molecular-level events. We create an axon model of discrete microtubules, which are connected to neighboring microtubules via discrete crosslinking mechanisms that obey a set of simple rules. We explore two types of mechanisms: passive and active crosslinking. Our passive and active simulations suggest that the stiffness and viscosity of the axon increase linearly with the crosslink density, and that both are highly sensitive to the crosslink detachment and reattachment times. Our model explains how active crosslinking with dynein motors generates internal stresses and actively drives axon elongation. We anticipate that our model will allow us to probe a wide variety of molecular phenomena—both in isolation and in interaction—to explore emergent cellular-level features under physiological and pathological conditions.

  19. Morphometry of Axons in Optic Nerves of Siamese's Twins

    Institute of Scientific and Technical Information of China (English)

    Xinzu Gu; Zhenping Zhang; Qi Lin; Jiongji Liang; Wenyu Lu; Xiulan Ye; A A Sadun

    2002-01-01

    Purpose: To observe the development of optic nerve, we examined four optic nerves from Siameses Twins by absolute counts of axons.Methods: Mean axon diameter, mean axon density, totally axonal population and optic nerve area were noted for each optic nerve. The mean axon diameter and the mean axon density were compared between paraxial (inner sectors)and cortical (outer sectors)areas of the nerves.Results: More myelinated axons were seen in the inner sectors as compared to the outer sectors(average 11 axons/1 000 μm2 in inner sectors and 34 axons/l 000 μm2 in outer sectors( P=0. 036) . The myelinated fibers were also smaller(63 microns) in the outer sectors as compared to the inner sectors(72 microns) ( P = 0. 001 ). The average cross sectors area for the four 40 week stage optical nerves of Siamese Twins was 3.32 × 103 as compared to 1 million axons for 32-week-old normals.Conclusion: Our finding of fewer axonal number and small myelinated fibers in the Siamese Twins suggests hypoplasia. Myelination was more abnormal in the paraxial optic nerve than that in the peripheral sectors, suggesting anomalous development of optic nerve peripherally and delayed developnent centrally. Axonal density is higher in inner sectors than that in outer sectors, suggesting delayed development of the outer nerve sector.

  20. Nerve Growth Factor mRNA Expression in the Regenerating Antler Tip of Red Deer (Cervus elaphus)

    Science.gov (United States)

    Li, Chunyi; Stanton, Jo-Ann L.; Robertson, Tracy M.; Suttie, James M.; Sheard, Philip W.; John Harris, A.; Clark, Dawn E.

    2007-01-01

    Deer antlers are the only mammalian organs that can fully regenerate each year. During their growth phase, antlers of red deer extend at a rate of approximately 10 mm/day, a growth rate matched by the antler nerves. It was demonstrated in a previous study that extracts from deer velvet antler can promote neurite outgrowth from neural explants, suggesting a possible role for Nerve Growth Factor (NGF) in antler innervation. Here we showed using the techniques of Northern blot analysis, denervation, immunohistochemistry and in situ hybridization that NGF mRNA was expressed in the regenerating antler, principally in the smooth muscle of the arteries and arterioles of the growing antler tip. Regenerating axons followed the route of the major blood vessels, located at the interface between the dermis and the reserve mesenchyme of the antler. Denervation experiments suggested a causal relationship exists between NGF mRNA expression in arterial smooth muscle and sensory axons in the antler tip. We hypothesize that NGF expressed in the smooth muscle of the arteries and arterioles promotes and maintains antler angiogenesis and this role positions NGF ahead of axons during antler growth. As a result, NGF can serve a second role, attracting sensory axons into the antler, and thus it can provide a guidance cue to define the nerve track. This would explain the phenomenon whereby re-innervation of the regenerating antler follows vascular ingrowth. The annual growth of deer antler presents a unique opportunity to better understand the factors involved in rapid nerve regeneration. PMID:17215957

  1. MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2

    Science.gov (United States)

    Walker, Lauren J; Summers, Daniel W; Sasaki, Yo; Brace, EJ; Milbrandt, Jeffrey; DiAntonio, Aaron

    2017-01-01

    Injury-induced (Wallerian) axonal degeneration is regulated via the opposing actions of pro-degenerative factors such as SARM1 and a MAPK signal and pro-survival factors, the most important of which is the NAD+ biosynthetic enzyme NMNAT2 that inhibits activation of the SARM1 pathway. Here we investigate the mechanism by which MAPK signaling facilitates axonal degeneration. We show that MAPK signaling promotes the turnover of the axonal survival factor NMNAT2 in cultured mammalian neurons as well as the Drosophila ortholog dNMNAT in motoneurons. The increased levels of NMNAT2 are required for the axonal protection caused by loss of MAPK signaling. Regulation of NMNAT2 by MAPK signaling does not require SARM1, and so cannot be downstream of SARM1. Hence, pro-degenerative MAPK signaling functions upstream of SARM1 by limiting the levels of the essential axonal survival factor NMNAT2 to promote injury-dependent SARM1 activation. These findings are consistent with a linear molecular pathway for the axonal degeneration program. DOI: http://dx.doi.org/10.7554/eLife.22540.001 PMID:28095293

  2. AxonQuant: A Microfluidic Chamber Culture-Coupled Algorithm That Allows High-Throughput Quantification of Axonal Damage

    Directory of Open Access Journals (Sweden)

    Yang Li

    2014-02-01

    Full Text Available Published methods for imaging and quantitatively analyzing morphological changes in neuronal axons have serious limitations because of their small sample sizes, and their time-consuming and nonobjective nature. Here we present an improved microfluidic chamber design suitable for fast and high-throughput imaging of neuronal axons. We developed the AxonQuant algorithm, which is suitable for automatic processing of axonal imaging data. This microfluidic chamber-coupled algorithm allows calculation of an ‘axonal continuity index' that quantitatively measures axonal health status in a manner independent of neuronal or axonal density. This method allows quantitative analysis of axonal morphology in an automatic and nonbiased manner. Our method will facilitate large-scale high-throughput screening for genes or therapeutic compounds for neurodegenerative diseases involving axonal damage. When combined with imaging technologies utilizing different gene markers, this method will provide new insights into the mechanistic basis for axon degeneration. Our microfluidic chamber culture-coupled AxonQuant algorithm will be widely useful for studying axonal biology and neurodegenerative disorders. © 2014 S. Karger AG, Basel

  3. Meta-Narrative on Guidance and Counselling in Schools

    Science.gov (United States)

    Thamarasseri, Ismail

    2014-01-01

    The purposes of guidance and counselling provide emphasis and strength to the educational program. The major goals of counselling are to promote personal growth and to prepare students to become motivated workers and responsible citizens. The chief aim of an educational guidance is to develop the ability of co-ordinating with the school…

  4. Preferential Enhancement of Sensory and Motor Axon Regeneration by Combining Extracellular Matrix Components with Neurotrophic Factors

    Directory of Open Access Journals (Sweden)

    Daniel Santos

    2016-12-01

    Full Text Available After peripheral nerve injury, motor and sensory axons are able to regenerate but inaccuracy of target reinnervation leads to poor functional recovery. Extracellular matrix (ECM components and neurotrophic factors (NTFs exert their effect on different neuronal populations creating a suitable environment to promote axonal growth. Here, we assessed in vitro and in vivo the selective effects of combining different ECM components with NTFs on motor and sensory axons regeneration and target reinnervation. Organotypic cultures with collagen, laminin and nerve growth factor (NGF/neurotrophin-3 (NT3 or collagen, fibronectin and brain-derived neurotrophic factor (BDNF selectively enhanced sensory neurite outgrowth of DRG neurons and motor neurite outgrowth from spinal cord slices respectively. For in vivo studies, the rat sciatic nerve was transected and repaired with a silicone tube filled with a collagen and laminin matrix with NGF/NT3 encapsulated in poly(lactic-co-glycolic acid (PLGA microspheres (MP (LM + MP.NGF/NT3, or a collagen and fibronectin matrix with BDNF in PLGA MPs (FN + MP.BDNF. Retrograde labeling and functional tests showed that LM + MP.NGF/NT3 increased the number of regenerated sensory neurons and improved sensory functional recovery, whereas FN + MP.BDNF preferentially increased regenerated motoneurons and enhanced motor functional recovery. Therefore, combination of ECM molecules with NTFs may be a good approach to selectively enhance motor and sensory axons regeneration and promote appropriate target reinnervation.

  5. The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Gnavi, S., E-mail: sara.gnavi@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Fornasari, B.E., E-mail: benedettaelena.fornasari@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Tonda-Turo, C., E-mail: chiara.tondaturo@polito.it [Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10100 (Italy); Ciardelli, G., E-mail: gianluca.ciardelli@polito.it [Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10100 (Italy); CNR-IPCF UOS, Pisa 56124 (Italy); Zanetti, M., E-mail: marco.zanetti@unito.it [Nanostructured Interfaces and Surfaces, Department of Chemistry, University of Torino, Torino 10100 (Italy); Geuna, S., E-mail: stefano.geuna@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Perroteau, I., E-mail: isabelle.perroteau@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy)

    2015-03-01

    Fibrous substrates functioning as temporary extracellular matrices can be prepared easily by electrospinning, yielding fibrous matrices suitable as internal fillers for nerve guidance channels. In this study, gelatin micro- or nano-fibres were prepared by electrospinning by tuning the gelatin concentration and solution flow rate. The effect of gelatin fibre diameter on cell adhesion and proliferation was tested in vitro using explant cultures of Schwann cells (SC) and dorsal root ganglia (DRG). Cell adhesion was assessed by quantifying the cell spreading area, actin cytoskeleton organization and focal adhesion complex formation. Nano-fibres promoted cell spreading and actin cytoskeleton organization, increasing cellular adhesion and the proliferation rate. However, both migration rate and motility, quantified by transwell and time lapse assays respectively, were greater in cells cultured on micro-fibres. Finally, there was more DRG axon outgrowth on micro-fibres. These data suggest that the topography of electrospun gelatin fibres can be adjusted to modulate SC and axon organization and that both nano- and micro-fibres are promising fillers for the design of devices for peripheral nerve repair. - Highlights: • Electrospinning used to produce gelatin nano- and micro-fibre matrices. • Nano-fibre matrices promote Schwann cell organization and increase proliferation rate. • Micro-fibre matrices promote Schwann cell migration. • Micro-fibre matrices promote axonal outgrowth.

  6. Tri-partite complex for axonal transport drug delivery achieves pharmacological effect

    Directory of Open Access Journals (Sweden)

    Frederickson Martyn

    2010-01-01

    Full Text Available Abstract Background Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior. Results We developed chemical synthesis methodologies for assembling these tripartite complexes using a variety of axonal transport facilitators including nerve growth factor, wheat germ agglutinin, and synthetic facilitators derived from phage display work. Loading of up to 100 drug molecules per complex was achieved. Conjugation methods were used that allowed the drugs to be released in active form inside the cell body after transport. Intramuscular and intradermal injection proved effective for introducing pharmacologically effective doses into selected populations of CNS neurons. Pharmacological efficacy with gabapentin in a paw withdrawal latency model revealed a ten fold increase in half life and a 300 fold decrease in necessary dose relative to systemic administration for gabapentin when the drug was delivered by axonal transport using the tripartite vehicle. Conclusion Specific targeting of selected subpopulations of CNS neurons for drug delivery by axonal

  7. Influences of olfactory ensheathing cells transplantation on axonal regeneration in spinal cord of adult rats

    Institute of Scientific and Technical Information of China (English)

    沈慧勇; 唐勇; 吴燕峰; 陈燕涛; 程志安

    2002-01-01

    To observe whether olfactory ensheathing cells could be used to promote axonal regeneration in a spontaneously nonregenerating system. Methods: After laminectomy at the lower thoracic level, the spinal cords of adult rats were exposed and completely transected at T10. A suspension of ensheathing cells was injected into the lesion site in 12 adult rats, and control D/F-12 (1∶1 mixture of DMEM and Hams F-12) was injected in 12 adult rats. Six weeks and ten weeks after cell transplantation, the rats were evaluated by climbing test and motor evoked potentials (MEPs) monitoring. The samples were procured and studied with histologicl and immunohistochemical methods. Results: At the 6th week after cell transplantation, all the rats in both the transplanted and control groups were paraplegic and the MEPs could not be recorded. At the 10th week after cell transplantation, of 7 rats in the control group, 2 rats had muscles contraction of the lower extremities, 2 rats had hips and/or knees active movement; and 5 rats MEPs could be recorded in the hind limbs in the transplanted group (n=7). None of the rats in the control group had functional improvement and no MEPs recorded (n=7). Numerous regenerating axons were observed through the transplantation and continued to regenerate into the denervated host tract. Cell labelling using anti-Myelin Basic Protein (MBP) and anti-Nerve Growth Factor Receptor (anti-NGFR) indicated that the regenerated axons were derived from the appropriate neuronal source and that donor cells migrated into the denervated host tract. But axonal degeneration existed and regenerating axons were not observed within the spinal cords of the adult rats with only D/F-12 injection. Conclusions: The axonal regeneration in the transected adult rat spinal cord is possible after ensheathing cells transplantation.

  8. My view on occupation guidance

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Occupation instruction needs to the support of theories,in the case of the occupation guidance theory is not very developed in our country,It has very important sense that absorbing and drawing lessons from the advanced occupation guidance theory,and targeting guidance to occupation guidance work,.

  9. Motor and dorsal root ganglion axons serve as choice points for the ipsilateral turning of dI3 axons.

    Science.gov (United States)

    Avraham, Oshri; Hadas, Yoav; Vald, Lilach; Hong, Seulgi; Song, Mi-Ryoung; Klar, Avihu

    2010-11-17

    The axons of the spinal intersegmental interneurons are projected longitudinally along various funiculi arrayed along the dorsal-ventral axis of the spinal cord. The roof plate and the floor plate have a profound role in patterning their initial axonal trajectory. However, other positional cues may guide the final architecture of interneuron tracks in the spinal cord. To gain more insight into the organization of specific axonal tracks in the spinal cord, we focused on the trajectory pattern of a genetically defined neuronal population, dI3 neurons, in the chick spinal cord. Exploitation of newly characterized enhancer elements allowed specific labeling of dI3 neurons and axons. dI3 axons are projected ipsilaterally along two longitudinal fascicules at the ventral lateral funiculus (VLF) and the dorsal funiculus (DF). dI3 axons change their trajectory plane from the transverse to the longitudinal axis at two novel checkpoints. The axons that elongate at the DF turn at the dorsal root entry zone, along the axons of the dorsal root ganglion (DRG) neurons, and the axons that elongate at the VLF turn along the axons of motor neurons. Loss and gain of function of the Lim-HD protein Isl1 demonstrate that Isl1 is not required for dI3 cell fate. However, Isl1 is sufficient to impose ipsilateral turning along the motor axons when expressed ectopically in the commissural dI1 neurons. The axonal patterning of dI3 neurons, revealed in this study, highlights the role of established axonal cues-the DRG and motor axons-as intermediate guidepost cues for dI3 axons.

  10. Axon Membrane Skeleton Structure is Optimized for Coordinated Sodium Propagation

    CERN Document Server

    Zhang, Yihao; Li, He; Tzingounis, Anastasios V; Lykotrafitis, George

    2016-01-01

    Axons transmit action potentials with high fidelity and minimal jitter. This unique capability is likely the result of the spatiotemporal arrangement of sodium channels along the axon. Super-resolution microscopy recently revealed that the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under entropic tension. Sodium channels also exhibit a periodic distribution pattern, as they bind to ankyrin G, which associates with spectrin. Here, we elucidate the relationship between the axon membrane skeleton structure and the function of the axon. By combining cytoskeletal dynamics and continuum diffusion modeling, we show that spectrin filaments under tension minimize the thermal fluctuations of sodium channels and prevent overlap of neighboring channel trajectories. Importantly, this axon skeletal arrangement allows for a highly reproducible band-like activation of sodium channels leading to coordinated sodium propagation along the axon.

  11. CAREER GUIDANCE EXPERIENCE ABROAD

    Directory of Open Access Journals (Sweden)

    Sergey N. Tolstoguzov

    2015-01-01

    Full Text Available The aim of this paper is to describe the experience of careeroriented activities carried out with students of schools in developed and developing countries. Career Guidance in Russia, despite the vast experience of its implementation, is experiencing serious difficulties. In this regard, it is important to take into account the international experience career-oriented activities, such as in the developed countries of North America and the European Union as well as in several Asian countries with rapidly growing economies and a large demographic potential, taking into account the best variants for the Russian education system. Methods. The experience of career-oriented work undertaken with pupils of the USA, Canada, Israel, France, UK, Germany, Denmark, Sweden, Japan, Singapore, China and India is shown on the basis of the comparative analysis of different publications and information sources. The author has made an attempt to generalize the principles of psycho-pedagogical and administrative assistance in professional self-determination of senior pupils abroad. Scientific novelty. The approaches to career-oriented activities in countries with different levels of economic development are compared for the first time. Some principles are revealed. Firstly, the higher the income level per capita in the country, the greater attention is given to vocational guidance. The politics in the developed countries is based on interests of the individual: children’s acquaintance with the world of professions begins already at younger school and the moment of definitive selfdetermination is postponed till the end of their senior stage of education; the possibility of direction change of professional preparation in case of detection of discrepancy of qualities of the pupil to originally selected profile is provided. Career-oriented activity in developing countries, on the contrary, is rigidly coordinated to requirements of economy and a labour market

  12. Slit-Robo signals regulate pioneer axon pathfinding of the tract of the postoptic commissure in the mammalian forebrain.

    Science.gov (United States)

    Ricaño-Cornejo, Itzel; Altick, Amy L; García-Peña, Claudia M; Nural, Hikmet Feyza; Echevarría, Diego; Miquelajáuregui, Amaya; Mastick, Grant S; Varela-Echavarría, Alfredo

    2011-10-01

    During early vertebrate forebrain development, pioneer axons establish a symmetrical scaffold descending longitudinally through the rostral forebrain, thus forming the tract of the postoptic commissure (TPOC). In mouse embryos, this tract begins to appear at embryonic day 9.5 (E9.5) as a bundle of axons tightly constrained at a specific dorsoventral level. We have characterized the participation of the Slit chemorepellants and their Robo receptors in the control of TPOC axon projection. In E9.5-E11.5 mouse embryos, Robo1 and Robo2 are expressed in the nucleus origin of the TPOC (nTPOC), and Slit expression domains flank the TPOC trajectory. These findings suggested that these proteins are important factors in the dorsoventral positioning of the TPOC axons. Consistently with this role, Slit2 inhibited TPOC axon growth in collagen gel cultures, and interfering with Robo function in cultured embryos induced projection errors in TPOC axons. Moreover, absence of both Slit1 and Slit2 or Robo1 and Robo2 in mutant mouse embryos revealed aberrant TPOC trajectories, resulting in abnormal spreading of the tract and misprojections into both ventral and dorsal tissues. These results reveal that Slit-Robo signaling regulates the dorsoventral position of this pioneer tract in the developing forebrain.

  13. Nogo-A is involved in secondary axonal degeneration of thalamus in hypertensive rats with focal cortical infarction.

    Science.gov (United States)

    Wang, Fang; Liang, Zhijian; Hou, Qinghua; Xing, Shihui; Ling, Li; He, Meixia; Pei, Zhong; Zeng, Jinsheng

    2007-05-01

    We investigate whether Nogo-A is involved in the secondary axonal degeneration in the thalamus after distal middle cerebral artery occlusion (MCAO) in stroke-prone renovascular hypertensive rats (RHRSP). The expression of Nogo-A in ipsilateral ventroposterior nucleus (VPN) of the thalamus in RHRSP was observed at 1, 2 and 4 weeks after distal MCAO. In addition, intracerebroventricular infusion of NEP1-40, a Nogo-66 receptor (NgR) antagonist peptide, was administered starting 24 h after MCAO and continued for 1, 2 and 4 weeks, respectively. Axonal damage and regeneration were evaluated by analysis of the immunoreactivity (IR) of amyloid betaA4 precursor protein (APP), growth associated protein 43 (GAP-43) and microtubule associated protein 2 (MAP-2) in ipsilateral VPN of the thalamus at 1, 2 and 4 weeks after distal MCAO. Following ischemia, the expression of Nogo-A in oligodendrocytes increased persistently and its localization became redistributed around damaged axons and dendrites. Administration of NEP1-40 downregulated the expression of Nogo-A, reduced axonal injury and enhanced axonal regeneration. Our data suggest that Nogo-A is involved in secondary axonal degeneration and that inhibition of Nogo-A can reduce neuronal damage in the thalamus after distal MCAO.

  14. Schwann cells-axon interaction in myelination.

    Science.gov (United States)

    Taveggia, Carla

    2016-08-01

    The remarkable interaction between glial cells and axons is crucial for nervous system development and homeostasis. Alterations in this continuous communication can cause severe pathologies that can compromise the integrity of the nervous system. The most dramatic consequence of this interaction is the generation of the myelin sheath, made by myelinating glial cells: Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. In this review I will focus on signals coming from axons in the first part and then on those from Schwann cells that promote the formation and the maintenance of peripheral myelin. I will discuss their inter-relationship together with seminal and important advances recently made.

  15. Anticipatory guidance through DVD.

    Science.gov (United States)

    Franz, Sandra; McMahon, Pamela M; Calongne, Laurinda; Steele-Moses, Susan K

    2014-03-01

    The major purpose of the study was to determine if a 5-minute DVD is an effective method for communicating anticipatory guidance to parents at their child's 4-month well-child visit. A total of 84 caregivers were randomly assigned to receive anticipatory guidance through standard care (written anticipatory guidance handout and free talk) or DVD (DVD format + standard care). Participants completed a brief questionnaire immediately before and after their visit. As anticipated, knowledge scores improved significantly from pre-test to post-test. There was also a significant interaction between format used for anticipatory guidance and time. Specifically, there was greater improvement in knowledge over time for parents in the DVD group as compared with the standard care group. Additionally, the mean knowledge level of those in the DVD group as compared with those in the standard care group trended toward significance. Finally, visit length was shortened by nearly 3 minutes in the DVD group, and close to 100% of all respondents, regardless of anticipatory guidance format, indicated that they were very satisfied with their visit and amount of information learned.

  16. FDA Offers Guidance on Fish Intake for Kids, Pregnant Women

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_163113.html FDA Offers Guidance on Fish Intake for Kids, Pregnant ... is far less than the recommended amount, the FDA said. Fish offers nutritional benefits important for growth ...

  17. Interspecies variation in axon-myelin relationships.

    Science.gov (United States)

    Fraher, J P; O'Sullivan, A W

    2000-01-01

    The primary objective of this paper was to determine the extent and nature of interspecies differences in axon calibre and myelin sheath thickness and in the various relationships between these. Morphometric analysis of the axon perimeter-myelin sheath thickness relationship was performed on an equivalent nerve fibre population in a mammal, the rat, a bird, the chicken, an amphibian, the frog, a bony fish, the trout, and a cartilaginous fish, the dogfish. The abducent nerve was studied. It is especially suitable for this purpose because its fibres are closely similar in type and in peripheral distribution across the species studied. The relationship differed substantially between species. Differences were present in its setting, as described by the positions of the scatterplots, in the g ratio and in the regression and correlation data relating the parameters. Both parameters were markedly larger in the fish species than in all of the others. In addition, in rat, chicken, frog and trout, where large and small fibre classes could be differentiated clearly, the setting of the relationship between the two parameters was different for the two classes. In the main, variation in each of the parameters was greater between than within species. The larger fibres in the fish species were closely similar in axon perimeter and sheath thickness despite their long evolutionary separation. From this study and from others in the series, it may be concluded that there is no fixed or constant relationship between axon calibre and the thickness of the surrounding myelin sheath. Each nerve tends to have its own particular relationship and this differs between species.

  18. Synaptic Democracy and Vesicular Transport in Axons

    Science.gov (United States)

    Bressloff, Paul C.; Levien, Ethan

    2015-04-01

    Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".

  19. MRI of the diffuse axonal injury

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Yang Gu; Woo, Young Hoon; Suh, Soo Jhi [Keimyung University School of Medicine, Daegu (Korea, Republic of)

    1992-01-15

    CT has facilitated early recognition and treatment of focal brain injuries in patients with head trauma. However, CT shows relatively low sensitivity in identifying non hemorrhage contusion and injuries of white matter. MR is known to be superior to CT in detection of white matter injuries, such as diffuse axonal injury. MR imaging in 14 cases of diffuse axonal injury on 2.0T was studied. The corpus callosum, especially the body portion, was the most commonly involved site. The lesions ranged from 5 to 20mm in size with ovoid to elliptical shape. T2WI was the most sensitive pulse sequence in detecting lesions such as white matter degeneration, hemorrhagic and non hemorrhagic contusion. The lesions were nonspecific as high and low signal intensities on T2WI and T1WI respectively. CT showed white matter abnormality in only 1 case of 14 cases. We propose MR imaging as the primary imaging procedure for the detection of diffuse axonal injury because of its multiplanar capabilities and higher sensitivity.

  20. Where does slow axonal transport go?

    Science.gov (United States)

    Terada, Sumio

    2003-12-01

    Axonal transport is the specialized and well-developed intracellular transport system for regulated and/or long-distance transport based on generalized cellular machineries. Among them, slow axonal transport conveys cytoplasmic proteins. The motor molecule, the nature of transporting complex and the transport regulation mechanism for slow transport are still unclarified. There has been a dispute regarding the nature of transporting complex of cytoskeletal proteins, polymer-sliding hypothesis versus subunit-transport theory. Recent data supporting the hypothesis of polymer sliding in cultured neurons only reconfirm the previously reported structure and this inference suffers from the lack of ultrastructural evidence and the direct relevance to the physiological slow transport phenomenon in vivo. Observation of the moving cytoskeletal proteins in vivo using transgenic mice or squid giant axons revealed that subunits do move in a microtubule-dependent manner, strongly indicating the involvement of microtubule-based motor kinesin. If the slow transport rate reflects the intermittent fast transport dependent on kinesin motor, we have to investigate the molecular constituents of the transporting complex in more detail and evaluate why the motor and cargo interaction is so unstable. This kind of weak and fluctuating interaction between various molecular pairs could not be detected by conventional techniques, thus necessitating the establishment of a new experimental system before approaching the molecular regulation problem.

  1. Axon-glial relations during regeneration of axons in the adult rat anterior medullary velum.

    Science.gov (United States)

    Berry, M; Hunter, A S; Duncan, A; Lordan, J; Kirvell, S; Tsang, W L; Butt, A M

    1998-12-01

    The anterior medullary velum (AMV) of adult Wistar rats was lesioned in the midsagittal plane, transecting all decussating axons including those of the central projection of the IVth nerve. At selected times up to 200 days after transection, the degenerative and regenerative responses of axons and glia were analyzed using transmission and scanning electron microscopy and immunohistochemistry. In particular, both the capacity of oligodendrocytes to remyelinate regenerated fibers and the stability of the CNS/PNS junctional zone of the IVth nerve rootlet were documented. Transected central AMV axons exhibited four patterns of fiber regeneration in which fibers grew: rostrocaudally in the reactive paralesion neuropil (Group 1); randomly within the AMV (Group 2); into the ipsilateral IVth nerve rootlet, after turning at the lesion edge and growing recurrently through the old degenerated contralateral central trochlear nerve trajectory (Group 3); and ectopically through paralesion tears in the ependyma onto the surface of the IVth ventricle (Group 4). Group 1-3 axons regenerated unperturbed through degenerating central myelin, reactive astrocytes, oligodendrocytes, microglia, and large accumulations of hematogenous macrophages. Only Group 3 axons survived long term in significant numbers, and all became myelinated by oligodendrocytes, ultimately establishing thin sheaths with relatively normal nodal gaps and intersegmental myelin sheath lengths. Schwann cells at the CNS/PNS junction of the IVth nerve rootlet did not invade the CNS, but astrocyte processes grew across the junction into the PNS portion of the IVth nerve. The basal lamina of the junctional glia limitans remained stable throughout the experimental period.

  2. Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts

    Directory of Open Access Journals (Sweden)

    Odelberg Shannon J

    2011-01-01

    Full Text Available Abstract Background Newts have the remarkable ability to regenerate their spinal cords as adults. Their spinal cords regenerate with the regenerating tail after tail amputation, as well as after a gap-inducing spinal cord injury (SCI, such as a complete transection. While most studies on newt spinal cord regeneration have focused on events occurring after tail amputation, less attention has been given to events occurring after an SCI, a context that is more relevant to human SCI. Our goal was to use modern labeling and imaging techniques to observe axons regenerating across a complete transection injury and determine how cells and the extracellular matrix in the injury site might contribute to the regenerative process. Results We identify stages of axon regeneration following a spinal cord transection and find that axon regrowth across the lesion appears to be enabled, in part, because meningeal cells and glia form a permissive environment for axon regeneration. Meningeal and endothelial cells regenerate into the lesion first and are associated with a loose extracellular matrix that allows axon growth cone migration. This matrix, paradoxically, consists of both permissive and inhibitory proteins. Axons grow into the injury site next and are closely associated with meningeal cells and glial processes extending from cell bodies surrounding the central canal. Later, ependymal tubes lined with glia extend into the lesion as well. Finally, the meningeal cells, axons, and glia move as a unit to close the gap in the spinal cord. After crossing the injury site, axons travel through white matter to reach synaptic targets, and though ascending axons regenerate, sensory axons do not appear to be among them. This entire regenerative process occurs even in the presence of an inflammatory response. Conclusions These data reveal, in detail, the cellular and extracellular events that occur during newt spinal cord regeneration after a transection injury and

  3. The core planar cell polarity gene prickle interacts with flamingo to promote sensory axon advance in the Drosophila embryo.

    Science.gov (United States)

    Mrkusich, Eli M; Flanagan, Dustin J; Whitington, Paul M

    2011-10-01

    The atypical cadherin Drosophila protein Flamingo and its vertebrate homologues play widespread roles in the regulation of both dendrite and axon growth. However, little is understood about the molecular mechanisms that underpin these functions. Whereas flamingo interacts with a well-defined group of genes in regulating planar cell polarity, previous studies have uncovered little evidence that the other core planar cell polarity genes are involved in regulation of neurite growth. We present data in this study showing that the planar cell polarity gene prickle interacts with flamingo in regulating sensory axon advance at a key choice point - the transition between the peripheral nervous system and the central nervous system. The cytoplasmic tail of the Flamingo protein is not required for this interaction. Overexpression of another core planar cell polarity gene dishevelled produces a similar phenotype to prickle mutants, suggesting that this gene may also play a role in regulation of sensory axon advance.

  4. LINGO-1 antagonist promotes functional recovery and axonal sprouting after spinal cord injury.

    Science.gov (United States)

    Ji, Benxiu; Li, Mingwei; Wu, Wu-Tian; Yick, Leung-Wah; Lee, Xinhua; Shao, Zhaohui; Wang, Joy; So, Kwok-Fai; McCoy, John M; Pepinsky, R Blake; Mi, Sha; Relton, Jane K

    2006-11-01

    LINGO-1 is a CNS-specific protein and a functional component of the NgR1/p75/LINGO-1 and NgR1/TAJ(TROY)/LINGO-1 signaling complexes that mediate inhibition of axonal outgrowth. These receptor complexes mediate the axonal growth inhibitory effects of Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte-myelin glycoprotein (OMgp) via RhoA activation. Soluble LINGO-1 (LINGO-1-Fc), which acts as an antagonist of these pathways by blocking LINGO-1 binding to NgR1, was administered to rats after dorsal or lateral hemisection of the spinal cord. LINGO-1-Fc treatment significantly improved functional recovery, promoted axonal sprouting and decreased RhoA activation and increased oligodendrocyte and neuronal survival after either rubrospinal or corticospinal tract transection. These experiments demonstrate an important role for LINGO-1 in modulating axonal outgrowth in vivo and that treatment with LINGO-1-Fc can significantly enhance recovery after spinal cord injury.

  5. Antipsychotic drugs alter neuronal development including ALM neuroblast migration and PLM axonal outgrowth in Caenorhabditis elegans.

    Science.gov (United States)

    Donohoe, Dallas R; Weeks, Kathrine; Aamodt, Eric J; Dwyer, Donard S

    2008-01-01

    Antipsychotic drugs are increasingly being prescribed for children and adolescents, and are used in pregnant women without a clear demonstration of safety in these populations. Global effects of these drugs on neurodevelopment (e.g., decreased brain size) have been reported in rats, but detailed knowledge about neuronal effects and mechanisms of action are lacking. Here we report on the evaluation of a comprehensive panel of antipsychotic drugs in a model organism (Caenorhabditis elegans) that is widely used to study neuronal development. Specifically, we examined the effects of the drugs on neuronal migration and axonal outgrowth in mechanosensory neurons visualized with green fluorescent protein expressed from the mec-3 promoter. Clozapine, fluphenazine, and haloperidol produced deficits in the development and migration of ALM neurons and axonal outgrowth in PLM neurons. The defects included failure of neuroblasts to migrate to the proper location, and excessive growth of axons past their normal termination point, together with abnormal morphological features of the processes. Although the antipsychotic drugs are potent antagonists of dopamine and serotonin receptors, the neurodevelopmental deficits were not rescued by co-incubation with serotonin or the dopaminergic agonist, quinpirole. Other antipsychotic drugs, risperidone, aripiprazole, quetiapine, trifluoperazine and olanzapine, also produced modest, but detectable, effects on neuronal development. This is the first report that antipsychotic drugs interfere with neuronal migration and axonal outgrowth in a developing nervous system.

  6. The Actin-Binding Protein α-Adducin Is Required for Maintaining Axon Diameter

    Directory of Open Access Journals (Sweden)

    Sérgio Carvalho Leite

    2016-04-01

    Full Text Available The actin-binding protein adducin was recently identified as a component of the neuronal subcortical cytoskeleton. Here, we analyzed mice lacking adducin to uncover the function of this protein in actin rings. α-adducin knockout mice presented progressive axon enlargement in the spinal cord and optic and sciatic nerves, followed by axon degeneration and loss. Using stimulated emission depletion super-resolution microscopy, we show that a periodic subcortical actin cytoskeleton is assembled in every neuron type inspected including retinal ganglion cells and dorsal root ganglia neurons. In neurons devoid of adducin, the actin ring diameter increased, although the inter-ring periodicity was maintained. In vitro, the actin ring diameter adjusted as axons grew, suggesting the lattice is dynamic. Our data support a model in which adducin activity is not essential for actin ring assembly and periodicity but is necessary to control the diameter of both actin rings and axons and actin filament growth within rings.

  7. Developmental guidance of embryonic corneal innervation: roles of Semaphorin3A and Slit2.

    Science.gov (United States)

    Kubilus, James K; Linsenmayer, Thomas F

    2010-08-01

    The cornea is one of the most densely innervated structures of the body. In the developing chicken embryo, nerves from the ophthalmic trigeminal ganglion (OTG) innervate the cornea in a series of spatially and temporally regulated events. However, little is known concerning the signals that regulate these events. Here we have examined the involvement of the axon guidance molecules Semaphorin3A and Slit2, and their respective receptors, Neuropilin-1 and Robo2. Expression analyses of early corneas suggest an involvement of both Semaphorin3A and Slit2 in preventing nerves from entering the corneal stroma until the proper time (i.e., they serve as negative regulators), and analyses of their receptors support this conclusion. At later stages of development the expression of Semaphorin3A is again consistent with its serving as a negative regulator-this time for nerves entering the corneal epithelium. However, expression analyses of Robo2 at this stage raised the possibility that Slit2 had switched from a negative regulator to a positive regulator. In support of such a switch, functional analyses-by addition of recombinant Slit2 protein or immunoneutralization with a Slit2 antibody-showed that at an early stage Slit2 negatively regulates the outgrowth of nerves from the OTG, whereas at the later stage it positively regulated the growth of nerves by increasing nerve branching within the corneal epithelium.

  8. Career guidance on the move

    DEFF Research Database (Denmark)

    Thomsen, Rie

    2013-01-01

    This article is about how the notion of place can be used in an analysis of career guidance practices and their development. It is about how a focus on the context of career guidance can develop an awareness of the place where guidance is practiced and support the development of career guidance...... in new places. In this article I introduce an analytical perspective on place; I give the example of the guidance café a practice development that took place into serious consideration because it was an attempt to develop career guidance practice through relocating it....

  9. Regulatory guidance document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-01

    The Office of Civilian Radioactive Waste Management (OCRWM) Program Management System Manual requires preparation of the OCRWM Regulatory Guidance Document (RGD) that addresses licensing, environmental compliance, and safety and health compliance. The document provides: regulatory compliance policy; guidance to OCRWM organizational elements to ensure a consistent approach when complying with regulatory requirements; strategies to achieve policy objectives; organizational responsibilities for regulatory compliance; guidance with regard to Program compliance oversight; and guidance on the contents of a project-level Regulatory Compliance Plan. The scope of the RGD includes site suitability evaluation, licensing, environmental compliance, and safety and health compliance, in accordance with the direction provided by Section 4.6.3 of the PMS Manual. Site suitability evaluation and regulatory compliance during site characterization are significant activities, particularly with regard to the YW MSA. OCRWM`s evaluation of whether the Yucca Mountain site is suitable for repository development must precede its submittal of a license application to the Nuclear Regulatory Commission (NRC). Accordingly, site suitability evaluation is discussed in Chapter 4, and the general statements of policy regarding site suitability evaluation are discussed in Section 2.1. Although much of the data and analyses may initially be similar, the licensing process is discussed separately in Chapter 5. Environmental compliance is discussed in Chapter 6. Safety and Health compliance is discussed in Chapter 7.

  10. PIV Logon Configuration Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Glen Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-04

    This document details the configurations and enhancements implemented to support the usage of federal Personal Identity Verification (PIV) Card for logon on unclassified networks. The guidance is a reference implementation of the configurations and enhancements deployed at the Los Alamos National Laboratory (LANL) by Network and Infrastructure Engineering – Core Services (NIE-CS).

  11. Dynamics of axon fasciculation in the presence of neuronal turnover

    CERN Document Server

    Chaudhuri, Debasish; Mohanty, P K; Zapotocky, Martin

    2008-01-01

    We formulate and characterize a model aiming to describe the formation of fascicles of axons mediated by contact axon-axon interactions. The growing axons are represented as interacting directed random walks in two spatial dimensions. To mimic axonal turnover in the mammalian olfactory system, the random walkers are injected and removed at specified rates. In the dynamical steady state, the position-dependent distribution of fascicle sizes obeys a scaling law. We identify several distinct time scales that emerge from the dynamics, are sensitive functions of the microscopic parameters of the model, and can exceed the average axonal lifetime by orders of magnitude. We discuss our findings in terms of an analytically tractable, effective model of fascicle dynamics.

  12. Targeting cell surface receptors for axon regeneration in the central nervous system

    Directory of Open Access Journals (Sweden)

    Menghon Cheah

    2016-01-01

    Full Text Available Axon regeneration in the CNS is largely unsuccessful due to excess inhibitory extrinsic factors within lesion sites together with an intrinsic inability of neurons to regrow following injury. Recent work demonstrates that forced expression of certain neuronal transmembrane receptors can recapitulate neuronal growth resulting in successful growth within and through inhibitory lesion environments. More specifically, neuronal expression of integrin receptors such as alpha9beta1 integrin which binds the extracellular matrix glycoprotein tenascin-C, trk receptors such as trkB which binds the neurotrophic factor BDNF, and receptor PTPσ which binds chondroitin sulphate proteoglycans, have all been show to significantly enhance regeneration of injured axons. We discuss how reintroduction of these receptors in damaged neurons facilitates signalling from the internal environment of the cell with the external environment of the lesion milieu, effectively resulting in growth and repair following injury. In summary, we suggest an appropriate balance of intrinsic and extrinsic factors are required to obtain substantial axon regeneration.

  13. Targeting cell surface receptors for axon regeneration in the central nervous system

    Science.gov (United States)

    Cheah, Menghon; Andrews, Melissa R.

    2016-01-01

    Axon regeneration in the CNS is largely unsuccessful due to excess inhibitory extrinsic factors within lesion sites together with an intrinsic inability of neurons to regrow following injury. Recent work demonstrates that forced expression of certain neuronal transmembrane receptors can recapitulate neuronal growth resulting in successful growth within and through inhibitory lesion environments. More specifically, neuronal expression of integrin receptors such as alpha9beta1 integrin which binds the extracellular matrix glycoprotein tenascin-C, trk receptors such as trkB which binds the neurotrophic factor BDNF, and receptor PTPσ which binds chondroitin sulphate proteoglycans, have all been show to significantly enhance regeneration of injured axons. We discuss how reintroduction of these receptors in damaged neurons facilitates signalling from the internal environment of the cell with the external environment of the lesion milieu, effectively resulting in growth and repair following injury. In summary, we suggest an appropriate balance of intrinsic and extrinsic factors are required to obtain substantial axon regeneration. PMID:28197173

  14. A unified cell biological perspective on axon-myelin injury

    OpenAIRE

    Simons, Mikael; Misgeld, Thomas; Kerschensteiner, Martin

    2014-01-01

    Demyelination and axon loss are pathological hallmarks of the neuroinflammatory disorder multiple sclerosis (MS). Although we have an increasingly detailed understanding of how immune cells can damage axons and myelin individually, we lack a unified view of how the axon–myelin unit as a whole is affected by immune-mediated attack. In this review, we propose that as a result of the tight cell biological interconnection of axons and myelin, damage to either can spread, which might convert a loc...

  15. Axon-glia interaction and membrane traffic in myelin formation

    OpenAIRE

    2014-01-01

    In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialized glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarization followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is...

  16. Multichannel activity propagation across an engineered axon network

    Science.gov (United States)

    Chen, H. Isaac; Wolf, John A.; Smith, Douglas H.

    2017-04-01

    Objective. Although substantial progress has been made in mapping the connections of the brain, less is known about how this organization translates into brain function. In particular, the massive interconnectivity of the brain has made it difficult to specifically examine data transmission between two nodes of the connectome, a central component of the ‘neural code.’ Here, we investigated the propagation of multiple streams of asynchronous neuronal activity across an isolated in vitro ‘connectome unit.’ Approach. We used the novel technique of axon stretch growth to create a model of a long-range cortico-cortical network, a modular system consisting of paired nodes of cortical neurons connected by axon tracts. Using optical stimulation and multi-electrode array recording techniques, we explored how input patterns are represented by cortical networks, how these representations shift as they are transmitted between cortical nodes and perturbed by external conditions, and how well the downstream node distinguishes different patterns. Main results. Stimulus representations included direct, synaptic, and multiplexed responses that grew in complexity as the distance between the stimulation source and recorded neuron increased. These representations collapsed into patterns with lower information content at higher stimulation frequencies. With internodal activity propagation, a hierarchy of network pathways, including latent circuits, was revealed using glutamatergic blockade. As stimulus channels were added, divergent, non-linear effects were observed in local versus distant network layers. Pairwise difference analysis of neuronal responses suggested that neuronal ensembles generally outperformed individual cells in discriminating input patterns. Significance. Our data illuminate the complexity of spiking activity propagation in cortical networks in vitro, which is characterized by the transformation of an input into myriad outputs over several network layers

  17. Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations.

    Science.gov (United States)

    Zheng, T; Wilson, C J

    2002-02-01

    The complete striatal axonal arborizations of 16 juxtacellularly stained cortical pyramidal cells were analyzed. Corticostriatal neurons were located in the medial agranular or anterior cingulate cortex of rats. All axons were of the extended type and formed synaptic contacts in both the striosomal and matrix compartments as determined by counterstaining for the mu-opiate receptor. Six axonal arborizations were from collaterals of brain stem-projecting cells and the other 10 from bilaterally projecting cells with no brain stem projections. The distribution of synaptic boutons along the axons were convolved with the average dendritic tree volume of spiny projection neurons to obtain an axonal innervation volume and innervation density map for each axon. Innervation volumes varied widely, with single axons occupying between 0.4 and 14.2% of the striatum (average = 4%). The total number of boutons formed by individual axons ranged from 25 to 2,900 (average = 879). Within the innervation volume, the density of innervation was extremely sparse but inhomogeneous. The pattern of innervation resembled matrisomes, as defined by bulk labeling and functional mapping experiments, superimposed on a low background innervation. Using this sample as representative of all corticostriatal axons, the total number of corticostriatal neurons was estimated to be 17 million, about 10 times the number of striatal projection neurons.

  18. Molecular analysis of axon repulsion by the notochord.

    Science.gov (United States)

    Anderson, Christopher N G; Ohta, Kunimasa; Quick, Marie M; Fleming, Angeleen; Keynes, Roger; Tannahill, David

    2003-03-01

    During development of the amniote peripheral nervous system, the initial trajectory of primary sensory axons is determined largely by the action of axon repellents. We have shown previously that tissues flanking dorsal root ganglia, the notochord lying medially and the dermamyotomes lying laterally, are sources of secreted molecules that prevent axons from entering inappropriate territories. Although there is evidence suggesting that SEMA3A contributes to the repellent activity of the dermamyotome, the nature of the activity secreted by the notochord remains undetermined. We have employed an expression cloning strategy to search for axon repellents secreted by the notochord, and have identified SEMA3A as a candidate repellent. Moreover, using a spectrum of different axon populations to assay the notochord activity, together with neuropilin/Fc receptor reagents to block semaphorin activity in collagen gel assays, we show that SEMA3A probably contributes to notochord-mediated repulsion. Sympathetic axons that normally avoid the midline in vivo are also repelled, in part, by a semaphorin-based notochord activity. Although our results implicate semaphorin signalling in mediating repulsion by the notochord, repulsion of early dorsal root ganglion axons is only partially blocked when using neuropilin/Fc reagents. Moreover, retinal axons, which are insensitive to SEMA3A, are also repelled by the notochord. We conclude that multiple factors act in concert to guide axons in this system, and that further notochord repellents remain to be identified.

  19. Differences in excitability properties of FDI and ADM motor axons.

    Science.gov (United States)

    Bae, Jong Seok; Sawai, Setsu; Misawa, Sonoko; Kanai, Kazuaki; Isose, Sagiri; Kuwabara, Satoshi

    2009-03-01

    The first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles are innervated by the same ulnar nerve, but studies have shown that the former is much more severely affected in amyotrophic lateral sclerosis. In this study, threshold tracking was used to investigate whether membrane properties differ between FDI and ADM motor axons. In 12 normal subjects, compound muscle action potentials were recorded from FDI and ADM after ulnar nerve stimulation at the wrist. The strength-duration time constant was significantly longer in the FDI axons than in the ADM axons, and latent addition studies showed greater threshold changes at the conditioning-test stimulus of 0.2 ms in FDI than in ADM axons. These findings suggest that nodal persistent sodium conductances are more prominent in FDI axons than in ADM axons, and therefore excitability is physiologically higher in FDI axons. Even in the same nerve at the same sites, membrane properties of FDI and ADM motor axons differ significantly, and thus their axonal/neuronal responses to disease may also differ.

  20. Fast axonal transport in early experimental disc edema.

    Science.gov (United States)

    Radius, R L; Anderson, D R

    1980-02-01

    Previous work has documented impairment of slow axonal transport in papilledema, but the abnormalities in rapid transport were less certain. Therefore fast axonal transport was studied in 19 primate eyes subjected to ocular hypotony for 6 to 72 hr following surgical fistulization of the anterior chamber. Mild, irregular alterations in fast axonal transport were detected only after nerve head swelling was apparent. These changes in fast transport mechanisms in cases of nerve head edema occur after, and may be secondary to, impaired slow axoplasmic flow and the resultant axonal swelling. Furthermore, since prolonged complete interruption of axonal transport is theoretically inconsistent with the continued normal neuron function characteristic of papilledema and, moreover, since previous data shows a "slowdown" rather than complete blockade of axonal transport in papilledema, it is likely that in eyes with papilledema there does not exist a complete flock of axonal transport. Therefore we hypothesize that the swelling results when slow axoplasmic flow is locally slowed down but not totally stopped, with the axon distention producing secondary mild, irregular changes in fast axonal transport.

  1. Axonal autophagy during regeneration of the rat sciatic nerve

    Institute of Scientific and Technical Information of China (English)

    Kangrong Lu; Zhongxian Piao; Zhenxi Liu; Weiwang Gu; Wanshan Wang; Nngjie Piao

    2008-01-01

    BACKGROUND: The removal of degenerated axonal debris during Wallerian degeneration is very important for nerve regeneration. However, the mechanism by which debris is removed is not been completely understood. Considerable controversy remains as to the clearance pathway and cells that are involved. OBJECTIVE: To investigate axonal autophagy during removal of degenerated axonal debris by transecting the sciatic nerve in a rat Wallerian degeneration model.DESIGN, TIME AND SETTING: Experimental neuropathological analysis. The experiment was conducted at the Laboratory Animal Service Center of the Southern Medical University between January and June 2005. MATERIALS: Fifty-four adult, Wistar rats of either sex, weighing 180-250 g, were obtained from the Laboratory Animal Service Center of the Southern Medical University. Animals were randomly divided into nine groups of six rats. METHODS: Wallerian degeneration was induced by transecting the rat sciatic nerve, and tissue samples from the distal stump were obtained 0.2, 0.4, 1, 2, 3, 4, 7, 10, and 15 days post-transection. Ultrathin sections were prepared for electron microscopy to study ultrastructure and enzyme cytochemistry staining. MAIN OUTCOME MEASURES: Ultrastructure (axon body, autophagic body, and cystoskeleton) of axons and myelin sheaths observed with electron microscopy; acidic phosphatase activity detected by Gomori staining using electron microscopy. RESULTS: The major changes of degenerating axons after transection were axoplasm swelling and separation of axons from their myelin sheath between five hours and two days post-transection. At four days post-transection, the axoplasm condensed and axons were completely separated from the myelin sheath, forming dissociative axon bodies. Vacuoles of different sizes formed in axons during the early phase after lesion. Larger dissociative axon bodies were formed when the axons were completely separated from the myelin sheath during a late phase. The axolemma

  2. Crossing the Border: Molecular Control of Motor Axon Exit

    Directory of Open Access Journals (Sweden)

    Arlene Bravo-Ambrosio

    2011-11-01

    Full Text Available Living organisms heavily rely on the function of motor circuits for their survival and for adapting to ever-changing environments. Unique among central nervous system (CNS neurons, motor neurons (MNs project their axons out of the CNS. Once in the periphery, motor axons navigate along highly stereotyped trajectories, often at considerable distances from their cell bodies, to innervate appropriate muscle targets. A key decision made by pathfinding motor axons is whether to exit the CNS through dorsal or ventral motor exit points (MEPs. In contrast to the major advances made in understanding the mechanisms that regulate the specification of MN subtypes and the innervation of limb muscles, remarkably little is known about how MN axons project out of the CNS. Nevertheless, a limited number of studies, mainly in Drosophila, have identified transcription factors, and in some cases candidate downstream effector molecules, that are required for motor axons to exit the spinal cord. Notably, specialized neural crest cell derivatives, referred to as Boundary Cap (BC cells, pre-figure and demarcate MEPs in vertebrates. Surprisingly, however, BC cells are not required for MN axon exit, but rather restrict MN cell bodies from ectopically migrating along their axons out of the CNS. Here, we describe the small set of studies that have addressed motor axon exit in Drosophila and vertebrates, and discuss our fragmentary knowledge of the mechanisms, which guide motor axons out of the CNS.

  3. A unified cell biological perspective on axon-myelin injury.

    Science.gov (United States)

    Simons, Mikael; Misgeld, Thomas; Kerschensteiner, Martin

    2014-08-04

    Demyelination and axon loss are pathological hallmarks of the neuroinflammatory disorder multiple sclerosis (MS). Although we have an increasingly detailed understanding of how immune cells can damage axons and myelin individually, we lack a unified view of how the axon-myelin unit as a whole is affected by immune-mediated attack. In this review, we propose that as a result of the tight cell biological interconnection of axons and myelin, damage to either can spread, which might convert a local inflammatory disease process early in MS into the global progressive disorder seen during later stages. This mode of spreading could also apply to other neurological disorders.

  4. Present status of studies on diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    Jie Ma; Chonggong Zhang; Yi Li

    2006-01-01

    OBJECTIVE: To explain the present status of study on diffuse axonal injury,investigate its pathogenesis and pathophysiological changes ,and suggest principles for the diagnosis and treatment.DATA SOURCES: Articles about diffuse axonal injury published in English from January 1994 to October 2006 were searched in Pubmed database using the keywords of "diffuse axonal injury,pathogenesis,therapy".STUDY SELECTION: The collected articles were primarily screened to select those associated with diffuse axonal injury,the obviously irrelated articles were excluded,and the rest ones were retrieved manually,and the full-texes were searched.DATA EXTRACTION: Totally 98 articles were collected,41 of them were involved.and the other 57 were excluded.DATA SYNTHESIS: Diffuse axonal injury is mainly caused by acceleratory or deceleratory injury,and its pathophysiological change is a progressive duration,local axonal injury finally develops to axonal breakage,mainly includes inactivation of natrium channel,intracellular Ca2+ overloading,activation of calcium protease,caspase etc.,and mitochondrial injury.At present,there is still lack of effective therapeutic methods for diffuse axonal injury,so we should actively explore more effective methods to relieve the pain of patients and improve their prognosis.CONCLUSION: At present,diffuse axonal injury has not attracted enough attentions in China,the mechanisms for its diagnosis and attack are still unclear,and the treatments are mainly aiming at the symptoms.

  5. IMP2 axonal localization, RNA interactome, and function in the development of axon trajectories

    DEFF Research Database (Denmark)

    Preitner, Nicolas; Quan, Jie; Li, Xinmin

    2016-01-01

    RNA-based regulatory mechanisms play important roles in the development and plasticity of neural circuits and neurological disease. Developing axons provide a model well suited to the study of RNA-based regulation, and contain specific subsets of mRNAs that are locally translated and have roles i...

  6. White-matter astrocytes, axonal energy metabolism, and axonal degeneration in multiple sclerosis

    NARCIS (Netherlands)

    Cambron, Melissa; D'haeseleer, Miguel; Laureys, Guy; Clinckers, Ralph; Debruyne, Jan; De Keyser, Jacques

    2012-01-01

    In patients with multiple sclerosis (MS), a diffuse axonal degeneration occurring throughout the white matter of the central nervous system causes progressive neurologic disability. The underlying mechanism is unclear. This review describes a number of pathways by which dysfunctional astrocytes in M

  7. The microtubule-stabilizing drug Epothilone D increases axonal sprouting following transection injury in vitro.

    Science.gov (United States)

    Brizuela, Mariana; Blizzard, Catherine A; Chuckowree, Jyoti A; Dawkins, Edgar; Gasperini, Robert J; Young, Kaylene M; Dickson, Tracey C

    2015-05-01

    Neuronal cytoskeletal alterations, in particular the loss and misalignment of microtubules, are considered a hallmark feature of the degeneration that occurs after traumatic brain injury (TBI). Therefore, microtubule-stabilizing drugs are attractive potential therapeutics for use following TBI. The best-known drug in this category is Paclitaxel, a widely used anti-cancer drug that has produced promising outcomes when employed in the treatment of various animal models of nervous system trauma. However, Paclitaxel is not ideal for the treatment of patients with TBI due to its limited blood-brain barrier (BBB) permeability. Herein we have characterized the effect of the brain penetrant microtubule-stabilizing agent Epothilone D (Epo D) on post-injury axonal sprouting in an in vitro model of CNS trauma. Epo D was found to modulate axonal sprout number in a dose dependent manner, increasing the number of axonal sprouts generated post-injury. Elevated sprouting was observed when analyzing the total population of injured neurons, as well as in selective analysis of Thy1-YFP-labeled excitatory neurons. However, we found no effect of Epo D on axonal sprout length or outgrowth speed. These findings indicate that Epo D specifically affects injury-induced axonal sprout generation, but not net growth. Our investigation demonstrates that primary cultures of cortical neurons are tolerant of Epo D exposure, and that Epo D significantly increases their regenerative response following structural injury. Therefore Epo D may be a potent therapeutic for enhancing regeneration following CNS injury. This article is part of a Special Issue entitled 'Traumatic Brain Injury'.

  8. Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2 regulates axon integrity in the mouse embryo.

    Directory of Open Access Journals (Sweden)

    Amy N Hicks

    Full Text Available Using transposon-mediated gene-trap mutagenesis, we have generated a novel mouse mutant termed Blad (Bloated Bladder. Homozygous mutant mice die perinatally showing a greatly distended bladder, underdeveloped diaphragm and a reduction in total skeletal muscle mass. Wild type and heterozygote mice appear normal. Using PCR, we identified a transposon insertion site in the first intron of Nmnat2 (Nicotinamide mononucleotide adenyltransferase 2. Nmnat2 is expressed predominantly in the brain and nervous system and has been linked to the survival of axons. Expression of this gene is undetectable in Nmnat2(blad/blad mutants. Examination of the brains of E18.5 Nmnat2(blad/blad mutant embryos did not reveal any obvious morphological changes. In contrast, E18.5 Nmnat2(blad/blad homozygotes showed an approximate 60% reduction of spinal motoneurons in the lumbar region and a more than 80% reduction in the sensory neurons of the dorsal root ganglion (DRG. In addition, facial motoneuron numbers were severely reduced, and there was virtually a complete absence of axons in the hind limb. Our observations suggest that during embryogenesis, Nmnat2 plays an important role in axonal growth or maintenance. It appears that in the absence of Nmnat2, major target organs and tissues (e.g., muscle are not functionally innervated resulting in perinatal lethality. In addition, neither Nmnat1 nor 3 can compensate for the loss of Nmnat2. Whilst there have been recent suggestions that Nmnat2 may be an endogenous modulator of axon integrity, this work represents the first in vivo study demonstrating that Nmnat2 is involved in axon development or survival in a mammal.

  9. AxonPacking: An Open-Source Software to Simulate Arrangements of Axons in White Matter.

    Science.gov (United States)

    Mingasson, Tom; Duval, Tanguy; Stikov, Nikola; Cohen-Adad, Julien

    2017-01-01

    HIGHLIGHTS AxonPacking: Open-source software for simulating white matter microstructure.Validation on a theoretical disk packing problem.Reproducible and stable for various densities and diameter distributions.Can be used to study interplay between myelin/fiber density and restricted fraction. Quantitative Magnetic Resonance Imaging (MRI) can provide parameters that describe white matter microstructure, such as the fiber volume fraction (FVF), the myelin volume fraction (MVF) or the axon volume fraction (AVF) via the fraction of restricted water (fr). While already being used for clinical application, the complex interplay between these parameters requires thorough validation via simulations. These simulations required a realistic, controlled and adaptable model of the white matter axons with the surrounding myelin sheath. While there already exist useful algorithms to perform this task, none of them combine optimisation of axon packing, presence of myelin sheath and availability as free and open source software. Here, we introduce a novel disk packing algorithm that addresses these issues. The performance of the algorithm is tested in term of reproducibility over 50 runs, resulting density, and stability over iterations. This tool was then used to derive multiple values of FVF and to study the impact of this parameter on fr and MVF in light of the known microstructure based on histology sample. The standard deviation of the axon density over runs was lower than 10(-3) and the expected hexagonal packing for monodisperse disks was obtained with a density close to the optimal density (obtained: 0.892, theoretical: 0.907). Using an FVF ranging within [0.58, 0.82] and a mean inter-axon gap ranging within [0.1, 1.1] μm, MVF ranged within [0.32, 0.44] and fr ranged within [0.39, 0.71], which is consistent with the histology. The proposed algorithm is implemented in the open-source software AxonPacking (https://github.com/neuropoly/axonpacking) and can be useful for

  10. Cutaneous collateral axonal sprouting re-innervates the skin component and restores sensation of denervated Swine osteomyocutaneous alloflaps.

    Directory of Open Access Journals (Sweden)

    Zuhaib Ibrahim

    Full Text Available Reconstructive transplantation such as extremity and face transplantation is a viable treatment option for select patients with devastating tissue loss. Sensorimotor recovery is a critical determinant of overall success of such transplants. Although motor function recovery has been extensively studied, mechanisms of sensory re-innervation are not well established. Recent clinical reports of face transplants confirm progressive sensory improvement even in cases where optimal repair of sensory nerves was not achieved. Two forms of sensory nerve regeneration are known. In regenerative sprouting, axonal outgrowth occurs from the transected nerve stump while in collateral sprouting, reinnervation of denervated tissue occurs through growth of uninjured axons into the denervated tissue. The latter mechanism may be more important in settings where transected sensory nerves cannot be re-apposed. In this study, denervated osteomyocutaneous alloflaps (hind- limb transplants from Major Histocompatibility Complex (MHC-defined MGH miniature swine were performed to specifically evaluate collateral axonal sprouting for cutaneous sensory re-innervation. The skin component of the flap was externalized and serial skin sections extending from native skin to the grafted flap were biopsied. In order to visualize regenerating axonal structures in the dermis and epidermis, 50 um frozen sections were immunostained against axonal and Schwann cell markers. In all alloflaps, collateral axonal sprouts from adjacent recipient skin extended into the denervated skin component along the dermal-epidermal junction from the periphery towards the center. On day 100 post-transplant, regenerating sprouts reached 0.5 cm into the flap centripetally. Eight months following transplant, epidermal fibers were visualized 1.5 cm from the margin (rate of regeneration 0.06 mm per day. All animals had pinprick sensation in the periphery of the transplanted skin within 3 months post

  11. Axon sorting within the spinal cord marginal zone via Robo-mediated inhibition of N-cadherin controls spinocerebellar tract formation.

    Science.gov (United States)

    Sakai, Nozomi; Insolera, Ryan; Sillitoe, Roy V; Shi, Song-Hai; Kaprielian, Zaven

    2012-10-31

    The axons of spinal projection neurons transmit sensory information to the brain by ascending within highly organized longitudinal tracts. However, the molecular mechanisms that control the sorting of these axons within the spinal cord and their directed growth to poorly defined targets are not understood. Here, we show that an interplay between Robo and the cell adhesion molecule, N-cadherin, sorts spinal commissural axons into appropriate longitudinal tracts within the spinal cord, and thereby facilitates their brain targeting. Specifically, we show that d1 and d2 spinal commissural axons join the lateral funiculus within the spinal cord and target the cerebellum in chick embryos, and that these axons contribute to the spinocerebellar projection in transgenic reporter mice. Disabling Robo signaling or overexpressing N-cadherin on these axons prevents the formation of the lateral funiculus and the spinocerebellar tract, and simultaneously perturbing Robo and N-cadherin function rescues both phenotypes in chick embryos. Consistent with these observations, disabling Robo function in conditional N-cadherin knock-out mice results in a wild-type-like lateral funiculus. Together, these findings suggest that spinal projection axons must be sorted into distinct longitudinal tracts within the spinal cord proper to project to their brain targets.

  12. PROFESSIONAL GUIDANCE: EXPERIENCE REPORT

    Directory of Open Access Journals (Sweden)

    Fabiana Pinto de Almeida Bizarria

    2014-05-01

    Full Text Available This article presents an account of a career guidance with a group of five teenagers ( 16 and 19 , students of pre-university preparatory course offered by a public university in the state of Ceará . The work group dynamics was from a privileged form of performance by allowing a greater enrichment of the discussions , considering the heterogeneity and diversity of the group . To address relevant issues in career guidance based on the theory Socio-Historical , a roadmap of action process was constructed from three axes . Each axis has worked in two sessions that match a date. The first axis called " meaning of choice," worked on thematic choice process . With regard to the axis " World of Work " was discussed idealizations and representations about the professions , the labor market and the vestibular / ESMS . Emotional links with the professions , skills and ideas on skills and information professions : Finally , the " self " axis, which contains the themes was developed .

  13. Differential extraction of axonally transported proteoglycans

    Energy Technology Data Exchange (ETDEWEB)

    Elam, J.S. (Florida State Univ., Tallahassee (USA))

    1990-10-01

    Axonally transported proteoglycans were differentially solubilized by a sequence of extractions designed to infer their relationship to nerve terminal membranes. Groups of goldfish were injected unilaterally with 35SO4 and contralateral optic tecta containing axonally transported molecules were removed 16 h later. Tecta were homogenized in isotonic buffer and centrifuged at 100,000 g for 60 min to create a total supernatant fraction. Subsequent homogenizations followed by recentrifugation were with hypotonic buffer (lysis extract), 1 M NaCl, Triton X-100 or alternatively Triton-1 M NaCl. Populations of proteoglycans in each extract were isolated on DEAE ion exchange columns and evaluated for content of glycosaminoglycans (GAGs). Results show the distribution of transported proteoglycans to be 26.3% total soluble, 13.7% lysis extract, 13.8% NaCl extract, 12.2% Triton extract, and 46.2% Triton-NaCl extract. Proteoglycans from all fractions contained heparan sulfate as the predominant GAG, with lesser amounts of chondroitin (4 or 6) sulfate. The possible localizations of transported proteoglycans suggested by the extraction results are discussed.

  14. 78 FR 56752 - Interim Staff Guidance Specific Environmental Guidance for Integral Pressurized Water Reactors...

    Science.gov (United States)

    2013-09-13

    ... COMMISSION Interim Staff Guidance Specific Environmental Guidance for Integral Pressurized Water Reactors Reviews AGENCY: Nuclear Regulatory Commission. ACTION: Draft Interim Staff Guidance; request for comment... comment on, draft Interim Staff Guidance (ISG) ESP/COL-ISG-027, ``Interim Staff Guidance...

  15. Endocannabinoid-Goα signalling inhibits axon regeneration in Caenorhabditis elegans by antagonizing Gqα-PKC-JNK signalling.

    Science.gov (United States)

    Pastuhov, Strahil Iv; Fujiki, Kota; Nix, Paola; Kanao, Shuka; Bastiani, Michael; Matsumoto, Kunihiro; Hisamoto, Naoki

    2012-01-01

    The ability of neurons to regenerate their axons after injury is determined by a balance between cellular pathways that promote and those that inhibit regeneration. In Caenorhabditis elegans, axon regeneration is positively regulated by the c-Jun N-terminal kinase mitogen activated protein kinase pathway, which is activated by growth factor-receptor tyrosine kinase signalling. Here we show that fatty acid amide hydrolase-1, an enzyme involved in the degradation of the endocannabinoid anandamide (arachidonoyl ethanolamide), regulates the axon regeneration response of γ-aminobutyric acid neurons after laser axotomy. Exogenous arachidonoyl ethanolamide inhibits axon regeneration via the Goα subunit GOA-1, which antagonizes the Gqα subunit EGL-30. We further demonstrate that protein kinase C functions downstream of Gqα and activates the MLK-1-MEK-1-KGB-1 c-Jun N-terminal kinase pathway by phosphorylating MLK-1. Our results show that arachidonoyl ethanolamide induction of a G protein signal transduction pathway has a role in the inhibition of post-development axon regeneration.

  16. Mirror movement-like defects in startle behavior of zebrafish dcc mutants are caused by aberrant midline guidance of identified descending hindbrain neurons.

    Science.gov (United States)

    Jain, Roshan A; Bell, Hannah; Lim, Amy; Chien, Chi-Bin; Granato, Michael

    2014-02-19

    Mirror movements are involuntary movements on one side of the body that occur simultaneously with intentional movements on the contralateral side. Humans with heterozygous mutations in the axon guidance receptor DCC display such mirror movements, where unilateral stimulation results in inappropriate bilateral motor output. Currently, it is unclear whether mirror movements are caused by incomplete midline crossing and reduced commissural connectivity of DCC-dependent descending pathways or by aberrant ectopic ipsilateral axonal projections of normally commissural neurons. Here, we show that in response to unilateral tactile stimuli, zebrafish dcc mutant larvae perform involuntary turns on the inappropriate body side. We show that these mirror movement-like deficits are associated with axonal guidance defects of two identified groups of commissural reticulospinal hindbrain neurons. Moreover, we demonstrate that in dcc mutants, axons of these identified neurons frequently fail to cross the midline and instead project ipsilaterally. Whereas laser ablation of these neurons in wild-type animals does not affect turning movements, their ablation in dcc mutants restores turning movements. Thus, our results demonstrate that in dcc mutants, turns on the inappropriate side of the body are caused by aberrant ipsilateral axonal projections, and suggest that aberrant ipsilateral connectivity of a very small number of descending axons is sufficient to induce incorrect movement patterns.

  17. Neuronal Logistics : Axonal Transport in Development and Disease

    NARCIS (Netherlands)

    R. van den Berg (Robert)

    2016-01-01

    markdownabstractBrain cells are uniquely shaped among the many cell types of the body. While most cells are more or less rounded or square-shaped, neurons grow one or more long axons that can reach lengths of a meter or more. To keep these axons alive and functional, neurons are dependent on an intr

  18. Molecular Determinants Fundamental to Axon Regeneration after SCI

    Science.gov (United States)

    2014-09-01

    TITLE: Molecular Determinants Fundamental to Axon Regeneration after SCI PRINCIPAL INVESTIGATOR: Jeffrey Alan Plunkett, Ph.D. Martin...TYPE FINAL 3. DATES COVERED (From - To) 1 Sept 2011 - 1 Sept 2014 4. TITLE AND SUBTITLE Molecular Determinants Fundamental to Axon Regeneration...available that restore motor impairments resulting fromspinal cord injury (SCI). Soldiers with SCI are permanently paralyzed and in needof lifelong care

  19. Molecular Determinants Fundamental to Axon Regeneration after SCI

    Science.gov (United States)

    2012-06-01

    currently employed to investigate the evolution of the scar and the time course of axon regeneration after spinal cord injury. The data from these...Medicine, Pittsburgh, PA. It has been established in amphibians and fish that neurons can successfully regenerate their axons in the damaged central

  20. Spontaneous axonal regeneration in rodent spinal cord after ischemic injury

    DEFF Research Database (Denmark)

    von Euler, Mia; Janson, A M; Larsen, Jytte Overgaard;

    2002-01-01

    Here we present evidence for spontaneous and long-lasting regeneration of CNS axons after spinal cord lesions in adult rats. The length of 200 kD neurofilament (NF)-immunolabeled axons was estimated after photochemically induced ischemic spinal cord lesions using a stereological tool. The total l...

  1. Inhibiting poly(ADP-ribosylation) improves axon regeneration

    Science.gov (United States)

    Byrne, Alexandra B; McWhirter, Rebecca D; Sekine, Yuichi; Strittmatter, Stephen M; Miller, David M; Hammarlund, Marc

    2016-01-01

    The ability of a neuron to regenerate its axon after injury depends in part on its intrinsic regenerative potential. Here, we identify novel intrinsic regulators of axon regeneration: poly(ADP-ribose) glycohodrolases (PARGs) and poly(ADP-ribose) polymerases (PARPs). PARGs, which remove poly(ADP-ribose) from proteins, act in injured C. elegans GABA motor neurons to enhance axon regeneration. PARG expression is regulated by DLK signaling, and PARGs mediate DLK function in enhancing axon regeneration. Conversely, PARPs, which add poly(ADP-ribose) to proteins, inhibit axon regeneration of both C. elegans GABA neurons and mammalian cortical neurons. Furthermore, chemical PARP inhibitors improve axon regeneration when administered after injury. Our results indicate that regulation of poly(ADP-ribose) levels is a critical function of the DLK regeneration pathway, that poly-(ADP ribosylation) inhibits axon regeneration across species, and that chemical inhibition of PARPs can elicit axon regeneration. DOI: http://dx.doi.org/10.7554/eLife.12734.001

  2. Increased Human Wildtype Tau Attenuates Axonal Transport Deficits Caused by Loss of APP in Mouse Models

    OpenAIRE

    Smith, Karen D.B.; Erica Peethumnongsin; Han Lin; Hui Zheng; Pautler, Robia G.

    2010-01-01

    Amyloid precursor protein (APP) is implicated in axonal elongation, synaptic plasticity, and axonal transport. However, the role of APP on axonal transport in conjunction with the microtubule associated protein tau continues to be debated. Here we measured in vivo axonal transport in APP knockout mice with Manganese Enhanced MRI (MEMRI) to determine whether APP is necessary for maintaining normal axonal transport. We also tested how overexpression and mutations of tau affect axonal transport ...

  3. Internodal function in normal and regenerated mammalian axons

    DEFF Research Database (Denmark)

    Moldovan, M; Krarup, C

    2007-01-01

    AIM: Following Wallerian degeneration, peripheral myelinated axons have the ability to regenerate and, given a proper pathway, establish functional connections with targets. In spite of this capacity, the clinical outcome of nerve regeneration remains unsatisfactory. Early studies have found...... that regenerated internodes remain persistently short though this abnormality did not seem to influence recovery in conduction. It remains unclear to which extent abnormalities in axonal function itself may contribute to the poor outcome of nerve regeneration. METHODS: We review experimental evidence indicating...... that internodes play an active role in axonal function. RESULTS: By investigating internodal contribution to axonal excitability we have found evidence that axonal function may be permanently compromised in regenerated nerves. Furthermore, we illustrate that internodal function is also abnormal in regenerated...

  4. Rho-independent stimulation of axon outgrowth and activation of the ERK and Akt signaling pathways by C3 transferase in sensory neurons

    Directory of Open Access Journals (Sweden)

    Maria eAuer

    2012-10-01

    Full Text Available Peripheral nerve injury triggers the activation of RhoA in spinal motor and peripheral sensory neurons. RhoA activates a number of effector proteins including the Rho-associated kinase, ROCK, which targets the cytoskeleton and leads to inhibition of neurite outgrowth. Blockade of the Rho/ROCK pathway by pharmacological means improves axon regeneration after experimental injury. C3bot transferase, an exoenzyme produced by Clostridium botulinum, inactivates RhoA by ADP-ribosylation. Up to now it was not investigated thoroughly whether C3bot exerts positive effects on peripheral axon regeneration as well. In the present study, recombinant membrane permeable C3bot produced a small, but significant, axon outgrowth effect on peripheral sensory neurons dissociated from adult dorsal root ganglia of the rat. Neuronal overexpression of C3, however, did not enhance axonal growth. Moreover, transfection of plasmids encoding dominant negative RhoA or RhoA specific shRNAs failed to increase axonal growth. Furthermore, we show that the C3bot mutant, C3E174Q, which lacks RhoA inhibitory activity, still stimulates axonal growth. When analyzing possible signaling mechanisms we found that ERK (extracellular signal-regulated kinase and Akt are activated by C3bot and ERK is induced by the C3E174Q mutant. Upregulation of kinase activities by C3bot occurs significantly faster than inactivation of RhoA indicating a RhoA-independent pathway of action by C3bot. The induction of ERK signaling by C3bot was detected in embryonic hippocampal neurons, too. Taken together, although RhoA plays a central role for inhibition of axon outgrowth by myelin-derived inhibitors, it does not interfere with axonal growth of sensory neurons on a permissive substrate in vitro. C3bot blocks neuronal RhoA activity, but its positive effects on axon elongation and branching appear to be mediated by Rho independent mechanisms involving activation of axon growth promoting ERK and Akt kinases.

  5. Calsyntenin-1 shelters APP from proteolytic processing during anterograde axonal transport

    Directory of Open Access Journals (Sweden)

    Martin Steuble

    2012-06-01

    Endocytosis of amyloid-β precursor protein (APP is thought to represent the major source of substrate for the production of the amyloidogenic Aβ peptide by the β-secretase BACE1. The irreversible nature of proteolytic cleavage implies the existence of an efficient replenishment route for APP from its sites of synthesis to the cell surface. We recently found that APP exits the trans-Golgi network in intimate association with calsyntenin-1, a transmembrane cargo-docking protein for Kinesin-1-mediated vesicular transport. Here we characterized the function of calsyntenin-1 in neuronal APP transport using selective immunoisolation of intracellular trafficking organelles, immunocytochemistry, live-imaging, and RNAi. We found that APP is co-transported with calsyntenin-1 along axons to early endosomes in the central region of growth cones in carriers that exclude the α-secretase ADAM10. Intriguingly, calsyntenin-1/APP organelles contained BACE1, suggesting premature cleavage of APP along its anterograde path. However, we found that APP contained in calsyntenin-1/APP organelles was stable. We further analyzed vesicular trafficking of APP in cultured hippocampal neurons, in which calsyntenin-1 was reduced by RNAi. We found a markedly increased co-localization of APP and ADAM10 in axons and growth cones, along with increased proteolytic processing of APP and Aβ secretion in these neurons. This suggested that the reduced capacity for calsyntenin-1-dependent APP transport resulted in mis-sorting of APP into additional axonal carriers and, therefore, the premature encounter of unprotected APP with its ectodomain proteases. In combination, our results characterize calsyntenin-1/APP organelles as carriers for sheltered anterograde axonal transport of APP.

  6. Differential effects of human L1CAM mutations on complementing guidance and synaptic defects in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Sirisha Kudumala

    Full Text Available A large number of different pathological L1CAM mutations have been identified that result in a broad spectrum of neurological and non-neurological phenotypes. While many of these mutations have been characterized for their effects on homophilic and heterophilic interactions, as well as expression levels in vitro, there are only few studies on their biological consequences in vivo. The single L1-type CAM gene in Drosophila, neuroglian (nrg, has distinct functions during axon guidance and synapse formation and the phenotypes of nrg mutants can be rescued by the expression of human L1CAM. We previously showed that the highly conserved intracellular FIGQY Ankyrin-binding motif is required for L1CAM-mediated synapse formation, but not for neurite outgrowth or axon guidance of the Drosophila giant fiber (GF neuron. Here, we use the GF as a model neuron to characterize the pathogenic L120V, Y1070C, C264Y, H210Q, E309K and R184Q extracellular L1CAM missense mutations and a L1CAM protein with a disrupted ezrin-moesin-radixin (ERM binding site to investigate the signaling requirements for neuronal development. We report that different L1CAM mutations have distinct effects on axon guidance and synapse formation. Furthermore, L1CAM homophilic binding and signaling via the ERM motif is essential for axon guidance in Drosophila. In addition, the human pathological H210Q, R184Q and Y1070C, but not the E309K and L120V L1CAM mutations affect outside-in signaling via the FIGQY Ankyrin binding domain which is required for synapse formation. Thus, the pathological phenotypes observed in humans are likely to be caused by the disruption of signaling required for both, guidance and synaptogenesis.

  7. Extensive cell migration, axon regeneration, and improved function with polysialic acid-modified Schwann cells after spinal cord injury.

    Science.gov (United States)

    Ghosh, Mousumi; Tuesta, Luis M; Puentes, Rocio; Patel, Samik; Melendez, Kiara; El Maarouf, Abderrahman; Rutishauser, Urs; Pearse, Damien Daniel

    2012-05-01

    Schwann cell (SC) implantation after spinal cord injury (SCI) promotes axonal regeneration, remyelination repair, and functional recovery. Reparative efficacy, however, may be limited because of the inability of SCs to migrate outward from the lesion-implant site. Altering SC cell surface properties by overexpressing polysialic acid (PSA) has been shown to promote SC migration. In this study, a SCI contusion model was used to evaluate the migration, supraspinal axon growth support, and functional recovery associated with polysialyltransferase (PST)-overexpressing SCs [PST-green fluorescent protein (GFP) SCs] or controls (GFP SCs). Compared with GFP SCs, which remained confined to the injection site at the injury center, PST-GFP SCs migrated across the lesion:host cord interface for distances of up to 4.4 mm within adjacent host tissue. In addition, with PST-GFP SCs, there was extensive serotonergic and corticospinal axon in-growth within the implants that was limited in the GFP SC controls. The enhanced migration of PST-GFP SCs was accompanied by significant growth of these axons caudal to lesion. Animals receiving PST-GFP SCs exhibited improved functional outcome, both in the open-field and on the gridwalk test, beyond the modest improvements provided by GFP SC controls. This study for the first time demonstrates that a lack of migration by SCs may hinder their reparative benefits and that cell surface overexpression of PSA enhances the ability of implanted SCs to associate with and support the growth of corticospinal axons. These results provide further promise that PSA-modified SCs will be a potent reparative approach for SCI. © 2012 Wiley Periodicals, Inc.

  8. Clinical features of diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To analyze the mechanism of diffuse axonal injury (DAI) and study the relationship between DAI and brain concussion, brain contusion, and primary brain stem injury.Methods: The clinical data and iconographic characteristics of 56 patients with DAI were analyzed retrospectively.Results: Traffic accidents were the main cause of DAI. Among the 56 cases, 34 were injured for at least twice, and 71.43% of the patients were complicated with contusion.Conclusions: It is considered that DAI is a common pattern of primary brain injury, which is often underestimated. And DAI includes cerebral concussion and primary brain injury, and is often complicated by cerebral cortex contusion. Therefore, it is very simple and practical to divide primary brain injuries into local and diffuse injuries.

  9. Decreased levels of repulsive guidance molecule A in association with beneficial effects of repeated intrathecal triamcinolone acetonide application in progressive multiple sclerosis patients.

    Science.gov (United States)

    Müller, Thomas; Barghorn, Stefan; Lütge, Sven; Haas, Thomas; Mueller, Reinhold; Gerlach, Bjoern; Öhm, Gabi; Eilert, Katrin; Trommer, Isabel; Mueller, Bernhard K

    2015-06-01

    Repeated intrathecal application of the sustained release steroid triamcinolone acetonide is beneficial in progressive multiple sclerosis patients. Its putative regenerative effect may involve regulation of the repulsive guidance molecule A synthesis. This protein inhibits axonal regeneration and functional recovery. Objectives were to demonstrate the efficacy of four triamcinolone applications every other day in association with repulsive guidance molecule A levels in cerebrospinal fluid. Clinical evaluation was performed at baseline and on each day after a triamcinolone administration in 25 progressive multiple sclerosis patients. Repulsive guidance molecule A concentrations were determined before each triamcinolone application by western blot analysis with quantification. Clinical scores for multiple sclerosis improved, and the maximum walking distance and speed ameliorated in 17 patients. Repulsive guidance molecule A levels declined in these responders. The remaining patients showed no prompt clinical benefit and no decrease of repulsive guidance molecule A concentrations. Decline of repulsive guidance molecule A may reflect regeneration and functional recovery by triamcinolone in progressive multiple sclerosis patients.

  10. Guidance of Nonlinear Systems

    Science.gov (United States)

    Meyer, George

    1997-01-01

    The paper describes a method for guiding a dynamic system through a given set of points. The paradigm is a fully automatic aircraft subject to air traffic control (ATC). The ATC provides a sequence of way points through which the aircraft trajectory must pass. The way points typically specify time, position, and velocity. The guidance problem is to synthesize a system state trajectory which satisfies both the ATC and aircraft constraints. Complications arise because the controlled process is multi-dimensional, multi-axis, nonlinear, highly coupled, and the state space is not flat. In addition, there is a multitude of possible operating modes, which may number in the hundreds. Each such mode defines a distinct state space model of the process by specifying the state space coordinatization, the partition of the controls into active controls and configuration controls, and the output map. Furthermore, mode transitions must be smooth. The guidance algorithm is based on the inversion of the pure feedback approximations, which is followed by iterative corrections for the effects of zero dynamics. The paper describes the structure and modules of the algorithm, and the performance is illustrated by several example aircraft maneuvers.

  11. Differing semaphorin 3A concentrations trigger distinct signaling mechanisms in growth cone collapse.

    Science.gov (United States)

    Manns, Richard P C; Cook, Geoffrey M W; Holt, Christine E; Keynes, Roger J

    2012-06-20

    Semaphorin-3A (Sema3A) is a major guidance cue in the developing nervous system. Previous studies have revealed a dependence of responses to Sema3A on local protein synthesis (PS) in axonal growth cones, but a recent study has called this dependence into question. To understand the basis of this discrepancy we used the growth cone collapse assay on chick dorsal root ganglion neurons. We show that the dependence of growth cone collapse on protein synthesis varies according to Sema3A concentration, from near-total at low concentration (625 ng/ml). Further, we show that neuropilin-1 (NP-1) mediates both PS-dependent and PS-independent collapse. Our findings are consistent with the operation of at least two distinct Sema3A signaling pathways: one that is PS-dependent, involving mammalian target of rapamycin, and one that is PS-independent, involving GSK-3β activation and operative at all concentrations of Sema3A examined. The results provide a plausible explanation for the discrepancy in PS-dependence reported in the literature, and indicate that different signaling pathways activated within growth cones can be modulated by changing the concentration of the same guidance cue.

  12. Calpains mediate axonal cytoskeleton disintegration during Wallerian degeneration.

    Science.gov (United States)

    Ma, Marek; Ferguson, Toby A; Schoch, Kathleen M; Li, Jian; Qian, Yaping; Shofer, Frances S; Saatman, Kathryn E; Neumar, Robert W

    2013-08-01

    In both the central nervous system (CNS) and peripheral nervous system (PNS), transected axons undergo Wallerian degeneration. Even though Augustus Waller first described this process after transection of axons in 1850, the molecular mechanisms may be shared, at least in part, by many human diseases. Early pathology includes failure of synaptic transmission, target denervation, and granular disintegration of the axonal cytoskeleton (GDC). The Ca(2+)-dependent protease calpains have been implicated in GDC but causality has not been established. To test the hypothesis that calpains play a causal role in axonal and synaptic degeneration in vivo, we studied transgenic mice that express human calpastatin (hCAST), the endogenous calpain inhibitor, in optic and sciatic nerve axons. Five days after optic nerve transection and 48 h after sciatic nerve transection, robust neurofilament proteolysis observed in wild-type controls was reduced in hCAST transgenic mice. Protection of the axonal cytoskeleton in sciatic nerves of hCAST mice was nearly complete 48 h post-transection. In addition, hCAST expression preserved the morphological integrity of neuromuscular junctions. However, compound muscle action potential amplitudes after nerve transection were similar in wild-type and hCAST mice. These results, in total, provide direct evidence that calpains are responsible for the morphological degeneration of the axon and synapse during Wallerian degeneration.

  13. Local erythropoietin signaling enhances regeneration in peripheral axons.

    Science.gov (United States)

    Toth, C; Martinez, J A; Liu, W Q; Diggle, J; Guo, G F; Ramji, N; Mi, R; Hoke, A; Zochodne, D W

    2008-06-23

    Erythropoietin (EPO) and its receptor (EPO-R), mediate neuroprotection from axonopathy and apoptosis in the peripheral nervous system (PNS). We examined the impact and potential mechanisms of local EPO signaling on regenerating PNS axons in vivo and in vitro. As a consequence of injury, peripheral nerve axons and DRG neurons have a marked increase in the expression of EPO and EPO-R. Local delivery of EPO via conduit over 2 weeks to rat sciatic nerve following crush injury increased the density and maturity of regenerating myelinated axons growing distally from the crush site. In addition, EPO also rescued retrograde degeneration and atrophy of axons. EPO substantially increased the density and intensity of calcitonin gene-related peptide (CGRP) expression within outgrowing axons. Behavioral improvements in sensorimotor function also occurred in rats exposed to near nerve EPO delivery. EPO delivery led to decreased nuclear factor kappaB (NFkB) activation but increased phosphorylation of Akt and STAT3 within nerve and dorsal root ganglia neurons indicating rescue from an injury phenotype. Spinal cord explant studies also demonstrated a similar dose-dependent effect of EPO upon motor axonal outgrowth. Local EPO signaling enhances regenerating peripheral nervous system axons in addition to its known neuroprotection. Exogenous EPO may have a therapeutic role in a large number of peripheral nerve diseases through its impact on regeneration.

  14. Transgenic inhibition of astroglial NF-κB leads to increased axonal sparing and sprouting following spinal cord injury

    Science.gov (United States)

    Brambilla, Roberta; Hurtado, Andres; Persaud, Trikaldarshi; Esham, Kim; Pearse, Damien D.; Oudega, Martin; Bethea, John R.

    2014-01-01

    We previously showed that NF-κB inactivation in astrocytes leads to improved functional recovery following spinal cord injury (SCI). This correlated with reduced expression of pro-inflammatory mediators and chondroitin sulphate proteoglycans, and increased white matter preservation. Hence we hypothesized that inactivation of astrocytic NF-κB would create a more permissive environment for axonal sprouting and regeneration. We induced both contusive and complete transection SCI in GFAP-IκBα-dn and WT mice and performed retrograde (fluorogold) and anterograde (biotinylated dextran amine) tracing eight weeks after injury. Following contusive SCI, more fluorogold-labeled cells were found in motor cortex, reticular formation, and raphe nuclei of transgenic mice. Spared and sprouting biotinylated dextran amine-positive corticospinal axons were found caudal to the lesion in GFAP-IκBα-dn mice. Higher numbers of fluorogold-labeled neurons were detected immediately rostral to the lesion in GFAP-IκBα-dn mice, accompanied by increased expression of synaptic and axonal growth-associated molecules. After transection, however, no fluorogold-labeled neurons or biotinylated dextran amine-filled axons were found rostral and caudal to the lesion, respectively, in either genotype. These data demonstrated that inhibiting astroglial NF-κB resulted in a growth-supporting terrain promoting sparing and sprouting, rather than regeneration, of supraspinal and propriospinal circuitries essential for locomotion, hence contributing to the improved functional recovery observed after SCI in GFAP-IκBα-dn mice. PMID:19522780

  15. Mdivi-1 inhibits astrocyte activation and astroglial scar formation and enhances axonal regeneration after spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    gang li

    2016-10-01

    Full Text Available After spinal cord injury (SCI, astrocytes become hypertrophic and proliferative, forming a dense network of astroglial processes at the site of the lesion. This constitutes a physical and biochemical barrier to axonal regeneration. Mitochondrial fission regulates cell cycle progression; inhibiting the cell cycle of astrocytes can reduce expression levels of axon growth-inhibitory molecules as well as astroglial scar formation after SCI. We therefore investigated how an inhibitor of mitochondrial fission, Mdivi-1, would affect astrocyte proliferation, astroglial scar formation, and axonal regeneration following SCI in rats. Western blot and immunofluorescent double-labeling showed that Mdivi-1 markedly reduced the expression of the astrocyte marker glial fibrillary acidic protein (GFAP, and a cell proliferation marker, proliferating cell nuclear antigen, in astrocytes 3 days after SCI. Moreover, Mdivi-1 decreased the expression of GFAP and neurocan, a chondroitin sulfate proteoglycan. Notably, immunofluorescent labeling and Nissl staining showed that Mdivi-1 elevated the production of growth-associated protein-43 and increased neuronal survival at 4 weeks after SCI. Finally, hematoxylin-eosin staining and behavioral evaluation of motor function indicated that Mdivi-1 also reduced cavity formation and improved motor function 4 weeks after SCI. Our results confirm that Mdivi-1 promotes motor function after SCI, and indicate that inhibiting mitochondrial fission using Mdivi-1 can inhibit astrocyte activation and astroglial scar formation and contribute to axonal regeneration after SCI in rats.

  16. Amyloid precursor protein-mediated endocytic pathway disruption induces axonal dysfunction and neurodegeneration.

    Science.gov (United States)

    Xu, Wei; Weissmiller, April M; White, Joseph A; Fang, Fang; Wang, Xinyi; Wu, Yiwen; Pearn, Matthew L; Zhao, Xiaobei; Sawa, Mariko; Chen, Shengdi; Gunawardena, Shermali; Ding, Jianqing; Mobley, William C; Wu, Chengbiao

    2016-05-02

    The endosome/lysosome pathway is disrupted early in the course of both Alzheimer's disease (AD) and Down syndrome (DS); however, it is not clear how dysfunction in this pathway influences the development of these diseases. Herein, we explored the cellular and molecular mechanisms by which endosomal dysfunction contributes to the pathogenesis of AD and DS. We determined that full-length amyloid precursor protein (APP) and its β-C-terminal fragment (β-CTF) act though increased activation of Rab5 to cause enlargement of early endosomes and to disrupt retrograde axonal trafficking of nerve growth factor (NGF) signals. The functional impacts of APP and its various products were investigated in PC12 cells, cultured rat basal forebrain cholinergic neurons (BFCNs), and BFCNs from a mouse model of DS. We found that the full-length wild-type APP (APPWT) and β-CTF both induced endosomal enlargement and disrupted NGF signaling and axonal trafficking. β-CTF alone induced atrophy of BFCNs that was rescued by the dominant-negative Rab5 mutant, Rab5S34N. Moreover, expression of a dominant-negative Rab5 construct markedly reduced APP-induced axonal blockage in Drosophila. Therefore, increased APP and/or β-CTF impact the endocytic pathway to disrupt NGF trafficking and signaling, resulting in trophic deficits in BFCNs. Our data strongly support the emerging concept that dysregulation of Rab5 activity contributes importantly to early pathogenesis of AD and DS.

  17. Looking downstream: the role of cyclic AMP-regulated genes in axonal regeneration

    Directory of Open Access Journals (Sweden)

    Mustafa M Siddiq

    2015-06-01

    Full Text Available Elevation of intracellular cyclic AMP (cAMP levels has proven to be one of the most effective means of overcoming inhibition of axonal regeneration by myelin-associated inhibitors such as myelin-associated glycoprotein, Nogo, and oligodendrocyte myelin glycoprotein. Pharmacological manipulation of cAMP through the administration of dibutyryl cAMP or rolipram leads to enhanced axonal growth both in vivo and in vitro, and importantly, upregulation of cAMP within dorsal root ganglion neurons is responsible for the conditioning lesion effect, which indicates that cAMP plays a significant role in the endogenous mechanisms that promote axonal regeneration. The effects of cAMP are transcription-dependent and are mediated through the activation of protein kinase A and the transcription factor CREB. This leads to the induction of a variety of genes, several of which have been shown to overcome myelin-mediated inhibition in their own right. In this review, we will highlight the pro-regenerative effects of arginase I, interleukin-6, secretory leukocyte protease inhibitor, and metallothionein-I/II, and discuss their potential for therapeutic use in spinal cord injury.

  18. MAP1B Regulates Axonal Development by Modulating Rho-GTPase Rac1 Activity

    Science.gov (United States)

    Montenegro-Venegas, Carolina; Tortosa, Elena; Rosso, Silvana; Peretti, Diego; Bollati, Flavia; Bisbal, Mariano; Jausoro, Ignacio; Avila, Jesus; Cáceres, Alfredo

    2010-01-01

    Cultured neurons obtained from MAP1B-deficient mice have a delay in axon outgrowth and a reduced rate of axonal elongation compared with neurons from wild-type mice. Here we show that MAP1B deficiency results in a significant decrease in Rac1 and cdc42 activity and a significant increase in Rho activity. We found that MAP1B interacted with Tiam1, a guanosine nucleotide exchange factor for Rac1. The decrease in Rac1/cdc42 activity was paralleled by decreases in the phosphorylation of the downstream effectors of these proteins, such as LIMK-1 and cofilin. The expression of a constitutively active form of Rac1, cdc42, or Tiam1 rescued the axon growth defect of MAP1B-deficient neurons. Taken together, these observations define a new and crucial function of MAP1B that we show to be required for efficient cross-talk between microtubules and the actin cytoskeleton during neuronal polarization. PMID:20719958

  19. Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons.

    Science.gov (United States)

    Foust, Amanda; Popovic, Marko; Zecevic, Dejan; McCormick, David A

    2010-05-19

    Purkinje neurons are the output cells of the cerebellar cortex and generate spikes in two distinct modes, known as simple and complex spikes. Revealing the point of origin of these action potentials, and how they conduct into local axon collaterals, is important for understanding local and distal neuronal processing and communication. By using a recent improvement in voltage-sensitive dye imaging technique that provided exceptional spatial and temporal resolution, we were able to resolve the region of spike initiation as well as follow spike propagation into axon collaterals for each action potential initiated on single trials. All fast action potentials, for both simple and complex spikes, whether occurring spontaneously or in response to a somatic current pulse or synaptic input, initiated in the axon initial segment. At discharge frequencies of less than approximately 250 Hz, spikes propagated faithfully through the axon and axon collaterals, in a saltatory manner. Propagation failures were only observed for very high frequencies or for the spikelets associated with complex spikes. These results demonstrate that the axon initial segment is a critical decision point in Purkinje cell processing and that the properties of axon branch points are adjusted to maintain faithful transmission.

  20. Functional Impact of Corticotropin-Releasing Factor Exposure on Tau Phosphorylation and Axon Transport.

    Science.gov (United States)

    Le, Michelle H; Weissmiller, April M; Monte, Louise; Lin, Po Han; Hexom, Tia C; Natera, Orlangie; Wu, Chengbiao; Rissman, Robert A

    2016-01-01

    Stress exposure or increased levels of corticotropin-releasing factor (CRF) induce hippocampal tau phosphorylation (tau-P) in rodent models, a process that is dependent on the type-1 CRF receptor (CRFR1). Although these preclinical studies on stress-induced tau-P provide mechanistic insight for epidemiological work that identifies stress as a risk factor for Alzheimer's disease (AD), the actual impact of stress-induced tau-P on neuronal function remains unclear. To determine the functional consequences of stress-induced tau-P, we developed a novel mouse neuronal cell culture system to explore the impact of acute (0.5hr) and chronic (2hr) CRF treatment on tau-P and integral cell processes such as axon transport. Consistent with in vivo reports, we found that chronic CRF treatment increased tau-P levels and caused globular accumulations of phosphorylated tau in dendritic and axonal processes. Furthermore, while both acute and chronic CRF treatment led to significant reduction in CREB activation and axon transport of brain-derived neurotrophic factor (BDNF), this was not the case with mitochondrial transport. Acute CRF treatment caused increased mitochondrial velocity and distance traveled in neurons, while chronic CRF treatment modestly decreased mitochondrial velocity and greatly increased distance traveled. These results suggest that transport of cellular energetics may take priority over growth factors during stress. Tau-P was required for these changes, as co-treatment of CRF with a GSK kinase inhibitor prevented CRF-induced tau-P and all axon transport changes. Collectively, our results provide mechanistic insight into the consequences of stress peptide-induced tau-P and provide an explanation for how chronic stress via CRF may lead to neuronal vulnerability in AD.

  1. Functional Impact of Corticotropin-Releasing Factor Exposure on Tau Phosphorylation and Axon Transport.

    Directory of Open Access Journals (Sweden)

    Michelle H Le

    Full Text Available Stress exposure or increased levels of corticotropin-releasing factor (CRF induce hippocampal tau phosphorylation (tau-P in rodent models, a process that is dependent on the type-1 CRF receptor (CRFR1. Although these preclinical studies on stress-induced tau-P provide mechanistic insight for epidemiological work that identifies stress as a risk factor for Alzheimer's disease (AD, the actual impact of stress-induced tau-P on neuronal function remains unclear. To determine the functional consequences of stress-induced tau-P, we developed a novel mouse neuronal cell culture system to explore the impact of acute (0.5hr and chronic (2hr CRF treatment on tau-P and integral cell processes such as axon transport. Consistent with in vivo reports, we found that chronic CRF treatment increased tau-P levels and caused globular accumulations of phosphorylated tau in dendritic and axonal processes. Furthermore, while both acute and chronic CRF treatment led to significant reduction in CREB activation and axon transport of brain-derived neurotrophic factor (BDNF, this was not the case with mitochondrial transport. Acute CRF treatment caused increased mitochondrial velocity and distance traveled in neurons, while chronic CRF treatment modestly decreased mitochondrial velocity and greatly increased distance traveled. These results suggest that transport of cellular energetics may take priority over growth factors during stress. Tau-P was required for these changes, as co-treatment of CRF with a GSK kinase inhibitor prevented CRF-induced tau-P and all axon transport changes. Collectively, our results provide mechanistic insight into the consequences of stress peptide-induced tau-P and provide an explanation for how chronic stress via CRF may lead to neuronal vulnerability in AD.

  2. The C. elegans Discoidin Domain Receptor DDR-2 Modulates the Met-like RTK-JNK Signaling Pathway in Axon Regeneration.

    Science.gov (United States)

    Hisamoto, Naoki; Nagamori, Yuki; Shimizu, Tatsuhiro; Pastuhov, Strahil I; Matsumoto, Kunihiro

    2016-12-01

    The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. However, the signaling pathways that orchestrate axon regeneration are not well understood. In Caenorhabditis elegans, initiation of axon regeneration is positively regulated by SVH-2 Met-like growth factor receptor tyrosine kinase (RTK) signaling through the JNK MAPK pathway. Here we show that SVH-4/DDR-2, an RTK containing a discoidin domain that is activated by collagen, and EMB-9 collagen type IV regulate the regeneration of neurons following axon injury. The scaffold protein SHC-1 interacts with both DDR-2 and SVH-2. Furthermore, we demonstrate that overexpression of svh-2 and shc-1 suppresses the delay in axon regeneration observed in ddr-2 mutants, suggesting that DDR-2 functions upstream of SVH-2 and SHC-1. These results suggest that DDR-2 modulates the SVH-2-JNK pathway via SHC-1. We thus identify two different RTK signaling networks that play coordinated roles in the regulation of axonal regeneration.

  3. The C. elegans Discoidin Domain Receptor DDR-2 Modulates the Met-like RTK–JNK Signaling Pathway in Axon Regeneration

    Science.gov (United States)

    Shimizu, Tatsuhiro; Matsumoto, Kunihiro

    2016-01-01

    The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. However, the signaling pathways that orchestrate axon regeneration are not well understood. In Caenorhabditis elegans, initiation of axon regeneration is positively regulated by SVH-2 Met-like growth factor receptor tyrosine kinase (RTK) signaling through the JNK MAPK pathway. Here we show that SVH-4/DDR-2, an RTK containing a discoidin domain that is activated by collagen, and EMB-9 collagen type IV regulate the regeneration of neurons following axon injury. The scaffold protein SHC-1 interacts with both DDR-2 and SVH-2. Furthermore, we demonstrate that overexpression of svh-2 and shc-1 suppresses the delay in axon regeneration observed in ddr-2 mutants, suggesting that DDR-2 functions upstream of SVH-2 and SHC-1. These results suggest that DDR-2 modulates the SVH-2–JNK pathway via SHC-1. We thus identify two different RTK signaling networks that play coordinated roles in the regulation of axonal regeneration. PMID:27984580

  4. Final OSWER Vapor Intrusion Guidance

    Science.gov (United States)

    EPA is preparing to finalize its guidance on assessing and addressing vapor intrusion, which is defined as migration of volatile constituents from contaminated media in the subsurface (soil or groundwater) into the indoor environment. In November 2002, EPA issued draft guidance o...

  5. Restructuring Guidance and Counseling Programs.

    Science.gov (United States)

    Snyder, Beverly A.; Daly, Timothy P.

    1993-01-01

    Briefly reviews counseling profession's call for revitalization and transformation in school counseling and guidance programs. Summarizes one school system's efforts during late 1980s and early 1990s to transform its program from services and crisis orientation into a comprehensive developmental model based on Myrick's developmental guidance and…

  6. Guidance in the Secondary School

    Science.gov (United States)

    Kumar, V. Jurist Lional

    2010-01-01

    Secondary School Students face a lot of problems in their body as well as in mind due to puberty that tends to adolescence stage. Adolescence has peculiar characters of their own. They need proper Guidance and Counselling to tackle their own problems. Guidance is described as a counselling service to assist the individual in achieving self…

  7. Guidance at the educational marketplace

    DEFF Research Database (Denmark)

    Lystbæk, Christian Tang

    in educational policies and institutions. As educational systems have expanded and, further, have been restructured with the expansion of choice opportunities since the 1980s, guidance has become prioritized as a form of counseling or coaching, which can support students. Thus, guidance has become an important...

  8. Structural plasticity of axon terminals in the adult.

    Science.gov (United States)

    Gogolla, Nadine; Galimberti, Ivan; Caroni, Pico

    2007-10-01

    There is now conclusive evidence for widespread ongoing structural plasticity of presynaptic boutons and axon side-branches in the adult brain. The plasticity complements that of postsynaptic spines, but axonal plasticity samples larger volumes of neuropil, and has a larger impact on circuit remodeling. Axons from distinct neurons exhibit unique ratios of stable (t1/2>9 months) and dynamic (t1/2 5-20 days) boutons, which persist as spatially intermingled subgroups along terminal arbors. In addition, phases of side-branch dynamics mediate larger scale remodeling guided by synaptogenesis. The plasticity is most pronounced during critical periods; its patterns and outcome are controlled by Hebbian mechanisms and intrinsic neuronal factors. Novel experience, skill learning, life-style, and age can persistently modify local circuit structure through axonal structural plasticity.

  9. Sodium Channels, Mitochondria, and Axonal Degeneration in Peripheral Neuropathy.

    Science.gov (United States)

    Persson, Anna-Karin; Hoeijmakers, Janneke G J; Estacion, Mark; Black, Joel A; Waxman, Stephen G

    2016-05-01

    Peripheral neuropathy results from damage to peripheral nerves and is often accompanied by pain in affected limbs. Treatment represents an unmet medical need and a thorough understanding of the mechanisms underlying axonal injury is needed. Longer nerve fibers tend to degenerate first (length-dependence), and patients carrying pathogenic mutations throughout life usually become symptomatic in mid- or late-life (time-dependence). The activity of voltage-gated sodium channels can contribute to axonal injury and sodium channel gain-of-function mutations have been linked to peripheral neuropathy. Recent studies have implicated sodium channel activity, mitochondrial compromise, and reverse-mode Na(+)/Ca(2+) exchange in time- and length-dependent axonal injury. Elucidation of molecular mechanisms underlying axonal injury in peripheral neuropathy may provide new therapeutic strategies for this painful and debilitating condition.

  10. Morphology of axonal transport abnormalities in primate eyes.

    Science.gov (United States)

    Radius, R L; Anderson, D R

    1981-11-01

    The ultrastructure of the retina and optic nerve head was studied in primate eyes after central retinal artery occlusion. Within 2 hours of the vascular occlusion the inner retinal layers undergo watery (isosmotic) swelling. This watery swelling of axons and astroglia extends into the nerve head as far back as the anterior boundary of the scleral lamina cribrosa. The swelling is increased 4 hours after the occlusion, and by 24 hours disintegration has occurred. At the optic nerve head mitochondria and vesicles of smooth endoplasmic reticulum begin to accumulate within 2 hours. The accumulation increases at 4 hours and persists to 24 hours. The watery swelling seems characteristic of ischaemic axons. Membranous organelles accumulate at the boundary of an ischaemic zone when material carried by axonal transport is brought via the healthy axon segment to the boundary, but they cannot proceed further into the ischaemic zone. Such accumulation is typical of locations where rapid orthograde axonal transport or retrograde axonal transport is blocked. In contrast, when slow axonal flow is impaired, the swelling is characterised by an excess of cytoplasmic gel without a marked accumulation of organelles. Rapid orthograde transport and retrograde transport seem to be closely related to one another, while slow axoplasmic flow seems fundamentally different. From morphological findings we suspect that, in experimental glaucoma, intraocular pressure first affects the intracellular physiological process of rapid orthograde and retrograde axonal transport. Watery swelling may not occur unless the ischaemic injury to cell metabolism is more advanced. In contrast, in experimental papilloedema, the swelling results predominantly from impaired slow axoplasmic flow.

  11. Electrophysiology of a nonmyelinated glutamatergic axon in rat hippocampus

    OpenAIRE

    Alle, Henrik

    2012-01-01

    The common theme of the presented work on the nonmyelinated hippocampal mossy fiber (the axon of the granule cell in the dentate gyrus) is the generation of subthreshold and suprathreshold electrical signals. Subthreshold depolarizations in the axon can occur due to passive propagation of excitatory postsynaptic potentials, which are generated in the somato-dendritic domain. The remote passive propagation of these comparatively slow but transient signals is due to a space constant...

  12. 6-Sulphated chondroitins have a positive influence on axonal regeneration.

    Directory of Open Access Journals (Sweden)

    Rachel Lin

    Full Text Available Chondroitin sulphate proteoglycans (CSPGs upregulated in the glial scar inhibit axon regeneration via their sulphated glycosaminoglycans (GAGs. Chondroitin 6-sulphotransferase-1 (C6ST-1 is upregulated after injury leading to an increase in 6-sulphated GAG. In this study, we ask if this increase in 6-sulphated GAG is responsible for the increased inhibition within the glial scar, or whether it represents a partial reversion to the permissive embryonic state dominated by 6-sulphated glycosaminoglycans (GAGs. Using C6ST-1 knockout mice (KO, we studied post-injury changes in chondroitin sulphotransferase (CSST expression and the effect of chondroitin 6-sulphates on both central and peripheral axon regeneration. After CNS injury, wild-type animals (WT showed an increase in mRNA for C6ST-1, C6ST-2 and C4ST-1, but KO did not upregulate any CSSTs. After PNS injury, while WT upregulated C6ST-1, KO showed an upregulation of C6ST-2. We examined regeneration of nigrostriatal axons, which demonstrate mild spontaneous axon regeneration in the WT. KO showed many fewer regenerating axons and more axonal retraction than WT. However, in the PNS, repair of the median and ulnar nerves led to similar and normal levels of axon regeneration in both WT and KO. Functional tests on plasticity after the repair also showed no evidence of enhanced plasticity in the KO. Our results suggest that the upregulation of 6-sulphated GAG after injury makes the extracellular matrix more permissive for axon regeneration, and that the balance of different CSs in the microenvironment around the lesion site is an important factor in determining the outcome of nervous system injury.

  13. Fast and reliable identification of axons, axon initial segments and dendrites with local field potential recording

    DEFF Research Database (Denmark)

    Petersen, Anders V.; Johansen, Emil O.; Perrier, Jean-Francois

    2015-01-01

    The axon initial segment (AIS) is an essential neuronal compartment. It is usually where action potentials are initiated. Recent studies demonstrated that the AIS is a plastic structure that can be regulated by neuronal activity and by the activation of metabotropic receptors. Studying the AIS...... of neurons, we can detect sinks caused by inward currents flowing across the membrane. We determine the location of the AIS by comparing the timing of these events with the action potential. We demonstrate that this method allows the unequivocal identification of the AIS of different types of neurons from...

  14. Cellulose/soy protein composite-based nerve guidance conduits with designed microstructure for peripheral nerve regeneration

    Science.gov (United States)

    Gan, Li; Zhao, Lei; Zhao, Yanteng; Li, Ke; Tong, Zan; Yi, Li; Wang, Xiong; Li, Yinping; Tian, Weiqun; He, Xiaohua; Zhao, Min; Li, Yan; Chen, Yun

    2016-10-01

    Objective. The objective of this work was to develop nerve guidance conduits from natural polymers, cellulose and soy protein isolate (SPI), by evaluating the effects of cellulose/SPI film-based conduit (CSFC) and cellulose/SPI sponge-based conduit (CSSC) on regeneration of nerve defects in rats. Approach. CSFC and CSSC with the same chemical components were fabricated from cellulose and SPI. Effects of CSSC and CSFC on regeneration of the defective nerve were comparatively investigated in rats with a 10 mm long gap in sciatic nerve. The outcomes of peripheral nerve repair were evaluated by a combination of electrophysiological assessment, Fluoro-Gold retrograde tracing, double NF200/S100 immunofluorescence analysis, toluidine blue staining, and electron microscopy. The probable molecular mechanism was investigated using quantitative real-time PCR (qPCR) analysis. Main results. Compared with CSFC, CSSC had 2.69 times higher porosity and 5.07 times higher water absorption, thus ensuring much higher permeability. The nerve defects were successfully bridged and repaired by CSSC and CSFC. Three months after surgery, the CSSC group had a higher compound muscle action potential amplitude ratio, a higher percentage of positive NF200 and S100 staining, and a higher axon diameter and myelin sheath thickness than the CSFC group, showing the repair efficiency of CSSC was higher than that of CSFC. qPCR analysis indicated the mRNA levels of nerve growth factor, IL-10, IL-6, and growth-associated protein 43 (GAP-43) were higher in the CSSC group. This also indicated that there was better nerve repair with CSSC due to the higher porosity and permeability of CSSC providing a more favourable microenvironment for nerve regeneration than CSFC. Significance. A promising nerve guidance conduit was developed from cellulose/SPI sponge that showed potential for application in the repair of nerve defect. This work also suggests that nerve guidance conduits with better repair efficiency

  15. Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration.

    Science.gov (United States)

    Zhang, Ze; Rouabhia, Mahmoud; Wang, Zhaoxu; Roberge, Christophe; Shi, Guixin; Roche, Phillippe; Li, Jiangming; Dao, Lê H

    2007-01-01

    Normal and electrically stimulated PC12 cell cultures and the implantation of nerve guidance channels were performed to evaluate newly developed electrically conductive biodegradable polymer composites. Polypyrrole (PPy) doped by butane sulfonic acid showed a significantly higher number of viable cells compared with PPy doped by polystyrenesulfonate after a 6-day culture. The PC12 cells were left to proliferate for 6 days, and the PPy-coated membranes, showing less initial cell adherence, recorded the same proliferation rate as did the noncoated membranes. Direct current electricity at various intensities was applied to the PC12 cell-cultured conductive membranes. After 7 days, the greatest number of neurites appeared on the membranes with a current intensity approximating 1.7-8.4 microA/cm. Nerve guidance channels made of conductive biodegradable composite were implanted into rats to replace 8 mm of sciatic nerve. The implants were harvested after 2 months and analyzed with immunohistochemistry and transmission electron microscopy. The regenerated nerve tissue displayed myelinated axons and Schwann cells that were similar to those in the native nerve. Electrical stimulation applied through the electrically conductive biodegradable polymers therefore enhanced neurite outgrowth in a current-dependent fashion. The conductive polymers also supported sciatic nerve regeneration in rats.

  16. Axon-glia interaction and membrane traffic in myelin formation.

    Science.gov (United States)

    White, Robin; Krämer-Albers, Eva-Maria

    2014-01-06

    In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialized glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarization followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasizing the central role of the Src-family kinase Fyn during central nervous system (CNS) myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of proteolipid protein (PLP) transport by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.

  17. Axon morphology at the lamina cribrosa in monkey eyes.

    Science.gov (United States)

    Radius, R L; Klewin, K M

    1986-01-01

    The eyes of 8 monkeys (Aotus trivirgatus) were studied. The mean cross-section area and the least diameter of axon cylinders were calculated from measurements made by computer assisted planimetry of electron photomicrographs of sections through the optic nerve head at the level of the lamina cribrosa. The density of intrabundle connective tissue and glial cell elements in nerve fiber bundles was also calculated. The mean cross-section area and minimum diameter of axons in the temporal part were less than in the nasal part of the nerve. The values for axons in the superior and inferior parts of the nerve were intermediate. A similar pattern of increasing dimensions was seen in axons from the more axial nerve compared to neurons in the more circumferential nerve sectors. The density of the intrabundle, nonaxonal tissue elements did not differ significantly across the nerve. Although axon dimensions may play some role in defining the vulnerability of neuronal tissue to a pressure insult, the results of this anatomic investigation do not support the hypothesis that differences in axonal distribution by size across the nerve section define the regional vulnerability of the nerve head to elevated intraocular pressure.

  18. Axon-glia interaction and membrane traffic in myelin formation

    Directory of Open Access Journals (Sweden)

    Robin eWhite

    2014-01-01

    Full Text Available In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialised glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarisation followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasising the central role of the Src-family kinase Fyn during CNS myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of PLP (proteolipid protein transport by SNARE proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.

  19. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy.

    Science.gov (United States)

    Sung, Jia-Ying; Tani, Jowy; Chang, Tsui-San; Lin, Cindy Shin-Yi

    2017-01-01

    This study investigated sensory and motor nerve excitability properties to elucidate the development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited, and 106 were analyzed. According to neuropathy severity, patients were categorized into G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr). Patients in the G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excitability data from diabetic patients were compared with data from 33 healthy controls. Clinical assessment, nerve conduction studies, and sensory and motor nerve excitability testing data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0 group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve action potential (Pmotor excitability only had significantly increased stimulus for the 50% compound motor nerve action potential (Pdevelopment of axonal dysfunction in sensory axons occurred prior to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests can detect axonal dysfunction even in asymptomatic patients. These insights further our understanding of diabetic neuropathy and enable the early detection of sensory axonal abnormalities, which may provide a basis for neuroprotective therapeutic approaches.

  20. RH Packaging Program Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2008-01-12

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package (also known as the "RH-TRU 72-B cask") and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: "...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." It further states: "...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8, "Deliberate Misconduct." Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, "Packaging and Transportation of Radioactive Material," certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, "Reporting of Defects and Noncompliance," regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a

  1. RH Packaging Program Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-11-07

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: "...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." It further states: "...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with 10 Code of Federal Regulations (CFR) §71.8, "Deliberate Misconduct." Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. In accordance with 10 CFR Part 71, "Packaging and Transportation of Radioactive Material," certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, "Reporting of Defects and Noncompliance," regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to

  2. Cannabinoid Receptors Modulate Neuronal Morphology and AnkyrinG Density at the Axon Initial Segment

    Science.gov (United States)

    Tapia, Mónica; Dominguez, Ana; Zhang, Wei; del Puerto, Ana; Ciorraga, María; Benitez, María José; Guaza, Carmen; Garrido, Juan José

    2017-01-01

    Neuronal polarization underlies the ability of neurons to integrate and transmit information. This process begins early in development with axon outgrowth, followed by dendritic growth and subsequent maturation. In between these two steps, the axon initial segment (AIS), a subcellular domain crucial for generating action potentials (APs) and maintaining the morphological and functional polarization, starts to develop. However, the cellular/molecular mechanisms and receptors involved in AIS initial development and maturation are mostly unknown. In this study, we have focused on the role of the type-1 cannabinoid receptor (CB1R), a highly abundant G-protein coupled receptor (GPCR) in the nervous system largely involved in different phases of neuronal development and differentiation. Although CB1R activity modulation has been related to changes in axons or dendrites, its possible role as a modulator of AIS development has not been yet explored. Here we analyzed the potential role of CB1R on neuronal morphology and AIS development using pharmacological and RNA interference approaches in cultured hippocampal neurons. CB1R inhibition, at a very early developmental stage, has no effect on axonal growth, yet CB1R activation can promote it. By contrast, subsequent dendritic growth is impaired by CB1R inhibition, which also reduces ankyrinG density at the AIS. Moreover, our data show a significant correlation between early dendritic growth and ankyrinG density. However, CB1R inhibition in later developmental stages after dendrites are formed only reduces ankyrinG accumulation at the AIS. In conclusion, our data suggest that neuronal CB1R basal activity plays a role in initial development of dendrites and indirectly in AIS proteins accumulation. Based on the lack of CB1R expression at the AIS, we hypothesize that CB1R mediated modulation of dendritic arbor size during early development indirectly determines the accumulation of ankyrinG and AIS development. Further studies

  3. Ultrastructural observation of effect of moderate hypothermia on axonal damage in an animal model of diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    孙晓川; 唐文渊; 郑履平

    2002-01-01

    Objective: To investigate the effect of moderate hypothermia on responses of axonal cytoskeleton to axonal injury in the acute stage of injury. Methods: Of fifteen adult guinea pigs, twelve animals were subjected to stretch injury to the right optic nerves and divided into the normothermic group (n=6) in which the animal's core temperature was maintained at 36.0-37.5℃ and the hypothermia group (n=6) in which the core temperature was reduced to 32.0-32.5℃ after stretch injury. Remaining three animals sustained no injury to the right optic nerves and served as control group. Half of injured animals (n=3) of either normothermic group or hypothermic group were killed at either 2 hours or 4 hours after injury. The ultrastructural changes of axonal cytoskeleton of the right optic nerve fibers from the animals were examined under a transmission electron microscope and analyzed by quantitative analysis with a computer image analysis system. Results: At 2 hours after stretch injury, there was a significant reduction in the mean number of microtubules (P<0.001), and a significant increase in the mean intermicrotubule spacing (P<0.05 or P<0.01) in axons of all sizes in normothermic animals. The mean number of neurofilaments also decreased statistically (P<0.01) in large and medium subgroups of axons in the same experimental group at 2 hours. By 4 hours, the large subgroup of axons in normothermic animals still demonstrated a significant decline in the mean number of microtubules (P<0.01) and an increase in the mean intermicrotubule spacing (P<0.05), while the medium and small subgroups of axons displayed a significant increase in the mean number of neurofilaments (P<0.05) and reduction in the mean interneurofilament spacing (P<0.05). On the contrary, either the mean number of microtubules and the mean intermicrotubule spacing, or the mean number of neurofilaments and interneurofilament spacing in axons of all sizes in hypothermic stretch-injured animals was not

  4. An Automated Strategy for Unbiased Morphometric Analyses and Classifications of Growth Cones In Vitro.

    Directory of Open Access Journals (Sweden)

    Daryan Chitsaz

    Full Text Available During neural circuit development, attractive or repulsive guidance cue molecules direct growth cones (GCs to their targets by eliciting cytoskeletal remodeling, which is reflected in their morphology. The experimental power of in vitro neuronal cultures to assay this process and its molecular mechanisms is well established, however, a method to rapidly find and quantify multiple morphological aspects of GCs is lacking. To this end, we have developed a free, easy to use, and fully automated Fiji macro, Conographer, which accurately identifies and measures many morphological parameters of GCs in 2D explant culture images. These measurements are then subjected to principle component analysis and k-means clustering to mathematically classify the GCs as "collapsed" or "extended". The morphological parameters measured for each GC are found to be significantly different between collapsed and extended GCs, and are sufficient to classify GCs as such with the same level of accuracy as human observers. Application of a known collapse-inducing ligand results in significant changes in all parameters, resulting in an increase in 'collapsed' GCs determined by k-means clustering, as expected. Our strategy provides a powerful tool for exploring the relationship between GC morphology and guidance cue signaling, which in particular will greatly facilitate high-throughput studies of the effects of drugs, gene silencing or overexpression, or any other experimental manipulation in the context of an in vitro axon guidance assay.

  5. White matter involvement after TBI: Clues to axon and myelin repair capacity.

    Science.gov (United States)

    Armstrong, Regina C; Mierzwa, Amanda J; Marion, Christina M; Sullivan, Genevieve M

    2016-01-01

    Impact-acceleration forces to the head cause traumatic brain injury (TBI) with damage in white matter tracts comprised of long axons traversing the brain. White matter injury after TBI involves both traumatic axonal injury (TAI) and myelin pathology that evolves throughout the post-injury time course. The axon response to initial mechanical forces and secondary insults follows the process of Wallerian degeneration, which initiates as a potentially reversible phase of intra-axonal damage and proceeds to an irreversible phase of axon fragmentation. Distal to sites of axon disconnection, myelin sheaths remain for prolonged periods, which may activate neuroinflammation and inhibit axon regeneration. In addition to TAI, TBI can cause demyelination of intact axons. These evolving features of axon and myelin pathology also represent opportunities for repair. In experimental TBI, demyelinated axons exhibit remyelination, which can serve to both protect axons and facilitate recovery of function. Myelin remodeling may also contribute to neuroplasticity. Efficient clearance of myelin debris is a potential target to attenuate the progression of chronic pathology. During the early phase of Wallerian degeneration, interventions that prevent the transition from reversible damage to axon disconnection warrant the highest priority, based on the poor regenerative capacity of axons in the CNS. Clinical evaluation of TBI will need to address the challenge of accurately detecting the extent and stage of axon damage. Distinguishing the complex white matter changes associated with axons and myelin is necessary for interpreting advanced neuroimaging approaches and for identifying a broader range of therapeutic opportunities to improve outcome after TBI.

  6. Pandemic influenza guidance for corporations.

    Science.gov (United States)

    2011-06-01

    The purpose of this guidance document is to assist members of the American College of Occupational and Environmental Medicine (ACOEM), and the organizations for which they work, in managing the impact of a pandemic of influenza or other contagious respiratory disease on patients, employees, and business. This guidance document outlines actions to take before and during an influenza pandemic on the basis of two main strategies: (1) reducing the spread of the virus within facilities; and (2) providing medical care and medical surveillance to client/patient populations. Facilities in which ACOEM members serve include government agencies and the military, universities, and corporations, which generally have multiple locations/sites and their own medical staff, with members responsible for medical care and disease control. This guidance is for organizations with outpatient occupational medicine services, to be used as appropriate. Medical centers should also use guidance that addresses additional employee and external patient care needs.1–3 The ACOEM fully supports implementation of occupational influenza programs that conform with guidance from the Centers for Disease Control and Prevention (CDC), with other guidance from the US Department of Health and Human Services (DHHS), and Occupational Safety and Health Administration (OSHA) regulations and guidance.

  7. Erythropoietin promotes axonal regeneration after optic nerve crush in vivo by inhibition of RhoA/ROCK signaling pathway.

    Science.gov (United States)

    Tan, Haibo; Zhong, Yisheng; Shen, Xi; Cheng, Yu; Jiao, Qin; Deng, Lianfu

    2012-11-01

    We investigated whether the RhoA/ROCK pathway was involved in the effect of erythropoietin (EPO) to promote retinal ganglion cells (RGCs) axonal regeneration in a rat optic nerve crush (ONC) model. We demonstrated that both EPO and ROCK inhibitor Y-27632 significantly enhanced RGCs survival and axon regeneration in vivo, and the effects of these agents were additive. Expression of active-RhoA was decreased after EPO or Y-27632 per pull down assay and affinity precipitation. Administration of EPO and Y-27632 cocktail resulted in even more RhoA inactivation, decreased expression of ROCK-1 and ROCK-2, and increased expression of growth associated protein-43 (GAP-43) protein per immunohistochemistry and western blot analysis. Down-regulation of active-RhoA, ROCK-1, and ROCK-2 expression by EPO coincided with the appearance of larger numbers of regenerating axons. In conclusion, the RhoA/ROCK signaling pathway was involved in the EPO effect to promote RGCs axon regeneration after ONC.

  8. TRPV2 enhances axon outgrowth through its activation by membrane stretch in developing sensory and motor neurons.

    Science.gov (United States)

    Shibasaki, Koji; Murayama, Namie; Ono, Katsuhiko; Ishizaki, Yasuki; Tominaga, Makoto

    2010-03-31

    Thermosensitive TRP (thermo TRP) channels are well recognized for their contributions to sensory transduction, responding to a wide variety of stimuli including temperature, nociceptive stimuli, touch, and osmolarity. However, the precise roles for the thermo TRP channels during development have not been determined. To explore the functional importance of thermo TRP channels during neural development, the temporal expression was determined in embryonic mice. Interestingly, TRPV2 expression was detected in spinal motor neurons in addition to the dorsal root ganglia from embryonic day 10.5 and was localized in axon shafts and growth cones, suggesting that the channel is important for axon outgrowth regulation. We revealed that endogenous TRPV2 was activated in a membrane stretch-dependent manner in developing neurons by knocking down the TRPV2 function with dominant-negative TRPV2 and TRPV2-specific shRNA and significantly promoted axon outgrowth. Thus, for the first time we revealed that TRPV2 is an important regulator for axon outgrowth through its activation by membrane stretch during development.

  9. Atomic Force Microscopy Reveals Important Differences in Axonal Resistance to Injury

    Science.gov (United States)

    Magdesian, Margaret H.; Sanchez, Fernando S.; Lopez, Monserratt; Thostrup, Peter; Durisic, Nela; Belkaid, Wiam; Liazoghli, Dalinda; Grütter, Peter; Colman, David R.

    2012-01-01

    Axonal degeneration after traumatic brain injury and nerve compression is considered a common underlying cause of temporary as well as permanent disability. Because a proper functioning of neural network requires phase coherence of all components, even subtle changes in circuitry may lead to network failure. However, it is still not possible to determine which axons will recover or degenerate after injury. Several groups have studied the pressure threshold for axonal injury within a nerve, but difficulty accessing the injured region; insufficient imaging methods and the extremely small dimensions involved have prevented the evaluation of the response of individual axons to injury. We combined microfluidics with atomic force microscopy and in vivo imaging to estimate the threshold force required to 1), uncouple axonal transport without impairing axonal survival, and 2), compromise axonal survival in both individual and bundled axons. We found that rat hippocampal axons completely recover axonal transport with no detectable axonal loss when compressed with pressures up to 65 ± 30 Pa for 10 min, while dorsal root ganglia axons can resist to pressures up to 540 ± 220 Pa. We investigated the reasons for the differential susceptibility of hippocampal and DRG axons to mechanical injury and estimated the elasticity of live axons. We found that dorsal root ganglia axons have a 20% lower elastic modulus than hippocampal axons. Our results emphasize the importance of the integrity of the axonal cytoskeleton in deciding the axonal fate after damage and open up new avenues to improve injury diagnosis and to identify ways to protect axons. PMID:22947856

  10. Can hippocampal neurites and growth cones climb over obstacles?

    Science.gov (United States)

    Lien, Thuy Linh; Ban, Jelena; Tormen, Massimo; Migliorini, Elisa; Grenci, Gianluca; Pozzato, Alessandro; Torre, Vincent

    2013-01-01

    Guidance molecules, such as Sema3A or Netrin-1, can induce growth cone (GC) repulsion or attraction in the presence of a flat surface, but very little is known of the action of guidance molecules in the presence of obstacles. Therefore we combined chemical and mechanical cues by applying a steady Netrin-1 stream to the GCs of dissociated hippocampal neurons plated on polydimethylsiloxane (PDMS) surfaces patterned with lines 2 µm wide, with 4 µm period and with a height varying from 100 to 600 nm. GC turning experiments performed 24 hours after plating showed that filopodia crawl over these lines within minutes. These filopodia do not show staining for the adhesion marker Paxillin. GCs and neurites crawl over lines 100 nm high, but less frequently and on a longer time scale over lines higher than 300 nm; neurites never crawl over lines 600 nm high. When neurons are grown for 3 days over patterned surfaces, also neurites can cross lines 300 nm and 600 nm high, grow parallel to and on top of these lines and express Paxillin. Axons - selectively stained with SMI 312 - do not differ from dendrites in their ability to cross these lines. Our results show that highly motile structures such as filopodia climb over high obstacle in response to chemical cues, but larger neuronal structures are less prompt and require hours or days to climb similar obstacles.

  11. Axonal synapses utilize multiple synaptic ribbons in the mammalian retina.

    Directory of Open Access Journals (Sweden)

    Hong-Lim Kim

    Full Text Available In the mammalian retina, bipolar cells and ganglion cells which stratify in sublamina a of the inner plexiform layer (IPL show OFF responses to light stimuli while those that stratify in sublamina b show ON responses. This functional relationship between anatomy and physiology is a key principle of retinal organization. However, there are at least three types of retinal neurons, including intrinsically photosensitive retinal ganglion cells (ipRGCs and dopaminergic amacrine cells, which violate this principle. These cell types have light-driven ON responses, but their dendrites mainly stratify in sublamina a of the IPL, the OFF sublayer. Recent anatomical studies suggested that certain ON cone bipolar cells make axonal or ectopic synapses as they descend through sublamina a, thus providing ON input to cells which stratify in the OFF sublayer. Using immunoelectron microscopy with 3-dimensional reconstruction, we have identified axonal synapses of ON cone bipolar cells in the rabbit retina. Ten calbindin ON cone bipolar axons made en passant ribbon synapses onto amacrine or ganglion dendrites in sublamina a of the IPL. Compared to the ribbon synapses made by bipolar terminals, these axonal ribbon synapses were characterized by a broad postsynaptic element that appeared as a monad and by the presence of multiple short synaptic ribbons. These findings confirm that certain ON cone bipolar cells can provide ON input to amacrine and ganglion cells whose dendrites stratify in the OFF sublayer via axonal synapses. The monadic synapse with multiple ribbons may be a diagnostic feature of the ON cone bipolar axonal synapse in sublamina a. The presence of multiple ribbons and a broad postsynaptic density suggest these structures may be very efficient synapses. We also identified axonal inputs to ipRGCs with the architecture described above.

  12. RH Packaging Program Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions, LLC

    2003-08-25

    The purpose of this program guidance document is to provide technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the SARP and/or C of C shall govern. The C of C states: ''...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, ''Operating Procedures,'' of the application.'' It further states: ''...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, ''Acceptance Tests and Maintenance Program of the Application.'' Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC approved, users need to be familiar with 10 CFR {section} 71.11, ''Deliberate Misconduct.'' Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. This document details the instructions to be followed to operate, maintain, and test the RH-TRU 72-B packaging. This Program Guidance standardizes instructions for all users. Users shall follow these instructions. Following these instructions assures that operations are safe and meet the requirements of the SARP. This document is available on the Internet at: ttp://www.ws/library/t2omi/t2omi.htm. Users are responsible for ensuring they are using the current

  13. Three-dimensional aligned nanofibers-hydrogel scaffold for controlled non-viral drug/gene delivery to direct axon regeneration in spinal cord injury treatment

    Science.gov (United States)

    Nguyen, Lan Huong; Gao, Mingyong; Lin, Junquan; Wu, Wutian; Wang, Jun; Chew, Sing Yian

    2017-01-01

    Spinal cord injuries (SCI) often lead to persistent neurological dysfunction due to failure in axon regeneration. Unfortunately, currently established treatments, such as direct drug administration, do not effectively treat SCI due to rapid drug clearance from our bodies. Here, we introduce a three-dimensional aligned nanofibers-hydrogel scaffold as a bio-functionalized platform to provide sustained non-viral delivery of proteins and nucleic acid therapeutics (small non-coding RNAs), along with synergistic contact guidance for nerve injury treatment. A hemi-incision model at cervical level 5 in the rat spinal cord was chosen to evaluate the efficacy of this scaffold design. Specifically, aligned axon regeneration was observed as early as one week post-injury. In addition, no excessive inflammatory response and scar tissue formation was triggered. Taken together, our results demonstrate the potential of our scaffold for neural tissue engineering applications. PMID:28169354

  14. Response to work activity guidance

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This memorandum is concerning the request from the FY95 Platte-Kansas Rivers Ecosystem Work Activity Guidance for refuge managers to review the purposes of refuges...

  15. CDM Convective Forecast Planning guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...

  16. Guidance Systems of Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    K.N. Rajanikanth

    2005-07-01

    Full Text Available Mission performance of a fighter aircraft is crucial for survival and strike capabilities in todays' aerial warfare scenario. The guidance functions of such an aircraft play a vital role inmeeting the requirements and accomplishing the mission success. This paper presents the requirements of precision guidance for various missions of a fighter aircraft. The concept ofguidance system as a pilot-in-loop system is pivotal in understanding and designing such a system. Methodologies of designing such a system are described.

  17. Guidance Systems of Fighter Aircraft

    OpenAIRE

    K.N. Rajanikanth; Rao, R S; P. S. Subramanyam; Ajai Vohra

    2005-01-01

    Mission performance of a fighter aircraft is crucial for survival and strike capabilities in todays' aerial warfare scenario. The guidance functions of such an aircraft play a vital role inmeeting the requirements and accomplishing the mission success. This paper presents the requirements of precision guidance for various missions of a fighter aircraft. The concept ofguidance system as a pilot-in-loop system is pivotal in understanding and designing such a system. Methodologies of designing s...

  18. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas

    Science.gov (United States)

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.

    1998-01-01

    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  19. Steerable-filter based quantification of axonal populations at the developing optic chiasm reveal significant defects in Slit2−/− as well as Slit1−/−Slit2−/− embryos

    Directory of Open Access Journals (Sweden)

    Down Matthew

    2013-01-01

    Full Text Available Abstract Background Previous studies have suggested that the axon guidance proteins Slit1 and Slit2 co-operate to establish the optic chiasm in its correct position at the ventral diencephalic midline. This is based on the observation that, although both Slit1 and Slit2 are expressed around the ventral midline, mice defective in either gene alone exhibit few or no axon guidance defects at the optic chiasm whereas embryos lacking both Slit1 and Slit2 develop a large additional chiasm anterior to the chiasm’s normal position. Here we used steerable-filters to quantify key properties of the population of axons at the chiasm in wild-type, Slit1−/−, Slit2−/− and Slit1−/−Slit2−/− embryos. Results We applied the steerable-filter algorithm successfully to images of embryonic retinal axons labelled from a single eye shortly after they have crossed the midline. We combined data from multiple embryos of the same genotype and made statistical comparisons of axonal distributions, orientations and curvatures between genotype groups. We compared data from the analysis of axons with data on the expression of Slit1 and Slit2. The results showed a misorientation and a corresponding anterior shift in the position of many axons at the chiasm of both Slit2−/− and Slit1−/−Slit2−/− mutants. There were very few axon defects at the chiasm of Slit1−/− mutants. Conclusions We found defects of the chiasms of Slit1−/−Slit2−/− and Slit1−/− mutants similar to those reported previously. In addition, we discovered previously unreported defects resulting from loss of Slit2 alone. This indicates the value of a quantitative approach to complex pathway analysis and shows that Slit2 can act alone to control aspects of retinal axon routing across the ventral diencephalic midline.

  20. Steerable-filter based quantification of axonal populations at the developing optic chiasm reveal significant defects in Slit2−/− as well as Slit1−/−Slit2−/− embryos

    Science.gov (United States)

    2013-01-01

    Background Previous studies have suggested that the axon guidance proteins Slit1 and Slit2 co-operate to establish the optic chiasm in its correct position at the ventral diencephalic midline. This is based on the observation that, although both Slit1 and Slit2 are expressed around the ventral midline, mice defective in either gene alone exhibit few or no axon guidance defects at the optic chiasm whereas embryos lacking both Slit1 and Slit2 develop a large additional chiasm anterior to the chiasm’s normal position. Here we used steerable-filters to quantify key properties of the population of axons at the chiasm in wild-type, Slit1−/−, Slit2−/− and Slit1−/−Slit2−/− embryos. Results We applied the steerable-filter algorithm successfully to images of embryonic retinal axons labelled from a single eye shortly after they have crossed the midline. We combined data from multiple embryos of the same genotype and made statistical comparisons of axonal distributions, orientations and curvatures between genotype groups. We compared data from the analysis of axons with data on the expression of Slit1 and Slit2. The results showed a misorientation and a corresponding anterior shift in the position of many axons at the chiasm of both Slit2−/− and Slit1−/−Slit2−/− mutants. There were very few axon defects at the chiasm of Slit1−/− mutants. Conclusions We found defects of the chiasms of Slit1−/−Slit2−/− and Slit1−/− mutants similar to those reported previously. In addition, we discovered previously unreported defects resulting from loss of Slit2 alone. This indicates the value of a quantitative approach to complex pathway analysis and shows that Slit2 can act alone to control aspects of retinal axon routing across the ventral diencephalic midline. PMID:23320558

  1. Issues and Trends in Secondary Guidance and Counseling Programs

    Science.gov (United States)

    Pietrofesa, John J.

    1970-01-01

    Utilization of counseling groups leads to (1) variety of approaches, (2) more directive counseling, (3) counselees with varied backgrounds, (4) growth of groups for interracial harmony. Changes in counselor role by use of: (1) paraprofessionals, (2) guidance workers, (3) cybernetics, (4) developmental approach in an existential framework. (EK)

  2. Insulin and IGF-II, but not IGF-I, stimulate the in vitro regeneration of adult frog sciatic sensory axons

    DEFF Research Database (Denmark)

    Edbladh, M; Svenningsen, Åsa Fex; Ekström, P A

    1994-01-01

    We used the in vitro regenerating frog sciatic nerve to look for effects of insulin and insulin-like growth factors I and II (IGF-I, IGF-II) on regeneration of sensory axons and on injury induced support cell proliferation in the outgrowth region. In nerves cultured for 11 days, a physiological...

  3. Subtypes of GABAergic neurons project axons in the neocortex

    Directory of Open Access Journals (Sweden)

    Shigeyoshi Higo

    2009-11-01

    Full Text Available γ-aminobutyric acid (GABAergic neurons in the neocortex have been regarded as interneurons and speculated to modulate the activity of neurons locally. Recently, however, several experiments revealed that neuronal nitric oxide synthase (nNOS-positive GABAergic neurons project cortico-cortically with long axons. In this study, we illustrate Golgi-like images of the nNOS-positive GABAergic neurons using a nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d reaction and follow the emanating axon branches in cat brain sections. These axon branches projected cortico-cortically with other non-labeled arcuate fibers, contra-laterally via the corpus callosum and anterior commissure. The labeled fibers were not limited to the neocortex but found also in the fimbria of the hippocampus. In order to have additional information on these GABAergic neuron projections, we investigated green fluorescent protein (GFP-labeled GABAergic neurons in GAD67-Cre knock-in / GFP Cre-reporter mice. GFP-labeled axons emanate densely, especially in the fimbria, a small number in the anterior commissure, and very sparsely in the corpus callosum. These two different approaches confirm that not only nNOS-positive GABAergic neurons but also other subtypes of GABAergic neurons project long axons in the cerebral cortex and are in a position to be involved in information processing.

  4. A novel technique using hydrophilic polymers to promote axonal fusion

    Directory of Open Access Journals (Sweden)

    Ravinder Bamba

    2016-01-01

    Full Text Available The management of traumatic peripheral nerve injury remains a considerable concern for clinicians. With minimal innovations in surgical technique and a limited number of specialists trained to treat peripheral nerve injury, outcomes of surgical intervention have been unpredictable. The inability to manipulate the pathophysiology of nerve injury (i.e., Wallerian degeneration has left scientists and clinicians depending on the slow and lengthy process of axonal regeneration (~1 mm/day. When axons are severed, the endings undergo calcium-mediated plasmalemmal sealing, which limits the ability of the axon to be primarily repaired. Polythethylene glycol (PEG in combination with a bioengineered process overcomes the inability to fuse axons. The mechanism for PEG axonal fusion is not clearly understood, but multiple studies have shown that a providing a calcium-free environment is essential to the process known as PEG fusion. The proposed mechanism is PEG-induced lipid bilayer fusion by removing the hydration barrier surrounding the axolemma and reducing the activation energy required for membrane fusion to occur. This review highlights PEG fusion, its past and current studies, and future directions in PEG fusion.

  5. A novel technique using hydrophilic polymers to promote axonal fusion

    Institute of Scientific and Technical Information of China (English)

    Ravinder Bamba; D Colton Riley; Nathaniel D Kelm; Mark D Does; Richard D Dortch; Wesley P hTayer

    2016-01-01

    The management of traumatic peripheral nerve injury remains a considerable concern for clinicians. With minimal innovations in surgical technique and a limited number of specialists trained to treat peripheral nerve injury, outcomes of surgical intervention have been unpredictable. The inability to manipulate the pathophysiology of nerve injury (i.e., Wallerian degeneration) has left scientists and clinicians depending on the slow and lengthy process of axonal regeneration (~1 mm/day). When axons are severed, the endings undergo calcium-mediated plasmalemmal sealing, which limits the ability of the axon to be primarily re-paired. Polythethylene glycol (PEG) in combination with a bioengineered process overcomes the inability to fuse axons. The mechanism for PEG axonal fusion is not clearly understood, but multiple studies have shown that a providing a calcium-free environment is essential to the process known as PEG fusion. The proposed mechanism is PEG-induced lipid bilayer fusion by removing the hydration barrier surrounding the axolemma and reducing the activation energy required for membrane fusion to occur. This review highlights PEG fusion, its past and current studies, and future directions in PEG fusion.

  6. Calpain Inhibition Reduces Axolemmal Leakage in Traumatic Axonal Injury

    Directory of Open Access Journals (Sweden)

    János Sándor

    2009-12-01

    Full Text Available Calcium-induced, calpain-mediated proteolysis (CMSP has recently been implicated to the pathogenesis of diffuse (traumatic axonal injury (TAI. Some studies suggested that subaxolemmal CMSP may contribute to axolemmal permeability (AP alterations observed in TAI. Seeking direct evidence for this premise we investigated whether subaxolemmal CMSP may contribute to axolemmal permeability alterations (APA and pre-injury calpain-inhibition could reduce AP in a rat model of TAI. Horseradish peroxidase (HRP, a tracer that accumulates in axons with APA was administered one hour prior to injury into the lateral ventricle; 30 min preinjury a single tail vein bolus injection of 30 mg/kg MDL-28170 (a calpain inhibitor or its vehicle was applied in Wistar rats exposed to impact acceleration brain injury. Histological detection of traumatically injured axonal segments accumulating HRP and statistical analysis revealed that pre-injury administration of the calpain inhibitor MDL-28170 significantly reduced the average length of HRP-labeled axonal segments. The axono-protective effect of pre-injury calpain inhibition recently demonstrated with classical immunohistochemical markers of TAI was further corroborated in this experiment; significant reduction of the length of labeled axons in the drug-treated rats implicate CMSP in the progression of altered AP in TAI.

  7. The Roots of Growth

    Science.gov (United States)

    Synder, Agnes

    1973-01-01

    Effective planning for child growth through the curriculum takes into account three things: 1) the pace at which children grow, 2) the individuality of every child, and 3) the need for guidance in meeting the problems of living. (ST)

  8. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats

    Institute of Scientific and Technical Information of China (English)

    LIANG Peng; JIN Lian-hong; LIANG Tao; LIU En-zhong; ZHAO Shi-guang

    2006-01-01

    Background Axonal regeneration in lesioned mammalian central nervous system is abortive, and this causes permanent disabilities in individuals with spinal cord injuries. This paper studied the action of neural stem cell (NSC) in promoting corticospinal axons regeneration and synapse reformation in rats with injured spinal cord.Methods NSCs were isolated from the cortical tissue of spontaneous aborted human fetuses in accordance with the ethical request. The cells were discarded from the NSC culture to acquire NSC-conditioned medium. Sixty adult Wistar rats were randomly divided into four groups (n=15 in each): NSC graft, NSC medium, graft control and medium control groups. Microsurgical transection of the spinal cord was performed in all the rats at the T11. The NSC graft group received stereotaxic injections of NSCs suspension into both the spinal cord stumps immediately after transection; graft control group received DMEM injection. In NSC medium group,NSC-conditioned medium was administered into the spinal cord every week; NSC culture medium was administered to the medium control group. Hindlimb motor function was assessed using the BBB Locomotor Rating Scale. Regeneration of biotin dextran amine (BDA) labeled corticospinal tract was assessed. Differentiation of NSCs and the expression of synaptophysin at the distal end of the injured spinal cord were observed under a confocal microscope. Group comparisons of behavioral data were analyzed with ANOVA.Results NSCs transplantation resulted in extensive growth of corticospinal axons and locomotor recovery in adult rats after complete spinal cord transection, the mean BBB scores reached 12.5 in NSC graft group and 2.5 in graft control group (P< 0.05). There was also significant difference in BBB score between the NSC medium (11.7) and medium control groups (3.7, P< 0.05). BDA traces regenerated fibers sprouted across the lesion site and entered the caudal part of the spinal cord. Synaptophysin expression

  9. Poly-l-lysine-coated magnetic nanoparticles as intracellular actuators for neural guidance

    Directory of Open Access Journals (Sweden)

    Riggio C

    2012-06-01

    Full Text Available Cristina Riggio,1,* Maria Pilar Calatayud,2,* Clare Hoskins,3 Josephine Pinkernelle,4 Beatriz Sanz,2 Teobaldo Enrique Torres,2,5 Manuel Ricardo Ibarra,2,5 Lijun Wang,3 Gerburg Keilhoff,4 Gerardo Fabian Goya,2,5 Vittoria Raffa,1,6 Alfred Cuschieri1,3 1Institute of Life Science, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà, Pisa, Italy; 2Instituto de Nanociencia de Aragón, Universidad de Zaragoza. Mariano Esquillor, Zaragoza, Spain; 3IMSaT, Institute for Medical Science and Technology, University of Dundee, Dundee, Scotland; 4Otto-von-Guericke University, Institute of Biochemistry and Cell Biology, Magdeburg, Germany; 5Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza. Cerbuna 12, Zaragoza, Spain; 6Department of Biology, Università di Pisa, Pisa, Italy*These authors contributed equally to this workPurpose: It has been proposed in the literature that Fe3O4 magnetic nanoparticles (MNPs could be exploited to enhance or accelerate nerve regeneration and to provide guidance for regenerating axons. MNPs could create mechanical tension that stimulates the growth and elongation of axons. Particles suitable for this purpose should possess (1 high saturation magnetization, (2 a negligible cytotoxic profile, and (3 a high capacity to magnetize mammalian cells. Unfortunately, the materials currently available on the market do not satisfy these criteria; therefore, this work attempts to overcome these deficiencies.Methods: Magnetite particles were synthesized by an oxidative hydrolysis method and characterized based on their external morphology and size distribution (high-resolution transmission electron microscopy [HR-TEM] as well as their colloidal (Z potential and magnetic properties (Superconducting QUantum Interference Devices [SQUID]. Cell viability was assessed via Trypan blue dye exclusion assay, cell doubling time, and MTT cell proliferation assay and reactive oxygen species production

  10. Quality in career guidance: The Danish case

    DEFF Research Database (Denmark)

    Plant, Peter

    2011-01-01

    Quality assurance systems are introduced in career guidance to monitor, control and develop guidance interventions. The Danish case represents at centrally driven, top-down approach......Quality assurance systems are introduced in career guidance to monitor, control and develop guidance interventions. The Danish case represents at centrally driven, top-down approach...

  11. Neurofilament proteins in axonal regeneration and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Haitao Wang; Minfei Wu; Chuanjun Zhan; Enyuan Ma; Maoguang Yang; Xiaoyu Yang; Yingpu Li

    2012-01-01

    Neurofilament protein is a component of the mature neuronal cytoskeleton, and it interacts with the zygosome, which is mediated by neurofilament-related proteins. Neurofilament protein regulates enzyme function and the structure of linker proteins. In addition, neurofilament gene expression plays an important role in nervous system development. Previous studies have shown that neurofilament gene transcriptional regulation is crucial for neurofilament protein expression, especially in axonal regeneration and degenerative diseases. Post-transcriptional regulation increased neurofilament protein gene transcription during axonal regeneration, ultimately resulting in a pattern of neurofilament protein expression. An expression imbalance of post-transcriptional regulatory proteins and other disorders could lead to amyotrophic lateral sclerosis or other neurodegenerative diseases. These findings indicated that after transcription, neurofilament protein regulated expression of related proteins and promoted regeneration of damaged axons, suggesting that regulation disorders could lead to neurodegenerative diseases.

  12. Pili canaliculi as manifestation of giant axonal neuropathy*

    Science.gov (United States)

    de Almeida Jr., Hiram Larangeira; Garcias, Gilberto; Silva, Ricardo Marques e; Batista, Stela Laner; Pasetto, Fernanda

    2016-01-01

    Giant axonal neuropathy is a rare autosomal recessive neurodegenerative disease. The condition is characterized by neurons with abnormally large axons due to intracellular filament accumulation. The swollen axons affect both the peripheral and central nervous system. A 6-year old female patient had been referred to a geneticist reporting problems with walking and hypotonia. At the age of 10, she became wheelchair dependent. Scanning electron microscopy of a curly hair classified it as pili canaliculi. GAN gene sequencing demonstrated mutation c.1456G>A (p.GLU486LYS). At the age of 12, the patient died due to respiratory complications. Dermatologists should be aware of this entity since hair changes are considered suggestive of GAN.

  13. Using quantum filters to process images of diffuse axonal injury

    Science.gov (United States)

    Pineda Osorio, Mateo

    2014-06-01

    Some images corresponding to a diffuse axonal injury (DAI) are processed using several quantum filters such as Hermite Weibull and Morse. Diffuse axonal injury is a particular, common and severe case of traumatic brain injury (TBI). DAI involves global damage on microscopic scale of brain tissue and causes serious neurologic abnormalities. New imaging techniques provide excellent images showing cellular damages related to DAI. Said images can be processed with quantum filters, which accomplish high resolutions of dendritic and axonal structures both in normal and pathological state. Using the Laplacian operators from the new quantum filters, excellent edge detectors for neurofiber resolution are obtained. Image quantum processing of DAI images is made using computer algebra, specifically Maple. Quantum filter plugins construction is proposed as a future research line, which can incorporated to the ImageJ software package, making its use simpler for medical personnel.

  14. Current Trends in Tactical Missile Guidance

    Directory of Open Access Journals (Sweden)

    S. Vathsal

    2005-07-01

    Full Text Available The problem of tactical missile guidance is very challenging and has been treated using several basic metlfodologies in the past four decades. Major techniques can be grouped underclassical guidance laws, modern guidance laws, l'aws for manoeuvring targets, predictive guidance for endgame scenario, and guidance laws based on intelligent control methods. Each technique has some advantages and disadvantages while implementing in a practical system. Guidance law selection is dictated by nature of flight profile like boost, midcourse, terminal homing, etc, and also miss-distance and a single-shot kill probability. This paper presents a brief survey of the existing techniques and current trends in tactical missile guidance.

  15. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy

    Science.gov (United States)

    Sung, Jia-Ying; Tani, Jowy; Chang, Tsui-San; Lin, Cindy Shin-Yi

    2017-01-01

    This study investigated sensory and motor nerve excitability properties to elucidate the development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited, and 106 were analyzed. According to neuropathy severity, patients were categorized into G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr). Patients in the G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excitability data from diabetic patients were compared with data from 33 healthy controls. Clinical assessment, nerve conduction studies, and sensory and motor nerve excitability testing data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0 group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve action potential (P<0.05), shortened strength-duration time constant (P<0.01), increased superexcitability (P<0.01), decreased subexcitability (P<0.05), decreased accommodation to depolarizing current (P<0.01), and a trend of decreased accommodation to hyperpolarizing current in threshold electrotonus. All the changes progressed into G1 (TNSr 1–8) and G2+3 (TNSr 9–24) groups. In contrast, motor excitability only had significantly increased stimulus for the 50% compound motor nerve action potential (P<0.01) in the G0 group. This study revealed that the development of axonal dysfunction in sensory axons occurred prior to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests can detect axonal dysfunction even in asymptomatic patients. These insights further our understanding of diabetic neuropathy and enable the early detection of sensory axonal abnormalities, which may provide a basis for neuroprotective therapeutic approaches. PMID:28182728

  16. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    Energy Technology Data Exchange (ETDEWEB)

    Menelaou, Evdokia; Paul, Latoya T. [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Perera, Surangi N. [Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States); Svoboda, Kurt R., E-mail: svobodak@uwm.edu [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States)

    2015-04-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  17. Giant Axonal Neuropathy Among Two Siblings - A Case Report

    Directory of Open Access Journals (Sweden)

    John Jhon. K

    2001-01-01

    Full Text Available Giant axonal neuropathy is a rate disorder with an autosomal recessive inheritance. It should be differentiated from toxic neuropathies, and hereditary degenerative disorders of nervous system like Friedreich′s ataxia and HMSN. Thick curly hair, though may not be present always is a useful clinical clue to identify cases. Prognosis is generally poor though course of the illness is variable. We report here a clinically and hisopathologically characteristic familial case of giant axonal neuropathy, which occurred in a 17-year-old boy, and his 21-year-old sister.

  18. Axon Regeneration Is Regulated by Ets-C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Chun Li

    2015-10-01

    Full Text Available The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. In Caenorhabditis elegans, the JNK and p38 MAPK pathways are important for axon regeneration. Axonal injury induces expression of the svh-2 gene encoding a receptor tyrosine kinase, stimulation of which by the SVH-1 growth factor leads to activation of the JNK pathway. Here, we identify ETS-4 and CEBP-1, related to mammalian Ets and C/EBP, respectively, as transcriptional activators of svh-2 expression following axon injury. ETS-4 and CEBP-1 function downstream of the cAMP and Ca2+-p38 MAPK pathways, respectively. We show that PKA-dependent phosphorylation of ETS-4 promotes its complex formation with CEBP-1. Furthermore, activation of both cAMP and Ca2+ signaling is required for activation of svh-2 expression. Thus, the cAMP/Ca2+ signaling pathways cooperatively activate the JNK pathway, which then promotes axon regeneration.

  19. Axon Regeneration Is Regulated by Ets-C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways.

    Science.gov (United States)

    Li, Chun; Hisamoto, Naoki; Matsumoto, Kunihiro

    2015-10-01

    The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. In Caenorhabditis elegans, the JNK and p38 MAPK pathways are important for axon regeneration. Axonal injury induces expression of the svh-2 gene encoding a receptor tyrosine kinase, stimulation of which by the SVH-1 growth factor leads to activation of the JNK pathway. Here, we identify ETS-4 and CEBP-1, related to mammalian Ets and C/EBP, respectively, as transcriptional activators of svh-2 expression following axon injury. ETS-4 and CEBP-1 function downstream of the cAMP and Ca2+-p38 MAPK pathways, respectively. We show that PKA-dependent phosphorylation of ETS-4 promotes its complex formation with CEBP-1. Furthermore, activation of both cAMP and Ca2+ signaling is required for activation of svh-2 expression. Thus, the cAMP/Ca2+ signaling pathways cooperatively activate the JNK pathway, which then promotes axon regeneration.

  20. Comparison of the fastest regenerating motor and sensory myelinated axons in the same peripheral nerve

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Sørensen, Jesper; Krarup, Christian

    2006-01-01

    Functional outcome after peripheral nerve regeneration is often poor, particularly involving nerve injuries far from their targets. Comparison of sensory and motor axon regeneration before target reinnervation is not possible in the clinical setting, and previous experimental studies addressing...... the question of differences in growth rates of different nerve fibre populations led to conflicting results. We developed an animal model to compare growth and maturation of the fastest growing sensory and motor fibres within the same mixed nerve after Wallerian degeneration. Regeneration of cat tibial nerve...... after crush (n = 13) and section (n = 7) was monitored for up to 140 days, using implanted cuff electrodes placed around the sciatic and tibial nerves and wire electrodes at plantar muscles. To distinguish between sensory and motor fibres, recordings were carried out from L6-S2 spinal roots using cuff...

  1. Rabies Virus Hijacks and accelerates the p75NTR retrograde axonal transport machinery.

    Science.gov (United States)

    Gluska, Shani; Zahavi, Eitan Erez; Chein, Michael; Gradus, Tal; Bauer, Anja; Finke, Stefan; Perlson, Eran

    2014-08-01

    Rabies virus (RABV) is a neurotropic virus that depends on long distance axonal transport in order to reach the central nervous system (CNS). The strategy RABV uses to hijack the cellular transport machinery is still not clear. It is thought that RABV interacts with membrane receptors in order to internalize and exploit the endosomal trafficking pathway, yet this has never been demonstrated directly. The p75 Nerve Growth Factor (NGF) receptor (p75NTR) binds RABV Glycoprotein (RABV-G) with high affinity. However, as p75NTR is not essential for RABV infection, the specific role of this interaction remains in question. Here we used live cell imaging to track RABV entry at nerve terminals and studied its retrograde transport along the axon with and without the p75NTR receptor. First, we found that NGF, an endogenous p75NTR ligand, and RABV, are localized in corresponding domains along nerve tips. RABV and NGF were internalized at similar time frames, suggesting comparable entry machineries. Next, we demonstrated that RABV could internalize together with p75NTR. Characterizing RABV retrograde movement along the axon, we showed the virus is transported in acidic compartments, mostly with p75NTR. Interestingly, RABV is transported faster than NGF, suggesting that RABV not only hijacks the transport machinery but can also manipulate it. Co-transport of RABV and NGF identified two modes of transport, slow and fast, that may represent a differential control of the trafficking machinery by RABV. Finally, we determined that p75NTR-dependent transport of RABV is faster and more directed than p75NTR-independent RABV transport. This fast route to the neuronal cell body is characterized by both an increase in instantaneous velocities and fewer, shorter stops en route. Hence, RABV may employ p75NTR-dependent transport as a fast mechanism to facilitate movement to the CNS.

  2. Rabies Virus Hijacks and accelerates the p75NTR retrograde axonal transport machinery.

    Directory of Open Access Journals (Sweden)

    Shani Gluska

    2014-08-01

    Full Text Available Rabies virus (RABV is a neurotropic virus that depends on long distance axonal transport in order to reach the central nervous system (CNS. The strategy RABV uses to hijack the cellular transport machinery is still not clear. It is thought that RABV interacts with membrane receptors in order to internalize and exploit the endosomal trafficking pathway, yet this has never been demonstrated directly. The p75 Nerve Growth Factor (NGF receptor (p75NTR binds RABV Glycoprotein (RABV-G with high affinity. However, as p75NTR is not essential for RABV infection, the specific role of this interaction remains in question. Here we used live cell imaging to track RABV entry at nerve terminals and studied its retrograde transport along the axon with and without the p75NTR receptor. First, we found that NGF, an endogenous p75NTR ligand, and RABV, are localized in corresponding domains along nerve tips. RABV and NGF were internalized at similar time frames, suggesting comparable entry machineries. Next, we demonstrated that RABV could internalize together with p75NTR. Characterizing RABV retrograde movement along the axon, we showed the virus is transported in acidic compartments, mostly with p75NTR. Interestingly, RABV is transported faster than NGF, suggesting that RABV not only hijacks the transport machinery but can also manipulate it. Co-transport of RABV and NGF identified two modes of transport, slow and fast, that may represent a differential control of the trafficking machinery by RABV. Finally, we determined that p75NTR-dependent transport of RABV is faster and more directed than p75NTR-independent RABV transport. This fast route to the neuronal cell body is characterized by both an increase in instantaneous velocities and fewer, shorter stops en route. Hence, RABV may employ p75NTR-dependent transport as a fast mechanism to facilitate movement to the CNS.

  3. Hierarchical patterning of multifunctional conducting polymer nanoparticles as a bionic platform for topographic contact guidance.

    Science.gov (United States)

    Ho, Dominic; Zou, Jianli; Chen, Xianjue; Munshi, Alaa; Smith, Nicole M; Agarwal, Vipul; Hodgetts, Stuart I; Plant, Giles W; Bakker, Anthony J; Harvey, Alan R; Luzinov, Igor; Iyer, K Swaminathan

    2015-02-24

    The use of programmed electrical signals to influence biological events has been a widely accepted clinical methodology for neurostimulation. An optimal biocompatible platform for neural activation efficiently transfers electrical signals across the electrode-cell interface and also incorporates large-area neural guidance conduits. Inherently conducting polymers (ICPs) have emerged as frontrunners as soft biocompatible alternatives to traditionally used metal electrodes, which are highly invasive and elicit tissue damage over long-term implantation. However, fabrication techniques for the ICPs suffer a major bottleneck, which limits their usability and medical translation. Herein, we report that these limitations can be overcome using colloidal chemistry to fabricate multimodal conducting polymer nanoparticles. Furthermore, we demonstrate that these polymer nanoparticles can be precisely assembled into large-area linear conduits using surface chemistry. Finally, we validate that this platform can act as guidance conduits for neurostimulation, whereby the presence of electrical current induces remarkable dendritic axonal sprouting of cells.

  4. Autonomous Guidance, Navigation and Control

    Science.gov (United States)

    Bordano, A. J.; Mcswain, G. G.; Fernandes, S. T.

    1991-01-01

    The NASA Autonomous Guidance, Navigation and Control (GN&C) Bridging program is reviewed to demonstrate the program plan and GN&C systems for the Space Shuttle. The ascent CN&C system is described in terms of elements such as the general-purpose digital computers, sensors for the navigation subsystem, the guidance-system software, and the flight-control subsystem. Balloon-based and lidar wind soundings are used for operations assessment on the day of launch, and the guidance software is based on dedicated units for atmospheric powered flight, vacuum powered flight, and abort-specific situations. Optimization of the flight trajectories is discussed, and flight-control responses are illustrated for wavelengths of 500-6000 m. Alternate sensors are used for load relief, and adaptive GN&C systems based on alternate gain synthesis are used for systems failures.

  5. Information architecture. Volume 3: Guidance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The purpose of this document, as presented in Volume 1, The Foundations, is to assist the Department of Energy (DOE) in developing and promulgating information architecture guidance. This guidance is aimed at increasing the development of information architecture as a Departmentwide management best practice. This document describes departmental information architecture principles and minimum design characteristics for systems and infrastructures within the DOE Information Architecture Conceptual Model, and establishes a Departmentwide standards-based architecture program. The publication of this document fulfills the commitment to address guiding principles, promote standard architectural practices, and provide technical guidance. This document guides the transition from the baseline or defacto Departmental architecture through approved information management program plans and budgets to the future vision architecture. This document also represents another major step toward establishing a well-organized, logical foundation for the DOE information architecture.

  6. Rapid axonal transport in primate optic nerve. Distribution of pressure-induced interruption.

    Science.gov (United States)

    Radius, R L; Anderson, D R

    1981-04-01

    Six primate eyes were studied after four hours of elevated intraocular pressure. Tissue specimens from the region of the lamina cribrosa were examined in cross section by transmission electron microscopy. Interruption in fast orthograde and retrograde axonal transport was identified in individual axons by noting accumulation of membraneous microorganelles, such as mitochondria and microvesicles within axon cylinders. Although organelle accumulation varied from bundle to bundle, involvement of individual axons was diffuse across the extent of a specific axon bundle. This observation contradicts the apparent association of axonal transport block with crosswise-oriented trabecular beams at the level of the lamina cribrosa as seen in tissue specimens examined in longitudinal section. It also fails to support the notion that blocked axonal transport with elevated pressure is produced by kinking of axons at the lamina.

  7. Axon diameter and intra-axonal volume fraction of the corticospinal tract in idiopathic normal pressure hydrocephalus measured by q-space imaging.

    Directory of Open Access Journals (Sweden)

    Kouhei Kamiya

    Full Text Available PURPOSE: Previous studies suggest that compression and stretching of the corticospinal tract (CST potentially cause treatable gait disturbance in patients with idiopathic normal pressure hydrocephalus (iNPH. Measurement of axon diameter with diffusion MRI has recently been used to investigate microstructural alterations in neurological diseases. In this study, we investigated alterations in the axon diameter and intra-axonal fraction of the CST in iNPH by q-space imaging (QSI analysis. METHODS: Nineteen patients with iNPH and 10 age-matched controls were recruited. QSI data were obtained with a 3-T system by using a single-shot echo planar imaging sequence with the diffusion gradient applied parallel to the antero-posterior axis. By using a two-component low-q fit model, the root mean square displacements of intra-axonal space ( =  axon diameter and intra-axonal volume fraction of the CST were calculated at the levels of the internal capsule and body of the lateral ventricle, respectively. RESULTS: Wilcoxon's rank-sum test revealed a significant increase in CST intra-axonal volume fraction at the paraventricular level in patients (p<0.001, whereas no significant difference was observed in the axon diameter. At the level of the internal capsule, neither axon diameter nor intra-axonal volume fraction differed significantly between the two groups. CONCLUSION: Our results suggest that in patients with iNPH, the CST does not undergo irreversible axonal damage but is rather compressed and/or stretched owing to pressure from the enlarged ventricle. These analyses of axon diameter and intra-axonal fraction yield insights into microstructural alterations of the CST in iNPH.

  8. Transgenic inhibition of astroglial NF-kappa B leads to increased axonal sparing and sprouting following spinal cord injury.

    Science.gov (United States)

    Brambilla, Roberta; Hurtado, Andres; Persaud, Trikaldarshi; Esham, Kim; Pearse, Damien D; Oudega, Martin; Bethea, John R

    2009-07-01

    We previously showed that Nuclear Factor kappaB (NF-kappaB) inactivation in astrocytes leads to improved functional recovery following spinal cord injury (SCI). This correlated with reduced expression of pro-inflammatory mediators and chondroitin sulfate proteoglycans, and increased white matter preservation. Hence we hypothesized that inactivation of astrocytic NF-kappaB would create a more permissive environment for axonal sprouting and regeneration. We induced both contusive and complete transection SCI in GFAP-Inhibitor of kappaB-dominant negative (GFAP-IkappaBalpha-dn) and wild-type (WT) mice and performed retrograde [fluorogold (FG)] and anterograde [biotinylated dextran amine (BDA)] tracing 8 weeks after injury. Following contusive SCI, more FG-labeled cells were found in motor cortex, reticular formation, and raphe nuclei of transgenic mice. Spared and sprouting BDA-positive corticospinal axons were found caudal to the lesion in GFAP-IkappaBalpha-dn mice. Higher numbers of FG-labeled neurons were detected immediately rostral to the lesion in GFAP-IkappaBalpha-dn mice, accompanied by increased expression of synaptic and axonal growth-associated molecules. After transection, however, no FG-labeled neurons or BDA-filled axons were found rostral and caudal to the lesion, respectively, in either genotype. These data demonstrated that inhibiting astroglial NF-kappaB resulted in a growth-supporting terrain promoting sparing and sprouting, rather than regeneration, of supraspinal and propriospinal circuitries essential for locomotion, hence contributing to the improved functional recovery observed after SCI in GFAP-IkappaBalpha-dn mice.

  9. Enhanced noradrenergic axon regeneration into schwann cell-filled PVDF-TrFE conduits after complete spinal cord transection.

    Science.gov (United States)

    Lee, Yee-Shuan; Wu, Siliang; Arinzeh, Treena Livingston; Bunge, Mary Bartlett

    2017-02-01

    Schwann cell (SC) transplantation has been utilized for spinal cord repair and demonstrated to be a promising therapeutic strategy. In this study, we investigated the feasibility of combining SC transplantation with novel conduits to bridge the completely transected adult rat spinal cord. This is the first and initial study to evaluate the potential of using a fibrous piezoelectric polyvinylidene fluoride trifluoroethylene (PVDF-TrFE) conduit with SCs for spinal cord repair. PVDF-TrFE has been shown to enhance neurite growth in vitro and peripheral nerve repair in vivo. In this study, SCs adhered and proliferated when seeded onto PVDF-TrFE scaffolds in vitro. SCs and PVDF-TrFE conduits, consisting of random or aligned fibrous inner walls, were transplanted into transected rat spinal cords for 3 weeks to examine early repair. Glial fibrillary acidic protein (GFAP)(+) astrocyte processes and GFP (green fluorescent protein)-SCs were interdigitated at both rostral and caudal spinal cord/SC transplant interfaces in both types of conduits, indicative of permissivity to axon growth. More noradrenergic/DβH(+) (dopamine-beta-hydroxylase) brainstem axons regenerated across the transplant when greater numbers of GFAP(+) astrocyte processes were present. Aligned conduits promoted extension of DβH(+) axons and GFAP(+) processes farther into the transplant than random conduits. Sensory CGRP(+) (calcitonin gene-related peptide) axons were present at the caudal interface. Blood vessels formed throughout the transplant in both conduits. This study demonstrates that PVDF-TrFE conduits harboring SCs are promising for spinal cord repair and deserve further investigation. Biotechnol. Bioeng. 2017;114: 444-456. © 2016 Wiley Periodicals, Inc.

  10. Computational Analysis of Axonal Transport: A Novel Assessment of Neurotoxicity, Neuronal Development and Functions

    Directory of Open Access Journals (Sweden)

    Toshiyuki Gotoh

    2012-03-01

    Full Text Available Axonal transport plays a crucial role in neuronal morphogenesis, survival and function. Despite its importance, however, the molecular mechanisms of axonal transport remain mostly unknown because a simple and quantitative assay system for monitoring this cellular process has been lacking. In order to better characterize the mechanisms involved in axonal transport, we formulate a novel computer-assisted monitoring system of axonal transport. Potential uses of this system and implications for future studies will be discussed.

  11. Guidance for evidence-informed policies about health systems: rationale for and challenges of guidance development.

    Science.gov (United States)

    Bosch-Capblanch, Xavier; Lavis, John N; Lewin, Simon; Atun, Rifat; Røttingen, John-Arne; Dröschel, Daniel; Beck, Lise; Abalos, Edgardo; El-Jardali, Fadi; Gilson, Lucy; Oliver, Sandy; Wyss, Kaspar; Tugwell, Peter; Kulier, Regina; Pang, Tikki; Haines, Andy

    2012-01-01

    In the first paper in a three-part series on health systems guidance, Xavier Bosch-Capblanch and colleagues examine how guidance is currently formulated in low- and middle-income countries, and the challenges to developing such guidance.

  12. Satellite glial cells can promote the extension of neuronal axons in vitro

    Institute of Scientific and Technical Information of China (English)

    Jiu-Hong Zhao; Yi-Di Huang; Xi-Nan Yi; Quan-Peng Zhang; Xian-Fang Zhang; Xu Dong; Gang Luo; Hai-Ying Zhang; Kun-Ju Wang; Mei-Li Lao

    2015-01-01

    Objective: To study the influence of satellite glial cells (SGCs) on the outgrowth of neuronal neurite and the role of Slit1 protein and the contact with neurons in this process, in vitro. Methods: Neurons culture and SGC-neuron co-culture were used as the cell models. The length of axons and dendrites were measured via immunofluorescence to observe the influence of SGCs on the outgrowth of neuronal neurite. The Slit1 protein was added into SGC-neuron co-culture model. The length of dendrites was measured via immunofluorescence at different point times. Result: The anatomical relationship between neurons and SGCs changed as culture period expand. At 12 h after culture, SGCs all surrounded neurons; by 72 h after culture, SGCs were all off neurons. SGCs can promote the growth of neuronal axos, but inhibit the growth of its dendrites; when SGCs closely contact with neurons, the effect of Slit1 on promoting the dendritic growth is not obvious, but when SGCs were off neurons, the effect of Slit1 on promoting the dendritic growth is significant. Conclusion: SGCs can promote the growth of neuronal axos, but inhibit the growth of its dendrites; Slit- Robo signaling pathways and contact with neurons play a role in this process.

  13. IFNgamma enhances microglial reactions to hippocampal axonal degeneration

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Lomholt, N D;

    2000-01-01

    periods. Message for the immune cytokine interferon-gamma (IFNgamma) was undetectable, and glial reactivity to axonal lesions occurred as normal in IFNgamma-deficient mice. Microglial responses to lesion-induced neuronal injury were markedly enhanced in myelin basic protein promoter-driven transgenic mice...

  14. Life-or-death decisions upon axonal damage.

    Science.gov (United States)

    Roselli, Francesco; Caroni, Pico

    2012-02-01

    In this issue of Neuron, Hu et al. (2012) report that upon axonal damage, CHOP and XBP1 unfolded protein response pathways are not recruited equally and have opposite effects on neuronal survival. XBP1 pathway boosting may represent a valuable neuroprotective strategy.

  15. Unravelling the incidence and etiology of chronic idiopathic axonal polyneuropathy

    NARCIS (Netherlands)

    Visser, N.A.

    2016-01-01

    Chronic idiopathic axonal polyneuropathy (CIAP) is a sensory or sensorimotor polyneuropathy that has a slowly progressive course without severe disability. CIAP is diagnosed in a significant proportion of patients with polyneuropathy, but precise figures on the incidence of polyneuropathy and CIAP w

  16. Axon diameter mapping in crossing fibers with diffusion MRI

    DEFF Research Database (Denmark)

    Zhang, Hui; Dyrby, Tim B; Alexander, Daniel C

    2011-01-01

    This paper proposes a technique for a previously unaddressed problem, namely, mapping axon diameter in crossing fiber regions, using diffusion MRI. Direct measurement of tissue microstructure of this kind using diffusion MRI offers a new class of biomarkers that give more specific information abo...

  17. Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Sally A Marik

    Full Text Available Cortical topography can be remapped as a consequence of sensory deprivation, suggesting that cortical circuits are continually modified by experience. To see the effect of altered sensory experience on specific components of cortical circuits, we imaged neurons, labeled with a genetically modified adeno-associated virus, in the intact mouse somatosensory cortex before and after whisker plucking. Following whisker plucking we observed massive and rapid reorganization of the axons of both excitatory and inhibitory neurons, accompanied by a transient increase in bouton density. For horizontally projecting axons of excitatory neurons there was a net increase in axonal projections from the non-deprived whisker barrel columns into the deprived barrel columns. The axon collaterals of inhibitory neurons located in the deprived whisker barrel columns retracted in the vicinity of their somata and sprouted long-range projections beyond their normal reach towards the non-deprived whisker barrel columns. These results suggest that alterations in the balance of excitation and inhibition in deprived and non-deprived barrel columns underlie the topographic remapping associated with sensory deprivation.

  18. Differential Axonal Projection of Mitral and Tufted Cells in the Mouse Main Olfactory System

    Directory of Open Access Journals (Sweden)

    Shin Nagayama

    2010-09-01

    Full Text Available In the past decade, much has been elucidated regarding the functional organization of the axonal connection of olfactory sensory neurons to olfactory bulb (OB glomeruli. However, the manner in which projection neurons of the OB process odorant input and send this information to higher brain centers remains unclear. Here, we report long-range, large-scale tracing of the axonal projection patterns of OB neurons using two-photon microscopy. Tracer injection into a single glomerulus demonstrated widely distributed mitral/tufted cell axonal projections on the lateroventral surface of the mouse brain, including the anterior/posterior piriform cortex (PC and olfactory tubercle (OT. We noted two distinct groups of labeled axons: PC-orienting axons and OT-orienting axons. Each group occupied distinct parts of the lateral olfactory tract. PC-orienting axons projected axon collaterals to a wide area of the PC but only a few collaterals to the OT. OT-orienting axons densely projected axon collaterals primarily to the anterolateral OT (alOT. Different colored dye injections into the superficial and deep portions of the OB external plexiform layer revealed that the PC-orienting axon populations originated in presumed mitral cells and the OT-orienting axons in presumed tufted cells. These data suggest that although mitral and tufted cells receive similar odor signals from a shared glomerulus, they process the odor information in different ways and send their output to different higher brain centers via the PC and alOT.

  19. Nicotine elicits prolonged calcium signaling along ventral hippocampal axons.

    Science.gov (United States)

    Zhong, Chongbo; Talmage, David A; Role, Lorna W

    2013-01-01

    Presynaptic nicotinic acetylcholine receptors (nAChRs) have long been implicated in the modulation of CNS circuits. We previously reported that brief exposure to low concentrations of nicotine induced sustained potentiation of glutamatergic transmission at ventral hippocampal (vHipp)-striatal synapses. Here, we exploited nAChR subtype-selective antagonists and agonists and α7*nAChR knockout mutant mice (α7-/-) to elucidate the signaling mechanisms underlying nAChR-mediated modulation of synaptic transmission. Using a combination of micro-slices culture from WT and α7-/-mice, calcium imaging, and immuno-histochemical techniques, we found that nicotine elicits localized and oscillatory increases in intracellular Ca(2+) along vHipp axons that persists for up to 30 minutes. The sustained phase of the nicotine-induced Ca(2+) response was blocked by α-BgTx but not by DHβE and was mimicked by α7*nAChR agonists but not by non-α7*nAChR agonists. In vHipp slices from α7-/- mice, nicotine elicited only transient increases of axonal Ca(2+) signals and did not activate CaMKII. The sustained phase of the nicotine-induced Ca(2+) response required localized activation of CaMKII, phospholipase C, and IP3 receptor mediated Ca(2+)-induced Ca(2+) release (CICR). In conclusion, activation of presynaptic nAChRs by nicotine elicits Ca(2+) influx into the presynaptic axons, the sustained phase of the nicotine-induced Ca(2+) response requires that axonal α7*nAChR activate a downstream signaling network in the vHipp axons.

  20. Cooperative Guidance for Multimissile Salvo Attack

    Institute of Scientific and Technical Information of China (English)

    Zhao Shiyu; Zhou Rui

    2008-01-01

    Cooperative guidance problems of multiple missiles are considered in this article. A cooperative guidance scheme, where coordi-nation algorithms and local guidance laws are combined together, is proposed. This scheme actually builds up a hierarchical cooperative guidance architecture, which may provide a general solution to the multimissile cooperative guidance problems. In the case of salvo attacks which require missiles to hit the target simultaneously, both centralized and distributed coordination algorithms are derived based on the impact-time-control guidance (ITCG) law. Numerical simulations are performed to demonstrate the effectiveness of the proposed approaches.

  1. Autonomous gliding entry guidance with

    Directory of Open Access Journals (Sweden)

    Guo Jie

    2015-10-01

    Full Text Available This paper presents a novel three-dimensional autonomous entry guidance for relatively high lift-to-drag ratio vehicles satisfying geographic constraints and other path constraints. The guidance is composed of onboard trajectory planning and robust trajectory tracking. For trajectory planning, a longitudinal sub-planner is introduced to generate a feasible drag-versus-energy profile by using the interpolation between upper boundary and lower boundary of entry corridor to get the desired trajectory length. The associated magnitude of the bank angle can be specified by drag profile, while the sign of bank angle is determined by lateral sub-planner. Two-reverse mode is utilized to satisfy waypoint constraints and dynamic heading error corridor is utilized to satisfy no-fly zone constraints. The longitudinal and lateral sub-planners are iteratively employed until all of the path constraints are satisfied. For trajectory tracking, a novel tracking law based on the active disturbance rejection control is introduced. Finally, adaptability tests and Monte Carlo simulations of the entry guidance approach are performed. Results show that the proposed entry guidance approach can adapt to different entry missions and is able to make the vehicle reach the prescribed target point precisely in spite of geographic constraints.

  2. Interstitial guidance of cancer invasion.

    NARCIS (Netherlands)

    Gritsenko, P.G.; Ilina, O.; Friedl, P.H.

    2012-01-01

    Cancer cell invasion into healthy tissues develops preferentially along pre-existing tracks of least resistance, followed by secondary tissue remodelling and destruction. The tissue scaffolds supporting or preventing guidance of invasion vary in structure and molecular composition between organs. In

  3. Abortion Information: A Guidance Viewpoint

    Science.gov (United States)

    Wolleat, Patricia L.

    1975-01-01

    A number of questions relating to providing abortion information to teenagers can be raised from legal, ethical and philosophical standpoints. The purpose of this article is to examine abortion information-giving from the perspective of counseling and guidance theory and practice. (Author)

  4. Guidance: Interim Municipal Settlement Policy

    Science.gov (United States)

    Interim guidance and fact sheets regarding settlements involving municipalities or municipal waste under Section 122 CERCLA as amended by SARA. Interim policy sets forth the criteria by which EPA generally determines whether to exercise enforcement discretion to pursue MSW generators and transporters as PRPs.

  5. Teacher Guidance of Knowledge Construction

    Science.gov (United States)

    Schwarz, Baruch; Dreyfus, Tommy; Hadas, Nurit; Hershkowitz, Rina

    2004-01-01

    This paper focuses on how teachers guide construction of knowledge in classrooms. We suggest that guidance hinges on the kind of dialogue teachers choose to engage students in. We propose several classroom dialogue types relevant for the construction of knowledge and suggest that critical dialogue is particularly effective for knowledge…

  6. DOE Waste Treatability Group Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, T.D.

    1995-01-01

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the sole basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.

  7. Atmospheric guidance techniques and performance

    Science.gov (United States)

    Harpold, J. C.; Gavert, D. E.

    1982-01-01

    The Orbiter entry guidance system controls the Space Shuttle Orbiter from the initial atmospheric penetration point to the point at which an earth relative velocity of 2500 feet/second is reached. At the latter point, control of the Orbiter is transferred to the terminal area energy management system. The entry guidance system is based on the concept that the range to be flown during entry is a unique function of the drag deceleration profile flown throughout the entry. The range prediction during entry is based on analytic equations which are simple drag deceleration functions of earth relative velocity above Mach 10.5 and energy with respect to the earth below Mach 10.5. Flight through the entry corridor is accomplished by linking these simple drag deceleration functions together in series in order to define a drag deceleration reference profile. The results of the first three Space Shuttle missions have not only verified the entry guidance concept but have also demonstrated the stability of the guidance system.

  8. Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons.

    Science.gov (United States)

    Colbert, C M; Johnston, D

    1996-11-01

    A long-standing hypothesis is that action potentials initiate first in the axon hillock/initial segment (AH-IS) region because of a locally high density of Na+ channels. We tested this idea in subicular pyramidal neurons by using patch-clamp recordings in hippocampal slices. Simultaneous recordings from the soma and IS confirmed that orthodromic action potentials initiated in the axon and then invaded the soma. However, blocking Na+ channels in the AH-IS with locally applied tetrodotoxin (TTX) did not raise the somatic threshold membrane potential for orthodromic spikes. TTX applied to the axon beyond the AH-IS (30-60 microm from the soma) raised the apparent somatic threshold by approximately 8 mV. We estimated the Na+ current density in the AH-IS and somatic membranes by using cell-attached patch-clamp recordings and found similar magnitudes (3-4 pA/microm2). Thus, the present results suggest that orthodromic action potentials initiate in the axon beyond the AH-IS and that the minimum threshold for spike initiation of the neuron is not determined by a high density of Na+ channels in the AH-IS region.

  9. ALS Along the Axons – Expression of Coding and Noncoding RNA Differs in Axons of ALS models

    Science.gov (United States)

    Rotem, Nimrod; Magen, Iddo; Ionescu, Ariel; Gershoni-Emek, Noga; Altman, Topaz; Costa, Christopher J.; Gradus, Tal; Pasmanik-Chor, Metsada; Willis, Dianna E.; Ben-Dov, Iddo Z.; Hornstein, Eran; Perlson, Eran

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a multifactorial lethal motor neuron disease with no known treatment. Although the basic mechanism of its degenerative pathogenesis remains poorly understood, a subcellular spatial alteration in RNA metabolism is thought to play a key role. The nature of these RNAs remains elusive, and a comprehensive characterization of the axonal RNAs involved in maintaining neuronal health has yet to be described. Here, using cultured spinal cord (SC) neurons grown using a compartmented platform followed by next-generation sequencing (NGS) technology, we find that RNA expression differs between the somatic and axonal compartments of the neuron, for both mRNA and microRNA (miRNA). Further, the introduction of SOD1G93A and TDP43A315T, established ALS-related mutations, changed the subcellular expression and localization of RNAs within the neurons, showing a spatial specificity to either the soma or the axon. Altogether, we provide here the first combined inclusive profile of mRNA and miRNA expression in two ALS models at the subcellular level. These data provide an important resource for studies on the roles of local protein synthesis and axon degeneration in ALS and can serve as a possible target pool for ALS treatment. PMID:28300211

  10. Adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and Nasu-Hakola disease: lesion staging and dynamic changes of axons and microglial subsets.

    Science.gov (United States)

    Oyanagi, Kiyomitsu; Kinoshita, Michiaki; Suzuki-Kouyama, Emi; Inoue, Teruhiko; Nakahara, Asa; Tokiwai, Mika; Arai, Nobutaka; Satoh, Jun-Ichi; Aoki, Naoya; Jinnai, Kenji; Yazawa, Ikuru; Arai, Kimihito; Ishihara, Kenji; Kawamura, Mitsuru; Ishizawa, Keisuke; Hasegawa, Kazuko; Yagisita, Saburo; Amano, Naoji; Yoshida, Kunihiro; Terada, Seishi; Yoshida, Mari; Akiyama, Haruhiko; Mitsuyama, Yoshio; Ikeda, Shu-Ichi

    2016-09-08

    The brains of 10 Japanese patients with adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) encompassing hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) and pigmentary orthochromatic leukodystrophy (POLD) and eight Japanese patients with Nasu-Hakola disease (N-HD) and five age-matched Japanese controls were examined neuropathologically with special reference to lesion staging and dynamic changes of microglial subsets. In both diseases, the pathognomonic neuropathological features included spherically swollen axons (spheroids and globules), axon loss and changes of microglia in the white matter. In ALSP, four lesion stages based on the degree of axon loss were discernible: Stage I, patchy axon loss in the cerebral white matter without atrophy; Stage II, large patchy areas of axon loss with slight atrophy of the cerebral white matter and slight dilatation of the lateral ventricles; Stage III, extensive axon loss in the cerebral white matter and dilatation of the lateral and third ventricles without remarkable axon loss in the brainstem and cerebellum; Stage IV, devastated cerebral white matter with marked dilatation of the ventricles and axon loss in the brainstem and/or cerebellum. Internal capsule and pontine base were relatively well preserved in the N-HD, even at Stage IV, and the swollen axons were larger with a higher density in the ALSP. Microglial cells immunopositive for CD68, CD163 or CD204 were far more obvious in ALSP, than in N-HD, and the shape and density of the cells changed in each stage. With progression of the stage, clinical symptoms became worse to apathetic state, and epilepsy was frequently observed in patients at Stages III and IV in both diseases. From these findings, it is concluded that (i) shape, density and subsets of microglia change dynamically along the passage of stages and (ii) increase of IBA-1-, CD68-, CD163- and CD204-immunopositive cells precedes loss of axons in ALSP.

  11. IH activity is increased in populations of slow versus fast motor axons of the rat.

    Directory of Open Access Journals (Sweden)

    Chad eLorenz

    2014-09-01

    Full Text Available Much is known about the electrophysiological variation in motoneuron somata across different motor units. However comparatively less is known about electrophysiological variation in motor axons and how this could impact function or electrodiagnosis in healthy or diseased states. We performed nerve excitability testing on two groups of motor axons in Sprague-Dawley rats that are known to differ significantly in their chronic daily activity patterns and in the relative proportion of motor unit types: one group innervating the soleus (slow motor axons and the other group innervating the tibialis anterior (fast motor axons muscles. We found that slow motor axons have significantly larger accommodation compared to fast motor axons upon application of a 100 ms hyperpolarizing conditioning stimulus that is 40% of axon threshold (Z = 3.24, p = 0.001 or 20% of axon threshold (Z = 2.67, p = 0.008. Slow motor axons had larger accommodation to hyperpolarizing currents in the current-threshold measurement (-80% Z = 3.07, p = 0.002; -90% Z = 2.98, p = 0.003. In addition, we found that slow motor axons have a significantly smaller rheobase than fast motor axons (Z = -1.99, p = 0.047 accompanied by a lower threshold in stimulus-response curves. The results provide evidence that slow motor axons have greater activity of the hyperpolarization-activated inwardly rectifying cation conductance (IH than fast motor axons. It is possible that this difference between fast and slow axons is caused by an adaptation to their chronic differences in daily activity patterns, and that this adaptation might have a functional effect on the motor unit. Moreover, these findings indicate that slow and fast motor axons may react differently to pathological conditions.

  12. Spatiotemporal expression of repulsive guidance molecules (RGMs and their receptor neogenin in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Dianne M A van den Heuvel

    Full Text Available Neogenin has been implicated in a variety of developmental processes such as neurogenesis, neuronal differentiation, apoptosis, migration and axon guidance. Binding of repulsive guidance molecules (RGMs to Neogenin inhibits axon outgrowth of different neuronal populations. This effect requires Neogenin to interact with co-receptors of the uncoordinated locomotion-5 (Unc5 family to activate downstream Rho signaling. Although previous studies have reported RGM, Neogenin, and/or Unc5 expression, a systematic comparison of RGM and Neogenin expression in the developing nervous system is lacking, especially at later developmental stages. Furthermore, information on RGM and Neogenin expression at the protein level is limited. To fill this void and to gain further insight into the role of RGM-Neogenin signaling during mouse neural development, we studied the expression of RGMa, RGMb, Neogenin and Unc5A-D using in situ hybridization, immunohistochemistry and RGMa section binding. Expression patterns in the primary olfactory system, cortex, hippocampus, habenula, and cerebellum were studied in more detail. Characteristic cell layer-specific expression patterns were detected for RGMa, RGMb, Neogenin and Unc5A-D. Furthermore, strong expression of RGMa, RGMb and Neogenin protein was