WorldWideScience

Sample records for axon growth guidance

  1. Quantifying mechanical force in axonal growth and guidance

    Directory of Open Access Journals (Sweden)

    Ahmad Ibrahim Mahmoud Athamneh

    2015-09-01

    Full Text Available Mechanical force plays a fundamental role in neuronal development, physiology, and regeneration. In particular, research has shown that force is involved in growth cone-mediated axonal growth and guidance as well as stretch-induced elongation when an organism increases in size after forming initial synaptic connections. However, much of the details about the exact role of force in these fundamental processes remain unknown. In this review, we highlight (1 standing questions concerning the role of mechanical force in axonal growth and guidance and (2 different experimental techniques used to quantify forces in axons and growth cones. We believe that satisfying answers to these questions will require quantitative information about the relationship between elongation, forces, cytoskeletal dynamics, axonal transport, signaling, substrate adhesion, and stiffness contributing to directional growth advance. Furthermore, we address why a wide range of force values have been reported in the literature, and what these values mean in the context of neuronal mechanics. We hope that this review will provide a guide for those interested in studying the role of force in development and regeneration of neuronal networks.

  2. Independent signaling by Drosophila insulin receptor for axon guidance and growth

    Directory of Open Access Journals (Sweden)

    Caroline Rita Li

    2014-01-01

    Full Text Available The Drosophila insulin receptor (DInR regulates a diverse array of biological processes including growth, axon guidance, and sugar homeostasis. Growth regulation by DInR is mediated by Chico, the Drosophila homolog of vertebrate insulin-receptor-substrate proteins IRS1-4. In contrast, DInR regulation of photoreceptor axon guidance in the developing visual system is mediated by the SH2-SH3 domain adaptor protein Dreadlocks (Dock. In vitro studies by others identified five NPXY motifs, one in the juxtamembrane region and four in the signaling C-terminal tail (C-tail, important for interaction with Chico. Here we used yeast two-hybrid assays to identify regions in the DInR C-tail that interact with Dock. These Dock-binding sites were in separate portions of the C-tail from the previously identified Chico-binding sites. To test whether these sites are required for growth or axon guidance in whole animals, a panel of DInR proteins, in which the putative Chico and Dock interaction sites had been mutated individually or in combination, were tested for their ability to rescue viability, growth, and axon guidance defects of dinr mutant flies. Sites required for viability were identified. Unexpectedly, mutation of both putative Dock binding sites, either individually or in combination, did not lead to defects in photoreceptor axon guidance. Thus, either sites also required for viability are necessary for DInR function in axon guidance and/or there is redundancy built into the DInR/Dock interaction such that Dock is able to interact with multiple regions of DInR. We also found that simultaneous mutation of all 5 NPXY motifs implicated in Chico interaction drastically decreased growth in both male and female adult flies. Mutation of these 5 NPXY motifs did not affect photoreceptor axon guidance, showing that different sites within DInR control growth and axon guidance.

  3. Independent signaling by Drosophila insulin receptor for axon guidance and growth.

    Science.gov (United States)

    Li, Caroline R; Guo, Dongyu; Pick, Leslie

    2013-01-01

    The Drosophila insulin receptor (DInR) regulates a diverse array of biological processes including growth, axon guidance, and sugar homeostasis. Growth regulation by DInR is mediated by Chico, the Drosophila homolog of vertebrate insulin receptor substrate proteins IRS1-4. In contrast, DInR regulation of photoreceptor axon guidance in the developing visual system is mediated by the SH2-SH3 domain adaptor protein Dreadlocks (Dock). In vitro studies by others identified five NPXY motifs, one in the juxtamembrane region and four in the signaling C-terminal tail (C-tail), important for interaction with Chico. Here we used yeast two-hybrid assays to identify regions in the DInR C-tail that interact with Dock. These Dock binding sites were in separate portions of the C-tail from the previously identified Chico binding sites. To test whether these sites are required for growth or axon guidance in whole animals, a panel of DInR proteins, in which the putative Chico and Dock interaction sites had been mutated individually or in combination, were tested for their ability to rescue viability, growth and axon guidance defects of dinr mutant flies. Sites required for viability were identified. Unexpectedly, mutation of both putative Dock binding sites, either individually or in combination, did not lead to defects in photoreceptor axon guidance. Thus, either sites also required for viability are necessary for DInR function in axon guidance and/or there is redundancy built into the DInR/Dock interaction such that Dock is able to interact with multiple regions of DInR. We also found that simultaneous mutation of all five NPXY motifs implicated in Chico interaction drastically decreased growth in both male and female adult flies. These animals resembled chico mutants, supporting the notion that DInR interacts directly with Chico in vivo to control body size. Mutation of these five NPXY motifs did not affect photoreceptor axon guidance, segregating the roles of DInR in the

  4. Primary neuron culture for nerve growth and axon guidance studies in zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Zheyan Chen

    Full Text Available Zebrafish (Danio rerio is a widely used model organism in genetics and developmental biology research. Genetic screens have proven useful for studying embryonic development of the nervous system in vivo, but in vitro studies utilizing zebrafish have been limited. Here, we introduce a robust zebrafish primary neuron culture system for functional nerve growth and guidance assays. Distinct classes of central nervous system neurons from the spinal cord, hindbrain, forebrain, and retina from wild type zebrafish, and fluorescent motor neurons from transgenic reporter zebrafish lines, were dissociated and plated onto various biological and synthetic substrates to optimize conditions for axon outgrowth. Time-lapse microscopy revealed dynamically moving growth cones at the tips of extending axons. The mean rate of axon extension in vitro was 21.4±1.2 µm hr(-1 s.e.m. for spinal cord neurons, which corresponds to the typical ∼0.5 mm day(-1 growth rate of nerves in vivo. Fluorescence labeling and confocal microscopy demonstrated that bundled microtubules project along axons to the growth cone central domain, with filamentous actin enriched in the growth cone peripheral domain. Importantly, the growth cone surface membrane expresses receptors for chemotropic factors, as detected by immunofluorescence microscopy. Live-cell functional assays of axon extension and directional guidance demonstrated mammalian brain-derived neurotrophic factor (BDNF-dependent stimulation of outgrowth and growth cone chemoattraction, whereas mammalian myelin-associated glycoprotein inhibited outgrowth. High-resolution live-cell Ca(2+-imaging revealed local elevation of cytoplasmic Ca(2+ concentration in the growth cone induced by BDNF application. Moreover, BDNF-induced axon outgrowth, but not basal outgrowth, was blocked by treatments to suppress cytoplasmic Ca(2+ signals. Thus, this primary neuron culture model system may be useful for studies of neuronal development

  5. Extracellular matrix molecules play diverse roles in the growth and guidance of central nervous system axons

    Directory of Open Access Journals (Sweden)

    M.A. Pires-Neto

    1999-05-01

    Full Text Available Axon growth and guidance represent complex biological processes in which probably intervene diverse sets of molecular cues that allow for the appropriate wiring of the central nervous system (CNS. The extracellular matrix (ECM represents a major contributor of molecular signals either diffusible or membrane-bound that may regulate different stages of neural development. Some of the brain ECM molecules form tridimensional structures (tunnels and boundaries that appear during time- and space-regulated events, possibly playing relevant roles in the control of axon elongation and pathfinding. This short review focuses mainly on the recognized roles played by proteoglycans, laminin, fibronectin and tenascin in axonal development during ontogenesis.

  6. The axonal guidance cue semaphorin 3C contributes to alveolar growth and repair.

    Directory of Open Access Journals (Sweden)

    Arul Vadivel

    Full Text Available Lung diseases characterized by alveolar damage such as bronchopulmonary dysplasia (BPD in premature infants and emphysema lack efficient treatments. Understanding the mechanisms contributing to normal and impaired alveolar growth and repair may identify new therapeutic targets for these lung diseases. Axonal guidance cues are molecules that guide the outgrowth of axons. Amongst these axonal guidance cues, members of the Semaphorin family, in particular Semaphorin 3C (Sema3C, contribute to early lung branching morphogenesis. The role of Sema3C during alveolar growth and repair is unknown. We hypothesized that Sema3C promotes alveolar development and repair. In vivo Sema3C knock down using intranasal siRNA during the postnatal stage of alveolar development in rats caused significant air space enlargement reminiscent of BPD. Sema3C knock down was associated with increased TLR3 expression and lung inflammatory cells influx. In a model of O2-induced arrested alveolar growth in newborn rats mimicking BPD, air space enlargement was associated with decreased lung Sema3C mRNA expression. In vitro, Sema3C treatment preserved alveolar epithelial cell viability in hyperoxia and accelerated alveolar epithelial cell wound healing. Sema3C preserved lung microvascular endothelial cell vascular network formation in vitro under hyperoxic conditions. In vivo, Sema3C treatment of hyperoxic rats decreased lung neutrophil influx and preserved alveolar and lung vascular growth. Sema3C also preserved lung plexinA2 and Sema3C expression, alveolar epithelial cell proliferation and decreased lung apoptosis. In conclusion, the axonal guidance cue Sema3C promotes normal alveolar growth and may be worthwhile further investigating as a potential therapeutic target for lung repair.

  7. The discovery of the growth cone and its influence on the study of axon guidance

    Directory of Open Access Journals (Sweden)

    Elisa eTamariz

    2015-05-01

    Full Text Available For over a century, there has been a great deal of interest in understanding how neural connectivity is established during development and regeneration. Interest in the latter arises from the possibility that knowledge of this process can be used to reestablish lost connections after lesion or neurodegeneration. At the end of the XIX century, Santiago Ramón y Cajal discovered that the distal tip of growing axons contained a structure that he called the growth cone. He proposed that this structure enabled the axon’s oriented growth in response to attractants, now known as chemotropic molecules. He further proposed that the physical properties of the surrounding tissues could influence the growth cone and the direction of growth. This seminal discovery afforded a plausible explanation for directed axonal growth and has led to the discovery of axon guidance mechanisms that include diffusible attractants and repellants and guidance cues anchored to cell membranes or extracellular matrix. In this review the major events in the development of this field are discussed.

  8. Negative guidance factor-induced macropinocytosis in the growth cone plays a critical role in repulsive axon turning.

    Science.gov (United States)

    Kolpak, Adrianne L; Jiang, Jun; Guo, Daorong; Standley, Clive; Bellve, Karl; Fogarty, Kevin; Bao, Zheng-Zheng

    2009-08-26

    Macropinocytosis is a type of poorly characterized fluid-phase endocytosis that results in formation of relatively large vesicles. We report that Sonic hedgehog (Shh) protein induces macropinocytosis in the axons through activation of a noncanonical signaling pathway, including Rho GTPase and nonmuscle myosin II. Macropinocytosis induced by Shh is independent of clathrin-mediated endocytosis but dependent on dynamin, myosin II, and Rho GTPase activities. Inhibitors of macropinocytosis also abolished the negative effects of Shh on axonal growth, including growth cone collapse and chemorepulsive axon turning but not turning per se. Conversely, activation of myosin II or treatment of phorbol ester induces macropinocytosis in the axons and elicits growth cone collapse and repulsive axon turning. Furthermore, macropinocytosis is also induced by ephrin-A2, and inhibition of dynamin abolished repulsive axon turning induced by ephrin-A2. Macropinocytosis can be induced ex vivo by high Shh, correlating with axon retraction. These results demonstrate that macropinocytosis-mediated membrane trafficking is an important cellular mechanism involved in axon chemorepulsion induced by negative guidance factors.

  9. Three-dimensional configuration of orientated fibers as guidance structures for cell migration and axonal growth.

    Science.gov (United States)

    Kriebel, Andreas; Rumman, Muhammad; Scheld, Miriam; Hodde, Dorothee; Brook, Gary; Mey, Jörg

    2014-02-01

    Peripheral nerve injuries can be surgically repaired by suturing the transected nerve stumps or, in case of larger lesions, by the transplantation of an autologous nerve graft. To avoid donor site morbidity, the development of artificial implants is desired. Clinically, hollow conduits have been used for this purpose but are inferior to the autograft because they lack internal guidance cues for Schwann cells and regenerating axons. In this article, we describe the design of a three-dimensional (3D) scaffold consisting of parallel fibers embedded in a collagen matrix. For this purpose, an electrospinning device was developed to produce and manipulate a 3D array of aligned poly(ɛ-caprolactone) (PCL) microfibers. This fiber array was then incorporated into biodegradable PCL tubes to serve as artificial nerve bridges. Using primary cultures of embryonic chicken dorsal root ganglia, we show that PCL microfibers in the 3D matrix of our composite scaffold guide the direction of Schwann cell migration and axonal growth. Copyright © 2013 Wiley Periodicals, Inc.

  10. Meninges-derived cues control axon guidance.

    Science.gov (United States)

    Suter, Tracey A C S; DeLoughery, Zachary J; Jaworski, Alexander

    2017-10-01

    The axons of developing neurons travel long distances along stereotyped pathways under the direction of extracellular cues sensed by the axonal growth cone. Guidance cues are either secreted proteins that diffuse freely or bind the extracellular matrix, or membrane-anchored proteins. Different populations of axons express distinct sets of receptors for guidance cues, which results in differential responses to specific ligands. The full repertoire of axon guidance cues and receptors and the identity of the tissues producing these cues remain to be elucidated. The meninges are connective tissue layers enveloping the vertebrate brain and spinal cord that serve to protect the central nervous system (CNS). The meninges also instruct nervous system development by regulating the generation and migration of neural progenitors, but it has not been determined whether they help guide axons to their targets. Here, we investigate a possible role for the meninges in neuronal wiring. Using mouse neural tissue explants, we show that developing spinal cord meninges produce secreted attractive and repulsive cues that can guide multiple types of axons in vitro. We find that motor and sensory neurons, which project axons across the CNS-peripheral nervous system (PNS) boundary, are attracted by meninges. Conversely, axons of both ipsi- and contralaterally projecting dorsal spinal cord interneurons are repelled by meninges. The responses of these axonal populations to the meninges are consistent with their trajectories relative to meninges in vivo, suggesting that meningeal guidance factors contribute to nervous system wiring and control which axons are able to traverse the CNS-PNS boundary. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Sensory axon guidance with semaphorin 6A and nerve growth factor in a biomimetic choice point model

    International Nuclear Information System (INIS)

    Curley, J Lowry; Catig, Gary C; Horn-Ranney, Elaine L; Moore, Michael J

    2014-01-01

    The direct effect of guidance cues on developing and regenerating axons in vivo is not fully understood, as the process involves a multiplicity of attractive and repulsive signals, presented both as soluble and membrane-bound ligands. A better understanding of axon guidance is critical to functional recovery following injury to the nervous system through improved outgrowth and mapping of damaged nerves. Due to their implications as inhibitors to central nervous system regeneration, we investigated the repulsive properties of semaphorin 6A and ephrin-B3 on E15 rat dorsal root ganglion explants, as well as possible interactions with soluble gradients of chemoattractive nerve growth factor (NGF). We employed a 3D biomimetic in vitro choice point model, which enabled the simple and rapid preparation of patterned gel growth matrices with quantifiable presentation of guidance cues in a specifiable manner that resembles the in vivo presentation of soluble and/or immobilized ligands. Neurites demonstrated an inhibitory response to immobilized Sema6A by lumbosacral dorsal root ganglion explants, while no such repulsion was observed for immobilized ephrin-B3 by explants at any spinal level. Interestingly, Sema6A inhibition could be partially attenuated in a concentration-dependent manner through the simultaneous presentation of soluble NGF gradients. The in vitro model described herein represents a versatile and valuable investigative tool in the quest for understanding developmental processes and improving regeneration following nervous system injury. (paper)

  12. Guidance of retinal axons in mammals.

    Science.gov (United States)

    Herrera, Eloísa; Erskine, Lynda; Morenilla-Palao, Cruz

    2017-11-26

    In order to navigate through the surrounding environment many mammals, including humans, primarily rely on vision. The eye, composed of the choroid, sclera, retinal pigmented epithelium, cornea, lens, iris and retina, is the structure that receives the light and converts it into electrical impulses. The retina contains six major types of neurons involving in receiving and modifying visual information and passing it onto higher visual processing centres in the brain. Visual information is relayed to the brain via the axons of retinal ganglion cells (RGCs), a projection known as the optic pathway. The proper formation of this pathway during development is essential for normal vision in the adult individual. Along this pathway there are several points where visual axons face 'choices' in their direction of growth. Understanding how these choices are made has advanced significantly our knowledge of axon guidance mechanisms. Thus, the development of the visual pathway has served as an extremely useful model to reveal general principles of axon pathfinding throughout the nervous system. However, due to its particularities, some cellular and molecular mechanisms are specific for the visual circuit. Here we review both general and specific mechanisms involved in the guidance of mammalian RGC axons when they are traveling from the retina to the brain to establish precise and stereotyped connections that will sustain vision. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans

    Science.gov (United States)

    Chisholm, Andrew D.; Hutter, Harald; Jin, Yishi; Wadsworth, William G.

    2016-01-01

    The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment. PMID:28114100

  14. The axonal guidance receptor neogenin promotes acute inflammation.

    Directory of Open Access Journals (Sweden)

    Klemens König

    Full Text Available Neuronal guidance proteins (NGP were originally described in the context of axonal growth and migration. Yet recent work has demonstrated that NGPs also serve as guidance cues for immune competent cells. A crucial target receptor for NGPs during embryonic development is the neogenin receptor, however its role during acute inflammation is unknown. We report here that neogenin is abundantly expressed outside the nervous system and that animals with endogenous repression of neogenin (Neo1(-/- demonstrate attenuated changes of acute inflammation. Studies using functional inhibition of neogenin resulted in a significant attenuation of inflammatory peritonitis. In studies employing bone marrow chimeric animals we found the hematopoietic presence of Neo1(-/- to be responsible for the attenuated inflammatory response. Taken together our studies suggest that the guidance receptor neogenin holds crucial importance for the propagation of an acute inflammatory response and further define mechanisms shared between the nervous and the immune system.

  15. Negative guidance factor-induced macropinocytosis in the growth cone plays a critical role in repulsive axon turning

    OpenAIRE

    Kolpak, Adrianne L.; Jiang, Jun; Guo, Daorong; Standley, Clive; Bellve, Karl; Fogarty, Kevin; Bao, Zheng-Zheng

    2009-01-01

    Macropinocytosis is a type of poorly characterized fluid-phase endocytosis which results in formation of relatively large vesicles. We report that Sonic hedgehog (Shh) protein induces macropinocytosis in the axons, through activation of a noncanonical signaling pathway including Rho GTPase and nonmuscle myosin II. Macropinocytosis induced by Shh is independent of clathrin-mediated endocytosis, but dependent on dynamin, myosin II and Rho GTPase activities. Inhibitors of macropinocytosis also a...

  16. Cannabinoid receptor CB2 modulates axon guidance

    DEFF Research Database (Denmark)

    Duff, Gabriel; Argaw, Anteneh; Cecyre, Bruno

    2013-01-01

    Navigation of retinal projections towards their targets is regulated by guidance molecules and growth cone transduction mechanisms. Here, we present in vitro and in vivo evidences that the cannabinoid receptor 2 (CB2R) is expressed along the retino-thalamic pathway and exerts a modulatory action ...

  17. Regulation of Axonal Midline Guidance by Prolyl 4-Hydroxylation in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Torpe, Nanna; Pocock, Roger David John

    2014-01-01

    , little is known of its importance in the control of axon guidance. In a screen of prolyl 4-hydroxylase (P4H) mutants, we found that genetic removal of a specific P4H subunit, DPY-18, causes dramatic defects in C. elegans neuroanatomy. In dpy-18 mutant animals, the axons of specific ventral nerve cord......Neuronal wiring during development requires that the growth cones of axons and dendrites are correctly guided to their appropriate targets. As in other animals, axon growth cones in Caenorhabditis elegans integrate information in their extracellular environment via interactions among transiently...

  18. Glia initiate brain assembly through non-canonical Chimaerin/Furin axon guidance in C. elegans

    Science.gov (United States)

    Rapti, Georgia; Li, Chang; Shan, Alan; Lu, Yun; Shaham, Shai

    2017-01-01

    Brain assembly is hypothesized to begin when pioneer axons extend over non-neuronal cells, forming tracts guiding follower axons. Yet pioneer-neuron identities, their guidance substrates, and their interactions, are not well understood. Here, using time-lapse embryonic imaging, genetics, protein-interaction, and functional studies, we uncover the early events of C. elegans brain assembly. We demonstrate that C. elegans glia are key for assembly initiation, guiding pioneer and follower axons using distinct signals. Pioneer sublateral neurons, with unique growth properties, anatomy, and innervation, cooperate with glia to mediate follower-axon guidance. We further identify a CHIN-1/Chimaerin-KPC-1/Furin double mutant that severely disrupts assembly. CHIN-1/Chimaerin and KPC-1/Furin function non-canonically in glia and pioneer neurons for guidance-cue trafficking. We exploit this bottleneck to define roles for glial Netrin and Semaphorin in pioneer- and follower-axon guidance, respectively, and for glial and pioneer-neuron Flamingo/CELSR in follower-axon navigation. Altogether, our studies reveal previously-unknown glial roles in pioneer-axon guidance, suggesting conserved brain-assembly principles. PMID:28846083

  19. Effects of laminin blended with chitosan on axon guidance on patterned substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, N; Guan, Y J; Chen, X B [Division of Biomedical Engineering, University of Saskatchewan, Saskatoon S7N 5A9 (Canada); Li, M G [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon S7N 5A9 (Canada); Schreyer, D J, E-mail: niz504@mail.usask.c [Department of Anatomy and Cell Biology, Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, S7K 0M7 (Canada)

    2010-12-15

    Axon guidance is a crucial consideration in the design of tissue scaffolds used to promote nerve regeneration. Here we investigate the combined use of laminin (a putative axon adhesion and guidance molecule) and chitosan (a leading candidate base material for the construction of scaffolds) for promoting axon guidance in cultured adult dorsal root ganglion (DRG) neurons. Using a dispensing-based rapid prototyping (DBRP) technique, two-dimensional grid patterns were created by dispensing chitosan or laminin-blended chitosan substrate strands oriented in orthogonal directions. In vitro experiments illustrated DRG neurites on these patterns preferentially grew upon and followed the laminin-blended chitosan pathways. These results suggest that an orientation of neurite growth can be achieved in an artificially patterned substrate by creating selectively biofunctional pathways. The DBRP technique may provide improved strategies for the use of biofunctional pathways in the design of three-dimensional scaffolds for guidance of nerve repair.

  20. Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay

    DEFF Research Database (Denmark)

    Colak, Dilek; Ji, Sheng-Jian; Porse, Bo T

    2013-01-01

    Growth cones enable axons to navigate toward their targets by responding to extracellular signaling molecules. Growth-cone responses are mediated in part by the local translation of axonal messenger RNAs (mRNAs). However, the mechanisms that regulate local translation are poorly understood. Here we...... show that Robo3.2, a receptor for the Slit family of guidance cues, is synthesized locally within axons of commissural neurons. Robo3.2 translation is induced by floor-plate-derived signals as axons cross the spinal cord midline. Robo3.2 is also a predicted target of the nonsense-mediated mRNA decay.......2 expression. These data show that local translation is regulated by mRNA stability and that NMD acts locally to influence axonal pathfinding....

  1. Syndecan Promotes Axon Regeneration by Stabilizing Growth Cone Migration

    Directory of Open Access Journals (Sweden)

    Tyson J. Edwards

    2014-07-01

    Full Text Available Growth cones facilitate the repair of nervous system damage by providing the driving force for axon regeneration. Using single-neuron laser axotomy and in vivo time-lapse imaging, we show that syndecan, a heparan sulfate (HS proteoglycan, is required for growth cone function during axon regeneration in C. elegans. In the absence of syndecan, regenerating growth cones form but are unstable and collapse, decreasing the effective growth rate and impeding regrowth to target cells. We provide evidence that syndecan has two distinct functions during axon regeneration: (1 a canonical function in axon guidance that requires expression outside the nervous system and depends on HS chains and (2 an intrinsic function in growth cone stabilization that is mediated by the syndecan core protein, independently of HS. Thus, syndecan is a regulator of a critical choke point in nervous system repair.

  2. Optogenetic activation of axon guidance receptors controls direction of neurite outgrowth

    Science.gov (United States)

    Endo, M.; Hattori, M.; Toriyabe, H.; Ohno, H.; Kamiguchi, H.; Iino, Y.; Ozawa, T.

    2016-01-01

    Growth cones of extending axons navigate to correct targets by sensing a guidance cue gradient via membrane protein receptors. Although most signaling mechanisms have been clarified using an in vitro approach, it is still difficult to investigate the growth cone behavior in complicated extracellular environment of living animals due to the lack of tools. We develop a system for the light-dependent activation of a guidance receptor, Deleted in Colorectal Cancer (DCC), using Arabidopsis thaliana Cryptochrome 2, which oligomerizes upon blue-light absorption. Blue-light illumination transiently activates DCC via its oligomerization, which initiates downstream signaling in the illuminated subcellular region. The extending axons are attracted by illumination in cultured chick dorsal root ganglion neurons. Moreover, light-mediated navigation of the growth cones is achieved in living Caenorhabditis elegans. The photo-manipulation system is applicable to investigate the relationship between the growth cone behavior and its surrounding environment in living tissue. PMID:27052670

  3. Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adapter protein.

    Science.gov (United States)

    Garrity, P A; Rao, Y; Salecker, I; McGlade, J; Pawson, T; Zipursky, S L

    1996-05-31

    Mutations in the Drosophila gene dreadlocks (dock) disrupt photoreceptor cell (R cell) axon guidance and targeting. Genetic mosaic analysis and cell-type-specific expression of dock transgenes demonstrate dock is required in R cells for proper innervation. Dock protein contains one SH2 and three SH3 domains, implicating it in tyrosine kinase signaling, and is highly related to the human proto-oncogene Nck. Dock expression is detected in R cell growth cones in the target region. We propose Dock transmits signals in the growth cone in response to guidance and targeting cues. These findings provide an important step for dissection of signaling pathways regulating growth cone motility.

  4. Prolyl Isomerase Pin1 Regulates Axon Guidance by Stabilizing CRMP2A Selectively in Distal Axons

    Czech Academy of Sciences Publication Activity Database

    Balaštík, Martin; Zhou, X.Z.; Alberich-Jorda, Meritxell; Weissová, Romana; Žiak, Jakub; Pazyra-Murphy, M.F.; Cosker, K.E.; Machoňová, Olga; Kozmiková, Iryna; Chen, CH.; Pastorino, L.; Asara, J.M.; Cole, A.; Sutherland, C.; Segal, R. A.; Lu, K.P.

    2015-01-01

    Roč. 13, č. 4 (2015), s. 812-828 ISSN 2211-1247 R&D Projects: GA MŠk(CZ) LK11213; GA MŠk LK21307; GA ČR GA15-03796S; GA MŠk LO1419 Institutional support: RVO:68378050 Keywords : Pin1 * axon guidance * Semaphorin 3A Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.870, year: 2015

  5. Coevolution of axon guidance molecule Slit and its receptor Robo.

    Directory of Open Access Journals (Sweden)

    Qi Yu

    Full Text Available Coevolution is important for the maintenance of the interaction between a ligand and its receptor during evolution. The interaction between axon guidance molecule Slit and its receptor Robo is critical for the axon repulsion in neural tissues, which is evolutionarily conserved from planarians to humans. However, the mechanism of coevolution between Slit and Robo remains unclear. In this study, we found that coordinated amino acid changes took place at interacting sites of Slit and Robo by comparing the amino acids at these sites among different organisms. In addition, the high level correlation between evolutionary rate of Slit and Robo was identified in vertebrates. Furthermore, the sites under positive selection of slit and robo were detected in the same lineage such as mosquito and teleost. Overall, our results provide evidence for the coevolution between Slit and Robo.

  6. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    Science.gov (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  7. TIPsy tour guides: How microtubule plus-end tracking proteins (+TIPs facilitate axon guidance

    Directory of Open Access Journals (Sweden)

    Elizabeth A Bearce

    2015-06-01

    Full Text Available The growth cone is a dynamic cytoskeletal vehicle, which drives the end of a developing axon. It serves to interpret and navigate through the complex landscape and guidance cues of the early nervous system. The growth cone’s distinctive cytoskeletal organization offers a fascinating platform to study how extracellular cues can be translated into mechanical outgrowth and turning behaviors. While many studies of cell motility highlight the importance of actin networks in signaling, adhesion, and propulsion, both seminal and emerging works in the field have highlighted a unique and necessary role for microtubules in growth cone navigation. Here, we focus on the role of singular pioneer microtubules, which extend into the growth cone periphery and are regulated by a diverse family of microtubule plus-end tracking proteins (+TIPs. These +TIPs accumulate at the dynamic ends of microtubules, where they are well-positioned to encounter and respond to key signaling events downstream of guidance receptors, catalyzing immediate changes in microtubule stability and actin cross-talk, that facilitate both axonal outgrowth and turning events.

  8. JMJD-1.2/PHF8 controls axon guidance by regulating Hedgehog-like signaling

    DEFF Research Database (Denmark)

    Riveiro, Alba; Mariani, Luca; Malmberg, Kim Emily

    2017-01-01

    Components of the KDM7 family of histone demethylases are implicated in neuronal development and one member, PHF8, is often found to be mutated in cases of X-linked mental retardation. However, how PHF8 regulates neurodevelopmental processes and contributes to the disease is still largely unknown...... the axonal defects. Deficiency of either wrt-8 or grl-16, or reduced expression of homologs of genes promoting Hedgehog signaling, restores correct axon guidance in jmjd-1.2 mutants. Genetic and overexpression data indicate that Hedgehog-related genes act on axon guidance through actin remodelers. Thus, our...... study highlights a novel function of jmjd-1.2 in axon guidance that might be relevant for the onset of X-linked mental retardation and provides compelling evidence of a conserved function of the Hedgehog pathway in C. elegans axon migration....

  9. Precise Somatotopic Thalamocortical Axon Guidance Depends on LPA-Mediated PRG-2/Radixin Signaling

    DEFF Research Database (Denmark)

    Cheng, Jin; Sahani, Sadhna; Hausrat, Torben Johann

    2016-01-01

    Precise connection of thalamic barreloids with their corresponding cortical barrels is critical for processing of vibrissal sensory information. Here, we show that PRG-2, a phospholipid-interacting molecule, is important for thalamocortical axon guidance. Developing thalamocortical fibers both in...

  10. Decreased expression of axon-guidance receptors in the anterior cingulate cortex in autism

    Directory of Open Access Journals (Sweden)

    Suda Shiro

    2011-08-01

    Full Text Available Abstract Background Axon-guidance proteins play a crucial role in brain development. As the dysfunction of axon-guidance signaling is thought to underlie the microstructural abnormalities of the brain in people with autism, we examined the postmortem brains of people with autism to identify any changes in the expression of axon-guidance proteins. Results The mRNA and protein expression of axon-guidance proteins, including ephrin (EFNA4, eEFNB3, plexin (PLXNA4, roundabout 2 (ROBO2 and ROBO3, were examined in the anterior cingulate cortex and primary motor cortex of autistic brains (n = 8 and n = 7, respectively and control brains (n = 13 and n = 8, respectively using real-time reverse-transcriptase PCR (RT-PCR and western blotting. Real-time RT-PCR revealed that the relative expression levels of EFNB3, PLXNA4A and ROBO2 were significantly lower in the autistic group than in the control group. The protein levels of these three genes were further analyzed by western blotting, which showed that the immunoreactive values for PLXNA4 and ROBO2, but not for EFNB3, were significantly reduced in the ACC of the autistic brains compared with control brains. Conclusions In this study, we found decreased expression of axon-guidance proteins such as PLXNA4 and ROBO2 in the brains of people with autism, and suggest that dysfunctional axon-guidance protein expression may play an important role in the pathophysiology of autism.

  11. A multi-component model of the developing retinocollicular pathway incorporating axonal and synaptic growth.

    Directory of Open Access Journals (Sweden)

    Keith B Godfrey

    2009-12-01

    Full Text Available During development, neurons extend axons to different brain areas and produce stereotypical patterns of connections. The mechanisms underlying this process have been intensively studied in the visual system, where retinal neurons form retinotopic maps in the thalamus and superior colliculus. The mechanisms active in map formation include molecular guidance cues, trophic factor release, spontaneous neural activity, spike-timing dependent plasticity (STDP, synapse creation and retraction, and axon growth, branching and retraction. To investigate how these mechanisms interact, a multi-component model of the developing retinocollicular pathway was produced based on phenomenological approximations of each of these mechanisms. Core assumptions of the model were that the probabilities of axonal branching and synaptic growth are highest where the combined influences of chemoaffinity and trophic factor cues are highest, and that activity-dependent release of trophic factors acts to stabilize synapses. Based on these behaviors, model axons produced morphologically realistic growth patterns and projected to retinotopically correct locations in the colliculus. Findings of the model include that STDP, gradient detection by axonal growth cones and lateral connectivity among collicular neurons were not necessary for refinement, and that the instructive cues for axonal growth appear to be mediated first by molecular guidance and then by neural activity. Although complex, the model appears to be insensitive to variations in how the component developmental mechanisms are implemented. Activity, molecular guidance and the growth and retraction of axons and synapses are common features of neural development, and the findings of this study may have relevance beyond organization in the retinocollicular pathway.

  12. The cytoskeleton-associated protein SCHIP1 is involved in axon guidance, and is required for piriform cortex and anterior commissure development.

    Science.gov (United States)

    Klingler, Esther; Martin, Pierre-Marie; Garcia, Marta; Moreau-Fauvarque, Caroline; Falk, Julien; Chareyre, Fabrice; Giovannini, Marco; Chédotal, Alain; Girault, Jean-Antoine; Goutebroze, Laurence

    2015-06-01

    SCHIP1 is a cytoplasmic partner of cortical cytoskeleton ankyrins. The IQCJ-SCHIP1 isoform is a component of axon initial segments and nodes of Ranvier of mature axons in peripheral and central nervous systems, where it associates with membrane complexes comprising cell adhesion molecules. SCHIP1 is also expressed in the mouse developing central nervous system during embryonic stages of active axonogenesis. Here, we identify a new and early role for SCHIP1 during axon development and establishment of the anterior commissure (AC). The AC is composed of axons from the piriform cortex, the anterior olfactory nucleus and the amygdala. Schip1 mutant mice displayed early defects in AC development that might result from impaired axon growth and guidance. In addition, mutant mice presented a reduced thickness of the piriform cortex, which affected projection neurons in layers 2/3 and was likely to result from cell death rather than from impairment of neuron generation or migration. Piriform cortex neurons from E14.5 mutant embryos displayed axon initiation/outgrowth delay and guidance defects in vitro. The sensitivity of growth cones to semaphorin 3F and Eph receptor B2, two repulsive guidance cues crucial for AC development, was increased, providing a possible basis for certain fiber tract alterations. Thus, our results reveal new evidence for the involvement of cortical cytoskeleton-associated proteins in the regulation of axon development and their importance for the formation of neuronal circuits. © 2015. Published by The Company of Biologists Ltd.

  13. Seamless reconstruction of intact adult-born neurons by serial end-block imaging reveals complex axonal guidance and development in the adult hippocampus.

    Science.gov (United States)

    Sun, Gerald J; Sailor, Kurt A; Mahmood, Qasim A; Chavali, Nikhil; Christian, Kimberly M; Song, Hongjun; Ming, Guo-li

    2013-07-10

    In the adult mammalian hippocampus, newborn dentate granule cells are continuously integrated into the existing circuitry and contribute to specific brain functions. Little is known about the axonal development of these newborn neurons in the adult brain due to technological challenges that have prohibited large-scale reconstruction of long, thin, and complex axonal processes within the mature nervous system. Here, using a new serial end-block imaging (SEBI) technique, we seamlessly reconstructed axonal and dendritic processes of intact individual retrovirus-labeled newborn granule cells at different developmental stages in the young adult mouse hippocampus. We found that adult-born dentate granule cells exhibit tortuous, yet highly stereotyped, axonal projections to CA3 hippocampal subregions. Primary axonal projections of cohorts of new neurons born around the same time organize into laminar patterns with staggered terminations that stack along the septo-temporal hippocampal axis. Analysis of individual newborn neuron development further defined an initial phase of rapid axonal and dendritic growth within 21 d after newborn neuron birth, followed by minimal growth of primary axonal and whole dendritic processes through the last time point examined at 77 d. Our results suggest that axonal development and targeting is a highly orchestrated, precise process in the adult brain. These findings demonstrate a striking regenerative capacity of the mature CNS to support long-distance growth and guidance of neuronal axons. Our SEBI approach can be broadly applied for analysis of intact, complex neuronal projections in limitless tissue volume.

  14. Peptide sharing between influenza A H1N1 hemagglutinin and human axon guidance proteins.

    Science.gov (United States)

    Lucchese, Guglielmo; Capone, Giovanni; Kanduc, Darja

    2014-03-01

    Epidemiologic data suggest that maternal microbial infections may cause fetal neurodevelopmental disorders, potentially increasing susceptibility to heavy psychopathologies such as schizophrenia, schizophreniform disorder, autism, pervasive developmental disorders, bipolar disorders, psychosis, epilepsy, language and speech disorders, and cognitive impairment in adult offspring. However, the molecular pathomechanisms underlying such a relationship are not clear. Here we analyze the potential role of the maternal immune response to viral infection in determining fetal brain injuries that increase the risk of neurological disorders in the adult. We use influenza infection as a disease model and human axon guidance pathway, a key process in the formation of neural network during midgestation, as a potential fetal target of immune insults. Specifically, we examined influenza A H1N1 hemagglutinin (HA), an antigenic viral protein, for amino acid sequence similarity to a random library of 188 axon guidance proteins. We obtain the results that (1) contrary to any theoretical expectations, 45 viral pentapeptide matches are distributed throughout a subset of 36 guidance molecules; (2) in 24 guidance proteins, the peptide sharing with HA antigen involves already experimentally validated influenza HA epitopes; and (3) most of the axon guidance vs HA peptide overlap is conserved among influenza A viral strains and subsets. Taken together, our data indicate that immune cross-reactivity between influenza HA and axon guidance molecules is possible and may well represent a pathologic mechanism capable of determining neurodevelopmental disruption in the fetus.

  15. Islet Coordinately Regulates Motor Axon Guidance and Dendrite Targeting through the Frazzled/DCC Receptor

    Directory of Open Access Journals (Sweden)

    Celine Santiago

    2017-02-01

    Full Text Available Motor neuron axon targeting in the periphery is correlated with the positions of motor neuron inputs in the CNS, but how these processes are coordinated to form a myotopic map remains poorly understood. We show that the LIM homeodomain factor Islet (Isl controls targeting of both axons and dendrites in Drosophila motor neurons through regulation of the Frazzled (Fra/DCC receptor. Isl is required for fra expression in ventrally projecting motor neurons, and isl and fra mutants have similar axon guidance defects. Single-cell labeling indicates that isl and fra are also required for dendrite targeting in a subset of motor neurons. Finally, overexpression of Fra rescues axon and dendrite targeting defects in isl mutants. These results indicate that Fra acts downstream of Isl in both the periphery and the CNS, demonstrating how a single regulatory relationship is used in multiple cellular compartments to coordinate neural circuit wiring.

  16. Axon guidance pathways served as common targets for human speech/language evolution and related disorders.

    Science.gov (United States)

    Lei, Huimeng; Yan, Zhangming; Sun, Xiaohong; Zhang, Yue; Wang, Jianhong; Ma, Caihong; Xu, Qunyuan; Wang, Rui; Jarvis, Erich D; Sun, Zhirong

    2017-11-01

    Human and several nonhuman species share the rare ability of modifying acoustic and/or syntactic features of sounds produced, i.e. vocal learning, which is the important neurobiological and behavioral substrate of human speech/language. This convergent trait was suggested to be associated with significant genomic convergence and best manifested at the ROBO-SLIT axon guidance pathway. Here we verified the significance of such genomic convergence and assessed its functional relevance to human speech/language using human genetic variation data. In normal human populations, we found the affected amino acid sites were well fixed and accompanied with significantly more associated protein-coding SNPs in the same genes than the rest genes. Diseased individuals with speech/language disorders have significant more low frequency protein coding SNPs but they preferentially occurred outside the affected genes. Such patients' SNPs were enriched in several functional categories including two axon guidance pathways (mediated by netrin and semaphorin) that interact with ROBO-SLITs. Four of the six patients have homozygous missense SNPs on PRAME gene family, one youngest gene family in human lineage, which possibly acts upon retinoic acid receptor signaling, similarly as FOXP2, to modulate axon guidance. Taken together, we suggest the axon guidance pathways (e.g. ROBO-SLIT, PRAME gene family) served as common targets for human speech/language evolution and related disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Developmental time windows for axon growth influence neuronal network topology.

    Science.gov (United States)

    Lim, Sol; Kaiser, Marcus

    2015-04-01

    Early brain connectivity development consists of multiple stages: birth of neurons, their migration and the subsequent growth of axons and dendrites. Each stage occurs within a certain period of time depending on types of neurons and cortical layers. Forming synapses between neurons either by growing axons starting at similar times for all neurons (much-overlapped time windows) or at different time points (less-overlapped) may affect the topological and spatial properties of neuronal networks. Here, we explore the extreme cases of axon formation during early development, either starting at the same time for all neurons (parallel, i.e., maximally overlapped time windows) or occurring for each neuron separately one neuron after another (serial, i.e., no overlaps in time windows). For both cases, the number of potential and established synapses remained comparable. Topological and spatial properties, however, differed: Neurons that started axon growth early on in serial growth achieved higher out-degrees, higher local efficiency and longer axon lengths while neurons demonstrated more homogeneous connectivity patterns for parallel growth. Second, connection probability decreased more rapidly with distance between neurons for parallel growth than for serial growth. Third, bidirectional connections were more numerous for parallel growth. Finally, we tested our predictions with C. elegans data. Together, this indicates that time windows for axon growth influence the topological and spatial properties of neuronal networks opening up the possibility to a posteriori estimate developmental mechanisms based on network properties of a developed network.

  18. RGM is a repulsive guidance molecule for retinal axons

    DEFF Research Database (Denmark)

    Monnier, Philippe P; Sierra, Ana; Macchi, Paolo

    2002-01-01

    the temporal half, is guided by repulsive cues expressed in a graded fashion in the optic tectum, part of the midbrain. Here we report the cloning and functional characterization of a membrane-associated glycoprotein, which we call RGM (repulsive guidance molecule). This molecule shares no sequence homology...

  19. B-RAF kinase drives developmental axon growth and promotes axon regeneration in the injured mature CNS

    Science.gov (United States)

    O’Donovan, Kevin J.; Ma, Kaijie; Guo, Hengchang; Wang, Chen; Sun, Fang; Han, Seung Baek; Kim, Hyukmin; Wong, Jamie K.; Charron, Jean; Zou, Hongyan; Son, Young-Jin; He, Zhigang

    2014-01-01

    Activation of intrinsic growth programs that promote developmental axon growth may also facilitate axon regeneration in injured adult neurons. Here, we demonstrate that conditional activation of B-RAF kinase alone in mouse embryonic neurons is sufficient to drive the growth of long-range peripheral sensory axon projections in vivo in the absence of upstream neurotrophin signaling. We further show that activated B-RAF signaling enables robust regenerative growth of sensory axons into the spinal cord after a dorsal root crush as well as substantial axon regrowth in the crush-lesioned optic nerve. Finally, the combination of B-RAF gain-of-function and PTEN loss-of-function promotes optic nerve axon extension beyond what would be predicted for a simple additive effect. We conclude that cell-intrinsic RAF signaling is a crucial pathway promoting developmental and regenerative axon growth in the peripheral and central nervous systems. PMID:24733831

  20. Metazoan Scc4 homologs link sister chromatid cohesion to cell and axon migration guidance.

    Directory of Open Access Journals (Sweden)

    Vlad C Seitan

    2006-07-01

    Full Text Available Saccharomyces cerevisiae Scc2 binds Scc4 to form an essential complex that loads cohesin onto chromosomes. The prevalence of Scc2 orthologs in eukaryotes emphasizes a conserved role in regulating sister chromatid cohesion, but homologs of Scc4 have not hitherto been identified outside certain fungi. Some metazoan orthologs of Scc2 were initially identified as developmental gene regulators, such as Drosophila Nipped-B, a regulator of cut and Ultrabithorax, and delangin, a protein mutant in Cornelia de Lange syndrome. We show that delangin and Nipped-B bind previously unstudied human and fly orthologs of Caenorhabditis elegans MAU-2, a non-axis-specific guidance factor for migrating cells and axons. PSI-BLAST shows that Scc4 is evolutionarily related to metazoan MAU-2 sequences, with the greatest homology evident in a short N-terminal domain, and protein-protein interaction studies map the site of interaction between delangin and human MAU-2 to the N-terminal regions of both proteins. Short interfering RNA knockdown of human MAU-2 in HeLa cells resulted in precocious sister chromatid separation and in impaired loading of cohesin onto chromatin, indicating that it is functionally related to Scc4, and RNAi analyses show that MAU-2 regulates chromosome segregation in C. elegans embryos. Using antisense morpholino oligonucleotides to knock down Xenopus tropicalis delangin or MAU-2 in early embryos produced similar patterns of retarded growth and developmental defects. Our data show that sister chromatid cohesion in metazoans involves the formation of a complex similar to the Scc2-Scc4 interaction in the budding yeast. The very high degree of sequence conservation between Scc4 homologs in complex metazoans is consistent with increased selection pressure to conserve additional essential functions, such as regulation of cell and axon migration during development.

  1. Functional complexity of the axonal growth cone: a proteomic analysis.

    Directory of Open Access Journals (Sweden)

    Adriana Estrada-Bernal

    Full Text Available The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥ 99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions.

  2. Draxin, an axon guidance protein, affects chick trunk neural crest migration.

    Science.gov (United States)

    Su, Yuhong; Naser, Iftekhar B; Islam, Shahidul M; Zhang, Sanbing; Ahmed, Giasuddin; Chen, Sandy; Shinmyo, Yohei; Kawakami, Minoru; Yamamura, Ken-ichi; Tanaka, Hideaki

    2009-12-01

    The neural crest is a multipotent population of migratory cells that arises in the central nervous system and subsequently migrates along defined stereotypic pathways. In the present work, we analyzed the role of a repulsive axon guidance protein, draxin, in the migration of neural crest cells. Draxin is expressed in the roof plate of the chick trunk spinal cord and around the early migration pathway of neural crest cells. Draxin modulates chick neural crest cell migration in vitro by reducing the polarization of these cells. When exposed to draxin, the velocity of migrating neural crest cells was reduced, and the cells changed direction so frequently that the net migration distance was also reduced. Overexpression of draxin also caused some early migrating neural crest cells to change direction to the dorsolateral pathway in the chick trunk region, presumably due to draxin's inhibitory activity. These results demonstrate that draxin, an axon guidance protein, can also affect trunk neural crest migration in the chick embryo.

  3. A genomic pathway approach to a complex disease: axon guidance and Parkinson disease.

    Directory of Open Access Journals (Sweden)

    Timothy G Lesnick

    2007-06-01

    Full Text Available While major inroads have been made in identifying the genetic causes of rare Mendelian disorders, little progress has been made in the discovery of common gene variations that predispose to complex diseases. The single gene variants that have been shown to associate reproducibly with complex diseases typically have small effect sizes or attributable risks. However, the joint actions of common gene variants within pathways may play a major role in predisposing to complex diseases (the paradigm of complex genetics. The goal of this study was to determine whether polymorphism in a candidate pathway (axon guidance predisposed to a complex disease (Parkinson disease [PD]. We mined a whole-genome association dataset and identified single nucleotide polymorphisms (SNPs that were within axon-guidance pathway genes. We then constructed models of axon-guidance pathway SNPs that predicted three outcomes: PD susceptibility (odds ratio = 90.8, p = 4.64 x 10(-38, survival free of PD (hazards ratio = 19.0, p = 5.43 x 10(-48, and PD age at onset (R(2 = 0.68, p = 1.68 x 10(-51. By contrast, models constructed from thousands of random selections of genomic SNPs predicted the three PD outcomes poorly. Mining of a second whole-genome association dataset and mining of an expression profiling dataset also supported a role for many axon-guidance pathway genes in PD. These findings could have important implications regarding the pathogenesis of PD. This genomic pathway approach may also offer insights into other complex diseases such as Alzheimer disease, diabetes mellitus, nicotine and alcohol dependence, and several cancers.

  4. Guidance of Drosophila Mushroom Body Axons Depends upon DRL-Wnt Receptor Cleavage in the Brain Dorsomedial Lineage Precursors

    Directory of Open Access Journals (Sweden)

    Elodie Reynaud

    2015-05-01

    Full Text Available In vivo axon pathfinding mechanisms in the neuron-dense brain remain relatively poorly characterized. We study the Drosophila mushroom body (MB axons, whose α and β branches connect to different brain areas. We show that the Ryk family WNT5 receptor, DRL (derailed, which is expressed in the dorsomedial lineages, brain structure precursors adjacent to the MBs, is required for MB α branch axon guidance. DRL acts to capture and present WNT5 to MB axons rather than transduce a WNT5 signal. DRL’s ectodomain must be cleaved and shed to guide α axons. DRL-2, another Ryk, is expressed within MB axons and functions as a repulsive WNT5 signaling receptor. Finally, our biochemical data support the existence of a ternary complex composed of the cleaved DRL ectodomain, WNT5, and DRL-2. Thus, the interaction of MB-extrinsic and -intrinsic Ryks via their common ligand acts to guide MB α axons.

  5. Pannexin 1 Modulates Axonal Growth in Mouse Peripheral Nerves

    Directory of Open Access Journals (Sweden)

    Steven M. Horton

    2017-11-01

    Full Text Available The pannexin family of channels consists of three members—pannexin-1 (Panx1, pannexin-2 (Panx2, and pannexin-3 (Panx3 that enable the exchange of metabolites and signaling molecules between intracellular and extracellular compartments. Pannexin-mediated release of intracellular ATP into the extracellular space has been tied to a number of cellular activities, primarily through the activity of type P2 purinergic receptors. Previous work indicates that the opening of Panx1 channels and activation of purinergic receptors by extracellular ATP may cause inflammation and apoptosis. In the CNS (central nervous system and PNS (peripheral nervous system, coupled pannexin, and P2 functions have been linked to peripheral sensitization (pain pathways. Purinergic pathways are also essential for other critical processes in the PNS, including myelination and neurite outgrowth. However, whether such pathways are pannexin-dependent remains to be determined. In this study, we use a Panx1 knockout mouse model and pharmacological inhibitors of the Panx1 and the ATP-mediated signaling pathway to fill gaps in our understanding of Panx1 localization in peripheral nerves, roles for Panx1 in axonal outgrowth and myelination, and neurite extension. Our data show that Panx1 is localized to axonal, myelin, and vascular compartments of the peripheral nerves. Knockout of Panx1 gene significantly increased axonal caliber in vivo and axonal growth rate in cultured dorsal root ganglia (DRG neurons. Furthermore, genetic knockout of Panx1 or inhibition of components of purinergic signaling, by treatment with probenecid and apyrase, resulted in denser axonal outgrowth from cultured DRG explants compared to untreated wild-types. Our findings suggest that Panx1 regulates axonal growth in the peripheral nervous system.

  6. The Axon Guidance Receptor Gene ROBO1 Is a Candidate Gene for Developmental Dyslexia.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples, the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.

  7. The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia.

    Directory of Open Access Journals (Sweden)

    Katariina Hannula-Jouppi

    2005-10-01

    Full Text Available Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples, the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.

  8. SYD-1C, UNC-40 (DCC) and SAX-3 (Robo) Function Interdependently to Promote Axon Guidance by Regulating the MIG-2 GTPase

    Science.gov (United States)

    Xu, Yan; Taru, Hidenori; Jin, Yishi; Quinn, Christopher C.

    2015-01-01

    During development, axons must integrate directional information encoded by multiple guidance cues and their receptors. Axon guidance receptors, such as UNC-40 (DCC) and SAX-3 (Robo), can function individually or combinatorially with other guidance receptors to regulate downstream effectors. However, little is known about the molecular mechanisms that mediate combinatorial guidance receptor signaling. Here, we show that UNC-40, SAX-3 and the SYD-1 RhoGAP-like protein function interdependently to regulate the MIG-2 (Rac) GTPase in the HSN axon of C. elegans. We find that SYD-1 mediates an UNC-6 (netrin) independent UNC-40 activity to promote ventral axon guidance. Genetic analysis suggests that SYD-1 function in axon guidance requires both UNC-40 and SAX-3 activity. Moreover, the cytoplasmic domains of UNC-40 and SAX-3 bind to SYD-1 and SYD-1 binds to and negatively regulates the MIG-2 (Rac) GTPase. We also find that the function of SYD-1 in axon guidance is mediated by its phylogenetically conserved C isoform, indicating that the role of SYD-1 in guidance is distinct from its previously described roles in synaptogenesis and axonal specification. Our observations reveal a molecular mechanism that can allow two guidance receptors to function interdependently to regulate a common downstream effector, providing a potential means for the integration of guidance signals. PMID:25876065

  9. A Drosophila protein-tyrosine phosphatase associates with an adapter protein required for axonal guidance.

    Science.gov (United States)

    Clemens, J C; Ursuliak, Z; Clemens, K K; Price, J V; Dixon, J E

    1996-07-19

    We have used the yeast two-hybrid system to isolate a novel Drosophila adapter protein, which interacts with the Drosophila protein-tyrosine phosphatase (PTP) dPTP61F. Absence of this protein in Drosophila causes the mutant photoreceptor axon phenotype dreadlocks (dock) (Garrity, P. A., Rao, Y., Salecker, I., and Zipursky, S. L.(1996) Cell 85, 639-650). Dock is similar to the mammalian oncoprotein Nck and contains three Src homology 3 (SH3) domains and one Src homology 2 (SH2) domain. The interaction of dPTP61F with Dock was confirmed in vivo by immune precipitation experiments. A sequence containing five PXXP motifs from the non-catalytic domain of the PTP is sufficient for interaction with Dock. This suggests that binding to the PTP is mediated by one or more of the SH3 domains of Dock. Immune precipitations of Dock also co-precipitate two tyrosine-phosphorylated proteins having molecular masses of 190 and 145 kDa. Interactions between Dock and these tyrosine-phosphorylated proteins are likely mediated by the Dock SH2 domain. These findings identify potential signal-transducing partners of Dock and propose a role for dPTP61F and the unidentified phosphoproteins in axonal guidance.

  10. Effects of medium flow on axon growth with or without nerve growth factor.

    Science.gov (United States)

    Kumamoto, Junichi; Kitahata, Hiroyuki; Goto, Makiko; Nagayama, Masaharu; Denda, Mitsuhiro

    2015-09-11

    Axon growth is a crucial process in regeneration of damaged nerves. On the other hand, elongation of nerve fibers in the epidermis has been observed in skin of atopic dermatitis patients. Thus, regulation of nerve fiber extension might be an effective strategy to accelerate nerve regeneration and/or to reduce itching in pruritus dermatosis. We previously demonstrated that neurons and epidermal keratinocytes similarly contain multiple receptors that are activated by various environmental factors, and in particular, keratinocytes are influenced by shear stress. Thus, in the present study, we evaluated the effects of micro-flow of the medium on axon growth in the presence or absence of nerve growth factor (NGF), using cultured dorsal-root-ganglion (DRG) cells. The apparatus, AXIS™, consists of two chambers connected by a set of microgrooves, through which signaling molecules and axons, but not living cells, can pass. When DRG cells were present in chamber 1, NGF was present in chamber 2, and micro-flow was directed from chamber 1 to chamber 2, axon growth was significantly increased compared with other conditions. Acceleration of axon growth in the direction of the micro-flow was also observed in the absence of NGF. These results suggest that local micro-flow might significantly influence axon growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF.

    Directory of Open Access Journals (Sweden)

    Keiko Miwa

    Full Text Available Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs and sympathetic neurons (SNs isolated from neonatal rat ventricles and superior cervical ganglia were cultured at a close distance. Then, morphological and functional coupling between SNs and VMs was assessed in response to GDNF (10 ng/ml or nerve growth factor (50 ng/ml. As a result, fractions of neurofilament-M-positive axons and synapsin-I-positive area over the surface of VMs were markedly increased with GDNF by 9-fold and 25-fold, respectively, compared to control without neurotrophic factors. Pre- and post-synaptic stimulation of β1-adrenergic receptors (BAR with nicotine and noradrenaline, respectively, resulted in an increase of the spontaneous beating rate of VMs co-cultured with SNs in the presence of GDNF. GDNF overexpressing VMs by adenovirus vector (AdGDNF-VMs attracted more axons from SNs compared with mock-transfected VMs. In vivo, axon outgrowth toward the denervated myocardium in adult rat hearts after cryoinjury was also enhanced significantly by adenovirus-mediated GDNF overexpression. GDNF acts as a potent chemoattractant for sympathetic innervation of ventricular myocytes, and is a promising molecular target for regulation of cardiac function in diseased hearts.

  12. Regulation of Axon Guidance by the Wnt Receptor Ror/CAM-1 in the PVT Guidepost Cell in Caenorhabditis elegans.

    Science.gov (United States)

    Chien, Jason; Devkota, Ranjan; Yosef, Nebeyu; Mörck, Catarina

    2017-12-01

    The Caenorhabditis elegans ventral nerve cord (VNC) consists of two asymmetric bundles of neurons and axons that are separated by the midline. How the axons are guided to stay on the correct sides of the midline remains poorly understood. Here we provide evidence that the conserved Wnt signaling pathway along with the Netrin and Robo pathways constitute a combinatorial code for midline guidance of PVP and PVQ axons that extend into the VNC. Combined loss of the Wnts CWN-1, CWN-2, and EGL-20 or loss of the Wnt receptor CAM-1 caused >70% of PVP and PVQ axons to inappropriately cross over from the left side to the right side. Loss of the Frizzled receptor LIN-17 or the planar cell polarity (PCP) protein VANG-1 also caused cross over defects that did not enhance those in the cam-1 mutant, indicating that the proteins function together in midline guidance. Strong cam-1 expression can be detected in the PVQs and the guidepost cell PVT that is located on the midline. However, only when cam-1 is expressed in PVT are the crossover defects of PVP and PVQ rescued, showing that CAM-1 functions nonautonomously in PVT to prevent axons from crossing the midline. Copyright © 2017 by the Genetics Society of America.

  13. β3GnT2 maintains adenylyl cyclase-3 signaling and axon guidance molecule expression in the olfactory epithelium.

    Science.gov (United States)

    Henion, Timothy R; Faden, Ashley A; Knott, Thomas K; Schwarting, Gerald A

    2011-04-27

    In the olfactory epithelium (OE), odorant receptor stimulation generates cAMP signals that function in both odor detection and the regulation of axon guidance molecule expression. The enzyme that synthesizes cAMP, adenylyl cyclase 3 (AC3), is coexpressed in olfactory sensory neurons (OSNs) with poly-N-acetyllactosamine (PLN) oligosaccharides determined by the glycosyltransferase β3GnT2. The loss of either enzyme results in similar defects in olfactory bulb (OB) innervation and OSN survival, suggesting that glycosylation may be important for AC3 function. We show here that AC3 is extensively modified with N-linked PLN, which is essential for AC3 activity and localization. On Western blots, AC3 from the wild-type OE migrates diffusely as a heavily glycosylated 200 kDa band that interacts with the PLN-binding lectin LEA. AC3 from the β3GnT2(-/-) OE loses these PLN modifications, migrating instead as a 140 kDa glycoprotein. Furthermore, basal and forskolin-stimulated cAMP production is reduced 80-90% in the β3GnT2(-/-) OE. Although AC3 traffics normally to null OSN cilia, it is absent from axon projections that aberrantly target the OB. The cAMP-dependent guidance receptor neuropilin-1 is also lost from β3GnT2(-/-) OSNs and axons, while semaphorin-3A ligand expression is upregulated. In addition, kirrel2, a mosaically expressed adhesion molecule that functions in axon sorting, is absent from β3GnT2(-/-) OB projections. These results demonstrate that PLN glycans are essential in OSNs for proper AC3 localization and function. We propose that the loss of cAMP-dependent guidance cues is also a critical factor in the severe axon guidance defects observed in β3GnT2(-/-) mice.

  14. Overexpression of Pax6 results in microphthalmia, retinal dysplasia and defective retinal ganglion cell axon guidance

    Directory of Open Access Journals (Sweden)

    Jeffery Glen

    2008-05-01

    contralateral optic tracts at the optic chiasm vary differently with gene dosage. Increasing dosage increases the proportion projecting ipsilaterally regardless of the size of the total projection. Conclusion Pax6 overexpression does not obviously impair the initial formation of the eye and its major cell-types but prevents normal development of the retina from about E14.5, leading eventually to severe retinal degeneration in postnatal life. This sequence is different to that underlying microphthalmia in Pax6+/- heterozygotes, which is due primarily to defects in the initial stages of lens formation. Before the onset of severe retinal dysplasia, Pax6 overexpression causes defects of retinal axons, preventing their normal growth and navigation through the optic chiasm.

  15. Real time large scale in vivo observations reveal intrinsic synchrony, plasticity and growth cone dynamics of midline crossing axons during neuronal wiring of the zebrafish spinal cord.

    Science.gov (United States)

    Andersen, Søren S L

    2017-08-30

    How axons are wired in the vertebrate spinal cord has been studied mostly using fixed samples or looking at individually growing axons. Using light-sheet microscopy, early neural development is here followed in vivo in real time at high resolution along several hundred micrometers of the zebrafish spinal cord. The dynamics and time course of cellular development and axonal wiring of interneurons expressing GFP under control of the dmrt3 promotor are analyzed. Following neurulation, commissural axons are observed crossing the ventral floor plate midline perpendicularly at about 20 microns/h and in a manner dependent on the Robo3 but not the EphA4 receptors. Ipsilateral axons extend concurrently, at three to six times higher growth rates and independently of said receptors. At guidance points, commissural axons are seen to decrease their growth rate and cones increase in size. Commissural filopodia appear on the floor plate to interact with the nascent neural network, and thereby trigger immediate plastic and reversible sinusoidal-shaped bending movements of the neighboring commissural shafts. A 3D reconstruction of the 4 dpf spinal cord demonstrates variable dmrt3 cell body position and dimensions, confirmed by single cell FlowSight analysis, and also a minor second population of commissurals crossing later and more dorsally. The recordings show the strikingly stereotyped spatio-temporal control that governs axonal wiring of the zebrafish spinal cord. The live observations give renewed perspective on the mechanisms of axonal guidance in the spinal cord that provide for a discussion of the current distinction between diffusible long-range versus substrate-bound short-range guidance cues. This article is protected by copyright. All rights reserved. © 2017 Wiley Periodicals, Inc.

  16. Nerve growth factor released from a novel PLGA nerve conduit can improve axon growth

    Science.gov (United States)

    Lin, Keng-Min; Shea, Jill; Gale, Bruce K.; Sant, Himanshu; Larrabee, Patti; Agarwal, Jay

    2016-04-01

    Nerve injury can occur due to penetrating wounds, compression, traumatic stretch, and cold exposure. Despite prompt repair, outcomes are dismal. In an attempt to help resolve this challenge, in this work, a poly-lactic-co-glycolic acid (PLGA) nerve conduit with associated biodegradable drug reservoir was designed, fabricated, and tested. Unlike current nerve conduits, this device is capable of fitting various clinical scenarios by delivering different drugs without reengineering the whole system. To demonstrate the potential of this device for nerve repair, a series of experiments were performed using nerve growth factor (NGF). First, an NGF dosage curve was developed to determine the minimum NGF concentration for optimal axonal outgrowth on chick dorsal root ganglia (DRG) cells. Next, PLGA devices loaded with NGF were evaluated for sustained drug release and axon growth enhancement with the released drug. A 20 d in vitro release test was conducted and the nerve conduit showed the ability to meet and maintain the minimum NGF requirement determined previously. Bioactivity assays of the released NGF showed that drug released from the device between the 15th and 20th day could still promote axon growth (76.6-95.7 μm) in chick DRG cells, which is in the range of maximum growth. These novel drug delivery conduits show the ability to deliver NGF at a dosage that efficiently promotes ex vivo axon growth and have the potential for in vivo application to help bridge peripheral nerve gaps.

  17. The Alzheimer's β-secretase enzyme BACE1 is required for accurate axon guidance of olfactory sensory neurons and normal glomerulus formation in the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Rajapaksha Tharinda W

    2011-12-01

    Full Text Available Abstract Background The β-secretase, β-site amyloid precursor protein cleaving enzyme 1 (BACE1, is a prime therapeutic target for lowering cerebral β-amyloid (Aβ levels in Alzheimer's disease (AD. Clinical development of BACE1 inhibitors is being intensely pursued. However, little is known about the physiological functions of BACE1, and the possibility exists that BACE1 inhibition may cause mechanism-based side effects. Indeed, BACE1-/- mice exhibit a complex neurological phenotype. Interestingly, BACE1 co-localizes with presynaptic neuronal markers, indicating a role in axons and/or terminals. Moreover, recent studies suggest axon guidance molecules are potential BACE1 substrates. Here, we used a genetic approach to investigate the function of BACE1 in axon guidance of olfactory sensory neurons (OSNs, a well-studied model of axon targeting in vivo. Results We bred BACE1-/- mice with gene-targeted mice in which GFP is expressed from the loci of two odorant-receptors (ORs, MOR23 and M72, and olfactory marker protein (OMP to produce offspring that were heterozygous for MOR23-GFP, M72-GFP, or OMP-GFP and were either BACE1+/+ or BACE1-/-. BACE1-/- mice had olfactory bulbs (OBs that were smaller and weighed less than OBs of BACE1+/+ mice. In wild-type mice, BACE1 was present in OSN axon terminals in OB glomeruli. In whole-mount preparations and tissue sections, many OB glomeruli from OMP-GFP; BACE1-/- mice were malformed compared to wild-type glomeruli. MOR23-GFP; BACE1-/- mice had an irregular MOR23 glomerulus that was innervated by randomly oriented, poorly fasciculated OSN axons compared to BACE1+/+ mice. Most importantly, M72-GFP; BACE1-/- mice exhibited M72 OSN axons that were mis-targeted to ectopic glomeruli, indicating impaired axon guidance in BACE1-/- mice. Conclusions Our results demonstrate that BACE1 is required for the accurate targeting of OSN axons and the proper formation of glomeruli in the OB, suggesting a role for BACE1 in

  18. Misdirection and guidance of regenerating axons after experimental nerve injury and repair

    NARCIS (Netherlands)

    de Ruiter, Godard C W; Spinner, Robert J; Verhaagen, J.; Malessy, Martijn J A

    Misdirection of regenerating axons is one of the factors that can explain the limited results often found after nerve injury and repair. In the repair of mixed nerves innervating different distal targets (skin and muscle), misdirection may, for example, lead to motor axons projecting toward skin,

  19. Misdirection and guidance of regenerating axons after experimental nerve injury and repair A review

    NARCIS (Netherlands)

    Ruiter, G.C.W.; Spinner, R.J.; Verhaagen, J.; Malessay, M.J.A.

    2014-01-01

    Misdirection of regenerating axons is one of the factors that can explain the limited results often found after nerve injury and repair. In the repair of mixed nerves innervating different distal targets (skin and muscle), misdirection may, for example, lead to motor axons projecting toward skin,

  20. Misdirection and guidance of regenerating motor axons after experimental nerve injury and repair

    NARCIS (Netherlands)

    Ruiter, Godard de

    2013-01-01

    Misdirection of regenerating motor axons is one of the factors that can explain the disappointing recovery of function often observed after nerve injury and repair. In the first part of this thesis we quantified misdirection of motor axon regeneration after different types of nerve injury and repair

  1. N-docosahexaenoylethanolamine regulates Hedgehog signaling and promotes growth of cortical axons

    Directory of Open Access Journals (Sweden)

    Giorgi Kharebava

    2015-12-01

    Full Text Available Axonogenesis, a process for the establishment of neuron connectivity, is central to brain function. The role of metabolites derived from docosahexaenoic acid (DHA, 22:6n-3 that is specifically enriched in the brain, has not been addressed in axon development. In this study, we tested if synaptamide (N-docosahexaenoylethanolamine, an endogenous metabolite of DHA, affects axon growth in cultured cortical neurons. We found that synaptamide increased the average axon length, inhibited GLI family zinc finger 1 (GLI1 transcription and sonic hedgehog (Shh target gene expression while inducing cAMP elevation. Similar effects were produced by cyclopamine, a regulator of the Shh pathway. Conversely, Shh antagonized elevation of cAMP and blocked synaptamide-mediated increase in axon length. Activation of Shh pathway by a smoothened (SMO agonist (SAG or overexpression of SMO did not inhibit axon growth mediated by synaptamide or cyclopamine. Instead, adenylate cyclase inhibitor SQ22536 abolished synaptamide-mediated axon growth indicating requirement of cAMP elevation for this process. Our findings establish that synaptamide promotes axon growth while Shh antagonizes synaptamide-mediated cAMP elevation and axon growth by a SMO-independent, non-canonical pathway.

  2. N-cadherin regulates primary motor axon growth and branching during zebrafish embryonic development.

    Science.gov (United States)

    Brusés, Juan L

    2011-06-15

    N-cadherin is a classical type I cadherin that contributes to the formation of neural circuits by regulating growth cone migration and the formation of synaptic contacts. This study analyzed the role of N-cadherin in primary motor axons growth during development of the zebrafish (Danio rerio) embryo. After exiting the spinal cord, primary motor axons migrate ventrally through a common pathway and form the first neuromuscular junction with the muscle pioneer cells located at the horizontal myoseptum, which serves as a choice point for cell-type-specific pathway selection. Analysis of N-cadherin mutants (cdh2(hi3644Tg) ) and embryos injected with N-cadherin antisense morpholinos showed primary motor axons extending aberrant axonal branches at the choice point in ∼40% of the somitic hemisegments and an ∼150% increase in the number of branches per axon length within the ventral myotome. Analysis of individual axons trajectories showed that the caudal (CaP) and rostral (RoP) motor neurons axons formed aberrant branches at the choice point that abnormally extended in the rostrocaudal axis and ventrally to the horizontal myoseptum. Expression of a dominant-interfering N-cadherin cytoplasmic domain in primary motor neurons caused some axons to stall abnormally at the horizontal myoseptum and to impair their migration into the ventral myotome. However, in N-cadherin-depleted embryos, the majority of primary motor axons innervated their appropriate myotomal territories, indicating that N-cadherin regulates motor axon growth and branching without severely affecting the mechanisms that control axonal target selection. Copyright © 2011 Wiley-Liss, Inc.

  3. Selective axonal growth of embryonic hippocampal neurons according to topographic features of various sizes and shapes

    Directory of Open Access Journals (Sweden)

    Christine E Schmidt

    2010-12-01

    Full Text Available David Y Fozdar1*, Jae Y Lee2*, Christine E Schmidt2–6, Shaochen Chen1,3–5,7,1Departments of Mechanical Engineering, 2Chemical Engineering, 3Biomedical Engineering; 4Center for Nano Molecular Science and Technology; 5Texas Materials Institute; 6Institute of Neuroscience; 7Microelectronics Research Center, The University of Texas at Austin, Austin, TX, USA *Contributed equally to this workPurpose: Understanding how surface features influence the establishment and outgrowth of the axon of developing neurons at the single cell level may aid in designing implantable scaffolds for the regeneration of damaged nerves. Past studies have shown that micropatterned ridge-groove structures not only instigate axon polarization, alignment, and extension, but are also preferred over smooth surfaces and even neurotrophic ligands.Methods: Here, we performed axonal-outgrowth competition assays using a proprietary four-quadrant topography grid to determine the capacity of various micropatterned topographies to act as stimuli sequestering axon extension. Each topography in the grid consisted of an array of microscale (approximately 2 µm or submicroscale (approximately 300 nm holes or lines with variable dimensions. Individual rat embryonic hippocampal cells were positioned either between two juxtaposing topographies or at the borders of individual topographies juxtaposing unpatterned smooth surface, cultured for 24 hours, and analyzed with respect to axonal selection using conventional imaging techniques.Results: Topography was found to influence axon formation and extension relative to smooth surface, and the distance of neurons relative to topography was found to impact whether the topography could serve as an effective cue. Neurons were also found to prefer submicroscale over microscale features and holes over lines for a given feature size.Conclusion: The results suggest that implementing physical cues of various shapes and sizes on nerve guidance conduits

  4. Expression of the Wnt signaling system in central nervous system axon guidance and regeneration

    Directory of Open Access Journals (Sweden)

    Edmund eHollis

    2012-02-01

    Full Text Available Wnt signaling is essential for axon wiring throughout the development of the nervous system in vertebrates and invertebrates. In vertebrates, Wnts are expressed in gradients that span the entire anterior-posterior axis in the spinal cord and the medial-lateral axis in the superior colliculus. In the brainstem, Wnts are expressed in more complex gradients along the anterior-posterior axis. These gradients provide directional information for axon pathfinding and positional information for topographic mapping and are detected by cell polarity signaling pathways. The gradient expression of Wnts and the coordinated expression of Wnt signaling systems are regulated by mechanisms which are currently unknown. Injury to the adult spinal cord results in the re-induction of Wnts in multiple cell types around the lesion site and their signaling system in injured axons. Reinduced Wnts form gradients around the lesion site, with the lesion site being the peak. The reinduced Wnts may be responsible for the well-known retraction of descending motor axons through the atypical kinase receptor Ryk. Wnt signaling is an appealing therapeutic target for CNS repair. The mechanisms regulating the reinduction will be informative for therapeutic design.

  5. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase

    International Nuclear Information System (INIS)

    Yang Dongren; Howard, Angela; Bruun, Donald; Ajua-Alemanj, Mispa; Pickart, Cecile; Lein, Pamela J.

    2008-01-01

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrations that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE -/- ) versus wild type (AChE +/+ ) mice indicated that while these OPs inhibited axonal growth in AChE +/+ DRG neurons, they had no effect on axonal growth in AChE -/- DRG neurons. However, transfection of AChE -/- DRG neurons with cDNA encoding full-length AChE restored the wild type response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs

  6. Action of a diffusible target-derived chemoattractant on cortical axon branch induction and directed growth.

    Science.gov (United States)

    Sato, M; Lopez-Mascaraque, L; Heffner, C D; O'Leary, D D

    1994-10-01

    Cortical axons innervate their brainstem target, the basilar pons, by the initiation and extension of collateral branches interstitially along their length. To address whether a diffusible pons-derived chemoattractant controls these events, we used cocultures in collagen matrices and time-lapse microscopy. Pontine explants enhanced by 5-fold the de novo initiation of transient branches along cortical axons; most branches were directed toward pons. Of the branches extended toward pons, 2%-3% were stabilized; those extended away were not. Pontine explants also enhanced the stable bifurcation of growth cones and prompted directional changes by growth cone turning and collateral extension. These effects were distance dependent and mimicked by pons-conditioned medium. This evidence indicates that the pons activity promotes branch initiation interstitially along cortical axons, a novel property for a chemoattractant, and provides a directional cue for their growth. These findings suggest that the pons chemoattractant serves as a diffusible target-recognition molecule.

  7. The H3K4me3/2 histone demethylase RBR-2 controls axon guidance by repressing the actin-remodeling gene wsp-1

    DEFF Research Database (Denmark)

    Mariani, Luca; Lussi, Yvonne C.; Vandamme, Julien

    2016-01-01

    . Here, we show that RBR-2, the sole homolog of the KDM5 family of H3K4me3/2 demethylases in Caenorhabditis elegans, ensures correct axon guidance by controlling the expression of the actin regulator wsp-1. Loss of rbr-2 results in increased levels of H3K4me3 at the transcriptional start site of wsp-1...

  8. Normal patterns of spontaneous activity are required for correct motor axon guidance and the expression of specific guidance molecules.

    Science.gov (United States)

    Hanson, M Gartz; Landmesser, Lynn T

    2004-09-02

    Rhythmic spontaneous electrical activity occurs in many parts of the developing nervous system, where it plays essential roles in the refinement of neural connections. By blocking or slowing this bursting activity, via in ovo drug applications at precise developmental periods, we show that such activity is also required at much earlier stages for spinal motoneurons to accurately execute their first major dorsal-ventral pathfinding decision. Blockade or slowing of rhythmic bursting activity also prevents the normal expression patterns of EphA4 and polysialic acid on NCAM, which may contribute to the pathfinding errors observed. More prolonged (E2-5) blockade resulted in a downregulation of LIM homeodomain transcription factors, but since this occurred only after the pathfinding errors and alterations in guidance molecules, it cannot have contributed to them.

  9. Glial progenitor cell migration promotes CNS axon growth on functionalized electroconducting microfibers.

    Science.gov (United States)

    Collazos-Castro, Jorge E; García-Rama, Concepción; Alves-Sampaio, Alexandra

    2016-04-15

    Electroactive systems that promote directional axonal growth and migration of glial progenitor cells (GPC) are needed for the treatment of neurological injuries. We report the functionalization of electroconducting microfibers with multiple biomolecules that synergistically stimulate the proliferation and migration of GPC, which in turn induce axonal elongation from embryonic cerebral cortex neurons. PEDOT doped with poly[(4-styrenesulfonic acid)-co-(maleic acid)] was synthesized on carbon microfibers and used for covalent attachment of molecules to the electroactive surface. The molecular complexes that promoted GPC proliferation and migration, followed by axonal extension, were composed of polylysine, heparin, basic fibroblast growth factor (bFGF), and matricellular proteins; the combination of bFGF with vitronectin or fibronectin being indispensable for sustained glial and axonal growth. The rate of glial-induced axonal elongation was about threefold that of axons growing directly on microfibers functionalized with polylysine alone. Electrical stimuli applied through the microfibers released bFGF and fibronectin from the polymer surface, consequently reducing GPC proliferation and promoting their differentiation into astrocytes, without causing cell detachment or toxicity. These results suggest that functionalized electroactive microfibers may provide a multifunctional tool for controlling neuron-glia interactions and enhancing neural repair. We report a multiple surface functionalization strategy for electroconducting microfibers (MFs), in order to promote proliferation and guided migration of glial precursor cells (GPC) and consequently create a permissive substrate for elongation of central nervous system (CNS) axons. GPC divided and migrated extensively on the functionalized MFs, leading to fast elongation of embryonic cerebral cortex axons. The application of electric pulses thorough the MFs controlled glial cell division and differentiation. The

  10. Complete Loss of Netrin-1 Results in Embryonic Lethality and Severe Axon Guidance Defects without Increased Neural Cell Death

    Directory of Open Access Journals (Sweden)

    Jenea M. Bin

    2015-08-01

    Full Text Available Netrin-1 regulates cell migration and adhesion during the development of the nervous system, vasculature, lung, pancreas, muscle, and mammary gland. It is also proposed to function as a dependence ligand that inhibits apoptosis; however, studies disagree regarding whether netrin-1 loss-of-function mice exhibit increased cell death. Furthermore, previously studied netrin-1 loss-of-function gene-trap mice express a netrin-1-β-galactosidase protein chimera with potential for toxic gain-of-function effects, as well as a small amount of wild-type netrin-1 protein. To unambiguously assess loss of function, we generated netrin-1 floxed and netrin-1 null mouse lines. Netrin-1−/− mice die earlier and exhibit more severe axon guidance defects than netrin-1 gene-trap mice, revealing that complete loss of function is more severe than previously reported. Netrin-1−/− embryos also exhibit increased expression of the netrin receptors DCC and neogenin that are proposed dependence receptors; however, increased apoptosis was not detected, inconsistent with netrin-1 being an essential dependence receptor ligand in the embryonic spinal cord.

  11. Developmental Axon Stretch Stimulates Neuron Growth While Maintaining Normal Electrical Activity, Intracellular Calcium Flux, and Somatic Morphology

    Directory of Open Access Journals (Sweden)

    Joseph R Loverde

    2015-08-01

    Full Text Available Elongation of nerve fibers intuitively occurs throughout mammalian development, and is synchronized with expansion of the growing body. While most tissue systems enlarge through mitosis and differentiation, elongation of nerve fibers is remarkably unique. The emerging paradigm suggests that axons undergo stretch as contiguous tissues enlarge between the proximal and distal segments of spanning nerve fibers. While stretch is distinct from growth, tension is a known stimulus which regulates the growth of axons. Here, we hypothesized that the axon stretch-growth process may be a natural form of injury, whereby regenerative processes fortify elongating axons in order to prevent disconnection. Harnessing the live imaging capability of our axon stretch-growth bioreactors, we assessed neurons both during and following stretch for biomarkers associated with injury. Utilizing whole-cell patch clamp recording, we found no evidence of changes in spontaneous action potential activity or degradation of elicited action potentials during real-time axon stretch at strains of up to 18 % applied over 5 minutes. Unlike traumatic axonal injury, functional calcium imaging of the soma revealed no shifts in free intracellular calcium during axon stretch. Finally, the cross-sectional areas of nuclei and cytoplasms were normal, with no evidence of chromatolysis following week-long stretch-growth limited to the lower of 25 % strain or 3 mm total daily stretch. The neuronal growth cascade coupled to stretch was concluded to be independent of the changes in membrane potential, action potential generation, or calcium flux associated with traumatic injury. While axon stretch-growth is likely to share overlap with regenerative processes, we conclude that developmental stretch is a distinct stimulus from traumatic axon injury.

  12. Developmental axon stretch stimulates neuron growth while maintaining normal electrical activity, intracellular calcium flux, and somatic morphology.

    Science.gov (United States)

    Loverde, Joseph R; Pfister, Bryan J

    2015-01-01

    Elongation of nerve fibers intuitively occurs throughout mammalian development, and is synchronized with expansion of the growing body. While most tissue systems enlarge through mitosis and differentiation, elongation of nerve fibers is remarkably unique. The emerging paradigm suggests that axons undergo stretch as contiguous tissues enlarge between the proximal and distal segments of spanning nerve fibers. While stretch is distinct from growth, tension is a known stimulus which regulates the growth of axons. Here, we hypothesized that the axon stretch-growth process may be a natural form of injury, whereby regenerative processes fortify elongating axons in order to prevent disconnection. Harnessing the live imaging capability of our axon stretch-growth bioreactors, we assessed neurons both during and following stretch for biomarkers associated with injury. Utilizing whole-cell patch clamp recording, we found no evidence of changes in spontaneous action potential activity or degradation of elicited action potentials during real-time axon stretch at strains of up to 18% applied over 5 min. Unlike traumatic axonal injury, functional calcium imaging of the soma revealed no shifts in free intracellular calcium during axon stretch. Finally, the cross-sectional areas of nuclei and cytoplasms were normal, with no evidence of chromatolysis following week-long stretch-growth limited to the lower of 25% strain or 3 mm total daily stretch. The neuronal growth cascade coupled to stretch was concluded to be independent of the changes in membrane potential, action potential generation, or calcium flux associated with traumatic injury. While axon stretch-growth is likely to share overlap with regenerative processes, we conclude that developmental stretch is a distinct stimulus from traumatic axon injury.

  13. Chlorpyrifos exerts opposing effects on axonal and dendritic growth in primary neuronal cultures

    International Nuclear Information System (INIS)

    Howard, Angela S.; Bucelli, Robert; Jett, David A.; Bruun, Donald; Yang, Dongren; Lein, Pamela J.

    2005-01-01

    Evidence that children are widely exposed to organophosphorus pesticides (OPs) and that OPs cause developmental neurotoxicity in animal models raises significant concerns about the risks these compounds pose to the developing human nervous system. Critical to assessing this risk is identifying specific neurodevelopmental events targeted by OPs. Observations that OPs alter brain morphometry in developing rodents and inhibit neurite outgrowth in neural cell lines suggest that OPs perturb neuronal morphogenesis. However, an important question yet to be answered is whether the dysmorphogenic effect of OPs reflects perturbation of axonal or dendritic growth. We addressed this question by quantifying axonal and dendritic growth in primary cultures of embryonic rat sympathetic neurons derived from superior cervical ganglia (SCG) following in vitro exposure to chlorpyrifos (CPF) or its metabolites CPF-oxon (CPFO) and trichloropyridinol (TCP). Axon outgrowth was significantly inhibited by CPF or CPFO, but not TCP, at concentrations ≥0.001 μM or 0.001 nM, respectively. In contrast, all three compounds enhanced BMP-induced dendritic growth. Acetylcholinesterase was inhibited only by the highest concentrations of CPF (≥1 μM) and CPFO (≥1 nM); TCP had no effect on this parameter. In summary, these compounds perturb neuronal morphogenesis via opposing effects on axonal and dendritic growth, and both effects are independent of acetylcholinesterase inhibition. These findings have important implications for current risk assessment practices of using acetylcholinesterase inhibition as a biomarker of OP neurotoxicity and suggest that OPs may disrupt normal patterns of neuronal connectivity in the developing nervous system

  14. A growing field: The regulation of axonal regeneration by Wnt signaling.

    Science.gov (United States)

    Garcia, Armando L; Udeh, Adanna; Kalahasty, Karthik; Hackam, Abigail S

    2018-01-01

    The canonical Wnt/β-catenin pathway is a highly conserved signaling cascade that plays critical roles during embryogenesis. Wnt ligands regulate axonal extension, growth cone guidance and synaptogenesis throughout the developing central nervous system (CNS). Recently, studies in mammalian and fish model systems have demonstrated that Wnt/β-catenin signaling also promotes axonal regeneration in the adult optic nerve and spinal cord after injury, raising the possibility that Wnt could be developed as a therapeutic strategy. In this review, we summarize experimental evidence that reveals novel roles for Wnt signaling in the injured CNS, and discuss possible mechanisms by which Wnt ligands could overcome molecular barriers inhibiting axonal growth to promote regeneration. A central challenge in the neuroscience field is developing therapeutic strategies that induce robust axonal regeneration. Although adult axons have the capacity to respond to axonal guidance molecules after injury, there are several major obstacles for axonal growth, including extensive neuronal death, glial scars at the injury site, and lack of axonal guidance signals. Research in rodents demonstrated that activation of Wnt/β-catenin signaling in retinal neurons and radial glia induced neuronal survival and axonal growth, but that activation within reactive glia at the injury site promoted proliferation and glial scar formation. Studies in zebrafish spinal cord injury models confirm an axonal regenerative role for Wnt/β-catenin signaling and identified the cell types responsible. Additionally, in vitro and in vivo studies demonstrated that Wnt induces axonal and neurite growth through transcription-dependent effects of its central mediator β-catenin, potentially by inducing regeneration-promoting genes. Canonical Wnt signaling may also function through transcription-independent interactions of β-catenin with cytoskeletal elements, which could stabilize growing axons and control growth cone

  15. C. elegans dystroglycan coordinates responsiveness of follower axons to dorsal/ventral and anterior/posterior guidance cues

    NARCIS (Netherlands)

    Johnson, R.P.; Kramer, J.M.

    2012-01-01

    Neural development in metazoans is characterized by the establishment of initial process tracts by pioneer axons and the subsequent extension of follower axons along these pioneer processes. Mechanisms governing the fidelity of follower extension along pioneered routes are largely unknown. In C.

  16. Quantification of dendritic and axonal growth after injury to the auditory system of the adult cricket Gryllus bimaculatus

    Directory of Open Access Journals (Sweden)

    Alexandra ePfister

    2013-08-01

    Full Text Available Dendrite and axon growth and branching during development are regulated by a complex set of intracellular and external signals. However, the cues that maintain or influence adult neuronal morphology are less well understood. Injury and deafferentation tend to have negative effects on adult nervous systems. An interesting example of injury-induced compensatory growth is seen in the cricket, Gryllus bimaculatus. After unilateral loss of an ear in the adult cricket, auditory neurons within the central nervous system sprout to compensate for the injury. Specifically, after being deafferented, ascending neurons (AN-1 and AN-2 send dendrites across the midline of the prothoracic ganglion where they receive input from auditory afferents that project through the contralateral auditory nerve (N5. Deafferentation also triggers contralateral N5 axonal growth. In this study, we quantified AN dendritic and N5 axonal growth at 30 hours, as well as at 3, 5, 7, 14 and 20 days after deafferentation in adult crickets. Significant differences in the rates of dendritic growth between males and females were noted. In females, dendritic growth rates were non-linear; a rapid burst of dendritic extension in the first few days was followed by a plateau reached at 3 days after deafferentation. In males, however, dendritic growth rates were linear, with dendrites growing steadily over time and reaching lengths, on average, twice as long as in females. On the other hand, rates of N5 axonal growth showed no significant sexual dimorphism and were linear. Within each animal, the growth rates of dendrites and axons were not correlated, indicating that independent factors likely influence dendritic and axonal growth in response to injury in this system. Our findings provide a basis for future study of the cellular features that allow differing dendrite and axon growth patterns as well as sexually dimorphic dendritic growth in response to deafferentation.

  17. Genetic Deletion of the Transcriptional Repressor NFIL3 Enhances Axon Growth In Vitro but Not Axonal Repair In Vivo

    NARCIS (Netherlands)

    van der Kallen, Loek R; Eggers, Ruben; Ehlert, Erich M; Verhaagen, J.; Smit, August B; van Kesteren, Ronald E

    2015-01-01

    Axonal regeneration after injury requires the coordinated expression of genes in injured neurons. We previously showed that either reducing expression or blocking function of the transcriptional repressor NFIL3 activates transcription of regeneration-associated genes Arg1 and Gap43 and strongly

  18. Rational polypharmacology: systematically identifying and engaging multiple drug targets to promote axon growth

    Science.gov (United States)

    Al-Ali, Hassan; Lee, Do-Hun; Danzi, Matt C.; Nassif, Houssam; Gautam, Prson; Wennerberg, Krister; Zuercher, Bill; Drewry, David H.; Lee, Jae K.; Lemmon, Vance P.; Bixby, John L.

    2016-01-01

    Mammalian Central Nervous System (CNS) neurons regrow their axons poorly following injury, resulting in irreversible functional losses. Identifying therapeutics that encourage CNS axon repair has been difficult, in part because multiple etiologies underlie this regenerative failure. This suggests a particular need for drugs that engage multiple molecular targets. Although multi-target drugs are generally more effective than highly selective alternatives, we lack systematic methods for discovering such drugs. Target-based screening is an efficient technique for identifying potent modulators of individual targets. In contrast, phenotypic screening can identify drugs with multiple targets; however, these targets remain unknown. To address this gap, we combined the two drug discovery approaches using machine learning and information theory. We screened compounds in a phenotypic assay with primary CNS neurons and also in a panel of kinase enzyme assays. We used learning algorithms to relate the compounds’ kinase inhibition profiles to their influence on neurite outgrowth. This allowed us to identify kinases that may serve as targets for promoting neurite outgrowth, as well as others whose targeting should be avoided. We found that compounds that inhibit multiple targets (polypharmacology) promote robust neurite outgrowth in vitro. One compound with exemplary polypharmacology, was found to promote axon growth in a rodent spinal cord injury model. A more general applicability of our approach is suggested by its ability to deconvolve known targets for a breast cancer cell line, as well as targets recently shown to mediate drug resistance. PMID:26056718

  19. Nogo-66 receptor antagonist peptide (NEP1-40) administration promotes functional recovery and axonal growth after lateral funiculus injury in the adult rat

    NARCIS (Netherlands)

    Cao, Y.; Shumsky, J. S.; Sabol, M. A.; Kushner, R. A.; Strittmatter, S.; Hamers, F. P. T.; Lee, D. H. S.; Rabacchi, S. A.; Murray, M.

    2008-01-01

    Objective. The myelin protein Nogo inhibits axon regeneration by binding to its receptor (NgR) on axons. Intrathecal delivery of an NgR antagonist (NEP1-40) promotes growth of injured corticospinal axons and recovery of motor function following a dorsal hemisection. The authors used a similar design

  20. TGF-β Controls miR-181/ERK Regulatory Network during Retinal Axon Specification and Growth.

    Directory of Open Access Journals (Sweden)

    Sabrina Carrella

    Full Text Available Retinal axon specification and growth are critically sensitive to the dosage of numerous signaling molecules and transcription factors. Subtle variations in the expression levels of key molecules may result in a variety of axonal growth anomalies. miR-181a and miR-181b are two eye-enriched microRNAs whose inactivation in medaka fish leads to alterations of the proper establishment of connectivity and function in the visual system. miR-181a/b are fundamental regulators of MAPK signaling and their role in retinal axon growth and specification is just beginning to be elucidated. Here we demonstrate that miR-181a/b are key nodes in the interplay between TGF-β and MAPK/ERK within the functional pathways that control retinal axon specification and growth. Using a variety of in vivo and in vitro approaches in medaka fish, we demonstrate that TGF-β signaling controls the miR-181/ERK regulatory network, which in turn strengthens the TGF-β-mediated regulation of RhoA degradation. Significantly, these data uncover the role of TGF-β signaling in vivo, for the first time, in defining the correct wiring and assembly of functional retina neural circuits and further highlight miR-181a/b as key factors in axon specification and growth.

  1. Sporophytic control of pollen tube growth and guidance in maize

    Science.gov (United States)

    Lausser, Andreas; Kliwer, Irina; Srilunchang, Kanok-orn; Dresselhaus, Thomas

    2010-01-01

    Pollen tube germination, growth, and guidance (progamic phase) culminating in sperm discharge is a multi-stage process including complex interactions between the male gametophyte as well as sporophytic tissues and the female gametophyte (embryo sac), respectively. Inter- and intra-specific crossing barriers in maize and Tripsacum have been studied and a precise description of progamic pollen tube development in maize is reported here. It was found that pollen germination and initial tube growth are rather unspecific, but an early, first crossing barrier was detected before arrival at the transmitting tract. Pollination of maize silks with Tripsacum pollen and incompatible pollination of Ga1s/Ga1s-maize silks with ga1-maize pollen revealed another two incompatibility barriers, namely transmitting tract mistargeting and insufficient growth support. Attraction and growth support by the transmitting tract seem to play key roles for progamic pollen tube growth. After leaving transmitting tracts, pollen tubes have to navigate across the ovule in the ovular cavity. Pollination of an embryo sac-less maize RNAi-line allowed the role of the female gametophyte for pollen tube guidance to be determined in maize. It was found that female gametophyte controlled guidance is restricted to a small region around the micropyle, approximately 50–100 μm in diameter. This area is comparable to the area of influence of previously described ZmEA1-based short-range female gametophyte signalling. In conclusion, the progamic phase is almost completely under sporophytic control in maize. PMID:19926683

  2. A Novel Growth-Promoting Pathway Formed by GDNF-Overexpressing Schwann Cells Promotes Propriospinal Axonal Regeneration, Synapse formation, and Partial Recovery of Function after Spinal Cord Injury

    Science.gov (United States)

    Deng, Lingxiao; Deng, Ping; Ruan, Yiwen; Xu, Zao Cheng; Liu, Naikui; Wen, Xuejun; Smith, George M.; Xu, Xiao-Ming

    2013-01-01

    Descending propriospinal neurons (DPSN) are known to establish functional relays for supraspinal signals, and they display a greater growth response after injury than do the long projecting axons. However, their regenerative response is still deficient due to their failure to depart from growth supportive cellular transplants back into the host spinal cord, which contains numerous impediments to axon growth. Here we report the construction of a continuous growth-promoting pathway in adult rats, formed by grafted Schwann cells (SCs) overexpressing glial cell line-derived neurotrophic factor (GDNF). We demonstrate that such a growth-promoting pathway, extending from the axonal cut ends to the site of innervation in the distal spinal cord, promoted regeneration of DPSN axons through and beyond the lesion gap of a spinal cord hemisection. Within the distal host spinal cord, regenerated DPSN axons formed synapses with host neurons leading to the restoration of action potentials and partial recovery of function. PMID:23536080

  3. The effect of systemic PTEN antagonist peptides on axon growth and functional recovery after spinal cord injury.

    Science.gov (United States)

    Ohtake, Yosuke; Park, Dongsun; Abdul-Muneer, P M; Li, Hui; Xu, Bin; Sharma, Kartavya; Smith, George M; Selzer, Michael E; Li, Shuxin

    2014-05-01

    Knockout studies suggest that PTEN limits the regenerative capacities of CNS axons as a dominant antagonist of PI3 kinase, but the transgenic approach is not feasible for treating patients. Although application of bisperoxovanadium may block PTEN function, it is a general inhibitor of phosphotyrosine phosphatases and may target enzymes other than PTEN, causing side effects and preventing firm conclusions about PTEN inhibition on regulating neuronal growth. A pharmacological method to selectively suppress PTEN post-injury could be a valuable strategy for promoting CNS axon regeneration. We identified PTEN antagonist peptides (PAPs) by targeting PTEN critical functional domains and evaluated their efficacy for promoting axon growth. Four PAPs (PAP 1-4) bound to PTEN protein expressed in COS7 cells and blocked PTEN signaling in vivo. Subcutaneous administration of PAPs initiated two days after dorsal over-hemisection injury significantly stimulated growth of descending serotonergic fibers in the caudal spinal cord of adult mice. Systemic PAPs induce significant sprouting of corticospinal fibers in the rostral spinal cord and limited growth of corticospinal axons in the caudal spinal cord. More importantly, PAP treatment enhanced recovery of locomotor function in adult rodents with spinal cord injury. This study may facilitate development of effective therapeutic agents for CNS injuries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Drosophila Cbp53E Regulates Axon Growth at the Neuromuscular Junction.

    Directory of Open Access Journals (Sweden)

    Kimberly R Hagel

    Full Text Available Calcium is a primary second messenger in all cells that functions in processes ranging from cellular proliferation to synaptic transmission. Proper regulation of calcium is achieved through numerous mechanisms involving channels, sensors, and buffers notably containing one or more EF-hand calcium binding domains. The Drosophila genome encodes only a single 6 EF-hand domain containing protein, Cbp53E, which is likely the prototypic member of a small family of related mammalian proteins that act as calcium buffers and calcium sensors. Like the mammalian homologs, Cbp53E is broadly though discretely expressed throughout the nervous system. Despite the importance of calcium in neuronal function and growth, nothing is known about Cbp53E's function in neuronal development. To address this deficiency, we generated novel null alleles of Drosophila Cbp53E and examined neuronal development at the well-characterized larval neuromuscular junction. Loss of Cbp53E resulted in increases in axonal branching at both peptidergic and glutamatergic neuronal terminals. This overgrowth could be completely rescued by expression of exogenous Cbp53E. Overexpression of Cbp53E, however, only affected the growth of peptidergic neuronal processes. These findings indicate that Cbp53E plays a significant role in neuronal growth and suggest that it may function in both local synaptic and global cellular mechanisms.

  5. Sphingosine 1-Phosphate Receptor 1 Modulates CNTF-Induced Axonal Growth and Neuroprotection in the Mouse Visual System

    Directory of Open Access Journals (Sweden)

    Sandrine Joly

    2017-01-01

    Full Text Available The lack of axonal regeneration and neuronal cell death causes permanent neurological deficits in the injured CNS. Using the classical CNS injury model of optic nerve crush in mice, ciliary neurotrophic factor (CNTF was found to stimulate retinal ganglion cell (RGC survival and axonal growth, but in an incomplete fashion. The elucidation of molecular mechanisms impairing CNTF-induced axonal regeneration is paramount to promote visual recovery. In the present study, we sought to evaluate the contribution of sphingosine 1-phosphate receptor 1 (S1PR1 to the neuroprotective and regenerative effects of CNTF. The transduction of retinal cells with adeno-associated viruses (AAV allowed to activate CNTF/signal transducer and activator of transcription 3 (Stat3 signaling and to modulate S1PR1 expression in RGCs. Our results showed that CNTF/Stat3 prevented injury-induced S1PR1 downregulation. Silencing S1PR1 in RGCs significantly enhanced CNTF-induced axonal growth in the injured optic nerve. In contrast, RGC survival was markedly decreased when S1PR1 was repressed with viral vectors. The level of phosphorylated Stat3 (P-Stat3, an intracellular mediator of CNTF, did not fluctuate after S1PR1 inhibition and CNTF stimulation. Collectively, these results suggest that S1PR1 acts as a major regulator of retinal neuron survival and restricts the RGC growth response induced by CNTF.

  6. Depolarization and electrical stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury.

    Science.gov (United States)

    Goganau, Ioana; Sandner, Beatrice; Weidner, Norbert; Fouad, Karim; Blesch, Armin

    2018-02-01

    Activity dependent plasticity is a key mechanism for the central nervous system (CNS) to adapt to its environment. Whether neuronal activity also influences axonal regeneration in the injured CNS, and whether electrical stimulation (ES) can activate regenerative programs in the injured CNS remains incompletely understood. Using KCl-induced depolarization, in vivo ES followed by ex-vivo neurite growth assays and ES after spinal cord lesions and cell grafting, we aimed to identify parameters important for ES-enhanced neurite growth and axonal regeneration. Using cultures of sensory neurons, neurite growth was analyzed after KCl-induced depolarization for 1-72h. Increased neurite growth was detected after short-term stimulation and after longer stimulation if a sufficient delay between stimulation and growth measurements was provided. After in vivo ES (20Hz, 2× motor threshold, 0.2ms, 1h) of the intact sciatic nerve in adult Fischer344 rats, sensory neurons showed a 2-fold increase in in vitro neurite length one week later compared to sham animals, an effect not observed one day after ES. Longer ES (7h) and repeated ES (7days, 1h each) also increased growth by 56-67% one week later, but provided no additional benefit. In vivo growth of dorsal column sensory axons into a graft of bone marrow stromal cells 4weeks after a cervical spinal cord lesion was also enhanced with a single post-injury 1h ES of the intact sciatic nerve and was also observed after repeated ES without inducing pain-like behavior. While ES did not result in sensory functional recovery, our data indicate that ES has time-dependent influences on the regenerative capacity of sensory neurons and might further enhance axonal regeneration in combinatorial approaches after SCI. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury.

    Science.gov (United States)

    Stewart, Andrew Nathaniel; Matyas, Jessica Jane; Welchko, Ryan Matthew; Goldsmith, Alison Delanie; Zeiler, Sarah Elizabeth; Hochgeschwender, Ute; Lu, Ming; Nan, Zhenhong; Rossignol, Julien; Dunbar, Gary Leo

    2017-01-01

    Utilizing genetic overexpression of trophic molecules in cell populations has been a promising strategy to develop cell replacement therapies for spinal cord injury (SCI). Over-expressing the chemokine, stromal derived factor-1 (SDF-1α), which has chemotactic effects on many cells of the nervous system, offers a promising strategy to promote axonal regrowth following SCI. The purpose of this study was to explore the effects of human SDF-1α, when overexpressed by mesenchymal stem cells (MSCs), on axonal growth and motor behavior in a contusive rat model of SCI. Using a transwell migration assay, the paracrine effects of MSCs, which were engineered to secrete human SDF-1α (SDF-1-MSCs), were assessed on cultured neural stem cells (NSCs). For in vivo analyses, the SDF-1-MSCs, unaltered MSCs, or Hanks Buffered Saline Solution (vehicle) were injected into the lesion epicenter of rats at 9-days post-SCI. Behavior was analyzed for 7-weeks post-injury, using the Basso, Beattie, and Bresnahan (BBB) scale of locomotor functions. Immunohistochemistry was performed to evaluate major histopathological outcomes, including gliosis, inflammation, white matter sparing, and cavitation. New axonal outgrowth was characterized using immunohistochemistry against the neuron specific growth-associated protein-43 (GAP-43). The results of these experiments demonstrate that the overexpression of SDF-1α by MSCs can enhance the migration of NSCs in vitro. Although only modest functional improvements were observed following transplantation of SDF-1-MSCs, a significant reduction in cavitation surrounding the lesion, and an increased density of GAP-43-positive axons inside the SCI lesion/graft site were found. The results from these experiments support the potential role for utilizing SDF-1α as a treatment for enhancing growth and regeneration of axons after traumatic SCI.

  8. Transcriptional control in embryonic Drosophila midline guidance assessed through a whole genome approach

    Directory of Open Access Journals (Sweden)

    Tomancak Pavel

    2007-07-01

    Full Text Available Abstract Background During the development of the Drosophila central nervous system the process of midline crossing is orchestrated by a number of guidance receptors and ligands. Many key axon guidance molecules have been identified in both invertebrates and vertebrates, but the transcriptional regulation of growth cone guidance remains largely unknown. It is established that translational regulation plays a role in midline crossing, and there are indications that transcriptional regulation is also involved. To investigate this issue, we conducted a genome-wide study of transcription in Drosophila embryos using wild type and a number of well-characterized Drosophila guidance mutants and transgenics. We also analyzed a previously published microarray time course of Drosophila embryonic development with an axon guidance focus. Results Using hopach, a novel clustering method which is well suited to microarray data analysis, we identified groups of genes with similar expression patterns across guidance mutants and transgenics. We then systematically characterized the resulting clusters with respect to their relevance to axon guidance using two complementary controlled vocabularies: the Gene Ontology (GO and anatomical annotations of the Atlas of Pattern of Gene Expression (APoGE in situ hybridization database. The analysis indicates that regulation of gene expression does play a role in the process of axon guidance in Drosophila. We also find a strong link between axon guidance and hemocyte migration, a result that agrees with mounting evidence that axon guidance molecules are co-opted in vertebrate vascularization. Cell cyclin activity in the context of axon guidance is also suggested from our array data. RNA and protein expression patterns of cell cyclins in axon guidance mutants and transgenics support this possible link. Conclusion This study provides important insights into the regulation of axon guidance in vivo.

  9. Neuronal PTEN deletion in adult cortical neurons triggers progressive growth of cell bodies, dendrites, and axons.

    Science.gov (United States)

    Gallent, Erin A; Steward, Oswald

    2018-05-01

    Deletion of the phosphatase and tensin (PTEN) gene in neonatal mice leads to enlargement of the cell bodies of cortical motoneurons (CMNs) in adulthood (Gutilla et al., 2016). Here, we assessed whether PTEN deletion in adult mice would trigger growth of mature neurons. PTEN was deleted by injecting AAV-Cre into the sensorimotor cortex of adult transgenic mice with a lox-P flanked exon 5 of the PTEN gene and Cre-dependent reporter gene tdTomato. PTEN-deleted CMN's identified by tdT expression and retrograde labeling with fluorogold (FG) were significantly enlarged four months following PTEN deletion, and continued to increase in size through the latest time intervals examined (12-15 months post-deletion). Sholl analyses of tdT-positive pyramidal neurons revealed increases in dendritic branches at 6 months following adult PTEN deletion, and greater increases at 12 months. 12 months after adult PTEN deletion, axons in the medullary pyramids were significantly larger and G-ratios were higher. Mice with PTEN deletion exhibited no overt neurological symptoms and no seizures. Assessment of motor function on the rotarod and cylinder test revealed slight impairment of coordination with unilateral deletion; however, mice with bilateral PTEN deletion in the motor cortex performed better than controls on the rotarod at 8 and 10 months post-deletion. Our findings demonstrate that robust neuronal growth can be induced in fully mature cortical neurons long after the developmental period has ended and that this continuous growth occurs without obvious functional impairments. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Transcriptome Profiling Identifies Multiplexin as a Target of SAGA Deubiquitinase Activity in Glia Required for Precise Axon Guidance During Drosophila Visual Development.

    Science.gov (United States)

    Ma, Jingqun; Brennan, Kaelan J; D'Aloia, Mitch R; Pascuzzi, Pete E; Weake, Vikki M

    2016-08-09

    The Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex is a transcriptional coactivator with histone acetylase and deubiquitinase activities that plays an important role in visual development and function. In Drosophila melanogaster, four SAGA subunits are required for the deubiquitination of monoubiquitinated histone H2B (ubH2B): Nonstop, Sgf11, E(y)2, and Ataxin 7. Mutations that disrupt SAGA deubiquitinase activity cause defects in neuronal connectivity in the developing Drosophila visual system. In addition, mutations in SAGA result in the human progressive visual disorder spinocerebellar ataxia type 7 (SCA7). Glial cells play a crucial role in both the neuronal connectivity defect in nonstop and sgf11 flies, and in the retinal degeneration observed in SCA7 patients. Thus, we sought to identify the gene targets of SAGA deubiquitinase activity in glia in the Drosophila larval central nervous system. To do this, we enriched glia from wild-type, nonstop, and sgf11 larval optic lobes using affinity-purification of KASH-GFP tagged nuclei, and then examined each transcriptome using RNA-seq. Our analysis showed that SAGA deubiquitinase activity is required for proper expression of 16% of actively transcribed genes in glia, especially genes involved in proteasome function, protein folding and axon guidance. We further show that the SAGA deubiquitinase-activated gene Multiplexin (Mp) is required in glia for proper photoreceptor axon targeting. Mutations in the human ortholog of Mp, COL18A1, have been identified in a family with a SCA7-like progressive visual disorder, suggesting that defects in the expression of this gene in SCA7 patients could play a role in the retinal degeneration that is unique to this ataxia. Copyright © 2016 Ma et al.

  11. Cadmium affects muscle type development and axon growth in zebrafish embryonic somitogenesis.

    Science.gov (United States)

    Hen Chow, Elly Suk; Cheng, Shuk Han

    2003-05-01

    We have previously reported that exposure to cadmium during zebrafish embryonic development caused morphological malformations of organs and ectopic expression of genes involved in regulating developmental process. One of the most common developmental defects observed was altered axial curvature resulting from defects in the myotomes of the somites. In this study, we investigated the mechanisms of cadmium-induced toxicity in zebrafish somitogenesis. We showed that the critical period of exposure was the gastrulation period, which actually preceded the formation of the first morphologically distinct somites. The somites thus formed lost the typical chevron V-shape and are packed disorderly. The myogenic lineage commitment of the axial mesodermal cells was not affected, as the myogenic regulatory transcription factors were expressed normally. There were, however, losses of fast and slow muscle fibers in the myotomes. The innervation of the muscle blocks by spinal motoneurons is an important process of the somitogenesis. Both primary and secondary motoneurons appear to form normally while the axon growth is affected in cadmium-treated embryos. The notochord, which is essential in the patterning of the somites and the central nervous system, showed abnormal morphological features and failed to extend to the tail region. Taken together, it appears that cadmium exposure led to abnormal somite patterning of the muscle fibers and defects in axonogenesis.

  12. Vertebrate Fidgetin Restrains Axonal Growth by Severing Labile Domains of Microtubules

    Directory of Open Access Journals (Sweden)

    Lanfranco Leo

    2015-09-01

    Full Text Available Individual microtubules (MTs in the axon consist of a stable domain that is highly acetylated and a labile domain that is not. Traditional MT-severing proteins preferentially cut the MT in the stable domain. In Drosophila, fidgetin behaves in this fashion, with targeted knockdown resulting in neurons with a higher fraction of acetylated (stable MT mass in their axons. Conversely, in a fidgetin knockout mouse, the fraction of MT mass that is acetylated is lower than in the control animal. When fidgetin is depleted from cultured rodent neurons, there is a 62% increase in axonal MT mass, all of which is labile. Concomitantly, there are more minor processes and a longer axon. Together with experimental data showing that vertebrate fidgetin targets unacetylated tubulin, these results indicate that vertebrate fidgetin (unlike its fly ortholog regulates neuronal development by tamping back the expansion of the labile domains of MTs.

  13. Ephexin1 Is Required for Eph-Mediated Limb Trajectory of Spinal Motor Axons.

    Science.gov (United States)

    Chang, Chih-Ju; Chang, Ming-Yuan; Chou, Szu-Yi; Huang, Chi-Chen; Chuang, Jian-Ying; Hsu, Tsung-I; Chang, Hsing-Fang; Wu, Yi-Hsin; Wu, Chung-Che; Morales, Daniel; Kania, Artur; Kao, Tzu-Jen

    2018-02-21

    The precise assembly of a functional nervous system relies on the guided migration of axonal growth cones, which is made possible by signals transmitted to the cytoskeleton by cell surface-expressed guidance receptors. We investigated the function of ephexin1, a Rho guanine nucleotide exchange factor, as an essential growth-cone guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory selection in the limb mesenchyme. Using in situ mRNA detection, we first show that ephexin1 is expressed in LMC neurons of chick and mouse embryos at the time of spinal motor axon extension into the limb. Ephexin1 loss of function and gain of function using in ovo electroporation in chick LMC neurons, of either sex, perturbed LMC axon trajectory selection, demonstrating an essential role of ephexin1 in motor axon guidance. In addition, ephexin1 loss in mice of either sex led to LMC axon trajectory selection errors. We also show that ephexin1 knockdown attenuates the growth preference of LMC neurites against ephrins in vitro and Eph receptor-mediated retargeting of LMC axons in vivo , suggesting that ephexin1 is required in Eph-mediated LMC motor axon guidance. Finally, both ephexin1 knockdown and ectopic expression of nonphosphorylatable ephexin1 mutant attenuated the retargeting of LMC axons caused by Src overexpression, implicating ephexin1 as an Src target in Eph signal relay in this context. In summary, our findings demonstrate that ephexin1 is essential for motor axon guidance and suggest an important role in relaying ephrin:Eph signals that mediate motor axon trajectory selection. SIGNIFICANCE STATEMENT The proper development of functioning neural circuits requires precise nerve connections among neurons or between neurons and their muscle targets. The Eph tyrosine kinase receptors expressed in neurons are important in many contexts during neural-circuit formation, such as axon outgrowth, axon guidance, and synaptic formation, and have been

  14. Chondroitinase C Selectively Degrades Chondroitin Sulfate Glycosaminoglycans that Inhibit Axonal Growth within the Endoneurium of Peripheral Nerve.

    Directory of Open Access Journals (Sweden)

    James B Graham

    Full Text Available The success of peripheral nerve regeneration is highly dependent on the regrowth of axons within the endoneurial basal lamina tubes that promote target-oriented pathfinding and appropriate reinnervation. Restoration of nerve continuity at this structural level after nerve transection injury by direct repair and nerve grafting remains a major surgical challenge. Recently, biological approaches that alter the balance of growth inhibitors and promoters in nerve have shown promise to improve appropriate axonal regeneration and recovery of peripheral nerve function. Chondroitin sulfate proteoglycans (CSPGs are known inhibitors of axonal growth. This growth inhibition is mainly associated with a CSPG's glycosaminoglycan chains. Enzymatic degradation of these chains with chondroitinase eliminates this inhibitory activity and, when applied in vivo, can improve the outcome of nerve repair. To date, these encouraging findings were obtained with chondroitinase ABC (a pan-specific chondroitinase. The aim of this study was to examine the distribution of CSPG subtypes in rodent, rabbit, and human peripheral nerve and to test more selective biological enzymatic approaches to improve appropriate axonal growth within the endoneurium and minimize aberrant growth. Here we provide evidence that the endoneurium, but not the surrounding epineurium, is rich in CSPGs that have glycosaminoglycan chains readily degraded by chondroitinase C. Biochemical studies indicate that chondroitinase C has degradation specificity for 6-sulfated glycosaminoglycans found in peripheral nerve. We found that chondroitinase C degrades and inactivates inhibitory CSPGs within the endoneurium but not so much in the surrounding nerve compartments. Cryoculture bioassays (neurons grown on tissue sections show that chondroitinase C selectively and significantly enhanced neuritic growth associated with the endoneurial basal laminae without changing growth-inhibiting properties of the surrounding

  15. Lost in the jungle: new hurdles for optic nerve axon regeneration.

    Science.gov (United States)

    Pernet, Vincent; Schwab, Martin E

    2014-07-01

    The poor regenerative capacity of injured central nervous system (CNS) axons leads to permanent neurological deficits after brain, spinal cord, or optic nerve lesions. In the optic nerve, recent studies showed that stimulation of the cytokine or mammalian target of rapamycin (mTOR) signaling pathways potently enhances sprouting and regeneration of injured retinal ganglion cell axons in adult mice, but does not allow the majority of axons to reach their main cerebral targets. New analyses have revealed axon navigation defects in the optic nerve and at the optic chiasm under conditions of strong growth stimulation. We propose that a balanced growth stimulatory treatment will have to be combined with guidance factors and suppression of local growth inhibitory factors to obtain the full regeneration of long CNS axonal tracts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Ciliary neurotrophic factor and fibroblast growth factor increase the speed and number of regenerating axons after optic nerve injury in adult Rana pipiens.

    Science.gov (United States)

    Vega-Meléndez, Giam S; Blagburn, Jonathan M; Blanco, Rosa E

    2014-01-01

    Neurotrophins such as ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) and growth factors such as fibroblast growth factor (FGF-2) play important roles in neuronal survival and in axonal outgrowth during development. However, whether they can modulate regeneration after optic nerve injury in the adult animal is less clear. The present study investigates the effects of application of these neurotrophic factors on the speed, number, and distribution of regenerating axons in the frog Rana pipiens after optic nerve crush. Optic nerves were crushed and the factors, or phosphate-buffered saline, were applied to the stump or intraocularly. The nerves were examined at different times after axotomy, using anterograde labeling with biotin dextran amine and antibody against growth-associated protein 43. We measured the length, number, and distribution of axons projecting beyond the lesion site. Untreated regenerating axons show an increase in elongation rate over 3 weeks. CNTF more than doubles this rate, FGF-2 increases it, and BDNF has little effect. In contrast, the numbers of regenerating axons that have reached 200 μm at 2 weeks were more than doubled by FGF-2, increased by CNTF, and barely affected by BDNF. The regenerating axons were preferentially distributed in the periphery of the nerve; although the numbers of axons were increased by neurotrophic factor application, this overall distribution was substantially unaffected. Copyright © 2013 Wiley Periodicals, Inc.

  17. Plexin A3 and turnout regulate motor axonal branch morphogenesis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Rajiv Sainath

    Full Text Available During embryogenesis motor axons navigate to their target muscles, where individual motor axons develop complex branch morphologies. The mechanisms that control axonal branching morphogenesis have been studied intensively, yet it still remains unclear when branches begin to form or how branch locations are determined. Live cell imaging of individual zebrafish motor axons reveals that the first axonal branches are generated at the ventral extent of the myotome via bifurcation of the growth cone. Subsequent branches are generated by collateral branching restricted to their synaptic target field along the distal portion of the axon. This precisely timed and spatially restricted branching process is disrupted in turnout mutants we identified in a forward genetic screen. Molecular genetic mapping positioned the turnout mutation within a 300 kb region encompassing eight annotated genes, however sequence analysis of all eight open reading frames failed to unambiguously identify the turnout mutation. Chimeric analysis and single cell labeling reveal that turnout function is required cell non-autonomously for intraspinal motor axon guidance and peripheral branch formation. turnout mutant motor axons form the first branch on time via growth cone bifurcation, but unlike wild-type they form collateral branches precociously, when the growth cone is still navigating towards the ventral myotome. These precocious collateral branches emerge along the proximal region of the axon shaft typically devoid of branches, and they develop into stable, permanent branches. Furthermore, we find that null mutants of the guidance receptor plexin A3 display identical motor axon branching defects, and time lapse analysis reveals that precocious branch formation in turnout and plexin A3 mutants is due to increased stability of otherwise short-lived axonal protrusions. Thus, plexin A3 dependent intrinsic and turnout dependent extrinsic mechanisms suppress collateral branch

  18. Microtubule-associated protein 6 mediates neuronal connectivity through Semaphorin 3E-dependent signalling for axonal growth

    Science.gov (United States)

    Deloulme, Jean-Christophe; Gory-Fauré, Sylvie; Mauconduit, Franck; Chauvet, Sophie; Jonckheere, Julie; Boulan, Benoit; Mire, Erik; Xue, Jing; Jany, Marion; Maucler, Caroline; Deparis, Agathe A.; Montigon, Olivier; Daoust, Alexia; Barbier, Emmanuel L.; Bosc, Christophe; Deglon, Nicole; Brocard, Jacques; Denarier, Eric; Le Brun, Isabelle; Pernet-Gallay, Karin; Vilgrain, Isabelle; Robinson, Phillip J.; Lahrech, Hana; Mann, Fanny; Andrieux, Annie

    2015-01-01

    Structural microtubule associated proteins (MAPs) stabilize microtubules, a property that was thought to be essential for development, maintenance and function of neuronal circuits. However, deletion of the structural MAPs in mice does not lead to major neurodevelopment defects. Here we demonstrate a role for MAP6 in brain wiring that is independent of microtubule binding. We find that MAP6 deletion disrupts brain connectivity and is associated with a lack of post-commissural fornix fibres. MAP6 contributes to fornix development by regulating axonal elongation induced by Semaphorin 3E. We show that MAP6 acts downstream of receptor activation through a mechanism that requires a proline-rich domain distinct from its microtubule-stabilizing domains. We also show that MAP6 directly binds to SH3 domain proteins known to be involved in neurite extension and semaphorin function. We conclude that MAP6 is critical to interface guidance molecules with intracellular signalling effectors during the development of cerebral axon tracts. PMID:26037503

  19. A novel and efficient gene transfer strategy reduces glial reactivity and improves neuronal survival and axonal growth in vitro.

    Directory of Open Access Journals (Sweden)

    Mathieu Desclaux

    Full Text Available BACKGROUND: The lack of axonal regeneration in the central nervous system is attributed among other factors to the formation of a glial scar. This cellular structure is mainly composed of reactive astrocytes that overexpress two intermediate filament proteins, the glial fibrillary acidic protein (GFAP and vimentin. Indeed, in vitro, astrocytes lacking GFAP or both GFAP and vimentin were shown to be the substrate for increased neuronal plasticity. Moreover, double knockout mice lacking both GFAP and vimentin presented lower levels of glial reactivity in vivo, significant axonal regrowth and improved functional recovery in comparison with wild-type mice after spinal cord hemisection. From these results, our objective was to develop a novel therapeutic strategy for axonal regeneration, based on the targeted suppression of astroglial reactivity and scarring by lentiviral-mediated RNA-interference (RNAi. METHODS AND FINDINGS: In this study, we constructed two lentiviral vectors, Lv-shGFAP and Lv-shVIM, which allow efficient and stable RNAi-mediated silencing of endogenous GFAP or vimentin in vitro. In cultured cortical and spinal reactive astrocytes, the use of these vectors resulted in a specific, stable and highly significant decrease in the corresponding protein levels. In a second model -- scratched primary cultured astrocytes -- Lv-shGFAP, alone or associated with Lv-shVIM, decreased astrocytic reactivity and glial scarring. Finally, in a heterotopic coculture model, cortical neurons displayed higher survival rates and increased neurite growth when cultured with astrocytes in which GFAP and vimentin had been invalidated by lentiviral-mediated RNAi. CONCLUSIONS: Lentiviral-mediated knockdown of GFAP and vimentin in astrocytes show that GFAP is a key target for modulating reactive gliosis and monitoring neuron/glia interactions. Thus, manipulation of reactive astrocytes with the Lv-shGFAP vector constitutes a promising therapeutic strategy for

  20. Characterizing Semaphorin-Mediated Effects on Sensory and Motor Axon Pathfinding and Connectivity During Embryonic Development.

    Science.gov (United States)

    Huettl, Rosa Eva; Huber, Andrea B

    2017-01-01

    How are precise connectivity to peripheral targets and corresponding sensory-motor networks established during developmental innervation of the vertebrate extremities? The formation of functional sensory-motor circuits requires highly appropriate temporal and spatial regulation of axon growth which is achieved through the combination of different molecular mechanisms such as communication between heterotypic fiber systems, axon-environment, or axon-glia interactions that ensure proper fasciculation and accurate pathfinding to distal targets. Family members of the class 3 semaphorins and their cognate receptors, the neuropilins, were shown to govern various events during wiring of central and peripheral circuits, with mice lacking Sema3-Npn signaling showing deficits in timing of growth, selective fasciculation, guidance fidelity, and coupling of sensory axon growth to motor axons at developmental time points. Given the accuracy with which these processes have to interact in a stepwise manner, deficiency of the smallest cog in the wheel may impact severely on the faithful establishment and functionality of peripheral circuitries, ultimately leading to behavioral impairments or even cause the death of the animal. Reliable quantitative analyses of sensory-motor fasciculation, extension, and guidance of axons to their cognate target muscles and the skin during development, but also assessment of physiological and behavioral consequences at adult age, are therefore a necessity to extend our understanding of the molecular mechanisms of peripheral circuit formation. In this chapter we provide a detailed methodology to characterize class 3 semaphorin-mediated effects on peripheral sensory and motor axon pathfinding and connectivity during embryonic development.

  1. Forced notch signaling inhibits commissural axon outgrowth in the developing chick central nerve system.

    Directory of Open Access Journals (Sweden)

    Ming Shi

    Full Text Available BACKGROUND: A collection of in vitro evidence has demonstrated that Notch signaling plays a key role in the growth of neurites in differentiated neurons. However, the effects of Notch signaling on axon outgrowth in an in vivo condition remain largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the neural tubes of HH10-11 chick embryos were in ovo electroporated with various Notch transgenes of activating or inhibiting Notch signaling, and then their effects on commissural axon outgrowth across the floor plate midline in the chick developing central nerve system were investigated. Our results showed that forced expression of Notch intracellular domain, constitutively active form of RBPJ, or full-length Hes1 in the rostral hindbrain, diencephalon and spinal cord at stage HH10-11 significantly inhibited commissural axon outgrowth. On the other hand, inhibition of Notch signaling by ectopically expressing a dominant-negative form of RBPJ promoted commissural axonal growth along the circumferential axis. Further results revealed that these Notch signaling-mediated axon outgrowth defects may be not due to the alteration of axon guidance since commissural axon marker TAG1 was present in the axons in floor plate midline, and also not result from the changes in cell fate determination of commissural neurons since the expression of postmitotic neuron marker Tuj1 and specific commissural markers TAG1 and Pax7 was unchanged. CONCLUSIONS/SIGNIFICANCE: We first used an in vivo system to provide evidence that forced Notch signaling negatively regulates commissural axon outgrowth.

  2. Noncanonical Adult Human Neurogenesis and Axonal Growth as Possible Structural Basis of Recovery From Traumatic Vegetative State

    Directory of Open Access Journals (Sweden)

    Yulia Vainshenker

    2017-09-01

    Full Text Available Patient recovering from traumatic vegetative state has suddenly died from cardiac arrest. In-life improvement of consciousness appeared after reduction of generalized spasticity due to botulinum toxin administration. Neuropathologic examination revealed Musashi1+, Nestin+, PCNA+, and Ki67+ cells in the hippocampus, frontal, parietal and occipital cortex, caudate, thalamus, mammillary bodies, brainstem, cerebellum, and near the posterior horn of the lateral ventricle. New neurons with neurite growth (TUC4+ appeared in corpus callosum. At the same time, axonal growth was detected in all areas of interest. New cells whose functional state was continuously improving, as revealed by in-life neurologic and positron emission tomography monitoring, have mainly been found in brain areas without neuropathologic signs of damage. We suggest that the possible role of neurogenesis consists in improvement of the microenvironment and interneuron interactions, whereas the activation of neurogenesis and the induction of neurite growth may be associated with reduction of spasticity.

  3. Regulation of Cdh1-APC Function in Axon Growth by Cdh1 Phosphorylation

    OpenAIRE

    Huynh, Mai Anh; Stegmüller, Judith; Litterman, Nadia; Bonni, Azad

    2009-01-01

    The ubiquitin ligase Cdh1-anaphase promoting complex (Cdh1-APC) plays a key role in the control of axonal morphogenesis in the mammalian brain, but the mechanisms that regulate neuronal Cdh1-APC function remain incompletely understood. Here, we have characterized the effect of phosphorylation of Cdh1 at cyclin-dependent kinase (Cdk) sites on Cdh1-APC function in neurons. We replaced nine conserved sites of Cdk-induced Cdh1 phosphorylation with alanine (9A) or aspartate (9D) to mimic hypo- or ...

  4. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy.

    Science.gov (United States)

    Yin, Fei; Meng, Chunyang; Lu, Rifeng; Li, Lei; Zhang, Ying; Chen, Hao; Qin, Yonggang; Guo, Li

    2014-09-15

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after transplantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-associated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Furthermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neurofilament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mesenchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury.

  5. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy

    Science.gov (United States)

    Yin, Fei; Meng, Chunyang; Lu, Rifeng; Li, Lei; Zhang, Ying; Chen, Hao; Qin, Yonggang; Guo, Li

    2014-01-01

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after transplantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-associated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Furthermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neurofilament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mesenchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury. PMID:25374587

  6. IMP2 axonal localization, RNA interactome, and function in the development of axon trajectories

    DEFF Research Database (Denmark)

    Preitner, Nicolas; Quan, Jie; Li, Xinmin

    2016-01-01

    RNA-based regulatory mechanisms play important roles in the development and plasticity of neural circuits and neurological disease. Developing axons provide a model well suited to the study of RNA-based regulation, and contain specific subsets of mRNAsthat are locally translated and have roles...... to strong defects in commissural axon trajectories at the midline intermediate target. These results reveal a highly distinctive axonal enrichment of IMP2, show that it interacts with a network of axon guidance-related mRNAs, and reveal that it is required for normal axon pathfinding during vertebrate...

  7. Interstitial guidance of cancer invasion.

    Science.gov (United States)

    Gritsenko, Pavlo G; Ilina, Olga; Friedl, Peter

    2012-01-01

    Cancer cell invasion into healthy tissues develops preferentially along pre-existing tracks of least resistance, followed by secondary tissue remodelling and destruction. The tissue scaffolds supporting or preventing guidance of invasion vary in structure and molecular composition between organs. In the brain, the guidance is provided by myelinated axons, astrocyte processes, and blood vessels which are used as invasion routes by glioma cells. In the human breast, containing interstitial collagen-rich connective tissue, disseminating breast cancer cells preferentially invade along bundled collagen fibrils and the surface of adipocytes. In both invasion types, physical guidance prompted by interfaces and space is complemented by molecular guidance. Generic mechanisms shared by most, if not all, tissues include (i) guidance by integrins towards fibrillar interstitial collagen and/or laminins and type IV collagen in basement membranes decorating vessels and adipocytes, and, likely, CD44 engaging with hyaluronan; (ii) haptotactic guidance by chemokines and growth factors; and likely (iii) physical pushing mechanisms. Tissue-specific, resticted guidance cues include ECM proteins with restricted expression (tenascins, lecticans), cell-cell interfaces, and newly secreted matrix molecules decorating ECM fibres (laminin-332, thrombospondin-1, osteopontin, periostin). We here review physical and molecular guidance mechanisms in interstitial tissue and brain parenchyma and explore shared principles and organ-specific differences, and their implications for experimental model design and therapeutic targeting of tumour cell invasion. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  8. Neuroprotective and axon growth-promoting effects following inflammatory stimulation on mature retinal ganglion cells in mice depend on ciliary neurotrophic factor and leukemia inhibitory factor.

    Science.gov (United States)

    Leibinger, Marco; Müller, Adrienne; Andreadaki, Anastasia; Hauk, Thomas G; Kirsch, Matthias; Fischer, Dietmar

    2009-11-11

    After optic nerve injury retinal ganglion cells (RGCs) normally fail to regenerate axons in the optic nerve and undergo apoptosis. However, lens injury (LI) or intravitreal application of zymosan switch RGCs into an active regenerative state, enabling these neurons to survive axotomy and to regenerate axons into the injured optic nerve. Several factors have been proposed to mediate the beneficial effects of LI. Here, we investigated the contribution of glial-derived ciliary neurotrophic factor (CNTF) to LI-mediated regeneration and neuroprotection using wild-type and CNTF-deficient mice. In wild-type mice, CNTF expression was strongly upregulated in retinal astrocytes, the JAK/STAT3 pathway was activated in RGCs, and RGCs were transformed into an active regenerative state after LI. Interestingly, retinal LIF expression was correlated with CNTF expression after LI. In CNTF-deficient mice, the neuroprotective and axon growth-promoting effects of LI were significantly reduced compared with wild-type animals, despite an observed compensatory upregulation of LIF expression in CNTF-deficient mice. The positive effects of LI and also zymosan were completely abolished in CNTF/LIF double knock-out mice, whereas LI-induced glial and macrophage activation was not compromised. In culture CNTF and LIF markedly stimulated neurite outgrowth of mature RGCs. These data confirm a key role for CNTF in directly mediating the neuroprotective and axon regenerative effects of inflammatory stimulation in the eye and identify LIF as an additional contributing factor.

  9. Profuse and Selective Growth in vitro of Rat Spinal Axons on a Micro-Patterned Poly (ethylene imine) Grid

    National Research Council Canada - National Science Library

    Mouveroux, J

    2001-01-01

    To distribute neurites (axons) along a surface and to guide them towards specific point targets we cultured spinal cord explants on coverslips printed with a micro-patterned grid of poly (ethylene imine) (PEI) lanes...

  10. Disruption of spinal cord white matter and sciatic nerve geometry inhibits axonal growth in vitro in the absence of glial scarring

    Directory of Open Access Journals (Sweden)

    Crutcher Keith A

    2001-05-01

    Full Text Available Abstract Background Axons within the mature mammalian central nervous system fail to regenerate following injury, usually resulting in long-lasting motor and sensory deficits. Studies involving transplantation of adult neurons into white matter implicate glial scar-associated factors in regeneration failure. However, these studies cannot distinguish between the effects of these factors and disruption of the spatial organization of cells and molecular factors (disrupted geometry. Since white matter can support or inhibit neurite growth depending on the geometry of the fiber tract, the present study sought to determine whether disrupted geometry is sufficient to inhibit neurite growth. Results Embryonic chick sympathetic neurons were cultured on unfixed longitudinal cryostat sections of mature rat spinal cord or sciatic nerve that had been crushed with forceps ex vivo then immediately frozen to prevent glial scarring. Neurite growth on uncrushed portions of spinal cord white matter or sciatic nerve was extensive and highly parallel with the longitudinal axis of the fiber tract but did not extend onto crushed portions. Moreover, neurite growth from neurons attached directly to crushed white matter or nerve tissue was shorter and less parallel compared with neurite growth on uncrushed tissue. In contrast, neurite growth appeared to be unaffected by crushed spinal cord gray matter. Conclusions These observations suggest that glial scar-associated factors are not necessary to block axonal growth at sites of injury. Disruption of fiber tract geometry, perhaps involving myelin-associated neurite-growth inhibitors, may be sufficient to pose a barrier to regenerating axons in spinal cord white matter and peripheral nerves.

  11. EphA4 blockers promote axonal regeneration and functional recovery following spinal cord injury in mice.

    Directory of Open Access Journals (Sweden)

    Yona Goldshmit

    Full Text Available Upregulation and activation of developmental axon guidance molecules, such as semaphorins and members of the Eph receptor tyrosine kinase family and their ligands, the ephrins, play a role in the inhibition of axonal regeneration following injury to the central nervous system. Previously we have demonstrated in a knockout model that axonal regeneration following spinal cord injury is promoted in the absence of the axon guidance protein EphA4. Antagonism of EphA4 was therefore proposed as a potential therapy to promote recovery from spinal cord injury. To further assess this potential, two soluble recombinant blockers of EphA4, unclustered ephrin-A5-Fc and EphA4-Fc, were examined for their ability to promote axonal regeneration and to improve functional outcome following spinal cord hemisection in wildtype mice. A 2-week administration of either of these blockers following spinal cord injury was sufficient to promote substantial axonal regeneration and functional recovery by 5 weeks following injury. Both inhibitors produced a moderate reduction in astrocytic gliosis, indicating that much of the effect of the blockers may be due to promotion of axon growth. These studies provide definitive evidence that soluble inhibitors of EphA4 function offer considerable therapeutic potential for the treatment of spinal cord injury and may have broader potential for the treatment of other central nervous system injuries.

  12. GDF10 Is a Signal for Axonal Sprouting and Functional Recovery after Stroke

    Science.gov (United States)

    Li, S; Nie, EH; Yin, Y; Benowitz, LI; Tung, S; Vinters, HV; Bahjat, FR; Stenzel-Poore, MP; Kawaguchi, R; Coppola, G; Carmichael, ST

    2016-01-01

    Stroke produces a limited process of neural repair. Axonal sprouting in cortex adjacent to the infarct is part of this recovery process, but the signal that initiates axonal sprouting is not known. Growth and Differentiation Factor 10 (GDF10) is induced in peri-infarct neurons in mouse, non-human primate and human. GDF10 promotes axonal outgrowth in vitro in mouse, rat and human neurons through TGFβRI/II signaling. Using pharmacogenetic gain and loss of function studies, GDF10 produces axonal sprouting and enhanced functional recovery after stroke; knocking down GDF10 blocks axonal sprouting and reduces recovery. RNA-seq from peri-infarct cortical neurons indicates that GDF10 downregulates PTEN and upregulates PI3 kinase signaling and induces specific axonal guidance molecules. Unsupervised genome-wide association analysis of the GDF10 transcriptome shows that it is not related to neurodevelopment but may partially overlap with other CNS injury patterns. GDF10 is a stroke-induced signal for axonal sprouting and functional recovery. PMID:26502261

  13. Axonal wiring in neural development: Target-independent mechanisms help to establish precision and complexity.

    Science.gov (United States)

    Petrovic, Milan; Schmucker, Dietmar

    2015-09-01

    The connectivity patterns of many neural circuits are highly ordered and often impressively complex. The intricate order and complexity of neuronal wiring remain not only a challenge for questions related to circuit functions but also for our understanding of how they develop with such an apparent precision. The chemotropic guidance of the growing axon by target-derived cues represents a central paradigm for how neurons get connected with the correct target cells. However, many studies reveal a remarkable variety of important target-independent wiring mechanisms. These mechanisms include axonal sorting, axonal tiling, growth cone polarization, as well as cell-intrinsic mechanisms underlying growth cone sprouting, and neurite branching. Our review focuses on target independent wiring mechanisms and in particular on recent progress emerging from studies on three different sensory systems: olfactory, visual, and somatosensory. We discuss molecular mechanisms that operate during axon-axon interactions or constitute axon-intrinsic functions and outline how they complement the well-known target-dependent wiring mechanisms. © 2015 WILEY Periodicals, Inc.

  14. Acute Putrescine Supplementation with Schwann Cell Implantation Improves Sensory and Serotonergic Axon Growth and Functional Recovery in Spinal Cord Injured Rats.

    Science.gov (United States)

    Iorgulescu, J Bryan; Patel, Samik P; Louro, Jack; Andrade, Christian M; Sanchez, Andre R; Pearse, Damien D

    2015-01-01

    Schwann cell (SC) transplantation exhibits significant potential for spinal cord injury (SCI) repair and its use as a therapeutic modality has now progressed to clinical trials for subacute and chronic human SCI. Although SC implants provide a receptive environment for axonal regrowth and support functional recovery in a number of experimental SCI models, axonal regeneration is largely limited to local systems and the behavioral improvements are modest without additional combinatory approaches. In the current study we investigated whether the concurrent delivery of the polyamine putrescine, started either 30 min or 1 week after SCI, could enhance the efficacy of SCs when implanted subacutely (1 week after injury) into the contused rat spinal cord. Polyamines are ubiquitous organic cations that play an important role in the regulation of the cell cycle, cell division, cytoskeletal organization, and cell differentiation. We show that the combination of putrescine with SCs provides a significant increase in implant size, an enhancement in axonal (sensory and serotonergic) sparing and/or growth, and improved open field locomotion after SCI, as compared to SC implantation alone. These findings demonstrate that polyamine supplementation can augment the effectiveness of SCs when used as a therapeutic approach for subacute SCI repair.

  15. Ascending Midbrain Dopaminergic Axons Require Descending GAD65 Axon Fascicles for Normal Pathfinding

    Directory of Open Access Journals (Sweden)

    Claudia Marcela Garcia-Peña

    2014-06-01

    Full Text Available The Nigrostriatal pathway (NSP is formed by dopaminergic axons that project from the ventral midbrain to the dorsolateral striatum as part of the medial forebrain bundle. Previous studies have implicated chemotropic proteins in the formation of the NSP during development but little is known of the role of substrate-anchored signals in this process. We observed in mouse and rat embryos that midbrain dopaminergic axons ascend in close apposition to descending GAD65-positive axon bundles throughout their trajectory to the striatum. To test whether such interaction is important for dopaminergic axon pathfinding, we analyzed transgenic mouse embryos in which the GAD65 axon bundle was reduced by the conditional expression of the diphtheria toxin. In these embryos we observed dopaminergic misprojection into the hypothalamic region and abnormal projection in the striatum. In addition, analysis of Robo1/2 and Slit1/2 knockout embryos revealed that the previously described dopaminergic misprojection in these embryos is accompanied by severe alterations in the GAD65 axon scaffold. Additional studies with cultured dopaminergic neurons and whole embryos suggest that NCAM and Robo proteins are involved in the interaction of GAD65 and dopaminergic axons. These results indicate that the fasciculation between descending GAD65 axon bundles and ascending dopaminergic axons is required for the stereotypical NSP formation during brain development and that known guidance cues may determine this projection indirectly by instructing the pathfinding of the axons that are part of the GAD65 axon scaffold.

  16. Cell intrinsic control of axon regeneration

    Science.gov (United States)

    Mar, Fernando M; Bonni, Azad; Sousa, Mónica M

    2014-01-01

    Although neurons execute a cell intrinsic program of axonal growth during development, following the establishment of connections, the developmental growth capacity declines. Besides environmental challenges, this switch largely accounts for the failure of adult central nervous system (CNS) axons to regenerate. Here, we discuss the cell intrinsic control of axon regeneration, including not only the regulation of transcriptional and epigenetic mechanisms, but also the modulation of local protein translation, retrograde and anterograde axonal transport, and microtubule dynamics. We further explore the causes underlying the failure of CNS neurons to mount a vigorous regenerative response, and the paradigms demonstrating the activation of cell intrinsic axon growth programs. Finally, we present potential mechanisms to support axon regeneration, as these may represent future therapeutic approaches to promote recovery following CNS injury and disease. PMID:24531721

  17. hnRNP R and its main interactor, the noncoding RNA 7SK, coregulate the axonal transcriptome of motoneurons.

    Science.gov (United States)

    Briese, Michael; Saal-Bauernschubert, Lena; Ji, Changhe; Moradi, Mehri; Ghanawi, Hanaa; Uhl, Michael; Appenzeller, Silke; Backofen, Rolf; Sendtner, Michael

    2018-03-20

    Disturbed RNA processing and subcellular transport contribute to the pathomechanisms of motoneuron diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. RNA-binding proteins are involved in these processes, but the mechanisms by which they regulate the subcellular diversity of transcriptomes, particularly in axons, are not understood. Heterogeneous nuclear ribonucleoprotein R (hnRNP R) interacts with several proteins involved in motoneuron diseases. It is located in axons of developing motoneurons, and its depletion causes defects in axon growth. Here, we used individual nucleotide-resolution cross-linking and immunoprecipitation (iCLIP) to determine the RNA interactome of hnRNP R in motoneurons. We identified ∼3,500 RNA targets, predominantly with functions in synaptic transmission and axon guidance. Among the RNA targets identified by iCLIP, the noncoding RNA 7SK was the top interactor of hnRNP R. We detected 7SK in the nucleus and also in the cytosol of motoneurons. In axons, 7SK localized in close proximity to hnRNP R, and depletion of hnRNP R reduced axonal 7SK. Furthermore, suppression of 7SK led to defective axon growth that was accompanied by axonal transcriptome alterations similar to those caused by hnRNP R depletion. Using a series of 7SK-deletion mutants, we show that the function of 7SK in axon elongation depends on its interaction with hnRNP R but not with the PTEF-B complex involved in transcriptional regulation. These results propose a role for 7SK as an essential interactor of hnRNP R to regulate its function in axon maintenance. Copyright © 2018 the Author(s). Published by PNAS.

  18. Metal concentrations in the blood and tissues after implantation of titanium growth guidance sliding instrumentation.

    Science.gov (United States)

    Lukina, Elena; Laka, Aleksandr; Kollerov, Mikhail; Sampiev, Mykhamad; Mason, Peter; Wagstaff, Paul; Noordeen, Hilali; Yoon, Wai Weng; Blunn, Gordon

    2016-03-01

    Growth guidance sliding treatment devices, such as Shilla (Medtronic, Minneapolis, MN USA) or LSZ-4D (CONMET, Moscow, Russia), used for the treatment of scoliosis in children who have high growth potential have unlocked fixtures that allow rods to slide during growth of the spine, which avoids periodical extensions. However, the probability of clinical complications associated with metallosis after implantation of such devices is poorly understood. The content of metal ions in the blood and tissues of pediatric patients treated for scoliosis using fusionless growth guidance sliding instrumentation has not yet been investigated. The aim of the present study was to measure the content of metal ions in the blood and tissues surrounding the implanted growth guidance sliding LSZ-4D devices made of titanium alloy (Ti6Al4V), and to identify the incidence of metallosis-associated clinical complications in some patients with these devices. This is a one-center, case-control retrospective study. The study group included 25 patients with high growth potential (22 females, 3 males; average age at primary surgery for scoliosis treatment is 11.4±1.2 years old) who had sliding growth guidance instrumentation LSZ-4D (CONMET) implanted on 13 (range: 10-16) spine levels for 6±2 years. The LSZ-4D device was made from titanium alloy Ti6Al4V and consisted of two rectangular section rods and fixture elements. Locked fixtures were used on one spinal level, whereas the others were unlocked (sliding). The control group consisted of 13 patients (12 females and 1 male; 11±1.2 years old) without any implanted devices. The content of Ti, Al, and V metal ions in the whole blood and tissues around the implanted device was measured. The incidences of metallosis-associated complications in the study group were recorded. Metal ion content was measured by the inductively coupled mass spectrometry method on quadrupolar NexION 300D (PerkinElmer Inc, Shelton, CT, USA). Five of 25 patients in the

  19. Developmental downregulation of LIS1 expression limits axonal extension and allows axon pruning

    Directory of Open Access Journals (Sweden)

    Kanako Kumamoto

    2017-07-01

    Full Text Available The robust axonal growth and regenerative capacities of young neurons decrease substantially with age. This developmental downregulation of axonal growth may facilitate axonal pruning and neural circuit formation but limits functional recovery following nerve damage. While external factors influencing axonal growth have been extensively investigated, relatively little is known about the intrinsic molecular changes underlying the age-dependent reduction in regeneration capacity. We report that developmental downregulation of LIS1 is responsible for the decreased axonal extension capacity of mature dorsal root ganglion (DRG neurons. In contrast, exogenous LIS1 expression or endogenous LIS1 augmentation by calpain inhibition restored axonal extension capacity in mature DRG neurons and facilitated regeneration of the damaged sciatic nerve. The insulator protein CTCF suppressed LIS1 expression in mature DRG neurons, and this reduction resulted in excessive accumulation of phosphoactivated GSK-3β at the axon tip, causing failure of the axonal extension. Conversely, sustained LIS1 expression inhibited developmental axon pruning in the mammillary body. Thus, LIS1 regulation may coordinate the balance between axonal growth and pruning during maturation of neuronal circuits.

  20. Hepatocyte growth factor promotes long-term survival and axonal regeneration of retinal ganglion cells after optic nerve injury: comparison with CNTF and BDNF.

    Science.gov (United States)

    Wong, Wai-Kai; Cheung, Anny Wan-Suen; Yu, Sau-Wai; Sha, Ou; Cho, Eric Yu Pang

    2014-10-01

    Different trophic factors are known to promote retinal ganglion cell survival and regeneration, but each had their own limitations. We report that hepatocyte growth factor (HGF) confers distinct advantages in supporting ganglion cell survival and axonal regeneration, when compared to two well-established trophic factors ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF). Ganglion cells in adult hamster were injured by cutting the optic nerve. HGF, CNTF, or BDNF was injected at different dosages intravitreally after injury. Ganglion cell survival was quantified at 7, 14, or 28 days postinjury. Peripheral nerve (PN) grafting to the cut optic nerve of the growth factor-injected eye was performed either immediately after injury or delayed until 7 days post-injury. Expression of heat-shock protein 27 and changes in microglia numbers were quantified in different growth factor groups. The cellular distribution of c-Met in the retina was examined by anti-c-Met immunostaining. Hepatocyte Growth Factor (HGF) was equally potent as BDNF in promoting short-term survival (up to 14 days post-injury) and also supported survival at 28 days post-injury when ganglion cells treated by CNTF or BDNF failed to be sustained. When grafting was performed without delay, HGF stimulated twice the number of axons to regenerate compared with control but was less potent than CNTF. However, in PN grafting delayed for 7 days after optic nerve injury, HGF maintained a better propensity of ganglion cells to regenerate than CNTF. Unlike CNTF, HGF application did not increase HSP27 expression in ganglion cells. Microglia proliferation was prolonged in HGF-treated retinas compared with CNTF or BDNF. C-Met was localized to both ganglion cells and Muller cells, suggesting HGF could be neuroprotective via interacting with both neurons and glia. Compared with CNTF or BDNF, HGF is advantageous in sustaining long-term ganglion cell survival and their propensity to respond to

  1. Alterations in the Local Axonal Environment Influence Target Reinnervation and Neuronal Survival after Postnatal Axotomy

    National Research Council Canada - National Science Library

    Dainer, Hugh M

    2000-01-01

    Following peripheral nerve injury in adult animals, Schwann cells (SC) proliferate and provide guidance in the local axonal environment by generating the infrastructure along which regenerating nerves grow...

  2. Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration

    Science.gov (United States)

    Rao, Sudheendra N. R.; Pearse, Damien D.

    2016-01-01

    Following spinal cord injury (SCI), a multitude of intrinsic and extrinsic factors adversely affect the gene programs that govern the expression of regeneration-associated genes (RAGs) and the production of a diversity of extracellular matrix molecules (ECM). Insufficient RAG expression in the injured neuron and the presence of inhibitory ECM at the lesion, leads to structural alterations in the axon that perturb the growth machinery, or form an extraneous barrier to axonal regeneration, respectively. Here, the role of myelin, both intact and debris, in antagonizing axon regeneration has been the focus of numerous investigations. These studies have employed antagonizing antibodies and knockout animals to examine how the growth cone of the re-growing axon responds to the presence of myelin and myelin-associated inhibitors (MAIs) within the lesion environment and caudal spinal cord. However, less attention has been placed on how the myelination of the axon after SCI, whether by endogenous glia or exogenously implanted glia, may alter axon regeneration. Here, we examine the intersection between intracellular signaling pathways in neurons and glia that are involved in axon myelination and axon growth, to provide greater insight into how interrogating this complex network of molecular interactions may lead to new therapeutics targeting SCI. PMID:27375427

  3. Wnts guide longitudinal axon tracts in the brain

    NARCIS (Netherlands)

    Prasad, A.A.

    2011-01-01

    The human brain contains more than 10 billion neurons that form over 10 trillion connections. The establishment of these connections during development requires axons to extend through the extracellular environment to their synaptic targets. This process of axon guidance is mediated by molecular

  4. Dynamics of target recognition by interstitial axon branching along developing cortical axons.

    Science.gov (United States)

    Bastmeyer, M; O'Leary, D D

    1996-02-15

    Corticospinal axons innervate their midbrain, hindbrain, and spinal targets by extending collateral branches interstitially along their length. To establish that the axon shaft rather than the axonal growth cone is responsible for target recognition in this system, and to characterize the dynamics of interstitial branch formation, we have studied this process in an in vivo-like setting using slice cultures from neonatal mice containing the entire pathway of corticospinal axons. Corticospinal axons labeled with the dye 1,1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (or Dil) were imaged using time-lapse video microscopy of their pathway overlying the basilar pons, their major hindbrain target. The axon shaft millimeters behind the growth cone exhibits several dynamic behaviors, including the de novo formation of varicosities and filopodia-like extensions, and a behavior that we term "pulsation," which is characterized by a variable thickening and thining of short segments of the axon. An individual axon can have multiple sites of branching activity, with many of the branches being transient. These dynamic behaviors occur along the portion of the axon shaft overlying the basilar pons, but not just caudal to it. Once the collaterals extend into the pontine neuropil, they branch further in the neuropil, while the parent axon becomes quiescent. Thus, the branching activity is spatially restricted to specific portions of the axon, as well as temporally restricted to a relatively brief time window. These findings provide definitive evidence that collateral branches form de novo along corticospinal axons and establish that the process of target recognition in this system is a property of the axon shaft rather than the leading growth cone.

  5. The Drosophila neurogenin Tap functionally interacts with the Wnt-PCP pathway to regulate neuronal extension and guidance

    Science.gov (United States)

    Yuan, Liqun; Hu, Shu; Okray, Zeynep; Ren, Xi; De Geest, Natalie; Claeys, Annelies; Yan, Jiekun; Bellefroid, Eric; Quan, Xiao-Jiang

    2016-01-01

    The neurogenin (Ngn) transcription factors control early neurogenesis and neurite outgrowth in mammalian cortex. In contrast to their proneural activity, their function in neurite growth is poorly understood. Drosophila has a single predicted Ngn homolog, Tap, of unknown function. Here we show that Tap is not a proneural protein in Drosophila but is required for proper axonal growth and guidance of neurons of the mushroom body, a neuropile required for associative learning and memory. Genetic and expression analyses suggest that Tap inhibits excessive axonal growth by fine regulation of the levels of the Wnt signaling adaptor protein Dishevelled. PMID:27385016

  6. Unc-51/ATG1 controls axonal and dendritic development via kinesin-mediated vesicle transport in the Drosophila brain.

    Directory of Open Access Journals (Sweden)

    Hiroaki Mochizuki

    2011-05-01

    Full Text Available Members of the evolutionary conserved Ser/Thr kinase Unc-51 family are key regulatory proteins that control neural development in both vertebrates and invertebrates. Previous studies have suggested diverse functions for the Unc-51 protein, including axonal elongation, growth cone guidance, and synaptic vesicle transport.In this work, we have investigated the functional significance of Unc-51-mediated vesicle transport in the development of complex brain structures in Drosophila. We show that Unc-51 preferentially accumulates in newly elongating axons of the mushroom body, a center of olfactory learning in flies. Mutations in unc-51 cause disintegration of the core of the developing mushroom body, with mislocalization of Fasciclin II (Fas II, an IgG-family cell adhesion molecule important for axonal guidance and fasciculation. In unc-51 mutants, Fas II accumulates in the cell bodies, calyx, and the proximal peduncle. Furthermore, we show that mutations in unc-51 cause aberrant overshooting of dendrites in the mushroom body and the antennal lobe. Loss of unc-51 function leads to marked accumulation of Rab5 and Golgi components, whereas the localization of dendrite-specific proteins, such as Down syndrome cell adhesion molecule (DSCAM and No distributive disjunction (Nod, remains unaltered. Genetic analyses of kinesin light chain (Klc and unc-51 double heterozygotes suggest the importance of kinesin-mediated membrane transport for axonal and dendritic development. Moreover, our data demonstrate that loss of Klc activity causes similar axonal and dendritic defects in mushroom body neurons, recapitulating the salient feature of the developmental abnormalities caused by unc-51 mutations.Unc-51 plays pivotal roles in the axonal and dendritic development of the Drosophila brain. Unc-51-mediated membrane vesicle transport is important in targeted localization of guidance molecules and organelles that regulate elongation and compartmentalization of

  7. Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization.

    Science.gov (United States)

    Dresselhaus, Thomas; Franklin-Tong, Noni

    2013-07-01

    Sperm cells of flowering plants are non-motile and thus require transportation to the egg apparatus via the pollen tube to execute double fertilization. During its journey, the pollen tube interacts with various sporophytic cell types that support its growth and guide it towards the surface of the ovule. The final steps of tube guidance and sperm delivery are controlled by the cells of the female gametophyte. During fertilization, cell-cell communication events take place to achieve and maximize reproductive success. Additional layers of crosstalk exist, including self-recognition and specialized processes to prevent self-fertilization and consequent inbreeding. In this review, we focus on intercellular communication between the pollen grain/pollen tube including the sperm cells with the various sporophytic maternal tissues and the cells of the female gametophyte. Polymorphic-secreted peptides and small proteins, especially those belonging to various subclasses of small cysteine-rich proteins (CRPs), reactive oxygen species (ROS)/NO signaling, and the second messenger Ca(2+), play center stage in most of these processes.

  8. Can injured adult CNS axons regenerate by recapitulating development?

    Science.gov (United States)

    Hilton, Brett J; Bradke, Frank

    2017-10-01

    In the adult mammalian central nervous system (CNS), neurons typically fail to regenerate their axons after injury. During development, by contrast, neurons extend axons effectively. A variety of intracellular mechanisms mediate this difference, including changes in gene expression, the ability to form a growth cone, differences in mitochondrial function/axonal transport and the efficacy of synaptic transmission. In turn, these intracellular processes are linked to extracellular differences between the developing and adult CNS. During development, the extracellular environment directs axon growth and circuit formation. In adulthood, by contrast, extracellular factors, such as myelin and the extracellular matrix, restrict axon growth. Here, we discuss whether the reactivation of developmental processes can elicit axon regeneration in the injured CNS. © 2017. Published by The Company of Biologists Ltd.

  9. Mitochondria Localize to Injured Axons to Support Regeneration.

    Science.gov (United States)

    Han, Sung Min; Baig, Huma S; Hammarlund, Marc

    2016-12-21

    Axon regeneration is essential to restore the nervous system after axon injury. However, the neuronal cell biology that underlies axon regeneration is incompletely understood. Here we use in vivo, single-neuron analysis to investigate the relationship between nerve injury, mitochondrial localization, and axon regeneration. Mitochondria translocate into injured axons so that average mitochondria density increases after injury. Moreover, single-neuron analysis reveals that axons that fail to increase mitochondria have poor regeneration. Experimental alterations to axonal mitochondrial distribution or mitochondrial respiratory chain function result in corresponding changes to regeneration outcomes. Axonal mitochondria are specifically required for growth-cone migration, identifying a key energy challenge for injured neurons. Finally, mitochondrial localization to the axon after injury is regulated in part by dual-leucine zipper kinase 1 (DLK-1), a conserved regulator of axon regeneration. These data identify regulation of axonal mitochondria as a new cell-biological mechanism that helps determine the regenerative response of injured neurons. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. SnoN facilitates axonal regeneration after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Jiun L Do

    Full Text Available Adult CNS neurons exhibit a reduced capacity for growth compared to developing neurons, due in part to downregulation of growth-associated genes as development is completed. We tested the hypothesis that SnoN, an embryonically regulated transcription factor that specifies growth of the axonal compartment, can enhance growth in injured adult neurons. In vitro, SnoN overexpression in dissociated adult DRG neuronal cultures significantly enhanced neurite outgrowth. Moreover, TGF-β1, a negative regulator of SnoN, inhibited neurite outgrowth, and SnoN over-expression overcame this inhibition. We then examined whether SnoN influenced axonal regeneration in vivo: indeed, expression of a mutant form of SnoN resistant to degradation significantly enhanced axonal regeneration following cervical spinal cord injury, despite peri-lesional upregulation of TGF-β1. Thus, a developmental mechanism that specifies extension of the axonal compartment also promotes axonal regeneration after adult CNS injury.

  11. Acute nutritional axonal neuropathy.

    Science.gov (United States)

    Hamel, Johanna; Logigian, Eric L

    2018-01-01

    This study describes clinical, laboratory, and electrodiagnostic features of a severe acute axonal polyneuropathy common to patients with acute nutritional deficiency in the setting of alcoholism, bariatric surgery (BS), or anorexia. Retrospective analysis of clinical, electrodiagnostic, and laboratory data of patients with acute axonal neuropathy. Thirteen patients were identified with a severe, painful, sensory or sensorimotor axonal polyneuropathy that developed over 2-12 weeks with sensory ataxia, areflexia, variable muscle weakness, poor nutritional status, and weight loss, often with prolonged vomiting and normal cerebrospinal fluid protein. Vitamin B6 was low in half and thiamine was low in all patients when obtained before supplementation. Patients improved with weight gain and vitamin supplementation, with motor greater than sensory recovery. We suggest that acute or subacute axonal neuropathy in patients with weight loss or vomiting associated with alcohol abuse, BS, or dietary deficiency is one syndrome, caused by micronutrient deficiencies. Muscle Nerve 57: 33-39, 2018. © 2017 Wiley Periodicals, Inc.

  12. Multifunctional Silk Nerve Guides for Axon Outgrowth

    Science.gov (United States)

    Tupaj, Marie C.

    Peripheral nerve regeneration is a critical issue as 2.8% of trauma patients present with this type of injury, estimating a total of 200,000 nerve repair procedures yearly in the United States. While the peripheral nervous system exhibits slow regeneration, at a rate of 0.5 mm -- 9 mm/day following trauma, this regenerative ability is only possible under certain conditions. Clinical repairs have changed slightly in the last 30 years and standard methods of treatment include suturing damaged nerve ends, allografting, and autografting, with the autograft the gold standard of these approaches. Unfortunately, the use of autografts requires a second surgery and there is a shortage of nerves available for grafting. Allografts are a second option however allografts have lower success rates and are accompanied by the need of immunosuppressant drugs. Recently there has been a focus on developing nerve guides as an "off the shelf" approach. Although some natural and synthetic guidance channels have been approved by the FDA, these nerve guides are unfunctionalized and repair only short gaps, less than 3 cm in length. The goal of this project was to identify strategies for functionalizing peripheral nerve conduits for the outgrowth of neuron axons in vitro . To accomplish this, two strategies (bioelectrical and biophysical) were indentified for increasing axon outgrowth and promoting axon guidance. Bioelectrical strategies exploited electrical stimulation for increasing neurite outgrowth. Biophysical strategies tested a range of surface topographies for axon guidance. Novel methods were developed for integrating electrical and biophysical strategies into silk films in 2D. Finally, a functionalized nerve conduit system was developed that integrated all strategies for the purpose of attaching, elongating, and guiding nervous tissue in vitro. Future directions of this work include silk conduit translation into a rat sciatic nerve model in vivo for the purpose of repairing long

  13. Selective rab11 transport and the intrinsic regenerative ability of CNS axons.

    Science.gov (United States)

    Koseki, Hiroaki; Donegá, Matteo; Lam, Brian Yh; Petrova, Veselina; van Erp, Susan; Yeo, Giles Sh; Kwok, Jessica Cf; Ffrench-Constant, Charles; Eva, Richard; Fawcett, James W

    2017-08-08

    Neurons lose intrinsic axon regenerative ability with maturation, but the mechanism remains unclear. Using an in-vitro laser axotomy model, we show a progressive decline in the ability of cut CNS axons to form a new growth cone and then elongate. Failure of regeneration was associated with increased retraction after axotomy. Transportation into axons becomes selective with maturation; we hypothesized that selective exclusion of molecules needed for growth may contribute to regeneration decline. With neuronal maturity rab11 vesicles (which carry many molecules involved in axon growth) became selectively targeted to the somatodendritic compartment and excluded from axons by predominant retrograde transport However, on overexpression rab11 was mistrafficked into proximal axons, and these axons showed less retraction and enhanced regeneration after axotomy. These results suggest that the decline of intrinsic axon regenerative ability is associated with selective exclusion of key molecules, and that manipulation of transport can enhance regeneration.

  14. Motor Axonal Regeneration After Partial and Complete Spinal Cord Transection

    Science.gov (United States)

    Lu, Paul; Blesch, Armin; Graham, Lori; Wang, Yaozhi; Samara, Ramsey; Banos, Karla; Haringer, Verena; Havton, Leif; Weishaupt, Nina; Bennett, David; Fouad, Karim; Tuszynski, Mark H.

    2012-01-01

    We subjected rats to either partial mid-cervical or complete upper thoracic spinal cord transections and examined whether combinatorial treatments support motor axonal regeneration into and beyond the lesion. Subjects received cAMP injections into brainstem reticular motor neurons to stimulate their endogenous growth state, bone marrow stromal cell grafts in lesion sites to provide permissive matrices for axonal growth, and brain-derived neurotrophic factor (BDNF) gradients beyond the lesion to stimulate distal growth of motor axons. Findings were compared to several control groups. Combinatorial treatment generated motor axon regeneration beyond both C5 hemisection and complete transection sites. Yet despite formation of synapses with neurons below the lesion, motor outcomes worsened after partial cervical lesions and spasticity worsened after complete transection. These findings highlight the complexity of spinal cord repair, and the need for additional control and shaping of axonal regeneration. PMID:22699902

  15. Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering

    Czech Academy of Sciences Publication Activity Database

    Šmít, Daniel; Fouquet, C.; Pincet, F.; Zápotocký, Martin; Trembleau, A.

    2017-01-01

    Roč. 6, Apr 19 (2017), č. článku e19907. ISSN 2050-084X R&D Projects: GA ČR(CZ) GA14-16755S; GA MŠk(CZ) 7AMB12FR002 Institutional support: RVO:67985823 Keywords : biophysics * cell adhesion * coarsening * developmental biology * mathematical model * mechanical tension * axon guidance Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 7.725, year: 2016

  16. Automated laser guidance of neuronal growth cones using a spatial light modulator.

    Science.gov (United States)

    Carnegie, David J; Cizmár, Tomás; Baumgartl, Jörg; Gunn-Moore, Frank J; Dholakia, Kishan

    2009-11-01

    The growth cone of a developing neuron can be guided using a focused infra-red (IR) laser beam [1]. In previous setups this process has required a significant amount of user intervention to adjust continuously the laser beam to guide the growing neuron. Previously, a system using an acousto-optical deflector (AOD) has been developed to steer the beam [2]. However, to enhance the controllability of this system, here we demonstrate the use of a computer controlled spatial light modulator (SLM) to steer and manipulate the shape of a laser beam for use in guided neuronal growth. This new experimental setup paves the way to enable a comprehensive investigation into beam shaping effects on neuronal growth and we show neuronal growth initiated by a Bessel light mode. This is a robust platform to explore the biochemistry of this novel phenomenon. (c) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  17. Model of fasciculation and sorting in mixed populations of axons

    Czech Academy of Sciences Publication Activity Database

    Chaudhuri, D.; Borowski, P.; Zápotocký, Martin

    2011-01-01

    Roč. 84, č. 2 (2011), e021908 ISSN 1539-3755 R&D Projects: GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : axon guidance * neurogenesis * mathematical model Subject RIV: FH - Neurology Impact factor: 2.255, year: 2011

  18. argos Is required for projection of photoreceptor axons during optic lobe development in Drosophila.

    Science.gov (United States)

    Sawamoto, K; Okabe, M; Tanimura, T; Hayashi, S; Mikoshiba, K; Okano, H

    1996-02-01

    The Drosophila argos gene encodes a secreted protein with an epidermal growth factor (EGF) motif, which acts as an inhibitor of cell recruitment in the developing eye and wing. Here, we have analyzed the role of argos during optic lobe development. argos expression was observed in the optic lobes throughout the developmental stages. In argos mutants, neuropiles failed to develop normally during embryonic and larval stages, and photoreceptor axons did not project properly into the lamina. Ubiquitous expression of argos, under control of the hsp70 promoter, rescued the defects in optic lobes. We have found that glial cells failed to differentiate in the larval optic lobes of argos mutants. Correspondingly, in loss-of-function repo mutants, whose glial cells also fail to differentiate, photoreceptor axons showed the impaired projection pattern similar to the argos phenotype. These results suggest that glial cells play a role for guidance of photoreceptor axons. The loss-of-function Star mutation (StarX155) dominantly suppressed the defects in the argos optic lobes, suggesting that these two genes act in an antagonistic fashion during optic lobe development.

  19. Regeneration of axons in the mouse retina after injury.

    Science.gov (United States)

    McConnell, P; Berry, M

    1982-01-01

    It is generally accepted that most axons in the mammalian CNS show only transient growth in response to injury, and numerous hypotheses have been advanced to account for this phenomenon. Detailed knowledge of the time-course and extent of this so-called 'abortive regeneration' is, however, surprisingly lacking. The retina of the adult albino mouse provides a convenient system in which to quantify the response of central axons to injury, since the retina can be prepared as a whole mount, allowing silver-impregnated axons to be followed along their entire course. Using this experimental model, sprouting of injured axons was observed as early as 14 h post lesion (hpl) with rapid growth (20 micrometers/day on average) continuing until 10 dpl. Thereafter, a decline in the overall growth rate was observed, presumably regenerated sprouts began to degenerate. However, not all axons showed this abortive response: numerous unfasciculated axons continued in random growth until at least 100 dpl. One possible interpretation of these results is that the concept of abortive regeneration of injured axons is untenable in regions of the CNS which are lacking in myelin.

  20. Using maize as a model to study pollen tube growth and guidance, cross-incompatibility and sperm delivery in grasses.

    Science.gov (United States)

    Dresselhaus, Thomas; Lausser, Andreas; Márton, Mihaela L

    2011-09-01

    In contrast to animals and lower plants such as mosses and ferns, sperm cells of flowering plants (angiosperms) are immobile and require transportation to the female gametes via the vegetative pollen tube cell to achieve double fertilization. The path of the pollen tube towards the female gametophyte (embryo sac) has been intensively studied in many intra- and interspecific crossing experiments with the aim of increasing the gene pool of crop plants for greater yield, improved biotic and abiotic stress resistance, and for introducing new agronomic traits. Many attempts to hybridize different species or genotypes failed due to the difficulty for the pollen tubes in reaching the female gametophyte. Detailed studies showed that these processes are controlled by various self-incompatible (intraspecific) and cross-incompatible (interspecific) hybridization mechanisms. Understanding the molecular mechanisms of crossing barriers is therefore of great interest in plant reproduction, evolution and breeding research. In particular, pre-zygotic hybridization barriers related to pollen tube germination, growth, guidance and sperm delivery, which are considered the major hybridization controls in nature and thus also contribute to species isolation and speciation, have been intensively investigated. Despite this general interest, surprisingly little is known about these processes in the most important agronomic plant family, the Gramineae, Poaceae or grasses. Small polymorphic proteins and their receptors, degradation of sterility locus proteins and general compounds such as calcium, γ-aminobutyric acid or nitric oxide have been shown to be involved in progamic pollen germination, adhesion, tube growth and guidance, as well as sperm release. Most advances have been made in the Brassicaceae, Papaveraceae, Linderniaceae and Solanaceae families including their well-understood self-incompatibility (SI) systems. Grass species evolved similar mechanisms to control the penetration

  1. Using maize as a model to study pollen tube growth and guidance, cross-incompatibility and sperm delivery in grasses

    Science.gov (United States)

    Dresselhaus, Thomas; Lausser, Andreas; Márton, Mihaela L.

    2011-01-01

    Background In contrast to animals and lower plants such as mosses and ferns, sperm cells of flowering plants (angiosperms) are immobile and require transportation to the female gametes via the vegetative pollen tube cell to achieve double fertilization. The path of the pollen tube towards the female gametophyte (embryo sac) has been intensively studied in many intra- and interspecific crossing experiments with the aim of increasing the gene pool of crop plants for greater yield, improved biotic and abiotic stress resistance, and for introducing new agronomic traits. Many attempts to hybridize different species or genotypes failed due to the difficulty for the pollen tubes in reaching the female gametophyte. Detailed studies showed that these processes are controlled by various self-incompatible (intraspecific) and cross-incompatible (interspecific) hybridization mechanisms. Scope Understanding the molecular mechanisms of crossing barriers is therefore of great interest in plant reproduction, evolution and breeding research. In particular, pre-zygotic hybridization barriers related to pollen tube germination, growth, guidance and sperm delivery, which are considered the major hybridization controls in nature and thus also contribute to species isolation and speciation, have been intensively investigated. Despite this general interest, surprisingly little is known about these processes in the most important agronomic plant family, the Gramineae, Poaceae or grasses. Small polymorphic proteins and their receptors, degradation of sterility locus proteins and general compounds such as calcium, γ-aminobutyric acid or nitric oxide have been shown to be involved in progamic pollen germination, adhesion, tube growth and guidance, as well as sperm release. Most advances have been made in the Brassicaceae, Papaveraceae, Linderniaceae and Solanaceae families including their well-understood self-incompatibility (SI) systems. Grass species evolved similar mechanisms to control

  2. Axonal regeneration and neuronal function are preserved in motor neurons lacking ß-actin in vivo.

    Directory of Open Access Journals (Sweden)

    Thomas R Cheever

    2011-03-01

    Full Text Available The proper localization of ß-actin mRNA and protein is essential for growth cone guidance and axon elongation in cultured neurons. In addition, decreased levels of ß-actin mRNA and protein have been identified in the growth cones of motor neurons cultured from a mouse model of Spinal Muscular Atrophy (SMA, suggesting that ß-actin loss-of-function at growth cones or pre-synaptic nerve terminals could contribute to the pathogenesis of this disease. However, the role of ß-actin in motor neurons in vivo and its potential relevance to disease has yet to be examined. We therefore generated motor neuron specific ß-actin knock-out mice (Actb-MNsKO to investigate the function of ß-actin in motor neurons in vivo. Surprisingly, ß-actin was not required for motor neuron viability or neuromuscular junction maintenance. Skeletal muscle from Actb-MNsKO mice showed no histological indication of denervation and did not significantly differ from controls in several measurements of physiologic function. Finally, motor axon regeneration was unimpaired in Actb-MNsKO mice, suggesting that ß-actin is not required for motor neuron function or regeneration in vivo.

  3. Signal propagation along the axon.

    Science.gov (United States)

    Rama, Sylvain; Zbili, Mickaël; Debanne, Dominique

    2018-03-08

    Axons link distant brain regions and are usually considered as simple transmission cables in which reliable propagation occurs once an action potential has been generated. Safe propagation of action potentials relies on specific ion channel expression at strategic points of the axon such as nodes of Ranvier or axonal branch points. However, while action potentials are generally considered as the quantum of neuronal information, their signaling is not entirely digital. In fact, both their shape and their conduction speed have been shown to be modulated by activity, leading to regulations of synaptic latency and synaptic strength. We report here newly identified mechanisms of (1) safe spike propagation along the axon, (2) compartmentalization of action potential shape in the axon, (3) analog modulation of spike-evoked synaptic transmission and (4) alteration in conduction time after persistent regulation of axon morphology in central neurons. We discuss the contribution of these regulations in information processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane.

    Science.gov (United States)

    Vitriol, Eric A; Zheng, James Q

    2012-03-22

    Growth cones, found at the tip of axonal projections, are the sensory and motile organelles of developing neurons that enable axon pathfinding and target recognition for precise wiring of the neural circuitry. To date, many families of conserved guidance molecules and their corresponding receptors have been identified that work in space and time to ensure billions of axons to reach their targets. Research in the past two decades has also gained significant insight into the ways in which growth cones translate extracellular signals into directional migration. This review aims to examine new progress toward understanding the cellular mechanisms underlying directional motility of the growth cone and to discuss questions that remain to be addressed. Specifically, we will focus on the cellular ensemble of cytoskeleton, adhesion, and membrane and examine how the intricate interplay between these processes orchestrates the directed movement of growth cones. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Gogo receptor contributes to retinotopic map formation and prevents R1-6 photoreceptor axon bundling.

    Directory of Open Access Journals (Sweden)

    Irina Hein

    Full Text Available BACKGROUND: Topographic maps form the basis of neural processing in sensory systems of both vertebrate and invertebrate species. In the Drosophila visual system, neighboring R1-R6 photoreceptor axons innervate adjacent positions in the first optic ganglion, the lamina, and thereby represent visual space as a continuous map in the brain. The mechanisms responsible for the establishment of retinotopic maps remain incompletely understood. RESULTS: Here, we show that the receptor Golden goal (Gogo is required for R axon lamina targeting and cartridge elongation in a partially redundant fashion with local guidance cues provided by neighboring axons. Loss of function of Gogo in large clones of R axons results in aberrant R1-R6 fascicle spacing. Gogo affects target cartridge selection only indirectly as a consequence of the disordered lamina map. Interestingly, small clones of gogo deficient R axons perfectly integrate into a proper retinotopic map suggesting that surrounding R axons of the same or neighboring fascicles provide complementary spatial guidance. Using single photoreceptor type rescue, we show that Gogo expression exclusively in R8 cells is sufficient to mediate targeting of all photoreceptor types in the lamina. Upon lamina targeting and cartridge selection, R axons elongate within their individual cartridges. Interestingly, here Gogo prevents bundling of extending R1-6 axons. CONCLUSION: Taken together, we propose that Gogo contributes to retinotopic map formation in the Drosophila lamina by controlling the distribution of R1-R6 axon fascicles. In a later developmental step, the regular position of R1-R6 axons along the lamina plexus is crucial for target cartridge selection. During cartridge elongation, Gogo allows R1-R6 axons to extend centrally in the lamina cartridge.

  6. Modality-Specific Axonal Regeneration: Towards selective regenerative neural interfaces

    Directory of Open Access Journals (Sweden)

    Parisa eLotfi

    2011-10-01

    Full Text Available Regenerative peripheral nerve interfaces have been proposed as viable alternatives for the natural control of robotic prosthetic devices. However, sensory and motor axons at the neural interface are of mixed submodality types, which difficult the specific recording from motor axons and the eliciting of precise sensory modalities through selective stimulation. Here we evaluated the possibility of using type-specific neurotrophins to preferentially entice the regeneration of defined axonal populations from transected peripheral nerves into separate compartments. Segregation of mixed sensory fibers from dorsal root ganglion neurons was evaluated in vitro by compartmentalized diffusion delivery of nerve growth factor (NGF and neurotrophin-3 (NT-3, to preferentially entice the growth of TrkA+ nociceptive and TrkC+ proprioceptive subsets of sensory neurons, respectively. The average axon length in the NGF channel increased 2.5 fold compared to that in saline or NT-3, whereas the number of branches increased 3 fold in the NT-3 channels. These results were confirmed using a 3-D Y-shaped in vitro assay showing that the arm containing NGF was able to entice a 5-fold increase in axonal length of unbranched fibers. To address if such segregation can be enticed in vivo, a Y-shaped tubing was used to allow regeneration of the transected adult rat sciatic nerve into separate compartments filled with either NFG or NT-3. A significant increase in the number of CGRP+ pain fibers were attracted towards the sural nerve, while N-52+ large diameter axons were observed in the tibial and NT-3 compartments. This study demonstrates the guided enrichment of sensory axons in specific regenerative chambers, and supports the notion that neurotrophic factors can be used to segregate sensory and perhaps motor axons in separate peripheral interfaces.

  7. Modality-specific axonal regeneration: toward selective regenerative neural interfaces.

    Science.gov (United States)

    Lotfi, Parisa; Garde, Kshitija; Chouhan, Amit K; Bengali, Ebrahim; Romero-Ortega, Mario I

    2011-01-01

    Regenerative peripheral nerve interfaces have been proposed as viable alternatives for the natural control of robotic prosthetic devices. However, sensory and motor axons at the neural interface are of mixed sub-modality types, which difficult the specific recording from motor axons and the eliciting of precise sensory modalities through selective stimulation. Here we evaluated the possibility of using type specific neurotrophins to preferentially entice the regeneration of defined axonal populations from transected peripheral nerves into separate compartments. Segregation of mixed sensory fibers from dorsal root ganglion neurons was evaluated in vitro by compartmentalized diffusion delivery of nerve growth factor (NGF) and neurotrophin-3 (NT-3), to preferentially entice the growth of TrkA+ nociceptive and TrkC+ proprioceptive subsets of sensory neurons, respectively. The average axon length in the NGF channel increased 2.5-fold compared to that in saline or NT-3, whereas the number of branches increased threefold in the NT-3 channels. These results were confirmed using a 3D "Y"-shaped in vitro assay showing that the arm containing NGF was able to entice a fivefold increase in axonal length of unbranched fibers. To address if such segregation can be enticed in vivo, a "Y"-shaped tubing was used to allow regeneration of the transected adult rat sciatic nerve into separate compartments filled with either NFG or NT-3. A significant increase in the number of CGRP+ pain fibers were attracted toward the sural nerve, while N-52+ large-diameter axons were observed in the tibial and NT-3 compartments. This study demonstrates the guided enrichment of sensory axons in specific regenerative chambers, and supports the notion that neurotrophic factors can be used to segregate sensory and perhaps motor axons in separate peripheral interfaces.

  8. Fcγ receptor-mediated inflammation inhibits axon regeneration.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Anti-glycan/ganglioside antibodies are the most common immune effectors found in patients with Guillain-Barré Syndrome, which is a peripheral autoimmune neuropathy. We previously reported that disease-relevant anti-glycan autoantibodies inhibited axon regeneration, which echo the clinical association of these antibodies and poor recovery in Guillain-Barré Syndrome. However, the specific molecular and cellular elements involved in this antibody-mediated inhibition of axon regeneration are not previously defined. This study examined the role of Fcγ receptors and macrophages in the antibody-mediated inhibition of axon regeneration. A well characterized antibody passive transfer sciatic nerve crush and transplant models were used to study the anti-ganglioside antibody-mediated inhibition of axon regeneration in wild type and various mutant and transgenic mice with altered expression of specific Fcγ receptors and macrophage/microglia populations. Outcome measures included behavior, electrophysiology, morphometry, immunocytochemistry, quantitative real-time PCR, and western blotting. We demonstrate that the presence of autoantibodies, directed against neuronal/axonal cell surface gangliosides, in the injured mammalian peripheral nerves switch the proregenerative inflammatory environment to growth inhibitory milieu by engaging specific activating Fcγ receptors on recruited monocyte-derived macrophages to cause severe inhibition of axon regeneration. Our data demonstrate that the antibody orchestrated Fcγ receptor-mediated switch in inflammation is one mechanism underlying inhibition of axon regeneration. These findings have clinical implications for nerve repair and recovery in antibody-mediated immune neuropathies. Our results add to the complexity of axon regeneration in injured peripheral and central nervous systems as adverse effects of B cells and autoantibodies on neural injury and repair are increasingly recognized.

  9. Intra-axonal protein synthesis - a new target for neural repair?

    Directory of Open Access Journals (Sweden)

    Jeffery L Twiss

    2016-01-01

    Full Text Available Although initially argued to be a feature of immature neurons with incomplete polarization, there is clear evidence that neurons in the peripheral nervous system retain the capacity for intra-axonal protein synthesis well into adulthood. This localized protein synthesis has been shown to contribute to injury signaling and axon regeneration in peripheral nerves. Recent works point to potential for protein synthesis in axons of the vertebrate central nervous system. mRNAs and protein synthesis machinery have now been documented in lamprey, mouse, and rat spinal cord axons. Intra-axonal protein synthesis appears to be activated in adult vertebrate spinal cord axons when they are regeneration-competent. Rat spinal cord axons regenerating into a peripheral nerve graft contain mRNAs and markers of activated translational machinery. Indeed, levels of some growth-associated mRNAs in these spinal cord axons are comparable to the regenerating sciatic nerve. Markers of active translation tend to decrease when these axons stop growing, but can be reactivated by a second axotomy. These emerging observations raise the possibility that mRNA transport into and translation within axons could be targeted to facilitate regeneration in both the peripheral and central nervous systems.

  10. Semaphorins and their receptors in olfactory axon guidance

    NARCIS (Netherlands)

    Pasterkamp, R Jeroen; Ruitenberg, Marc J; Verhaagen, J

    The mammalian olfactory system is capable of discriminating among a large variety of odor molecules and is therefore essential for the identification of food, enemies and mating partners. The assembly and maintenance of olfactory connectivity have been shown to depend on the combinatorial actions of

  11. A Combinatorial Approach to Induce Sensory Axon Regeneration into the Dorsal Root Avulsed Spinal Cord

    DEFF Research Database (Denmark)

    Hoeber, Jan; Konig, Niclas; Trolle, Carl

    2017-01-01

    restores sensory functions. In this study, we elucidate mechanisms underlying stem cell-mediated ingrowth of sensory axons after dorsal root avulsion (DRA). We show that human spinal cord neural stem/progenitor cells (hscNSPC), and also, mesoporous silica particles loaded with growth factor mimetics (Meso......MIM), supported sensory axon regeneration. However, when hscNSPC and MesoMIM were combined, sensory axon regeneration failed. Morphological and tracing analysis showed that sensory axons grow through the newly established glial scar along “bridges” formed by migrating stem cells. Coimplantation of Meso......MIM prevented stem cell migration, “bridges” were not formed, and sensory axons failed to enter the spinal cord. MesoMIM applied alone supported sensory axons ingrowth, but without affecting glial scar formation. In vitro, the presence of MesoMIM significantly impaired migration of hscNSPC without affecting...

  12. Comparative analysis of guide mode of government - oriented industry guidance funds under china’s new normal of economic growth

    Science.gov (United States)

    Sun, Chunling; Cheng, Xuemei

    2017-11-01

    The government-oriented industry guidance Funds solve the problem of financing difficulty and high innovation under the background of China’s new normal. Through the provinces and cities of the policies and regulations of the collation and comparative analysis, it will be divided into three modes. And then compare among three modes and analyze applicability to guide the construction of provinces and cities.

  13. Urinary bladder extracellular matrix hydrogels and matrix-bound vesicles differentially regulate central nervous system neuron viability and axon growth and branching.

    Science.gov (United States)

    Faust, Anne; Kandakatla, Apoorva; van der Merwe, Yolandi; Ren, Tanchen; Huleihel, Luai; Hussey, George; Naranjo, Juan Diego; Johnson, Scott; Badylak, Stephen; Steketee, Michael

    2017-04-01

    Central nervous system neurons often degenerate after trauma due to the inflammatory innate immune response to injury, which can lead to neuronal cell death, scarring, and permanently lost neurologic function. Extracellular matrix bioscaffolds, derived by decellularizing healthy tissues, have been widely used in both preclinical and clinical studies to promote positive tissue remodeling, including neurogenesis, in numerous tissues, with extracellular matrix from homologous tissues often inducing more positive responses. Extracellular matrix hydrogels are liquid at room temperature and enable minimally invasive extracellular matrix injections into central nervous system tissues, before gelation at 37℃. However, few studies have analyzed how extracellular matrix hydrogels influence primary central nervous system neuron survival and growth, and whether central nervous system and non-central nervous system extracellular matrix specificity is critical to neuronal responses. Urinary bladder extracellular matrix hydrogels increase both primary hippocampal neuron survival and neurite growth to similar or even greater extents, suggesting extracellular matrix from non-homologous tissue sources, such as urinary bladder matrix-extracellular matrix, may be a more economical and safer alternative to developing central nervous system extracellular matrices for central nervous system applications. Additionally, we show matrix-bound vesicles derived from urinary bladder extracellular matrix are endocytosed by hippocampal neurons and positively regulate primary hippocampal neuron neurite growth. Matrix-bound vesicles carry protein and RNA cargos, including noncoding RNAs and miRNAs that map to the human genome and are known to regulate cellular processes. Thus, urinary bladder matrix-bound vesicles provide natural and transfectable cargoes which offer new experimental tools and therapeutic applications to study and treat central nervous system neuron injury.

  14. A standardized randomized 6-month aerobic exercise-training down-regulated pro-inflammatory genes, but up-regulated anti-inflammatory, neuron survival and axon growth-related genes.

    Science.gov (United States)

    Iyalomhe, Osigbemhe; Chen, Yuanxiu; Allard, Joanne; Ntekim, Oyonumo; Johnson, Sheree; Bond, Vernon; Goerlitz, David; Li, James; Obisesan, Thomas O

    2015-09-01

    There is considerable support for the view that aerobic exercise may confer cognitive benefits to mild cognitively impaired elderly persons. However, the biological mechanisms mediating these effects are not entirely clear. As a preliminary step towards informing this gap in knowledge, we enrolled older adults confirmed to have mild cognitive impairment (MCI) in a 6-month exercise program. Male and female subjects were randomized into a 6-month program of either aerobic or stretch (control) exercise. Data collected from the first 10 completers, aerobic exercise (n=5) or stretch (control) exercise (n=5), were used to determine intervention-induced changes in the global gene expression profiles of the aerobic and stretch groups. Using microarray, we identified genes with altered expression (relative to baseline values) in response to the 6-month exercise intervention. Genes whose expression were altered by at least two-fold, and met the p-value cutoff of 0.01 were inputted into the Ingenuity Pathway Knowledge Base Library to generate gene-interaction networks. After a 6-month aerobic exercise-training, genes promoting inflammation became down-regulated, whereas genes having anti-inflammatory properties and those modulating immune function or promoting neuron survival and axon growth, became up-regulated (all fold change≥±2.0, paerobic program as opposed to the stretch group. We conclude that three distinct cellular pathways may collectively influence the training effects of aerobic exercise in MCI subjects. We plan to confirm these effects using rt-PCR and correlate such changes with the cognitive phenotype. Copyright © 2015. Published by Elsevier Inc.

  15. The Kinesin Adaptor Calsyntenin-1 Organizes Microtubule Polarity and Regulates Dynamics during Sensory Axon Arbor Development

    Directory of Open Access Journals (Sweden)

    Mary C. Halloran

    2017-04-01

    Full Text Available Axon growth and branching, and development of neuronal polarity are critically dependent on proper organization and dynamics of the microtubule (MT cytoskeleton. MTs must organize with correct polarity for delivery of diverse cargos to appropriate subcellular locations, yet the molecular mechanisms regulating MT polarity remain poorly understood. Moreover, how an actively branching axon reorganizes MTs to direct their plus ends distally at branch points is unknown. We used high-speed, in vivo imaging of polymerizing MT plus ends to characterize MT dynamics in developing sensory axon arbors in zebrafish embryos. We find that axonal MTs are highly dynamic throughout development, and that the peripheral and central axons of sensory neurons show differences in MT behaviors. Furthermore, we show that Calsyntenin-1 (Clstn-1, a kinesin adaptor required for sensory axon branching, also regulates MT polarity in developing axon arbors. In wild type neurons the vast majority of MTs are directed in the correct plus-end-distal orientation from early stages of development. Loss of Clstn-1 causes an increase in MTs polymerizing in the retrograde direction. These misoriented MTs most often are found near growth cones and branch points, suggesting Clstn-1 is particularly important for organizing MT polarity at these locations. Together, our results suggest that Clstn-1, in addition to regulating kinesin-mediated cargo transport, also organizes the underlying MT highway during axon arbor development.

  16. Axonal remodeling in the corticospinal tract after stroke: how does rehabilitative training modulate it?

    Directory of Open Access Journals (Sweden)

    Naohiko Okabe

    2017-01-01

    Full Text Available Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstruct the remaining neural network. In the motor system, such neural network remodeling is observed as a motor map reorganization. Because of its significant correlation with functional recovery, motor map reorganization has been regarded as a key phenomenon for functional recovery after stroke. Although the mechanism underlying motor map reorganization remains unclear, increasing evidence has shown a critical role for axonal remodeling in the corticospinal tract. In this study, we review previous studies investigating axonal remodeling in the corticospinal tract after stroke and discuss which mechanisms may underlie the stimulatory effect of rehabilitative training. Axonal remodeling in the corticospinal tract can be classified into three types based on the location and the original targets of corticospinal neurons, and it seems that all the surviving corticospinal neurons in both ipsilesional and contralesional hemisphere can participate in axonal remodeling and motor map reorganization. Through axonal remodeling, corticospinal neurons alter their output selectivity from a single to multiple areas to compensate for the lost function. The remodeling of the corticospinal axon is influenced by the extent of tissue destruction and promoted by various therapeutic interventions, including rehabilitative training. Although the precise molecular mechanism underlying rehabilitation-promoted axonal remodeling remains elusive, previous data suggest that rehabilitative training promotes axonal remodeling by upregulating growth-promoting and downregulating growth-inhibiting signals.

  17. CSPGs inhibit axon branching by impairing mitochondria-dependent regulation of actin dynamics and axonal translation.

    Science.gov (United States)

    Sainath, Rajiv; Ketschek, Andrea; Grandi, Leah; Gallo, Gianluca

    2017-04-01

    Chondroitin sulfate proteoglycans (CSPGs) inhibit the formation of axon collateral branches. The regulation of the axonal cytoskeleton and mitochondria are important components of the mechanism of branching. Actin-dependent axonal plasticity, reflected in the dynamics of axonal actin patches and filopodia, is greatest along segments of the axon populated by mitochondria. It is reported that CSPGs partially depolarize the membrane potential of axonal mitochondria, which impairs the dynamics of the axonal actin cytoskeleton and decreases the formation and duration of axonal filopodia, the first steps in the mechanism of branching. The effects of CSPGs on actin cytoskeletal dynamics are specific to axon segments populated by mitochondria. In contrast, CSPGs do not affect the microtubule content of axons, or the localization of microtubules into axonal filopodia, a required step in the mechanism of branch formation. It is also reported that CSPGs decrease the mitochondria-dependent axonal translation of cortactin, an actin associated protein involved in branching. Finally, the inhibitory effects of CSPGs on axon branching, actin cytoskeletal dynamics and the axonal translation of cortactin are reversed by culturing neurons with acetyl-l-carnitine, which promotes mitochondrial respiration. Collectively these data indicate that CSPGs impair mitochondrial function in axons, an effect which contributes to the inhibition of axon branching. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017. © 2016 Wiley Periodicals, Inc.

  18. The axonal cytoskeleton : from organization to function

    NARCIS (Netherlands)

    Kevenaar, Josta T|info:eu-repo/dai/nl/338771042; Hoogenraad, Casper C|info:eu-repo/dai/nl/227263502

    The axon is the single long fiber that extends from the neuron and transmits electrical signals away from the cell body. The neuronal cytoskeleton, composed of microtubules (MTs), actin filaments and neurofilaments, is not only required for axon formation and axonal transport but also provides the

  19. Slowing of axonal regeneration is correlated with increased axonal viscosity during aging

    Directory of Open Access Journals (Sweden)

    Heidemann Steven R

    2010-10-01

    Full Text Available Abstract Background As we age, the speed of axonal regeneration declines. At the biophysical level, why this occurs is not well understood. Results To investigate we first measured the rate of axonal elongation of sensory neurons cultured from neonatal and adult rats. We found that neonatal axons grew 40% faster than adult axons (11.5 µm/hour vs. 8.2 µm/hour. To determine how the mechanical properties of axons change during maturation, we used force calibrated towing needles to measure the viscosity (stiffness and strength of substrate adhesion of neonatal and adult sensory axons. We found no significant difference in the strength of adhesions, but did find that adult axons were 3 times intrinsically stiffer than neonatal axons. Conclusions Taken together, our results suggest decreasing axonal stiffness may be part of an effective strategy to accelerate the regeneration of axons in the adult peripheral nervous system.

  20. Age-related changes in axonal transport.

    Science.gov (United States)

    Frolkis, V V; Tanin, S A; Gorban, Y N

    1997-01-01

    In rats the rate of axonal transport (AT) or radiolabeled material decreased in the ventral roots of the spinal cord and the vagal and hypoglossal nerves with aging. A maximum AT deceleration in old age was observed in the vagus. The uncoupling of oxidative phosphorylation, inhibition of glycolysis and hypoxia induced a greater AT deceleration in old rats as compared to adults. Small doses of sodium fluoride accelerated AT, and this correlated with a rise in cAMP levels in ventral roots. High doses of sodium fluoride decelerated AT more markedly in old rats. It was shown that anabolic hormones (sex steroids and thyroxine) accelerated AT in both adult and old rats, whereas insulin induced a rise in AT rate in only adults. The catabolic steroid, hydrocortisone decelerated AT. In old rats castration diminished AT, while thyroidectomy had no effect. It was also shown that hydrocortisone and testosterone were transported along axons, reached fibers of the skeletal muscles, and hyperpolarized the plasma membrane. In old age the latent period was extended. Following 73 to 74 days of irradiation, AT slowed down in all the nerves studied in both adult and old rats. Following irradiation hormonal effects on AT changed, for example, the stimulatory effect of estradiol became weak, especially in old rats. Changes in AT could be an important mechanism of disordering the growth of neurons and innervated cells in old age.

  1. PACSIN1, a Tau-interacting protein, regulates axonal elongation and branching by facilitating microtubule instability.

    Science.gov (United States)

    Liu, Yingying; Lv, Kaosheng; Li, Zenglong; Yu, Albert C H; Chen, Jianguo; Teng, Junlin

    2012-11-16

    Tau is a major member of the neuronal microtubule-associated proteins. It promotes tubulin assembly and stabilizes axonal microtubules. Previous studies have demonstrated that Tau forms cross-bridges between microtubules, with some particles located on cross-bridges, suggesting that some proteins interact with Tau and might be involved in regulating Tau-related microtubule dynamics. This study reports that PACSIN1 interacts with Tau in axon. PACSIN1 blockade results in impaired axonal elongation and a higher number of primary axonal branches in mouse dorsal root ganglia neurons, which is induced by increasing the binding ability of Tau to microtubules. In PACSIN1-blocked dorsal root ganglia neurons, a greater amount of Tau is inclined to accumulate in the central domain of growth cones, and it promotes the stability of the microtubule network. Taken together, these results suggest that PACSIN1 is an important Tau binding partner in regulating microtubule dynamics and forming axonal plasticity.

  2. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury.

    Science.gov (United States)

    Liu, Shengwen; Sandner, Beatrice; Schackel, Thomas; Nicholson, LaShae; Chtarto, Abdelwahed; Tenenbaum, Liliane; Puttagunta, Radhika; Müller, Rainer; Weidner, Norbert; Blesch, Armin

    2017-09-15

    Grafting of cell-seeded alginate capillary hydrogels into a spinal cord lesion site provides an axonal bridge while physically directing regenerating axonal growth in a linear pattern. However, without an additional growth stimulus, bridging axons fail to extend into the distal host spinal cord. Here we examined whether a combinatory strategy would support regeneration of descending axons across a cervical (C5) lateral hemisection lesion in the rat spinal cord. Following spinal cord transections, Schwann cell (SC)-seeded alginate hydrogels were grafted to the lesion site and AAV5 expressing brain-derived neurotrophic factor (BDNF) under control of a tetracycline-regulated promoter was injected caudally. In addition, we examined whether SC injection into the caudal spinal parenchyma would further enhance regeneration of descending axons to re-enter the host spinal cord. Our data show that both serotonergic and descending axons traced by biotinylated dextran amine (BDA) extend throughout the scaffolds. The number of regenerating axons is significantly increased when caudal BDNF expression is activated and transient BDNF delivery is able to sustain axons after gene expression is switched off. Descending axons are confined to the caudal graft/host interface even with continuous BDNF expression for 8weeks. Only with a caudal injection of SCs, a pathway facilitating axonal regeneration through the host/graft interface is generated allowing axons to successfully re-enter the caudal spinal cord. Recovery from spinal cord injury is poor due to the limited regeneration observed in the adult mammalian central nervous system. Biomaterials, cell transplantation and growth factors that can guide axons across a lesion site, provide a cellular substrate, stimulate axon growth and have shown some promise in increasing the growth distance of regenerating axons. In the present study, we combined an alginate biomaterial with linear channels with transplantation of Schwann cells within

  3. A Simple Method for 3D Analysis of Immunolabeled Axonal Tracts in a Transparent Nervous System

    Directory of Open Access Journals (Sweden)

    Morgane Belle

    2014-11-01

    Full Text Available Clearing techniques have been developed to transparentize mouse brains, thereby preserving 3D structure, but their complexity has limited their use. Here, we show that immunolabeling of axonal tracts followed by optical clearing with solvents (3DISCO and light-sheet microscopy reveals brain connectivity in mouse embryos and postnatal brains. We show that the Robo3 receptor is selectively expressed by medial habenula axons forming the fasciculus retroflexus (FR and analyzed the development of this commissural tract in mutants of the Slit/Robo and DCC/Netrin pathways. Netrin-1 and DCC are required to attract FR axons to the midline, but the two mutants exhibit specific and heterogeneous axon guidance defects. Moreover, floor-plate-specific deletion of Slit ligands with a conditional Slit2 allele perturbs not only midline crossing by FR axons but also their anteroposterior distribution. In conclusion, this method represents a unique and powerful imaging tool to study axonal connectivity in mutant mice.

  4. The Drosophila HEM-2/NAP1 homolog KETTE controls axonal pathfinding and cytoskeletal organization.

    Science.gov (United States)

    Hummel, T; Leifker, K; Klämbt, C

    2000-04-01

    In Drosophila, the correct formation of the segmental commissures depends on neuron-glial interactions at the midline. The VUM midline neurons extend axons along which glial cells migrate in between anterior and posterior commissures. Here, we show that the gene kette is required for the normal projection of the VUM axons and subsequently disrupts glial migration. Axonal projection defects are also found for many other moto- and interneurons. In addition, kette affects the cell morphology of mesodermal and epidermal derivatives, which show an abnormal actin cytoskeleton. The KETTE protein is homologous to the transmembrane protein HEM-2/NAP1 evolutionary conserved from worms to vertebrates. In vitro analysis has shown a specific interaction of the vertebrate HEM-2/NAP1 with the SH2-SH3 adapter protein NCK and the small GTPase RAC1, which both have been implicated in regulating cytoskeleton organization and axonal growth. Hypomorphic kette mutations lead to axonal defects similar to mutations in the Drosophila NCK homolog dreadlocks. Furthermore, we show that kette and dock mutants genetically interact. NCK is thought to interact with the small G proteins RAC1 and CDC42, which play a role in axonal growth. In line with these observations, a kette phenocopy can be obtained following directed expression of mutant DCDC42 or DRAC1 in the CNS midline. In addition, the kette mutant phenotype can be partially rescued by expression of an activated DRAC1 transgene. Our data suggest an important role of the HEM-2 protein in cytoskeletal organization during axonal pathfinding.

  5. Chondroitin sulfate proteoglycans negatively regulate the positioning of mitochondria and endoplasmic reticulum to distal axons.

    Science.gov (United States)

    Sainath, Rajiv; Armijo-Weingart, Lorena; Ketscheck, Andrea; Xu, Zhuxuan; Li, Shuxin; Gallo, Gianluca

    2017-12-01

    Chondroitin sulfate proteoglycans (CSPGs) are components of the extracellular matrix that inhibit the extension and regeneration of axons. However, the underlying mechanism of action remains poorly understood. Mitochondria and endoplasmic reticulum (ER) are functionally inter-linked organelles important to axon development and maintenance. We report that CSPGs impair the targeting of mitochondria and ER to the growth cones of chicken embryonic sensory axons. The effect of CSPGs on the targeting of mitochondria is blocked by inhibition of the LAR receptor for CSPGs. The regulation of the targeting of mitochondria and ER to the growth cone by CSPGs is due to attenuation of PI3K signaling, which is known to be downstream of LAR receptor activation. Dynactin is a required component of the dynein motor complex that drives the normally occurring retrograde evacuation of mitochondria from growth cones. CSPGs elevate the levels of p150 Glu dynactin found in distal axons, and inhibition of the interaction of dynactin with dynein increased axon lengths on CSPGs. CSPGs decreased the membrane potential of mitochondria, and pharmacological inhibition of mitochondria respiration at the growth cone independent of manipulation of mitochondria positioning impaired axon extension. Combined inhibition of dynactin and potentiation of mitochondria respiration further increased axon lengths on CSPGs relative to inhibition of dynactin alone. These data reveal that the regulation of the localization of mitochondria and ER to growth cones is a previously unappreciated aspect of the effects of CSPGs on embryonic axons. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1351-1370, 2017. © 2017 Wiley Periodicals, Inc.

  6. The L1-type cell adhesion molecule Neuroglian is necessary for maintenance of sensory axon advance in the Drosophila embryo

    Directory of Open Access Journals (Sweden)

    Martin Veronica

    2008-04-01

    Full Text Available Abstract Background Cell adhesion molecules have long been implicated in the regulation of axon growth, but the precise cellular roles played by individual cell adhesion molecules and the molecular basis for their action are still not well understood. We have used the sensory system of the Drosophila embryo to shed light on the mechanism by which the L1-type cell adhesion molecule Neuroglian regulates axon growth. Results We have found a highly penetrant sensory axon stalling phenotype in neuroglian mutant embryos. Axons stalled at a variety of positions along their normal trajectory, but most commonly in the periphery some distance along the peripheral nerve. All lateral and dorsal cluster sensory neurons examined, except for the dorsal cluster neuron dbd, showed stalling. Sensory axons were never seen to project along inappropriate pathways in neuroglian mutants and stalled axons showed normal patterns of fasciculation within nerves. The growth cones of stalled axons possessed a simple morphology, similar to their appearance in wild-type embryos when advancing along nerves. Driving expression of the wild-type form of Neuroglian in sensory neurons alone rescued the neuroglian mutant phenotype of both pioneering and follower neurons. A partial rescue was achieved by expressing the Neuroglian extracellular domain. Over/mis-expression of Neuroglian in all neurons, oenocytes or trachea had no apparent effect on sensory axon growth. Conclusion We conclude that Neuroglian is necessary to maintain axon advance along axonal substrates, but is not required for initiation of axon outgrowth, axon fasciculation or recognition of correct growth substrates. Expression of Neuroglian in sensory neurons alone is sufficient to promote axon advance and the intracellular region of the molecule is largely dispensable for this function. It is unlikely, therefore, that Nrg acts as a molecular 'clutch' to couple adhesion of F-actin within the growth cone to the

  7. Activated retinal glia mediated axon regeneration in experimental glaucoma.

    Science.gov (United States)

    Lorber, Barbara; Guidi, Alessandra; Fawcett, James W; Martin, Keith R

    2012-01-01

    Glaucoma, a leading cause of blindness, is a neurodegenerative disease characterized by progressive loss of retinal ganglion cell axons in the optic nerve and their cell bodies in the retina. Reactive retinal glial changes have been observed in glaucoma but the role of such glial changes in the pathogenesis of the condition remains unclear. In the present study we found that retinal ganglion cells in an experimental animal model of glaucoma have an increased axon regenerative potential. Regeneration of adult rat retinal ganglion cell axons after optic nerve crush was significantly increased in vivo when combined with intraocular pressure-induced experimental glaucoma. This enhanced axon regeneration response was correlated with a significant increase in activation of glial fibrillary acidic protein+retinal glia. Using a dissociated retinal ganglion cell culture model we showed that reducing the number of activated retinal glia with a glial specific toxin, α-Aminoadipic acid, significantly reduced the growth potential of retinal ganglion cells from glaucomatous rat eyes, suggesting that activated retinal glia mediate, at least in part, the growth promoting effect. This was shown to be mediated by both membrane-bound and soluble glial-derived factors. Neurotrophin and ciliary neurotrophic/leukemia inhibitory factor blockers did not affect the regenerative potential, excluding these growth factors as principal mediators of the enhanced growth response occurring in glaucomatous retinal cultures. These observations are the first to reveal that retinal ganglion cells from glaucomatous rat eyes have an enhanced regenerative capacity. Furthermore, our results suggest that activated retinal glia mediate at least part of this response. Further work to understand and enhance the regeneration-promoting effect of activated retinal glia is required to determine if this approach could be useful as part of a therapeutic strategy to encourage optic nerve regeneration in glaucoma

  8. Perturbations of microRNA function in mouse dicer mutants produce retinal defects and lead to aberrant axon pathfinding at the optic chiasm.

    Directory of Open Access Journals (Sweden)

    Rita Pinter

    2010-04-01

    Full Text Available During development axons encounter a variety of choice points where they have to make appropriate pathfinding decisions. The optic chiasm is a major decision point for retinal ganglion cell (RGC axons en route to their target in order to ensure the correct wiring of the visual system. MicroRNAs (miRNAs belong to the class of small non-coding RNA molecules and have been identified as important regulators of a variety of processes during embryonic development. However, their involvement in axon guidance decisions is less clear.We report here that the early loss of Dicer, an essential protein for the maturation of miRNAs, in all cells of the forming retina and optic chiasm leads to severe phenotypes of RGC axon pathfinding at the midline. Using a conditional deletion approach in mice, we find in homozygous Dicer mutants a marked increase of ipsilateral projections, RGC axons extending outside the optic chiasm, the formation of a secondary optic tract and a substantial number of RGC axons projecting aberrantly into the contralateral eye. In addition, the mutant mice display a microphthalmia phenotype.Our work demonstrates an important role of Dicer controlling the extension of RGC axons to the brain proper. It indicates that miRNAs are essential regulatory elements for mechanisms that ensure correct axon guidance decisions at the midline and thus have a central function in the establishment of circuitry during the development of the nervous system.

  9. Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries

    Directory of Open Access Journals (Sweden)

    Oscar A. Carballo-Molina

    2015-02-01

    Full Text Available Damage caused to neural tissue by disease or injury frequently produces a discontinuity in the nervous system. Such damage generates diverse alterations that are commonly permanent, due to the limited regeneration capacity of the adult nervous system, particularly the Central Nervous System (CNS. The cellular reaction to noxious stimulus leads to several events such as the formation of glial and fibrous scars, which inhibit axonal regeneration in both the CNS and the Peripheral Nervous System (PNS. Although in the PNS there is some degree of nerve regeneration, it is common that the growing axons reinnervate incorrect areas, causing mismatches. Providing a permissive substrate for axonal regeneration in combination with delivery systems for the release of molecules, which enhances axonal growth, could increase regeneration and the recovery of functions in the CNS or the PNS. Currently, there are no effective vehicles to supply growth factors or cells to the damaged/diseased nervous system. Hydrogels are polymers that are biodegradable, biocompatible and have the capacity to deliver a large range of molecules in situ. The inclusion of cultured neural cells into hydrogels forming three-dimensional structures allows the formation of synapses and neuronal survival. There is also evidence showing that hydrogels constitute an amenable substrate for axonal growth of endogenous or grafted cells, overcoming the presence of axonal regeneration inhibitory molecules, in both the central and peripheral nervous systems. Recent experiments suggest that hydrogels can carry and deliver several proteins relevant for improving neuronal survival and axonal growth. Although the use of hydrogels is appealing, its effectiveness is still a matter of discussion, and more results are needed to achieve consistent recovery using different parameters. This review also discusses areas of opportunity where hydrogels can be applied, in order to promote axonal regeneration of

  10. Sorting of Dendritic and Axonal Vesicles at the Pre-axonal Exclusion Zone

    Directory of Open Access Journals (Sweden)

    Ginny G. Farías

    2015-11-01

    Full Text Available Polarized sorting of newly synthesized proteins to the somatodendritic and axonal domains of neurons occurs by selective incorporation into distinct populations of vesicular transport carriers. An unresolved issue is how the vesicles themselves are sorted to their corresponding neuronal domains. Previous studies concluded that the axon initial segment (AIS is an actin-based filter that selectively prevents passage of somatodendritic vesicles into the axon. We find, however, that most somatodendritic vesicles fail to enter the axon at a more proximal region in the axon hillock, herein referred to as the pre-axonal exclusion zone (PAEZ. Forced coupling of a somatodendritic cargo protein to an axonally directed kinesin is sufficient to drive transport of whole somatodendritic vesicles through the PAEZ toward the distal axon. Based on these findings, we propose that polarized sorting of transport vesicles occurs at the PAEZ and depends on the ability of the vesicles to acquire an appropriately directed microtubule motor.

  11. Constitutively expressed Protocadherin-α regulates the coalescence and elimination of homotypic olfactory axons through its cytoplasmic region

    Directory of Open Access Journals (Sweden)

    Sonoko eHasegawa

    2012-10-01

    Full Text Available Olfactory sensory neuron (OSN axons coalesce into specific glomeruli in the olfactory bulb (OB according to their odorant receptor (OR expression. Several guidance molecules enhance the coalescence of homotypic OSN projections, in an OR-specific- and neural-activity-dependent manner. However, the mechanism by which homotypic OSN axons are organized into glomeruli is unsolved. We previously reported that the clustered protocadherin-α (Pcdh-α family of diverse cadherin-related molecules plays roles in the coalescence and elimination of homotypic OSN axons throughout development. Here we showed that the elimination of small ectopic homotypic glomeruli required the constitutive expression of a Pcdh-α isoform and Pcdh-α’s cytoplasmic region, but not OR specificity or neural activity. These results suggest that Pcdh-α proteins provide a cytoplasmic signal to regulate repulsive activity for homotypic OSN axons independently of OR expression and neural activity. The counterbalancing effect of Pcdh-α proteins for the axonal coalescence mechanisms mediated by other olfactory guidance molecules indicate a possible mechanism for the organization of homotypic OSN axons into glomeruli during development.

  12. Radial glia phagocytose axonal debris from degenerating overextending axons in the developing olfactory bulb.

    Science.gov (United States)

    Amaya, Daniel A; Wegner, Michael; Stolt, C Claus; Chehrehasa, Fatemeh; Ekberg, Jenny A K; St John, James A

    2015-02-01

    Axon targeting during the development of the olfactory system is not always accurate, and numerous axons overextend past the target layer into the deeper layers of the olfactory bulb. To date, the fate of the mis-targeted axons has not been determined. We hypothesized that following overextension, the axons degenerate, and cells within the deeper layers of the olfactory bulb phagocytose the axonal debris. We utilized a line of transgenic mice that expresses ZsGreen fluorescent protein in primary olfactory axons. We found that overextending axons closely followed the filaments of radial glia present in the olfactory bulb during embryonic development. Following overextension into deeper layers of the olfactory bulb, axons degenerated and radial glia responded by phagocytosing the resulting debris. We used in vitro analysis to confirm that the radial glia had phagocytosed debris from olfactory axons. We also investigated whether the fate of overextending axons was altered when the development of the olfactory bulb was perturbed. In mice that lacked Sox10, a transcription factor essential for normal olfactory bulb development, we observed a disruption to the morphology and positioning of radial glia and an accumulation of olfactory axon debris within the bulb. Our results demonstrate that during early development of the olfactory system, radial glia play an important role in removing overextended axons from the deeper layers of the olfactory bulb. © 2014 Wiley Periodicals, Inc.

  13. Action Potential Dynamics in Fine Axons Probed with an Axonally Targeted Optical Voltage Sensor.

    Science.gov (United States)

    Ma, Yihe; Bayguinov, Peter O; Jackson, Meyer B

    2017-01-01

    The complex and malleable conduction properties of axons determine how action potentials propagate through extensive axonal arbors to reach synaptic terminals. The excitability of axonal membranes plays a major role in neural circuit function, but because most axons are too thin for conventional electrical recording, their properties remain largely unexplored. To overcome this obstacle, we used a genetically encoded hybrid voltage sensor (hVOS) harboring an axonal targeting motif. Expressing this probe in transgenic mice enabled us to monitor voltage changes optically in two populations of axons in hippocampal slices, the large axons of dentate granule cells (mossy fibers) in the stratum lucidum of the CA3 region and the much finer axons of hilar mossy cells in the inner molecular layer of the dentate gyrus. Action potentials propagated with distinct velocities in each type of axon. Repetitive firing broadened action potentials in both populations, but at an intermediate frequency the degree of broadening differed. Repetitive firing also attenuated action potential amplitudes in both mossy cell and granule cell axons. These results indicate that the features of use-dependent action potential broadening, and possible failure, observed previously in large nerve terminals also appear in much finer unmyelinated axons. Subtle differences in the frequency dependences could influence the propagation of activity through different pathways to excite different populations of neurons. The axonally targeted hVOS probe used here opens up the diverse repertoire of neuronal processes to detailed biophysical study.

  14. AxonSeg: Open Source Software for Axon and Myelin Segmentation and Morphometric Analysis.

    Science.gov (United States)

    Zaimi, Aldo; Duval, Tanguy; Gasecka, Alicja; Côté, Daniel; Stikov, Nikola; Cohen-Adad, Julien

    2016-01-01

    Segmenting axon and myelin from microscopic images is relevant for studying the peripheral and central nervous system and for validating new MRI techniques that aim at quantifying tissue microstructure. While several software packages have been proposed, their interface is sometimes limited and/or they are designed to work with a specific modality (e.g., scanning electron microscopy (SEM) only). Here we introduce AxonSeg, which allows to perform automatic axon and myelin segmentation on histology images, and to extract relevant morphometric information, such as axon diameter distribution, axon density and the myelin g-ratio. AxonSeg includes a simple and intuitive MATLAB-based graphical user interface (GUI) and can easily be adapted to a variety of imaging modalities. The main steps of AxonSeg consist of: (i) image pre-processing; (ii) pre-segmentation of axons over a cropped image and discriminant analysis (DA) to select the best parameters based on axon shape and intensity information; (iii) automatic axon and myelin segmentation over the full image; and (iv) atlas-based statistics to extract morphometric information. Segmentation results from standard optical microscopy (OM), SEM and coherent anti-Stokes Raman scattering (CARS) microscopy are presented, along with validation against manual segmentations. Being fully-automatic after a quick manual intervention on a cropped image, we believe AxonSeg will be useful to researchers interested in large throughput histology. AxonSeg is open source and freely available at: https://github.com/neuropoly/axonseg.

  15. Regeneration of supraspinal axons after transection of the thoracic spinal cord in the developing opossum, Didelphis virginiana.

    Science.gov (United States)

    Wang, X M; Terman, J R; Martin, G F

    1998-08-17

    When the thoracic spinal cord of the North American opossum is transected early in development, supraspinal axons grow through the lesion. In the experiments reported here, we asked whether regeneration of cut axons contributes to such growth. Fast Blue (FB) was injected into the lumbar cord on postnatal day (PD)5, 8, 15, or 20. Five days later, FB was removed by gentle suction, and the spinal cord was transected at thoracic levels. Fourteen days later, rhodamine B dextran was injected between the site of the FB injection and the lesion. The pups were maintained for an additional 7-10 days before killing and perfusion. We assumed that supraspinal neurons that contained FB survived axotomy and those that contained both FB and rhodamine B dextran supported regenerating axons. In the PD5 group (lesioned at PD10), regenerative growth was documented for axons originating in all of the supraspinal nuclei that innervate the lumbar cord by PD10. When the injections were made at the later ages, however, neurons that supported regenerative growth were fewer in number and regionally restricted. In some cases, they were limited primarily to the red nucleus, the medullary raphe, and the adjacent reticular formation. Our results show that regeneration of cut axons contributes to growth of supraspinal axons through the lesion after transection of the thoracic cord in developing opossums and that the critical period for regenerative growth is not the same for all axons.

  16. Axonal interferon responses and alphaherpesvirus neuroinvasion

    Science.gov (United States)

    Song, Ren

    Infection by alphaherpesviruses, including herpes simplex virus (HSV) and pseudorabies virus (PRV), typically begins at a peripheral epithelial surface and continues into the peripheral nervous system (PNS) that innervates this tissue. Inflammatory responses are induced at the infected peripheral site prior to viral invasion of the PNS. PNS neurons are highly polarized cells with long axonal processes that connect to distant targets. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which include type I interferon (e.g. IFNbeta) and type II interferon (i.e. IFNgamma). IFNbeta can be produced by all types of cells, while IFNgamma is secreted by some specific types of immune cells. And both types of IFN induce antiviral responses in surrounding cells that express the IFN receptors. The fundamental question is how do PNS neurons respond to the inflammatory milieu experienced only by their axons. Axons must act as potential front-line barriers to prevent PNS infection and damage. Using compartmented cultures that physically separate neuron axons from cell bodies, I found that pretreating isolated axons with IFNbeta or IFNgamma significantly diminished the number of HSV-1 and PRV particles moving from axons to the cell bodies in an IFN receptor-dependent manner. Furthermore, I found the responses in axons are activated differentially by the two types of IFNs. The response to IFNbeta is a rapid, axon-only response, while the response to IFNgamma involves long distance signaling to the PNS cell body. For example, exposing axons to IFNbeta induced STAT1 phosphorylation (p-STAT1) only in axons, while exposure of axons to IFNgamma induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated IFNgamma-, but not IFNbeta-mediated antiviral effects. Proteomic analysis of IFNbeta- or IFNgamma-treated axons identified several differentially regulated proteins. Therefore

  17. Torsional Behavior of Axonal Microtubule Bundles

    Science.gov (United States)

    Lazarus, Carole; Soheilypour, Mohammad; Mofrad, Mohammad R.K.

    2015-01-01

    Axonal microtubule (MT) bundles crosslinked by microtubule-associated protein (MAP) tau are responsible for vital biological functions such as maintaining mechanical integrity and shape of the axon as well as facilitating axonal transport. Breaking and twisting of MTs have been previously observed in damaged undulated axons. Such breaking and twisting of MTs is suggested to cause axonal swellings that lead to axonal degeneration, which is known as “diffuse axonal injury”. In particular, overstretching and torsion of axons can potentially damage the axonal cytoskeleton. Following our previous studies on mechanical response of axonal MT bundles under uniaxial tension and compression, this work seeks to characterize the mechanical behavior of MT bundles under pure torsion as well as a combination of torsional and tensile loads using a coarse-grained computational model. In the case of pure torsion, a competition between MAP tau tensile and MT bending energies is observed. After three turns, a transition occurs in the mechanical behavior of the bundle that is characterized by its diameter shrinkage. Furthermore, crosslink spacing is shown to considerably influence the mechanical response, with larger MAP tau spacing resulting in a higher rate of turns. Therefore, MAP tau crosslinking of MT filaments protects the bundle from excessive deformation. Simultaneous application of torsion and tension on MT bundles is shown to accelerate bundle failure, compared to pure tension experiments. MAP tau proteins fail in clusters of 10–100 elements located at the discontinuities or the ends of MT filaments. This failure occurs in a stepwise fashion, implying gradual accumulation of elastic tensile energy in crosslinks followed by rupture. Failure of large groups of interconnecting MAP tau proteins leads to detachment of MT filaments from the bundle near discontinuities. This study highlights the importance of torsional loading in axonal damage after traumatic brain injury

  18. Regenerated Sciatic Nerve Axons Stimulated through a Chronically Implanted Macro-Sieve Electrode.

    Science.gov (United States)

    MacEwan, Matthew R; Zellmer, Erik R; Wheeler, Jesse J; Burton, Harold; Moran, Daniel W

    2016-01-01

    Sieve electrodes provide a chronic interface for stimulating peripheral nerve axons. Yet, successful utilization requires robust axonal regeneration through the implanted electrode. The present study determined the effect of large transit zones in enhancing axonal regeneration and revealed an intimate neural interface with an implanted sieve electrode. Fabrication of the polyimide sieve electrodes employed sacrificial photolithography. The manufactured macro-sieve electrode (MSE) contained nine large transit zones with areas of ~0.285 mm 2 surrounded by eight Pt-Ir metallized electrode sites. Prior to implantation, saline, or glial derived neurotropic factor (GDNF) was injected into nerve guidance silicone-conduits with or without a MSE. The MSE assembly or a nerve guidance conduit was implanted between transected ends of the sciatic nerve in adult male Lewis rats. At 3 months post-operation, fiber counts were similar through both implant types. Likewise, stimulation of nerves regenerated through a MSE or an open silicone conduit evoked comparable muscle forces. These results showed that nerve regeneration was comparable through MSE transit zones and an open conduit. GDNF had a minimal positive effect on the quality and morphology of fibers regenerating through the MSE; thus, the MSE may reduce reliance on GDNF to augment axonal regeneration. Selective stimulation of several individual muscles was achieved through monopolar stimulation of individual electrodes sites suggesting that the MSE might be an optimal platform for functional neuromuscular stimulation.

  19. Squid Giant Axons Synthesize NF Proteins.

    Science.gov (United States)

    Crispino, Marianna; Chun, Jong Tai; Giuditta, Antonio

    2018-04-01

    Squid giant axon has been an excellent model system for studying fundamental topics in neurobiology such as neuronal signaling. It has been also useful in addressing the questions of local protein synthesis in the axons. Incubation of isolated squid giant axons with [ 35 S]methionine followed by immunoprecipitation with a rabbit antibody against all squid neurofilament (NF) proteins demonstrates the local synthesis of a major 180 kDa NF protein and of several NF proteins of lower molecular weights. Their identification as NF proteins is based on their absence in the preimmune precipitates. Immunoprecipitates washed with more stringent buffers confirmed these results. Our data are at variance with a recent study based on the same experimental procedure that failed to visualize the local synthesis of NF proteins by the giant axon and thereby suggested their exclusive derivation from nerve cell bodies (as reported by Gainer et al. in Cell Mol Neurobiol 37:475-486, 2017). By reviewing the pertinent literature, we confute the claims that mRNA translation is absent in mature axons because of a putative translation block and that most proteins of mature axons are synthesized in the surrounding glial cells. Given the intrinsic axonal capacity to synthesize proteins, we stress the glial derivation of axonal and presynaptic RNAs and the related proposal that these neuronal domains are endowed with largely independent gene expression systems (as reported by Giuditta et al. in Physiol Rev 88:515-555, 2008).

  20. Axon Termination, Pruning, and Synaptogenesis in the Giant Fiber System of Drosophila melanogaster Is Promoted by Highwire.

    Science.gov (United States)

    Borgen, Melissa; Rowland, Kimberly; Boerner, Jana; Lloyd, Brandon; Khan, Aruna; Murphey, Rodney

    2017-03-01

    The ubiquitin ligase Highwire has a conserved role in synapse formation. Here, we show that Highwire coordinates several facets of central synapse formation in the Drosophila melanogaster giant fiber system, including axon termination, axon pruning, and synaptic function. Despite the similarities to the fly neuromuscular junction, the role of Highwire and the underlying signaling pathways are distinct in the fly's giant fiber system. During development, branching of the giant fiber presynaptic terminal occurs and, normally, the transient branches are pruned away. However, in highwire mutants these ectopic branches persist, indicating that Highwire promotes axon pruning. highwire mutants also exhibit defects in synaptic function. Highwire promotes axon pruning and synaptic function cell-autonomously by attenuating a mitogen-activated protein kinase pathway including Wallenda, c-Jun N-terminal kinase/Basket, and the transcription factor Jun. We also show a novel role for Highwire in non-cell autonomous promotion of synaptic function from the midline glia. Highwire also regulates axon termination in the giant fibers, as highwire mutant axons exhibit severe overgrowth beyond the pruning defect. This excessive axon growth is increased by manipulating Fos expression in the cells surrounding the giant fiber terminal, suggesting that Fos regulates a trans -synaptic signal that promotes giant fiber axon growth. Copyright © 2017 by the Genetics Society of America.

  1. Phosphatidylserine improves axonal transport by inhibition of HDAC and has potential in treatment of neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Shiran Naftelberg

    2017-01-01

    Full Text Available Familial dysautonomia (FD is a rare children neurodegenerative disease caused due to a point mutation in the IKBKAP gene that results in decreased IKK complex-associated protein (IKAP protein production. The disease affects mostly the dorsal root ganglion (DRG and the sympathetic ganglion. Recently, we found that the molecular mechanisms underlying neurodegeneration in FD patients are defects in axonal transport of nerve growth factors and microtubule stability in the DRG. Neurons are highly polarized cells with very long axons. In order to survive and maintain proper function, neurons depend on transport of proteins and other cellular components from the neuronal body along the axons. We further demonstrated that IKAP is necessary for axon maintenance and showed that phosphatidylserine acts as an HDAC6 inhibitor to rescue neuronal function in FD cells. In this review, we will highlight our latest research findings.

  2. Dynamics of mitochondrial transport in axons

    Directory of Open Access Journals (Sweden)

    Robert Francis Niescier

    2016-05-01

    Full Text Available The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

  3. Evolutionarily conserved repulsive guidance role of slit in the silkworm Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Qi Yu

    Full Text Available Axon guidance molecule Slit is critical for the axon repulsion in neural tissues, which is evolutionarily conserved from planarians to humans. However, the function of Slit in the silkworm Bombyx mori was unknown. Here we showed that the structure of Bombyx mori Slit (BmSlit was different from that in most other species in its C-terminal sequence. BmSlit was localized in the midline glial cell, the neuropil, the tendon cell, the muscle and the silk gland and colocalized with BmRobo1 in the neuropil, the muscle and the silk gland. Knock-down of Bmslit by RNA interference (RNAi resulted in abnormal development of axons and muscles. Our results suggest that BmSlit has a repulsive role in axon guidance and muscle migration. Moreover, the localization of BmSlit in the silk gland argues for its important function in the development of the silk gland.

  4. Syntaxin 1B suppresses macropinocytosis and semaphorin 3A-induced growth cone collapse.

    Science.gov (United States)

    Kabayama, Hiroyuki; Takeuchi, Makoto; Taniguchi, Masahiko; Tokushige, Naoko; Kozaki, Shunji; Mizutani, Akihiro; Nakamura, Takeshi; Mikoshiba, Katsuhiko

    2011-05-18

    Growth cone collapse is a crucial process for repulsive axon guidance and is accompanied by a reduction in growth cone surface area. This process of reduction may be regulated by endocytosis; however, its molecular mechanism is unclear. Macropinocytosis is a clathrin-independent form of endocytosis in which large areas of plasma membrane can be engulfed. We have reported previously that macropinocytosis is induced in growth cones of chick dorsal root ganglion neurons by semaphorin 3A (Sema3A), a repulsive axon guidance cue, and that Sema3A-induced reduction in growth cone surface area and macropinocytic vacuole area were correlated, suggesting a positive role for macropinocytosis in Sema3A-induced growth cone collapse. In the present study, we found that syntaxin 1B (Syx1B), a membrane trafficking protein, is a negative regulator of macropinocytosis, and its expression is downregulated by Sema3A signaling. Macropinocytosis inhibitor ethylisopropylamiloride or Syx1B overexpression suppressed Sema3A-induced macropinocytosis and growth cone collapse. These results indicate that Syx1B couples macropinocytosis-mediated massive internalization of the plasma membrane to Sema3A-induced growth cone collapse.

  5. Effects of curcumin on hippocampal expression of NgR and axonal regeneration in Aβ-induced cognitive disorder rats.

    Science.gov (United States)

    Yin, H L; Wang, Y L; Li, J F; Han, B; Zhang, X X; Wang, Y T; Geng, S

    2014-03-24

    Curcumin has been widely used for the prevention and treatment of Alzheimer's disease (AD), but its mechanism is still not clear. Inhibitory factors of axonal regeneration have been shown to cause a series of pathophysiological changes in the early period of AD. In this study, the co-receptor (Nogo receptor; NgR) of three axonal growth-inhibitory proteins was examined, and effects of curcumin on spatial learning and memory abilities and hippocampal axonal growth were investigated in amyloid β-protein (Aβ)1-40-induced AD rats. Results showed that the expression of NgR in the AD group significantly increased and the number of axonal protein-positive fibers significantly reduced. The spatial learning and memory abilities of AD rats were significantly improved in the curcumin group. Furthermore, hippocampal expressions of NgR mRNA and protein decreased, and the expression of axonal protein significantly increased. There was a negative correlation between the expression of NgR and axonal growth. Together, these results suggested that curcumin could improve the spatial learning and memory abilities of AD rats. The mechanism might be related with its lowering of hippocampal NgR expression and promoting axonal regeneration.

  6. Polygalae Radix Extract Prevents Axonal Degeneration and Memory Deficits in a Transgenic Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Kuboyama, Tomoharu; Hirotsu, Keisuke; Arai, Tetsuya; Yamasaki, Hiroo; Tohda, Chihiro

    2017-01-01

    Memory impairments in Alzheimer's disease (AD) occur due to degenerated axons and disrupted neural networks. Since only limited recovery is possible after the destruction of neural networks, preventing axonal degeneration during the early stages of disease progression is necessary to prevent AD. Polygalae Radix (roots of Polygala tenuifolia ; PR) is a traditional herbal medicine used for sedation and amnesia. In this study, we aimed to clarify and analyze the preventive effects of PR against memory deficits in a transgenic AD mouse model, 5XFAD. 5XFAD mice demonstrated memory deficits at the age of 5 months. Thus, the water extract of Polygalae Radix (PR extract) was orally administered to 4-month-old 5XFAD mice that did not show signs of memory impairment. After consecutive administrations for 56 days, the PR extract prevented cognitive deficit and axon degeneration associated with the accumulation of amyloid β (Aβ) plaques in the perirhinal cortex of the 5XFAD mice. PR extract did not influence the formation of Aβ plaques in the brain of the 5XFAD mice. In cultured neurons, the PR extract prevented axonal growth cone collapse and axonal atrophy induced by Aβ. Additionally, it prevented Aβ-induced endocytosis at the growth cone of cultured neurons. Our previous study reported that endocytosis inhibition was enough to prevent Aβ-induced growth cone collapse, axonal degeneration, and memory impairments. Therefore, the PR extract possibly prevented axonal degeneration and memory impairment by inhibiting endocytosis. PR is the first preventive drug candidate for AD that inhibits endocytosis in neurons.

  7. Cargo distributions differentiate pathological axonal transport impairments.

    Science.gov (United States)

    Mitchell, Cassie S; Lee, Robert H

    2012-05-07

    Axonal transport is an essential process in neurons, analogous to shipping goods, by which energetic and cellular building supplies are carried downstream (anterogradely) and wastes are carried upstream (retrogradely) by molecular motors, which act as cargo porters. Impairments in axonal transport have been linked to devastating and often lethal neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis, Huntington's, and Alzheimer's. Axonal transport impairment types include a decrease in available motors for cargo transport (motor depletion), the presence of defective or non-functional motors (motor dilution), and the presence of increased or larger cargos (protein aggregation). An impediment to potential treatment identification has been the inability to determine what type(s) of axonal transport impairment candidates that could be present in a given disease. In this study, we utilize a computational model and common axonal transport experimental metrics to reveal the axonal transport impairment general characteristics or "signatures" that result from three general defect types of motor depletion, motor dilution, and protein aggregation. Our results not only provide a means to discern these general impairments types, they also reveal key dynamic and emergent features of axonal transport, which potentially underlie multiple impairment types. The identified characteristics, as well as the analytical method, can be used to help elucidate the axonal transport impairments observed in experimental and clinical data. For example, using the model-predicted defect signatures, we identify the defect candidates, which are most likely to be responsible for the axonal transport impairments in the G93A SOD1 mouse model of ALS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Axonal Actin Transport Driven By Metastable Actin Filaments

    Science.gov (United States)

    Chakrabarty, Nilaj; Ganguly, Archan; Roy, Subhojit; Jung, Peter

    Actin is one of the key constituents of the neuronal cytoskeleton and is responsible for driving important cellular processes like axon elongation. Axonal actin is synthesized in the cell body and transported at rates of 0.25 - 3 mm/day, as shown by in-vivo pulse-chase radiolabelling studies. However, the underlying transport mechanisms are unknown. Recent experiments in cultured neurons have revealed a dynamic network of metastable actin filaments (actin trails). Actin trails seem to originate from focal actin hotspots which colocalize with stationary endosomes. Interestingly, the number of actin trails extending anterogradely is higher than the ones extending retrogradely. We hypothesize that the bulk axonal transport of actin originates from this directional asymmetry of the number of actin trails. To test this, we constructed a computational model of actin trail growth and simulated the pulse-chase experiment. In our model, local, metastable trails, which grow with their barbed ends anchored to the hotspots, drive the bulk anterograde transport. Our results indicate that the observed bias of the nucleation probabilities and the elongation rate of actin trails are sufficient to drive the bulk transport of actin at rates that agree with in-vivo pulse chase experiments.

  9. Combining Constitutively Active Rheb Expression and Chondroitinase Promotes Functional Axonal Regeneration after Cervical Spinal Cord Injury.

    Science.gov (United States)

    Wu, Di; Klaw, Michelle C; Connors, Theresa; Kholodilov, Nikolai; Burke, Robert E; Côté, Marie-Pascale; Tom, Veronica J

    2017-12-06

    After spinal cord injury (SCI), severed axons in the adult mammalian CNS are unable to mount a robust regenerative response. In addition, the glial scar at the lesion site further restricts the regenerative potential of axons. We hypothesized that a combinatorial approach coincidentally targeting these obstacles would promote axonal regeneration. We combined (1) transplantation of a growth-permissive peripheral nerve graft (PNG) into an incomplete, cervical lesion cavity; (2) transduction of neurons rostral to the SCI site to express constitutively active Rheb (caRheb; a Ras homolog enriched in brain), a GTPase that directly activates the growth-promoting pathway mammalian target of rapamycin (mTOR) via AAV-caRheb injection; and (3) digestion of growth-inhibitory chondroitin sulfate proteoglycans within the glial scar at the distal PNG interface using the bacterial enzyme chondroitinase ABC (ChABC). We found that expressing caRheb in neurons post-SCI results in modestly yet significantly more axons regenerating across a ChABC-treated distal graft interface into caudal spinal cord than either treatment alone. Excitingly, we found that caRheb+ChABC treatment significantly potentiates the formation of synapses in the host spinal cord and improves the animals' ability to use the affected forelimb. Thus, this combination strategy enhances functional axonal regeneration following a cervical SCI. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  10. BDNF promotes target innervation of Xenopus mandibular trigeminal axons in vivo.

    Science.gov (United States)

    Huang, Jeffrey K; Dorey, Karel; Ishibashi, Shoko; Amaya, Enrique

    2007-05-31

    Trigeminal nerves consist of ophthalmic, maxillary, and mandibular branches that project to distinct regions of the facial epidermis. In Xenopus embryos, the mandibular branch of the trigeminal nerve extends toward and innervates the cement gland in the anterior facial epithelium. The cement gland has previously been proposed to provide a short-range chemoattractive signal to promote target innervation by mandibular trigeminal axons. Brain derived neurotrophic factor, BDNF is known to stimulate axon outgrowth and branching. The goal of this study is to determine whether BDNF functions as the proposed target recognition signal in the Xenopus cement gland. We found that the cement gland is enriched in BDNF mRNA transcripts compared to the other neurotrophins NT3 and NT4 during mandibular trigeminal nerve innervation. BDNF knockdown in Xenopus embryos or specifically in cement glands resulted in the failure of mandibular trigeminal axons to arborise or grow into the cement gland. BDNF expressed ectodermal grafts, when positioned in place of the cement gland, promoted local trigeminal axon arborisation in vivo. BDNF is necessary locally to promote end stage target innervation of trigeminal axons in vivo, suggesting that BDNF functions as a short-range signal that stimulates mandibular trigeminal axon arborisation and growth into the cement gland.

  11. Sugar Antennae for Guidance Signals: Syndecans and Glypicans Integrate Directional Cues for Navigating Neurons

    Directory of Open Access Journals (Sweden)

    Christa Rhiner

    2006-01-01

    Full Text Available Attractive and repulsive signals guide migrating nerve cells in all directions when the nervous system starts to form. The neurons extend thin processes, axons, that connect over wide distances with other brain cells to form a complicated neuronal network. One of the most fascinating questions in neuroscience is how the correct wiring of billions of nerve cells in our brain is controlled. Several protein families are known to serve as guidance cues for navigating neurons and axons. Nevertheless, the combinatorial potential of these proteins seems to be insufficient to sculpt the entire neuronal network and the appropriate formation of connections. Recently, heparan sulfate proteoglycans (HSPGs, which are present on the cell surface of neurons and in the extracellular matrix through which neurons and axons migrate, have been found to play a role in regulating cell migration and axon guidance. Intriguingly, the large number of distinct modifications that can be put onto the sugar side chains of these PGs would in principle allow for an enormous diversity of HSPGs, which could help in regulating the vast number of guidance choices taken by individual neurons. In this review, we will focus on the role of the cell surface HSPGs syndecan and glypican and specific HS modifications in promoting neuronal migration, axon guidance, and synapse formation.

  12. Developmental plasticity of ascending spinal axons studies using the North American opossum, Didelphis virginiana.

    Science.gov (United States)

    Terman, J R; Wang, X M; Martin, G F

    1999-01-11

    The objectives of the present study were to determine if axons of all ascending tracts grow through the lesion after transection of the thoracic spinal cord during development in the North American opossum, and if so, whether they reach regions of the brain they normally innervate. Opossum pups were subjected to transection of the mid-thoracic cord at PD5, PD8, PD12, PD20, or PD26 and injections of Fast Blue (FB) into the lower thoracic or upper lumbar cord 30-40 days or 6 months later. In the PD5 transected cases, labeled axons were present in all of the supraspinal areas labeled by comparable injections in unlesioned, age-matched controls. In the experimental cases, however, labeled axons appeared to be fewer in number and in some areas more restricted in location than in the controls. When lesions were made at PD8, labeled axons were present in the brain of animals allowed to survive 30-40 days prior to FB injections but they were not observed in those allowed to survive 6 months. When lesions were made at PD12 or later, labeled axons were never found rostral to the lesion. It appears, therefore, that axons of all ascending spinal pathways grow though the lesion after transection of the thoracic cord in developing opossums and that they innervate appropriate areas of the brain. Interestingly, the critical period for such growth is shorter than that for most descending axons, suggesting that factors which influence loss of developmental plasticity are not the same for all axons.

  13. Slow Muscle Precursors Lay Down a Collagen XV Matrix Fingerprint to Guide Motor Axon Navigation.

    Science.gov (United States)

    Guillon, Emilie; Bretaud, Sandrine; Ruggiero, Florence

    2016-03-02

    The extracellular matrix (ECM) provides local positional information to guide motoneuron axons toward their muscle target. Collagen XV is a basement membrane component mainly expressed in skeletal muscle. We have identified two zebrafish paralogs of the human COL15A1 gene, col15a1a and col15a1b, which display distinct expression patterns. Here we show that col15a1b is expressed and deposited in the motor path ECM by slow muscle precursors also called adaxial cells. We further demonstrate that collagen XV-B deposition is both temporally and spatially regulated before motor axon extension from the spinal cord in such a way that it remains in this region after the adaxial cells have migrated toward the periphery of the myotome. Loss- and gain-of-function experiments in zebrafish embryos demonstrate that col15a1b expression and subsequent collagen XV-B deposition and organization in the motor path ECM depend on a previously undescribed two-step mechanism involving Hedgehog/Gli and unplugged/MuSK signaling pathways. In silico analysis predicts a putative Gli binding site in the col15a1b proximal promoter. Using col15a1b promoter-reporter constructs, we demonstrate that col15a1b participates in the slow muscle genetic program as a direct target of Hedgehog/Gli signaling. Loss and gain of col15a1b function provoke pathfinding errors in primary and secondary motoneuron axons both at and beyond the choice point where axon pathway selection takes place. These defects result in muscle atrophy and compromised swimming behavior, a phenotype partially rescued by injection of a smyhc1:col15a1b construct. These reveal an unexpected and novel role for collagen XV in motor axon pathfinding and neuromuscular development. In addition to the archetypal axon guidance cues, the extracellular matrix provides local information that guides motor axons from the spinal cord to their muscle targets. Many of the proteins involved are unknown. Using the zebrafish model, we identified an

  14. Genetics Home Reference: giant axonal neuropathy

    Science.gov (United States)

    ... connect the brain and spinal cord (central nervous system) to muscles and to sensory cells that detect sensations such as touch, pain, heat, and sound. However, axons in the central nervous system are affected as well. The signs and symptoms ...

  15. Drug therapy for chronic idiopathic axonal polyneuropathy

    NARCIS (Netherlands)

    Vrancken, A. F. J. E.; van Schaik, I. N.; Hughes, R. A. C.; Notermans, N. C.

    2004-01-01

    BACKGROUND: Chronic idiopathic axonal polyneuropathy is an insidiously progressive sensory or sensorimotor polyneuropathy that affects elderly people. Although severe disability or handicap does not occur, it reduces quality of life. OBJECTIVES: To assess whether drug therapy for chronic idiopathic

  16. Utilizing Combined Methodologies to Define the Role of Plasma Membrane Delivery During Axon Branching and Neuronal Morphogenesis.

    Science.gov (United States)

    Winkle, Cortney C; Hanlin, Christopher C; Gupton, Stephanie L

    2016-03-16

    During neural development, growing axons extend to multiple synaptic partners by elaborating axonal branches. Axon branching is promoted by extracellular guidance cues like netrin-1 and results in dramatic increases to the surface area of the axonal plasma membrane. Netrin-1-dependent axon branching likely involves temporal and spatial control of plasma membrane expansion, the components of which are supplied through exocytic vesicle fusion. These fusion events are preceded by formation of SNARE complexes, comprising a v-SNARE, such as VAMP2 (vesicle-associated membrane protein 2), and plasma membrane t-SNAREs, syntaxin-1 and SNAP25 (synaptosomal-associated protein 25). Detailed herein isa multi-pronged approach used to examine the role of SNARE mediated exocytosis in axon branching. The strength of the combined approach is data acquisition at a range of spatial and temporal resolutions, spanning from the dynamics of single vesicle fusion events in individual neurons to SNARE complex formation and axon branching in populations of cultured neurons. This protocol takes advantage of established biochemical approaches to assay levels of endogenous SNARE complexes and Total Internal Reflection Fluorescence (TIRF) microscopy of cortical neurons expressing VAMP2 tagged with a pH-sensitive GFP (VAMP2-pHlourin) to identify netrin-1 dependent changes in exocytic activity in individual neurons. To elucidate the timing of netrin-1-dependent branching, time-lapse differential interference contrast (DIC) microscopy of single neurons over the order of hours is utilized. Fixed cell immunofluorescence paired with botulinum neurotoxins that cleave SNARE machinery and block exocytosis demonstrates that netrin-1 dependent axon branching requires SNARE-mediated exocytic activity.

  17. Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Y T [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Tian, W M [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Yu, X [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Cui, F Z [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Hou, S P [Beijing Institute of Neuroscience, Capital University of Medical Sciences, Beijing, 100054 (China); Xu, Q Y [Beijing Institute of Neuroscience, Capital University of Medical Sciences, Beijing, 100054 (China); Lee, In-Seop [Institute of Physics and Applied Physics, and Atomic-scale Surface Science Research Center, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2007-09-15

    A biocompatible hydrogel of hyaluronic acid with the neurite-promoting peptide sequence of IKVAV was synthesized. The characterization of the hydrogel shows an open porous structure and a large surface area available for cell interaction. Its ability to promote tissue repair and axonal regeneration in the lesioned rat cerebrum is also evaluated. After implantation, the polymer hydrogel repaired the tissue defect and formed a permissive interface with the host tissue. Axonal growth occurred within the microstructure of the network. Within 6 weeks the polymer implant was invaded by host-derived tissue, glial cells, blood vessels and axons. Such a hydrogel matrix showed the properties of neuron conduction. It has the potential to repair tissue defects in the central nervous system by promoting the formation of a tissue matrix and axonal growth by replacing the lost tissue.

  18. C. elegans ZAG-1, a Zn-finger-homeodomain protein, regulates axonal development and neuronal differentiation.

    Science.gov (United States)

    Clark, Scott G; Chiu, Catherine

    2003-08-01

    Neurons acquire distinct cell identities and implement differential gene programs to generate their appropriate neuronal attributes. On the basis of position, axonal structure and synaptic connectivity, the 302 neurons of the nematode Ceanorhabditis elegans are divided into 118 classes. The development and differentiation of many neurons require the gene zag-1, which encodes a deltaEF1/ZFH-1 Zn-finger-homeodomain protein. zag-1 mutations cause misexpression of neuron-specific genes, block formation of stereotypic axon branches, perturb neuronal migrations, and induce various axon-guidance, fasciculation and branching errors. A zag-1-GFP translational reporter is expressed transiently in most or all neurons during embryogenesis and in select neurons during the first larval stage. Analysis of the zag-1 promoter reveals that zag-1 is expressed in neurons and specific muscles, and that ZAG-1 directly represses its own expression. zag-1 activity also downregulates expression of genes involved in either the synthesis or reuptake of serotonin, dopamine and GABA. We propose that ZAG-1 acts as a transcriptional repressor to regulate multiple, discrete, neuron-specific aspects of terminal differentiation, including cell migration, axonal development and gene expression.

  19. EFA6 regulates selective polarised transport and axon regeneration from the axon initial segment

    Czech Academy of Sciences Publication Activity Database

    Eva, R.; Koseki, H.; Kanamarlapudi, V.; Fawcett, James

    2017-01-01

    Roč. 130, č. 21 (2017), s. 3663-3675 ISSN 0021-9533 Institutional support: RVO:68378041 Keywords : axon regeneration * axon transport * neuronal polarisation Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 4.431, year: 2016

  20. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Letzkus, Johannes J.; Stuart, Greg J.

    2007-01-01

    Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action

  1. Axonal cleaved caspase-3 regulates axon targeting and morphogenesis in the developing auditory brainstem

    Directory of Open Access Journals (Sweden)

    Sarah E Rotschafer

    2016-10-01

    Full Text Available Caspase-3 is a cysteine protease that is most commonly associated with cell death. Recent studies have shown additional roles in mediating cell differentiation, cell proliferation, and development of cell morphology. We investigated the role of caspase-3 in the development of chick auditory brainstem nuclei during embryogenesis. Immunofluorescence from embryonic days E6-13 revealed that the temporal expression of cleaved caspase-3 follows the ascending anatomical pathway. Expression is first seen in the auditory portion of VIIIth nerve including central axonal regions projecting to nucleus magnocellularis (NM, then later in NM axons projecting to nucleus laminaris (NL, and subsequently in NL dendrites. To examine the function of cleaved caspase-3 in chick auditory brainstem development, we blocked caspase-3 cleavage in developing chick embryos with the caspase-3 inhibitor Z-DEVD-FMK from E6 to E9, then examined NM and NL morphology and NM axonal targeting on E10. NL lamination in treated embryos was disorganized and the neuropil around NL contained a significant number of glial cells normally excluded from this region. Additionally, NM axons projected into inappropriate portions of NL in Z-DEVD-FMK treated embyros. We found that the presence of misrouted axons was associated with more severe NL disorganization. The effects of axonal caspase-3 inhibition on both NL morphogenesis and NM axon targeting suggest that these developmental processes are coordinated, likely through communication between axons and their targets.

  2. Mdivi-1 Inhibits Astrocyte Activation and Astroglial Scar Formation and Enhances Axonal Regeneration after Spinal Cord Injury in Rats

    OpenAIRE

    Li, Gang; Cao, Yang; Shen, Feifei; Wang, Yangsong; Bai, Liangjie; Guo, Weidong; Bi, Yunlong; Lv, Gang; Fan, Zhongkai

    2016-01-01

    After spinal cord injury (SCI), astrocytes become hypertrophic, and proliferative, forming a dense network of astroglial processes at the site of the lesion. This constitutes a physical and biochemical barrier to axonal regeneration. Mitochondrial fission regulates cell cycle progression; inhibiting the cell cycle of astrocytes can reduce expression levels of axon growth-inhibitory molecules as well as astroglial scar formation after SCI. We therefore investigated how an inhibitor of mitochon...

  3. Dendritic Branch Intersections Are Structurally Regulated Targets for Efficient Axonal Wiring and Synaptic Clustering

    Science.gov (United States)

    Pinchas, Monika; Baranes, Danny

    2013-01-01

    Synaptic clustering on dendritic branches enhances plasticity, input integration and neuronal firing. However, the mechanisms guiding axons to cluster synapses at appropriate sites along dendritic branches are poorly understood. We searched for such a mechanism by investigating the structural overlap between dendritic branches and axons in a simplified model of neuronal networks - the hippocampal cell culture. Using newly developed software, we converted images of meshes of overlapping axonal and dendrites into topological maps of intersections, enabling quantitative study of overlapping neuritic geometry at the resolution of single dendritic branch-to-branch and axon-to-branch crossings. Among dendro-dendritic crossing configurations, it was revealed that the orientations through which dendritic branches cross is a regulated attribute. While crossing angle distribution among branches thinner than 1 µm appeared to be random, dendritic branches 1 µm or wider showed a preference for crossing each other at angle ranges of either 50°–70° or 80°–90°. It was then found that the dendro-dendritic crossings themselves, as well as their selective angles, both affected the path of axonal growth. Axons displayed 4 fold stronger tendency to traverse within 2 µm of dendro-dendritic intersections than at farther distances, probably to minimize wiring length. Moreover, almost 70% of the 50°–70° dendro-denritic crossings were traversed by axons from the obtuse angle’s zone, whereas only 15% traversed through the acute angle’s zone. By contrast, axons showed no orientation restriction when traversing 80°–90° crossings. When such traverse behavior was repeated by many axons, they converged in the vicinity of dendro-dendritic intersections, thereby clustering their synaptic connections. Thus, the vicinity of dendritic branch-to-branch crossings appears to be a regulated structure used by axons as a target for efficient wiring and as a preferred site for synaptic

  4. Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis

    Science.gov (United States)

    Zambonin, Jessica L.; Zhao, Chao; Ohno, Nobuhiko; Campbell, Graham R.; Engeham, Sarah; Ziabreva, Iryna; Schwarz, Nadine; Lee, Sok Ee; Frischer, Josa M.; Turnbull, Doug M.; Trapp, Bruce D.; Lassmann, Hans; Franklin, Robin J. M.

    2011-01-01

    Mitochondrial content within axons increases following demyelination in the central nervous system, presumably as a response to the changes in energy needs of axons imposed by redistribution of sodium channels. Myelin sheaths can be restored in demyelinated axons and remyelination in some multiple sclerosis lesions is extensive, while in others it is incomplete or absent. The effects of remyelination on axonal mitochondrial content in multiple sclerosis, particularly whether remyelination completely reverses the mitochondrial changes that follow demyelination, are currently unknown. In this study, we analysed axonal mitochondria within demyelinated, remyelinated and myelinated axons in post-mortem tissue from patients with multiple sclerosis and controls, as well as in experimental models of demyelination and remyelination, in vivo and in vitro. Immunofluorescent labelling of mitochondria (porin, a voltage-dependent anion channel expressed on all mitochondria) and axons (neurofilament), and ultrastructural imaging showed that in both multiple sclerosis and experimental demyelination, mitochondrial content within remyelinated axons was significantly less than in acutely and chronically demyelinated axons but more numerous than in myelinated axons. The greater mitochondrial content within remyelinated, compared with myelinated, axons was due to an increase in density of porin elements whereas increase in size accounted for the change observed in demyelinated axons. The increase in mitochondrial content in remyelinated axons was associated with an increase in mitochondrial respiratory chain complex IV activity. In vitro studies showed a significant increase in the number of stationary mitochondria in remyelinated compared with myelinated and demyelinated axons. The number of mobile mitochondria in remyelinated axons did not significantly differ from myelinated axons, although significantly greater than in demyelinated axons. Our neuropathological data and findings in

  5. Axon and dendrite geography predict the specificity of synaptic connections in a functioning spinal cord network

    Directory of Open Access Journals (Sweden)

    Borisyuk Roman

    2007-09-01

    Full Text Available Abstract Background How specific are the synaptic connections formed as neuronal networks develop and can simple rules account for the formation of functioning circuits? These questions are assessed in the spinal circuits controlling swimming in hatchling frog tadpoles. This is possible because detailed information is now available on the identity and synaptic connections of the main types of neuron. Results The probabilities of synapses between 7 types of identified spinal neuron were measured directly by making electrical recordings from 500 pairs of neurons. For the same neuron types, the dorso-ventral distributions of axons and dendrites were measured and then used to calculate the probabilities that axons would encounter particular dendrites and so potentially form synaptic connections. Surprisingly, synapses were found between all types of neuron but contact probabilities could be predicted simply by the anatomical overlap of their axons and dendrites. These results suggested that synapse formation may not require axons to recognise specific, correct dendrites. To test the plausibility of simpler hypotheses, we first made computational models that were able to generate longitudinal axon growth paths and reproduce the axon distribution patterns and synaptic contact probabilities found in the spinal cord. To test if probabilistic rules could produce functioning spinal networks, we then made realistic computational models of spinal cord neurons, giving them established cell-specific properties and connecting them into networks using the contact probabilities we had determined. A majority of these networks produced robust swimming activity. Conclusion Simple factors such as morphogen gradients controlling dorso-ventral soma, dendrite and axon positions may sufficiently constrain the synaptic connections made between different types of neuron as the spinal cord first develops and allow functional networks to form. Our analysis implies that

  6. Evidence for a role of srGAP3 in the positioning of commissural axons within the ventrolateral funiculus of the mouse spinal cord.

    Directory of Open Access Journals (Sweden)

    Claire Bacon

    Full Text Available Slit-Robo signaling guides commissural axons away from the floor-plate of the spinal cord and into the longitudinal axis after crossing the midline. In this study we have evaluated the role of the Slit-Robo GTPase activating protein 3 (srGAP3 in commissural axon guidance using a knockout (KO mouse model. Co-immunoprecipitation experiments confirmed that srGAP3 interacts with the Slit receptors Robo1 and Robo2 and immunohistochemistry studies showed that srGAP3 co-localises with Robo1 in the ventral and lateral funiculus and with Robo2 in the lateral funiculus. Stalling axons have been reported in the floor-plate of Slit and Robo mutant spinal cords but our axon tracing experiments revealed no dorsal commissural axon stalling in the floor plate of the srGAP3 KO mouse. Interestingly we observed a significant thickening of the ventral funiculus and a thinning of the lateral funiculus in the srGAP3 KO spinal cord, which has also recently been reported in the Robo2 KO. However, axons in the enlarged ventral funiculus of the srGAP3 KO are Robo1 positive but do not express Robo2, indicating that the thickening of the ventral funiculus in the srGAP3 KO is not a Robo2 mediated effect. We suggest a role for srGAP3 in the lateral positioning of post crossing axons within the ventrolateral funiculus.

  7. Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies...... on axon guidance in Drosophila suggest that NCAM also regulates the epidermal growth factor receptor (EGFR) (Molecular and Cellular Neuroscience, 28, 2005, 141). A possible interaction between NCAM and EGFR in mammalian cells has not been investigated. The present study demonstrates for the first time...

  8. Career guidance in communities

    DEFF Research Database (Denmark)

    Thomsen, Rie

    in career guidance practices as well as in the lives of the people in the communities. This paper falls into two parts: The first part considers the collective as the starting point for the development of meaningful career guidance activities. Based on previous research on career guidance in communities......The aim of this paper is to inspire practitioners and professionals to leave their offices to bring career guidance into communities that might not identify with career guidance in the first instance. By making the effort to engage with communities, practitioners may bring about a critical change...... for the development of a critically reflexive career guidance practice. The considerations are organised around seven elements. 1. Creating opportunity, structure and access 2. Entering a community and increasing visibility 3. Providing guidance in communities 4. Exploring potentials in guidance situations 5...

  9. Graphical Turbulence Guidance - Composite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...

  10. The effect of myelinating Schwann cells on axons.

    Science.gov (United States)

    Martini, R

    2001-04-01

    Myelinating Schwann cells control the number of neurofilaments and elevate the phosphorylation state of neurofilaments in the axon, eventually leading to the typical large axon caliber. Conversely, absence of myelin leads to lower amounts of neurofilaments, reduced phosphorylation levels, and smaller axon diameters. In addition, myelinating Schwann cells mediate the spacing of Na(+) channel clusters during development of the node of Ranvier. When axons are associated with mutant Schwann cells in inherited neuropathies, their calibers are reduced and their neurofilaments are less phosphorylated and more closely spaced. Also, axonal transport is reduced and axons degenerate at the distal ends of long nerves. Myelin-associated glycoprotein may mediate some aspects of Schwann cell-axon communication, but much remains to be learned about the molecular bases of Schwann cell-axon communication. Copyright 2001 John Wiley & Sons, Inc.

  11. Intraneural Injection of ATP Stimulates Regeneration of Primary Sensory Axons in the Spinal Cord.

    Science.gov (United States)

    Wu, Dongsheng; Lee, Sena; Luo, Juan; Xia, Haijian; Gushchina, Svetlana; Richardson, Peter M; Yeh, John; Krügel, Ute; Franke, Heike; Zhang, Yi; Bo, Xuenong

    2018-02-07

    Injury to the peripheral axons of sensory neurons strongly enhances the regeneration of their central axons in the spinal cord. It remains unclear on what molecules that initiate such conditioning effect. Because ATP is released extracellularly by nerve and other tissue injury, we hypothesize that injection of ATP into a peripheral nerve might mimic the stimulatory effect of nerve injury on the regenerative state of the primary sensory neurons. We found that a single injection of 6 μl of 150 μm ATP into female rat sciatic nerve quadrupled the number of axons growing into a lesion epicenter in spinal cord after a concomitant dorsal column transection. A second boost ATP injection 1 week after the first one markedly reinforced the stimulatory effect of a single injection. Single ATP injection increased expression of phospho-STAT3 and GAP43, two markers of regenerative activity, in sensory neurons. Double ATP injections sustained the activation of phospho-STAT3 and GAP43, which may account for the marked axonal growth across the lesion epicenter. Similar studies performed on P2X7 or P2Y2 receptor knock-out mice indicate P2Y2 receptors are involved in the activation of STAT3 after ATP injection or conditioning lesion, whereas P2X7 receptors are not. Injection of ATP at 150 μm caused little Wallerian degeneration and behavioral tests showed no significant long-term adverse effects on sciatic nerve functions. The results in this study reveal possible mechanisms underlying the stimulation of regenerative programs and suggest a practical strategy for stimulating axonal regeneration following spinal cord injury. SIGNIFICANCE STATEMENT Injury of peripheral axons of sensory neurons has been known to strongly enhance the regeneration of their central axons in the spinal cord. In this study, we found that injection of ATP into a peripheral nerve can mimic the effect of peripheral nerve injury and significantly increase the number of sensory axons growing across lesion

  12. Modeling molecular mechanisms in the axon

    Science.gov (United States)

    de Rooij, R.; Miller, K.E.; Kuhl, E.

    2016-01-01

    Axons are living systems that display highly dynamic changes in stiffness, viscosity, and internal stress. However, the mechanistic origin of these phenomenological properties remains elusive. Here we establish a computational mechanics model that interprets cellular-level characteristics as emergent properties from molecular-level events. We create an axon model of discrete microtubules, which are connected to neighboring microtubules via discrete crosslinking mechanisms that obey a set of simple rules. We explore two types of mechanisms: passive and active crosslinking. Our passive and active simulations suggest that the stiffness and viscosity of the axon increase linearly with the crosslink density, and that both are highly sensitive to the crosslink detachment and reattachment times. Our model explains how active crosslinking with dynein motors generates internal stresses and actively drives axon elongation. We anticipate that our model will allow us to probe a wide variety of molecular phenomena–both in isolation and in interaction–to explore emergent cellular-level features under physiological and pathological conditions. PMID:28603326

  13. Macrophages Promote Axon Regeneration with Concurrent Neurotoxicity

    NARCIS (Netherlands)

    Gensel, J.C.; Nakamura, S.; Guan, Z.; Rooijen, van N.; Ankeny, D.P.; Popovich, P.G.

    2009-01-01

    Activated macrophages can promote regeneration of CNS axons. However, macrophages also release factors that kill neurons. These opposing functions are likely induced simultaneously but are rarely considered together in the same experimental preparation. A goal of this study was to unequivocally

  14. Tri-partite complex for axonal transport drug delivery achieves pharmacological effect

    Directory of Open Access Journals (Sweden)

    Frederickson Martyn

    2010-01-01

    Full Text Available Abstract Background Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior. Results We developed chemical synthesis methodologies for assembling these tripartite complexes using a variety of axonal transport facilitators including nerve growth factor, wheat germ agglutinin, and synthetic facilitators derived from phage display work. Loading of up to 100 drug molecules per complex was achieved. Conjugation methods were used that allowed the drugs to be released in active form inside the cell body after transport. Intramuscular and intradermal injection proved effective for introducing pharmacologically effective doses into selected populations of CNS neurons. Pharmacological efficacy with gabapentin in a paw withdrawal latency model revealed a ten fold increase in half life and a 300 fold decrease in necessary dose relative to systemic administration for gabapentin when the drug was delivered by axonal transport using the tripartite vehicle. Conclusion Specific targeting of selected subpopulations of CNS neurons for drug delivery by axonal

  15. Polygalae Radix Extract Prevents Axonal Degeneration and Memory Deficits in a Transgenic Mouse Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Tomoharu Kuboyama

    2017-11-01

    Full Text Available Memory impairments in Alzheimer’s disease (AD occur due to degenerated axons and disrupted neural networks. Since only limited recovery is possible after the destruction of neural networks, preventing axonal degeneration during the early stages of disease progression is necessary to prevent AD. Polygalae Radix (roots of Polygala tenuifolia; PR is a traditional herbal medicine used for sedation and amnesia. In this study, we aimed to clarify and analyze the preventive effects of PR against memory deficits in a transgenic AD mouse model, 5XFAD. 5XFAD mice demonstrated memory deficits at the age of 5 months. Thus, the water extract of Polygalae Radix (PR extract was orally administered to 4-month-old 5XFAD mice that did not show signs of memory impairment. After consecutive administrations for 56 days, the PR extract prevented cognitive deficit and axon degeneration associated with the accumulation of amyloid β (Aβ plaques in the perirhinal cortex of the 5XFAD mice. PR extract did not influence the formation of Aβ plaques in the brain of the 5XFAD mice. In cultured neurons, the PR extract prevented axonal growth cone collapse and axonal atrophy induced by Aβ. Additionally, it prevented Aβ-induced endocytosis at the growth cone of cultured neurons. Our previous study reported that endocytosis inhibition was enough to prevent Aβ-induced growth cone collapse, axonal degeneration, and memory impairments. Therefore, the PR extract possibly prevented axonal degeneration and memory impairment by inhibiting endocytosis. PR is the first preventive drug candidate for AD that inhibits endocytosis in neurons.

  16. Diffuse Axonal Injury and Oxidative Stress: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Alessandro Frati

    2017-12-01

    Full Text Available Traumatic brain injury (TBI is one of the world’s leading causes of morbidity and mortality among young individuals. TBI applies powerful rotational and translational forces to the brain parenchyma, which results in a traumatic diffuse axonal injury (DAI responsible for brain swelling and neuronal death. Following TBI, axonal degeneration has been identified as a progressive process that starts with disrupted axonal transport causing axonal swelling, followed by secondary axonal disconnection and Wallerian degeneration. These modifications in the axonal cytoskeleton interrupt the axoplasmic transport mechanisms, causing the gradual gathering of transport products so as to generate axonal swellings and modifications in neuronal homeostasis. Oxidative stress with consequent impairment of endogenous antioxidant defense mechanisms plays a significant role in the secondary events leading to neuronal death. Studies support the role of an altered axonal calcium homeostasis as a mechanism in the secondary damage of axon, and suggest that calcium channel blocker can alleviate the secondary damage, as well as other mechanisms implied in the secondary injury, and could be targeted as a candidate for therapeutic approaches. Reactive oxygen species (ROS-mediated axonal degeneration is mainly caused by extracellular Ca2+. Increases in the defense mechanisms through the use of exogenous antioxidants may be neuroprotective, particularly if they are given within the neuroprotective time window. A promising potential therapeutic target for DAI is to directly address mitochondria-related injury or to modulate energetic axonal energy failure.

  17. Diffuse Axonal Injury and Oxidative Stress: A Comprehensive Review.

    Science.gov (United States)

    Frati, Alessandro; Cerretani, Daniela; Fiaschi, Anna Ida; Frati, Paola; Gatto, Vittorio; La Russa, Raffaele; Pesce, Alessandro; Pinchi, Enrica; Santurro, Alessandro; Fraschetti, Flavia; Fineschi, Vittorio

    2017-12-02

    Traumatic brain injury (TBI) is one of the world's leading causes of morbidity and mortality among young individuals. TBI applies powerful rotational and translational forces to the brain parenchyma, which results in a traumatic diffuse axonal injury (DAI) responsible for brain swelling and neuronal death. Following TBI, axonal degeneration has been identified as a progressive process that starts with disrupted axonal transport causing axonal swelling, followed by secondary axonal disconnection and Wallerian degeneration. These modifications in the axonal cytoskeleton interrupt the axoplasmic transport mechanisms, causing the gradual gathering of transport products so as to generate axonal swellings and modifications in neuronal homeostasis. Oxidative stress with consequent impairment of endogenous antioxidant defense mechanisms plays a significant role in the secondary events leading to neuronal death. Studies support the role of an altered axonal calcium homeostasis as a mechanism in the secondary damage of axon, and suggest that calcium channel blocker can alleviate the secondary damage, as well as other mechanisms implied in the secondary injury, and could be targeted as a candidate for therapeutic approaches. Reactive oxygen species (ROS)-mediated axonal degeneration is mainly caused by extracellular Ca 2+ . Increases in the defense mechanisms through the use of exogenous antioxidants may be neuroprotective, particularly if they are given within the neuroprotective time window. A promising potential therapeutic target for DAI is to directly address mitochondria-related injury or to modulate energetic axonal energy failure.

  18. Axon degeneration: make the Schwann cell great again

    Directory of Open Access Journals (Sweden)

    Keit Men Wong

    2017-01-01

    Full Text Available Axonal degeneration is a pivotal feature of many neurodegenerative conditions and substantially accounts for neurological morbidity. A widely used experimental model to study the mechanisms of axonal degeneration is Wallerian degeneration (WD, which occurs after acute axonal injury. In the peripheral nervous system (PNS, WD is characterized by swift dismantling and clearance of injured axons with their myelin sheaths. This is a prerequisite for successful axonal regeneration. In the central nervous system (CNS, WD is much slower, which significantly contributes to failed axonal regeneration. Although it is well-documented that Schwann cells (SCs have a critical role in the regenerative potential of the PNS, to date we have only scarce knowledge as to how SCs 'sense' axonal injury and immediately respond to it. In this regard, it remains unknown as to whether SCs play the role of a passive bystander or an active director during the execution of the highly orchestrated disintegration program of axons. Older reports, together with more recent studies, suggest that SCs mount dynamic injury responses minutes after axonal injury, long before axonal breakdown occurs. The swift SC response to axonal injury could play either a pro-degenerative role, or alternatively a supportive role, to the integrity of distressed axons that have not yet committed to degenerate. Indeed, supporting the latter concept, recent findings in a chronic PNS neurodegeneration model indicate that deactivation of a key molecule promoting SC injury responses exacerbates axonal loss. If this holds true in a broader spectrum of conditions, it may provide the grounds for the development of new glia-centric therapeutic approaches to counteract axonal loss.

  19. The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Gnavi, S., E-mail: sara.gnavi@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Fornasari, B.E., E-mail: benedettaelena.fornasari@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Tonda-Turo, C., E-mail: chiara.tondaturo@polito.it [Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10100 (Italy); Ciardelli, G., E-mail: gianluca.ciardelli@polito.it [Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10100 (Italy); CNR-IPCF UOS, Pisa 56124 (Italy); Zanetti, M., E-mail: marco.zanetti@unito.it [Nanostructured Interfaces and Surfaces, Department of Chemistry, University of Torino, Torino 10100 (Italy); Geuna, S., E-mail: stefano.geuna@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Perroteau, I., E-mail: isabelle.perroteau@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy)

    2015-03-01

    Fibrous substrates functioning as temporary extracellular matrices can be prepared easily by electrospinning, yielding fibrous matrices suitable as internal fillers for nerve guidance channels. In this study, gelatin micro- or nano-fibres were prepared by electrospinning by tuning the gelatin concentration and solution flow rate. The effect of gelatin fibre diameter on cell adhesion and proliferation was tested in vitro using explant cultures of Schwann cells (SC) and dorsal root ganglia (DRG). Cell adhesion was assessed by quantifying the cell spreading area, actin cytoskeleton organization and focal adhesion complex formation. Nano-fibres promoted cell spreading and actin cytoskeleton organization, increasing cellular adhesion and the proliferation rate. However, both migration rate and motility, quantified by transwell and time lapse assays respectively, were greater in cells cultured on micro-fibres. Finally, there was more DRG axon outgrowth on micro-fibres. These data suggest that the topography of electrospun gelatin fibres can be adjusted to modulate SC and axon organization and that both nano- and micro-fibres are promising fillers for the design of devices for peripheral nerve repair. - Highlights: • Electrospinning used to produce gelatin nano- and micro-fibre matrices. • Nano-fibre matrices promote Schwann cell organization and increase proliferation rate. • Micro-fibre matrices promote Schwann cell migration. • Micro-fibre matrices promote axonal outgrowth.

  20. The atypical homeoprotein Pbx1a participates in the axonal pathfinding of mesencephalic dopaminergic neurons

    Directory of Open Access Journals (Sweden)

    Sgadò Paola

    2012-07-01

    Full Text Available Abstract Background The pre B-cell leukemia transcription factor 1 (Pbx1 genes belong to the three amino acid loop extension family of homeodomain proteins that form hetero-oligomeric complexes with other homeodomain transcription factors, thereby modulating target specificity, DNA binding affinity and transcriptional activity of their molecular associates. Results Here, we provide evidence that Pbx1 is expressed in mesencephalic dopaminergic neurons from embryonic day 11 into adulthood and determines some of the cellular properties of this neuronal population. In Pbx1-deficient mice, the mesencephalic dopaminergic axons stall during mid-gestation at the border between di- and telencephalon before entering the ganglionic eminence, leading to a loose organization of the axonal bundle and partial misrouting. In Pbx1-deficient dopaminergic neurons, the high affinity netrin-1 receptor, deleted in colon cancer (DCC, is down-regulated. Interestingly, we found several conserved Pbx1 binding sites in the first intron of DCC, suggesting a direct regulation of DCC transcription by Pbx1. Conclusions The expression of Pbx1 in dopaminergic neurons and its regulation of DCC expression make it an important player in defining the axonal guidance of the midbrain dopaminergic neurons, with possible implications for the normal physiology of the nigro-striatal system as well as processes related to the degeneration of neurons during the course of Parkinson’s disease.

  1. Histological methods for assessing myelin sheaths and axons in human nerve trunks.

    Science.gov (United States)

    Miko, T L; Gschmeissner, S E

    1994-03-01

    Although there are many histological techniques for assessing myelin sheaths and axons in paraffin embedded or frozen sections of the peripheral nervous system, modern approaches usually use plastic embedded material. Although plastic embedding is superior for small cutaneous branches, this method has limited value for histological assessment of nerve trunks. We report three methods which together yield a comprehensive approach for thorough and detailed investigation of human nerve trunks. The rapid osmication method permitted assessment of myelinated nerve fibers from frozen sections at operation, thus providing the surgeon with guidance on the extent of nerve resection. The modification presented here resulted in permanent slides, allowing comparison of results with those of the other two procedures. The new osmium-hematoxylin technique could be performed on paraffin embedded nerves. Paraffin, unlike plastic, permitted the study of the whole cross sectional area of the nerve in single sections. Moreover, the sharp image of the myelin permitted computerized morphometry. The significantly modified axonal silver impregnation technique was performed on frozen sections mounted on glass slides, as opposed to the time-consuming impregnation of free-floating sections. The latter technique had a high success rate and permitted semiquantitative assessment of axons in nerve trunks. These methods can be performed in any routine histology laboratory and resulted in greater accuracy compared to conventional methods.

  2. A Select Subset of Electron Transport Chain Genes Associated with Optic Atrophy Link Mitochondria to Axon Regeneration in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Wendy M. Knowlton

    2017-05-01

    Full Text Available The role of mitochondria within injured neurons is an area of active interest since these organelles are vital for the production of cellular energy in the form of ATP. Using mechanosensory neurons of the nematode Caenorhabditis elegans to test regeneration after neuronal injury in vivo, we surveyed genes related to mitochondrial function for effects on axon regrowth after laser axotomy. Genes involved in mitochondrial transport, calcium uptake, mitophagy, or fission and fusion were largely dispensable for axon regrowth, with the exception of eat-3/Opa1. Surprisingly, many genes encoding components of the electron transport chain were dispensable for regrowth, except for the iron-sulfur proteins gas-1, nduf-2.2, nduf-7, and isp-1, and the putative oxidoreductase rad-8. In these mutants, axonal development was essentially normal and axons responded normally to injury by forming regenerative growth cones, but were impaired in subsequent axon extension. Overexpression of nduf-2.2 or isp-1 was sufficient to enhance regrowth, suggesting that mitochondrial function is rate-limiting in axon regeneration. Moreover, loss of function in isp-1 reduced the enhanced regeneration caused by either a gain-of-function mutation in the calcium channel EGL-19 or overexpression of the MAP kinase DLK-1. While the cellular function of RAD-8 remains unclear, our genetic analyses place rad-8 in the same pathway as other electron transport genes in axon regeneration. Unexpectedly, rad-8 regrowth defects were suppressed by altered function in the ubiquinone biosynthesis gene clk-1. Furthermore, we found that inhibition of the mitochondrial unfolded protein response via deletion of atfs-1 suppressed the defective regrowth in nduf-2.2 mutants. Together, our data indicate that while axon regeneration is not significantly affected by general dysfunction of cellular respiration, it is sensitive to the proper functioning of a select subset of electron transport chain genes, or

  3. Motor axon excitability during Wallerian degeneration

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez, Susana; Krarup, Christian

    2008-01-01

    Axonal loss and degeneration are major factors in determining long-term outcome in patients with peripheral nerve disorders or injury. Following loss of axonal continuity, the isolated nerve stump distal to the lesion undergoes Wallerian degeneration in several phases. In the initial 'latent' phase...... at ankle distal to axotomy were monitored by 'threshold-tracking'. The plantar compound muscle action potentials (CMAPs) were recorded under anesthesia in three animal models: 8-week-old wild-type mice, 8-week-old slow Wallerian degeneration mutant mice and 3-year-old cats. We found that the progressive...... decrease in CMAP following crush injury was associated with slowing of conduction and marked abnormalities in excitability: increased peak threshold deviations during both depolarizing and hyperpolarizing threshold electrotonus, enhanced superexcitability during the recovery cycle and increased rheobase...

  4. A PKC-dependent recruitment of MMP-2 controls semaphorin-3A growth-promoting effect in cortical dendrites.

    Directory of Open Access Journals (Sweden)

    Bertrand Gonthier

    Full Text Available There is increasing evidence for a crucial role of proteases and metalloproteinases during axon growth and guidance. In this context, we recently described a functional link between the chemoattractive Sema3C and Matrix metalloproteinase 3 (MMP3. Here, we provide data demonstrating the involvement of MMP-2 to trigger the growth-promoting effect of Sema3A in cortical dendrites. The in situ analysis of MMP-2 expression and activity is consistent with a functional growth assay demonstrating in vitro that the pharmacological inhibition of MMP-2 reduces the growth of cortical dendrites in response to Sema3A. Hence, our results suggest that the selective recruitment and activation of MMP-2 in response to Sema3A requires a PKC alpha dependent mechanism. Altogether, we provide a second set of data supporting MMPs as effectors of the growth-promoting effects of semaphorins, and we identify the potential signalling pathway involved.

  5. Sensory axonal dysfunction in cervical radiculopathy.

    Science.gov (United States)

    Sung, Jia-Ying; Tani, Jowy; Hung, Kuo-Sheng; Lui, Tai-Ngar; Lin, Cindy Shin-Yi

    2015-06-01

    The aim of this study was to evaluate changes in sensory axonal excitability in the distal nerve in patients with cervical radiculopathy. The patients were classified by the findings of cervical MRI into two subgroups: 22 patients with C6/7 root compression and 25 patients with cervical cord and root compression above/at C6/7. Patients were investigated using conventional nerve conduction studies (NCS) and nerve excitability testing. Sensory nerve excitability testing was undertaken with stimulation at the wrist and recording from digit II (dermatome C6/7). The results were compared with healthy controls. Both preoperative and postoperative tests were performed if the patient underwent surgery. Sensory axonal excitability was significantly different in both cohorts compared with healthy controls, including prolonged strength-duration time constant, reduced S2 accommodation, increased threshold electrotonus hyperpolarisation (TEh (90-100 ms)), and increased superexcitability. The changes in these excitability indices are compatible with axonal membrane hyperpolarisation. In five patients who underwent surgery, the postoperative sensory excitability was tested after 1 week, and showed significant changes in TE (TEh (90-100 ms) and TEh slope, pcervical radiculopathy. These findings suggest that the hyperpolarised pattern might be due to Na(+)-K(+) ATPase overactivation induced by proximal ischaemia, or could reflect the remyelinating process. Distal sensory axons were hyperpolarised even though there were no changes in NCS, suggesting that nerve excitability testing may be more sensitive to clinical symptoms than NCS in patients with cervical radiculopathy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Unidirectional ephaptic stimulation between two myelinated axons.

    Science.gov (United States)

    Capllonch-Juan, Miguel; Kolbl, Florian; Sepulveda, Francisco

    2017-07-01

    Providing realistic sensory feedback for prosthetic devices strongly relies on an accurate modelling of machine-nerve interfaces. Models of these interfaces in the peripheral nervous system usually neglect the effects that ephaptic coupling can have on the selectivity of stimulating electrodes. In this contribution, we study the ephaptic stimulation between myelinated axons and show its relation with the separation between fibers and the conductivity of the medium that surrounds them.

  7. Synaptic Democracy and Vesicular Transport in Axons

    Science.gov (United States)

    Bressloff, Paul C.; Levien, Ethan

    2015-04-01

    Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".

  8. The age factor in axonal repair after spinal cord injury: A focus on neuron-intrinsic mechanisms.

    Science.gov (United States)

    Geoffroy, Cédric G; Meves, Jessica M; Zheng, Binhai

    2017-06-23

    Age is an important consideration for recovery and repair after spinal cord injury. Spinal cord injury is increasingly affecting the middle-aged and aging populations. Despite rapid progress in research to promote axonal regeneration and repair, our understanding of how age can modulate this repair is rather limited. In this review, we discuss the literature supporting the notion of an age-dependent decline in axonal growth after central nervous system (CNS) injury. While both neuron-intrinsic and extrinsic factors are involved in the control of axon growth after injury, here we focus on possible intrinsic mechanisms for this age-dependent decline. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Axonal branching patterns of nucleus accumbens neurons in the rat.

    Science.gov (United States)

    Tripathi, Anushree; Prensa, Lucía; Cebrián, Carolina; Mengual, Elisa

    2010-11-15

    The patterns of axonal collateralization of nucleus accumbens (Acb) projection neurons were investigated in the rat by means of single-axon tracing techniques using the anterograde tracer biotinylated dextran amine. Seventy-three axons were fully traced, originating from either the core (AcbC) or shell (AcbSh) compartment, as assessed by differential calbindin D28k-immunoreactivity. Axons from AcbC and AcbSh showed a substantial segregation in their targets; target areas were either exclusively or preferentially innervated from AcbC or AcbSh. Axon collaterals in the subthalamic nucleus were found at higher than expected frequencies; moreover, these originated exclusively in the dorsal AcbC. Intercompartmental collaterals were observed from ventral AcbC axons into AcbSh, and likewise, interconnections at pallidal and mesencephalic levels were also observed, although mostly from AcbC axons toward AcbSh targets, possibly supporting crosstalk between the two subcircuits at several levels. Cell somata giving rise to short-range accumbal axons, projecting to the ventral pallidum (VP), were spatially intermingled with others, giving rise to long-range axons that innervated VP and more caudal targets. This anatomical organization parallels that of the dorsal striatum and provides the basis for possible dual direct and indirect actions from a single axon on either individual or small sets of neurons. Copyright © 2010 Wiley-Liss, Inc.

  10. Axonal and Transynaptic Spread of Prions

    Science.gov (United States)

    Shearin, Harold

    2014-01-01

    ABSTRACT Natural transmission of prion diseases depends upon the spread of prions from the nervous system to excretory or secretory tissues, but the mechanism of prion transport in axons and into peripheral tissue is unresolved. Here, we examined the temporal and spatial movement of prions from the brain stem along cranial nerves into skeletal muscle as a model of axonal transport and transynaptic spread. The disease-specific isoform of the prion protein, PrPSc, was observed in nerve fibers of the tongue approximately 2 weeks prior to PrPSc deposition in skeletal muscle. Initially, PrPSc deposits had a small punctate pattern on the edge of muscle cells that colocalized with synaptophysin, a marker for the neuromuscular junction (NMJ), in >50% of the cells. At later time points PrPSc was widely distributed in muscle cells, but PrPSc deposition at the NMJ, suggesting additional prion replication and dissemination within muscle cells. In contrast to the NMJ, PrPSc was not associated with synaptophysin in nerve fibers but was found to colocalize with LAMP-1 and cathepsin D during early stages of axonal spread. We propose that PrPSc-bound endosomes can lead to membrane recycling in which PrPSc is directed to the synapse, where it either moves across the NMJ into the postsynaptic muscle cell or induces PrPSc formation on muscle cells across the NMJ. IMPORTANCE Prion diseases are transmissible and fatal neurodegenerative diseases in which prion dissemination to excretory or secretory tissues is necessary for natural disease transmission. Despite the importance of this pathway, the cellular mechanism of prion transport in axons and into peripheral tissue is unresolved. This study demonstrates anterograde spread of prions within nerve fibers prior to infection of peripheral synapses (i.e., neuromuscular junction) and infection of peripheral tissues (i.e., muscle cells). Within nerve fibers prions were associated with the endosomal-lysosomal pathway prior to entry into

  11. Activation of mTor Signaling by Gene Transduction to Induce Axon Regeneration in the Central Nervous System Following Neural Injury

    Science.gov (United States)

    2017-08-01

    lesion staining is reduced to about 20% in the Tau- Tom control. Both p70S6K (CA) and NLS-p70S6K (CA) induce new axon growth and restore the extent of...TH innervation to 40.5 and 42.1 percent respectively. The latter is significantly different than the Tau- Tom control (p = 0.027), but the former is...not, due to the higher standard error. In measures of the number of TH-positive axons in the MFB (B) and the number Tau- Tom -positive axons in the

  12. Aiding Vertical Guidance Understanding

    Science.gov (United States)

    Feary, Michael; McCrobie, Daniel; Alkin, Martin; Sherry, Lance; Polson, Peter; Palmer, Everett; McQuinn, Noreen

    1998-01-01

    A two-part study was conducted to evaluate modern flight deck automation and interfaces. In the first part, a survey was performed to validate the existence of automation surprises with current pilots. Results indicated that pilots were often surprised by the behavior of the automation. There were several surprises that were reported more frequently than others. An experimental study was then performed to evaluate (1) the reduction of automation surprises through training specifically for the vertical guidance logic, and (2) a new display that describes the flight guidance in terms of aircraft behaviors instead of control modes. The study was performed in a simulator that was used to run a complete flight with actual airline pilots. Three groups were used to evaluate the guidance display and training. In the training, condition, participants went through a training program for vertical guidance before flying the simulation. In the display condition, participants ran through the same training program and then flew the experimental scenario with the new Guidance-Flight Mode Annunciator (G-FMA). Results showed improved pilot performance when given training specifically for the vertical guidance logic and greater improvements when given the training and the new G-FMA. Using actual behavior of the avionics to design pilot training and FMA is feasible, and when the automated vertical guidance mode of the Flight Management System is engaged, the display of the guidance mode and targets yields improved pilot performance.

  13. Schwann Cell Exosomes Mediate Neuron-Glia Communication and Enhance Axonal Regeneration.

    Science.gov (United States)

    Lopez-Leal, Rodrigo; Court, Felipe A

    2016-04-01

    The functional and structural integrity of the nervous system depends on the coordinated action of neurons and glial cells. Phenomena like synaptic activity, conduction of action potentials, and neuronal growth and regeneration, to name a few, are fine tuned by glial cells. Furthermore, the active role of glial cells in the regulation of neuronal functions is underscored by several conditions in which specific mutation affecting the glia results in axonal dysfunction. We have shown that Schwann cells (SCs), the peripheral nervous system glia, supply axons with ribosomes, and since proteins underlie cellular programs or functions, this dependence of axons from glial cells provides a new and unexplored dimension to our understanding of the nervous system. Recent evidence has now established a new modality of intercellular communication through extracellular vesicles. We have already shown that SC-derived extracellular vesicles known as exosomes enhance axonal regeneration, and increase neuronal survival after pro-degenerative stimuli. Therefore, the biology nervous system will have to be reformulated to include that the phenotype of a nerve cell results from the contribution of two nuclei, with enormous significance for the understanding of the nervous system in health and disease.

  14. The Actin-Binding Protein α-Adducin Is Required for Maintaining Axon Diameter.

    Science.gov (United States)

    Leite, Sérgio Carvalho; Sampaio, Paula; Sousa, Vera Filipe; Nogueira-Rodrigues, Joana; Pinto-Costa, Rita; Peters, Luanne Laurel; Brites, Pedro; Sousa, Mónica Mendes

    2016-04-19

    The actin-binding protein adducin was recently identified as a component of the neuronal subcortical cytoskeleton. Here, we analyzed mice lacking adducin to uncover the function of this protein in actin rings. α-adducin knockout mice presented progressive axon enlargement in the spinal cord and optic and sciatic nerves, followed by axon degeneration and loss. Using stimulated emission depletion super-resolution microscopy, we show that a periodic subcortical actin cytoskeleton is assembled in every neuron type inspected including retinal ganglion cells and dorsal root ganglia neurons. In neurons devoid of adducin, the actin ring diameter increased, although the inter-ring periodicity was maintained. In vitro, the actin ring diameter adjusted as axons grew, suggesting the lattice is dynamic. Our data support a model in which adducin activity is not essential for actin ring assembly and periodicity but is necessary to control the diameter of both actin rings and axons and actin filament growth within rings. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. The Actin-Binding Protein α-Adducin Is Required for Maintaining Axon Diameter

    Directory of Open Access Journals (Sweden)

    Sérgio Carvalho Leite

    2016-04-01

    Full Text Available The actin-binding protein adducin was recently identified as a component of the neuronal subcortical cytoskeleton. Here, we analyzed mice lacking adducin to uncover the function of this protein in actin rings. α-adducin knockout mice presented progressive axon enlargement in the spinal cord and optic and sciatic nerves, followed by axon degeneration and loss. Using stimulated emission depletion super-resolution microscopy, we show that a periodic subcortical actin cytoskeleton is assembled in every neuron type inspected including retinal ganglion cells and dorsal root ganglia neurons. In neurons devoid of adducin, the actin ring diameter increased, although the inter-ring periodicity was maintained. In vitro, the actin ring diameter adjusted as axons grew, suggesting the lattice is dynamic. Our data support a model in which adducin activity is not essential for actin ring assembly and periodicity but is necessary to control the diameter of both actin rings and axons and actin filament growth within rings.

  16. Phosphatidylserine Ameliorates Neurodegenerative Symptoms and Enhances Axonal Transport in a Mouse Model of Familial Dysautonomia.

    Directory of Open Access Journals (Sweden)

    Shiran Naftelberg

    2016-12-01

    Full Text Available Familial Dysautonomia (FD is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs with attenuated axons compared to wild-type mice. Furthermore, the CKO FD DRGs show elevated HDAC6 levels, reduced acetylated α-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF. These abnormalities in DRG properties underlie neuronal degeneration and FD symptoms. Phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of α-tubulin. Further PS treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing histone deacetylase 6 (HDAC6 levels and thus increasing acetylation of α-tubulin levels. Thus, we have identified the molecular pathway that leads to neurodegeneration in FD and have demonstrated that phosphatidylserine treatment has the potential to slow progression of neurodegeneration.

  17. Regulation and dysregulation of axon infrastructure by myelinating glia.

    Science.gov (United States)

    Pan, Simon; Chan, Jonah R

    2017-12-04

    Axon loss and neurodegeneration constitute clinically debilitating sequelae in demyelinating diseases such as multiple sclerosis, but the underlying mechanisms of secondary degeneration are not well understood. Myelinating glia play a fundamental role in promoting the maturation of the axon cytoskeleton, regulating axon trafficking parameters, and imposing architectural rearrangements such as the nodes of Ranvier and their associated molecular domains. In the setting of demyelination, these changes may be reversed or persist as maladaptive features, leading to axon degeneration. In this review, we consider recent insights into axon-glial interactions during development and disease to propose that disruption of the cytoskeleton, nodal architecture, and other components of axon infrastructure is a potential mediator of pathophysiological damage after demyelination. © 2017 Pan and Chan.

  18. Active polysomes in the axoplasm of the squid giant axon.

    Science.gov (United States)

    Giuditta, A; Menichini, E; Perrone Capano, C; Langella, M; Martin, R; Castigli, E; Kaplan, B B

    1991-01-01

    Axons and axon terminals are widely believed to lack the capacity to synthesize proteins, relying instead on the delivery of proteins made in the perikaryon. In agreement with this view, axoplasmic proteins synthesized by the isolated giant axon of the squid are believed to derive entirely from periaxonal glial cells. However, squid axoplasm is known to contain the requisite components of an extra-mitochondrial protein synthetic system, including protein factors, tRNAs, rRNAs, and a heterogeneous family of mRNAs. Hence, the giant axon could, in principle, maintain an endogenous protein synthetic capacity. Here, we report that the squid giant axon also contains active polysomes and mRNA, which hybridizes to a riboprobe encoding murine neurofilament protein. Taken together, these findings provide direct evidence that proteins (including the putative neuron-specific neurofilament protein) are also synthesized de novo in the axonal compartment.

  19. Axon-glia interaction and membrane traffic in myelin formation

    OpenAIRE

    White, Robin; Krämer-Albers, Eva-Maria

    2014-01-01

    In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialized glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarization followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is...

  20. Small-Molecule Stabilization of 14-3-3 Protein-Protein Interactions Stimulates Axon Regeneration.

    Science.gov (United States)

    Kaplan, Andrew; Morquette, Barbara; Kroner, Antje; Leong, SooYuen; Madwar, Carolin; Sanz, Ricardo; Banerjee, Sara L; Antel, Jack; Bisson, Nicolas; David, Samuel; Fournier, Alyson E

    2017-03-08

    Damaged central nervous system (CNS) neurons have a poor ability to spontaneously regenerate, causing persistent functional deficits after injury. Therapies that stimulate axon growth are needed to repair CNS damage. 14-3-3 adaptors are hub proteins that are attractive targets to manipulate cell signaling. We identify a positive role for 14-3-3s in axon growth and uncover a developmental regulation of the phosphorylation and function of 14-3-3s. We show that fusicoccin-A (FC-A), a small-molecule stabilizer of 14-3-3 protein-protein interactions, stimulates axon growth in vitro and regeneration in vivo. We show that FC-A stabilizes a complex between 14-3-3 and the stress response regulator GCN1, inducing GCN1 turnover and neurite outgrowth. These findings show that 14-3-3 adaptor protein complexes are druggable targets and identify a new class of small molecules that may be further optimized for the repair of CNS damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Schwann Cell Glycogen Selectively Supports Myelinated Axon Function

    Science.gov (United States)

    Brown, Angus M; Evans, Richard D; Black, Joel; Ransom, Bruce R

    2012-01-01

    Objectives Interruption of energy supply to peripheral axons is a cause of axon loss. We determined if glycogen was present in mammalian peripheral nerve, and if it supported axon conduction during aglycemia. Methods We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. Results Glycogen was present in sciatic nerve, its concentration varying directly with ambient [glucose]. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time-course of glycogen loss. Latency to CAP failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. Interpretation Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. PMID:23034913

  2. Concepts for regulation of axon integrity by enwrapping glia

    Directory of Open Access Journals (Sweden)

    Bogdan eBeirowski

    2013-12-01

    Full Text Available Long axons and their enwrapping glia (Schwann cells and oligodendrocytes form a unique compound structure that serves as conduit for transport of electric and chemical information in the nervous system. The peculiar cytoarchitecture over an enormous length as well as its substantial energetic requirements make this conduit particularly susceptible to detrimental alterations. Degeneration of long axons independent of neuronal cell bodies is observed comparatively early in a range of neurodegenerative conditions as a consequence of abnormalities in Schwann cells and oligodendrocytes. This leads to the most relevant disease symptoms and highlights the critical role that these glia have for axon integrity, but the underlying mechanisms remain elusive. The quest to understand why and how axons degenerate is now a crucial frontier in disease-oriented research. This challenge is most likely to lead to significant progress if the inextricable link between axons and their flanking glia in pathological situations is recognized. In this review I compile recent advances in our understanding of the molecular programs governing axon degeneration, and mechanisms of enwrapping glia’s non-cell autonomous impact on axon-integrity. A particular focus is placed on emerging evidence suggesting that enwrapping glia nurture long axons by virtue of their intimate association, release of trophic substances, and neurometabolic coupling. The correction of defects in these functions has the potential to stabilize axons in a variety of neuronal diseases in the peripheral and central nervous system.

  3. Axonal branching patterns of ventral pallidal neurons in the rat.

    Science.gov (United States)

    Tripathi, Anushree; Prensa, Lucía; Mengual, Elisa

    2013-09-01

    The ventral pallidum (VP) is a key component of the cortico-basal ganglia circuits that process motivational and emotional information, and also a crucial site for reward. Although the main targets of the two VP compartments, medial (VPm) and lateral (VPl) have already been established, the collateralization patterns of individual axons have not previously been investigated. Here we have fully traced eighty-four axons from VPm, VPl and the rostral extension of VP into the olfactory tubercle (VPr), using the anterograde tracer biotinylated dextran amine in the rat. Thirty to fifty percent of axons originating from VPm and VPr collateralized in the mediodorsal thalamic nucleus and lateral habenula, indicating a close association between the ventral basal ganglia-thalamo-cortical loop and the reward network at the single axon level. Additional collateralization of these axons in diverse components of the extended amygdala and corticopetal system supports a multisystem integration that may take place at the basal forebrain. Remarkably, we did not find evidence for a sharp segregation in the targets of axons arising from the two VP compartments, as VPl axons frequently collateralized in the caudal lateral hypothalamus and ventral tegmental area, the well-known targets of VPm, while VPm axons, in turn, also collateralized in typical VPl targets such as the subthalamic nucleus, substantia nigra pars compacta and reticulata, and retrorubral field. Nevertheless, VPl and VPm displayed collateralization patterns that paralleled those of dorsal pallidal components, confirming at the single axon level the parallel organization of functionally different basal ganglia loops.

  4. Differences in excitability properties of FDI and ADM motor axons.

    Science.gov (United States)

    Bae, Jong Seok; Sawai, Setsu; Misawa, Sonoko; Kanai, Kazuaki; Isose, Sagiri; Kuwabara, Satoshi

    2009-03-01

    The first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles are innervated by the same ulnar nerve, but studies have shown that the former is much more severely affected in amyotrophic lateral sclerosis. In this study, threshold tracking was used to investigate whether membrane properties differ between FDI and ADM motor axons. In 12 normal subjects, compound muscle action potentials were recorded from FDI and ADM after ulnar nerve stimulation at the wrist. The strength-duration time constant was significantly longer in the FDI axons than in the ADM axons, and latent addition studies showed greater threshold changes at the conditioning-test stimulus of 0.2 ms in FDI than in ADM axons. These findings suggest that nodal persistent sodium conductances are more prominent in FDI axons than in ADM axons, and therefore excitability is physiologically higher in FDI axons. Even in the same nerve at the same sites, membrane properties of FDI and ADM motor axons differ significantly, and thus their axonal/neuronal responses to disease may also differ.

  5. Multichannel activity propagation across an engineered axon network

    Science.gov (United States)

    Chen, H. Isaac; Wolf, John A.; Smith, Douglas H.

    2017-04-01

    Objective. Although substantial progress has been made in mapping the connections of the brain, less is known about how this organization translates into brain function. In particular, the massive interconnectivity of the brain has made it difficult to specifically examine data transmission between two nodes of the connectome, a central component of the ‘neural code.’ Here, we investigated the propagation of multiple streams of asynchronous neuronal activity across an isolated in vitro ‘connectome unit.’ Approach. We used the novel technique of axon stretch growth to create a model of a long-range cortico-cortical network, a modular system consisting of paired nodes of cortical neurons connected by axon tracts. Using optical stimulation and multi-electrode array recording techniques, we explored how input patterns are represented by cortical networks, how these representations shift as they are transmitted between cortical nodes and perturbed by external conditions, and how well the downstream node distinguishes different patterns. Main results. Stimulus representations included direct, synaptic, and multiplexed responses that grew in complexity as the distance between the stimulation source and recorded neuron increased. These representations collapsed into patterns with lower information content at higher stimulation frequencies. With internodal activity propagation, a hierarchy of network pathways, including latent circuits, was revealed using glutamatergic blockade. As stimulus channels were added, divergent, non-linear effects were observed in local versus distant network layers. Pairwise difference analysis of neuronal responses suggested that neuronal ensembles generally outperformed individual cells in discriminating input patterns. Significance. Our data illuminate the complexity of spiking activity propagation in cortical networks in vitro, which is characterized by the transformation of an input into myriad outputs over several network layers

  6. Down syndrome cell adhesion molecule (DSCAM) associates with uncoordinated-5C (UNC5C) in netrin-1-mediated growth cone collapse.

    Science.gov (United States)

    Purohit, Anish A; Li, Weiquan; Qu, Chao; Dwyer, Trisha; Shao, Qiangqiang; Guan, Kun-Liang; Liu, Guofa

    2012-08-03

    In the developing nervous system, neuronal growth cones explore the extracellular environment for guidance cues, which can guide them along specific trajectories toward their targets. Netrin-1, a bifunctional guidance cue, binds to deleted in colorectal cancer (DCC) and DSCAM mediating axon attraction, and UNC5 mediating axon repulsion. Here, we show that DSCAM interacts with UNC5C and this interaction is stimulated by netrin-1 in primary cortical neurons and postnatal cerebellar granule cells. DSCAM partially co-localized with UNC5C in primary neurons and brain tissues. Netrin-1 induces axon growth cone collapse of mouse cerebellum external granule layer (EGL) cells, and the knockdown of DSCAM or UNC5C by specific shRNAs or blocking their signaling by overexpressing dominant negative mutants suppresses netrin-1-induced growth cone collapse. Similarly, the simultaneous knockdown of DSCAM and UNC5C also blocks netrin-1-induced growth cone collapse in EGL cells. Netrin-1 increases tyrosine phosphorylation of endogenous DSCAM, UNC5C, FAK, Fyn, and PAK1, and promotes complex formation of DSCAM with these signaling molecules in primary postnatal cerebellar neurons. Inhibition of Src family kinases efficiently reduces the interaction of DSCAM with UNC5C, FAK, Fyn, and PAK1 and tyrosine phosphorylation of these proteins as well as growth cone collapse of mouse EGL cells induced by netrin-1. The knockdown of DSCAM inhibits netrin-induced tyrosine phosphorylation of UNC5C and Fyn as well as the interaction of UNC5C with Fyn. The double knockdown of both receptors abolishes the induction of Fyn tyrosine phosphorylation by netrin-1. Our study reveals the first evidence that DSCAM coordinates with UNC5C in netrin-1 repulsion.

  7. Sigma-1 receptor agonist increases axon outgrowth of hippocampal neurons via voltage-gated calcium ions channels.

    Science.gov (United States)

    Li, Dong; Zhang, Shu-Zhuo; Yao, Yu-Hong; Xiang, Yun; Ma, Xiao-Yun; Wei, Xiao-Li; Yan, Hai-Tao; Liu, Xiao-Yan

    2017-12-01

    Sigma-1 receptors (Sig-1Rs) are unique endoplasmic reticulum proteins that have been implicated in both neurodegenerative and ischemic diseases, such as Alzheimer's disease and stroke. Accumulating evidence has suggested that Sig-1R plays a role in neuroprotection and axon outgrowth. The underlying mechanisms of Sig-1R-mediated neuroprotection have been well elucidated. However, the mechanisms underlying the effects of Sig-1R on axon outgrowth are not fully understood. To clarify this issue, we utilized immunofluorescence to compare the axon lengths of cultured naïve hippocampal neurons before and after the application of the Sig-1R agonist, SA4503. Then, electrophysiology and immunofluorescence were used to examine voltage-gated calcium ion channel (VGCCs) currents in the cell membranes and growth cones. We found that Sig-1R activation dramatically enhanced the axonal length of the naïve hippocampal neurons. Application of the Sig-1R antagonist NE100 and gene knockdown techniques both demonstrated the effects of Sig-1R. The growth-promoting effect of SA4503 was accompanied by the inhibition of voltage-gated Ca 2+ influx and was recapitulated by incubating the neurons with the L-type, N-type, and P/Q-type VGCC blockers, nimodipine, MVIIA and ω-agatoxin IVA, respectively. This effect was unrelated to glial cells. The application of SA4503 transformed the growth cone morphologies from complicated to simple, which favored axon outgrowth. Sig-1R activation can enhance axon outgrowth and may have a substantial influence on neurogenesis and neurodegenerative diseases. © 2017 John Wiley & Sons Ltd.

  8. Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2 regulates axon integrity in the mouse embryo.

    Directory of Open Access Journals (Sweden)

    Amy N Hicks

    Full Text Available Using transposon-mediated gene-trap mutagenesis, we have generated a novel mouse mutant termed Blad (Bloated Bladder. Homozygous mutant mice die perinatally showing a greatly distended bladder, underdeveloped diaphragm and a reduction in total skeletal muscle mass. Wild type and heterozygote mice appear normal. Using PCR, we identified a transposon insertion site in the first intron of Nmnat2 (Nicotinamide mononucleotide adenyltransferase 2. Nmnat2 is expressed predominantly in the brain and nervous system and has been linked to the survival of axons. Expression of this gene is undetectable in Nmnat2(blad/blad mutants. Examination of the brains of E18.5 Nmnat2(blad/blad mutant embryos did not reveal any obvious morphological changes. In contrast, E18.5 Nmnat2(blad/blad homozygotes showed an approximate 60% reduction of spinal motoneurons in the lumbar region and a more than 80% reduction in the sensory neurons of the dorsal root ganglion (DRG. In addition, facial motoneuron numbers were severely reduced, and there was virtually a complete absence of axons in the hind limb. Our observations suggest that during embryogenesis, Nmnat2 plays an important role in axonal growth or maintenance. It appears that in the absence of Nmnat2, major target organs and tissues (e.g., muscle are not functionally innervated resulting in perinatal lethality. In addition, neither Nmnat1 nor 3 can compensate for the loss of Nmnat2. Whilst there have been recent suggestions that Nmnat2 may be an endogenous modulator of axon integrity, this work represents the first in vivo study demonstrating that Nmnat2 is involved in axon development or survival in a mammal.

  9. Assimilation of GOES satellite-based convective initiation and cloud growth observations into the Rapid Refresh and HRRR systems to improve aviation forecast guidance

    Science.gov (United States)

    Mecikalski, John; Smith, Tracy; Weygandt, Stephen

    2014-05-01

    Latent heating profiles derived from GOES satellite-based cloud-top cooling rates are being assimilated into a retrospective version of the Rapid Refresh system (RAP) being run at the Global Systems Division. Assimilation of these data may help reduce the time lag for convection initiation (CI) in both the RAP model forecasts and in 3-km High Resolution Rapid Refresh (HRRR) model runs that are initialized off of the RAP model grids. These data may also improve both the location and organization of developing convective storm clusters, especially in the nested HRRR runs. These types of improvements are critical for providing better convective storm guidance around busy hub airports and aviation corridor routes, especially in the highly congested Ohio Valley - Northeast - Mid-Atlantic region. Additional work is focusing on assimilating GOES-R CI algorithm cloud-top cooling-based latent heating profiles directly into the HRRR model. Because of the small-scale nature of the convective phenomena depicted in the cloud-top cooling rate data (on the order of 1-4 km scale), direct assimilation of these data in the HRRR may be more effective than assimilation in the RAP. The RAP is an hourly assimilation system developed at NOAA/ESRL and was implemented at NCEP as a NOAA operational model in May 2012. The 3-km HRRR runs hourly out to 15 hours as a nest within the ESRL real-time experimental RAP. The RAP and HRRR both use the WRF ARW model core, and the Gridpoint Statistical Interpolation (GSI) is used within an hourly cycle to assimilate a wide variety of observations (including radar data) to initialize the RAP. Within this modeling framework, the cloud-top cooling rate-based latent heating profiles are applied as prescribed heating during the diabatic forward model integration part of the RAP digital filter initialization (DFI). No digital filtering is applied on the 3-km HRRR grid, but similar forward model integration with prescribed heating is used to assimilate

  10. Side-To-Side Nerve Bridges Support Donor Axon Regeneration Into Chronically Denervated Nerves and Are Associated With Characteristic Changes in Schwann Cell Phenotype.

    Science.gov (United States)

    Hendry, J Michael; Alvarez-Veronesi, M Cecilia; Snyder-Warwick, Alison; Gordon, Tessa; Borschel, Gregory H

    2015-11-01

    Chronic denervation resulting from long nerve regeneration times and distances contributes greatly to suboptimal outcomes following nerve injuries. Recent studies showed that multiple nerve grafts inserted between an intact donor nerve and a denervated distal recipient nerve stump (termed "side-to-side nerve bridges") enhanced regeneration after delayed nerve repair. To examine the cellular aspects of axon growth across these bridges to explore the "protective" mechanism of donor axons on chronically denervated Schwann cells. In Sprague Dawley rats, 3 side-to-side nerve bridges were placed over a 10-mm distance between an intact donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) distal nerve stump. Green fluorescent protein-expressing TIB axons grew across the bridges and were counted in cross section after 4 weeks. Immunofluorescent axons and Schwann cells were imaged over a 4-month period. Denervated Schwann cells dedifferentiated to a proliferative, nonmyelinating phenotype within the bridges and the recipient denervated CP nerve stump. As donor TIB axons grew across the 3 side-to-side nerve bridges and into the denervated CP nerve, the Schwann cells redifferentiated to the myelinating phenotype. Bridge placement led to an increased mass of hind limb anterior compartment muscles after 4 months of denervation compared with muscles whose CP nerve was not "protected" by bridges. This study describes patterns of donor axon regeneration and myelination in the denervated recipient nerve stump and supports a mechanism where these donor axons sustain a proregenerative state to prevent deterioration in the face of chronic denervation.

  11. Presynaptic localization of Smn and hnRNP R in axon terminals of embryonic and postnatal mouse motoneurons.

    Directory of Open Access Journals (Sweden)

    Benjamin Dombert

    Full Text Available Spinal muscular atrophy (SMA is caused by deficiency of the ubiquitously expressed survival motoneuron (SMN protein. SMN is crucial component of a complex for the assembly of spliceosomal small nuclear ribonucleoprotein (snRNP particles. Other cellular functions of SMN are less characterized so far. SMA predominantly affects lower motoneurons, but the cellular basis for this relative specificity is still unknown. In contrast to nonneuronal cells where the protein is mainly localized in perinuclear regions and the nucleus, Smn is also present in dendrites, axons and axonal growth cones of isolated motoneurons in vitro. However, this distribution has not been shown in vivo and it is not clear whether Smn and hnRNP R are also present in presynaptic axon terminals of motoneurons in postnatal mice. Smn also associates with components not included in the classical SMN complex like RNA-binding proteins FUS, TDP43, HuD and hnRNP R which are involved in RNA processing, subcellular localization and translation. We show here that Smn and hnRNP R are present in presynaptic compartments at neuromuscular endplates of embryonic and postnatal mice. Smn and hnRNP R are localized in close proximity to each other in axons and axon terminals both in vitro and in vivo. We also provide new evidence for a direct interaction of Smn and hnRNP R in vitro and in vivo, particularly in the cytosol of motoneurons. These data point to functions of SMN beyond snRNP assembly which could be crucial for recruitment and transport of RNA particles into axons and axon terminals, a mechanism which may contribute to SMA pathogenesis.

  12. DiI-labeling of DRG neurons to study axonal branching in a whole mount preparation of mouse embryonic spinal cord.

    Science.gov (United States)

    Schmidt, Hannes; Rathjen, Fritz G

    2011-12-13

    Here we present a technique to label the trajectories of small groups of DRG neurons into the embryonic spinal cord by diffusive staining using the lipophilic tracer 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI). The comparison of axonal pathways of wild-type with those of mouse lines in which genes are mutated allows testing for a functional role of candidate proteins in the control of axonal branching which is an essential mechanism in the wiring of the nervous system. Axonal branching enables an individual neuron to connect with multiple targets, thereby providing the physical basis for the parallel processing of information. Ramifications at intermediate target regions of axonal growth may be distinguished from terminal arborization. Furthermore, different modes of axonal branch formation may be classified depending on whether branching results from the activities of the growth cone (splitting or delayed branching) or from the budding of collaterals from the axon shaft in a process called interstitial branching (Fig. 1). The central projections of neurons from the DRG offer a useful experimental system to study both types of axonal branching: when their afferent axons reach the dorsal root entry zone (DREZ) of the spinal cord between embryonic days 10 to 13 (E10-E13) they display a stereotyped pattern of T- or Y-shaped bifurcation. The two resulting daughter axons then proceed in rostral or caudal directions, respectively, at the dorsolateral margin of the cord and only after a waiting period collaterals sprout from these stem axons to penetrate the gray matter (interstitial branching) and project to relay neurons in specific laminae of the spinal cord where they further arborize (terminal branching). DiI tracings have revealed growth cones at the dorsal root entry zone of the spinal cord that appeared to be in the process of splitting suggesting that bifurcation is caused by splitting of the growth cone itself (Fig. 2), however

  13. Laser Guidance Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility, which provides for real time, closed loop evaluation of semi-active laser guidance hardware, has and continues to be instrumental in the development...

  14. Optimal Aerocapture Guidance

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of my research is to develop, implement, verify, and validate an optimal numerical predictor-corrector aerocapture guidance algorithm that is...

  15. Quieter pavements guidance document

    Science.gov (United States)

    2013-02-01

    This report provides guidance and better practice recommendations to the National Park : Service for selecting pavement surfaces to minimize tire-pavement noise. The report : contains an overview of common technologies and methods for quieter pavemen...

  16. Coral Reef Guidance

    Science.gov (United States)

    Guidance prepared by EPA and Army Corps of Engineers concerning coral reef protection under the Clean Water Act, Marine Protection, Research, and Sanctuaries Act, Rivers and Harbors Act, and Federal Project Authorities.

  17. Death Receptor 6 Promotes Wallerian Degeneration in Peripheral Axons.

    Science.gov (United States)

    Gamage, Kanchana K; Cheng, Irene; Park, Rachel E; Karim, Mardeen S; Edamura, Kazusa; Hughes, Christopher; Spano, Anthony J; Erisir, Alev; Deppmann, Christopher D

    2017-03-20

    Axon degeneration during development is required to sculpt a functional nervous system and is also a hallmark of pathological insult, such as injury [1, 2]. Despite similar morphological characteristics, very little overlap in molecular mechanisms has been reported between pathological and developmental degeneration [3-5]. In the peripheral nervous system (PNS), developmental axon pruning relies on receptor-mediated extrinsic degeneration mechanisms to determine which axons are maintained or degenerated [5-7]. Receptors have not been implicated in Wallerian axon degeneration; instead, axon autonomous, intrinsic mechanisms are thought to be the primary driver for this type of axon disintegration [8-10]. Here we survey the role of neuronally expressed, paralogous tumor necrosis factor receptor super family (TNFRSF) members in Wallerian degeneration. We find that an orphan receptor, death receptor 6 (DR6), is required to drive axon degeneration after axotomy in sympathetic and sensory neurons cultured in microfluidic devices. We sought to validate these in vitro findings in vivo using a transected sciatic nerve model. Consistent with the in vitro findings, DR6 -/- animals displayed preserved axons up to 4 weeks after injury. In contrast to phenotypes observed in Wld s and Sarm1 -/- mice, preserved axons in DR6 -/- animals display profound myelin remodeling. This indicates that deterioration of axons and myelin after axotomy are mechanistically distinct processes. Finally, we find that JNK signaling after injury requires DR6, suggesting a link between this novel extrinsic pathway and the axon autonomous, intrinsic pathways that have become established for Wallerian degeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cost analysis of a growth guidance system compared with traditional and magnetically controlled growing rods for early-onset scoliosis: a US-based integrated health care delivery system perspective

    Directory of Open Access Journals (Sweden)

    Luhmann SJ

    2018-03-01

    Full Text Available Scott J Luhmann,1–3 Eoin M McAughey,4 Stacey J Ackerman,5 David B Bumpass,6 Richard E McCarthy6 1Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA; 2Department of Orthopaedic Surgery, St. Louis Shriners Hospital, St. Louis, MO, USA; 3Department of Orthopaedic Surgery, St. Louis Children’s Hospital, St. Louis, MO, USA; 4Covance Market Access Services Inc., London, UK; 5Covance Market Access Services Inc., San Diego, CA, USA; 6Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA Purpose: Treating early-onset scoliosis (EOS with traditional growing rods (TGR is effective but requires periodic surgical lengthening, risking complications. Alternatives include magnetically controlled growing rods (MCGR that lengthen noninvasively and the growth guidance system (GGS, which obviate the need for active, distractive lengthenings. Previous studies have reported promising clinical effectiveness for GGS; however the direct medical costs of GGS compared to TGR and MCGR have not yet been explored. Methods: To estimate the cost of GGS compared with MCGR and TGR for EOS an economic model was developed from the perspective of a US integrated health care delivery system. Using dual-rod constructs, the model estimated the cumulative costs associated with initial implantation, rod lengthenings (TGR, MCGR, revisions due to device failure, surgical-site infections, device exchange, and final spinal fusion over a 6-year episode of care. Model parameters were from peer-reviewed, published literature. Medicare payments were used as a proxy for provider costs. Costs (2016 US$ were discounted 3% annually. Results: Over a 6-year episode of care, GGS was associated with fewer invasive surgeries per patient than TGR (GGS: 3.4; TGR: 14.4 and lower cumulative costs than MCGR and TGR, saving $25,226 vs TGR. Sensitivity analyses showed that results were sensitive to changes in

  19. Axon Guidance of Sympathetic Neurons to Cardiomyocytes by Glial Cell Line-Derived Neurotrophic Factor (GDNF)

    NARCIS (Netherlands)

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Hirabayashi, Masumi; Watabe, Kazuhiko; Jimbo, Yasuhiko; Kodama, Itsuo; Komuro, Issei

    2013-01-01

    Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF) promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs) and sympathetic neurons (SNs) isolated from neonatal

  20. Slit stimulation recruits Dock and Pak to the roundabout receptor and increases Rac activity to regulate axon repulsion at the CNS midline.

    Science.gov (United States)

    Fan, Xueping; Labrador, Juan Pablo; Hing, Huey; Bashaw, Greg J

    2003-09-25

    Drosophila Roundabout (Robo) is the founding member of a conserved family of repulsive axon guidance receptors that respond to secreted Slit proteins. Here we present evidence that the SH3-SH2 adaptor protein Dreadlocks (Dock), the p21-activated serine-threonine kinase (Pak), and the Rac1/Rac2/Mtl small GTPases can function during Robo repulsion. Loss-of-function and genetic interaction experiments suggest that limiting the function of Dock, Pak, or Rac partially disrupts Robo repulsion. In addition, Dock can directly bind to Robo's cytoplasmic domain, and the association of Dock and Robo is enhanced by stimulation with Slit. Furthermore, Slit stimulation can recruit a complex of Dock and Pak to the Robo receptor and trigger an increase in Rac1 activity. These results provide a direct physical link between the Robo receptor and an important cytoskeletal regulatory protein complex and suggest that Rac can function in both attractive and repulsive axon guidance.

  1. Meta-Narrative on Guidance and Counselling in Schools

    Science.gov (United States)

    Thamarasseri, Ismail

    2014-01-01

    The purposes of guidance and counselling provide emphasis and strength to the educational program. The major goals of counselling are to promote personal growth and to prepare students to become motivated workers and responsible citizens. The chief aim of an educational guidance is to develop the ability of co-ordinating with the school…

  2. Is action potential threshold lowest in the axon?

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Stuart, Greg J.

    2008-01-01

    Action potential threshold is thought to be lowest in the axon, but when measured using conventional techniques, we found that action potential voltage threshold of rat cortical pyramidal neurons was higher in the axon than at other neuronal locations. In contrast, both current threshold and voltage

  3. Protein-synthesizing machinery in the axon compartment.

    Science.gov (United States)

    Koenig, E; Giuditta, A

    1999-03-01

    Contrary to the prevailing view that the axon lacks the capacity to synthesize proteins, a substantial body of evidence points to the existence of a metabolically active endogenous translational machinery. The machinery appears to be largely localized in the cortical zone of the axon, where, in vertebrate axons, it is distributed longitudinally as intermittent, discrete domains, called periaxoplasmic plaques. Studies, based on translation assays and probes of RNA transcripts in axon models such as the squid giant axon and selected vertebrate axons, provide evidence of locally synthesized proteins, most of which appear to be constituents of the slow axoplasmic transport rate groups. Metabolic and molecular biological findings are consistent with the view that the synthesis of proteins undergoing local turnover in the axonal compartment of macroneurons depends on the activity of an endogenous translational machinery. The documented presence of a metabolically active machinery in presynaptic terminals of squid photoreceptor neurons is also described. Finally, potential sources of axoplasmic RNAs comprising the machinery, which may include the ensheathing cell of the axon, as well as the cognate cell body, are also discussed.

  4. CAREER GUIDANCE EXPERIENCE ABROAD

    Directory of Open Access Journals (Sweden)

    Sergey N. Tolstoguzov

    2015-01-01

    Full Text Available The aim of this paper is to describe the experience of careeroriented activities carried out with students of schools in developed and developing countries. Career Guidance in Russia, despite the vast experience of its implementation, is experiencing serious difficulties. In this regard, it is important to take into account the international experience career-oriented activities, such as in the developed countries of North America and the European Union as well as in several Asian countries with rapidly growing economies and a large demographic potential, taking into account the best variants for the Russian education system. Methods. The experience of career-oriented work undertaken with pupils of the USA, Canada, Israel, France, UK, Germany, Denmark, Sweden, Japan, Singapore, China and India is shown on the basis of the comparative analysis of different publications and information sources. The author has made an attempt to generalize the principles of psycho-pedagogical and administrative assistance in professional self-determination of senior pupils abroad. Scientific novelty. The approaches to career-oriented activities in countries with different levels of economic development are compared for the first time. Some principles are revealed. Firstly, the higher the income level per capita in the country, the greater attention is given to vocational guidance. The politics in the developed countries is based on interests of the individual: children’s acquaintance with the world of professions begins already at younger school and the moment of definitive selfdetermination is postponed till the end of their senior stage of education; the possibility of direction change of professional preparation in case of detection of discrepancy of qualities of the pupil to originally selected profile is provided. Career-oriented activity in developing countries, on the contrary, is rigidly coordinated to requirements of economy and a labour market

  5. Regeneration of descending spinal axons after transection of the thoracic spinal cord during early development in the North American opossum, Didelphis virginiana.

    Science.gov (United States)

    Martin, G F; Terman, J R; Wang, X M

    2000-11-15

    Opossums are born in an immature, fetal-like state, making it possible to lesion their spinal cord early in development without intrauterine surgery. When the thoracic spinal cord of the North American opossum, Didelphis virginiana, is transected on postnatal day 5, and injections of Fast Blue (FB) are made caudal to the lesion site 30-40 days or 6 months later, neurons are labeled in all of the spinal and supraspinal areas that are labeled after comparable injections in age-matched, unlesioned controls. Double-labeling studies document that regeneration of cut axons contributes to growth of axons through the lesion site and behavioral studies show that animals lesioned on postnatal day 5 use their hindlimbs in normal appearing locomotion as adults. The critical period for developmental plasticity of descending spinal axons extends to postnatal day 26, although axons which grow through the lesion site become fewer in number and more restricted as to origin with increasing age. Animals lesioned between postnatal day 12 and 26 use the hindlimbs better than animals lesioned as adults, but hindlimb function is markedly abnormal and uncoordinated with that of the forelimbs. We conclude that restoration of anatomical continuity occurs after transection of the spinal cord in developing opossums, that descending axons grow through the lesion site, that regeneration of cut axons contributes to such growth, and that animals lesioned early enough in development have relatively normal motor function as adults.

  6. Rho-independent stimulation of axon outgrowth and activation of the ERK and Akt signaling pathways by C3 transferase in sensory neurons

    Directory of Open Access Journals (Sweden)

    Maria eAuer

    2012-10-01

    Full Text Available Peripheral nerve injury triggers the activation of RhoA in spinal motor and peripheral sensory neurons. RhoA activates a number of effector proteins including the Rho-associated kinase, ROCK, which targets the cytoskeleton and leads to inhibition of neurite outgrowth. Blockade of the Rho/ROCK pathway by pharmacological means improves axon regeneration after experimental injury. C3bot transferase, an exoenzyme produced by Clostridium botulinum, inactivates RhoA by ADP-ribosylation. Up to now it was not investigated thoroughly whether C3bot exerts positive effects on peripheral axon regeneration as well. In the present study, recombinant membrane permeable C3bot produced a small, but significant, axon outgrowth effect on peripheral sensory neurons dissociated from adult dorsal root ganglia of the rat. Neuronal overexpression of C3, however, did not enhance axonal growth. Moreover, transfection of plasmids encoding dominant negative RhoA or RhoA specific shRNAs failed to increase axonal growth. Furthermore, we show that the C3bot mutant, C3E174Q, which lacks RhoA inhibitory activity, still stimulates axonal growth. When analyzing possible signaling mechanisms we found that ERK (extracellular signal-regulated kinase and Akt are activated by C3bot and ERK is induced by the C3E174Q mutant. Upregulation of kinase activities by C3bot occurs significantly faster than inactivation of RhoA indicating a RhoA-independent pathway of action by C3bot. The induction of ERK signaling by C3bot was detected in embryonic hippocampal neurons, too. Taken together, although RhoA plays a central role for inhibition of axon outgrowth by myelin-derived inhibitors, it does not interfere with axonal growth of sensory neurons on a permissive substrate in vitro. C3bot blocks neuronal RhoA activity, but its positive effects on axon elongation and branching appear to be mediated by Rho independent mechanisms involving activation of axon growth promoting ERK and Akt kinases.

  7. A multi-protein receptor-ligand complex underlies combinatorial dendrite guidance choices in C. elegans

    Science.gov (United States)

    Zou, Wei; Shen, Ao; Dong, Xintong; Tugizova, Madina; Xiang, Yang K; Shen, Kang

    2016-01-01

    Ligand receptor interactions instruct axon guidance during development. How dendrites are guided to specific targets is less understood. The C. elegans PVD sensory neuron innervates muscle-skin interface with its elaborate dendritic branches. Here, we found that LECT-2, the ortholog of leukocyte cell-derived chemotaxin-2 (LECT2), is secreted from the muscles and required for muscle innervation by PVD. Mosaic analyses showed that LECT-2 acted locally to guide the growth of terminal branches. Ectopic expression of LECT-2 from seam cells is sufficient to redirect the PVD dendrites onto seam cells. LECT-2 functions in a multi-protein receptor-ligand complex that also contains two transmembrane ligands on the skin, SAX-7/L1CAM and MNR-1, and the neuronal transmembrane receptor DMA-1. LECT-2 greatly enhances the binding between SAX-7, MNR-1 and DMA-1. The activation of DMA-1 strictly requires all three ligands, which establishes a combinatorial code to precisely target and pattern dendritic arbors. DOI: http://dx.doi.org/10.7554/eLife.18345.001 PMID:27705746

  8. Calsyntenin-1 shelters APP from proteolytic processing during anterograde axonal transport

    Directory of Open Access Journals (Sweden)

    Martin Steuble

    2012-06-01

    Endocytosis of amyloid-β precursor protein (APP is thought to represent the major source of substrate for the production of the amyloidogenic Aβ peptide by the β-secretase BACE1. The irreversible nature of proteolytic cleavage implies the existence of an efficient replenishment route for APP from its sites of synthesis to the cell surface. We recently found that APP exits the trans-Golgi network in intimate association with calsyntenin-1, a transmembrane cargo-docking protein for Kinesin-1-mediated vesicular transport. Here we characterized the function of calsyntenin-1 in neuronal APP transport using selective immunoisolation of intracellular trafficking organelles, immunocytochemistry, live-imaging, and RNAi. We found that APP is co-transported with calsyntenin-1 along axons to early endosomes in the central region of growth cones in carriers that exclude the α-secretase ADAM10. Intriguingly, calsyntenin-1/APP organelles contained BACE1, suggesting premature cleavage of APP along its anterograde path. However, we found that APP contained in calsyntenin-1/APP organelles was stable. We further analyzed vesicular trafficking of APP in cultured hippocampal neurons, in which calsyntenin-1 was reduced by RNAi. We found a markedly increased co-localization of APP and ADAM10 in axons and growth cones, along with increased proteolytic processing of APP and Aβ secretion in these neurons. This suggested that the reduced capacity for calsyntenin-1-dependent APP transport resulted in mis-sorting of APP into additional axonal carriers and, therefore, the premature encounter of unprotected APP with its ectodomain proteases. In combination, our results characterize calsyntenin-1/APP organelles as carriers for sheltered anterograde axonal transport of APP.

  9. Adenoviral vector-mediated expression of B-50/GAP-43 induces alterations in the membrane organization of olfactory axon terminals in vivo

    NARCIS (Netherlands)

    Holtmaat, Anthony J D G; Hermens, W.T.J.M.C.; Sonnemans, M.A.F.; Giger, Roman J; Van Leeuwen, F W; Kaplitt, M G; Oestreicher, A B; Gispen, Willem Hendrik; Verhaagen, J

    1997-01-01

    B-50/GAP-43 is an intraneuronal membrane-associated growth cone protein with an important role in axonal growth and regeneration. By using adenoviral vector-directed expression of B-50/GAP-43 we studied the morphogenic action of B-50/GAP-43 in mature primary olfactory neurons that have established

  10. Plasticity of the Axon Initial Segment

    DEFF Research Database (Denmark)

    Petersen, Anders Victor; Cotel, Florence; Perrier, Jean François

    2017-01-01

    undergo important modifications during development. The development of the AIS is governed by intrinsic mechanisms. In addition, surrounding neuronal networks modify its maturation. As a result, neurons get tuned to particular physiological functions. Neuronal activity also influences the morphology......The axon initial segment (AIS) is a key neuronal compartment because it is responsible for action potential initiation. The local density of Na+ channels, the biophysical properties of K+ channels, as well as the length and diameter of the AIS determine the spiking of neurons. These parameters...... of the mature AIS. When excitatory neurons are hyperactive, their AIS undergo structural changes that decrease their excitability and thereby maintain the activity within a given range. These slow homeostatic regulatory mechanisms occur on a time scale of hours or days. In contrast, the activation...

  11. Neuron Morphology Influences Axon Initial Segment Plasticity.

    Science.gov (United States)

    Gulledge, Allan T; Bravo, Jaime J

    2016-01-01

    In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal neurons) were most excitable when the AIS was longer and/or located away from the soma. For any given somatodendritic morphology, increasing dendritic membrane capacitance and/or conductance favored a longer and more distally located AIS. Overall, changes to AIS length, with corresponding changes in total sodium conductance, were far more effective in regulating neuron excitability than were changes in AIS location, while dendritic capacitance had a larger impact on AIS performance than did dendritic conductance. The somatodendritic influence on AIS performance reflects modest soma-to-AIS voltage attenuation combined with neuron size-dependent changes in AIS input resistance, effective membrane time constant, and isolation from somatodendritic capacitance. We conclude that the impact of AIS plasticity on neuron excitability will depend largely on somatodendritic morphology, and that, in some neurons, a shorter or more distally located AIS may promote, rather than limit, action potential generation.

  12. Daam1a mediates asymmetric habenular morphogenesis by regulating dendritic and axonal outgrowth

    Science.gov (United States)

    Colombo, Alicia; Palma, Karina; Armijo, Lorena; Mione, Marina; Signore, Iskra A.; Morales, Camila; Guerrero, Néstor; Meynard, Margarita M.; Pérez, Ramón; Suazo, José; Marcelain, Katherine; Briones, Luis; Härtel, Steffen; Wilson, Stephen W.; Concha, Miguel L.

    2013-01-01

    Although progress has been made in resolving the genetic pathways that specify neuronal asymmetries in the brain, little is known about genes that mediate the development of structural asymmetries between neurons on left and right. In this study, we identify daam1a as an asymmetric component of the signalling pathways leading to asymmetric morphogenesis of the habenulae in zebrafish. Daam1a is a member of the Formin family of actin-binding proteins and the extent of Daam1a expression in habenular neuron dendrites mirrors the asymmetric growth of habenular neuropil between left and right. Local loss and gain of Daam1a function affects neither cell number nor subtype organisation but leads to a decrease or increase of neuropil, respectively. Daam1a therefore plays a key role in the asymmetric growth of habenular neuropil downstream of the pathways that specify asymmetric cellular domains in the habenulae. In addition, Daam1a mediates the development of habenular efferent connectivity as local loss and gain of Daam1a function impairs or enhances, respectively, the growth of habenular neuron terminals in the interpeduncular nucleus. Abrogation of Daam1a disrupts the growth of both dendritic and axonal processes and results in disorganised filamentous actin and α-tubulin. Our results indicate that Daam1a plays a key role in asymmetric habenular morphogenesis mediating the growth of dendritic and axonal processes in dorsal habenular neurons. PMID:24046318

  13. Axonal Regulation of Central Nervous System Myelination: Structure and Function.

    Science.gov (United States)

    Klingseisen, Anna; Lyons, David A

    2018-02-01

    Approximately half of the human brain consists of myelinated axons. Central nervous system (CNS) myelin is made by oligodendrocytes and is essential for nervous system formation, health, and function. Once thought simply as a static insulator that facilitated rapid impulse conduction, myelin is now known to be made and remodeled in to adult life. Oligodendrocytes have a remarkable capacity to differentiate by default, but many aspects of their development can be influenced by axons. However, how axons and oligodendrocytes interact and cooperate to regulate myelination in the CNS remains unclear. Here, we review recent advances in our understanding of how such interactions generate the complexity of myelination known to exist in vivo. We highlight intriguing results that indicate that the cross-sectional size of an axon alone may regulate myelination to a surprising degree. We also review new studies, which have highlighted diversity in the myelination of axons of different neuronal subtypes and circuits, and structure-function relationships, which suggest that myelinated axons can be exquisitely fine-tuned to mediate precise conduction needs. We also discuss recent advances in our understanding of how neuronal activity regulates CNS myelination, and aim to provide an integrated overview of how axon-oligodendrocyte interactions sculpt neuronal circuit structure and function.

  14. Axonal and presynaptic RNAs are locally transcribed in glial cells.

    Science.gov (United States)

    Giuditta, Antonio; Chun, Jong Tai; Eyman, Maria; Cefaliello, Carolina; Bruno, Anna Paola; Crispino, Marianna

    2007-01-01

    In the last few years, the long-standing opinion that axonal and presynaptic proteins are exclusively derived from the neuron cell body has been substantially modified by the demonstration that active systems of protein synthesis are present in axons and nerve terminals. These observations have raised the issue of the cellular origin of the involved RNAs, which has been generally attributed to the neuron soma. However, data gathered in a number of model systems indicated that axonal RNAs are synthesized in the surrounding glial cells. More recent experiments on the perfused squid giant axon have definitively proved that axoplasmic RNAs are transcribed in periaxonal glia. Their delivery to the axon occurs by a modulatory mechanism based on the release of neurotransmitters from the stimulated axon and on their binding to glial receptors. In additional experiments on squid optic lobe synaptosomes, presynaptic RNA has been also shown to be synthesized locally, presumably in nearby glia. Together with a wealth of literature data, these observations indicate that axons and nerve terminals are endowed with a local system of gene expression that supports the maintenance and plasticity of these neuronal domains.

  15. Propagation of action potentials in inhomogeneous axon regions.

    Science.gov (United States)

    Ramón, F; Joyner, R W; Moore, J W

    1975-04-01

    Described are studies of propagation of action potentials through inhomogenous axon regions through experiments performed on squid giant axons and by computer simulations. The initial speed of propagation of the action potential is dependent upon the stimulus waveform. For a rectangular pulse of current, the action potential travel initally at a high speed that declines over the distance, reaching a constant speed of propagation at about 1-5 resting length constants; this distance depends on the stimulus strength. additional experiments studied the effects of changing the axon diameter and of introducing a temperature step. It was found that the propagated action potential suffers profound modification in shape and velocity as it reaches the region of transition. In both cases, it was possible to obtain reflected action potentials. A region of increased effective diameter was produced experimentally in the squid giant axon by insertion of an axial wire as usually employed in voltage clamps. It was found that the action potential, at the axial wire tip region, undergoes shape changes similar to those obtained tn simulations of a region of increased diameter as in a junction with the axon and soma in motor neurons. It is conducluded that the gaint axon can be used to reproduce simple electrical behaviors in other structures.-Ramón, F., R. W. Joyner and J.W. Moore. Propagation of action potentials in inhomogeneous axon regions.

  16. Knockout of Amyloid β Protein Precursor (APP) Expression Alters Synaptogenesis, Neurite Branching and Axonal Morphology of Hippocampal Neurons.

    Science.gov (United States)

    Southam, Katherine A; Stennard, Fiona; Pavez, Cassandra; Small, David H

    2018-03-23

    The function of the β-A4 amyloid protein precursor (APP) of Alzheimer's disease (AD) remains unclear. APP has a number of putative roles in neuronal differentiation, survival, synaptogenesis and cell adhesion. In this study, we examined the development of axons, dendrites and synapses in cultures of hippocampus neutrons derived from APP knockout (KO) mice. We report that loss of APP function reduces the branching of cultured hippocampal neurons, resulting in reduced synapse formation. Using a compartmentalised culture approach, we found reduced axonal outgrowth in cultured hippocampal neurons and we also identified abnormal growth characteristics of isolated hippocampal neuron axons. Although APP has previously been suggested to play an important role in promoting cell adhesion, we surprisingly found that APPKO hippocampal neurons adhered more strongly to a poly-L-lysine substrate and their neurites displayed an increased density of focal adhesion puncta. The findings suggest that the function of APP has an important role in both dendritic and axonal growth and that endogenous APP may regulate substrate adhesion of hippocampal neurons. The results may explain neuronal and synaptic morphological abnormalities in APPKO mice and the presence of abnormal APP expression in dystrophic neurites around amyloid deposits in AD.

  17. Mdivi-1 Inhibits Astrocyte Activation and Astroglial Scar Formation and Enhances Axonal Regeneration after Spinal Cord Injury in Rats

    Science.gov (United States)

    Li, Gang; Cao, Yang; Shen, Feifei; Wang, Yangsong; Bai, Liangjie; Guo, Weidong; Bi, Yunlong; Lv, Gang; Fan, Zhongkai

    2016-01-01

    After spinal cord injury (SCI), astrocytes become hypertrophic, and proliferative, forming a dense network of astroglial processes at the site of the lesion. This constitutes a physical and biochemical barrier to axonal regeneration. Mitochondrial fission regulates cell cycle progression; inhibiting the cell cycle of astrocytes can reduce expression levels of axon growth-inhibitory molecules as well as astroglial scar formation after SCI. We therefore investigated how an inhibitor of mitochondrial fission, Mdivi-1, would affect astrocyte proliferation, astroglial scar formation, and axonal regeneration following SCI in rats. Western blot and immunofluorescent double-labeling showed that Mdivi-1 markedly reduced the expression of the astrocyte marker glial fibrillary acidic protein (GFAP), and a cell proliferation marker, proliferating cell nuclear antigen, in astrocytes 3 days after SCI. Moreover, Mdivi-1 decreased the expression of GFAP and neurocan, a chondroitin sulfate proteoglycan. Notably, immunofluorescent labeling and Nissl staining showed that Mdivi-1 elevated the production of growth-associated protein-43 and increased neuronal survival at 4 weeks after SCI. Finally, hematoxylin-eosin staining, and behavioral evaluation of motor function indicated that Mdivi-1 also reduced cavity formation and improved motor function 4 weeks after SCI. Our results confirm that Mdivi-1 promotes motor function after SCI, and indicate that inhibiting mitochondrial fission using Mdivi-1 can inhibit astrocyte activation and astroglial scar formation and contribute to axonal regeneration after SCI in rats. PMID:27807407

  18. Mdivi-1 inhibits astrocyte activation and astroglial scar formation and enhances axonal regeneration after spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    gang li

    2016-10-01

    Full Text Available After spinal cord injury (SCI, astrocytes become hypertrophic and proliferative, forming a dense network of astroglial processes at the site of the lesion. This constitutes a physical and biochemical barrier to axonal regeneration. Mitochondrial fission regulates cell cycle progression; inhibiting the cell cycle of astrocytes can reduce expression levels of axon growth-inhibitory molecules as well as astroglial scar formation after SCI. We therefore investigated how an inhibitor of mitochondrial fission, Mdivi-1, would affect astrocyte proliferation, astroglial scar formation, and axonal regeneration following SCI in rats. Western blot and immunofluorescent double-labeling showed that Mdivi-1 markedly reduced the expression of the astrocyte marker glial fibrillary acidic protein (GFAP, and a cell proliferation marker, proliferating cell nuclear antigen, in astrocytes 3 days after SCI. Moreover, Mdivi-1 decreased the expression of GFAP and neurocan, a chondroitin sulfate proteoglycan. Notably, immunofluorescent labeling and Nissl staining showed that Mdivi-1 elevated the production of growth-associated protein-43 and increased neuronal survival at 4 weeks after SCI. Finally, hematoxylin-eosin staining and behavioral evaluation of motor function indicated that Mdivi-1 also reduced cavity formation and improved motor function 4 weeks after SCI. Our results confirm that Mdivi-1 promotes motor function after SCI, and indicate that inhibiting mitochondrial fission using Mdivi-1 can inhibit astrocyte activation and astroglial scar formation and contribute to axonal regeneration after SCI in rats.

  19. Mitotic motors coregulate microtubule patterns in axons and dendrites.

    Science.gov (United States)

    Lin, Shen; Liu, Mei; Mozgova, Olga I; Yu, Wenqian; Baas, Peter W

    2012-10-03

    Microtubules are nearly uniformly oriented in the axons of vertebrate neurons but are non-uniformly oriented in their dendrites. Studies to date suggest a scenario for establishing these microtubule patterns whereby microtubules are transported into the axon and nascent dendrites with plus-ends-leading, and then additional microtubules of the opposite orientation are transported into the developing dendrites. Here, we used contemporary tools to confirm that depletion of kinesin-6 (also called CHO1/MKLP1 or kif23) from rat sympathetic neurons causes a reduction in the appearance of minus-end-distal microtubules in developing dendrites, which in turn causes them to assume an axon-like morphology. Interestingly, we observed a similar phenomenon when we depleted kinesin-12 (also called kif15 or HKLP2). Both motors are best known for their participation in mitosis in other cell types, and both are enriched in the cell body and dendrites of neurons. Unlike kinesin-12, which is present throughout the neuron, kinesin-6 is barely detectable in the axon. Accordingly, depletion of kinesin-6, unlike depletion of kinesin-12, has no effect on axonal branching or navigation. Interestingly, depletion of either motor results in faster growing axons with greater numbers of mobile microtubules. Based on these observations, we posit a model whereby these two motors generate forces that attenuate the transport of microtubules with plus-ends-leading from the cell body into the axon. Some of these microtubules are not only prevented from moving into the axon but are driven with minus-ends-leading into developing dendrites. In this manner, these so-called "mitotic" motors coregulate the microtubule patterns of axons and dendrites.

  20. Mirror movement-like defects in startle behavior of zebrafish dcc mutants are caused by aberrant midline guidance of identified descending hindbrain neurons.

    Science.gov (United States)

    Jain, Roshan A; Bell, Hannah; Lim, Amy; Chien, Chi-Bin; Granato, Michael

    2014-02-19

    Mirror movements are involuntary movements on one side of the body that occur simultaneously with intentional movements on the contralateral side. Humans with heterozygous mutations in the axon guidance receptor DCC display such mirror movements, where unilateral stimulation results in inappropriate bilateral motor output. Currently, it is unclear whether mirror movements are caused by incomplete midline crossing and reduced commissural connectivity of DCC-dependent descending pathways or by aberrant ectopic ipsilateral axonal projections of normally commissural neurons. Here, we show that in response to unilateral tactile stimuli, zebrafish dcc mutant larvae perform involuntary turns on the inappropriate body side. We show that these mirror movement-like deficits are associated with axonal guidance defects of two identified groups of commissural reticulospinal hindbrain neurons. Moreover, we demonstrate that in dcc mutants, axons of these identified neurons frequently fail to cross the midline and instead project ipsilaterally. Whereas laser ablation of these neurons in wild-type animals does not affect turning movements, their ablation in dcc mutants restores turning movements. Thus, our results demonstrate that in dcc mutants, turns on the inappropriate side of the body are caused by aberrant ipsilateral axonal projections, and suggest that aberrant ipsilateral connectivity of a very small number of descending axons is sufficient to induce incorrect movement patterns.

  1. PTEN knockdown with the Y444F mutant AAV2 vector promotes axonal regeneration in the adult optic nerve

    Directory of Open Access Journals (Sweden)

    Zheng-ru Huang

    2018-01-01

    Full Text Available The lack of axonal regeneration is the major cause of vision loss after optic nerve injury in adult mammals. Activating the PI3K/AKT/mTOR signaling pathway has been shown to enhance the intrinsic growth capacity of neurons and to facilitate axonal regeneration in the central nervous system after injury. The deletion of the mTOR negative regulator phosphatase and tensin homolog (PTEN enhances regeneration of adult corticospinal neurons and ganglion cells. In the present study, we used a tyrosine-mutated (Y444F AAV2 vector to efficiently express a short hairpin RNA (shRNA for silencing PTEN expression in retinal ganglion cells. We evaluated cell survival and axonal regeneration in a rat model of optic nerve axotomy. The rats received an intravitreal injection of wildtype AAV2 or Y444F mutant AAV2 (both carrying shRNA to PTEN 4 weeks before optic nerve axotomy. Compared with the wildtype AAV2 vector, the Y444F mutant AAV2 vector enhanced retinal ganglia cell survival and stimulated axonal regeneration to a greater extent 6 weeks after axotomy. Moreover, post-axotomy injection of the Y444F AAV2 vector expressing the shRNA to PTEN rescued ~19% of retinal ganglion cells and induced axons to regenerate near to the optic chiasm. Taken together, our results demonstrate that PTEN knockdown with the Y444F AAV2 vector promotes retinal ganglion cell survival and stimulates long-distance axonal regeneration after optic nerve axotomy. Therefore, the Y444F AAV2 vector might be a promising gene therapy tool for treating optic nerve injury.

  2. Guidance on lobbying restrictions

    Science.gov (United States)

    The purpose of this guidance is to remind nonprofit organizations, universities, and other non-government recipients of EPA grants that, with very limited exceptions, you may not use Federal grant funds or cost-sharing funds to conduct lobbying activities.

  3. Vocational Development and Guidance.

    Science.gov (United States)

    Tennyson, W. Wesley; And Others

    The vocational education volume considers questions of career development, the role of guidance in the school, vocational training, the relation of self-concept to vocational choice, and occupational information. Twenty-six papers deal with theories of vocational behavior, the success of vocational education programs, and testing information.…

  4. PIV Logon Configuration Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Glen Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-04

    This document details the configurations and enhancements implemented to support the usage of federal Personal Identity Verification (PIV) Card for logon on unclassified networks. The guidance is a reference implementation of the configurations and enhancements deployed at the Los Alamos National Laboratory (LANL) by Network and Infrastructure Engineering – Core Services (NIE-CS).

  5. Regulatory guidance document

    International Nuclear Information System (INIS)

    1994-05-01

    The Office of Civilian Radioactive Waste Management (OCRWM) Program Management System Manual requires preparation of the OCRWM Regulatory Guidance Document (RGD) that addresses licensing, environmental compliance, and safety and health compliance. The document provides: regulatory compliance policy; guidance to OCRWM organizational elements to ensure a consistent approach when complying with regulatory requirements; strategies to achieve policy objectives; organizational responsibilities for regulatory compliance; guidance with regard to Program compliance oversight; and guidance on the contents of a project-level Regulatory Compliance Plan. The scope of the RGD includes site suitability evaluation, licensing, environmental compliance, and safety and health compliance, in accordance with the direction provided by Section 4.6.3 of the PMS Manual. Site suitability evaluation and regulatory compliance during site characterization are significant activities, particularly with regard to the YW MSA. OCRWM's evaluation of whether the Yucca Mountain site is suitable for repository development must precede its submittal of a license application to the Nuclear Regulatory Commission (NRC). Accordingly, site suitability evaluation is discussed in Chapter 4, and the general statements of policy regarding site suitability evaluation are discussed in Section 2.1. Although much of the data and analyses may initially be similar, the licensing process is discussed separately in Chapter 5. Environmental compliance is discussed in Chapter 6. Safety and Health compliance is discussed in Chapter 7

  6. The Counseling & Guidance Curriculum.

    Science.gov (United States)

    Ediger, Marlow

    Counseling and guidance services are vital in any school curriculum. Counselors may themselves be dealing with students of diverse abilities and handicaps. Counselors may have to work with students affected by drug addiction, fetal alcohol syndrome, homelessness, poverty, Acquired Immune Deficiency Syndrome (AIDS) and divorce. Students may present…

  7. Career guidance on the move

    DEFF Research Database (Denmark)

    Thomsen, Rie

    2013-01-01

    This article is about how the notion of place can be used in an analysis of career guidance practices and their development. It is about how a focus on the context of career guidance can develop an awareness of the place where guidance is practiced and support the development of career guidance i...... in new places. In this article I introduce an analytical perspective on place; I give the example of the guidance café a practice development that took place into serious consideration because it was an attempt to develop career guidance practice through relocating it....

  8. Axonal Membranes and Their Domains: Assembly and Function of the Axon Initial Segment and Node of Ranvier

    Directory of Open Access Journals (Sweden)

    Andrew D. Nelson

    2017-05-01

    Full Text Available Neurons are highly specialized cells of the nervous system that receive, process and transmit electrical signals critical for normal brain function. Here, we review the intricate organization of axonal membrane domains that facilitate rapid action potential conduction underlying communication between complex neuronal circuits. Two critical excitable domains of vertebrate axons are the axon initial segment (AIS and the nodes of Ranvier, which are characterized by the high concentrations of voltage-gated ion channels, cell adhesion molecules and specialized cytoskeletal networks. The AIS is located at the proximal region of the axon and serves as the site of action potential initiation, while nodes of Ranvier, gaps between adjacent myelin sheaths, allow rapid propagation of the action potential through saltatory conduction. The AIS and nodes of Ranvier are assembled by ankyrins, spectrins and their associated binding partners through the clustering of membrane proteins and connection to the underlying cytoskeleton network. Although the AIS and nodes of Ranvier share similar protein composition, their mechanisms of assembly are strikingly different. Here we will cover the mechanisms of formation and maintenance of these axonal excitable membrane domains, specifically highlighting the similarities and differences between them. We will also discuss recent advances in super resolution fluorescence imaging which have elucidated the arrangement of the submembranous axonal cytoskeleton revealing a surprising structural organization necessary to maintain axonal organization and function. Finally, human mutations in axonal domain components have been associated with a growing number of neurological disorders including severe cognitive dysfunction, epilepsy, autism, neurodegenerative diseases and psychiatric disorders. Overall, this review highlights the assembly, maintenance and function of axonal excitable domains, particularly the AIS and nodes of

  9. The C. elegans Discoidin Domain Receptor DDR-2 Modulates the Met-like RTK-JNK Signaling Pathway in Axon Regeneration.

    Science.gov (United States)

    Hisamoto, Naoki; Nagamori, Yuki; Shimizu, Tatsuhiro; Pastuhov, Strahil I; Matsumoto, Kunihiro

    2016-12-01

    The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. However, the signaling pathways that orchestrate axon regeneration are not well understood. In Caenorhabditis elegans, initiation of axon regeneration is positively regulated by SVH-2 Met-like growth factor receptor tyrosine kinase (RTK) signaling through the JNK MAPK pathway. Here we show that SVH-4/DDR-2, an RTK containing a discoidin domain that is activated by collagen, and EMB-9 collagen type IV regulate the regeneration of neurons following axon injury. The scaffold protein SHC-1 interacts with both DDR-2 and SVH-2. Furthermore, we demonstrate that overexpression of svh-2 and shc-1 suppresses the delay in axon regeneration observed in ddr-2 mutants, suggesting that DDR-2 functions upstream of SVH-2 and SHC-1. These results suggest that DDR-2 modulates the SVH-2-JNK pathway via SHC-1. We thus identify two different RTK signaling networks that play coordinated roles in the regulation of axonal regeneration.

  10. The C. elegans Discoidin Domain Receptor DDR-2 Modulates the Met-like RTK–JNK Signaling Pathway in Axon Regeneration

    Science.gov (United States)

    Shimizu, Tatsuhiro; Matsumoto, Kunihiro

    2016-01-01

    The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. However, the signaling pathways that orchestrate axon regeneration are not well understood. In Caenorhabditis elegans, initiation of axon regeneration is positively regulated by SVH-2 Met-like growth factor receptor tyrosine kinase (RTK) signaling through the JNK MAPK pathway. Here we show that SVH-4/DDR-2, an RTK containing a discoidin domain that is activated by collagen, and EMB-9 collagen type IV regulate the regeneration of neurons following axon injury. The scaffold protein SHC-1 interacts with both DDR-2 and SVH-2. Furthermore, we demonstrate that overexpression of svh-2 and shc-1 suppresses the delay in axon regeneration observed in ddr-2 mutants, suggesting that DDR-2 functions upstream of SVH-2 and SHC-1. These results suggest that DDR-2 modulates the SVH-2–JNK pathway via SHC-1. We thus identify two different RTK signaling networks that play coordinated roles in the regulation of axonal regeneration. PMID:27984580

  11. Functional Impact of Corticotropin-Releasing Factor Exposure on Tau Phosphorylation and Axon Transport.

    Directory of Open Access Journals (Sweden)

    Michelle H Le

    Full Text Available Stress exposure or increased levels of corticotropin-releasing factor (CRF induce hippocampal tau phosphorylation (tau-P in rodent models, a process that is dependent on the type-1 CRF receptor (CRFR1. Although these preclinical studies on stress-induced tau-P provide mechanistic insight for epidemiological work that identifies stress as a risk factor for Alzheimer's disease (AD, the actual impact of stress-induced tau-P on neuronal function remains unclear. To determine the functional consequences of stress-induced tau-P, we developed a novel mouse neuronal cell culture system to explore the impact of acute (0.5hr and chronic (2hr CRF treatment on tau-P and integral cell processes such as axon transport. Consistent with in vivo reports, we found that chronic CRF treatment increased tau-P levels and caused globular accumulations of phosphorylated tau in dendritic and axonal processes. Furthermore, while both acute and chronic CRF treatment led to significant reduction in CREB activation and axon transport of brain-derived neurotrophic factor (BDNF, this was not the case with mitochondrial transport. Acute CRF treatment caused increased mitochondrial velocity and distance traveled in neurons, while chronic CRF treatment modestly decreased mitochondrial velocity and greatly increased distance traveled. These results suggest that transport of cellular energetics may take priority over growth factors during stress. Tau-P was required for these changes, as co-treatment of CRF with a GSK kinase inhibitor prevented CRF-induced tau-P and all axon transport changes. Collectively, our results provide mechanistic insight into the consequences of stress peptide-induced tau-P and provide an explanation for how chronic stress via CRF may lead to neuronal vulnerability in AD.

  12. In vivo modeling of neuronal function, axonal impairment and connectivity in neurodegenerative and neuropsychiatric disorders using induced pluripotent stem cells.

    Science.gov (United States)

    Korecka, J A; Levy, S; Isacson, O

    2016-06-01

    Modeling neurological diseases using human embryonic or patient-derived induced pluripotent stem cells (iPSCs) improves the understanding of molecular and cellular changes underlying these diseases and can lead to new, potentially personalized therapies. Changes in expression of axon guidance cues and altered cytoskeletal maintenance have been implicated in neurodegenerative and neuropsychiatric disorders. To date, most of the iPSC patient-derived cellular dysfunction and phenotypic studies have been performed in vitro. To study the intrinsic axonal impairments and neuronal connectivity deficits in human disease iPSC-derived neurons we propose to graft these cells into the physiological three-dimensional multi-structural environment of the central nervous system of rodent models to obtain relevant in vivo data. Such human iPSC in vivo chimeric models can allow for neuronal maturation, capture neuropathological phenotypes of axonal and connectivity impairments, and serve as target engagement and drug validation studies using human cells, thus highly relevant for advancement of the drug development process in the late pre-clinical stages. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Axon diameter mapping in crossing fibers with diffusion MRI

    DEFF Research Database (Denmark)

    Zhang, Hui; Dyrby, Tim B; Alexander, Daniel C

    2011-01-01

    tissue than measures derived from diffusion tensor imaging. Most existing techniques for axon diameter mapping assume a single axon orientation in the tissue model, which limits their application to only the most coherently oriented brain white matter, such as the corpus callosum, where the single......This paper proposes a technique for a previously unaddressed problem, namely, mapping axon diameter in crossing fiber regions, using diffusion MRI. Direct measurement of tissue microstructure of this kind using diffusion MRI offers a new class of biomarkers that give more specific information about...... orientation assumption is a reasonable one. However, fiber crossings and other complex configurations are widespread in the brain. In such areas, the existing techniques will fail to provide useful axon diameter indices for any of the individual fiber populations. We propose a novel crossing fiber tissue...

  14. Fiber Optic Detection of Action Potentials in Axons

    National Research Council Canada - National Science Library

    Smela, Elisabeth

    2006-01-01

    In prior exploratory research, we had designed a fiber optic sensor utilizing a long period Bragg grating for the purpose of detecting action potentials in axons optically, through a change in index...

  15. Spontaneous axonal regeneration in rodent spinal cord after ischemic injury

    DEFF Research Database (Denmark)

    von Euler, Mia; Janson, A M; Larsen, Jytte Overgaard

    2002-01-01

    cells, while other fibers were unmyelinated. Immunohistochemistry demonstrated that some of the regenerated fibers were tyrosine hydroxylase- or serotonin-immunoreactive, indicating a central origin. These findings suggest that there is a considerable amount of spontaneous regeneration after spinal cord......Here we present evidence for spontaneous and long-lasting regeneration of CNS axons after spinal cord lesions in adult rats. The length of 200 kD neurofilament (NF)-immunolabeled axons was estimated after photochemically induced ischemic spinal cord lesions using a stereological tool. The total...... length of all NF-immunolabeled axons within the lesion cavities was increased 6- to 10-fold at 5, 10, and 15 wk post-lesion compared with 1 wk post-surgery. In ultrastructural studies we found the putatively regenerating axons within the lesion to be associated either with oligodendrocytes or Schwann...

  16. The nigrostriatal pathway: axonal collateralization and compartmental specificity.

    Science.gov (United States)

    Prensa, L; Giménez-Amaya, J M; Parent, A; Bernácer, J; Cebrián, C

    2009-01-01

    This paper reviews two of the major features of the nigrostriatal pathway, its axonal collateralization, and compartmental specificity, as revealed by single-axon labeling experiments in rodents and immunocytological analysis of human postmortem tissue. The dorsal and ventral tiers of the substantia nigra pars compacta harbor various types of neurons the axons of which branch not only within the striatum but also in other major components of the basal ganglia. Furthermore, some nigrostriatal axons send collaterals both to thalamus and to brainstem pedunculopontine tegmental nucleus. In humans, the compartmental specificity of the nigrostriatal pathway is revealed by the fact that the matrix compartment is densely innervated by dopaminergic fibers, whereas the striosomes display different densities of dopaminergic terminals depending on their location within the striatum. The nigral neurons most severely affected in Parkinson's disease are the ventral tier cells that project to the matrix and form deep clusters in the substantia nigra pars reticulata.

  17. Differential compartmentalization of mRNAs in squid giant axon.

    Science.gov (United States)

    Chun, J T; Gioio, A E; Crispino, M; Giuditta, A; Kaplan, B B

    1996-11-01

    Previously, we reported that the squid giant axon contains a heterogeneous population of mRNAs that includes beta-actin, beta-tubulin, kinesin, neurofilament proteins, and enolase. To define the absolute levels and relative distribution of these mRNAs, we have used competitive reverse transcription-PCR to quantify the levels of five mRNAs present in the giant axon and giant fiber lobe (GFL), the location of the parental cell soma. In the GFL, the number of transcripts for these mRNAs varied over a fourfold range, with beta-tubulin being the most abundant mRNA species (1.25 x 10(9) molecules per GFL). Based on transcript number, the rank order of mRNA levels in the GFL was beta-tubulin > beta-actin > kinesin > enolase > microtubule-associated protein (MAP) H1. In contrast, kinesin mRNA was most abundant in the axon (4.1 x 10(7) molecules per axon) with individual mRNA levels varying 15-fold. The rank order of mRNA levels in the axon was kinesin > beta-tubulin > MAP H1 > beta-actin > enolase. The relative abundance of the mRNA species in the axon did not correlate with the size of the transcript, nor was it directly related to their corresponding levels in the GFL. Taken together, these findings confirm that significant amounts of mRNA are present in the giant axon and suggest that specific mRNAs are differentially transported into the axonal domain.

  18. MR imaging of a diffuse axonal injury

    International Nuclear Information System (INIS)

    Inoue, Yukiya; Okamoto, Hisayo; Mitsushima, Minoru; Hori, Tomokatsu; Sasaki, Mamoru; Teraoka, Akira.

    1989-01-01

    Six patients who had been diagnosed as having so-called a 'Diffuse Axonal Injury (DAI)' were examined by means of Magnetic Resonance Imaging (Yokogawa Resona 0.5T and Shimadzu SMT 50A). MRI revealed clear evidence of injured white matter in these patients, while X-ray CT scanning could not demonstrate such lesions definitely. The patients consisted of three adults and three adolescents. They had been injured by traffic accidents or falls. Every patient had lost consciousness immediately, and their coma had continued for at least two weeks after the trauma. X-ray CT scanning demonstrated no complicated lesion, such as intracranial hematoma or brain edema, resulting in increased intracranial pressure and cerebral herniation. In all of the patients, injuries of the deep white matter (corpus callosum, upper pons, or internal capsule, for example) were clearly found by T 2 -weighted imaging. Because these lesions had characteristic features in their localation, as has been described by Adams et al. these patients were diagnosed as having DAI. Also, it was interesting that the focal neurological deficits of these patients correlated well with the local injuries of the white matter. The three young patients recovered to various degrees, but the three adults passed into a vegetative state. The prognosis of the patients seemed to be determined by their age. Because the clinical diagnosis of DAI is controversial, the use of MRI will help in its clinical diagnosis and analysis. (author)

  19. Kinematics of turnaround and retrograde axonal transport

    International Nuclear Information System (INIS)

    Snyder, R.E.

    1986-01-01

    Rapid axonal transport of a pulse of 35 S-methionine-labelled material was studied in vitro in the sensory neurons of amphibian sciatic nerve using a position-sensitive detector. For 10 nerves studied at 23.0 +/- 0.2 degrees C it was found that a pulse moved in the anterograde direction characterized by front edge, peak, and trailing edge transport rates of (mm/d) 180.8 +/- 2.2 (+/- SEM), 176.6 +/- 2.3, and 153.7 +/- 3.0, respectively. Following its arrival at a distal ligature, a smaller pulse was observed to move in the retrograde direction characterized by front edge and peak transport rates of 158.0 +/- 7.3 and 110.3 +/- 3.5, respectively, indicating that retrograde transport proceeds at a rate of 0.88 +/- 0.04 that of anterograde. The retrograde pulse was observed to disperse at a rate greater than the anterograde. Reversal of radiolabel at the distal ligature began 1.49 +/- 0.15 h following arrival of the first radiolabel. Considerable variation was seen between preparations in the way radiolabel accumulated in the end (ligature) regions of the nerve. Although a retrograde pulse was seen in all preparations, in 7 of 10 preparations there was no evidence of this pulse accumulating within less than 2-3 mm of a proximal ligature; however, accumulation was observed within less than 5 mm in all preparations

  20. MR imaging of a diffuse axonal injury

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yukiya; Okamoto, Hisayo; Mitsushima, Minoru; Hori, Tomokatsu (Tottori Univ., Yonago (Japan). School of Medicine); Sasaki, Mamoru; Teraoka, Akira

    1989-04-01

    Six patients who had been diagnosed as having so-called a 'Diffuse Axonal Injury (DAI)' were examined by means of Magnetic Resonance Imaging (Yokogawa Resona 0.5T and Shimadzu SMT 50A). MRI revealed clear evidence of injured white matter in these patients, while X-ray CT scanning could not demonstrate such lesions definitely. The patients consisted of three adults and three adolescents. They had been injured by traffic accidents or falls. Every patient had lost consciousness immediately, and their coma had continued for at least two weeks after the trauma. X-ray CT scanning demonstrated no complicated lesion, such as intracranial hematoma or brain edema, resulting in increased intracranial pressure and cerebral herniation. In all of the patients, injuries of the deep white matter (corpus callosum, upper pons, or internal capsule, for example) were clearly found by T{sub 2}-weighted imaging. Because these lesions had characteristic features in their localation, as has been described by Adams et al. these patients were diagnosed as having DAI. Also, it was interesting that the focal neurological deficits of these patients correlated well with the local injuries of the white matter. The three young patients recovered to various degrees, but the three adults passed into a vegetative state. The prognosis of the patients seemed to be determined by their age. Because the clinical diagnosis of DAI is controversial, the use of MRI will help in its clinical diagnosis and analysis. (author).

  1. Islamic Guidance for Drug Addiction

    Directory of Open Access Journals (Sweden)

    Agus Supriyanto

    2016-10-01

    Full Text Available Islamic Guidance is social rehabilitation program for Drug Addiction (resident. The goal of this research to know the Islamic guidance for resident at the Center for Rehabilitation of the National Narcotics Agency Lido Bogor. The methodology in this research is qualitative descriptive, with a sample two religious counselor. Can be concluded that Islamic guidance is implemented with the classical format, group format, and individual formats. The goal of the Islamic Guidance to develop religious mentally.

  2. Employee commute options guidance

    International Nuclear Information System (INIS)

    1992-12-01

    The Clean Air Act Amendments of 1990 (CAAA) require severe and extreme ozone nonattainment areas and serious carbon monoxide nonattainment areas to establish programs aimed at reducing commute trips to the worksites of large employers. The concerns that lead to the inclusion of the Employee Commute Options (ECO) provision in the Act are that more people are driving than ever before and they are driving longer distances. The purpose of the guidance is to inform the affected State and local jurisdictions of the Clean Air Act requirement, to provide guidance on preparing an approvable State Implementation Plan (SIP) revision, and to discuss various approaches which may help areas achieve Clean Air Act targets through implementation strategies that are the least burdensome and costly to both affected employers and employees

  3. Axon-glia interaction and membrane traffic in myelin formation

    Directory of Open Access Journals (Sweden)

    Robin eWhite

    2014-01-01

    Full Text Available In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialised glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarisation followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasising the central role of the Src-family kinase Fyn during CNS myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of PLP (proteolipid protein transport by SNARE proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.

  4. Parametric Probability Distribution Functions for Axon Diameters of Corpus Callosum

    Directory of Open Access Journals (Sweden)

    Farshid eSepehrband

    2016-05-01

    Full Text Available Axon diameter is an important neuroanatomical characteristic of the nervous system that alters in the course of neurological disorders such as multiple sclerosis. Axon diameters vary, even within a fiber bundle, and are not normally distributed. An accurate distribution function is therefore beneficial, either to describe axon diameters that are obtained from a direct measurement technique (e.g., microscopy, or to infer them indirectly (e.g., using diffusion-weighted MRI. The gamma distribution is a common choice for this purpose (particularly for the inferential approach because it resembles the distribution profile of measured axon diameters which has been consistently shown to be non-negative and right-skewed. In this study we compared a wide range of parametric probability distribution functions against empirical data obtained from electron microscopy images. We observed that the gamma distribution fails to accurately describe the main characteristics of the axon diameter distribution, such as location and scale of the mode and the profile of distribution tails. We also found that the generalized extreme value distribution consistently fitted the measured distribution better than other distribution functions. This suggests that there may be distinct subpopulations of axons in the corpus callosum, each with their own distribution profiles. In addition, we observed that several other distributions outperformed the gamma distribution, yet had the same number of unknown parameters; these were the inverse Gaussian, log normal, log logistic and Birnbaum-Saunders distributions.

  5. Environmental guidance regulatory bulletin

    International Nuclear Information System (INIS)

    1997-01-01

    This document describes the background on expanding public participation in the Resource Conservation and Recovery Act and DOE's response. The bulletin also describes the changes made by the final rule to existing regulations, guidance provided by EPA in the preamble and in the revised RCRA Public Participation Manual, the relationship between public participation and environmental justice, and DOE's recent public participation and environmental justice initiatives

  6. Navigating neurites utilize cellular topography of Schwann cell somas and processes for optimal guidance

    Science.gov (United States)

    Lopez-Fagundo, Cristina; Mitchel, Jennifer A.; Ramchal, Talisha D.; Dingle, Yu-Ting L.; Hoffman-Kim, Diane

    2013-01-01

    The path created by aligned Schwann cells (SCs) after nerve injury underlies peripheral nerve regeneration. We developed geometric bioinspired substrates to extract key information needed for axon guidance by deconstructing the topographical cues presented by SCs. We have previously reported materials that directly replicate SC topography with micro- and nanoscale resolution, but a detailed explanation of the means of directed axon extension on SC topography has not yet been described. Here, using neurite tracing and time-lapse microscopy, we analyzed the SC features that influence axon guidance. Novel poly(dimethylsiloxane) materials, fabricated via photolithography, incorporated bioinspired topographical components with the shapes and sizes of aligned SCs, namely somas and processes, where the length of the processes were varied but the soma geometry and dimensions were kept constant. Rat dorsal root ganglia neurites aligned to all materials presenting bioinspired topography after a 5 days in culture and to bioinspired materials presenting soma and process features after only 17 hours in culture. Key findings of this study were: Neurite response to underlying bioinspired topographical features was time dependent, where at 5 days, neurites aligned most strongly to materials presenting combinations of soma and process features, with higher than average density of either process or soma features; but at 17 hours they aligned more strongly to materials presenting average densities of soma and process features and to materials presenting process features only. These studies elucidate the influence of SC topography on axon guidance in a time-dependent setting and have implications for the optimization of nerve regeneration strategies. PMID:23557939

  7. Increased demyelination and axonal damage in metallothionein I+II-deficient mice during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Penkowa, M; Espejo, C; Martínez-Cáceres, E M

    2003-01-01

    Metallothioneins I+II (MT-I+II) are antioxidant, neuroprotective factors. We previously showed that MT-I+II deficiency during experimental autoimmune encephalomyelitis (EAE) leads to increased disease incidence and clinical symptoms. Moreover, the inflammatory response of macrophages and T cells......, oxidative stress, and apoptotic cell death during EAE were increased by MT-I+II deficiency. We now show for the first time that demyelination and axonal damage are significantly increased in MT-I+II deficient mice during EAE. Furthermore, oligodendroglial regeneration, growth cone formation, and tissue...

  8. Sensory axon-derived neuregulin-1 is required for axoglial signaling and normal sensory function but not for long-term axon maintenance

    DEFF Research Database (Denmark)

    Fricker, F.R.; Zhu, N.; Tsantoulas, C.

    2009-01-01

    to represent large-diameter axons that have failed to myelinate. Conditional neuregulin-1 ablation resulted in a reduced sensitivity to noxious mechanical stimuli. These findings emphasize the importance of neuregulin-1 in mediating the signaling between axons and both myelinating and nonmyelinating Schwann...... cells required for normal sensory function. Sensory neuronal survival and axonal maintenance, however, are not dependent on axon-derived neuregulin-1 signaling in adulthood Udgivelsesdato: 2009/6/17...

  9. Enhanced Transcriptional Activity and Mitochondrial Localization of STAT3 Co-induce Axon Regrowth in the Adult Central Nervous System

    Directory of Open Access Journals (Sweden)

    Xueting Luo

    2016-04-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 is a transcription factor central to axon regrowth with an enigmatic ability to act in different subcellular regions independently of its transcriptional roles. However, its roles in mature CNS neurons remain unclear. Here, we show that along with nuclear translocation, STAT3 translocates to mitochondria in mature CNS neurons upon cytokine stimulation. Loss- and gain-of-function studies using knockout mice and viral expression of various STAT3 mutants demonstrate that STAT3′s transcriptional function is indispensable for CNS axon regrowth, whereas mitochondrial STAT3 enhances bioenergetics and further potentiates regrowth. STAT3′s localization, functions, and growth-promoting effects are regulated by mitogen-activated protein kinase kinase (MEK, an effect further enhanced by Pten deletion, leading to extensive axon regrowth in the mouse optic pathway and spinal cord. These results highlight CNS neuronal dependence on STAT3 transcriptional activity, with mitochondrial STAT3 providing ancillary roles, and illustrate a critical contribution for MEK in enhancing diverse STAT3 functions and axon regrowth.

  10. Targeting of pseudorabies virus structural proteins to axons requires association of the viral Us9 protein with lipid rafts.

    Directory of Open Access Journals (Sweden)

    Mathew G Lyman

    2008-05-01

    Full Text Available The pseudorabies virus (PRV Us9 protein plays a central role in targeting viral capsids and glycoproteins to axons of dissociated sympathetic neurons. As a result, Us9 null mutants are defective in anterograde transmission of infection in vivo. However, it is unclear how Us9 promotes axonal sorting of so many viral proteins. It is known that the glycoproteins gB, gC, gD and gE are associated with lipid raft microdomains on the surface of infected swine kidney cells and monocytes, and are directed into the axon in a Us9-dependent manner. In this report, we determined that Us9 is associated with lipid rafts, and that this association is critical to Us9-mediated sorting of viral structural proteins. We used infected non-polarized and polarized PC12 cells, a rat pheochromocytoma cell line that acquires many of the characteristics of sympathetic neurons in the presence of nerve growth factor (NGF. In these cells, Us9 is highly enriched in detergent-resistant membranes (DRMs. Moreover, reducing the affinity of Us9 for lipid rafts inhibited anterograde transmission of infection from sympathetic neurons to epithelial cells in vitro. We conclude that association of Us9 with lipid rafts is key for efficient targeting of structural proteins to axons and, as a consequence, for directional spread of PRV from pre-synaptic to post-synaptic neurons and cells of the mammalian nervous system.

  11. Gametophytic Pollen Tube Guidance: Attractant Peptides, Gametic Controls, and Receptors.

    Science.gov (United States)

    Higashiyama, Tetsuya; Yang, Wei-Cai

    2017-01-01

    Pollen tube guidance in flowering plants is a unique and critical process for successful sexual reproduction. The pollen tube that grows from pollen, which is the male gametophyte, precisely navigates to the embryo sac, which is the female gametophyte, within the pistil. Recent advances have clarified the molecular framework of gametophytic pollen tube guidance. Multiple species-specific attractant peptides are secreted from synergid cells, the proper development and function of which are regulated by female gametes. Multiple receptor-like kinases on the pollen tube tip are involved in sensing species-specific attractant peptides. In this Update article, recent progress in our understanding of the mechanism of gametophytic pollen tube guidance is reviewed, including attraction by synergid cells, control of pollen tube guidance by female gametes, and directional growth of the pollen tube by directional cue sensing. Future directions in the study of pollen tube guidance also are discussed. © 2017 American Society of Plant Biologists. All Rights Reserved.

  12. Cholesterol Perturbation in Mice Results in p53 Degradation and Axonal Pathology through p38 MAPK and Mdm2 Activation.

    Directory of Open Access Journals (Sweden)

    Qingyu Qin

    Full Text Available Perturbation of lipid metabolism, especially of cholesterol homeostasis, can be catastrophic to mammalian brain, as it has the highest level of cholesterol in the body. This notion is best illustrated by the severe progressive neurodegeneration in Niemann-Pick Type C (NPC disease, one of the lysosomal storage diseases, caused by mutations in the NPC1 or NPC2 gene. In this study, we found that growth cone collapse induced by genetic or pharmacological disruption of cholesterol egress from late endosomes/lysosomes was directly related to a decrease in axonal and growth cone levels of the phosphorylated form of the tumor suppressor factor p53. Cholesterol perturbation-induced growth cone collapse and decrease in phosphorylated p53 were reduced by inhibition of p38 mitogen-activated protein kinase (MAPK and murine double minute (Mdm2 E3 ligase. Growth cone collapse induced by genetic (npc1-/- or pharmacological modification of cholesterol metabolism was Rho kinase (ROCK-dependent and associated with increased RhoA protein synthesis; both processes were significantly reduced by P38 MAPK or Mdm2 inhibition. Finally, in vivo ROCK inhibition significantly increased phosphorylated p53 levels and neurofilaments in axons, and axonal bundle size in npc1-/- mice. These results indicate that NPC-related and cholesterol perturbation-induced axonal pathology is associated with an abnormal signaling pathway consisting in p38 MAPK activation leading to Mdm2-mediated p53 degradation, followed by ROCK activation. These results also suggest new targets for pharmacological treatment of NPC disease and other diseases associated with disruption of cholesterol metabolism.

  13. Treatment with metallothionein prevents demyelination and axonal damage and increases oligodendrocyte precursors and tissue repair during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Penkowa, Milena; Hidalgo, Juan

    2003-01-01

    and neuroprotective proteins that are expressed during EAE and MS. We have shown recently that exogenous administration of Zn-MT-II to Lewis rats with EAE significantly reduced clinical symptoms and the inflammatory response, oxidative stress, and apoptosis of the infiltrated central nervous system areas. We show...... for the first time that Zn-MT-II treatment during EAE significantly prevents demyelination and axonal damage and transection, and stimulates oligodendroglial regeneration from precursor cells, as well as the expression of the growth factors basic fibroblast growth factor (bFGF), transforming growth factor (TGF...

  14. Modelling in vivo action potential propagation along a giant axon.

    Science.gov (United States)

    George, Stuart; Foster, Jamie M; Richardson, Giles

    2015-01-01

    A partial differential equation model for the three-dimensional current flow in an excitable, unmyelinated axon is considered. Where the axon radius is significantly below a critical value R(crit) (that depends upon intra- and extra-cellular conductivity and ion channel conductance) the resistance of the intracellular space is significantly higher than that of the extracellular space, such that the potential outside the axon is uniformly small whilst the intracellular potential is approximated by the transmembrane potential. In turn, since the current flow is predominantly axial, it can be shown that the transmembrane potential is approximated by a solution to the one-dimensional cable equation. It is noted that the radius of the squid giant axon, investigated by (Hodgkin and Huxley 1952e), lies close to R(crit). This motivates us to apply the three-dimensional model to the squid giant axon and compare the results thus found to those obtained using the cable equation. In the context of the in vitro experiments conducted in (Hodgkin and Huxley 1952e) we find only a small difference between the wave profiles determined using these two different approaches and little difference between the speeds of action potential propagation predicted. This suggests that the cable equation approximation is accurate in this scenario. However when applied to the it in vivo setting, in which the conductivity of the surrounding tissue is considerably lower than that of the axoplasm, there are marked differences in both wave profile and speed of action potential propagation calculated using the two approaches. In particular, the cable equation significantly over predicts the increase in the velocity of propagation as axon radius increases. The consequences of these results are discussed in terms of the evolutionary costs associated with increasing the speed of action potential propagation by increasing axon radius.

  15. Molecular Disorganization of Axons Adjacent to Human Cortical Microinfarcts

    Directory of Open Access Journals (Sweden)

    Hamza Coban

    2017-08-01

    Full Text Available Cortical microinfarcts (CMIs are microscopically identified wedge-shaped ischemic lesions that occur at or near the cortical surface and result from occlusion of penetrating arterioles. These microscopic lesions can be observed with high-resolution magnetic resonance imaging in aging brains and in patients with cerebrovascular disease. Recent studies have suggested that strategically located microinfarcts strongly correlate with cognitive deficits, which can contribute to Alzheimer’s disease as well as other forms of dementia. We have recently shown that the molecular organization of axons into functional microdomains is altered in areas adjacent to white matter lacunar and microinfarcts, creating a peri-infarct penumbral injury in surviving axons. Whether similar changes in nodal, adjacent paranodal, and proximal axon initial segment molecular organization occur in the cortex adjacent to human CMIs is not known. Paraffin-embedded sections of autopsy brain tissue from five patients with CMIs were immunofluorescently labeled for nodal and paranodal markers including beta-IV spectrin, ankyrin-G, and contactin-associated protein. High magnification images from the peri-infarct cortical tissue were generated using confocal microscopy. In surviving cortical tissue adjacent to microinfarcts, we observed a dramatic loss of axon initial segments, suggesting that neuronal firing capacity in adjacent cortical tissue is likely compromised. The number of identifiable nodal/paranodal complexes in surviving cortical tissue is reduced adjacent to microinfarcts, while the average paranodal length is increased indicating a breakdown of axoglial contact. This axonal microdomain disorganization occurs in the relative absence of changes in the structural integrity of myelinated axons as measured by myelin basic protein and neurofilament staining. These findings indicate that the molecular organization of surviving axons adjacent to human CMIs is abnormal

  16. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas

    Science.gov (United States)

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.

    1998-01-01

    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  17. PSD Increment Consumption Guidance

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  18. Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds☆

    Science.gov (United States)

    Madigan, Nicolas N.; McMahon, Siobhan; O’Brien, Timothy; Yaszemski, Michael J.; Windebank, Anthony J.

    2010-01-01

    This review highlights current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury. The concept of developing 3-dimensional polymer scaffolds for placement into a spinal cord transection model has recently been more extensively explored as a solution for restoring neurologic function after injury. Given the patient morbidity associated with respiratory compromise, the discrete tracts in the spinal cord conveying innervation for breathing represent an important and achievable therapeutic target. The aim is to derive new neuronal tissue from the surrounding, healthy cord that will be guided by the polymer implant through the injured area to make functional reconnections. A variety of naturally derived and synthetic biomaterial polymers have been developed for placement in the injured spinal cord. Axonal growth is supported by inherent properties of the selected polymer, the architecture of the scaffold, permissive microstructures such as pores, grooves or polymer fibres, and surface modifications to provide improved adherence and growth directionality. Structural support of axonal regeneration is combined with integrated polymeric and cellular delivery systems for therapeutic drugs and for neurotrophic molecules to regionalize growth of specific nerve populations. PMID:19737633

  19. Analysis of laser-induced heating in optical neuronal guidance

    DEFF Research Database (Denmark)

    Ebbesen, Christian L.; Bruus, Henrik

    2012-01-01

    Recently, it has been shown that it is possible to control the growth direction of neuronal growth cones by stimulation with weak laser light; an effect dubbed optical neuronal guidance. The effect exists for a broad range of laser wavelengths, spot sizes, spot intensities, optical intensity...

  20. Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties.

    Science.gov (United States)

    Casale, Amanda E; Foust, Amanda J; Bal, Thierry; McCormick, David A

    2015-11-25

    The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca(2+)-activated K(+) channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons contain three main

  1. Insulin and IGF-II, but not IGF-I, stimulate the in vitro regeneration of adult frog sciatic sensory axons

    DEFF Research Database (Denmark)

    Edbladh, M; Svenningsen, Åsa Fex; Ekström, P A

    1994-01-01

    We used the in vitro regenerating frog sciatic nerve to look for effects of insulin and insulin-like growth factors I and II (IGF-I, IGF-II) on regeneration of sensory axons and on injury induced support cell proliferation in the outgrowth region. In nerves cultured for 11 days, a physiological...

  2. Mechanistic logic underlying the axonal transport of cytosolic proteins

    Science.gov (United States)

    Scott, David A.; Das, Utpal; Tang, Yong; Roy, Subhojit

    2011-01-01

    Proteins vital to presynaptic function are synthesized in the neuronal perikarya and delivered into synapses via two modes of axonal transport. While membrane-anchoring proteins are conveyed in fast axonal transport via motor-driven vesicles, cytosolic proteins travel in slow axonal transport; via mechanisms that are poorly understood. We found that in cultured axons, populations of cytosolic proteins tagged to photoactivable-GFP (PA-GFP) move with a slow motor-dependent anterograde bias; distinct from vesicular-trafficking or diffusion of untagged PA-GFP. The overall bias is likely generated by an intricate particle-kinetics involving transient assembly and short-range vectorial spurts. In-vivo biochemical studies reveal that cytosolic proteins are organized into higher-order structures within axon-enriched fractions that are largely segregated from vesicles. Data-driven biophysical modeling best predicts a scenario where soluble molecules dynamically assemble into mobile supra-molecular structures. We propose a model where cytosolic proteins are transported by dynamically assembling into multi-protein complexes that are directly/indirectly conveyed by motors. PMID:21555071

  3. Subtypes of GABAergic neurons project axons in the neocortex

    Directory of Open Access Journals (Sweden)

    Shigeyoshi Higo

    2009-11-01

    Full Text Available γ-aminobutyric acid (GABAergic neurons in the neocortex have been regarded as interneurons and speculated to modulate the activity of neurons locally. Recently, however, several experiments revealed that neuronal nitric oxide synthase (nNOS-positive GABAergic neurons project cortico-cortically with long axons. In this study, we illustrate Golgi-like images of the nNOS-positive GABAergic neurons using a nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d reaction and follow the emanating axon branches in cat brain sections. These axon branches projected cortico-cortically with other non-labeled arcuate fibers, contra-laterally via the corpus callosum and anterior commissure. The labeled fibers were not limited to the neocortex but found also in the fimbria of the hippocampus. In order to have additional information on these GABAergic neuron projections, we investigated green fluorescent protein (GFP-labeled GABAergic neurons in GAD67-Cre knock-in / GFP Cre-reporter mice. GFP-labeled axons emanate densely, especially in the fimbria, a small number in the anterior commissure, and very sparsely in the corpus callosum. These two different approaches confirm that not only nNOS-positive GABAergic neurons but also other subtypes of GABAergic neurons project long axons in the cerebral cortex and are in a position to be involved in information processing.

  4. Repulsive Guidance Molecule-a Is Involved in Th17-Cell-Induced Neurodegeneration in Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Shogo Tanabe

    2014-11-01

    Full Text Available Multiple sclerosis (MS is a chronic autoimmune disease characterized by inflammation, demyelination, and neurodegeneration in the CNS. Although it is important to prevent neurodegeneration for alleviating neurological disability, the molecular mechanism of neurodegeneration remains largely unknown. Here, we report that repulsive guidance molecule-a (RGMa, known to regulate axonal growth, is associated with neurodegeneration in experimental autoimmune encephalomyelitis (EAE, a mouse model of MS. RGMa is highly expressed in interleukin-17-producing CD4+ T cells (Th17 cells. We induced EAE by adoptive transfer of myelin oligodendrocyte glycoprotein (MOG-specific Th17 cells and then inhibited RGMa with a neutralizing antibody. Inhibition of RGMa improves EAE scores and reduces neuronal degeneration without altering immune or glial responses. Th17 cells induce cultured cortical neuron death through RGMa-neogenin and Akt dephosphorylation. Our results demonstrate that RGMa is involved in Th17-cell-mediated neurodegeneration and that RGMa-specific antibody may have a therapeutic effect in MS.

  5. Axonal transport and axon sprouting in the adult rat dentate gyrus: an autoradiographic study

    International Nuclear Information System (INIS)

    Goldowitz, D.; Cotman, C.W.

    1980-01-01

    In response to an entorhinal lesion, the commissural and associational afferents to the dentate gyrus have been shown to expand beyond their normal terminal zone into the area denervated by the entorhinal lesion. The present study has investigated the axonal transport of [ 3 H]-labeled proteins in the commissural and associational projections following an entorhinal lesion. Injections of [ 3 H]proline, [ 3 H]leucine or [ 3 H)fucose were given in the vicinity of the commissural and associational cells of origin before, immediately subsequent to, or at 5 to 15 days after the entorhinal lesion. The disposition of previously- or newly-synthesized proteins was examined in the commissural and associational terminal field at different times after an entorhinal lesion by light-microscopic autoradiography. (author)

  6. Fast and reliable identification of axons, axon initial segments and dendrites with local field potential recording

    DEFF Research Database (Denmark)

    Petersen, Anders V.; Johansen, Emil O.; Perrier, Jean-Francois

    2015-01-01

    The axon initial segment (AIS) is an essential neuronal compartment. It is usually where action potentials are initiated. Recent studies demonstrated that the AIS is a plastic structure that can be regulated by neuronal activity and by the activation of metabotropic receptors. Studying the AIS...... in live tissue can be difficult because its identification is not always reliable. Here we provide a new technique allowing a fast and reliable identification of the AIS in live brain slice preparations. By simultaneous recording of extracellular local field potentials and whole-cell patch-clamp recording...... of neurons, we can detect sinks caused by inward currents flowing across the membrane. We determine the location of the AIS by comparing the timing of these events with the action potential. We demonstrate that this method allows the unequivocal identification of the AIS of different types of neurons from...

  7. Fast and reliable identification of axons, axon initial segments and dendrites with local field potential recording

    Directory of Open Access Journals (Sweden)

    Anders Victor ePetersen

    2015-10-01

    Full Text Available The axon initial segment (AIS is an essential neuronal compartment. It is usually where action potentials are initiated. Recent studies demonstrated that the AIS is a plastic structure that can be regulated by neuronal activity and by the activation of metabotropic receptors. Studying the AIS in live tissue can be difficult because its identification is not always reliable. Here we provide a new technique allowing a fast and reliable identification of the AIS in live brain slice preparations. By simultaneous recoding of extracellular local field potentials and whole-cell patch-clamp recording of neurons, we can detect sinks caused by inward currents flowing across the membrane. We determine the location of the AIS by comparing the timing of these events with the action potential. We demonstrate that this method allows the unequivocal identification of the AIS of different types of neurons from the brain.

  8. Steerable-filter based quantification of axonal populations at the developing optic chiasm reveal significant defects in Slit2−/− as well as Slit1−/−Slit2−/− embryos

    Directory of Open Access Journals (Sweden)

    Down Matthew

    2013-01-01

    Full Text Available Abstract Background Previous studies have suggested that the axon guidance proteins Slit1 and Slit2 co-operate to establish the optic chiasm in its correct position at the ventral diencephalic midline. This is based on the observation that, although both Slit1 and Slit2 are expressed around the ventral midline, mice defective in either gene alone exhibit few or no axon guidance defects at the optic chiasm whereas embryos lacking both Slit1 and Slit2 develop a large additional chiasm anterior to the chiasm’s normal position. Here we used steerable-filters to quantify key properties of the population of axons at the chiasm in wild-type, Slit1−/−, Slit2−/− and Slit1−/−Slit2−/− embryos. Results We applied the steerable-filter algorithm successfully to images of embryonic retinal axons labelled from a single eye shortly after they have crossed the midline. We combined data from multiple embryos of the same genotype and made statistical comparisons of axonal distributions, orientations and curvatures between genotype groups. We compared data from the analysis of axons with data on the expression of Slit1 and Slit2. The results showed a misorientation and a corresponding anterior shift in the position of many axons at the chiasm of both Slit2−/− and Slit1−/−Slit2−/− mutants. There were very few axon defects at the chiasm of Slit1−/− mutants. Conclusions We found defects of the chiasms of Slit1−/−Slit2−/− and Slit1−/− mutants similar to those reported previously. In addition, we discovered previously unreported defects resulting from loss of Slit2 alone. This indicates the value of a quantitative approach to complex pathway analysis and shows that Slit2 can act alone to control aspects of retinal axon routing across the ventral diencephalic midline.

  9. Perilesional edema in radiation necrosis reflects axonal degeneration

    International Nuclear Information System (INIS)

    Perez-Torres, Carlos J; Yuan, Liya; Schmidt, Robert E; Rich, Keith M; Ackerman, Joseph JH; Garbow, Joel R

    2015-01-01

    Recently, we characterized a Gamma Knife® radiation necrosis mouse model with various magnetic resonance imaging (MRI) protocols to identify biomarkers useful in differentiation from tumors. Though the irradiation was focal to one hemisphere, a contralateral injury was observed that appeared to be localized in the white matter only. Interestingly, this injury was identifiable in T2-weighted images, apparent diffusion coefficient (ADC), and magnetization transfer ratio (MTR) maps, but not on post-contrast T1-weighted images. This observation of edema independent of vascular changes is akin to the perilesional edema seen in clinical radiation necrosis. The pathology underlying the observed white-matter MRI changes was explored by performing immunohistochemistry for healthy axons and myelin. The presence of both healthy axons and myelin was reduced in the contralateral white-matter lesion. Based on our immunohistochemical findings, the contralateral white-matter injury is most likely due to axonal degeneration

  10. The nano-architecture of the axonal cytoskeleton.

    Science.gov (United States)

    Leterrier, Christophe; Dubey, Pankaj; Roy, Subhojit

    2017-12-01

    The corporeal beauty of the neuronal cytoskeleton has captured the imagination of generations of scientists. One of the easiest cellular structures to visualize by light microscopy, its existence has been known for well over 100 years, yet we have only recently begun to fully appreciate its intricacy and diversity. Recent studies combining new probes with super-resolution microscopy and live imaging have revealed surprising details about the axonal cytoskeleton and, in particular, have discovered previously unknown actin-based structures. Along with traditional electron microscopy, these newer techniques offer a nanoscale view of the axonal cytoskeleton, which is important for our understanding of neuronal form and function, and lay the foundation for future studies. In this Review, we summarize existing concepts in the field and highlight contemporary discoveries that have fundamentally altered our perception of the axonal cytoskeleton.

  11. The axon-protective WLD(S) protein partially rescues mitochondrial respiration and glycolysis after axonal injury.

    Science.gov (United States)

    Godzik, Katharina; Coleman, Michael P

    2015-04-01

    The axon-protective Wallerian degeneration slow (WLD(S)) protein can ameliorate the decline in axonal ATP levels after neurite transection. Here, we tested the hypothesis that this effect is associated with maintenance of mitochondrial respiration and/or glycolysis. We used isolated neurites of superior cervical ganglion (SCG) cultures in the Seahorse XF-24 Metabolic Flux Analyser to determine mitochondrial respiration and glycolysis under different conditions. We observed that both mitochondrial respiration and glycolysis declined significantly during the latent phase of Wallerian degeneration. WLD(S) partially reduced the decline both in glycolysis and in mitochondrial respiration. In addition, we found that depleting NAD levels in uncut cultures led to changes in mitochondrial respiration and glycolysis similar to those rescued by WLD(S) after cut, suggesting that the maintenance of NAD levels in Wld(S) neurites after axonal injury at least partially underlies the maintenance of ATP levels. However, by using another axon-protective mutation (Sarm1(-/-)), we could demonstrate that rescue of basal ECAR (and hence probably glycolysis) rather than basal OCR (mitochondrial respiration) may be part of the protective phenotype to delay Wallerian degeneration. These findings open new routes to study glycolysis and the connection between NAD and ATP levels in axon degeneration, which may help to eventually develop therapeutic strategies to treat neurodegenerative diseases.

  12. Axoplasmic RNA species synthesized in the isolated squid giant axon.

    Science.gov (United States)

    Rapallino, M V; Cupello, A; Giuditta, A

    1988-07-01

    Isolated squid stellate nerves and giant fiber lobes were incubated for 8 hr in Millipore filtered sea water containing [3H]uridine. The electrophoretic patterns of radioactive RNA purified from the axoplasm of the giant axon and from the giant fiber lobe (cell bodies of the giant axon) demonstrated the presence of RNA species with mobilities corresponding to tRNA and rRNA. The presence of labeled rRNAs was confirmed by the behavior of the large rRNA component (31S) which, in the squid, readily dissociates into its two constituent moyeties (17S and 20S). Comparable results were obtained with the axonal sheath and the stellate nerve. In all the electrophoretic patterns, additional species of radioactive RNA migrated between the 4S and the 20S markers, i.e. with mobilities corresponding to presumptive mRNAs. Chromatographic analysis of the purified RNAs on oligo(dT)cellulose indicated the presence of labeled poly(A)+ RNA in all tissue samples. Radioactive poly(A)+ RNA represented approximately 1% of the total labeled RNA in the axoplasm, axonal sheath and stellate nerve, but more than 2% in the giant fiber lobe. The labeled poly(A)+ RNAs of the giant fibre lobe showed a prevalence of larger species in comparison to the axonal sheath and stellate nerve. In conclusion, the axoplasmic RNAs synthesized by the isolated squid giant axon appear to include all the major classes of axoplasmic RNAs, that is rRNA, tRNA and mRNA.

  13. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy.

    Directory of Open Access Journals (Sweden)

    Jia-Ying Sung

    Full Text Available This study investigated sensory and motor nerve excitability properties to elucidate the development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited, and 106 were analyzed. According to neuropathy severity, patients were categorized into G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr. Patients in the G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excitability data from diabetic patients were compared with data from 33 healthy controls. Clinical assessment, nerve conduction studies, and sensory and motor nerve excitability testing data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0 group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve action potential (P<0.05, shortened strength-duration time constant (P<0.01, increased superexcitability (P<0.01, decreased subexcitability (P<0.05, decreased accommodation to depolarizing current (P<0.01, and a trend of decreased accommodation to hyperpolarizing current in threshold electrotonus. All the changes progressed into G1 (TNSr 1-8 and G2+3 (TNSr 9-24 groups. In contrast, motor excitability only had significantly increased stimulus for the 50% compound motor nerve action potential (P<0.01 in the G0 group. This study revealed that the development of axonal dysfunction in sensory axons occurred prior to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests can detect axonal dysfunction even in asymptomatic patients. These insights further our understanding of diabetic neuropathy and enable the early detection of sensory axonal abnormalities, which may provide a basis for neuroprotective therapeutic approaches.

  14. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    International Nuclear Information System (INIS)

    Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.; Svoboda, Kurt R.

    2015-01-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  15. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    Energy Technology Data Exchange (ETDEWEB)

    Menelaou, Evdokia; Paul, Latoya T. [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Perera, Surangi N. [Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States); Svoboda, Kurt R., E-mail: svobodak@uwm.edu [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States)

    2015-04-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  16. Axon Regeneration Is Regulated by Ets-C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Chun Li

    2015-10-01

    Full Text Available The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. In Caenorhabditis elegans, the JNK and p38 MAPK pathways are important for axon regeneration. Axonal injury induces expression of the svh-2 gene encoding a receptor tyrosine kinase, stimulation of which by the SVH-1 growth factor leads to activation of the JNK pathway. Here, we identify ETS-4 and CEBP-1, related to mammalian Ets and C/EBP, respectively, as transcriptional activators of svh-2 expression following axon injury. ETS-4 and CEBP-1 function downstream of the cAMP and Ca2+-p38 MAPK pathways, respectively. We show that PKA-dependent phosphorylation of ETS-4 promotes its complex formation with CEBP-1. Furthermore, activation of both cAMP and Ca2+ signaling is required for activation of svh-2 expression. Thus, the cAMP/Ca2+ signaling pathways cooperatively activate the JNK pathway, which then promotes axon regeneration.

  17. IFNgamma enhances microglial reactions to hippocampal axonal degeneration

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Lomholt, N D

    2000-01-01

    Glial reactivity is implicated in CNS repair and regenerative responses. Microglia, the cells responding earliest to axonal injury, produce tumor necrosis factor-alpha (TNFalpha), a cytokine with both cytopathic and neuroprotective effects. We have studied activation of hippocampal microglia...... periods. Message for the immune cytokine interferon-gamma (IFNgamma) was undetectable, and glial reactivity to axonal lesions occurred as normal in IFNgamma-deficient mice. Microglial responses to lesion-induced neuronal injury were markedly enhanced in myelin basic protein promoter-driven transgenic mice...

  18. An Automated Strategy for Unbiased Morphometric Analyses and Classifications of Growth Cones In Vitro.

    Directory of Open Access Journals (Sweden)

    Daryan Chitsaz

    Full Text Available During neural circuit development, attractive or repulsive guidance cue molecules direct growth cones (GCs to their targets by eliciting cytoskeletal remodeling, which is reflected in their morphology. The experimental power of in vitro neuronal cultures to assay this process and its molecular mechanisms is well established, however, a method to rapidly find and quantify multiple morphological aspects of GCs is lacking. To this end, we have developed a free, easy to use, and fully automated Fiji macro, Conographer, which accurately identifies and measures many morphological parameters of GCs in 2D explant culture images. These measurements are then subjected to principle component analysis and k-means clustering to mathematically classify the GCs as "collapsed" or "extended". The morphological parameters measured for each GC are found to be significantly different between collapsed and extended GCs, and are sufficient to classify GCs as such with the same level of accuracy as human observers. Application of a known collapse-inducing ligand results in significant changes in all parameters, resulting in an increase in 'collapsed' GCs determined by k-means clustering, as expected. Our strategy provides a powerful tool for exploring the relationship between GC morphology and guidance cue signaling, which in particular will greatly facilitate high-throughput studies of the effects of drugs, gene silencing or overexpression, or any other experimental manipulation in the context of an in vitro axon guidance assay.

  19. Development of a central nervous system axonal myelination assay for high throughput screening.

    Science.gov (United States)

    Lariosa-Willingham, Karen D; Rosler, Elen S; Tung, Jay S; Dugas, Jason C; Collins, Tassie L; Leonoudakis, Dmitri

    2016-04-22

    Regeneration of new myelin is impaired in persistent multiple sclerosis (MS) lesions, leaving neurons unable to function properly and subject to further degeneration. Current MS therapies attempt to ameliorate autoimmune-mediated demyelination, but none directly promote the regeneration of lost and damaged myelin of the central nervous system (CNS). Development of new drugs that stimulate remyelination has been hampered by the inability to evaluate axonal myelination in a rapid CNS culture system. We established a high throughput cell-based assay to identify compounds that promote myelination. Culture methods were developed for initiating myelination in vitro using primary embryonic rat cortical cells. We developed an immunofluorescent phenotypic image analysis method to quantify the morphological alignment of myelin characteristic of the initiation of myelination. Using γ-secretase inhibitors as promoters of myelination, the optimal growth, time course and compound treatment conditions were established in a 96 well plate format. We have characterized the cortical myelination assay by evaluating the cellular composition of the cultures and expression of markers of differentiation over the time course of the assay. We have validated the assay scalability and consistency by screening the NIH clinical collection library of 727 compounds and identified ten compounds that promote myelination. Half maximal effective concentration (EC50) values for these compounds were determined to rank them according to potency. We have designed the first high capacity in vitro assay that assesses myelination of live axons. This assay will be ideal for screening large compound libraries to identify new drugs that stimulate myelination. Identification of agents capable of promoting the myelination of axons will likely lead to the development of new therapeutics for MS patients.

  20. A novel therapy to promote axonal fusion in human digital nerves.

    Science.gov (United States)

    Bamba, Ravinder; Waitayawinyu, Thanapong; Nookala, Ratnam; Riley, David Colton; Boyer, Richard B; Sexton, Kevin W; Boonyasirikool, Chinnakart; Niempoog, Sunyarn; Kelm, Nathaniel D; Does, Mark D; Dortch, Richard D; Shack, Robert Bruce; Thayer, Wesley P

    2016-11-01

    Peripheral nerve injury can have a devastating impact on our military and veteran population. Current strategies for peripheral nerve repair include techniques such as nerve tubes, nerve grafts, tissue matrices, and nerve growth guides to enhance the number of regenerating axons. Even with such advanced techniques, it takes months to regain function. In animal models, polyethylene glycol (PEG) therapy has shown to improve both physiologic and behavioral outcomes after nerve transection by fusion of a portion of the proximal axons to the distal axon stumps. The objective of this study was to show the efficacy of PEG fusion in humans and to retrospectively compare PEG fusion to standard nerve repair. Patients with traumatic lacerations involving digital nerves were treated with PEG after standard microsurgical neurorrhaphy. Sensory assessment after injury was performed at 1 week, 2 weeks, 1 month, and 2 months using static two-point discrimination and Semmes-Weinstein monofilament testing. The Medical Research Council Classification (MRCC) for Sensory Recovery Scale was used to evaluate the level of injury. The PEG fusion group was compared to patient-matched controls whose data were retrospectively collected. Four PEG fusions were performed on four nerve transections in two patients. Polyethylene glycol therapy improves functional outcomes and speed of nerve recovery in clinical setting assessed by average MRCC score in week 1 (2.8 vs 1.0, p = 0.03). At 4 weeks, MRCC remained superior in the PEG fusion group (3.8 vs 1.3, p = 0.01). At 8 weeks, there was improvement in both groups with the PEG fusion cohort remaining statistically better (4.0 vs 1.7, p = 0.01). Polyethylene glycol fusion is a novel therapy for peripheral nerve repair with proven effectiveness in animal models. Clinical studies are still in early stages but have had encouraging results. Polyethylene glycol fusion is a potential revolutionary therapy in peripheral nerve repair but needs further

  1. Comparison of the fastest regenerating motor and sensory myelinated axons in the same peripheral nerve

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Sørensen, Jesper; Krarup, Christian

    2006-01-01

    the question of differences in growth rates of different nerve fibre populations led to conflicting results. We developed an animal model to compare growth and maturation of the fastest growing sensory and motor fibres within the same mixed nerve after Wallerian degeneration. Regeneration of cat tibial nerve......Functional outcome after peripheral nerve regeneration is often poor, particularly involving nerve injuries far from their targets. Comparison of sensory and motor axon regeneration before target reinnervation is not possible in the clinical setting, and previous experimental studies addressing...... after crush (n = 13) and section (n = 7) was monitored for up to 140 days, using implanted cuff electrodes placed around the sciatic and tibial nerves and wire electrodes at plantar muscles. To distinguish between sensory and motor fibres, recordings were carried out from L6-S2 spinal roots using cuff...

  2. Axon diameter and intra-axonal volume fraction of the corticospinal tract in idiopathic normal pressure hydrocephalus measured by q-space imaging.

    Directory of Open Access Journals (Sweden)

    Kouhei Kamiya

    Full Text Available PURPOSE: Previous studies suggest that compression and stretching of the corticospinal tract (CST potentially cause treatable gait disturbance in patients with idiopathic normal pressure hydrocephalus (iNPH. Measurement of axon diameter with diffusion MRI has recently been used to investigate microstructural alterations in neurological diseases. In this study, we investigated alterations in the axon diameter and intra-axonal fraction of the CST in iNPH by q-space imaging (QSI analysis. METHODS: Nineteen patients with iNPH and 10 age-matched controls were recruited. QSI data were obtained with a 3-T system by using a single-shot echo planar imaging sequence with the diffusion gradient applied parallel to the antero-posterior axis. By using a two-component low-q fit model, the root mean square displacements of intra-axonal space ( =  axon diameter and intra-axonal volume fraction of the CST were calculated at the levels of the internal capsule and body of the lateral ventricle, respectively. RESULTS: Wilcoxon's rank-sum test revealed a significant increase in CST intra-axonal volume fraction at the paraventricular level in patients (p<0.001, whereas no significant difference was observed in the axon diameter. At the level of the internal capsule, neither axon diameter nor intra-axonal volume fraction differed significantly between the two groups. CONCLUSION: Our results suggest that in patients with iNPH, the CST does not undergo irreversible axonal damage but is rather compressed and/or stretched owing to pressure from the enlarged ventricle. These analyses of axon diameter and intra-axonal fraction yield insights into microstructural alterations of the CST in iNPH.

  3. The Importance of Effective Guidance

    Science.gov (United States)

    Cullen, Bud

    1977-01-01

    In an address to the Canadian Guidance and Counselling Association, the Canadian Manpower and Immigration Minister emphasized the importance of vocational guidance for high school students. He cited the need for communication between the worlds of education and work, promotion of better cooperative programs, and subsidized job training for youth.…

  4. Guidance: Agent of the Counterculture.

    Science.gov (United States)

    Patouillet, Raymond A.; Marin, Roselyn L.

    1979-01-01

    This article was an introduction to a convention program presented at the Florida Personnel and Guidance Association Convention (Tampa, Nov., 1977) by Raymond Patouillet, shortly before his sudden death. It encapsulates his guidance philosophy, his understanding of the human condition, and his faith in the crucial role of the caring profession.…

  5. Large-scale Topographical Screen for Investigation of Physical Neural-Guidance Cues

    Science.gov (United States)

    Li, Wei; Tang, Qing Yuan; Jadhav, Amol D.; Narang, Ankit; Qian, Wei Xian; Shi, Peng; Pang, Stella W.

    2015-03-01

    A combinatorial approach was used to present primary neurons with a large library of topographical features in the form of micropatterned substrate for high-throughput screening of physical neural-guidance cues that can effectively promote different aspects of neuronal development, including axon and dendritic outgrowth. Notably, the neuronal-guidance capability of specific features was automatically identified using a customized image processing software, thus significantly increasing the screening throughput with minimal subjective bias. Our results indicate that the anisotropic topographies promote axonal and in some cases dendritic extension relative to the isotropic topographies, while dendritic branching showed preference to plain substrates over the microscale features. The results from this work can be readily applied towards engineering novel biomaterials with precise surface topography that can serve as guidance conduits for neuro-regenerative applications. This novel topographical screening strategy combined with the automated processing capability can also be used for high-throughput screening of chemical or genetic regulatory factors in primary neurons.

  6. RH Packaging Program Guidance

    International Nuclear Information System (INIS)

    2008-01-01

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package (also known as the 'RH-TRU 72-B cask') and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: 'each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application.' It further states: 'each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application.' Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M and O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) 71.8, 'Deliberate Misconduct.' Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, 'Packaging and Transportation of Radioactive Material,' certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, 'Reporting of Defects and Noncompliance,' regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous

  7. RH Packaging Program Guidance

    International Nuclear Information System (INIS)

    2006-01-01

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: 'each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application.' It further states: 'each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application.' Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M and O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with 10 Code of Federal Regulations (CFR) 1.8, 'Deliberate Misconduct.' Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. In accordance with 10 CFR Part 71, 'Packaging and Transportation of Radioactive Material,' certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, 'Reporting of Defects and Noncompliance,' regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these

  8. International guidance activities

    International Nuclear Information System (INIS)

    Richardson, Allan C.B.

    1989-01-01

    International principles for setting Protective Action Guides (PAGs) are contained in two key documents that contain identical statements. One is Publication Number 40 of the ICRP, which was issued in 1985. The title is 'Protection of the Public in the Event of Major Radiation Accidents, Principles for Planning'. The other is the IAEA's Safety Series Publication Number 72, also issued in 1985, written by many of the same authors and titled, 'Principles for Establishing Intervention Levels'. The principles that were set forth in these documents were identical, were incomplete, and they are, unfortunately, the only principles that are now in effect, while proposed revisions go through one draft after another. There are several such draft revisions that are of significance. The most important is that of the ICRP. The basic guidance that applies to most planned exposure to radiation is ICRP Publication 26. That document has been under revision by the Commission for a number of years, and the new version will, for the first time, include recommendations for emergency response. They are now getting close to closure, and I think it should be a very much improved and useful document. But it isn't finished yet. Such guidance doesn't get developed in a vacuum, and there have been a couple of parallel efforts which have provided significant input to the ICRP, which is essentially a behind-closed-doors effort. These other efforts are more open. One of these is being carried out within the IAEA, which has convened annual meetings of national experts for a number of years in Vienna, to generate a replacement for Safety Series No. 72, mentioned earlier. There is a meeting scheduled this December to complete this effort; and, hopefully, we will reach closure at that meeting on at least the basic principles. The Nuclear Energy Agency (NEA) has also been at work. It has convened a group of experts from member nations that have been developing recommendations. There is an overlap

  9. RH Packaging Program Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2008-01-12

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package (also known as the "RH-TRU 72-B cask") and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: "...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." It further states: "...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8, "Deliberate Misconduct." Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, "Packaging and Transportation of Radioactive Material," certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, "Reporting of Defects and Noncompliance," regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a

  10. RH Packaging Program Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-11-07

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: "...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." It further states: "...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with 10 Code of Federal Regulations (CFR) §71.8, "Deliberate Misconduct." Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. In accordance with 10 CFR Part 71, "Packaging and Transportation of Radioactive Material," certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, "Reporting of Defects and Noncompliance," regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to

  11. Multiple sclerosis and anterograde axonal degeneration study by magnetic resonance

    International Nuclear Information System (INIS)

    Martinez Pardo, P.; Capdevila Cirera, A.; Sanz Marin, P.M.; Gili Planas, J.

    1993-01-01

    Multiple sclerosis (MS) is a disease of the central nervous system that affects specifically the myelin. Its diagnosis by imaging techniques is, since the development of magnetic resonance (MR), relatively simple, and its occasional association with anterograde axonal degeneration (WD) has been reported. In both disorders, there is a lengthening of the T1 and T2 relaxation times. In the present report, 76 patients with MS with less than 4 plaques in the typical periventricular position were studied retrospectively, resulting in a rate of association with anterograde axonal degeneration of 8%. We consider that in spite of their same behavior in MR,MS and WD, with moreover represent completely different pathologies, are perfectly differential by MR. The S-E images with longer repetition and echo times in the axial and coronal planes have proved to be those most sensitive for this differentiation. Given that MS is specific pathology of then myelin, the axonal damages in delayed until several plaques adjacent to an axon affect it. We consider that this, added to the restriction of our study group (less than 4 plaques), is the cause of the pow percentage of the MS-WD association in our study. (Author)

  12. Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Sally A Marik

    2010-06-01

    Full Text Available Cortical topography can be remapped as a consequence of sensory deprivation, suggesting that cortical circuits are continually modified by experience. To see the effect of altered sensory experience on specific components of cortical circuits, we imaged neurons, labeled with a genetically modified adeno-associated virus, in the intact mouse somatosensory cortex before and after whisker plucking. Following whisker plucking we observed massive and rapid reorganization of the axons of both excitatory and inhibitory neurons, accompanied by a transient increase in bouton density. For horizontally projecting axons of excitatory neurons there was a net increase in axonal projections from the non-deprived whisker barrel columns into the deprived barrel columns. The axon collaterals of inhibitory neurons located in the deprived whisker barrel columns retracted in the vicinity of their somata and sprouted long-range projections beyond their normal reach towards the non-deprived whisker barrel columns. These results suggest that alterations in the balance of excitation and inhibition in deprived and non-deprived barrel columns underlie the topographic remapping associated with sensory deprivation.

  13. Acute Motor Axonal Neuropathy in Association with Hepatitis E

    Directory of Open Access Journals (Sweden)

    Araz Al-Saffar

    2018-02-01

    Full Text Available Guillain–Barré syndrome (GBS is an acute peripheral neuropathy that develops as a result of post-infectious immune-mediated nerve injury. It can be classified into classic and variant GBS. Acute motor axonal neuropathy (AMAN is a subtype of GBS with the key clinical features of pure motor weakness, areflexia, absence of sensory symptoms, and lack of neurophysiologic evidence of demyelination. We reported a case of acute motor axonal neuropathy in association with hepatitis E infection. A young woman was referred to us after a period of nausea, fever, and diarrhea. She had unexplained muscle weakness at admission and has been diagnosed with acute hepatitis E infection. A rigorous clinical neurological assessment revealed bilateral symmetrical weakness, which affects the lower limbs more than the upper limbs, with no evidence of sensory involvement. Neurophysiological measurements indicated acute axonal injury without clues to demyelination. A diagnosis of acute motor axonal neuropathy subtype has been made, to which she only received supportive therapy. The symptoms resolved spontaneously and full recovery of motor function was attained after 35 days of weakness onset with complete normalization of neurophysiologic parameters.

  14. Investigation on the mechanism of peripheral axonal injury in glaucoma

    Directory of Open Access Journals (Sweden)

    Jun- Hong Zhao

    2013-05-01

    Full Text Available AIM: To compare the angles of longitudinal section of sclera around optic nerve heads and the never fiber layer changes in healthy adults and patients with glaucoma, and to investigate the mechanism of peripheral retinal axonal injury, with the combined knowledge of biomechanics. METHODS: The optical nerves and their peripheral tissue specimen in the 12 eyes from health adult donators and 12 eyes from glaucoma patient donators were dyed by Glees' method to compare the angles of longitudinal section of sclera around optic nerve heads(through optic nerve center, and to observe the anatomical features of the peripheral retinal axons. RESULTS: The mean angle of longitudinal section of sclera around optic nerve in healthy adults was 73.3°, while that in patients with absolute glaucoma was 75.6°. The difference showed no significance(t=1.44, P>0.05. There was a sharp bend in the course of peripheral optical fiber in healthy adults. However, the optic nerve fiber disappeared completely in patients with glaucoma end stage. CONCLUSION: The angle between the medial edge and leading edge of sclera(around optic nerve headsis an acute angle. The optical fiber in glaucoma end stage disappeared completely. The phenomenon may be related to high intraocular pressure, the sclera shape, the shear modulus of sclera and axons, and “axonal bending-injury” mechanism.

  15. IFNgamma enhances microglial reactions to hippocampal axonal degeneration

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Lomholt, N D

    2000-01-01

    Glial reactivity is implicated in CNS repair and regenerative responses. Microglia, the cells responding earliest to axonal injury, produce tumor necrosis factor-alpha (TNFalpha), a cytokine with both cytopathic and neuroprotective effects. We have studied activation of hippocampal microglia to p...

  16. Differential Axonal Projection of Mitral and Tufted Cells in the Mouse Main Olfactory System

    Directory of Open Access Journals (Sweden)

    Shin Nagayama

    2010-09-01

    Full Text Available In the past decade, much has been elucidated regarding the functional organization of the axonal connection of olfactory sensory neurons to olfactory bulb (OB glomeruli. However, the manner in which projection neurons of the OB process odorant input and send this information to higher brain centers remains unclear. Here, we report long-range, large-scale tracing of the axonal projection patterns of OB neurons using two-photon microscopy. Tracer injection into a single glomerulus demonstrated widely distributed mitral/tufted cell axonal projections on the lateroventral surface of the mouse brain, including the anterior/posterior piriform cortex (PC and olfactory tubercle (OT. We noted two distinct groups of labeled axons: PC-orienting axons and OT-orienting axons. Each group occupied distinct parts of the lateral olfactory tract. PC-orienting axons projected axon collaterals to a wide area of the PC but only a few collaterals to the OT. OT-orienting axons densely projected axon collaterals primarily to the anterolateral OT (alOT. Different colored dye injections into the superficial and deep portions of the OB external plexiform layer revealed that the PC-orienting axon populations originated in presumed mitral cells and the OT-orienting axons in presumed tufted cells. These data suggest that although mitral and tufted cells receive similar odor signals from a shared glomerulus, they process the odor information in different ways and send their output to different higher brain centers via the PC and alOT.

  17. Plowshare radiation protection guidance

    International Nuclear Information System (INIS)

    Parker, H.M.

    1969-01-01

    The recommendations of the ICRP and the NCRP were developed primarily for occupational radiation exposures. They were later modified and applied to non-occupational exposures of populations. These, with appropriate interpretations, can be used to provide Plowshare radiation protection guidance. Exposures from Plowshare operations will tend to be acute, arising from radionuclides of relatively short half-life, but will have some chronic aspects due to small amounts of long-lived radionuclides generated. In addition, the neutron activation process of Plowshare technology will produce radionuclides not commonly encountered in routine nuclear energy programs. How these radionuclides contribute to personnel exposure is known for only a few situations that may not be representative of Plowshare exposure. Further complications arise from differences in radionuclide deposition and physiological sensitivity among individuals of different ages and states of health in the exposed population. All parameters necessary to evaluate such exposures are not available, even for good quantitative approximations, resulting in the need for interpretive experience. (author)

  18. Axonal regeneration and development of de novo axons from distal dendrites of adult feline commissural interneurons after a proximal axotomy

    DEFF Research Database (Denmark)

    Fenrich, Keith K; Skelton, Nicole; MacDermid, Victoria E

    2007-01-01

    Following proximal axotomy, several types of neurons sprout de novo axons from distal dendrites. These processes may represent a means of forming new circuits following spinal cord injury. However, it is not know whether mammalian spinal interneurons, axotomized as a result of a spinal cord injur...

  19. Oligodendrocyte Development in the Absence of Their Target Axons In Vivo.

    Directory of Open Access Journals (Sweden)

    Rafael Almeida

    Full Text Available Oligodendrocytes form myelin around axons of the central nervous system, enabling saltatory conduction. Recent work has established that axons can regulate certain aspects of oligodendrocyte development and myelination, yet remarkably oligodendrocytes in culture retain the ability to differentiate in the absence of axons and elaborate myelin sheaths around synthetic axon-like substrates. It remains unclear the extent to which the life-course of oligodendrocytes requires the presence of, or signals derived from axons in vivo. In particular, it is unclear whether the specific axons fated for myelination regulate the oligodendrocyte population in a living organism, and if so, which precise steps of oligodendrocyte-cell lineage progression are regulated by target axons. Here, we use live-imaging of zebrafish larvae carrying transgenic reporters that label oligodendrocyte-lineage cells to investigate which aspects of oligodendrocyte development, from specification to differentiation, are affected when we manipulate the target axonal environment. To drastically reduce the number of axons targeted for myelination, we use a previously identified kinesin-binding protein (kbp mutant, in which the first myelinated axons in the spinal cord, reticulospinal axons, do not fully grow in length, creating a region in the posterior spinal cord where most initial targets for myelination are absent. We find that a 73% reduction of reticulospinal axon surface in the posterior spinal cord of kbp mutants results in a 27% reduction in the number of oligodendrocytes. By time-lapse analysis of transgenic OPC reporters, we find that the reduction in oligodendrocyte number is explained by a reduction in OPC proliferation and survival. Interestingly, OPC specification and migration are unaltered in the near absence of normal axonal targets. Finally, we find that timely differentiation of OPCs into oligodendrocytes does not depend at all on the presence of target axons

  20. Adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and Nasu-Hakola disease: lesion staging and dynamic changes of axons and microglial subsets.

    Science.gov (United States)

    Oyanagi, Kiyomitsu; Kinoshita, Michiaki; Suzuki-Kouyama, Emi; Inoue, Teruhiko; Nakahara, Asa; Tokiwai, Mika; Arai, Nobutaka; Satoh, Jun-Ichi; Aoki, Naoya; Jinnai, Kenji; Yazawa, Ikuru; Arai, Kimihito; Ishihara, Kenji; Kawamura, Mitsuru; Ishizawa, Keisuke; Hasegawa, Kazuko; Yagisita, Saburo; Amano, Naoji; Yoshida, Kunihiro; Terada, Seishi; Yoshida, Mari; Akiyama, Haruhiko; Mitsuyama, Yoshio; Ikeda, Shu-Ichi

    2017-11-01

    The brains of 10 Japanese patients with adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) encompassing hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) and pigmentary orthochromatic leukodystrophy (POLD) and eight Japanese patients with Nasu-Hakola disease (N-HD) and five age-matched Japanese controls were examined neuropathologically with special reference to lesion staging and dynamic changes of microglial subsets. In both diseases, the pathognomonic neuropathological features included spherically swollen axons (spheroids and globules), axon loss and changes of microglia in the white matter. In ALSP, four lesion stages based on the degree of axon loss were discernible: Stage I, patchy axon loss in the cerebral white matter without atrophy; Stage II, large patchy areas of axon loss with slight atrophy of the cerebral white matter and slight dilatation of the lateral ventricles; Stage III, extensive axon loss in the cerebral white matter and dilatation of the lateral and third ventricles without remarkable axon loss in the brainstem and cerebellum; Stage IV, devastated cerebral white matter with marked dilatation of the ventricles and axon loss in the brainstem and/or cerebellum. Internal capsule and pontine base were relatively well preserved in the N-HD, even at Stage IV, and the swollen axons were larger with a higher density in the ALSP. Microglial cells immunopositive for CD68, CD163 or CD204 were far more obvious in ALSP, than in N-HD, and the shape and density of the cells changed in each stage. With progression of the stage, clinical symptoms became worse to apathetic state, and epilepsy was frequently observed in patients at Stages III and IV in both diseases. From these findings, it is concluded that (i) shape, density and subsets of microglia change dynamically along the passage of stages and (ii) increase of IBA-1-, CD68-, CD163- and CD204-immunopositive cells precedes loss of axons in ALSP. © 2016

  1. General RMP Guidance - Appendix D: OSHA Guidance on PSM

    Science.gov (United States)

    OSHA's Process Safety Management (PSM) Guidance on providing complete and accurate written information concerning process chemicals, process technology, and process equipment; including process hazard analysis and material safety data sheets.

  2. Son of sevenless directly links the Robo receptor to rac activation to control axon repulsion at the midline.

    Science.gov (United States)

    Yang, Long; Bashaw, Greg J

    2006-11-22

    Son of sevenless (Sos) is a dual specificity guanine nucleotide exchange factor (GEF) that regulates both Ras and Rho family GTPases and thus is uniquely poised to integrate signals that affect both gene expression and cytoskeletal reorganization. Here, using genetics, biochemistry, and cell biology, we demonstrate that Sos is recruited to the plasma membrane, where it forms a ternary complex with the Roundabout receptor and the SH3-SH2 adaptor protein Dreadlocks (Dock) to regulate Rac-dependent cytoskeletal rearrangement in response to the Slit ligand. Intriguingly, the Ras and Rac-GEF activities of Sos can be uncoupled during Robo-mediated axon repulsion; Sos axon guidance function depends on its Rac-GEF activity, but not its Ras-GEF activity. These results provide in vivo evidence that the Ras and RhoGEF domains of Sos are separable signaling modules and support a model in which Robo recruits Sos to the membrane via Dock to activate Rac during midline repulsion.

  3. Regulatory guidance for license renewal

    International Nuclear Information System (INIS)

    Thoma, John A.

    1991-01-01

    The proposed 10 CFR Part 54 rule proceduralizes the process for license renewal by identifying both the administrative and technical requirements for a renewal application. To amplify and support this regulation, written guidance has been provided in the form of a draft Regulatory Guide (DG 1009) and a draft Standard Review Plan for License Renewal (NUREG 1299). This guidance is scheduled to be finalized in 1992. Similar guidance will be provided for the proposed revisions to 10 CFR Part 51 concerning the environmental aspects of license renewal. (author)

  4. RH Packaging Program Guidance

    International Nuclear Information System (INIS)

    Washington TRU Solutions, LLC

    2003-01-01

    The purpose of this program guidance document is to provide technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the SARP and/or C of C shall govern. The C of C states: ''...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, ''Operating Procedures,'' of the application.'' It further states: ''...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, ''Acceptance Tests and Maintenance Program of the Application.'' Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M and O) contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC approved, users need to be familiar with 10 CFR (section) 71.11, ''Deliberate Misconduct.'' Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. This document details the instructions to be followed to operate, maintain, and test the RH-TRU 72-B packaging. This Program Guidance standardizes instructions for all users. Users shall follow these instructions. Following these instructions assures that operations are safe and meet the requirements of the SARP. This document is available on the Internet at: ttp://www.ws/library/t2omi/t2omi.htm. Users are responsible for ensuring they are using the current revision and change notices. Sites may prepare their own document using the word

  5. An αII Spectrin-Based Cytoskeleton Protects Large-Diameter Myelinated Axons from Degeneration.

    Science.gov (United States)

    Huang, Claire Yu-Mei; Zhang, Chuansheng; Zollinger, Daniel R; Leterrier, Christophe; Rasband, Matthew N

    2017-11-22

    Axons must withstand mechanical forces, including tension, torsion, and compression. Spectrins and actin form a periodic cytoskeleton proposed to protect axons against these forces. However, because spectrins also participate in assembly of axon initial segments (AISs) and nodes of Ranvier, it is difficult to uncouple their roles in maintaining axon integrity from their functions at AIS and nodes. To overcome this problem and to determine the importance of spectrin cytoskeletons for axon integrity, we generated mice with αII spectrin-deficient peripheral sensory neurons. The axons of these neurons are very long and exposed to the mechanical forces associated with limb movement; most lack an AIS, and some are unmyelinated and have no nodes. We analyzed αII spectrin-deficient mice of both sexes and found that, in myelinated axons, αII spectrin forms a periodic cytoskeleton with βIV and βII spectrin at nodes of Ranvier and paranodes, respectively, but that loss of αII spectrin disrupts this organization. Avil-cre;Sptan1 f/f mice have reduced numbers of nodes, disrupted paranodal junctions, and mislocalized Kv1 K + channels. We show that the density of nodal βIV spectrin is constant among axons, but the density of nodal αII spectrin increases with axon diameter. Remarkably, Avil-cre;Sptan1 f/f mice have intact nociception and small-diameter axons, but severe ataxia due to preferential degeneration of large-diameter myelinated axons. Our results suggest that nodal αII spectrin helps resist the mechanical forces experienced by large-diameter axons, and that αII spectrin-dependent cytoskeletons are also required for assembly of nodes of Ranvier. SIGNIFICANCE STATEMENT A periodic axonal cytoskeleton consisting of actin and spectrin has been proposed to help axons resist the mechanical forces to which they are exposed (e.g., compression, torsion, and stretch). However, until now, no vertebrate animal model has tested the requirement of the spectrin cytoskeleton in

  6. Poly-l-lysine-coated magnetic nanoparticles as intracellular actuators for neural guidance

    Directory of Open Access Journals (Sweden)

    Riggio C

    2012-06-01

    Full Text Available Cristina Riggio,1,* Maria Pilar Calatayud,2,* Clare Hoskins,3 Josephine Pinkernelle,4 Beatriz Sanz,2 Teobaldo Enrique Torres,2,5 Manuel Ricardo Ibarra,2,5 Lijun Wang,3 Gerburg Keilhoff,4 Gerardo Fabian Goya,2,5 Vittoria Raffa,1,6 Alfred Cuschieri1,3 1Institute of Life Science, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà, Pisa, Italy; 2Instituto de Nanociencia de Aragón, Universidad de Zaragoza. Mariano Esquillor, Zaragoza, Spain; 3IMSaT, Institute for Medical Science and Technology, University of Dundee, Dundee, Scotland; 4Otto-von-Guericke University, Institute of Biochemistry and Cell Biology, Magdeburg, Germany; 5Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza. Cerbuna 12, Zaragoza, Spain; 6Department of Biology, Università di Pisa, Pisa, Italy*These authors contributed equally to this workPurpose: It has been proposed in the literature that Fe3O4 magnetic nanoparticles (MNPs could be exploited to enhance or accelerate nerve regeneration and to provide guidance for regenerating axons. MNPs could create mechanical tension that stimulates the growth and elongation of axons. Particles suitable for this purpose should possess (1 high saturation magnetization, (2 a negligible cytotoxic profile, and (3 a high capacity to magnetize mammalian cells. Unfortunately, the materials currently available on the market do not satisfy these criteria; therefore, this work attempts to overcome these deficiencies.Methods: Magnetite particles were synthesized by an oxidative hydrolysis method and characterized based on their external morphology and size distribution (high-resolution transmission electron microscopy [HR-TEM] as well as their colloidal (Z potential and magnetic properties (Superconducting QUantum Interference Devices [SQUID]. Cell viability was assessed via Trypan blue dye exclusion assay, cell doubling time, and MTT cell proliferation assay and reactive oxygen species production

  7. Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner.

    Science.gov (United States)

    Mitew, Stanislaw; Gobius, Ilan; Fenlon, Laura R; McDougall, Stuart J; Hawkes, David; Xing, Yao Lulu; Bujalka, Helena; Gundlach, Andrew L; Richards, Linda J; Kilpatrick, Trevor J; Merson, Tobias D; Emery, Ben

    2018-01-22

    Mounting evidence suggests that neuronal activity influences myelination, potentially allowing for experience-driven modulation of neural circuitry. The degree to which neuronal activity is capable of regulating myelination at the individual axon level is unclear. Here we demonstrate that stimulation of somatosensory axons in the mouse brain increases proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) within the underlying white matter. Stimulated axons display an increased probability of being myelinated compared to neighboring non-stimulated axons, in addition to being ensheathed with thicker myelin. Conversely, attenuating neuronal firing reduces axonal myelination in a selective activity-dependent manner. Our findings reveal that the process of selecting axons for myelination is strongly influenced by the relative activity of individual axons within a population. These observed cellular changes are consistent with the emerging concept that adaptive myelination is a key mechanism for the fine-tuning of neuronal circuitry in the mammalian CNS.

  8. Effect of vesicle traps on traffic jam formation in fast axonal transport.

    Science.gov (United States)

    Kuznetsov, A V

    2010-08-01

    The purpose of this paper is to develop a model for simulation of the formation of organelle traps in fast axonal transport. Such traps may form in the regions of microtubule polar mismatching. Depending on the orientation of microtubules pointing toward the trap region, these traps can accumulate either plus-end or minus-end oriented vesicles. The model predicts that the maximum concentrations of organelles occur at the boundaries of the trap regions; the overall concentration of organelles in the axon with traps is greatly increased compared to that in a healthy axon, which is expected to contribute to mechanical damages of the axon. The organelle traps induce hindrance to organelle transport down the axon; the total organelle flux down the axon with traps is found to be significantly reduced compared to that in a healthy axon. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Efficient retrograde transport of pseudorabies virus within neurons requires local protein synthesis in axons.

    Science.gov (United States)

    Koyuncu, Orkide O; Perlman, David H; Enquist, Lynn W

    2013-01-16

    After replicating in epithelial cells, alphaherpesviruses such as pseudorabies virus (PRV) invade axons of peripheral nervous system neurons and undergo retrograde transport toward the distant cell bodies. Although several viral proteins engage molecular motors to facilitate transport, the initial steps and neuronal responses to infection are poorly understood. Using compartmented neuron cultures to physically separate axon infection from cell bodies, we found that PRV infection induces local protein synthesis in axons, including proteins involved in cytoskeletal remodeling, intracellular trafficking, signaling, and metabolism. This rapid translation of axonal mRNAs is required for efficient PRV retrograde transport and infection of cell bodies. Furthermore, induction of axonal damage, which also induces local protein synthesis, prior to infection reduces virion trafficking, suggesting that host damage signals and virus particles compete for retrograde transport. Thus, similar to axonal damage, virus infection induces local protein translation in axons, and viruses likely exploit this response for invasion. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Retinal ganglion cells: Energetics, compartmentation, axonal transport, cytoskeletons and vulnerability.

    Science.gov (United States)

    Yu, Dao-Yi; Cringle, Stephen J; Balaratnasingam, Chandrakumar; Morgan, William H; Yu, Paula K; Su, Er-Ning

    2013-09-01

    Retinal ganglion cells (RGCs) are specialized projection neurons that relay an immense amount of visual information from the retina to the brain. RGC signal inputs are collected by dendrites and output is distributed from the cell body via very thin (0.5-1 μm) and long (∼50 mm) axons. The RGC cell body is larger than other retinal neurons, but is still only a very small fraction (one ten thousandths) of the length and total surface area of the axon. The total distance traversed by RGCs extends from the retina, starting from synapses with bipolar and amacrine cells, to the brain, to synapses with neurons in the lateral geniculate nucleus. This review will focus on the energy demands of RGCs and the relevant tissues that surround them. RGC survival and function unexceptionally depends upon free energy, predominantly adenosine triphosphate (ATP). RGC energy metabolism is vastly different when compared to that of the photoreceptors. Each subcellular component of the RGC is remarkably different in terms of structure, function and extracellular environment. The energy demands and distribution of each component are also distinct as evidenced by the uneven distribution of mitochondria and ATP within the RGC - signifying the presence of intracellular energy gradients. In this review we will describe RGCs as having four subcellular components, (1) Dendrites, (2) Cell body, (3) Non-myelinated axon, including intraocular and optic nerve head portions, and (4) Myelinated axon, including the intra-orbital and intracranial portions. We will also describe how RGCs integrate information from each subcellular component in order achieve intracellular homeostatic stability as well as respond to perturbations in the extracellular environment. The possible cellular mechanisms such as axonal transport and axonal cytoskeleton proteins that are involved in maintaining RGC energy homeostasis during normal and disease conditions will also be discussed in depth. The emphasis of this

  11. CDM Convective Forecast Planning guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...

  12. Chesapeake Bay Program Grant Guidance

    Science.gov (United States)

    Grant Guidance and appendices for the Chesapeake Bay Program that describes how the U.S. Environmental Protection Agency’s (EPA) Region 3’s Chesapeake Bay Program Office (CBPO) administers grant and cooperative agreement funds.

  13. SPLC Sustainable Purchasing Guidance Profile

    Science.gov (United States)

    To help you find the resource that is right for your organization, EPA conducted a scan of the landscape and developed summary profiles of some of the leading sources of sustainable purchasing guidance around the globe.

  14. Guidance at the educational marketplace

    DEFF Research Database (Denmark)

    Lystbæk, Christian Tang

    in educational policies and institutions. As educational systems have expanded and, further, have been restructured with the expansion of choice opportunities since the 1980s, guidance has become prioritized as a form of counseling or coaching, which can support students. Thus, guidance has become an important...... institution of power in terms of choice opportunities and ´self-develoåment practices” in educational systems, the paper will discuss how the relationship between guidance and consumerism can be conceptualized in order to evaluate (and critically discuss) the consequences of the expansion of consumerism...... `agent´ on the educational "market´, assisting (potential) students into and around the `marketplace´. Consequently, guidance is also an important `agent´ for educational institutions that increasingly use marketing strategies to promote themselves on the market to attract and hold on to their “customers...

  15. [Anterior guidance in complete dentures].

    Science.gov (United States)

    Dubreuil, J; Trevelo, A

    1990-01-01

    Although the anterior guidance in complete dentures is not really a guide, the arrangement of the anterior maxillary and mandibular prosthetic teeth, defines a propulsive line called the virtual anterior guidance, a part from the cinematic criterias. The influence of this guide on cuspal movement is superior, in all mandibular points, to the influence of the condylar pathway. If this line is not respected, the practitioner may have to do excessive grindings during occlusal adjustments.

  16. Squid Giant Axon Contains Neurofilament Protein mRNA but does not Synthesize Neurofilament Proteins.

    Science.gov (United States)

    Gainer, Harold; House, Shirley; Kim, Dong Sun; Chin, Hemin; Pant, Harish C

    2017-04-01

    When isolated squid giant axons are incubated in radioactive amino acids, abundant newly synthesized proteins are found in the axoplasm. These proteins are translated in the adaxonal Schwann cells and subsequently transferred into the giant axon. The question as to whether any de novo protein synthesis occurs in the giant axon itself is difficult to resolve because the small contribution of the proteins possibly synthesized intra-axonally is not easily distinguished from the large amounts of the proteins being supplied from the Schwann cells. In this paper, we reexamine this issue by studying the synthesis of endogenous neurofilament (NF) proteins in the axon. Our laboratory previously showed that NF mRNA and protein are present in the squid giant axon, but not in the surrounding adaxonal glia. Therefore, if the isolated squid axon could be shown to contain newly synthesized NF protein de novo, it could not arise from the adaxonal glia. The results of experiments in this paper show that abundant 3H-labeled NF protein is synthesized in the squid giant fiber lobe containing the giant axon's neuronal cell bodies, but despite the presence of NF mRNA in the giant axon no labeled NF protein is detected in the giant axon. This lends support to the glia-axon protein transfer hypothesis which posits that the squid giant axon obtains newly synthesized protein by Schwann cell transfer and not through intra-axonal protein synthesis, and further suggests that the NF mRNA in the axon is in a translationally repressed state.

  17. Neocortical axon arbors trade-off material and conduction delay conservation.

    Directory of Open Access Journals (Sweden)

    Julian M L Budd

    2010-03-01

    Full Text Available The brain contains a complex network of axons rapidly communicating information between billions of synaptically connected neurons. The morphology of individual axons, therefore, defines the course of information flow within the brain. More than a century ago, Ramón y Cajal proposed that conservation laws to save material (wire length and limit conduction delay regulate the design of individual axon arbors in cerebral cortex. Yet the spatial and temporal communication costs of single neocortical axons remain undefined. Here, using reconstructions of in vivo labelled excitatory spiny cell and inhibitory basket cell intracortical axons combined with a variety of graph optimization algorithms, we empirically investigated Cajal's conservation laws in cerebral cortex for whole three-dimensional (3D axon arbors, to our knowledge the first study of its kind. We found intracortical axons were significantly longer than optimal. The temporal cost of cortical axons was also suboptimal though far superior to wire-minimized arbors. We discovered that cortical axon branching appears to promote a low temporal dispersion of axonal latencies and a tight relationship between cortical distance and axonal latency. In addition, inhibitory basket cell axonal latencies may occur within a much narrower temporal window than excitatory spiny cell axons, which may help boost signal detection. Thus, to optimize neuronal network communication we find that a modest excess of axonal wire is traded-off to enhance arbor temporal economy and precision. Our results offer insight into the principles of brain organization and communication in and development of grey matter, where temporal precision is a crucial prerequisite for coincidence detection, synchronization and rapid network oscillations.

  18. Complementary effects of two growth factors in multifunctionalized silk nanofibers for nerve reconstruction.

    Directory of Open Access Journals (Sweden)

    Tony M Dinis

    Full Text Available With the aim of forming bioactive guides for peripheral nerve regeneration, silk fibroin was electrospun to obtain aligned nanofibers. These fibers were functionalized by incorporating Nerve Growth Factor (NGF and Ciliary NeuroTrophic Factor (CNTF during electrospinning. PC12 cells grown on the fibers confirmed the bioavailability and bioactivity of the NGF, which was not significantly released from the fibers. Primary neurons from rat dorsal root ganglia (DRGs were grown on the nanofibers and anchored to the fibers and grew in a directional fashion based on the fiber orientation, and as confirmed by growth cone morphology. These biofunctionalized nanofibers led to a 3-fold increase in neurite length at their contact, which was likely due to the NGF. Glial cell growth, alignment and migration were stimulated by the CNTF in the functionalized nanofibers. Organotypic culture of rat fetal DRGs confirmed the complementary effect of both growth factors in multifunctionalized nanofibers, which allowed glial cell migration, alignment and parallel axonal growth in structures resembling the 'bands of Bungner' found in situ. Graftable multi-channel conduits based on biofunctionalized aligned silk nanofibers were developed as an organized 3D scaffold. Our bioactive silk tubes thus represent new options for a biological and biocompatible nerve guidance conduit.

  19. [Craniocerebral trauma: magnetic resonance imaging of diffuse axonal injury].

    Science.gov (United States)

    Mallouhi, A

    2014-09-01

    Acceleration-deceleration rotational brain trauma is a common cause of disability or death in young adults and often leads to a focal destruction of axons. The resulting pathology, axonal shear injury is referred to as diffuse axonal injury (DAI). The DAI-associated lesions occur bilaterally, are widely dispersed and have been observed in the surface and deep white matter. They are found near to and far from the impact site. When DAI is clinically suspected, magnetic resonance imaging (MRI) is the method of choice for further clarification, especially in patients where cranial computed tomography (CT) is inconspicuous. To investigate the presence of DAI after traumatic brain injury (TBI), a multimodal MRI approach is applied including the common structural and also functional imaging sequences. For structural MRI, fluid-attenuated inversion recovery (FLAIR) weighted and susceptibility contrast imaging (SWI) are the sequences mainly used. The SWI technique is extremely sensitive to blood breakdown products, which appear as small signal voids at three locations, at the gray-white interface, in the corpus callosum and in the brain stem. Functional MRI comprises a group of constantly developing techniques that have great potential in optimal evaluation of the white matter in patients after craniocerebral trauma. These imaging techniques allow the visualization of changes associated with shear injuries, such as functional impairment of axons and decreased blood flow and abnormal metabolic activity of the brain parts affected. The multimodal MRI approach in patients with DAI results in a more detailed and differentiated representation of the underlying pathophysiological changes of the injured nerve tracts and helps to improve the diagnostic and prognostic accuracy of MRI. When DAI is suspected multimodal MRI should be performed as soon as possible after craniocerebral injury.

  20. Spontaneous axonal regeneration in rodent spinal cord after ischemic injury

    DEFF Research Database (Denmark)

    von Euler, Mia; Janson, A M; Larsen, Jytte Overgaard

    2002-01-01

    cells, while other fibers were unmyelinated. Immunohistochemistry demonstrated that some of the regenerated fibers were tyrosine hydroxylase- or serotonin-immunoreactive, indicating a central origin. These findings suggest that there is a considerable amount of spontaneous regeneration after spinal cord...... lesions in rodents and that the fibers remain several months after injury. The findings of tyrosine hydroxylase- and serotonin-immunoreactivity in the axons suggest that descending central fibers contribute to this endogenous repair of ischemic spinal cord injury....

  1. Polyethylene glycol restores axonal conduction after corpus callosum transection.

    Science.gov (United States)

    Bamba, Ravinder; Riley, D Colton; Boyer, Richard B; Pollins, Alonda C; Shack, R Bruce; Thayer, Wesley P

    2017-05-01

    Polyethylene glycol (PEG) has been shown to restore axonal continuity after peripheral nerve transection in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous system. In this current experiment, coronal sectioning of the brains of Sprague-Dawley rats was performed after animal sacrifice. 3Brain high-resolution microelectrode arrays (MEA) were used to measure mean firing rate (MFR) and peak amplitude across the corpus callosum of the ex-vivo brain slices. The corpus callosum was subsequently transected and repeated measurements were performed. The cut ends of the corpus callosum were still apposite at this time. A PEG solution was applied to the injury site and repeated measurements were performed. MEA measurements showed that PEG was capable of restoring electrophysiology signaling after transection of central nerves. Before injury, the average MFRs at the ipsilateral, midline, and contralateral corpus callosum were 0.76, 0.66, and 0.65 spikes/second, respectively, and the average peak amplitudes were 69.79, 58.68, and 49.60 μV, respectively. After injury, the average MFRs were 0.71, 0.14, and 0.25 spikes/second, respectively and peak amplitudes were 52.11, 8.98, and 16.09 μV, respectively. After application of PEG, there were spikes in MFR and peak amplitude at the injury site and contralaterally. The average MFRs were 0.75, 0.55, and 0.47 spikes/second at the ipsilateral, midline, and contralateral corpus callosum, respectively and peak amplitudes were 59.44, 45.33, 40.02 μV, respectively. There were statistically differences in the average MFRs and peak amplitudes between the midline and non-midline corpus callosum groups ( P < 0.01, P < 0.05). These findings suggest that PEG restores axonal conduction between severed central nerves, potentially representing axonal fusion.

  2. Polyethylene glycol restores axonal conduction after corpus callosum transection

    Directory of Open Access Journals (Sweden)

    Ravinder Bamba

    2017-01-01

    Full Text Available Polyethylene glycol (PEG has been shown to restore axonal continuity after peripheral nerve transection in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous system. In this current experiment, coronal sectioning of the brains of Sprague-Dawley rats was performed after animal sacrifice. 3Brain high-resolution microelectrode arrays (MEA were used to measure mean firing rate (MFR and peak amplitude across the corpus callosum of the ex-vivo brain slices. The corpus callosum was subsequently transected and repeated measurements were performed. The cut ends of the corpus callosum were still apposite at this time. A PEG solution was applied to the injury site and repeated measurements were performed. MEA measurements showed that PEG was capable of restoring electrophysiology signaling after transection of central nerves. Before injury, the average MFRs at the ipsilateral, midline, and contralateral corpus callosum were 0.76, 0.66, and 0.65 spikes/second, respectively, and the average peak amplitudes were 69.79, 58.68, and 49.60 μV, respectively. After injury, the average MFRs were 0.71, 0.14, and 0.25 spikes/second, respectively and peak amplitudes were 52.11, 8.98, and 16.09 μV, respectively. After application of PEG, there were spikes in MFR and peak amplitude at the injury site and contralaterally. The average MFRs were 0.75, 0.55, and 0.47 spikes/second at the ipsilateral, midline, and contralateral corpus callosum, respectively and peak amplitudes were 59.44, 45.33, 40.02 μV, respectively. There were statistically differences in the average MFRs and peak amplitudes between the midline and non-midline corpus callosum groups (P < 0.01, P < 0.05. These findings suggest that PEG restores axonal conduction between severed central nerves, potentially representing axonal fusion.

  3. Two stable steady states in the Hodgkin-Huxley axons

    OpenAIRE

    Aihara, K.; Matsumoto, G.

    1983-01-01

    Two stable steady states were found in the numerical solution of the Hodgkin-Huxley equations for the intact squid axon bathed in potassium-rich sea water with an externally applied inward current. Under the conditions the two stable steady-states exist, the Hodgkin-Huxley equations have a complex bifurcation structure including, in addition to the two stable steady-states, a stable limit cycle, two unstable equilibrium points, and one asymptotically stable equilibrium point. It was also conc...

  4. Difference in trafficking of brain-derived neurotrophic factor between axons and dendrites of cortical neurons, revealed by live-cell imaging

    Directory of Open Access Journals (Sweden)

    Kohara Keigo

    2005-06-01

    Full Text Available Abstract Background Brain-derived neurotrophic factor (BDNF, which is sorted into a regulated secretory pathway of neurons, is supposed to act retrogradely through dendrites on presynaptic neurons or anterogradely through axons on postsynaptic neurons. Depending on which is the case, the pattern and direction of trafficking of BDNF in dendrites and axons are expected to be different. To address this issue, we analyzed movements of green fluorescent protein (GFP-tagged BDNF in axons and dendrites of living cortical neurons by time-lapse imaging. In part of the experiments, the expression of BDNF tagged with cyan fluorescent protein (CFP was compared with that of nerve growth factor (NGF tagged with yellow fluorescent protein (YFP, to see whether fluorescent protein-tagged BDNF is expressed in a manner specific to this neurotrophin. Results We found that BDNF tagged with GFP or CFP was expressed in a punctated manner in dendrites and axons in about two-thirds of neurons into which plasmid cDNAs had been injected, while NGF tagged with GFP or YFP was diffusely expressed even in dendrites in about 70% of the plasmid-injected neurons. In neurons in which BDNF-GFP was expressed as vesicular puncta in axons, 59 and 23% of the puncta were moving rapidly in the anterograde and retrograde directions, respectively. On the other hand, 64% of BDNF-GFP puncta in dendrites did not move at all or fluttered back and forth within a short distance. The rest of the puncta in dendrites were moving relatively smoothly in either direction, but their mean velocity of transport, 0.47 ± 0.23 (SD μm/s, was slower than that of the moving puncta in axons (0.73 ± 0.26 μm/s. Conclusion The present results show that the pattern and velocity of the trafficking of fluorescence protein-tagged BDNF are different between axons and dendrites, and suggest that the anterograde transport in axons may be the dominant stream of BDNF to release sites.

  5. Hierarchical patterning of multifunctional conducting polymer nanoparticles as a bionic platform for topographic contact guidance.

    Science.gov (United States)

    Ho, Dominic; Zou, Jianli; Chen, Xianjue; Munshi, Alaa; Smith, Nicole M; Agarwal, Vipul; Hodgetts, Stuart I; Plant, Giles W; Bakker, Anthony J; Harvey, Alan R; Luzinov, Igor; Iyer, K Swaminathan

    2015-02-24

    The use of programmed electrical signals to influence biological events has been a widely accepted clinical methodology for neurostimulation. An optimal biocompatible platform for neural activation efficiently transfers electrical signals across the electrode-cell interface and also incorporates large-area neural guidance conduits. Inherently conducting polymers (ICPs) have emerged as frontrunners as soft biocompatible alternatives to traditionally used metal electrodes, which are highly invasive and elicit tissue damage over long-term implantation. However, fabrication techniques for the ICPs suffer a major bottleneck, which limits their usability and medical translation. Herein, we report that these limitations can be overcome using colloidal chemistry to fabricate multimodal conducting polymer nanoparticles. Furthermore, we demonstrate that these polymer nanoparticles can be precisely assembled into large-area linear conduits using surface chemistry. Finally, we validate that this platform can act as guidance conduits for neurostimulation, whereby the presence of electrical current induces remarkable dendritic axonal sprouting of cells.

  6. Internalization and Axonal Transport of the HIV Glycoprotein gp120

    Science.gov (United States)

    Berth, Sarah; Caicedo, Hector Hugo; Sarma, Tulika; Morfini, Gerardo

    2015-01-01

    The HIV glycoprotein gp120, a neurotoxic HIV glycoprotein that is overproduced and shed by HIV-infected macrophages, is associated with neurological complications of HIV such as distal sensory polyneuropathy, but interactions of gp120 in the peripheral nervous system remain to be characterized. Here, we demonstrate internalization of extracellular gp120 in a manner partially independent of binding to its coreceptor CXCR4 by F11 neuroblastoma cells and cultured dorsal root ganglion neurons. Immunocytochemical and pharmacological experiments indicate that gp120 does not undergo trafficking through the endolysosomal pathway. Instead, gp120 is mainly internalized through lipid rafts in a cholesterol-dependent manner, with a minor fraction being internalized by fluid phase pinocytosis. Experiments using compartmentalized microfluidic chambers further indicate that, after internalization, endocytosed gp120 selectively undergoes retrograde but not anterograde axonal transport from axons to neuronal cell bodies. Collectively, these studies illuminate mechanisms of gp120 internalization and axonal transport in peripheral nervous system neurons, providing a novel framework for mechanisms for gp120 neurotoxicity. PMID:25636314

  7. Inner membrane fusion mediates spatial distribution of axonal mitochondria

    Science.gov (United States)

    Yu, Yiyi; Lee, Hao-Chih; Chen, Kuan-Chieh; Suhan, Joseph; Qiu, Minhua; Ba, Qinle; Yang, Ge

    2016-01-01

    In eukaryotic cells, mitochondria form a dynamic interconnected network to respond to changing needs at different subcellular locations. A fundamental yet unanswered question regarding this network is whether, and if so how, local fusion and fission of individual mitochondria affect their global distribution. To address this question, we developed high-resolution computational image analysis techniques to examine the relations between mitochondrial fusion/fission and spatial distribution within the axon of Drosophila larval neurons. We found that stationary and moving mitochondria underwent fusion and fission regularly but followed different spatial distribution patterns and exhibited different morphology. Disruption of inner membrane fusion by knockdown of dOpa1, Drosophila Optic Atrophy 1, not only increased the spatial density of stationary and moving mitochondria but also changed their spatial distributions and morphology differentially. Knockdown of dOpa1 also impaired axonal transport of mitochondria. But the changed spatial distributions of mitochondria resulted primarily from disruption of inner membrane fusion because knockdown of Milton, a mitochondrial kinesin-1 adapter, caused similar transport velocity impairment but different spatial distributions. Together, our data reveals that stationary mitochondria within the axon interconnect with moving mitochondria through fusion and fission and that local inner membrane fusion between individual mitochondria mediates their global distribution. PMID:26742817

  8. Dendritic and Axonal Wiring Optimization of Cortical GABAergic Interneurons.

    Science.gov (United States)

    Anton-Sanchez, Laura; Bielza, Concha; Benavides-Piccione, Ruth; DeFelipe, Javier; Larrañaga, Pedro

    2016-10-01

    The way in which a neuronal tree expands plays an important role in its functional and computational characteristics. We aimed to study the existence of an optimal neuronal design for different types of cortical GABAergic neurons. To do this, we hypothesized that both the axonal and dendritic trees of individual neurons optimize brain connectivity in terms of wiring length. We took the branching points of real three-dimensional neuronal reconstructions of the axonal and dendritic trees of different types of cortical interneurons and searched for the minimal wiring arborization structure that respects the branching points. We compared the minimal wiring arborization with real axonal and dendritic trees. We tested this optimization problem using a new approach based on graph theory and evolutionary computation techniques. We concluded that neuronal wiring is near-optimal in most of the tested neurons, although the wiring length of dendritic trees is generally nearer to the optimum. Therefore, wiring economy is related to the way in which neuronal arborizations grow irrespective of the marked differences in the morphology of the examined interneurons.

  9. Prediction of Functional Outcome in Axonal Guillain-Barre Syndrome.

    Science.gov (United States)

    Sung, Eun Jung; Kim, Dae Yul; Chang, Min Cheol; Ko, Eun Jae

    2016-06-01

    To identify the factors that could predict the functional outcome in patients with the axonal type of Guillain-Barre syndrome (GBS). Two hundred and two GBS patients admitted to our university hospital between 2003 and 2014 were reviewed retrospectively. We defined a good outcome as being "able to walk independently at 1 month after onset" and a poor outcome as being "unable to walk independently at 1 month after onset". We evaluated the factors that differed between the good and poor outcome groups. Twenty-four patients were classified into the acute motor axonal neuropathy type. There was a statistically significant difference between the good and poor outcome groups in terms of the GBS disability score at admission, and GBS disability score and Medical Research Council sum score at 1 month after admission. In an electrophysiologic analysis, the good outcome group showed greater amplitude of median, ulnar, deep peroneal, and posterior tibial nerve compound muscle action potentials (CMAP) and greater amplitude of median, ulnar, and superficial peroneal sensory nerve action potentials (SNAP) than the poor outcome group. A lower GBS disability score at admission, high amplitude of median, ulnar, deep peroneal, and posterior tibial CMAPs, and high amplitude of median, ulnar, and superficial peroneal SNAPs were associated with being able to walk at 1 month in patients with axonal GBS.

  10. Quality in career guidance: The Danish case

    DEFF Research Database (Denmark)

    Plant, Peter

    2011-01-01

    Quality assurance systems are introduced in career guidance to monitor, control and develop guidance interventions. The Danish case represents at centrally driven, top-down approach......Quality assurance systems are introduced in career guidance to monitor, control and develop guidance interventions. The Danish case represents at centrally driven, top-down approach...

  11. Sodium Channel β2 Subunits Prevent Action Potential Propagation Failures at Axonal Branch Points.

    Science.gov (United States)

    Cho, In Ha; Panzera, Lauren C; Chin, Morven; Hoppa, Michael B

    2017-09-27

    Neurotransmitter release depends on voltage-gated Na + channels (Na v s) to propagate an action potential (AP) successfully from the axon hillock to a synaptic terminal. Unmyelinated sections of axon are very diverse structures encompassing branch points and numerous presynaptic terminals with undefined molecular partners of Na + channels. Using optical recordings of Ca 2+ and membrane voltage, we demonstrate here that Na + channel β2 subunits (Na v β2s) are required to prevent AP propagation failures across the axonal arborization of cultured rat hippocampal neurons (mixed male and female). When Na v β2 expression was reduced, we identified two specific phenotypes: (1) membrane excitability and AP-evoked Ca 2+ entry were impaired at synapses and (2) AP propagation was severely compromised with >40% of axonal branches no longer responding to AP-stimulation. We went on to show that a great deal of electrical signaling heterogeneity exists in AP waveforms across the axonal arborization independent of axon morphology. Therefore, Na v β2 is a critical regulator of axonal excitability and synaptic function in unmyelinated axons. SIGNIFICANCE STATEMENT Voltage-gated Ca 2+ channels are fulcrums of neurotransmission that convert electrical inputs into chemical outputs in the form of vesicle fusion at synaptic terminals. However, the role of the electrical signal, the presynaptic action potential (AP), in modulating synaptic transmission is less clear. What is the fidelity of a propagating AP waveform in the axon and what molecules shape it throughout the axonal arborization? Our work identifies several new features of AP propagation in unmyelinated axons: (1) branches of a single axonal arborization have variable AP waveforms independent of morphology, (2) Na + channel β2 subunits modulate AP-evoked Ca 2+ -influx, and (3) β2 subunits maintain successful AP propagation across the axonal arbor. These findings are relevant to understanding the flow of excitation in the

  12. Guidance for External Events Analysis

    International Nuclear Information System (INIS)

    This Guidance for External Events Analysis was developed under a contract with the Nordic PSA Group, and aims at creating a common framework for analysis of external events as part of a nuclear power plant Probabilistic Safety Assessment. Thus, the purpose of this Guidance is to constitute a common methodological guidance for the analysis of external events at Nordic nuclear power plants. This will make it possible for the utilities to perform these analyses in a cost-efficient way, assuring simultaneously the quality of the analyses. The Guidance is meant to clarify the scope of the analysis of external events, to provide guidance for the performance of the analysis, and to help in defining, subcontracting and reviewing the work. The analysis procedure includes four phases, addressing project planning, identification of external events, screening of events, and probabilistic analysis. The aim is first to do as complete an identification of potential single and combined external events as possible. Thereafter, as many external events as possible are screened out as early as possible. The screening capability is increased during the project, using the continuously acquired information on the events and on their effects on the plant

  13. Dendritic and axonic fields of Purkinje cells in developing and X-irradiated rat cerebellum. A comparative study using intracellular staining with horseradish peroxidase

    International Nuclear Information System (INIS)

    Crepel, F.; Delhaye-Bouchaud, N.; Dupont, J.L.; Sotelo, C.

    1980-01-01

    Intracellular staining of cerebellar Purkinje cells with horseradish peroxidase was achieved in normal developing rats (8-13 days old), in normal adult rats and in adult rats in which the cerebellum had been degranulated by X-ray treatment. The mono- and multiple innervation of Purkinje cells by climbing fibres was electrophysiologically determined and correlated with their dendritic pattern and axonal field. In immature rats, considerable variations in dendritic arborization were observed between cells at the same age, according to their position in the vermis. In adult X-irradiated animals, a large variety of dendritic shapes was found, confirming previous anatomical data, but no obvious correlation was found between the morphology of the dendrites of Purkinje cells and their synaptic investment by climbing fibres. As regards the axonal field, the adult branching pattern of recurrent axon collaterals was almost established by postnatal day 8, except for some cells which exhibited richer recurrent collaterals. On the other hand, in X-irradiated animals, profuse plexuses were the rule and they originated either from one collateral stem, or from several collaterals, also independently of the number of afferent climbing fibres. The existence of these enlarged recurrent collateral plexuses can be explained by the persistence of an immature stage, and certainly also by the collateral sprouting following the largely impaired innervation of the terminal field during development. These results emphasize the role of the cellular interactions that occur during Purkinje cell growth in the formation of both its axonal and dendritic fields. (author)

  14. Differential expression of anti-angiogenic factors and guidance genes in the developing macula.

    Science.gov (United States)

    Kozulin, Peter; Natoli, Riccardo; O'Brien, Keely M Bumsted; Madigan, Michele C; Provis, Jan M

    2009-01-01

    The primate retina contains a specialized, cone-rich macula, which mediates high acuity and color vision. The spatial resolution provided by the neural retina at the macula is optimized by stereotyped retinal blood vessel and ganglion cell axon patterning, which radiate away from the macula and reduce shadowing of macular photoreceptors. However, the genes that mediate these specializations, and the reasons for the vulnerability of the macula to degenerative disease, remain obscure. The aim of this study was to identify novel genes that may influence retinal vascular patterning and definition of the foveal avascular area. We used RNA from human fetal retinas at 19-20 weeks of gestation (WG; n=4) to measure differential gene expression in the macula, a region nasal to disc (nasal) and in the surrounding retina (surround) by hybridization to 12 GeneChip microarrays (HG-U133 Plus 2.0). The raw data was subjected to quality control assessment and preprocessing, using GC-RMA. We then used ANOVA analysis (Partek) Genomic Suite 6.3) and clustering (DAVID website) to identify the most highly represented genes clustered according to "biological process." The neural retina is fully differentiated at the macula at 19-20 WG, while neuronal progenitor cells are present throughout the rest of the retina. We therefore excluded genes associated with the cell cycle, and markers of differentiated neurons, from further analyses. Significantly regulated genes (pmacula versus surround" and "macula versus nasal." KEGG pathway clustering of the filtered gene lists identified 25 axon guidance-related genes that are differentially regulated in the macula. Furthermore, we found significant upregulation of three anti-angiogenic factors in the macula: pigment epithelium derived factor (PEDF), natriuretic peptide precurusor B (NPPB), and collagen type IValpha2. Differential expression of several members of the ephrin and semaphorin axon guidance gene families, PEDF, and NPPB was verified by

  15. FLRT2 and FLRT3 act as repulsive guidance cues for Unc5-positive neurons.

    Science.gov (United States)

    Yamagishi, Satoru; Hampel, Falko; Hata, Katsuhiko; Del Toro, Daniel; Schwark, Manuela; Kvachnina, Elena; Bastmeyer, Martin; Yamashita, Toshihide; Tarabykin, Victor; Klein, Rüdiger; Egea, Joaquim

    2011-06-14

    Netrin-1 induces repulsive axon guidance by binding to the mammalian Unc5 receptor family (Unc5A-Unc5D). Mouse genetic analysis of selected members of the Unc5 family, however, revealed essential functions independent of Netrin-1, suggesting the presence of other ligands. Unc5B was recently shown to bind fibronectin and leucine-rich transmembrane protein-3 (FLRT3), although the relevance of this interaction for nervous system development remained unclear. Here, we show that the related Unc5D receptor binds specifically to another FLRT protein, FLRT2. During development, FLRT2/3 ectodomains (ECDs) are shed from neurons and act as repulsive guidance molecules for axons and somata of Unc5-positive neurons. In the developing mammalian neocortex, Unc5D is expressed by neurons in the subventricular zone (SVZ), which display delayed migration to the FLRT2-expressing cortical plate (CP). Deletion of either FLRT2 or Unc5D causes a subset of SVZ-derived neurons to prematurely migrate towards the CP, whereas overexpression of Unc5D has opposite effects. Hence, the shed FLRT2 and FLRT3 ECDs represent a novel family of chemorepellents for Unc5-positive neurons and FLRT2/Unc5D signalling modulates cortical neuron migration.

  16. Information architecture. Volume 3: Guidance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The purpose of this document, as presented in Volume 1, The Foundations, is to assist the Department of Energy (DOE) in developing and promulgating information architecture guidance. This guidance is aimed at increasing the development of information architecture as a Departmentwide management best practice. This document describes departmental information architecture principles and minimum design characteristics for systems and infrastructures within the DOE Information Architecture Conceptual Model, and establishes a Departmentwide standards-based architecture program. The publication of this document fulfills the commitment to address guiding principles, promote standard architectural practices, and provide technical guidance. This document guides the transition from the baseline or defacto Departmental architecture through approved information management program plans and budgets to the future vision architecture. This document also represents another major step toward establishing a well-organized, logical foundation for the DOE information architecture.

  17. Spatiotemporal expression of repulsive guidance molecules (RGMs and their receptor neogenin in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Dianne M A van den Heuvel

    Full Text Available Neogenin has been implicated in a variety of developmental processes such as neurogenesis, neuronal differentiation, apoptosis, migration and axon guidance. Binding of repulsive guidance molecules (RGMs to Neogenin inhibits axon outgrowth of different neuronal populations. This effect requires Neogenin to interact with co-receptors of the uncoordinated locomotion-5 (Unc5 family to activate downstream Rho signaling. Although previous studies have reported RGM, Neogenin, and/or Unc5 expression, a systematic comparison of RGM and Neogenin expression in the developing nervous system is lacking, especially at later developmental stages. Furthermore, information on RGM and Neogenin expression at the protein level is limited. To fill this void and to gain further insight into the role of RGM-Neogenin signaling during mouse neural development, we studied the expression of RGMa, RGMb, Neogenin and Unc5A-D using in situ hybridization, immunohistochemistry and RGMa section binding. Expression patterns in the primary olfactory system, cortex, hippocampus, habenula, and cerebellum were studied in more detail. Characteristic cell layer-specific expression patterns were detected for RGMa, RGMb, Neogenin and Unc5A-D. Furthermore, strong expression of RGMa, RGMb and Neogenin protein was found on several major axon tracts such as the primary olfactory projections, anterior commissure and fasciculus retroflexus. These data not only hint at a role for RGM-Neogenin signaling during the development of different neuronal systems, but also suggest that Neogenin partners with different Unc5 family members in different systems. Overall, the results presented here will serve as a framework for further dissection of the role of RGM-Neogenin signaling during neural development.

  18. The disruption of mitochondrial axonal transport is an early event in neuroinflammation

    DEFF Research Database (Denmark)

    Errea, Oihana; Moreno, Beatriz; Gonzalez-Franquesa, Alba

    2015-01-01

    of neuroprotective therapies. Energy depletion due to mitochondrial dysfunction has been postulated as an important step in the damage of axons. This prompted us to study the effects of acute inflammation and oxidative stress on the morphology, transport, and function of mitochondria in axons. METHODS: Mouse......BACKGROUND: In brain inflammatory diseases, axonal damage is one of the most critical steps in the cascade that leads to permanent disability. Thus, identifying the initial events triggered by inflammation or oxidative stress that provoke axonal damage is critical for the development...... in axons, increasing the proportion of stationary mitochondria in axons after LPS challenge. Indeed, the two challenges used produced different effects: inflammation mostly reducing retrograde transport and oxidative stress slightly enhancing retrograde transportation. CONCLUSIONS: Neuroinflammation...

  19. Segregation of Axial Motor and Sensory Pathways via Heterotypic Trans-Axonal Signaling

    Science.gov (United States)

    Gallarda, Benjamin W.; Bonanomi, Dario; Müller, Daniel; Brown, Arthur; Alaynick, William A.; Andrews, Shane E.; Lemke, Greg; Pfaff, Samuel L.; Marquardt, Till

    2011-01-01

    Execution of motor behaviors relies on circuitries effectively integrating immediate sensory feedback to efferent pathways controlling muscle activity. It remains unclear how, during neuromuscular circuit assembly, sensory and motor projections become incorporated into tightly coordinated, yet functionally separate pathways. We report that, within axial nerves, establishment of discrete afferent and efferent pathways depends on coordinate signaling between coextending sensory and motor projections. These heterotypic axon-axon interactions require motor axonal EphA3/EphA4 receptor tyrosine kinases activated by cognate sensory axonal ephrin-A ligands. Genetic elimination of trans-axonal ephrin-A → EphA signaling in mice triggers drastic motor-sensory miswiring, culminating in functional efferents within proximal afferent pathways. Effective assembly of a key circuit underlying motor behaviors thus critically depends on trans-axonal signaling interactions resolving motor and sensory projections into discrete pathways. PMID:18403711

  20. Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon.

    Science.gov (United States)

    Ma, Marek

    2013-12-01

    Axonal injury and degeneration, whether primary or secondary, contribute to the morbidity and mortality seen in many acquired and inherited central nervous system (CNS) and peripheral nervous system (PNS) disorders, such as traumatic brain injury, spinal cord injury, cerebral ischemia, neurodegenerative diseases, and peripheral neuropathies. The calpain family of proteases has been mechanistically linked to the dysfunction and degeneration of axons. While the direct mechanisms by which transection, mechanical strain, ischemia, or complement activation trigger intra-axonal calpain activity are likely different, the downstream effects of unregulated calpain activity may be similar in seemingly disparate diseases. In this review, a brief examination of axonal structure is followed by a focused overview of the calpain family. Finally, the mechanisms by which calpains may disrupt the axonal cytoskeleton, transport, and specialized domains (axon initial segment, nodes, and terminals) are discussed. © 2013.

  1. Agent Based Individual Traffic guidance

    DEFF Research Database (Denmark)

    Wanscher, Jørgen Bundgaard

    2004-01-01

    can be obtained through cellular phone tracking or GPS systems. This information can then be used to provide individual traffic guidance as opposed to the mass information systems of today -- dynamic roadsigns and trafficradio. The goal is to achieve better usage of road and time. The main topic......When working with traffic planning or guidance it is common practice to view the vehicles as a combined mass. >From this models are employed to specify the vehicle supply and demand for each region. As the models are complex and the calculations are equally demanding the regions and the detail...

  2. Down-regulation of the axonal PSA-NCAM expression coincides with the onset of myelination in the human fetal forebrain

    OpenAIRE

    Jakovcevski, Igor; Mo, Zhicheng; Zecevic, Nada

    2007-01-01

    The polysialic acid (PSA) modification of neural cell adhesion molecule, which reduces NCAM-mediated cell adhesion, is involved in several developmental processes, such as cell migration, axonal growth, pathfinding, and synaptic plasticity. It has been suggested that PSA-NCAM expression may inhibit myelination. To clarify the relationship between myelination and the expression of PSA-NCAM we systematically investigated its expression in the human forebrain from embryonic stage to midgestation...

  3. Understanding the Function of Tuberous Sclerosis Complex Genes in Neural Development: Roles in Synapse Assembly and Axon Guidance

    Science.gov (United States)

    2012-02-01

    with tuberous sclerosis as well as other epileptic syndromes. Finally, we examined the function of a key downstream element of TOR-TSC...enhances GABA(A) receptor cell-surface expression by a phosphatidylinositol 3-kinase/Akt pathway—Rele- vance to sepsis-associated encephalopathy . J

  4. Inter-axonal interaction defines tiled presynaptic innervation in C. elegans

    OpenAIRE

    Mizumoto, Kota; Shen, Kang

    2013-01-01

    Cellular interactions between neighboring axons are essential for global topographic map formation. Here we show that axonal interactions also precisely instruct the location of synapses. Motoneurons form en passant synapses in Caenorhabditis elegans. While axons from the same neuron class significantly overlap, each neuron innervates a unique and tiled segment of the muscle field by restricting its synapses to a distinct subaxonal domain—a phenomenon we term “synaptic tiling”. Using DA8 and ...

  5. Oligodendroglial MCT1 and Metabolic Support of Axons in Multiple Sclerosis

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0524 TITLE:Oligodendroglial MCT1 and Metabolic Support of Axons in Multiple Sclerosis PRINCIPAL INVESTIGATOR: Jeffrey D...29 Sep 2015 4. TITLE AND SUBTITLE Oligodendroglial MCT1 and Metabolic Support of Axons in Multiple Sclerosis 5a. CONTRACT NUMBER W81XWH-14-1-0524...MCT1 in injured oligodendroglia of multiple sclerosis patients contributes to axon neurodegeneration and that increasing MCT1 will be protective in the

  6. Acutely damaged axons are remyelinated in multiple sclerosis and experimental models of demyelination.

    Science.gov (United States)

    Schultz, Verena; van der Meer, Franziska; Wrzos, Claudia; Scheidt, Uta; Bahn, Erik; Stadelmann, Christine; Brück, Wolfgang; Junker, Andreas

    2017-08-01

    Remyelination is in the center of new therapies for the treatment of multiple sclerosis to resolve and improve disease symptoms and protect axons from further damage. Although remyelination is considered beneficial in the long term, it is not known, whether this is also the case early in lesion formation. Additionally, the precise timing of acute axonal damage and remyelination has not been assessed so far. To shed light onto the interrelation between axons and the myelin sheath during de- and remyelination, we employed cuprizone- and focal lysolecithin-induced demyelination and performed time course experiments assessing the evolution of early and late stage remyelination and axonal damage. We observed damaged axons with signs of remyelination after cuprizone diet cessation and lysolecithin injection. Similar observations were made in early multiple sclerosis lesions. To assess the correlation of remyelination and axonal damage in multiple sclerosis lesions, we took advantage of a cohort of patients with early and late stage remyelinated lesions and assessed the number of APP- and SMI32- positive damaged axons and the density of SMI31-positive and silver impregnated preserved axons. Early de- and remyelinating lesions did not differ with respect to axonal density and axonal damage, but we observed a lower axonal density in late stage demyelinated multiple sclerosis lesions than in remyelinated multiple sclerosis lesions. Our findings suggest that remyelination may not only be protective over a long period of time, but may play an important role in the immediate axonal recuperation after a demyelinating insult. © 2017 The Authors GLIA Published by Wiley Periodicals, Inc.

  7. Ribosomes and polyribosomes are present in the squid giant axon: an immunocytochemical study.

    Science.gov (United States)

    Sotelo, J R; Kun, A; Benech, J C; Giuditta, A; Morillas, J; Benech, C R

    1999-05-01

    Ribosomes and polyribosomes were detected by immuno-electron microscopy in the giant axon and small axons of the squid using a polyclonal antibody against rat brain ribosomes. The ribosomal fraction used as antigen was purified by ultracentrifugation on a sucrose density gradient and shown to contain ribosomal RNAs and native ribosomes. The polyclonal antibody raised in rabbits reacted with at least ten proteins on immunoblots of purified rat brain ribosomes as well as with a set of multiple ribosomal proteins prepared from the squid giant fiber lobe. Immunoreactions were performed on cryostat sections of the stellate nerve cut at a distance of more than 3 cm from the stellate ganglion, using pre-embedding techniques. Ribosomes and polyribosomes were identified within the giant axon and small axons using electron microscopic methods, following binding of peroxidase-conjugated anti-rabbit IgG secondary antibody. Polysomes were more frequently localized in peripheral axoplasm, including the cortical layer of the giant axon, and were generally associated with unidentified cytoskeletal filaments or with dense matrix material. The immunochemical demonstration of ribosomes and polyribosomes in the giant axon and small axons of the squid confirms similar observations in the squid and the goldfish obtained with the method of electron spectroscopic imaging, and strongly supports the view that a local system of protein synthesis is present in axons. The immunochemical method here described offers an alternative tool for the selective identification of ribosomes, and is likely to prove of value in the analyses of other axonal systems.

  8. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Christian Witzel

    2015-01-01

    Full Text Available Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modified in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the influence of systemic ManNProp application using a specific in vivo mouse model. Using mice expressing axonal fluorescent proteins, we quantified the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow fluorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection. ManNProp significantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm; P < 0.005 and the number of arborizing axons (21% vs. 16% P = 0.008 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoengineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.

  9. The time course of ongoing activity during neuritis and following axonal transport disruption.

    Science.gov (United States)

    Satkeviciute, Ieva; Goodwin, George; Bove, Geoffrey M; Dilley, Andrew

    2018-02-21

    Local nerve inflammation (neuritis) leads to ongoing activity and axonal mechanical sensitivity (AMS) along intact nociceptor axons, and disrupts axonal transport. This phenomenon forms the most feasible cause of radiating pain, such as sciatica. We have previously shown that axonal transport disruption without inflammation or degeneration also leads to AMS, but does not cause ongoing activity at the time point when AMS occurs, despite causing cutaneous hypersensitivity. However, there have been no systematic studies of ongoing activity during neuritis or non-inflammatory axonal transport disruption. In this study, we present the time course of ongoing activity from primary sensory neurons following neuritis and vinblastine-induced axonal transport disruption. Whereas 24% of C/slow Aδ-fiber neurons had ongoing activity during neuritis, few (disruption of axonal transport without inflammation does not lead to ongoing activity in sensory neurons, including nociceptors, but does cause a rapid and transient development of AMS. Since it is proposed that AMS underlies mechanically-induced radiating pain, and a transient disruption of axonal transport (as previously reported) leads to transient AMS, it follows that processes that disrupt axonal transport, such as neuritis, must persist to maintain AMS and the associated symptoms.

  10. Segregation of ipsilateral retinal ganglion cell axons at the optic chiasm requires the Shh receptor Boc.

    Science.gov (United States)

    Fabre, Pierre J; Shimogori, Tomomi; Charron, Frédéric

    2010-01-06

    The pattern of contralaterally and ipsilaterally projecting retinal ganglion cell (RGC) axons at the optic chiasm is essential for the establishment of binocular vision. Contralateral axons cross the chiasm midline as they progress from the optic nerve to the optic tract. In contrast, ipsilateral axons deviate from the chiasm and continue in the ipsilateral optic tract, avoiding the chiasm midline. The molecular mechanism underlying this phenomenon is not completely understood. Here we show that the Sonic Hedgehog (Shh) receptor Boc is enriched in ipsilateral RGCs of the developing retina. Together with the presence of Shh at the midline, this complementary expression pattern led us to hypothesize that Shh might repel ipsilateral RGC axons at the chiasm. Consistent with this hypothesis, we found that only Boc-positive RGC axons retract in vitro in response to Shh and that this response is lost in Boc mutant RGCs. In vivo, we show that Boc is required for the normal segregation of ipsilateral axons at the optic chiasm and, conversely, that Boc expression in contralateral RGCs prevents their axons from crossing the optic chiasm. Together, these results suggest that Shh repels ipsilateral RGC axons at the optic chiasm via its receptor Boc. This work identifies a novel molecular pathway required for the segregation of axons at the optic chiasm.

  11. Alignment of Astrocytes Increases Neuronal Growth in Three-Dimensional Collagen Gels and Is Maintained Following Plastic Compression to Form a Spinal Cord Repair Conduit

    OpenAIRE

    East, Emma; de Oliveira, Daniela Blum; Golding, Jon P.; Phillips, James B.

    2010-01-01

    After injury to the spinal cord, reactive astrocytes form a glial scar consisting of highly ramified cell processes that constitute a major impediment to repair, partly due to their lack of orientation and guidance for regenerating axons. In some nonmammalian vertebrates, successful central nervous system regeneration is attributed to the alignment of reactive glia, which guide axons across the lesion site. Here, a three-dimensional mammalian cell-seeded collagen gel culture system was used t...

  12. Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients.

    Directory of Open Access Journals (Sweden)

    Jan Jessen Krut

    Full Text Available Prevalence of neurocognitive impairment in HIV-1 infected patients is reported to be high. Whether this is a result of active HIV-related neurodegeneration is unclear. We examined axonal injury in HIV-1 patients by measuring the light subunit of neurofilament protein (NFL in CSF with a novel, sensitive method.With a cross-sectional design, CSF concentrations of neurofilament protein light (NFL (marker of neuronal injury, neopterin (intrathecal immunoactivation and CSF/Plasma albumin ratio (blood-brain barrier integrity were analyzed on CSF from 252 HIV-infected patients, subdivided into untreated neuroasymptomatics (n = 200, HIV-associated dementia (HAD (n = 14 and on combinations antiretroviral treatment (cART (n = 85, and healthy controls (n = 204. 46 HIV-infected patients were included in both treated and untreated groups, but sampled at different timepoints. Furthermore, 78 neuroasymptomatic patients were analyzed before and after treatment initiation.While HAD patients had the highest NFL concentrations, elevated CSF NFL was also found in 33% of untreated neuroasymptomatic patients, mainly in those with blood CD4+ cell counts below 250 cells/μL. CSF NFL concentrations in the untreated neuroasymptomatics and treated groups were equivalent to controls 18.5 and 3.9 years older, respectively. Neopterin correlated with NFL levels in untreated groups while the albumin ratio correlated with NFL in both untreated and treated groups.Increased CSF NFL indicates ongoing axonal injury in many neuroasymptomatic patients. Treatment decreases NFL, but treated patients retain higher levels than controls, indicating either continued virus-related injury or an aging-like effect of HIV infection. NFL correlates with neopterin and albumin ratio, suggesting an association between axonal injury, neuroinflammation and blood-brain barrier permeability. NFL appears to be a sensitive biomarker of subclinical and clinical brain injury in HIV and warrants further

  13. DOE Waste Treatability Group Guidance

    International Nuclear Information System (INIS)

    Kirkpatrick, T.D.

    1995-01-01

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the sole basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level

  14. Training on automated machine guidance.

    Science.gov (United States)

    2009-05-01

    "Beginning in 2006, WisDOT and the Construction Materials Support Center (CMSC) at UW-Madison worked together : to develop the specifications and the QA/QC procedures for GPS machine guidance on highway grading projects. These : specifications and pr...

  15. DOE Waste Treatability Group Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, T.D.

    1995-01-01

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the sole basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.

  16. Consensus standard requirements and guidance

    International Nuclear Information System (INIS)

    Putman, V.L.

    1995-01-01

    This report presents information from the ANS Criticality Alarm System Workshop relating to the consensus standard requirements and guidance. Topics presented include: definition; nomenclature; requirements and recommendations; purpose of criticality alarms; design criteria; signal characteristics; reliability, dependability and durability; tests; and emergency preparedness and planning

  17. Interstitial guidance of cancer invasion.

    NARCIS (Netherlands)

    Gritsenko, P.G.; Ilina, O.; Friedl, P.H.

    2012-01-01

    Cancer cell invasion into healthy tissues develops preferentially along pre-existing tracks of least resistance, followed by secondary tissue remodelling and destruction. The tissue scaffolds supporting or preventing guidance of invasion vary in structure and molecular composition between organs. In

  18. Widening opportunities for career guidance

    DEFF Research Database (Denmark)

    Poulsen, Bo Klindt; Skovhus, Randi Boelskifte; Thomsen, Rie

    2018-01-01

    This chapter discusses research circles as a way of organising collaboration between career guidance researchers and practitioners. Such collaboration, it is argued, helps resist neoliberal governance mechanisms and supports social justice perspectives among teachers involved in the provision....... The analyses show that the support provided within research circles also serve to disrupt the neoliberal discourse of a functionalist view on career learning activities....

  19. Widening opportunities for career guidance

    DEFF Research Database (Denmark)

    Poulsen, Bo Klindt; Skovhus, Randi Boelskifte; Thomsen, Rie

    2017-01-01

    This chapter discusses research circles as a way of organising collaboration between career guidance researchers and practitioners. Such collaboration, it is argued, helps resist neoliberal governance mechanisms and supports social justice perspectives among teachers involved in the provision....... The analyses show that the support provided within research circles also serve to disrupt the neoliberal discourse of a functionalist view on career learning activities....

  20. Mechanisms of hyperpolarization in regenerated mature motor axons in cat

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Krarup, Christian

    2004-01-01

    We found persistent abnormalities in the recovery of membrane excitability in long-term regenerated motor nerve fibres in the cat as indicated in the companion paper. These abnormalities could partly be explained by membrane hyperpolarization. To further investigate this possibility, we compared...... the changes in excitability in control nerves and long-term regenerated cat nerves (3-5 years after tibial nerve crush) during manoeuvres known to alter axonal membrane Na(+)-K(+) pump function: polarization, cooling to 20 degrees C, reperfusion after 10 min ischaemia, and up to 60 s of repetitive stimulation...

  1. BDNF gene delivery within and beyond templated agarose multi-channel guidance scaffolds enhances peripheral nerve regeneration

    Science.gov (United States)

    Gao, Mingyong; Lu, Paul; Lynam, Dan; Bednark, Bridget; Campana, W. Marie; Sakamoto, Jeff; Tuszynski, Mark

    2016-12-01

    Objective. We combined implantation of multi-channel templated agarose scaffolds with growth factor gene delivery to examine whether this combinatorial treatment can enhance peripheral axonal regeneration through long sciatic nerve gaps. Approach. 15 mm long scaffolds were templated into highly organized, strictly linear channels, mimicking the linear organization of natural nerves into fascicles of related function. Scaffolds were filled with syngeneic bone marrow stromal cells (MSCs) secreting the growth factor brain derived neurotrophic factor (BDNF), and lentiviral vectors expressing BDNF were injected into the sciatic nerve segment distal to the scaffold implantation site. Main results. Twelve weeks after injury, scaffolds supported highly linear regeneration of host axons across the 15 mm lesion gap. The incorporation of BDNF-secreting cells into scaffolds significantly increased axonal regeneration, and additional injection of viral vectors expressing BDNF into the distal segment of the transected nerve significantly enhanced axonal regeneration beyond the lesion. Significance. Combinatorial treatment with multichannel bioengineered scaffolds and distal growth factor delivery significantly improves peripheral nerve repair, rivaling the gold standard of autografts.

  2. Relationship of acute axonal damage, Wallerian degeneration, and clinical disability in multiple sclerosis.

    Science.gov (United States)

    Singh, Shailender; Dallenga, Tobias; Winkler, Anne; Roemer, Shanu; Maruschak, Brigitte; Siebert, Heike; Brück, Wolfgang; Stadelmann, Christine

    2017-03-17

    Axonal damage and loss substantially contribute to the incremental accumulation of clinical disability in progressive multiple sclerosis. Here, we assessed the amount of Wallerian degeneration in brain tissue of multiple sclerosis patients in relation to demyelinating lesion activity and asked whether a transient blockade of Wallerian degeneration decreases axonal loss and clinical disability in a mouse model of inflammatory demyelination. Wallerian degeneration and acute axonal damage were determined immunohistochemically in the periplaque white matter of multiple sclerosis patients with early actively demyelinating lesions, chronic active lesions, and inactive lesions. Furthermore, we studied the effects of Wallerian degeneration blockage on clinical severity, inflammatory pathology, acute axonal damage, and long-term axonal loss in experimental autoimmune encephalomyelitis using Wallerian degeneration slow (Wld S ) mutant mice. The highest numbers of axons undergoing Wallerian degeneration were found in the perilesional white matter of multiple sclerosis patients early in the disease course and with actively demyelinating lesions. Furthermore, Wallerian degeneration was more abundant in patients harboring chronic active as compared to chronic inactive lesions. No co-localization of neuropeptide Y-Y1 receptor, a bona fide immunohistochemical marker of Wallerian degeneration, with amyloid precursor protein, frequently used as an indicator of acute axonal transport disturbance, was observed in human and mouse tissue, indicating distinct axon-degenerative processes. Experimentally, a delay of Wallerian degeneration, as observed in Wld S mice, did not result in a reduction of clinical disability or acute axonal damage in experimental autoimmune encephalomyelitis, further supporting that acute axonal damage as reflected by axonal transport disturbances does not share common molecular mechanisms with Wallerian degeneration. Furthermore, delaying Wallerian degeneration

  3. Comparison of the fastest regenerating motor and sensory myelinated axons in the same peripheral nerve.

    Science.gov (United States)

    Moldovan, Mihai; Sørensen, Jesper; Krarup, Christian

    2006-09-01

    Functional outcome after peripheral nerve regeneration is often poor, particularly involving nerve injuries far from their targets. Comparison of sensory and motor axon regeneration before target reinnervation is not possible in the clinical setting, and previous experimental studies addressing the question of differences in growth rates of different nerve fibre populations led to conflicting results. We developed an animal model to compare growth and maturation of the fastest growing sensory and motor fibres within the same mixed nerve after Wallerian degeneration. Regeneration of cat tibial nerve after crush (n = 13) and section (n = 7) was monitored for up to 140 days, using implanted cuff electrodes placed around the sciatic and tibial nerves and wire electrodes at plantar muscles. To distinguish between sensory and motor fibres, recordings were carried out from L6-S2 spinal roots using cuff electrodes. The timing of laminectomy was based on the presence of regenerating fibres along the nerve within the tibial cuff. Stimulation of unlesioned tibial nerves (n = 6) evoked the largest motor response in S1 ventral root and the largest sensory response in L7 dorsal root. Growth rates were compared by mapping the regenerating nerve fibres within the tibial nerve cuff to all ventral or dorsal roots and, regardless of the lesion type, the fastest growth was similar in sensory and motor fibres. Maturation was assessed as recovery of the maximum motor and sensory conduction velocities (CVs) within the tibial nerve cuff. Throughout the observation period the CV was approximately 14% faster in regenerated sensory fibres than in motor fibres in accordance with the difference observed in control nerves. Recovery of amplitude was only partial after section, whereas the root distribution pattern was restored. Our data suggest that the fastest growth and maturation rates that can be achieved during regeneration are similar for motor and sensory myelinated fibres.

  4. Imaging findings in diffuse axonal injury after closed head trauma

    Energy Technology Data Exchange (ETDEWEB)

    Parizel, P.M.; Oezsarlak, Oe.; Goethem, J.W. van; Hauwe, L. van den; Schepper, A.M. de [Department of Radiology, Universitair Ziekenhuis Antwerpen (University of Antwerp), Edegem (Belgium); Dillen, C.; Cosyns, P. [Department of Psychiatry, Universitair Ziekenhuis Antwerpen (University of Antwerp), Edegem (Belgium); Verlooy, J. [Department of Neurosurgery, Universitair Ziekenhuis Antwerpen (University of Antwerp), Edegem (Belgium)

    1998-07-01

    Even in patients with closed head trauma, brain parenchyma can be severely injured due to disruption of axonal fibers by shearing forces during acceleration, deceleration, and rotation of the head. In this article we review the spectrum of imaging findings in patients with diffuse axonal injuries (DAI) after closed head trauma. Knowledge of the location and imaging characteristics of DAI is important to radiologists for detection and diagnosis. Common locations of DAI include: cerebral hemispheric gray-white matter interface and subcortical white matter, body and splenium of corpus callosum, basal ganglia, dorsolateral aspect of brainstem, and cerebellum. In the acute phase, CT may show punctate hemorrhages. The true extent of brain involvement is better appreciated with MR imaging, because both hemorrhagic and non-hemorrhagic lesions (gliotic scars) can be detected. The MR appearance of DAI lesions depends on several factors, including age of injury, presence of hemorrhage or blood-breakdown products (e. g., hemosiderin), and type of sequence used. Technical aspects in MR imaging of these patients are discussed. Non-hemorrhagic lesions can be detected with fluid attenuated inversion recovery (FLAIR), proton-density-, or T2-weighted images, whereas gradient echo sequences with long TE increase the visibility of old hemorrhagic lesions. (orig.) With 12 figs., 12 refs.

  5. Rapid signaling in distinct dopaminergic axons during locomotion and reward

    Science.gov (United States)

    Howe, MW; Dombeck, DA

    2016-01-01

    Summary Dopaminergic projections from the midbrain to striatum are critical for motor control, as their degeneration in Parkinson’s disease results in profound movement deficits. Paradoxically, most recording methods report rapid phasic dopamine signaling (~100ms bursts) to unpredicted rewards, with little evidence for movement-related signaling. The leading model posits that phasic signaling in striatum targeting dopamine neurons drive reward-based learning, while slow variations in firing (tens of seconds to minutes) in these same neurons bias animals towards or away from movement. However, despite widespread acceptance of this model, current methods have provided little evidence to support or refute it. Here, using new optical recording methods, we report the discovery of rapid phasic signaling in striatum-targeting dopaminergic axons that was associated with, and capable of triggering, locomotion in mice. Axons expressing these signals were largely distinct from those signaling during unexpected rewards. These results suggest that dopaminergic neuromodulation can differentially impact motor control and reward learning with sub-second precision and suggest that both precise signal timing and neuronal subtype are important parameters to consider in the treatment of dopamine-related disorders. PMID:27398617

  6. Maladjusted Children and the Child Guidance Service

    Science.gov (United States)

    Tizard, Jack

    1973-01-01

    Argues that the child guidance clinic, linchpin of the child guidance service, is an expensive, ineffective, and wrongly conceived institution. Does not discuss the needs of preschoolers, services by special classes, nor special schools for maladjusted pupils. (RJ)

  7. Abundant expression of guidance and synaptogenic molecules in the injured spinal cord.

    Directory of Open Access Journals (Sweden)

    Anne Jacobi

    Full Text Available BACKGROUND: Spinal interneurons have emerged as crucial targets of supraspinal input during post-injury axonal remodelling. For example, lesioned corticospinal projections use propriospinal neurons as relay stations to form intraspinal detour circuits that circumvent the lesion site and contribute to functional recovery. While a number of the molecules that determine the formation of neuronal circuits in the developing nervous system have been identified, it is much less understood which of these cues are also expressed in the injured spinal cord and can thus guide growing collaterals and initiate synaptogenesis during circuit remodelling. METHODOLOGY/PRINCIPAL FINDINGS: To address this question we characterized the expression profile of a number of guidance and synaptogenic molecules in the cervical spinal cord of healthy and spinal cord-injured mice by in situ hybridization. To assign the expression of these molecules to distinct populations of interneurons we labeled short and long propriospinal neurons by retrograde tracing and glycinergic neurons using a transgenically expressed fluorescent protein. Interestingly, we found that most of the molecules studied including members of slit-, semaphorin-, synCAM-, neuroligin- and ephrin- families as well as their receptors are also present in the adult CNS. While many of these molecules were abundantly expressed in all interneurons examined, some molecules including slits, semaphorin 7a, synCAM4 and neuroligin 1 showed preferential expression in propriospinal interneurons. Overall the expression pattern of guidance and synaptogenic molecules in the cervical spinal cord appeared to be stable over time and was not substantially altered following a midthoracic spinal cord injury. CONCLUSIONS: Taken together, our study indicates that many of the guidance and synaptogenic cues that regulate neuronal circuit formation in development are also present in the adult CNS and therefore likely contribute to the

  8. Growth Factor and Laminin Effect with Muscular Fiber Sheath on Repairing of the Sciatica Nerve

    Directory of Open Access Journals (Sweden)

    S Torabi

    2014-01-01

    Background & aim: Peripheral nerve injuries which can lead to a physical disability. If the defect is very low, direct suture without tension on both ends of the cut nerve regeneration is considered as a standard procedure. Otherwise, to reconstruct the axons, the gap must be filled by graft material in order to the guidance. Due to the similarity of the matrix tubular skeletal muscle and nerve muscles graft was used to repair in this study. Methods: In the present experimental study, 42 female Wistar rats were divided into three groups and underwent surgery. In the first group a narrow strip of muscle was prepared by freezing – thawing, and later sutured between the distal and proximal sciatic nerve. In the second group, the gap caused by muscle graft was regenerated and the nerve growth factor and laminin was injected into the graft. In the control group, the two ends of the cut nerve were hidden beneath the adjacent muscles. Next, a group of rats with sciatic functional index was investigated for the behavioral. On the other group were examined for histological studies after two months. Results: Sciatic functional index and Mean counts of myelinated fibers in two graft groups compared with the control group was significant p<0.05. Statistical analysis was performed using ANOVA test. Conclusion: co-axially aligned muscle grafts were an appropriate alternative substitute for repairing. It seems that the nerve growth factor and laminin have a positive role in axonal regeneration and functional recovery acceleration. Key words: Sciatic Functional Index, muscle graft, NGF, Laminin

  9. Acetylcholine elongates neuronal growth cone filopodia via activation of nicotinic acetylcholine receptors.

    Science.gov (United States)

    Zhong, Lei Ray; Estes, Stephen; Artinian, Liana; Rehder, Vincent

    2013-07-01

    In addition to acting as a classical neurotransmitter in synaptic transmission, acetylcholine (ACh) has been shown to play a role in axonal growth and growth cone guidance. What is not well understood is how ACh acts on growth cones to affect growth cone filopodia, structures known to be important for neuronal pathfinding. We addressed this question using an identified neuron (B5) from the buccal ganglion of the pond snail Helisoma trivolvis in cell culture. ACh treatment caused pronounced filopodial elongation within minutes, an effect that required calcium influx and resulted in the elevation of the intracellular calcium concentration ([Ca]i ). Whole-cell patch clamp recordings showed that ACh caused a reduction in input resistance, a depolarization of the membrane potential, and an increase in firing frequency in B5 neurons. These effects were mediated via the activation of nicotinic acetylcholine receptors (nAChRs), as the nAChR agonist dimethylphenylpiperazinium (DMPP) mimicked the effects of ACh on filopodial elongation, [Ca]i elevation, and changes in electrical activity. Moreover, the nAChR antagonist tubucurarine blocked all DMPP-induced effects. Lastly, ACh acted locally at the growth cone, because growth cones that were physically isolated from their parent neuron responded to ACh by filopodial elongation with a similar time course as growth cones that remained connected to their parent neuron. Our data revealed a critical role for ACh as a modulator of growth cone filopodial dynamics. ACh signaling was mediated via nAChRs and resulted in Ca influx, which, in turn, caused filopodial elongation. Copyright © 2013 Wiley Periodicals, Inc.

  10. Review of soil contamination guidance

    International Nuclear Information System (INIS)

    Mueller, M.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1981-08-01

    A review of existing and proposed radioactive soil contamination standards and guidance was conducted for United Nuclear Corporation (UNC), Office of Surplus Facilities Management. Information was obtained from both government agencies and other sources during a literature survey. The more applicable standards were reviewed, evaluated, and summarized. Information pertaining to soil contamination for both facility operation and facility decommissioning was obtained from a variety of sources. These sources included: the Code of Federal Regulations, regulatory guides, the Federal Register, topical reports written by various government agencies, topical reports written by national laboratories, and publications from the American National Standards Institute (ANSI). It was difficult to directly compare the standards and guidance obtained from these sources since each was intended for a specific situation and different units or bases were used. However, most of the information reviewed was consistent with the philosophy of maintaining exposures at levels as low as reasonably achievable

  11. The role of mitochondria in axonal degeneration and tissue repair in MS

    NARCIS (Netherlands)

    van Horssen, J.; Witte, M.E.; Ciccarelli, O.

    2012-01-01

    Axonal injury is a key feature of multiple sclerosis (MS) pathology and is currently seen as the main correlate for permanent clinical disability. Although little is known about the pathogenetic mechanisms that drive axonal damage and loss, there is accumulating evidence highlighting the central

  12. Structure and Function of an Actin-Based Filter in the Proximal Axon

    Directory of Open Access Journals (Sweden)

    Varuzhan Balasanyan

    2017-12-01

    Full Text Available Summary: The essential organization of microtubules within neurons has been described; however, less is known about how neuronal actin is arranged and the functional implications of its arrangement. Here, we describe, in live cells, an actin-based structure in the proximal axon that selectively prevents some proteins from entering the axon while allowing the passage of others. Concentrated patches of actin in proximal axons are present shortly after axonal specification in rat and zebrafish neurons imaged live, and they mark positions where anterogradely traveling vesicles carrying dendritic proteins halt and reverse. Patches colocalize with the ARP2/3 complex, and when ARP2/3-mediated nucleation is blocked, a dendritic protein mislocalizes to the axon. Patches are highly dynamic, with few persisting longer than 30 min. In neurons in culture and in vivo, actin appears to form a contiguous, semipermeable barrier, despite its apparently sparse distribution, preventing axonal localization of constitutively active myosin Va but not myosin VI. : Balasanyan et al. find dynamic patches of actin in proximal axons of live neurons, mature and newly differentiated, in culture and in vivo. Patches contribute to a filter that sequesters some proteins within the somatodendritic domain while allowing others to pass into the axon, leading to polarized localization of proteins.

  13. The progeroid gene BubR1 regulates axon myelination and motor function

    NARCIS (Netherlands)

    Choi, C.I.; Yoo, K.H.; Hussaini, S.M.; Jeon, B.T.; Welby, J.; Gan, H.; Scarisbrick, I.A.; Zhang, Z.; Baker, D.J.; Deursen, J.M.A. van; Rodriguez, M.; Jang, M.H.

    2016-01-01

    Myelination, the process by which oligodendrocytes form the myelin sheath around axons, is key to axonal signal transduction and related motor function in the central nervous system (CNS). Aging is characterized by degenerative changes in the myelin sheath, although the molecular underpinnings of

  14. Modeling of the axon membrane skeleton structure and implications for its mechanical properties.

    Directory of Open Access Journals (Sweden)

    Yihao Zhang

    2017-02-01

    Full Text Available Super-resolution microscopy recently revealed that, unlike the soma and dendrites, the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under tension. Currently, the structure-function relationship of the axonal structure is unclear. Here, we used atomic force microscopy (AFM to show that the stiffness of the axon plasma membrane is significantly higher than the stiffnesses of dendrites and somata. To examine whether the structure of the axon plasma membrane determines its overall stiffness, we introduced a coarse-grain molecular dynamics model of the axon membrane skeleton that reproduces the structure identified by super-resolution microscopy. Our proposed computational model accurately simulates the median value of the Young's modulus of the axon plasma membrane determined by atomic force microscopy. It also predicts that because the spectrin filaments are under entropic tension, the thermal random motion of the voltage-gated sodium channels (Nav, which are bound to ankyrin particles, a critical axonal protein, is reduced compared to the thermal motion when spectrin filaments are held at equilibrium. Lastly, our model predicts that because spectrin filaments are under tension, any axonal injuries that lacerate spectrin filaments will likely lead to a permanent disruption of the membrane skeleton due to the inability of spectrin filaments to spontaneously form their initial under-tension configuration.

  15. Axonal and presynaptic protein synthesis: new insights into the biology of the neuron

    NARCIS (Netherlands)

    Giuditta, A.; Kaplan, B.B.; van Minnen, J.; Alvarez, J.; Koenig, E.

    2002-01-01

    The presence of a local mRNA translation system in axons and terminals was proposed almost 40 years ago. Over the ensuing period, an impressive body of evidence has grown to support this proposal - yet the nerve cell body is still considered to be the only source of axonal and presynaptic proteins.

  16. Blast overpressure induced axonal injury changes in rat brainstem and spinal cord

    Directory of Open Access Journals (Sweden)

    Srinivasu Kallakuri

    2015-01-01

    Full Text Available Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s of blast overpressure (OP induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM tracts of cervical spinal cord are limited. Objective: The purpose of this study was to assess the extent of axonal injury in WM tracts of cervical spinal cord in male Sprague Dawley rats subjected to a single insult of blast OP. Materials and Methods: Sagittal brainstem sections and horizontal cervical spinal cord sections from blast and sham animals were stained by neurofilament light (NF-L chain and beta amyloid precursor protein immunocytochemistry and observed for axonal injury changes. Results: Observations from this preliminary study demonstrate axonal injury changes in the form of prominent swellings, retraction bulbs, and putative signs of membrane disruptions in the brainstem and cervical spinal cord WM tracts of rats subjected to blast OP. Conclusions: Prominent axonal injury changes following the blast OP exposure in brainstem and cervical spinal WM tracts underscores the need for careful evaluation of blast induced injury changes and associated symptoms. NF-L immunocytochemistry can be considered as an additional tool to assess the blast OP induced axonal injury.

  17. A high mitochondrial transport rate characterizes CNS neurons with high axonal regeneration capacity.

    Directory of Open Access Journals (Sweden)

    Romain Cartoni

    Full Text Available Improving axonal transport in the injured and diseased central nervous system has been proposed as a promising strategy to improve neuronal repair. However, the contribution of each cargo to the repair mechanism is unknown. DRG neurons globally increase axonal transport during regeneration. Because the transport of specific cargos after axonal insult has not been examined systematically in a model of enhanced regenerative capacity, it is unknown whether the transport of all cargos would be modulated equally in injured central nervous system neurons. Here, using a microfluidic culture system we compared neurons co-deleted for PTEN and SOCS3, an established model of high axonal regeneration capacity, to control neurons. We measured the axonal transport of three cargos (mitochondria, synaptic vesicles and late endosomes in regenerating axons and found that the transport of mitochondria, but not the other cargos, was increased in PTEN/SOCS3 co-deleted axons relative to controls. The results reported here suggest a pivotal role for this organelle during axonal regeneration.

  18. Schwann Cell and Axon: An Interlaced Unit-From Action Potential to Phenotype Expression.

    Science.gov (United States)

    Court, Felipe A; Alvarez, Jaime

    2016-01-01

    Here we propose a model of a peripheral axon with a great deal of autonomy from its cell body-the autonomous axon-but with a substantial dependence on its ensheathing Schwann cell (SC), the axon-SC unit. We review evidence in several fields and show that (i) axons can extend sprouts and grow without the concurrence of the cell body, but regulated by SCs; (ii) axons synthesize their proteins assisted by SCs that supply them with ribosomes and, probably, with mRNAs by way of exosomes; (iii) the molecular organization of the axoplasm, i.e., its phenotype, is regulated by the SC, as illustrated by the axonal microtubular content, which is down-regulated by the SC; and (iv) the axon has a program for self-destruction that is boosted by the SC. The main novelty of this model axon-SC unit is that it breaks with the notion that all proteins of the nerve cell are specified by its own nucleus. The notion of a collaborative specification of the axoplasm by more than one nucleus, which we present here, opens a new dimension in the understanding of the nervous system in health and disease and is also a frame of reference to understand other tissues or cell associations.

  19. Organophosphate-Related Alterations in Myelin and Axonal Transport in the Living Mammalian Brain

    Science.gov (United States)

    2014-10-01

    510. Duncan JE, Goldstein LS. 2006. The Genetics of Axonal Transport and Axonal Transport Disorders PLoS Genet . 2(9): e124. 25 Duysen EG, Li...Gitajn L, Rea W, Yang Y, Stein EA.2007. Cocaine -induced brain activation detected by dynamic manganese-enhanced magnetic resonance imaging (MEMRI

  20. Frizzled3 controls axonal polarity and intermediate target entry during striatal pathway development

    NARCIS (Netherlands)

    Morello, Francesca; Prasad, Asheeta A.; Rehberg, Kati; Baptista Vieira de Sá, Renata; Antón-Bolaños, Noelia; Leyva-Diaz, Eduardo; Adolfs, Youri; Tissir, Fadel; López-Bendito, Guillermina; Pasterkamp, R. Jeroen

    2015-01-01

    The striatum is a large brain nucleus with an important role in the control of movement and emotions.Mediumspiny neurons (MSNs) are striatal output neurons forming prominent descending axon tracts that target different brain nuclei. However, how MSN axon tracts in the forebrain develop remains

  1. Axon-somatic back-propagation in detailed models of spinal alpha motoneurons

    Directory of Open Access Journals (Sweden)

    Pietro eBalbi

    2015-02-01

    Full Text Available Antidromic action potentials following distal stimulation of motor axons occasionally fail to invade the soma of alpha motoneurons in spinal cord, due to their passing through regions of high non-uniformity.Morphologically detailed conductance-based models of cat spinal alpha motoneurons have been developed, with the aim to reproduce and clarify some aspects of the electrophysiological behavior of the antidromic axon-somatic spike propagation. Fourteen 3D morphologically detailed somata and dendrites of cat spinal alpha motoneurons have been imported from an open-access web-based database of neuronal morphologies, NeuroMorpho.org, and instantiated in neurocomputational models. An axon hillock, an axonal initial segment and a myelinated axon are added to each model.By sweeping the diameter of the axonal initial segment (AIS and the axon hillock, as well as the maximal conductances of sodium channels at the AIS and at the soma, the developed models are able to show the relationships between different geometric and electrophysiological configurations and the voltage attenuation of the antidromically travelling wave.In particular, a greater than usually admitted sodium conductance at AIS is necessary and sufficient to overcome the dramatic voltage attenuation occurring during antidromic spike propagation both at the myelinated axon-AIS and at the AIS-soma transitions.

  2. Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research?

    Science.gov (United States)

    De Vos, Kurt J; Hafezparast, Majid

    2017-09-01

    Intracellular trafficking of cargoes is an essential process to maintain the structure and function of all mammalian cell types, but especially of neurons because of their extreme axon/dendrite polarisation. Axonal transport mediates the movement of cargoes such as proteins, mRNA, lipids, membrane-bound vesicles and organelles that are mostly synthesised in the cell body and in doing so is responsible for their correct spatiotemporal distribution in the axon, for example at specialised sites such as nodes of Ranvier and synaptic terminals. In addition, axonal transport maintains the essential long-distance communication between the cell body and synaptic terminals that allows neurons to react to their surroundings via trafficking of for example signalling endosomes. Axonal transport defects are a common observation in a variety of neurodegenerative diseases, and mutations in components of the axonal transport machinery have unequivocally shown that impaired axonal transport can cause neurodegeneration (reviewed in El-Kadi et al., 2007, De Vos et al., 2008; Millecamps and Julien, 2013). Here we review our current understanding of axonal transport defects and the role they play in motor neuron diseases (MNDs) with a specific focus on the most common form of MND, amyotrophic lateral sclerosis (ALS). Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Career Guidance in Five English Independent Schools

    Science.gov (United States)

    Hutchinson, Jo

    2018-01-01

    English independent schools are not required to follow government statutory guidance in a number of aspects including career education and guidance, and yet many are actively engaged in careers work and this has caught the attention of policymakers. State schools are subject to statutory guidance but, according to Ofsted and other authorities, the…

  4. Vocational guidance in social volunteering

    Directory of Open Access Journals (Sweden)

    Nikolay S. Pryazhnikov

    2017-03-01

    Full Text Available The paper discusses the possibilities and limitations of vocational guidance in the social volunteering system. The essence of volunteer work is closely related with assistance to desperate people in searching for the meaning of living, often coinciding with labour activity that are deemed in terms of “the main matter of life” and “the leading activity”. For adolescents, it is the choice of career, and for adults, it is the work proper (i.e. an essential condition for personal self-realization. The problem of “forced volunteering” for experts in vocational guidance also means that they often have to work voluntarily and unselfishly outside the official guidelines. To clarify the terms «volunteer» and «a person in desperate need of help» the study used the method of analyzing the documents, e.g. the Regulations on Social Volunteering, the generalization of psychological sources, the initial survey of university students as active supporters of the volunteer movement, On the essence of volunteering and the place of career guidance in selfless social work. Vocational guidance is not excluded from the general system of volunteerism, but has an insufficiently defined status and low popularity among participants in social volunteering. Also, the problem of «forced volunteering» of experts in career counseling, which often requires voluntary and unselfish performance of quality work outside the framework of official instructions, is also indicated. Simultaneously, positive aspects of such disinterested career initiatives are noted, in particular, less control by the official inspectors (or customers and, accordingly, greater freedom of creativity than when someone else does the work.

  5. Individual plant examination: Submittal guidance

    International Nuclear Information System (INIS)

    1989-08-01

    Based on a Policy Statement on Severe Accidents Regarding Future Designs and Existing Plants, the performance of a plant examination is requested from the licensee of each nuclear power plant. The plant examination looks for vulnerabilities to severe accidents and cost-effective safety improvements that reduce or eliminate the important vulnerabilities. This document delineates guidance for reporting the results of that plant examination. 38 refs., 2 tabs

  6. 2011 Army Strategic Planning Guidance

    Science.gov (United States)

    2011-03-25

    TESI ) of 22,000 Soldiers, the Army’s total force by the end of the mid-term period is programmed to be 520K (AC). We will achieve a more...dwell ratios, extending TESI authority to adequately man deploying units and sustain the All-Volunteer Force, right-sizing the generating force, and... TESI Temporary End-Strength Increase WMD Weapons of Mass Destruction 2011 ARMY STRATEGIC PLANNING GUIDANCE Page 19 2011

  7. Radionuclide Data Quality Evaluation Guidance

    International Nuclear Information System (INIS)

    Tucker, B.J.; Winters, M.S.; Evans, D.

    2009-01-01

    A considerable amount of radioanalytical data is generated during various phases of the characterization and remediation of radiologically-contaminated sites and properties. It is critical that data generated from the analysis of collected samples be to a level of quality usable by the project and acceptable to stakeholders. In July 2004, the final version of a multi-agency guidance manual entitled Multi-Agency Radiological Analytical Protocols Manual (MARLAP) was issued by the Environmental Protection Agency, Department of Energy, Department of Homeland Security, Nuclear Regulatory Commission, Department of Defense, National Institute of Standards and Technology, U. S. Geological Survey, Food and Drug Administration, and the States of Kentucky and California. The authors' purpose is to introduce readers to some key elements of MARLAP as it relates to radioanalytical lab quality control, and to demonstrate how these guidance elements can be effectively incorporated into mature radioanalytical lab operations and data validation regimes. Based upon the logic and statistical methodologies presented in MARLAP, the authors have revised existing project-specific Radioanalytical Data Evaluation Guidance (RadDEG) used at the FUSRAP Maywood Site in Maywood, NJ. The RadDEG allows users to qualify data in a meaningful way by tying the usability of the data to its activity and uncertainty relative to project action levels and QC results. This exercise may be useful to other projects looking to implement a MARLAP-based approach into their project/site-specific data evaluation methodologies. (authors)

  8. Sensory axon-derived neuregulin-1 is required for axoglial signaling and normal sensory function but not for long-term axon maintenance

    DEFF Research Database (Denmark)

    Fricker, F.R.; Zhu, N.; Tsantoulas, C.

    2009-01-01

    Neuregulin-1 has a key role in mediating signaling between axons and Schwann cells during development. A limitation to studying its role in adulthood is the embryonic lethality of global Nrg1 gene deletion. We used the Cre-loxP system to generate transgenic mice in which neuregulin-1 is condition......Neuregulin-1 has a key role in mediating signaling between axons and Schwann cells during development. A limitation to studying its role in adulthood is the embryonic lethality of global Nrg1 gene deletion. We used the Cre-loxP system to generate transgenic mice in which neuregulin-1...... is conditionally ablated in the majority of small-diameter and a proportion of large-diameter sensory neurons that have axons conducting in the C- and Adelta-fiber range, respectively. Sensory neuron-specific neuregulin-1 ablation resulted in abnormally large Remak bundles with axons clustered in "polyaxonal...... cells required for normal sensory function. Sensory neuronal survival and axonal maintenance, however, are not dependent on axon-derived neuregulin-1 signaling in adulthood Udgivelsesdato: 2009/6/17...

  9. Intra-axonal Synthesis of SNAP25 Is Required for the Formation of Presynaptic Terminals

    Directory of Open Access Journals (Sweden)

    Andreia F.R. Batista

    2017-09-01

    Full Text Available Localized protein synthesis is a mechanism for developing axons to react acutely and in a spatially restricted manner to extracellular signals. As such, it is important for many aspects of axonal development, but its role in the formation of presynapses remains poorly understood. We found that the induced assembly of presynaptic terminals required local protein synthesis. Newly synthesized proteins were detectable at nascent presynapses within 15 min of inducing synapse formation in isolated axons. The transcript for the t-SNARE protein SNAP25, which is required for the fusion of synaptic vesicles with the plasma membrane, was recruited to presynaptic sites and locally translated. Inhibition of intra-axonal SNAP25 synthesis affected the clustering of SNAP25 and other presynaptic proteins and interfered with the release of synaptic vesicles from presynaptic sites. This study reveals a critical role for the axonal synthesis of SNAP25 in the assembly of presynaptic terminals.

  10. Axonal sprouting regulates myelin basic protein gene expression in denervated mouse hippocampus

    DEFF Research Database (Denmark)

    Jensen, M B; Poulsen, F R; Finsen, B

    2000-01-01

    to 35 days after transection of the entorhino-hippocampal perforant path axonal projection. In situ hybridization analysis showed that anterograde axonal and terminal degeneration lead to upregulated oligodendrocyte MBP mRNA expression starting between day 2 and day 4, in (1) the deep part of stratum...... axonal and terminal degeneration, myelin degenerative changes, microglial activation and axotomi-induced axonal sprouting. Oligodendrocyte MBP mRNA expression reached maximum in both these areas at day 7. MBP gene transcription remained constant in stratum radiatum, stratum pyramidale and stratum oriens...... of CA1, areas that were unaffected by perforant path transection. These results provide strong evidence that oligodendrocyte MBP gene expression can be regulated by axonal sprouting independently of microglial activation in the injured adult CNS....

  11. Activity-dependent myelination of parvalbumin interneurons mediated by axonal morphological plasticity.

    Science.gov (United States)

    Stedehouder, J; Brizee, D; Shpak, G; Kushner, S A

    2018-03-05

    Axonal myelination of neocortical pyramidal neurons is dynamically modulated by neuronal activity. Recent studies have shown that a substantial proportion of neocortical myelin content is contributed by fast-spiking, parvalbumin (PV)-positive interneurons. However, it remains unknown whether the myelination of PV + interneurons is also modulated by intrinsic activity. Here, we utilized cell-type specific Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) in adult male and female mice to activate a sparse population of medial prefrontal cortex PV + interneurons. Using single-cell axonal reconstructions, we find that DREADD-stimulated PV + interneurons exhibit a nearly two-fold increase in total length of myelination, predominantly mediated by a parallel increase of axonal arborization and number of internodes. In contrast, the distribution of axonal inter-branch segment distance and myelin internode length were not significantly altered. Topographical analysis revealed that myelination of DREADD-stimulated cells extended to higher axonal branch orders, while retaining a similar inter-branch distance threshold for myelination. Together, our results demonstrate that chemogenetically-induced neuronal activity increases the myelination of neocortical PV + interneurons mediated at least in part by an elaboration of their axonal morphology. SIGNIFICANCE STATEMENT Myelination is the wrapping of an axon in order to optimize conduction velocity in an energy-efficient manner. Previous studies have shown that myelination of neocortical pyramidal neurons is experience and activity-dependent. We now show that activity-dependent myelin plasticity in the adult neocortex extends to parvalbumin-expressing fast-spiking interneurons. Specifically, chemogenetic stimulation of parvalbumin interneurons in the medial prefrontal cortex significantly enhanced axonal myelination, which was paralleled by an increase in axonal arborization. This suggests that activity

  12. Axon Counts Yield Multiple Options for Triceps Fascicular Nerve to Axillary Nerve Transfer.

    Science.gov (United States)

    Khair, M Michael; Schreiber, Joseph J; Rosenblatt, Lauren; Byun, David J; Lee, Steve K; Wolfe, Scott W

    2016-11-01

    To evaluate the relative axonal match between potential donor and recipient nerves, so that maximal reinnervation potential may be reached with the least chance of donor site morbidity. In 10 fresh-frozen cadaveric specimens, the main trunk and anterior, posterior, sensory and teres minor branches of the axillary nerve were identified, as were the radial nerve branches to the long, medial, and lateral heads of the triceps. The swing distances of the triceps fascicular nerve branches and the axillary nerve branches relative to the inferior border of the teres major muscle were recorded. Histomorphological analysis and axon counts were performed on sections of each branch. The median number of axons in the main axillary trunk was 7,887, with 4,052, 1,242, and 1,161 axons in the anterior, posterior, and teres minor branches, respectively. All specimens had a single long head triceps branch (median, 2,302 axons), a range of 1 to 3 branches to the medial head of the triceps (composite axon count, 2,198 axons), and 1 to 3 branches to the lateral head of the triceps (composite average, 1,462 axons). The medial and lateral head branches had sufficient swing distance to reach the anterior branch of the axillary nerve in all 10 specimens, with only 4 specimens having adequate long head branch swing distances. It is anatomically feasible to transfer multiple branches of the radial nerve supplying the medial, lateral, and sometimes, long head of the triceps to all branches of the axillary nerve in an attempt to reinnervate the deltoid and teres minor muscles. Understanding the axon counts of the different possible transfer combinations will improve operative flexibility and enable peripheral nerve surgeons to reinnervate for both abduction and external rotation with the highest donor/recipient axon count ratios. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  13. Dorsal column sensory axons degenerate due to impaired microvascular perfusion after spinal cord injury in rats

    Science.gov (United States)

    Muradov, Johongir M.; Ewan, Eric E.; Hagg, Theo

    2013-01-01

    The mechanisms contributing to axon loss after spinal cord injury (SCI) are largely unknown but may involve microvascular loss as we have previously suggested. Here, we used a mild contusive injury (120 kdyn IH impactor) at T9 in rats focusing on ascending primary sensory dorsal column axons, anterogradely traced from the sciatic nerves. The injury caused a rapid and progressive loss of dorsal column microvasculature and oligodendrocytes at the injury site and penumbra and a ~70% loss of the sensory axons, by 24 hours. To model the microvascular loss, focal ischemia of the T9 dorsal columns was achieved via phototoxic activation of intravenously injected rose bengal. This caused an ~53% loss of sensory axons and an ~80% loss of dorsal column oligodendrocytes by 24 hours. Axon loss correlated with the extent and axial length of microvessel and oligodendrocyte loss along the dorsal column. To determine if oligodendrocyte loss contributes to axon loss, the glial toxin ethidium bromide (EB; 0.3 µg/µl) was microinjected into the T9 dorsal columns, and resulted in an ~88% loss of dorsal column oligodendrocytes and an ~56% loss of sensory axons after 72 hours. EB also caused an ~72% loss of microvessels. Lower concentrations of EB resulted in less axon, oligodendrocyte and microvessel loss, which were highly correlated (R2 = 0.81). These data suggest that focal spinal cord ischemia causes both oligodendrocyte and axon degeneration, which are perhaps linked. Importantly, they highlight the need of limiting the penumbral spread of ischemia and oligodendrocyte loss after SCI in order to protect axons. PMID:23978615

  14. Gametophytic Pollen Tube Guidance: Attractant Peptides, Gametic Controls, and Receptors1[OPEN

    Science.gov (United States)

    2017-01-01

    Pollen tube guidance in flowering plants is a unique and critical process for successful sexual reproduction. The pollen tube that grows from pollen, which is the male gametophyte, precisely navigates to the embryo sac, which is the female gametophyte, within the pistil. Recent advances have clarified the molecular framework of gametophytic pollen tube guidance. Multiple species-specific attractant peptides are secreted from synergid cells, the proper development and function of which are regulated by female gametes. Multiple receptor-like kinases on the pollen tube tip are involved in sensing species-specific attractant peptides. In this Update article, recent progress in our understanding of the mechanism of gametophytic pollen tube guidance is reviewed, including attraction by synergid cells, control of pollen tube guidance by female gametes, and directional growth of the pollen tube by directional cue sensing. Future directions in the study of pollen tube guidance also are discussed. PMID:27920159

  15. Reversible Axonal Dystrophy by Calcium Modulation in Frataxin-Deficient Sensory Neurons of YG8R Mice

    Directory of Open Access Journals (Sweden)

    Belén Mollá

    2017-08-01

    Full Text Available Friedreich’s ataxia (FRDA is a peripheral neuropathy involving a loss of proprioceptive sensory neurons. Studies of biopsies from patients suggest that axonal dysfunction precedes the death of proprioceptive neurons in a dying-back process. We observed that the deficiency of frataxin in sensory neurons of dorsal root ganglia (DRG of the YG8R mouse model causes the formation of axonal spheroids which retain dysfunctional mitochondria, shows alterations in the cytoskeleton and it produces impairment of axonal transport and autophagic flux. The homogenous distribution of axonal spheroids along the neurites supports the existence of continues focal damages. This lead us to propose for FRDA a model of distal axonopathy based on axonal focal damages. In addition, we observed the involvement of oxidative stress and dyshomeostasis of calcium in axonal spheroid formation generating axonal injury as a primary cause of pathophysiology. Axonal spheroids may be a consequence of calcium imbalance, thus we propose the quenching or removal extracellular Ca2+ to prevent spheroids formation. In our neuronal model, treatments with BAPTA and o-phenanthroline reverted the axonal dystrophy and the mitochondrial dysmorphic parameters. These results support the hypothesis that axonal pathology is reversible in FRDA by pharmacological manipulation of intracellular Ca2+ with Ca2+ chelators or metalloprotease inhibitors, preventing Ca2+-mediated axonal injury. Thus, the modulation of Ca2+ levels may be a relevant therapeutic target to develop early axonal protection and prevent dying-back neurodegeneration.

  16. A macroscopic model of traffic jams in axons.

    Science.gov (United States)

    Kuznetsov, A V; Avramenko, A A

    2009-04-01

    The purpose of this paper is to develop a minimal macroscopic model capable of explaining the formation of traffic jams in fast axonal transport. The model accounts for the decrease of the number density of positively (and negatively) oriented microtubules near the location of the traffic jam due to formation of microtubule swirls; the model also accounts for the reduction of the effective velocity of organelle transport in the traffic jam region due to organelles falling off microtubule tracks more often in the swirl region. The model is based on molecular-motor-assisted transport equations and the hydrodynamic model of traffic jams in highway traffic. Parametric analyses of the model's predictions for various values of viscosity of the traffic flow, variance of the velocity distribution, diffusivity of microtubule-bound and free organelles, rate constants for binding to and detachment from microtubules, relaxation time, and average motor velocities of the retrograde and anterograde transport, are carried out.

  17. Neurogenetics of slow axonal transport: from cells to animals.

    Science.gov (United States)

    Sadananda, Aparna; Ray, Krishanu

    2012-09-01

    Slow axonal transport is a multivariate phenomenon implicated in several neurodegenerative disorders. Recent reports have unraveled the molecular basis of the transport of certain slow component proteins, such as the neurofilament subunits, tubulin, and certain soluble enzymes such as Ca(2+)/calmodulin-dependent protein kinase IIa (CaM kinase IIa), etc., in tissue cultured neurons. In addition, genetic analyses also implicate microtubule-dependent motors and other housekeeping proteins in this process. However, the biological relevance of this phenomenon is not so well understood. Here, the authors have discussed the possibility of adopting neurogenetic analyses in multiple model organisms to correlate molecular level measurements of the slow transport phenomenon to animal behavior, thus facilitating the investigation of its biological efficacy.

  18. Video Object Tracking in Neural Axons with Fluorescence Microscopy Images

    Directory of Open Access Journals (Sweden)

    Liang Yuan

    2014-01-01

    tracking. In this paper, we describe two automated tracking methods for analyzing neurofilament movement based on two different techniques: constrained particle filtering and tracking-by-detection. First, we introduce the constrained particle filtering approach. In this approach, the orientation and position of a particle are constrained by the axon’s shape such that fewer particles are necessary for tracking neurofilament movement than object tracking techniques based on generic particle filtering. Secondly, a tracking-by-detection approach to neurofilament tracking is presented. For this approach, the axon is decomposed into blocks, and the blocks encompassing the moving neurofilaments are detected by graph labeling using Markov random field. Finally, we compare two tracking methods by performing tracking experiments on real time-lapse image sequences of neurofilament movement, and the experimental results show that both methods demonstrate good performance in comparison with the existing approaches, and the tracking accuracy of the tracing-by-detection approach is slightly better between the two.

  19. Neuron Morphology Influences Axon Initial Segment Plasticity123

    Science.gov (United States)

    2016-01-01

    In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal neurons) were most excitable when the AIS was longer and/or located away from the soma. For any given somatodendritic morphology, increasing dendritic membrane capacitance and/or conductance favored a longer and more distally located AIS. Overall, changes to AIS length, with corresponding changes in total sodium conductance, were far more effective in regulating neuron excitability than were changes in AIS location, while dendritic capacitance had a larger impact on AIS performance than did dendritic conductance. The somatodendritic influence on AIS performance reflects modest soma-to-AIS voltage attenuation combined with neuron size-dependent changes in AIS input resistance, effective membrane time constant, and isolation from somatodendritic capacitance. We conclude that the impact of AIS plasticity on neuron excitability will depend largely on somatodendritic morphology, and that, in some neurons, a shorter or more distally located AIS may promote, rather than limit, action potential generation. PMID:27022619

  20. Dynein is the motor for retrograde axonal transport of organelles

    International Nuclear Information System (INIS)

    Schnapp, B.J.; Reese, T.S.

    1989-01-01

    Vesicular organelles in axons of nerve cells are transported along microtubules either toward their plus ends (fast anterograde transport) or toward their minus ends (retrograde transport). Two microtubule-based motors were previously identified by examining plastic beads induced to move along microtubules by cytosol fractions from the squid giant axon: (i) an anterograde motor, kinesin, and (ii) a retrograde motor, which is characterized here. The retrograde motor, a cytosolic protein previously termed HMW1, was purified from optic lobes and extruded axoplasm by nucleotide-dependent microtubule affinity and release; microtubule gliding was used as the assay of motor activity. The following properties of the retrograde motor suggest that it is cytoplasmic dynein: (i) sedimentation at 20-22 S with a heavy chain of Mr greater than 200,000 that coelectrophoreses with the alpha and beta subunits of axonemal dynein, (ii) cleavage by UV irradiation in the presence of ATP and vanadate, and (iii) a molecular structure resembling two-headed dynein from axonemes. Furthermore, bead movement toward the minus end of microtubules was blocked when axoplasmic supernatants were treated with UV/vanadate. Treatment of axoplasmic supernatant with UV/vanadate also blocks the retrograde movement of purified organelles in vitro without changing the number of anterograde moving organelles, indicating that dynein interacts specifically with a subgroup of organelles programmed to move toward the cell body. However, purified optic lobe dynein, like purified kinesin, does not by itself promote the movement of purified organelles along microtubules, suggesting that additional axoplasmic factors are necessary for retrograde as well as anterograde transport

  1. Compensatory axon sprouting for very slow axonal die‐back in a transgenic model of spinal muscular atrophy type III

    Science.gov (United States)

    Udina, Esther; Putman, Charles T.; Harris, Luke R.; Tyreman, Neil; Cook, Victoria E.

    2017-01-01

    Key points Smn +/− transgenic mouse is a model of the mildest form of spinal muscular atrophy.Although there is a loss of spinal motoneurons in 11‐month‐old animals, muscular force is maintained.This maintained muscular force is mediated by reinnervation of the denervated fibres by surviving motoneurons.The spinal motoneurons in these animals do not show an increased susceptibility to death after nerve injury and they retain their regenerative capacity.We conclude that the hypothesized immaturity of the neuromuscular system in this model cannot explain the loss of motoneurons by systematic die‐back. Abstract Spinal muscular atrophy (SMA) is a common autosomal recessive disorder in humans and is the leading genetic cause of infantile death. Patients lack the SMN1 gene with the severity of the disease depending on the number of copies of the highly homologous SMN2 gene. Although motoneuron death in the Smn +/− transgenic mouse model of the mildest form of SMA, SMA type III, has been reported, we have used retrograde tracing of sciatic and femoral motoneurons in the hindlimb with recording of muscle and motor unit isometric forces to count the number of motoneurons with intact neuromuscular connections. Thereby, we investigated whether incomplete maturation of the neuromuscular system induced by survival motoneuron protein (SMN) defects is responsible for die‐back of axons relative to survival of motoneurons. First, a reduction of ∼30% of backlabelled motoneurons began relatively late, at 11 months of age, with a significant loss of 19% at 7 months. Motor axon die‐back was affirmed by motor unit number estimation. Loss of functional motor units was fully compensated by axonal sprouting to retain normal contractile force in four hindlimb muscles (three fast‐twitch and one slow‐twitch) innervated by branches of the sciatic nerve. Second, our evaluation of whether axotomy of motoneurons in the adult Smn +/− transgenic mouse increases their

  2. Compensatory axon sprouting for very slow axonal die-back in a transgenic model of spinal muscular atrophy type III.

    Science.gov (United States)

    Udina, Esther; Putman, Charles T; Harris, Luke R; Tyreman, Neil; Cook, Victoria E; Gordon, Tessa

    2017-03-01

    Smn +/- transgenic mouse is a model of the mildest form of spinal muscular atrophy. Although there is a loss of spinal motoneurons in 11-month-old animals, muscular force is maintained. This maintained muscular force is mediated by reinnervation of the denervated fibres by surviving motoneurons. The spinal motoneurons in these animals do not show an increased susceptibility to death after nerve injury and they retain their regenerative capacity. We conclude that the hypothesized immaturity of the neuromuscular system in this model cannot explain the loss of motoneurons by systematic die-back. Spinal muscular atrophy (SMA) is a common autosomal recessive disorder in humans and is the leading genetic cause of infantile death. Patients lack the SMN1 gene with the severity of the disease depending on the number of copies of the highly homologous SMN2 gene. Although motoneuron death in the Smn +/- transgenic mouse model of the mildest form of SMA, SMA type III, has been reported, we have used retrograde tracing of sciatic and femoral motoneurons in the hindlimb with recording of muscle and motor unit isometric forces to count the number of motoneurons with intact neuromuscular connections. Thereby, we investigated whether incomplete maturation of the neuromuscular system induced by survival motoneuron protein (SMN) defects is responsible for die-back of axons relative to survival of motoneurons. First, a reduction of ∼30% of backlabelled motoneurons began relatively late, at 11 months of age, with a significant loss of 19% at 7 months. Motor axon die-back was affirmed by motor unit number estimation. Loss of functional motor units was fully compensated by axonal sprouting to retain normal contractile force in four hindlimb muscles (three fast-twitch and one slow-twitch) innervated by branches of the sciatic nerve. Second, our evaluation of whether axotomy of motoneurons in the adult Smn +/- transgenic mouse increases their susceptibility to cell death demonstrated

  3. Dihydrotestosterone ameliorates degeneration in muscle, axons and motoneurons and improves motor function in amyotrophic lateral sclerosis model mice.

    Directory of Open Access Journals (Sweden)

    Young-Eun Yoo

    Full Text Available Amyotrophic lateral sclerosis (ALS is a lethal disease characterized by a progressive loss of motoneurons. The clinical symptoms include skeletal muscle weakness and atrophy, which impairs motor performance and eventually leads to respiratory failure. We tested whether dihydrotestosterone (DHT, which has both anabolic effects on muscle and neuroprotective effects on axons and motoneurons, can ameliorate clinical symptoms in ALS. A silastic tube containing DHT crystals was implanted subcutaneously in SOD1-G93A mice at early symptomatic age when decreases in body weight and grip-strength were observed as compared to wild-type mice. DHT-treated SOD1-G93A mice demonstrated ameliorated muscle atrophy and increased body weight, which was associated with stronger grip-strength. DHT treatment increased the expression of insulin-like growth factor-1 in muscle, which can exert myotrophic as well as neurotrophic effects through retrograde transport. DHT treatment attenuated neuromuscular junction denervation, and axonal and motoneuron loss. DHT-treated SOD1-G93A mice demonstrated improvement in motor behavior as assessed by rota-rod and gait analyses, and an increased lifespan. Application of DHT is a relatively simple and non-invasive procedure, which may be translated into therapy to improve the quality of life for ALS patients.

  4. Effects of Valproic Acid on Axonal Regeneration and Recovery of Motor Function after Peripheral Nerve Injury in the Rat

    Directory of Open Access Journals (Sweden)

    Ting Rao

    2014-03-01

    Full Text Available Background:   Valproic acid (VPA is used to be an effective anti-epileptic drug and mood stabilizer. It has recently been demonstrated that VPA could promote neurite outgrowth, activate the extracellular signal regulated kinase pathway, and increases bcl-2 and growth cone-associated protein 43 levels in spinal cord. In the present research we demonstrate the effect of VPA on peripheral nerve regeneration and recovery of motor function following sciatic nerve transaction in rats. Methods:   The rats in VPA group and control group were administered with valproic acid (300mg/kg and sodium chloride respectively after operation. Each animal was observed sciatic nerve index (SFI at 2-week intervals and studied electrophysiology at 4-week intervals for 12 weeks. Histological and morphometrical analyses were performed 12 weeks after operation. Using the digital image-analysis system, thickness of the myelin sheath was measured, and total numbers of regenerated axons were counted. Results:   There was a significant difference in SFI, electrophysiological index (motor-nerve conduct velocity, and morphometrical results (regenerated axon number and thickness of myelin sheath in nerve regeneration between the VPA group and controls (   P

  5. The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field.

    Science.gov (United States)

    Riggio, Cristina; Calatayud, M Pilar; Giannaccini, Martina; Sanz, Beatriz; Torres, Teobaldo E; Fernández-Pacheco, Rodrigo; Ripoli, Andrea; Ibarra, Manuel Ricardo; Dente, Luciana; Cuschieri, Alfred; Goya, Gerardo F; Raffa, Vittoria

    2014-10-01

    There is a growing body of evidence indicating the importance of physical stimuli for neuronal growth and development. Specifically, results from published experimental studies indicate that forces, when carefully controlled, can modulate neuronal regeneration. Here, we validate a non-invasive approach for physical guidance of nerve regeneration based on the synergic use of magnetic nanoparticles (MNPs) and magnetic fields (Ms). The concept is that the application of a tensile force to a neuronal cell can stimulate neurite initiation or axon elongation in the desired direction, the MNPs being used to generate this tensile force under the effect of a static external magnetic field providing the required directional orientation. In a neuron-like cell line, we have confirmed that MNPs direct the neurite outgrowth preferentially along the direction imposed by an external magnetic field, by inducing a net angle displacement (about 30°) of neurite direction. From the clinical editor: This study validates that non-invasive approaches for physical guidance of nerve regeneration based on the synergic use of magnetic nanoparticles and magnetic fields are possible. The hypothesis was confirmed by observing preferential neurite outgrowth in a cell culture system along the direction imposed by an external magnetic field. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Analysing Interplanetary Probe Guidance Accuracy

    Directory of Open Access Journals (Sweden)

    S. V. Sukhova

    2016-01-01

    Full Text Available The paper presents a guidance accuracy analysis and estimates delta-v budget required to provide the trajectory correction maneuvers for direct interplanetary flights (without midcourse gravity assists. The analysis takes into consideration the orbital hyperbolic injection errors (depend on a selected launch vehicle and ascent trajectory and the uncertainties of midcourse correction maneuvers.The calculation algorithm is based on Monte Carlo simulation and Danby’s matrix methods (the matrizant of keplerian motion. Danby’s method establishes a link between the errors of the spacecraft state vectors at different flight times using the reference keplerian orbit matrizant. Utilizing the nominal trajectory parameters and the covariance matrix of launch vehicle injection errors the random perturbed orbits are generated and required velocity corrections are calculated. The next step is to simulate midcourse maneuver performance uncertainty using the midcourse maneuver covariance matrix. The obtained trajectory correction impulses and spacecraft position errors are statistically processed to compute required delta-v budget and dispersions ellipse parameters for different prediction intervals.As an example, a guidance accuracy analysis has been conducted for a 2022 mission to Mars and a Venus mission in 2026. The paper considers one and two midcourse correction options, as well as utilization of two different launch vehicles.The presented algorithm based on Monte Carlo simulation and Danby’s methods provides preliminary evaluation for midcourse corrections delta-v budget and spacecraft position error. The only data required for this guidance accuracy analysis are a reference keplerian trajectory and a covariance matrix of the injection errors. Danby’s matrix method allows us to take into account also the other factors affecting the trajectory thereby increasing the accuracy of analysis.

  7. Guidance on accidents involving radioactivity

    International Nuclear Information System (INIS)

    1989-01-01

    This annex contains advice to Health Authorities on their response to accidents involving radioactivity. The guidance is in six parts:-(1) planning the response required to nuclear accidents overseas, (2) planning the response required to UK nuclear accidents a) emergency plans for nuclear installations b) nuclear powered satellites, (3) the handling of casualties contaminated with radioactive substances, (4) background information for dealing with queries from the public in the event of an accident, (5) the national arrangements for incident involving radioactivity (NAIR), (6) administrative arrangements. (author)

  8. Widening opportunities for career guidance

    DEFF Research Database (Denmark)

    Poulsen, Bo Klindt; Skovhus, Randi Boelskifte; Thomsen, Rie

    2018-01-01

    This chapter discusses research circles as a way of organising collaboration between career guidance researchers and practitioners. Such collaboration, it is argued, helps resist neoliberal governance mechanisms and supports social justice perspectives among teachers involved in the provision...... of career education in Danish schools. Based on a research and development project on career education, case analysis is used to explore research circles as a means for collaboration between researchers and practitioners. This analysis shows that research circles provide teachers with a space to reflect....... The analyses show that the support provided within research circles also serve to disrupt the neoliberal discourse of a functionalist view on career learning activities....

  9. Quality guidance and quality formation

    DEFF Research Database (Denmark)

    Poulsen, Carsten Stig; Juhl, Hans Jørn; Kristensen, Kai

    1996-01-01

    This paper presents an extension of the quality guidance model of Steenkamp and van Trijp that includes consumer quality formation processes. Quality expectations and quality experiences are seen as antecedents of perceived overall product quality conceptual model is applied using LISREL to a data...... set on Danish butter cookies. Five plausible models of the relation between expectation, experience and perceived product quality are estimated. Finally one model is selected on the basis of three criteria: chi-square, RMSEA and AIC: The results show a model where expectations are indirectly related...... to perceived quality through experience. Udgivelsesdato: APR...

  10. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy.

    Science.gov (United States)

    Sasaki, Yo; Araki, Toshiyuki; Milbrandt, Jeffrey

    2006-08-16

    Axonal degeneration occurs in many neurodegenerative diseases and after traumatic injury and is a self-destructive program independent from programmed cell death. Previous studies demonstrated that overexpression of nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) or exogenous application of nicotinamide adenine dinucleotide (NAD) can protect axons of cultured dorsal root ganglion (DRG) neurons from degeneration caused by mechanical or neurotoxic injury. In mammalian cells, NAD can be synthesized from multiple precursors, including tryptophan, nicotinic acid, nicotinamide, and nicotinamide riboside (NmR), via multiple enzymatic steps. To determine whether other components of these NAD biosynthetic pathways are capable of delaying axonal degeneration, we overexpressed each of the enzymes involved in each pathway and/or exogenously administered their respective substrates in DRG cultures and assessed their capacity to protect axons after axotomy. Among the enzymes tested, Nmnat1 had the strongest protective effects, whereas nicotinamide phosphoribosyl transferase and nicotinic acid phosphoribosyl transferase showed moderate protective activity in the presence of their substrates. Strong axonal protection was also provided by Nmnat3, which is predominantly located in mitochondria, and an Nmnat1 mutant localized to the cytoplasm, indicating that the subcellular location of NAD production is not crucial for protective activity. In addition, we showed that exogenous application of the NAD precursors that are the substrates of these enzymes, including nicotinic acid mononucleotide, nicotinamide mononucleotide, and NmR, can also delay axonal degeneration. These results indicate that stimulation of NAD biosynthetic pathways via a variety of interventions may be useful in preventing or delaying axonal degeneration.

  11. Expression of plasminogen activator inhibitor-1 by olfactory ensheathing glia promotes axonal regeneration.

    Science.gov (United States)

    Simón, Diana; Martín-Bermejo, Maria Jesús; Gallego-Hernández, Maria Teresa; Pastrana, Erika; García-Escudero, Vega; García-Gómez, Ana; Lim, Filip; Díaz-Nido, Javier; Avila, Jesús; Moreno-Flores, Maria Teresa

    2011-10-01

    Olfactory ensheathing glia (OEG) cells are known to facilitate repair following axotomy of adult neurons, although the molecular mechanisms involved are not fully understood. We previously identified plasminogen activator inhibitor-1 (PAI-1), proteinase-activated receptor-1 (PAR-1), and thrombomodulin (TM) as candidates to regulate rat OEG-dependent axonal regeneration. In this study, we have validated the involvement of these proteins in promoting axonal regeneration by immortalized human OEGs. We studied the effect of silencing these proteins in OEGs on their capacity to promote the regeneration of severed adult retinal ganglion cells (RGCs) axons. Our results support the role of glial PAI-1 as a downstream effector of PAR-1 in promoting axon regeneration. In contrast, we found that TM inhibits OEG induced-axonal regeneration. We also assessed the signaling pathways downstream of PAR-1 that might modulate PAI-1 expression, observing that specifically inhibiting Gα(i), Rho kinase, or PLC and PKC downregulated the expression of PAI-1 in OEGs, with a concomitant reduction in OEG-dependent axon regeneration in adult RGCs. Our findings support an important role for the thrombin system in regulating adult axonal regeneration by OEGs. Copyright © 2011 Wiley-Liss, Inc.

  12. The Influence of Glutamate on Axonal Compound Action Potential In Vitro.

    Science.gov (United States)

    Abouelela, Ahmed; Wieraszko, Andrzej

    2016-01-01

    Background  Our previous experiments demonstrated modulation of the amplitude of the axonal compound action potential (CAP) by electrical stimulation. To verify assumption that glutamate released from axons could be involved in this phenomenon, the modification of the axonal CAP induced by glutamate was investigated. Objectives  The major objective of this research is to verify the hypothesis that axonal activity would trigger the release of glutamate, which in turn would interact with specific axonal receptors modifying the amplitude of the action potential. Methods  Segments of the sciatic nerve were exposed to exogenous glutamate in vitro, and CAP was recorded before and after glutamate application. In some experiments, the release of radioactive glutamate analog from the sciatic nerve exposed to exogenous glutamate was also evaluated. Results  The glutamate-induced increase in CAP was blocked by different glutamate receptor antagonists. The effect of glutamate was not observed in Ca-free medium, and was blocked by antagonists of calcium channels. Exogenous glutamate, applied to the segments of sciatic nerve, induced the release of radioactive glutamate analog, demonstrating glutamate-induced glutamate release. Immunohistochemical examination revealed that axolemma contains components necessary for glutamatergic neurotransmission. Conclusion  The proteins of the axonal membrane can under the influence of electrical stimulation or exogenous glutamate change membrane permeability and ionic conductance, leading to a change in the amplitude of CAP. We suggest that increased axonal activity leads to the release of glutamate that results in changes in the amplitude of CAPs.

  13. Optogenetically enhanced axon regeneration: motor versus sensory neuron-specific stimulation.

    Science.gov (United States)

    Ward, Patricia J; Clanton, Scott L; English, Arthur W

    2018-02-01

    Brief neuronal activation in injured peripheral nerves is both necessary and sufficient to enhance motor axon regeneration, and this effect is specific to the activated motoneurons. It is less clear whether sensory neurons respond in a similar manner to neuronal activation following peripheral axotomy. Further, it is unknown to what extent enhancement of axon regeneration with increased neuronal activity relies on a reflexive interaction within the spinal circuitry. We used mouse genetics and optical tools to evaluate the precision and selectivity of system-specific neuronal activation to enhance axon regeneration in a mixed nerve. We evaluated sensory and motor axon regeneration in two different mouse models expressing the light-sensitive cation channel, channelrhodopsin (ChR2). We selectively activated either sensory or motor axons using light sti