Non-axisymmetric equilibrium reconstruction for stellarators, reversed field pinches and tokamaks
Energy Technology Data Exchange (ETDEWEB)
Hanson, James D. [Auburn University, Auburn, Alabama; Anderson, D.T. [University of Wisconsin, Madison; Cianciosa, M. [Auburn University, Auburn, Alabama; Franz, P. [EURATOM / ENEA, Italy; Harris, J. H. [Oak Ridge National Laboratory (ORNL); Hartwell, G. H. [Auburn University, Auburn, Alabama; Hirshman, Steven Paul [ORNL; Knowlton, Stephen F. [Auburn University, Auburn, Alabama; Lao, Lang L. [General Atomics, San Diego; Lazarus, Edward Alan [ORNL; Marrelli, L. [Association EURATOM ENEA Fusion, Consorzio RFX, Padua, Italy; Maurer, D. A. [Auburn University, Auburn, Alabama; Schmitt, J. C. [Princeton Plasma Physics Laboratory (PPPL); Sontag, A. C. [Oak Ridge National Laboratory (ORNL); Stevenson, B. A. [Auburn University, Auburn, Alabama; Terranova, D. [Association EURATOM ENEA Fusion, Consorzio RFX, Padua, Italy
2013-01-01
Axisymmetric equilibrium reconstruction using magnetohydrodynamic equilibrium solutions to the Grad Shafranov equation has long been an important tool for interpreting tokamak experiments. This paper describes recent results in non-axisymmetric (three-dimensional) equilibrium reconstruction of nominally axisymmetric plasmas (tokamaks and reversed field pinches (RFPs)), and fully non-axisymmetric plasmas (stellarators). Results from applying the V3FIT code to CTH and HSX stellarator plasmas, RFX-mod RFP plasmas and the DIII-D tokamak are presented.
Energy Technology Data Exchange (ETDEWEB)
Strait, E. J. [General Atomics, San Diego, CA (United States); Park, J. -K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Marmar, E. S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ahn, J. -W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Berkery, J. W. [Columbia Univ., New York, NY (United States); Burrell, K. H. [General Atomics, San Diego, CA (United States); Canik, J. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delgado-Aparicio, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ferraro, N. M. [General Atomics, San Diego, CA (United States); Garofalo, A. M. [General Atomics, San Diego, CA (United States); Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Greenwald, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kim, K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); King, J. D. [General Atomics, San Diego, CA (United States); Lanctot, M. J. [General Atomics, San Diego, CA (United States); Lazerson, S. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Liu, Y. Q. [Culham Science Centre, Abingdon (United Kingdom). Euratom/CCFE Association; Logan, N. C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Lore, J. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menard, J. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Nazikian, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Shafer, M. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Paz-Soldan, C. [General Atomics, San Diego, CA (United States); Reiman, A. H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Rice, J. E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Sabbagh, S. A. [Columbia Univ., New York, NY (United States); Sugiyama, L. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Turnbull, A. D. [General Atomics, San Diego, CA (United States); Volpe, F. [Columbia Univ., New York, NY (United States); Wang, Z. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wolfe, S. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2014-09-30
The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10^{-4} of the main axisymmetric field, such “3D” fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data, in
Energy Technology Data Exchange (ETDEWEB)
Strait, E. J. [General Atomics, San Diego, CA (United States); Park, J. -K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Marmar, E. S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ahn, J. -W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Berkery, J. W. [Columbia Univ., New York, NY (United States); Burrell, K. H. [General Atomics, San Diego, CA (United States); Canik, J. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delgado-Aparicio, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ferraro, N. M. [General Atomics, San Diego, CA (United States); Garofalo, A. M. [General Atomics, San Diego, CA (United States); Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Greenwald, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kim, K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); King, J. D. [General Atomics, San Diego, CA (United States); Lanctot, M. J. [General Atomics, San Diego, CA (United States); Lazerson, S. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Liu, Y. Q. [Culham Science Centre, Abingdon (United Kingdom). Euratom/CCFE Association; Logan, N. C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Lore, J. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menard, J. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Nazikian, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Shafer, M. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Paz-Soldan, C. [General Atomics, San Diego, CA (United States); Reiman, A. H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Rice, J. E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Sabbagh, S. A. [Columbia Univ., New York, NY (United States); Sugiyama, L. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Turnbull, A. D. [General Atomics, San Diego, CA (United States); Volpe, F. [Columbia Univ., New York, NY (United States); Wang, Z. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wolfe, S. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2014-09-30
The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10^{-4} of the main axisymmetric field, such “3D” fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data, in
Non-Axisymmetric Shaping of Tokamaks Preserving Quasi-Axisymmetry
Energy Technology Data Exchange (ETDEWEB)
Long-Poe Ku and Allen H. Boozer
2009-06-05
If quasi-axisymmetry is preserved, non-axisymmetric shaping can be used to design tokamaks that do not require current drive, are resilient to disruptions, and have robust plasma stability without feedback. Suggestions for addressing the critical issues of tokamaks can only be validated when presented with sufficient specificity that validating experiments can be designed. The purpose of this paper is provide that specificity for non-axisymmetric shaping. To our knowledge, no other suggestions for the solution of a number of tokamak issues, such as disruptions, have reached this level of specificity. Sequences of three-field-period quasi-axisymmetric plasmas are studied. These sequences address the questions: (1) What can be achieved at various levels of non-axisymmetric shaping? (2) What simplifications to the coils can be achieved by going to a larger aspect ratio? (3) What range of shaping can be achieved in a single experimental facility? The sequences of plasmas found in this study provide a set of interesting and potentially important configurations.
Axisymmetric instability in a noncircular tokamak: experiment and theory
Energy Technology Data Exchange (ETDEWEB)
Lipschultz, B.; Prager, S.C.; Todd, A.M.M.; Delucia, J.
1979-09-01
The stability of dee, inverse-dee and square cross section plasmas to axisymmetric modes has been investigated experimentally in Tokapole II, a tokamak with a four-null poloidal divertor. Experimental results are closely compared with predictions of two numerical stability codes -- the PEST code (ideal MHD, linear stability) adapted to tokapole geometry and a code which follows the nonlinear evolution of shapes similar to tokapole equilibria. Experimentally, the square is vertically stable and both dee's unstable to a vertical nonrigid axisymmetric shift. The central magnetic axis displacement grows exponentially with a growth time approximately 10/sup 3/ poloidal Alfven times plasma time. Proper initial positioning of the plasma on the midplane allows passive feedback to nonlinearly restore vertical motion to a small stable oscillation. Experimental poloidal flux plots are produced directly from internal magnetic probe measurements.
Energy Technology Data Exchange (ETDEWEB)
Joseph, Ilon; Cohen, Ronald H.; Rognlien, Thomas D.; Ryutov, Dmitri D. [Lawrence Livermore National Laboratory, P.O. Box 808, L-637, Livermore, California 94551 (United States)
2012-05-15
A critical requirement for tokamak fusion reactors is the control of the divertor heat load, both the time-averaged value and the impulsive fluxes that accompany edge-localized modes. We propose driving toroidally varying currents through the scrape-off layer (SOL) plasma both to broaden the SOL by inducing radial convection and to control the edge pressure gradient by inducing resonant magnetic perturbations. The generation of additional convective transport via steady-state convective cells or increased turbulence drive requires that the electric potential perturbations exceed a threshold in amplitude that depends on wavelength. The generation of a coherent magnetic perturbation is optimized by choosing the appropriate width and phasing of the biasing region at the target plate in order to optimize the profile of the SOL current. Longer wavelength modes produce a larger effect because they are not sheared as strongly by the magnetic X-point. Generation of the necessary currents is challenging due to the possibly substantial power requirements and the possible need for internal insulators. We analyze passive current-drive mechanisms that rely on puffing and pumping of neutral gas in a toroidally asymmetric fashion using the UEDGE code to model the ITER divertor.
Modeling non-stationary, non-axisymmetric heat patterns in DIII-D tokamak
Ciro, D; Caldas, I L
2016-01-01
Non-axisymmetric stationary magnetic perturbations lead to the formation of homoclinic tangles near the divertor magnetic saddle in tokamak discharges. These tangles intersect the divertor plates in static helical structures that delimit the regions reached by open magnetic field lines reaching the plasma column and leading the charged particles to the strike surfaces by parallel transport. In this article we introduce a non-axisymmetric rotating magnetic perturbation to model the time development of the three-dimensional magnetic field of a single-null DIII-D tokamak discharge developing a rotating tearing mode. The stable and unstable manifolds of the asymmetric magnetic saddle are calculated through an adaptive method providing the manifold cuts at a given poloidal plane and the strike surfaces. For the modeled shot, the experimental heat pattern and its time development are well described by the rotating unstable manifold, indicating the emergence of homoclinic lobes in a rotating frame due to the plasma ...
Geodesic Acoustic Mode in Toroidally Axisymmetric Plasmas with Non-Circular Cross Sections
Institute of Scientific and Technical Information of China (English)
SHI Bing-Ren; LI Ji-Quan; DONG Jia-Qi
2005-01-01
@@ The geodesic acoustic mode in general toroidally axisymmetric plasmas such as Tokamak and spherical torus is studied in detail. The mode structure is found and the dispersion equation is derived and solved for arbitrary toroidally axi-symmetric plasmas. Besides the finite aspect ratio, effects of elongation and triangularity on this mode are clarified.
Chu, M. S.; Guo, Wenfeng
2016-06-01
The frequency spectrum and mode structure of axisymmetric electrostatic oscillations [the zonal flow (ZF), sound waves (SW), geodesic acoustic modes (GAM), and electrostatic mean flows (EMF)] in tokamaks with general cross-sections and toroidal flows are studied analytically using the electrostatic approximation for magnetohydrodynamic modes. These modes constitute the "electrostatic continua." Starting from the energy principle for a tokamak plasma with toroidal rotation, we showed that these modes are completely stable. The ZF, the SW, and the EMF could all be viewed as special cases of the general GAM. The Euler equations for the general GAM are obtained and are solved analytically for both the low and high range of Mach numbers. The solution consists of the usual countable infinite set of eigen-modes with discrete eigen-frequencies, and two modes with lower frequencies. The countable infinite set is identified with the regular GAM. The lower frequency mode, which is also divergence free as the plasma rotation tends to zero, is identified as the ZF. The other lower (zero) frequency mode is a pure geodesic E×B flow and not divergence free is identified as the EMF. The frequency of the EMF is shown to be exactly 0 independent of plasma cross-section or its flow Mach number. We also show that in general, sound waves with no geodesic components are (almost) completely lost in tokamaks with a general cross-sectional shape. The exception is the special case of strict up-down symmetry. In this case, half of the GAMs would have no geodesic displacements. They are identified as the SW. Present day tokamaks, although not strictly up-down symmetric, usually are only slightly up-down asymmetric. They are expected to share the property with the up-down symmetric tokamak in that half of the GAMs would be more sound wave-like, i.e., have much weaker coupling to the geodesic components than the other half of non-sound-wave-like modes with stronger coupling to the geodesic
Axisymmetric equilibria with pressure anisotropy and plasma flow
Evangelias, Achilleas
2016-01-01
In this Master thesis we investigate the influence of pressure anisotropy and incompressible flow of arbitrary direction on the equilibrium properties of magnetically confined, axisymmetric toroidal plasmas. The main novel contribution is the derivation of a pertinent generalised Grad-Shafranov equation. This equation includes six free surface functions and recovers known Grad-Shafranov-like equations in the literature as well as the usual static, isotropic one. The form of the generalised equation indicates that pressure anisotropy and flow act additively on equilibrium. In addition, two sets of analytical solutions, an extended Solovev one with a plasma reaching the separatrix and an extended Hernegger-Maschke one for a plasma surrounded by a fixed boundary possessing an X-point, are constructed, particularly in relevance to the ITER and NSTX tokamaks. Furthermore, the impacts both of pressure anisotropy, through an anisotropy function assumed to be uniform on the magnetic surfaces, and plasma flow, via the...
Calculation of transport coefficients in an axisymmetric plasma
Energy Technology Data Exchange (ETDEWEB)
Shumaker, D.E.
1977-01-01
A method of calculating the transport coefficient in an axisymmetric toroidal plasma is presented. This method is useful in calculating the transport coefficients in a Tokamak plasma confinement device. The particle density and temperature are shown to be a constant on a magnetic flux surface. Transport equations are given for the total particle flux and total energy flux crossing a closed toroidal surface. Also transport equations are given for the toroidal magnetic flux. A computer code was written to calculate the transport coefficients for a three species plasma, electrons and two species of ions. This is useful for calculating the transport coefficients of a plasma which contains impurities. It was found that the particle and energy transport coefficients are increased by a large amount, and the transport coefficients for the toroidal magnetic field are reduced by a small amount.
Kim, Kimin; Jeon, Y. M.; Park, J.-K.; Ko, W. H.; In, Y.; Choe, W.; Kim, J.; Lee, S. G.; Yoon, S. W.; Kwak, J. G.; Oh, Y. K.
2017-03-01
The variation of a magnetic braking profile by non-axisymmetric magnetic fields has been experimentally demonstrated and numerically validated in the KSTAR tokamak. Two types of n = 2 non-resonant magnetic fields were applied by changing the relative phase of non-axisymmetric field coils. One is even parity, of which non-resonant fields deeply penetrate into the plasma core, and the other is odd parity localized at the plasma edge. The even and odd parity produced significantly different perturbed magnetic field structures, and thereby drove global and edge-dominant toroidal rotation damping, respectively. These distinct braking profiles are consistently reproduced by drift-kinetic particle simulations, indicating the possibility of the predictive utilization of non-resonant magnetic fields for rotation profile control.
Exact axisymmetric Taylor states for shaped plasmas
Energy Technology Data Exchange (ETDEWEB)
Cerfon, Antoine J., E-mail: cerfon@cims.nyu.edu; O' Neil, Michael, E-mail: oneil@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)
2014-06-15
We present a general construction for exact analytic Taylor states in axisymmetric toroidal geometries. In this construction, the Taylor equilibria are fully determined by specifying the aspect ratio, elongation, and triangularity of the desired plasma geometry. For equilibria with a magnetic X-point, the location of the X-point must also be specified. The flexibility and simplicity of these solutions make them useful for verifying the accuracy of numerical solvers and for theoretical studies of Taylor states in laboratory experiments.
Energy Technology Data Exchange (ETDEWEB)
Sondak, D.; Arastoo, R. [Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015 (United States); Schuster, E., E-mail: schuster@lehigh.edu [Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015 (United States); Walker, M.L. [General Atomics, San Diego, CA 92121 (United States)
2011-10-15
It is sometimes incorrectly assumed that, because superconducting tokamaks already have significant intrinsic or imposed sources of control delay, introducing extra delays/lags into the axisymmetric control loops will have negligible detrimental impact on the plasma control. This study exposes and quantifies the detrimental effects imposed by time delays/lags in the control loop in superconducting tokamaks, using as an example the plasma current control and radial position control in a vertically stable circular plasma in the KSTAR tokamak. Delays and lags in the power supplies, data acquisition, and vessel structure are taken into account. Optimal tuning of PID controllers in combination with an ohmic-flux control strategy is proposed as a possible method for remediating the negative effects of time delays/lags. In addition, an augmentation of the control loop by the introduction of a robust predictor has been proposed to improve the performance of the time-delayed closed-loop system when the amount of delay/lag in the loop is unknown. The Nyquist dual locus technique based on the Argument Principle in complex theory is employed to assess stability of the optimally tuned closed-loop system in the presence of time delays.
Compact formulas for bounce/transit averaging in axisymmetric tokamak geometry
Energy Technology Data Exchange (ETDEWEB)
Duthoit, F.-X. [SNU Division of Graduate Education for Sustainabilization of Foundation Energy, Seoul National University, Seoul 151-742 (Korea, Republic of); Brizard, A. J. [Department of Physics, Saint Michael' s College, Colchester, Vermont 05439 (United States); Hahm, T. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)
2014-12-15
Compact formulas for bounce and transit orbit averaging of the fluctuation-amplitude eikonal factor in axisymmetric tokamak geometry, which is frequently encountered in bounce-gyrokinetic description of microturbulence, are given in terms of the Jacobi elliptic functions and elliptic integrals. These formulas are readily applicable to the calculation of the neoclassical susceptibility in the framework of modern bounce-gyrokinetic theory. In the long-wavelength limit for axisymmetric electrostatic perturbations, we recover the expression for the Rosenbluth-Hinton residual zonal flow [M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998)] accurately.
OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS
Energy Technology Data Exchange (ETDEWEB)
LIN-LIU,YR; STAMBAUGH,RD
2002-11-01
OAK A271 OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS. The dependence of the ideal ballooning {beta} limit on aspect ratio, A, and elongation {kappa} is systematically explored for nearly 100% bootstrap current driven tokamak equilibria in a wide range of the shape parameters (A = 1.2-7.0, {kappa} = 1.5-6.0 with triangularity {delta} = 0.5). The critical {beta}{sub N} is shown to be optimal at {kappa} = 3.0-4.0 for all A studied and increases as A decreases with a dependence close to A{sup -0.5}. The results obtained can be used as a theoretical basis for the choice of optimum aspect ratio and elongation of next step burning plasma tokamaks or tokamak reactors.
Electron thermal transport in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Konings, J.A.
1994-11-30
The process of fusion of small nuclei thereby releasing energy, as it occurs continuously in the sun, is essential for the existence of mankind. The same process applied in a controlled way on earth would provide a clean and an abundant energy source, and be the long term solution of the energy problem. Nuclear fusion requires an extremely hot (10{sup 8} K) ionized gas, a plasma, that can only be maintained if it is kept insulated from any material wall. In the so called `tokamak` this is achieved by using magnetic fields. The termal insulation, which is essential if one wants to keep the plasma at the high `fusion` temperature, can be predicted using basic plasma therory. A comparison with experiments in tokamaks, however, showed that the electron enery losses are ten to hundred times larger than this theory predicts. This `anomalous transport` of thermal energy implies that, to reach the condition for nuclear fusion, a fusion reactor must have very large dimensions. This may put the economic feasibility of fusion power in jeopardy. Therefore, in a worldwide collaboration, physicists study tokamak plasmas in an attempt to understand and control the energy losses. From a scientific point of view, the mechanisms driving anomalous transport are one of the challenges in fudamental plasma physics. In Nieuwegein, a tokamak experiment (the Rijnhuizen Tokamak Project, RTP) is dedicated to the study of anomalous transport, in an international collaboration with other laboratories. (orig./WL).
Energy Technology Data Exchange (ETDEWEB)
Gutierrez T, C.; Beltran P, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)
2004-07-01
The neoclassical theory of transport is used to calculate the current efficiency of electronic cyclotron impulsion (ECCD) in an axisymmetric tokamak in the few collisions regime. The standard parameter of the tokamak is used to obtain a system of equations that describe the hydrodynamic of the plasma, where the ponderomotive force (PM) due to high power radio frequency waves is taken in account. The PM force is produced in the proximity of electron cyclotron resonance surface in a specific poloidal localization. The efficiency ECCD is analyzed in the cases of first and second harmonic (for different angles of injection of radio frequency waves) and it is validated using the experimental values of the TCV and T-10 tokamaks. The results are according to those obtained by means of the techniques of the Green functions. (Author)
Energy Technology Data Exchange (ETDEWEB)
Ivanov, A. A., E-mail: aai@a5.kiam.ru; Martynov, A. A., E-mail: martynov@a5.kiam.ru; Medvedev, S. Yu., E-mail: medvedev@a5.kiam.ru; Poshekhonov, Yu. Yu., E-mail: naida@a5.kiam.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation)
2015-03-15
In the MHD tokamak plasma theory, the plasma pressure is usually assumed to be isotropic. However, plasma heating by neutral beam injection and RF heating can lead to a strong anisotropy of plasma parameters and rotation of the plasma. The development of MHD equilibrium theory taking into account the plasma inertia and anisotropic pressure began a long time ago, but until now it has not been consistently applied in computational codes for engineering calculations of the plasma equilibrium and evolution in tokamak. This paper contains a detailed derivation of the axisymmetric plasma equilibrium equation in the most general form (with arbitrary rotation and anisotropic pressure) and description of the specialized version of the SPIDER code. The original method of calculation of the equilibrium with an anisotropic pressure and a prescribed rotational transform profile is proposed. Examples of calculations and discussion of the results are also presented.
Boundary Plasma Turbulence Simulations for Tokamaks
Energy Technology Data Exchange (ETDEWEB)
Xu, X; Umansky, M; Dudson, B; Snyder, P
2008-05-15
The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.
Nondiffusive plasma transport at tokamak edge
Krasheninnikov, S. I.
2000-10-01
Recent findings show that cross field edge plasma transport at tokamak edge does not necessarily obey a simple diffusive law [1], the only type of a transport model applied so far in the macroscopic modeling of edge plasma transport. Cross field edge transport is more likely due to plasma filamentation with a ballistic motion of the filaments towards the first wall. Moreover, it so fast that plasma recycles on the main chamber first wall rather than to flow into divertor as conventional picture of edge plasma fluxes suggests. Crudely speaking particle recycling wise diverted tokamak operates in a limiter regime due to fast anomalous non-diffusive cross field plasma transport. Obviously that this newly found feature of edge plasma anomalous transport can significantly alter a design of any future reactor relevant tokamaks. Here we present a simple model describing the motion of the filaments in the scrape off layer and discuss it implications for experimental observations. [1] M. Umansky, S. I. Krasheninnikov, B. LaBombard, B. Lipschultz, and J. L. Terry, Phys. Plasmas 6 (1999) 2791; M. Umansky, S. I. Krasheninnikov, B. LaBombard and J. L. Terry, Phys. Plasmas 5 (1998) 3373.
Pajares, Andres; Schuster, Eugenio
2016-10-01
Plasma density and temperature regulation in future tokamaks such as ITER is arising as one of the main problems in nuclear-fusion control research. The problem, known as burn control, is to regulate the amount of fusion power produced by the burning plasma while avoiding thermal instabilities. Prior work in the area of burn control considered different actuators, such as modulation of the auxiliary power, modulation of the fueling rate, and controlled impurity injection. More recently, the in-vessel coil system was suggested as a feasible actuator since it has the capability of modifying the plasma confinement by generating non-axisymmetric magnetic fields. In this work, a comprehensive, model-based, nonlinear burn control strategy is proposed to integrate all the previously mentioned actuators. A model to take into account the influence of the in-vessel coils on the plasma confinement is proposed based on the plasma collisionality and the density. A simulation study is carried out to show the capability of the controller to drive the system between different operating points while rejecting perturbations. Supported by the US DOE under DE-SC0010661.
INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS
Energy Technology Data Exchange (ETDEWEB)
HUMPHREYS,D.A; FERRON,J.R; JOHNSON,R.D; LEUER,J.A; PENAFLOR,B.G; WALKER,M.L; WELANDER,A.S; KHAYRUTDINOV,R.R; DOKOUKA,V; EDGELL,D.H; FRANSSON,C.M
2003-10-01
OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance.
Dissipative nonlinear structures in tokamak plasmas
Directory of Open Access Journals (Sweden)
K. A. Razumova
2001-01-01
Full Text Available A lot of different kinds of instabilities may be developed in high temperature plasma located in a strong toroidal magnetic field (tokamak plasma. Nonlinear effects in the instability development result in plasma self-organization. Such plasma has a geometrically complicated configuration, consisting of the magnetic surfaces imbedded into each other and split into islands with various characteristic numbers of helical twisting. The self-consistency of the processes means that the transport coefficients in plasma do not depend just on the local parameters, being a function of the whole plasma configuration and of the forces affecting it. By disrupting the bonds between separate magnetic surfaces filled with islands, one can produce zones of reduced transport in the plasma, i.e. “internal thermal barriers”, allowing one essentially to increase the plasma temperature and density.
Coupled neoclassical-magnetohydrodynamic simulations of axisymmetric plasmas
Lyons, Brendan C.
2014-10-01
Neoclassical effects (e.g., the bootstrap current and neoclassical toroidal viscosity [NTV]) have a profound impact on many magnetohydrodynamic (MHD) instabilities, including tearing modes, edge-localized modes (ELMs), and resistive wall modes. High-fidelity simulations of such phenomena require a multiphysics code that self-consistently couples the kinetic and fluid models. We present the first results of the DK4D code, a dynamic drift-kinetic equation (DKE) solver being developed for this application. In this study, DK4D solves a set of time-dependent, axisymmetric DKEs for the non-Maxwellian part of the electron and ion distribution functions (fNM) with linearized Fokker-Planck-Landau collision operators. The plasma is formally assumed to be in the low- to finite-collisionality regimes. The form of the DKEs used were derived in a Chapman-Enskog-like fashion, ensuring that fNM carries no density, momentum, or temperature. Rather, these quantities are contained within the background Maxwellian and are evolved by an appropriate set of extended MHD equations. We will discuss computational methods used and benchmarks to other neoclassical models and codes. Furthermore, DK4D has been coupled to a reduced, transport-timescale MHD code, allowing for self-consistent simulations of the dynamic formation of the ohmic and bootstrap currents. Several applications of this hybrid code will be presented, including an ELM-like pressure collapse. We will also discuss plans for coupling to the spatially three-dimensional, extended MHD code M3D-C1 and generalizing to nonaxisymmetric geometries, with the goal of performing self-consistent hybrid simulations of tokamak instabilities and calculations of NTV torque. This work supported by the U.S. Department of Energy (DOE) under Grant Numbers DE-FC02-08ER54969 and DE-AC02-09CH11466.
Tokamak Plasmas : Mirnov coil data analysis for tokamak ADITYA
Indian Academy of Sciences (India)
D Raju; R Jha; P K Kaw; S K Mattoo; Y C Saxena; Aditya Team
2000-11-01
The spatial and temporal structures of magnetic signal in the tokamak ADITYA is analysed using recently developed singular value decomposition (SVD) technique. The analysis technique is ﬁrst tested with simulated data and then applied to the ADITYA Mirnov coil data to determine the structure of current peturbation as the discharge progresses. It is observed that during the current rise phase, current perturbation undergoes transition from = 5 poloidal structure to = 4 and then to = 3. At the time of current termination, = 2 perturbation is observed. It is observed that the mode frequency remains nearly constant (≈10 kHz) when poloidal mode structure changes from = 4 to = 2. This may be either an indication of mode coupling or a consequences of changes in the plasma electron temperature and density scale length.
Energy Technology Data Exchange (ETDEWEB)
Kasilov, Sergei V. [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, Technische Universität Graz Petersgasse 16, A–8010 Graz (Austria); Institute of Plasma Physics National Science Center “Kharkov Institute of Physics and Technology” ul. Akademicheskaya 1, 61108 Kharkov (Ukraine); Kernbichler, Winfried; Martitsch, Andreas F.; Heyn, Martin F. [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, Technische Universität Graz Petersgasse 16, A–8010 Graz (Austria); Maassberg, Henning [Max-Planck Institut für Plasmaphysik, D-17491 Greifswald (Germany)
2014-09-15
The toroidal torque driven by external non-resonant magnetic perturbations (neoclassical toroidal viscosity) is an important momentum source affecting the toroidal plasma rotation in tokamaks. The well-known force-flux relation directly links this torque to the non-ambipolar neoclassical particle fluxes arising due to the violation of the toroidal symmetry of the magnetic field. Here, a quasilinear approach for the numerical computation of these fluxes is described, which reduces the dimension of a standard neoclassical transport problem by one without model simplifications of the linearized drift kinetic equation. The only limiting condition is that the non-axisymmetric perturbation field is small enough such that the effect of the perturbation field on particle motion within the flux surface is negligible. Therefore, in addition to most of the transport regimes described by the banana (bounce averaged) kinetic equation also such regimes as, e.g., ripple-plateau and resonant diffusion regimes are naturally included in this approach. Based on this approach, a quasilinear version of the code NEO-2 [W. Kernbichler et al., Plasma Fusion Res. 3, S1061 (2008).] has been developed and benchmarked against a few analytical and numerical models. Results from NEO-2 stay in good agreement with results from these models in their pertinent range of validity.
Relativistic runaway electrons in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Jaspers, R.E.
1995-02-03
Runaway electrons are inherently present in a tokamak, in which an electric field is applied to drive a toroidal current. The experimental work is performed in the tokamak TEXTOR. Here runaway electrons can acquire energies of up to 30 MeV. The runaway electrons are studied by measuring their synchrotron radiation, which is emitted in the infrared wavelength range. The studies presented are unique in the sense that they are the first ones in tokamak research to employ this radiation. Hitherto, studies of runaway electrons revealed information about their loss in the edge of the discharge. The behaviour of confined runaways was still a terra incognita. The measurement of the synchrotron radiation allows a direct observation of the behaviour of runaway electrons in the hot core of the plasma. Information on the energy, the number and the momentum distribution of the runaway electrons is obtained. The production rate of the runaway electrons, their transport and the runaway interaction with plasma waves are studied. (orig./HP).
Tokamak Plasmas : Plasma position control in SST1 tokamak
Indian Academy of Sciences (India)
I Bandyopadhyay; S P Deshpande
2000-11-01
For long duration steady state operation of SST1, it would be very crucial to maintain the plasma radial and vertical positions accurately. For designing the position controller in SST1 we have adopted the simple linear RZIP control model. While the vertical position instability is slowed down by a set of passive stabilizers placed closed to the plasma edge, a pair of in-vessel active feedback coils can adequately control vertical position perturbations of up to 1 cm. The shifts in radial position arising due to minor disruptions would be controlled by a separate pair of poloidal ﬁeld (PF) coils also placed inside the vessel, however the controller would ignore fast but insigniﬁcant changes in radius arising due to edge localised modes. The parameters of both vertical and radial position control coils and their power supplies are determined based on the RZIP simulations.
Magnetohydrodynamic Waves and Instabilities in Rotating Tokamak Plasmas
Haverkort, J.W.
2013-01-01
One of the most promising ways to achieve controlled nuclear fusion for the commercial production of energy is the tokamak design. In such a device, a hot plasma is confined in a toroidal geometry using magnetic fields. The present generation of tokamaks shows significant plasma rotation, primarily
Ion temperature gradient turbulence in helical and axisymmetric RFP plasmas
Predebon, I
2015-01-01
Turbulence induced by the ion temperature gradient (ITG) is investigated in the helical and axisymmetric plasma states of a reversed field pinch device by means of gyrokinetic calculations. The two magnetic configurations are systematically compared, both linearly and nonlinearly, in order to evaluate the impact of the geometry on the instability and its ensuing transport, as well as on the production of zonal flows. Despite its enhanced confinement, the high-current helical state demonstrates a lower ITG stability threshold compared to the axisymmetric state, and ITG turbulence is expected to become an important contributor to the total heat transport.
Tokamak Plasmas : Internal magnetic ﬁeld measurement in tokamak plasmas using a Zeeman polarimeter
Indian Academy of Sciences (India)
M Jagadeeshwari; J Govindarajan
2000-11-01
In a tokamak plasma, the poloidal magnetic ﬁeld proﬁle closely depends on the current density proﬁle. We can deduce the internal magnetic ﬁeld from the analysis of circular polarization of the spectral lines emitted by the plasma. The theory of the measurement and a detailed design of the Zeeman polarimeter constructed to measure the poloidal ﬁeld proﬁle in the ADITYA tokamak are presented. The Fabry-Perot which we have employed in our design, with photodiode arrays followed by lock-in detection of the polarization signal, allows the measurement of the fractional circular polarization. In this system He-II line with wavelength 4686 Å is adopted as the monitoring spectral line. The line emission used in the present measurement is not well localized in the plasma, necessiating the use of a spatial inversion procedure to obtain the local values of the ﬁeld.
Axisymmetric equilibria of a gravitating plasma with incompressible flows
Throumoulopoulos, G N
2001-01-01
It is found that the ideal magnetohydrodynamic equilibrium of an axisymmetric gravitating magnetically confined plasma with incompressible flows is governed by a second-order elliptic differential equation for the poloidal magnetic flux function containing five flux functions coupled with a Poisson equation for the gravitation potential, and an algebraic relation for the pressure. This set of equations is amenable to analytic solutions. As an application, the magnetic-dipole static axisymmetric equilibria with vanishing poloidal plasma currents derived recently by Krasheninnikov, Catto, and Hazeltine [Phys. Rev. Lett. {\\bf 82}, 2689 (1999)] are extended to plasmas with finite poloidal currents, subject to gravitating forces from a massive body (a star or black hole) and inertial forces due to incompressible sheared flows. Explicit solutions are obtained in two regimes: (a) in the low-energy regime $\\beta_0\\approx \\gamma_0\\approx \\delta_0 \\approx\\epsilon_0\\ll 1$, where $\\beta_0$, $\\gamma_0$, $\\delta_0$, and $\\...
Axisymmetric Nonlinear Waves And Structures in Hall Plasmas
Islam, Tanim
2011-01-01
A Hall plasma consists of a plasma with not all species frozen into the magnetic field. In this paper, a general equation for the evolution of an axisymmetric magnetic field in a Hall plasma is derived, with an integral similar to the Grad-Shafranov equation. Special solutions arising from curvature -- whistler drift modes that propagate along the electron drift as a Burger's shock, and nonlinear periodic and soliton-like solutions to the generalized Grad-Shafranov integral -- are analyzed. We derive analytical and numerical solutions in an electron-ion Hall plasma, in which electrons and ions are the only species in the plasmas. Results may then be applied to electron-ion-gas Hall plasmas, in which the ions are coupled to the motion of gases in low ionized plasmas (lower ionosphere and protostellar disks), and to dusty Hall plasmas (such as molecular clouds), in which the much heavier charged dust may be collisionally coupled to the gas.
Nonlinear lower hybrid modeling in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Napoli, F.; Schettini, G. [Università Roma Tre, Dipartimento di Ingegneria, Roma (Italy); Castaldo, C.; Cesario, R. [Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati (Italy)
2014-02-12
We present here new results concerning the nonlinear mechanism underlying the observed spectral broadening produced by parametric instabilities occurring at the edge of tokamak plasmas in present day LHCD (lower hybrid current drive) experiments. Low frequency (LF) ion-sound evanescent modes (quasi-modes) are the main parametric decay channel which drives a nonlinear mode coupling of lower hybrid (LH) waves. The spectrum of the LF fluctuations is calculated here considering the beating of the launched LH wave at the radiofrequency (RF) operating line frequency (pump wave) with the noisy background of the RF power generator. This spectrum is calculated in the frame of the kinetic theory, following a perturbative approach. Numerical solutions of the nonlinear LH wave equation show the evolution of the nonlinear mode coupling in condition of a finite depletion of the pump power. The role of the presence of heavy ions in a Deuterium plasma in mitigating the nonlinear effects is analyzed.
Sensitivity of transient synchrotron radiation to tokamak plasma parameters
Energy Technology Data Exchange (ETDEWEB)
Fisch, N.J.; Kritz, A.H.
1988-12-01
Synchrotron radiation from a hot plasma can inform on certain plasma parameters. The dependence on plasma parameters is particularly sensitive for the transient radiation response to a brief, deliberate, perturbation of hot plasma electrons. We investigate how such a radiation response can be used to diagnose a variety of plasma parameters in a tokamak. 18 refs., 13 figs.
A simulation study of a controlled tokamak plasma
Fujii, N.; Niwa, Y.
1980-03-01
A tokamak circuit theory, including results of numerical simulation studies, is applied to a control system synthesized for a Joule heated tokamak plasma. The treatment is similar to that of Ogata and Ninomiya (1979) except that in this case a quadrupole field coil current is considered coexisting with image induced on a vacuum chamber.
Modelling and control of a tokamak plasma; Modelisation et commande d`un plasma de tokamak
Energy Technology Data Exchange (ETDEWEB)
Bremond, S.
1995-10-18
Vertically elongated tokamak plasmas, while attractive as regards Lawson criteria, are intrinsically instable. It is found that the open-loop instability dynamics is characterised by the relative value of two dimensionless parameters: the coefficient of inductive coupling between the vessel and the coils, and the coil damping efficiency on the plasma displacement relative to that of the vessel. Applications to Tore Supra -where the instability is due to the iron core attraction- and DIII-D are given. A counter-effect of the vessel, which temporarily reverses the effect of coil control on the plasma displacement, is seen when the inductive coupling is higher than the damping ratio. Precise control of the plasma boundary is necessary if plasma-wall interaction and/or coupling to heating antennas are to be monitored. A positional drift, of a few mm/s, which had been observed in the Tore Supra tokamak, is explained and corrected. A linear plasma shape response model is then derived from magnetohydrodynamic equilibrium calculation, and proved to be in good agreement with experimental data. An optimal control law is derived, which minimizes an integral quadratic criteria on tracking errors and energy expenditure. This scheme avoids compensating coil currents, and could render local plasma shaping more precise. (authors). 123 refs., 77 figs., 6 tabs., 4 annexes.
Zeeman Spectroscopy of Tokamak Edge Plasmas
Hey, J. D.; Chu, C. C.; Mertens, Ph.
2002-12-01
Zeeman spectroscopy is a valuable tool both for diagnostic purposes, and for more fundamental studies of atomic and molecular processes in the boundary region of magnetically confined fusion plasmas (B ≃ 1 to 10 T). The method works well when the Zeeman (Paschen-Back) effect plays an important, or dominant, rôle in relation to other broadening mechanisms (Doppler, Stark, resonant excitation transfer) in determining the spectral line shape. For impurity species identification and temperature determination, Zeeman spectroscopy has advantages over charge-exchange recombination spectroscopy from highly excited radiator states, since spectral features practically unique to the species under investigation are analysed. It also provides useful information on probable mechanisms of line production (e.g. sputtering mechanisms, electron impact-induced dissociative excitation from molecules in the edge plasma), and on the temperature evolution of lower charge states in the process of convection inwards or diffusion outwards from the hotter plasma interior. Where different physical processes are responsible for different sections of the line profile — especially in the case of hydrogen isotopes — Zeeman spectroscopy can provide a set of characteristic temperatures for each section. The method is introduced in both passive and active spectroscopy, and general principles of the Zeeman effect are discussed with special reference to régimes of interest for the tokamak. Relevant physical processes (sputtering mechanisms, electron impact-induced dissociative excitation from molecules in the edge plasma, and ion-atom collisional heating mechanisms) are illustrated by sample spectra.
Tokamak Plasmas : Observation of ﬂoating potential asymmetry in the edge plasma of the SINP tokamak
Indian Academy of Sciences (India)
Krishnendu Bhattacharyya; N R Ray
2000-11-01
Edge plasma properties in a tokamak is an interesting subject of study from the view point of conﬁnement and stability of tokamak plasma. The edge plasma of SINP-tokamak has been investigated using specially designed Langmuir probes. We have observed a poloidal asymmetry of ﬂoating potentials, particularly the top-bottom ﬂoating potential differences are quite noticeable, which in turn produces a vertical electric ﬁeld (v). This v remains throughout the discharge but changes its direction at certain point of time which seems to depend on applied vertical magnetic ﬁeld v).
Axisymmetric nonlinear waves and structures in Hall plasmas
Energy Technology Data Exchange (ETDEWEB)
Islam, Tanim [Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, California 94551-0808 (United States)
2012-06-15
In this paper, a general equation for the evolution of an axisymmetric magnetic field in a Hall plasma is derived, with an integral similar to the Grad-Shafranov equation. Special solutions arising from curvature-whistler drift modes that propagate along the electron drift as a Burger's shock and nonlinear periodic and soliton-like solutions to the generalized Grad-Shafranov integral-are analyzed. We derive analytical and numerical solutions in a classical electron-ion Hall plasma, in which electrons and ions are the only species in the plasmas. Results may then be applied to the following low-ionized astrophysical plasmas: in protostellar disks, in which the ions may be coupled to the motion of gases; and in molecular clouds and protostellar jets, in which the much heavier charged dust in a dusty Hall plasma may be collisionally coupled to the gas.
A control approach for plasma density in tokamak machines
Energy Technology Data Exchange (ETDEWEB)
Boncagni, Luca, E-mail: luca.boncagni@enea.it [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Pucci, Daniele; Piesco, F.; Zarfati, Emanuele [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy); Mazzitelli, G. [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Monaco, S. [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy)
2013-10-15
Highlights: •We show a control approach for line plasma density in tokamak. •We show a control approach for pressure in a tokamak chamber. •We show experimental results using one valve. -- Abstract: In tokamak machines, chamber pre-fill is crucial to attain plasma breakdown, while plasma density control is instrumental for several tasks such as machine protection and achievement of desired plasma performances. This paper sets the principles of a new control strategy for attaining both chamber pre-fill and plasma density regulation. Assuming that the actuation mean is a piezoelectric valve driven by a varying voltage, the proposed control laws ensure convergence to reference values of chamber pressure during pre-fill, and of plasma density during plasma discharge. Experimental results at FTU are presented to discuss weaknesses and strengths of the proposed control strategy. The whole system has been implemented by using the MARTe framework [1].
Power Deposition on Tokamak Plasma-Facing Components
Arter, Wayne; Fishpool, Geoff
2014-01-01
The SMARDDA software library is used to model plasma interaction with complex engineered surfaces. A simple flux-tube model of power deposition necessitates the following of magnetic fieldlines until they meet geometry taken from a CAD (Computer Aided Design) database. Application is made to 1) models of ITER tokamak limiter geometry and 2) MASTU tokamak divertor designs, illustrating the accuracy and effectiveness of SMARDDA, even in the presence of significant nonaxisymmetric ripple field. SMARDDA's ability to exchange data with CAD databases and its speed of execution also give it the potential for use directly in the design of tokamak plasma facing components.
Weisberg, D. B.; Paz-Soldan, C.; Lanctot, M. J.; Strait, E. J.; Evans, T. E.
2016-10-01
The plasma response to proposed 3D coil geometries in the DIII-D tokamak is investigated using the linear MHD plasma response code MARS-F. An extensive examination of low- and high-field side coil arrangements shows the potential to optimize the coupling between imposed non-axisymmetric magnetic perturbations and the total plasma response by varying the toroidal and poloidal spectral content of the applied field. Previous work has shown that n=2 and n=3 perturbations can suppress edge-localized modes (ELMs) in cases where the applied field's coupling to resonant surfaces is enhanced by amplifying marginally-stable kink modes. This research is extended to higher n-number configurations of 2 to 3 rows with up to 12 coils each in order to advance the physical understanding and optimization of both the resonant and non-resonant responses. Both in- and ex-vessel configurations are considered. The plasma braking torque is also analyzed, and coil geometries with favorable plasma coupling characteristics are discussed. Work supported by GA internal funds.
Cremaschini, Claudio
2011-01-01
A largely unsolved theoretical issue in controlled fusion research is the consistent \\textit{kinetic} treatment of slowly-time varying plasma states occurring in collisionless and magnetized axisymmetric plasmas. The phenomenology may include finite pressure anisotropies as well as strong toroidal and poloidal differential rotation, characteristic of Tokamak plasmas. Despite the fact that physical phenomena occurring in fusion plasmas depend fundamentally on the microscopic particle phase-space dynamics, their consistent kinetic treatment remains still essentially unchalleged to date. The goal of this paper is to address the problem within the framework of Vlasov-Maxwell description. The gyrokinetic treatment of charged particles dynamics is adopted for the construction of asymptotic solutions for the quasi-stationary species kinetic distribution functions. These are expressed in terms of the particle exact and adiabatic invariants. The theory relies on a perturbative approach, which permits to construct asym...
Modular Coils and Plasma Configurations for Quasi-axisymmetric Stellarators
Energy Technology Data Exchange (ETDEWEB)
L.P. Ku and A.H. Boozer
2010-09-10
Characteristics of modular coils for quasi-axisymmetric stellarators that are related to the plasma aspect ratio, number of field periods and rotational transform have been examined systematically. It is observed that, for a given plasma aspect ratio, the coil complexity tends to increase with the increased number of field periods. For a given number of field periods, the toroidal excursion of coil winding is reduced as the plasma aspect ratio is increased. It is also clear that the larger the coil-plasma separation is, the more complex the coils become. It is further demonstrated that it is possible to use other types of coils to complement modular coils to improve both the physics and the modular coil characteristics.
Tokamak magnetohydrodynamic equilibrium states with axisymmetric boundary and a 3D helical core.
Cooper, W A; Graves, J P; Pochelon, A; Sauter, O; Villard, L
2010-07-16
Magnetohydrodynamic (MHD) equilibrium states with imposed axisymmetric boundary are computed in which a spontaneous bifurcation develops to produce an internal three-dimensional (3D) configuration with a helical structure in addition to the standard axisymmetric system. Equilibrium states with similar MHD energy levels are shown to develop very different geometric structures. The helical equilibrium states resemble saturated internal kink mode structures.
Energy Technology Data Exchange (ETDEWEB)
Fraboulet, D.
1996-09-17
Detection of {alpha}(3.5 MeV) fusion products will be of major importance for the achievement of self sustained discharges in fusion thermonuclear reactors. Due to their cyclotronic gyration in the confining magnetic field of a tokamak, {alpha} particles are suspected to radiate in the radio-frequency band [RF: 10-500 MHz]. Our aim is to determine whether detection of RF emission radiated from a reactor plasma can provide information concerning those fusion products. We observed experimentally that the RF emission radiated from fast ions situated in the core of the discharge is detectable with a probe located at the plasma edge. For that purpose, fast temporal acquisition of spectral power was achieved in a narrow frequency band. We also propose two complementary models for this emission. In the first one, we describe locally the energy transfer between the photon population and the plasma and we compute the radiation equilibrium taking place in the tokamak. {alpha} particles are not the unique species involved in the equilibrium and it is necessary to take into account all other species present in the plasma (Deuterium, Tritium, electrons,...). Our second model consists in the numerical resolution of the Maxwell-Vlasov with the use of a variational formulation, in which all polarizations are considered and the 4 first cyclotronic harmonics are included in a 1-D slab geometry. The development of this second model leads to the proposal for an experimental set up aiming to the feasibility demonstration of a routine diagnostic providing the central {alpha} density in a reactor. (author). 166 refs.
Feedback Control for Plasma Position on HL-2A Tokamak
Institute of Scientific and Technical Information of China (English)
LIBo; SONGXianming; LILi; LIULi; WANGMinghong; FANMingjie; CHENLiaoyuan; YAOLieying; YANGQingwei
2003-01-01
HL-2A is a tokamak with closed divertor. It had been built at the end of 2002 and began to discharge from then on. To further study plasma discharges in HL-2A, a feedback control system (FBCS) for plasma position bad been developed in 2003.
Comparisons of linear and nonlinear plasma response models for non-axisymmetric perturbations
Energy Technology Data Exchange (ETDEWEB)
Turnbull, A. D.; Ferraro, N. M.; Lao, L. L.; Lanctot, M. J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Izzo, V. A. [University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Lazarus, E. A.; Hirshman, S. P. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Park, J.-K.; Lazerson, S.; Reiman, A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Cooper, W. A. [Association Euratom-Confederation Suisse, Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Liu, Y. Q. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Turco, F. [Columbia University, 116th St and Broadway, New York, New York 10027 (United States)
2013-05-15
With the installation of non-axisymmetric coil systems on major tokamaks for the purpose of studying the prospects of ELM-free operation, understanding the plasma response to the applied fields is a crucial issue. Application of different response models, using standard tools, to DIII-D discharges with applied non-axisymmetric fields from internal coils, is shown to yield qualitatively different results. The plasma response can be treated as an initial value problem, following the system dynamically from an initial unperturbed state, or from a nearby perturbed equilibrium approach, and using both linear and nonlinear models [A. D. Turnbull, Nucl. Fusion 52, 054016 (2012)]. Criteria are discussed under which each of the approaches can yield a valid response. In the DIII-D cases studied, these criteria show a breakdown in the linear theory despite the small 10{sup −3} relative magnitude of the applied magnetic field perturbations in this case. For nonlinear dynamical evolution simulations to reach a saturated nonlinear steady state, appropriate damping mechanisms need to be provided for each normal mode comprising the response. Other issues arise in the technical construction of perturbed flux surfaces from a displacement and from the presence of near nullspace normal modes. For the nearby equilibrium approach, in the absence of a full 3D equilibrium reconstruction with a controlled comparison, constraints relating the 2D system profiles to the final profiles in the 3D system also need to be imposed to assure accessibility. The magnetic helicity profile has been proposed as an appropriate input to a 3D equilibrium calculation and tests of this show the anticipated qualitative behavior.
Imaging System and Plasma Imaging on HL-2A Tokamak
Institute of Scientific and Technical Information of China (English)
郑银甲; 冯震; 罗萃文; 刘莉; 李伟; 严龙文; 杨青巍; 刘永
2004-01-01
As a new diagnostic means, plasma-imaging system has been developed on the HL2A tokamak, with a basic understanding of plasma discharge scenario of the entire torus, checking the plasma position and the clearance between the plasma and the first wall during discharge. The plasma imaging system consists of (1) color video camera, (2) observation window and turn mirror,(3) viewing & collecting optics, (4) video cable, (5) Video capture card as well as PC. This paper mainly describes the experimental arrangement, plasma imaging system and detailed part in the system, along with the experimental results. Real-time monitoring of plasma discharge process,particularly distinguishing limitor and divertor configuration, the imaging system has become key diagnostic means and laid the foundation for further physical experiment on the HL-2A tokamak.
Matsuoka, Seikichi; Kanno, Ryutaro; Sugama, Hideo
2015-01-01
In evaluating neoclassical transport by radially-local simulations, the magnetic drift tangential to a flux surface is usually ignored in order to keep the phase-space volume conservation. In this paper, effect of the tangential magnetic drift on the local neoclassical transport are investigated. To retain the effect of the tangential magnetic drift in the local treatment of neoclassical transport, a new local formulation for the drift kinetic simulation is developed. The compressibility of the phase-space volume caused by the tangential magnetic drift is regarded as a source term for the drift kinetic equation, which is solved by using a two-weight $\\delta f$ Monte Carlo method for non-Hamiltonian system [G. Hu and J. A. Krommes, Phys. Plasmas $\\rm \\textbf{1}$, 863 (1994)]. It is demonstrated that the effect of the drift is negligible for the neoclassical transport in tokamaks. In non-axisymmetric systems, however, the tangential magnetic drift substantially changes the dependence of the neoclassical transpo...
Energy Technology Data Exchange (ETDEWEB)
Lakhin, V. P.; Sorokina, E. A., E-mail: sorokina.ekaterina@gmail.com, E-mail: vilkiae@gmail.com; Ilgisonis, V. I. [National Research Centre Kurchatov Institute (Russian Federation); Konovaltseva, L. V. [Peoples’ Friendship University of Russia (Russian Federation)
2015-12-15
A set of reduced linear equations for the description of low-frequency perturbations in toroidally rotating plasma in axisymmetric tokamak is derived in the framework of ideal magnetohydrodynamics. The model suitable for the study of global geodesic acoustic modes (GGAMs) is designed. An example of the use of the developed model for derivation of the integral conditions for GGAM existence and of the corresponding dispersion relation is presented. The paper is dedicated to the memory of academician V.D. Shafranov.
Solenoid-free plasma start-up in spherical tokamaks
Raman, R.; Shevchenko, V. F.
2014-10-01
The central solenoid is an intrinsic part of all present-day tokamaks and most spherical tokamaks. The spherical torus (ST) confinement concept is projected to operate at high toroidal beta and at a high fraction of the non-inductive bootstrap current as required for an efficient reactor system. The use of a conventional solenoid in a ST-based fusion nuclear facility is generally believed to not be a possibility. Solenoid-free plasma start-up is therefore an area of extensive worldwide research activity. Solenoid-free plasma start-up is also relevant to steady-state tokamak operation, as the central transformer coil of a conventional aspect ratio tokamak reactor would be located in a high radiation environment but would be needed only during the initial discharge initiation and current ramp-up phases. Solenoid-free operation also provides greater flexibility in the selection of the aspect ratio and simplifies the reactor design. Plasma start-up methods based on induction from external poloidal field coils, helicity injection and radio frequency current drive have all made substantial progress towards meeting this important need for the ST. Some of these systems will now undergo the final stages of test in a new generation of large STs, which are scheduled to begin operations during the next two years. This paper reviews research to date on methods for inducing the initial start-up current in STs without reliance on the conventional central solenoid.
Disruption avoidance through active magnetic feedback in tokamak plasmas
Paccagnella, Roberto; Zanca, Paolo; Yanovskiy, Vadim; Finotti, Claudio; Manduchi, Gabriele; Piron, Chiara; Carraro, Lorella; Franz, Paolo; RFX Team
2014-10-01
Disruptions avoidance and mitigation is a fundamental need for a fusion relevant tokamak. In this paper a new experimental approach for disruption avoidance using active magnetic feedback is presented. This scheme has been implemented and tested on the RFX-mod device operating as a circular tokamak. RFX-mod has a very complete system designed for active mode control that has been proved successful for the stabilization of the Resistive Wall Modes (RWMs). In particular the current driven 2/1 mode, unstable when the edge safety factor, qa, is around (or even less than) 2, has been shown to be fully and robustly stabilized. However, at values of qa (qa > 3), the control of the tearing 2/1 mode has been proved difficult. These results suggested the idea to prevent disruptions by suddenly lowering qa to values around 2 where the tearing 2/1 is converted to a RWM. Contrary to the universally accepted idea that the tokamaks should disrupt at low qa, we demonstrate that in presence of a well designed active control system, tokamak plasmas can be driven to low qa actively stabilized states avoiding plasma disruption with practically no loss of the plasma internal energy.
Negative edge plasma currents in the SINP tokamak
Indian Academy of Sciences (India)
Ramesh Narayanan; A N Sekar Iyengar
2011-12-01
A tokamak plasma discharge having an increase in duration accompanied with enhanced runaway electron ﬂux has been experimentally studied in this paper. The discharges have been obtained by controlling the applied vertical magnetic ﬁeld ($B^{\\text{appl}}_v$) to below a critical value. Such discharges have been observed to have ‘negative edge plasma currents’, detected using an internal Rogowskii coil (IRC). We have tried to correlate the runaway behaviour with the negative edge plasma currents and have explained that these observations are a result of beam plasma instabilities.
Plasma shaping effects on tokamak scrape-off layer turbulence
Riva, Fabio; Lanti, Emmanuel; Jolliet, Sébastien; Ricci, Paolo
2017-03-01
The impact of plasma shaping on tokamak scrape-off layer (SOL) turbulence is investigated. The drift-reduced Braginskii equations are written for arbitrary magnetic geometries, and an analytical equilibrium model is used to introduce the dependence of turbulence equations on tokamak inverse aspect ratio (ε ), Shafranov’s shift (Δ), elongation (κ), and triangularity (δ). A linear study of plasma shaping effects on the growth rate of resistive ballooning modes (RBMs) and resistive drift waves (RDWs) reveals that RBMs are strongly stabilized by elongation and negative triangularity, while RDWs are only slightly stabilized in non-circular magnetic geometries. Assuming that the linear instabilities saturate due to nonlinear local flattening of the plasma gradient, the equilibrium gradient pressure length {L}p=-{p}e/{{\
Transition to subcritical turbulence in a tokamak plasma
van Wyk, F; Schekochihin, A A; Roach, C M; Field, A R; Dorland, W
2016-01-01
Unstable perturbations driven by the pressure gradient and other sources of free energy in tokamak plasmas can grow exponentially and eventually saturate nonlinearly, leading to turbulence. Recent work has shown that in the presence of sheared flows, such systems can be subcritical. This means that all perturbations are linearly stable and a transition to a turbulent state only occurs if large enough initial perturbations undergo sufficient transient growth to allow nonlinear interaction. There is, however, currently very little known about a subcritical transition to turbulence in fusion-relevant plasmas. Here we use first-principles gyrokinetic simulations of a turbulent plasma in the outer core of the Mega-Ampere Spherical Tokamak (MAST) to demonstrate that the experimentally observed state is near the transition threshold, that the turbulence in this state is subcritical, and that transition to turbulence occurs via accumulation of very long-lived, intense, finite-amplitude coherent structures, which domi...
A quasi-linear gyrokinetic transport model for tokamak plasmas
Casati, Alessandro
2012-01-01
The development of a quasi-linear gyrokinetic transport model for tokamak plasmas, ultimately designed to provide physically comprehensive predictions of the time evolution of the thermodynamic relevant quantities, is a task that requires tight links among theoretical, experimental and numerical studies. The framework of the model here proposed, which operates a reduction of complexity on the nonlinear self-organizing plasma dynamics, allows in fact multiple validations of the current understanding of the tokamak micro-turbulence. The main outcomes of this work stem from the fundamental steps involved by the formulation of such a reduced transport model, namely: (1) the verification of the quasi-linear plasma response against the nonlinearly computed solution, (2) the improvement of the turbulent saturation model through an accurate validation of the nonlinear codes against the turbulence measurements, (3) the integration of the quasi-linear model within an integrated transport solver.
Shape reconstruction of merging spherical tokamak plasma in UTST device
Ushiki, Tomohiko; Itagaki, Masafumi; Inomoto, Michiaki
2016-10-01
Spherical tokamak (ST) merging method is one of the ST start-up methods which heats the plasma through magnetic reconnection. In the present study reconstruction of eddy current profile and plasma shape was performed during spherical tokamak merging only using external sensor signals by the Cauchy condition surface (CCS) method. CCS method have been implemented for JT-60 (QST), QUEST (Kyushu University), KSTAR (NFRI), RELAX (KIT), and LHD (Nifs). In this method, CCS was assumed inside each plasmas, where both flux function and its normal derivative are unknown. Effect of plasma current was replaced by the boundary condition of CCS, assuming vacuum field everywhere. Also, the nodal points for the boundary integrals of eddy current density were set using quadratic elements in order to express the complicated vacuum vessel shape. Reconstructed profiles of the eddy current and the magnetic flux were well coincided with the reference in each phase of merging process. Magnetic sensor installation plan for UTST was determined from these calculation results. This work was supported by the JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus''.
Energy Technology Data Exchange (ETDEWEB)
Toi, K. [National Institute for Fusion Science, Toki, Japan; Ogawa, K. [Nagoya University, Japan; Isobe, M. [National Institute for Fusion Science, Toki, Japan; Osakabe, M. [National Institute for Fusion Science, Toki, Japan; Spong, Donald A [ORNL; Todo, Yasushi [National Institute for Fusion Science, Toki, Japan
2011-01-01
Comprehensive understanding of energetic-ion-driven global instabilities such as Alfven eigenmodes (AEs) and their impact on energetic ions and bulk plasma is crucially important for tokamak and stellarator/helical plasmas and in the future for deuterium-tritium (DT) burning plasma experiments. Various types of global modes and their associated enhanced energetic ion transport are commonly observed in toroidal plasmas. Toroidicity-induced AEs and ellipticity-induced AEs, whose gaps are generated through poloidal mode coupling, are observed in both tokamak and stellarator/helical plasmas. Global AEs and reversed shear AEs, where toroidal couplings are not as dominant were also observed in those plasmas. Helicity induced AEs that exist only in 3D plasmas are observed in the large helical device (LHD) and Wendelstein 7 Advanced Stellarator plasmas. In addition, the geodesic acoustic mode that comes from plasma compressibility is destabilized by energetic ions in both tokamak and LHD plasmas. Nonlinear interaction of these modes and their influence on the confinement of the bulk plasma as well as energetic ions are observed in both plasmas. In this paper, the similarities and differences in these instabilities and their consequences for tokamak and stellarator/helical plasmas are summarized through comparison with the data sets obtained in LHD. In particular, this paper focuses on the differences caused by the rotational transform profile and the 2D or 3D geometrical structure of the plasma equilibrium. Important issues left for future study are listed.
Plasma Shape and Current Control Simulation of HT-7U Tokamak
Institute of Scientific and Technical Information of China (English)
吴斌; 张澄
2003-01-01
This paper describes the discharge simulation of HT-7U tokamak plasma equilibriumand plasma current by solving MHD equations and surface average transport equations using anequilibrium evolution code. The simulated result shows the evolution of plasma parameter versustime .The simulated result can play an important role in the design of the plasma equilibrium andcontrol system of a tokamak.
A midsize tokamak as a fast track to burning plasmas
Directory of Open Access Journals (Sweden)
E. Mazzucato
2011-03-01
Full Text Available This paper describes the conceptual design of a midsize tokamak as a fast track to the investigation of burning plasmas. It is shown that it could reach large values of energy gain (≥ 10 with only a modest improvement in confinement over the scaling that was used for designing the International Thermonuclear Experimental Reactor (ITER. This can be achieved by operating in a low plasma recycling regime that experiments indicate can lead to improved plasma confinement. The possibility of reaching the necessary conditions of low recycling using a different magnetic divertor from those currently employed in present experiments is discussed.
3D MHD disruptions simulations of tokamaks plasmas
Paccagnella, Roberto; Strauss, Hank; Breslau, Joshua
2008-11-01
Tokamaks Vertical Displacement Events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model, implemented in the M3D code [1], is completed with the presence of a 2D homogeneous wall with finite resistivity. This allows the study of the relatively slowly growing magneto-hydro-dynamical perturbation, the resistive wall mode (RWM), which is, in this work, the main drive of the disruptions. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given. [1] W. Park, E.V. Belova, G.Y. Fu, X.Z. Tang, H.R. Strauss, L.E. Sugiyama, Phys. Plasmas 6 (1999) 1796.
Multi-field plasma sandpile model in tokamaks and applications
Peng, X. D.; Xu, J. Q.
2016-08-01
A multi-field sandpile model of tokamak plasmas is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast/micro time-scale and diffusive transports on the slow/macro time-scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are taken into account simultaneously. New redistribution rules of a sand-relaxing process are defined according to the transport properties of special turbulence which allows the uphill particle transport. Applying the model, we first simulate the steady-state plasma profile self-sustained by drift wave turbulences in the Ohmic discharge of a tokamak. A scaling law as f = a q0 b + c for the relation of both center-density n ( 0 ) and electron (ion) temperatures T e ( 0 ) ( T i ( 0 ) ) with the center-safety-factor q 0 is found. Then interesting work about the nonlocal transport phenomenon observed in tokamak experiments proceeds. It is found that the core electron temperature increases rapidly in response to the edge cold pulse and inversely it decreases in response to the edge heat pulse. The results show that the nonlocal response of core electron temperature depending on the amplitudes of background plasma density and temperature is more remarkable in a range of gas injection rate. Analyses indicate that the avalanche transport caused by plasma drift instabilities with thresholds is a possible physical mechanism for the nonlocal transport in tokamaks. It is believed that the model is capable of being applied to more extensive questions occurring in the transport field.
Heavy Neutral Beam Probe for Edge Plasma Analysis in Tokamaks
Energy Technology Data Exchange (ETDEWEB)
Castracane, J.
2001-01-04
The Heavy Neutral Beam Probe (HNBP) developed initially with DOE funding under the Small Business Innovation Research (SBIR) program was installed on the Tokamak de Varennes (TdeV) at the CCFM. This diagnostic was designed to perform fundamental measurements of edge plasma properties. The hardware was capable of measuring electron density and potential profiles with high spatial and temporal resolution. Fluctuation spectra for these parameters were obtained with HNBP for transport studies.
Plasma diagnostics for tokamaks and stellarators
Energy Technology Data Exchange (ETDEWEB)
Stott, P. E.; Sanchez, J.
1994-07-01
A collection of papers on plasma diagnostics is presented. The papers show the state of the art developments in a series of techniques: Magnetic diagnostics, Edge diagnostics, Langmuir probes, Spectroscopy, Microwave and FIR diagnostics as well as Thomson Scattering. Special interest was focused on those diagnostics oriented to fluctuations measurements in the plasma. (Author) 451 refs.
Suttrop, W.; Kirk, A.; Nazikian, R.; Leuthold, N.; Strumberger, E.; Willensdorfer, M.; Cavedon, M.; Dunne, M.; Fischer, R.; Fietz, S.; Fuchs, J. C.; Liu, Y. Q.; McDermott, R. M.; Orain, F.; Ryan, D. A.; Viezzer, E.; The ASDEX Upgrade Team; The DIII-D Team; The Eurofusion MST1 Team
2017-01-01
The interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m = qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality, ν \\text{ped}\\ast≤slant 0.4 : (a) a reduction of the global plasma density by up to 61 % and (b) a reduction of the energy loss associated with edge localised modes (ELMs) by a factor of up to 9. A comprehensive database of ELM mitigation pulses at low {ν\\ast} in ASDEX Upgrade shows that the degree of ELM mitigation correlates with the reduction of pedestal pressure which in turn is limited and defined by the onset of ELMs, i. e. a modification of the ELM stability limit by the magnetic perturbation.
Molecular emission in the edge plasma of T-10 tokamak
Energy Technology Data Exchange (ETDEWEB)
Zimin, A. M., E-mail: zimin@power.bmstu.ru [Bauman Moscow State Technical University (Russian Federation); Krupin, V. A. [National Research Centre Kurchatov Institute (Russian Federation); Troynov, V. I. [Bauman Moscow State Technical University (Russian Federation); Klyuchnikov, L. A. [National Research Centre Kurchatov Institute (Russian Federation)
2015-12-15
The experiments on recording molecular emission in the edge plasma of the T-10 tokamak are described. To obtain reliable spectra with sufficient spectral, temporal, and spatial resolution, the optical circuit is optimized for various experimental conditions. Typical spectra measured in two sections of the tokamak are shown. It is shown that, upon varying the parameters of the discharge, the molecular spectrum not only changes significantly in intensity but also undergoes a qualitative change in the rotational and vibrational structure. For a detailed analysis, we use the Fulcher-α system (d{sup 3}Π{sub u}–a{sup 3}Σ{sub g}{sup +}) of deuterium in the wavelength range from 590 to 640 nm. The rotational temperatures of ground state X{sup 1}Σ{sub g}{sup +} and upper excited state d{sup 3}Π{sub u} are estimated by the measured spectra.
Self-consistent hybrid neoclassical-magnetohydrodynamic simulations of axisymmetric plasmas
Lyons, Brendan Carrick
Neoclassical effects (e.g., conductivity reduction and bootstrap currents) have a profound impact on many magnetohydrodynamic (MHD) instabilities in toroidally-confined plasmas, including tearing modes, edge-localized modes, and resistive wall modes. High-fidelity simulations of such phenomena require a multiphysics code that self-consistently couples the kinetic and fluid models. We review a hybrid formulation from the recent literatureAB that is appropriate for such studies. In particular, the formulation uses a set of time-dependent drift-kinetic equations (DKEs) to advance the non-Maxwellian part of the electron and ion distribution functions (fNM) with linearized Fokker-Planck-Landau collision operators. The form of the DKEs used were derived in a Chapman-Enskog-like fashion, ensuring that fNM carries no density, momentum, or temperature. Rather, these quantities are contained within the background Maxwellian and are evolved by a set of MHD equations which are closed by moments of fNM . We then present two DKE solvers based upon this formulation in axisymmetric toroidal geometries. The Neoclassical Ion-Electron Solver (NIES) solves the steady-state DKEs in the low-collisionality limit. Convergence and benchmark studies are discussed, providing a proof-of-principle that this new formulation can accurately reproduce results from the literature in the limit considered. We then present the DK4D code which evolves the finite-collisionality DKEs time-dependently. Computational methods used and successful benchmarks to other neoclassical models and codes are discussed. Furthermore, we couple DK4D to a reduced, transport-timescale MHD code. The resulting hybrid code is used to simulate the evolution of the current density in a large-aspect-ratio plasma in the presence of several different time-dependent pressure profiles. These simulations demonstrate the self-consistent, dynamic formation of the ohmic and bootstrap currents. In the slowly-evolving plasmas considered
Real-time optical plasma boundary reconstruction for plasma position control at the TCV Tokamak
Hommen, G.; Baar, M. de; Duval, B.P.; Andrebe, Y.; Le, H.B.; Klop, M.A.; Doelman, N.J.; Witvoet, G.; Steinbuch, M.
2014-01-01
A dual, high speed, real-time visible light camera setup was installed on the TCV tokamak to reconstruct optically and in real-time the plasma boundary shape. Localized light emission from the plasma boundary in tangential view, broadband visible images results in clearly resolved boundary edge-feat
Analysis of fast ion induced instabilities in tokamak plasmas
Horváth, László
2015-01-01
In magnetic confinement fusion devices like tokamaks, it is crucial to confine the high energy fusion-born helium nuclei ($\\alpha$-particles) to maintain the energy equilibrium of the plasma. However, energetic ions can excite various instabilities which can lead to their enhanced radial transport. Consequently, these instabilities may degrade the heating efficiency and they can also cause harmful power loads on the plasma-facing components of the device. Therefore, the understanding of these modes is a key issue regarding future burning plasma experiments. One of the main open questions concerning energetic particle (EP) driven instabilities is the non-linear evolution of the mode structure. In this thesis, I present my results on the investigation of $\\beta$-induced Alfv\\'{e}n eigenmodes (BAEs) and EP-driven geodesic acoustic modes (EGAMs) observed in the ramp-up phase of off-axis NBI heated plasmas in the ASDEX Upgrade tokamak. These modes were well visible on several line-of-sights (LOSs) of the soft X-ra...
Plasma engineering studies for Tennessee Tokamak (TENTOK) fusion power reactor
Energy Technology Data Exchange (ETDEWEB)
Yokoyama, K.E.; Lacatski, J.T.; Miller, J.B.; Bryan, W.E.; King, P.W.; Santoro, R.T.; Uckan, N.A.; Shannon, T.E.
1984-02-01
This paper summarizes the results of the plasma engineering and systems analysis studies for the Tennessee Tokamak (TENTOK) fusion power reactor. TENTOK is a 3000-MW(t) central station power plant that uses deuterium-tritium fuel in a D-shaped tokamak plasma configuration with a double-null poloidal divertor. The major parameters are R/sub 0/ = 6.4 m, a = 1.6 m, sigma (elongation) = 1.65, (n) = 1.5 x 10/sup 20/ m/sup -3/, (T) = 15 keV, (..beta..) = 6%, B/sub T/ (on-axis) = 5.6 T, I/sub p/ = 8.5 MA, and wall loading = 3 MW/m/sup 2/. Detailed analyses are performed in the areas of (1) transport simulation using the one-and-one-half-dimensional (1-1/2-D) WHIST transport code, (2) equilibrium/poloidal field coil systems, (3) neutral beam and radiofrequency (rf) heating, and (4) pellet fueling. In addition, impurity control systems, diagnostics and controls, and possible microwave plasma preheating and steady-state current drive options are also considered. Some of the major features of TENTOK include rf heating in the ion cyclotron range of frequencies, superconducting equilibrium field coils outside the superconducting toroidal field coils, a double-null poloidal divertor for impurity control and alpha ash removal, and rf-assisted plasma preheating and current startup.
Magnetized plasma flow injection into tokamak and high-beta compact torus plasmas
Matsunaga, Hiroyuki; Komoriya, Yuuki; Tazawa, Hiroyasu; Asai, Tomohiko; Takahashi, Tsutomu; Steinhauer, Loren; Itagaki, Hirotomo; Onchi, Takumi; Hirose, Akira
2010-11-01
As an application of a magnetized coaxial plasma gun (MCPG), magnetic helicity injection via injection of a highly elongated compact torus (magnetized plasma flow: MPF) has been conducted on both tokamak and field-reversed configuration (FRC) plasmas. The injected plasmoid has significant amounts of helicity and particle contents and has been proposed as a fueling and a current drive method for various torus systems. In the FRC, MPF is expected to generate partially spherical tokamak like FRC equilibrium by injecting a significant amount of magnetic helicity. As a circumstantial evidence of the modified equilibrium, suppressed rotational instability with toroidal mode number n = 2. MPF injection experiments have also been applied to the STOR-M tokamak as a start-up and current drive method. Differences in the responses of targets especially relation with beta value and the self-organization feature will be studied.
Gyrokinetic simulation of isotope scaling in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Lee, W.W. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Santoro, R.A. [California Univ., Irvine, CA (United States). Dept. of Physics
1995-07-01
A three-dimensional global gyrokinetic particle code in toroidal geometry has been used for investigating the transport properties of ion temperature gradient (ITG) drift instabilities in tokamak plasmas. Using the isotopes of hydrogen (H{sup +}), deuterium (D{sup +}) and tritium (T{sup +}), we have found that, under otherwise identical conditions, there exists a favorable isotope scaling for the ion thermal diffusivity, i.e., Xi decreases with mass. Such a scaling, which exists both at the saturation of the instability and also at the nonlinear steady state, can be understood from the resulting wavenumber and frequency spectra.
A divertor plasma configuration design method for tokamaks
Guo, Yong; Xiao, Bing-Jia; Liu, Lei; Yang, Fei; Wang, Yuehang; Qiu, Qinglai
2016-11-01
The efficient and safe operation of large fusion devices strongly relies on the plasma configuration inside the vacuum chamber. It is important to construct the proper plasma equilibrium with a desired plasma configuration. In order to construct the target configuration, a shape constraint module has been developed in the tokamak simulation code (TSC), which controls the poloidal flux and the magnetic field at several defined control points. It is used to construct the double null, lower single null, and quasi-snowflake configurations for the required target shape and calculate the required PF coils current. The flexibility and practicability of this method have been verified by the simulated results. Project supported by the National Magnetic Confinement Fusion Research Program of China (Grant Nos. 2014GB103000 and 2014GB110003), the National Natural Science Foundation of China (Grant Nos. 11305216, 11305209, and 11375191), and External Cooperation Program of BIC, Chinese Academy of Sciences (Grant No. GJHZ201303).
Continuous, saturation, and discontinuous tokamak plasma vertical position control systems
Energy Technology Data Exchange (ETDEWEB)
Mitrishkin, Yuri V., E-mail: y_mitrishkin@hotmail.com [M. V. Lomonosov Moscow State University, Faculty of Physics, Moscow 119991 (Russian Federation); Pavlova, Evgeniia A., E-mail: janerigoler@mail.ru [M. V. Lomonosov Moscow State University, Faculty of Physics, Moscow 119991 (Russian Federation); Kuznetsov, Evgenii A., E-mail: ea.kuznetsov@mail.ru [Troitsk Institute for Innovation and Fusion Research, Moscow 142190 (Russian Federation); Gaydamaka, Kirill I., E-mail: k.gaydamaka@gmail.com [V. A. Trapeznikov Institute of Control Sciences of the Russian Academy of Sciences, Moscow 117997 (Russian Federation)
2016-10-15
Highlights: • Robust new linear state feedback control system for tokamak plasma vertical position. • Plasma vertical position relay control system with voltage inverter in sliding mode. • Design of full models of multiphase rectifier and voltage inverter. • First-order unit approximation of full multiphase rectifier model with high accuracy. • Wider range of unstable plant parameters of stable control system with multiphase rectifier. - Abstract: This paper is devoted to the design and comparison of unstable plasma vertical position control systems in the T-15 tokamak with the application of two types of actuators: a multiphase thyristor rectifier and a transistor voltage inverter. An unstable dynamic element obtained by the identification of plasma-physical DINA code was used as the plasma model. The simplest static feedback state space control law was synthesized as a linear combination of signals accessible to physical measurements, namely the plasma vertical displacement, the current, and the voltage in a horizontal field coil, to solve the pole placement problem for a closed-loop system. Only one system distinctive parameter was used to optimize the performance of the feedback system, viz., a multiple real pole. A first-order inertial unit was used as the rectifier model in the feedback. A system with a complete rectifier model was investigated as well. A system with the voltage inverter model and static linear controller was brought into a sliding mode. As this takes place, real time delays were taken into account in the discontinuous voltage inverter model. The comparison of the linear and sliding mode systems showed that the linear system enjoyed an essentially wider range of the plant model parameters where the feedback system was stable.
Predicting high harmonic ion cyclotron heating efficiency in Tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Green, David L [ORNL; Jaeger, E. F. [XCEL; Berry, Lee A [ORNL; Chen, Guangye [ORNL; Ryan, Philip Michael [ORNL; Canik, John [ORNL
2011-01-01
Observations of improved radio frequency (RF) heating efficiency in high-confinement (H-) mode plasmas on the National Spherical Tokamak Experiment (NSTX) are investigated by whole-device linear simulation. We present the first full-wave simulation to couple kinetic physics of the well confined core plasma to the poorly confined scrape-off plasma. The new simulation is used to scan the launched fast-wave spectrum and examine the steady-state electric wave field structure for experimental scenarios corresponding to both reduced, and improved RF heating efficiency. We find that launching toroidal wave-numbers that required for fast-wave propagation excites large amplitude (kVm 1 ) coaxial standing modes in the wave electric field between the confined plasma density pedestal and conducting vessel wall. Qualitative comparison with measurements of the stored plasma energy suggest these modes are a probable cause of degraded heating efficiency. Also, the H-mode density pedestal and fast-wave cutoff within the confined plasma allow for the excitation of whispering gallery type eigenmodes localised to the plasma edge.
THz time-domain spectroscopy for tokamak plasma diagnostics
Energy Technology Data Exchange (ETDEWEB)
Causa, F.; Zerbini, M.; Buratti, P.; Gabellieri, L.; Pacella, D.; Romano, A.; Tuccillo, A. A.; Tudisco, O. [ASSOCIAZIONE EURATOM ENEA sulla Fusione, C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); Johnston, M. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Doria, A.; Gallerano, G. P.; Giovenale, E. [ENEA C.R. Frascati UTAPRAD, via E. Fermi 45, 00044 Frascati (Roma) (Italy)
2014-08-21
The technology is now becoming mature for diagnostics using large portions of the electromagnetic spectrum simultaneously, in the form of THz pulses. THz radiation-based techniques have become feasible for a variety of applications, e.g., spectroscopy, imaging for security, medicine and pharmaceutical industry. In particular, time-domain spectroscopy (TDS) is now being used also for plasma diagnostics in various fields of application. This technique is promising also for plasmas for fusion applications, where plasma characteristics are non-uniform and/or evolve during the discharge This is because THz pulses produced with femtosecond mode-locked lasers conveniently span the spectrum above and below the plasma frequency and, thus, can be used as very sensitive and versatile probes of widely varying plasma parameters. The short pulse duration permits time resolving plasma characteristics while the large frequency span permits a large dynamic range. The focus of this work is to present preliminary experimental and simulation results demonstrating that THz TDS can be realistically adapted as a versatile tokamak plasma diagnostic technique.
A simplified analytic form for generation of axisymmetric plasma boundaries
Luce, T. C.
2017-04-01
An improved method has been formulated for generating analytic boundary shapes as input for axisymmetric MHD equilibria. This method uses the family of superellipses as the basis function, as previously introduced. The improvements are a simplified notation, reduction of the number of simultaneous nonlinear equations to be solved, and the realization that not all combinations of input parameters admit a solution to the nonlinear constraint equations. The method tests for the existence of a self-consistent solution and, when no solution exists, it uses a deterministic method to find a nearby solution. Examples of generation of boundaries, including tests with an equilibrium solver, are given.
Remote network control plasma diagnostic system for Tokamak T-10
Troynov, V. I.; Zimin, A. M.; Krupin, V. A.; Notkin, G. E.; Nurgaliev, M. R.
2016-09-01
The parameters of molecular plasma in closed magnetic trap is studied in this paper. Using the system of molecular diagnostics, which was designed by the authors on the «Tokamak T-10» facility, the radiation of hydrogen isotopes at the plasma edge is investigated. The scheme of optical radiation registration within visible spectrum is described. For visualization, identification and processing of registered molecular spectra a new software is developed using MatLab environment. The software also includes electronic atlas of electronic-vibrational-rotational transitions for molecules of protium and deuterium. To register radiation from limiter cross-section a network control system is designed using the means of the Internet/Intranet. Remote control system diagram and methods are given. The examples of web-interfaces for working out equipment control scenarios and viewing of results are provided. After test run in Intranet, the remote diagnostic system will be accessible through Internet.
Energy Technology Data Exchange (ETDEWEB)
Takase, Haruhiko [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Senda, Ikuo
1999-04-01
A Toroidally Symmetric Plasma Simulation (TSPS) code has been developed for investigating the position and shape control on tokamak plasmas. The analyses of three-dimensional eddy currents on the conducting components around the plasma and the two-dimensional magneto-hydrodynamic (MHD) equilibrium are taken into account in this code. The code can analyze the plasma position and shape control during the minor disruption in which the deformation of plasma is not negligible. Using the ITER (International Thermonuclear Experimental Reactor) parameters, some examples of calculations are shown in this paper. (author)
Initial Plasma Startup Test on SUNIST Spherical Tokamak
Institute of Scientific and Technical Information of China (English)
Wang Ying(王莹); Zeng Li(曾立); He Yexi(何也熙); SUMST Team
2003-01-01
The goal of the Sino-United Spherical Tokamak (SUNIST) at Tsinghua University is to extend the understanding of toroidal plasma physics at a low aspect ratio (R/a ≈ 1.3) and to demonstrate a maintainable target plasma by non-inductive startup. The SUNIST device is designed to operate with up to 13 kA of ohmic heating field current, and to 0.15 T of toroidal field at 10 kA of discharge current. All of the poloidal fields can provide 30 mVs of Volt-seconds transformer. Experimental results of plasma startup show that SUNIST has remarkable characteristics of high ramp rate (dIp/dt ≈ 50 MA/s ), high normalized current IN of about 2.8 (IN = Ip/aBT),and high-efficiency (Ip/IROD ≈ 0.4) production of plasma current while operating at a low toroidal field. Major disruption phenomena have not been observed from magnetic diagnostics of all testing shots. Initial discharges with 52 kA of plasma current (exceeding the designed value of 50 kA),2 ms of pulse length and 50 MA/s of ramp rate have been achieved easily with pre-ionized filament.
High speed cine film studies of plasma behaviour and plasma surface interactions in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Goodall, D.H.J. (Euratom/UKAEA Fusion Association, Abingdon (UK). Culham Lab.)
High speed cine photography is a useful diagnostic aid for studying plasma behaviour and plasma surface interactions. Several workers have filmed discharges in tokamaks including ASDEX, DITE, DIVA, ISX, JFT2, TFR and PLT. These films are discussed and examples given of the observed phenomena which include plasma limiter interactions, diverted discharges, disruptions, magnetic islands and moving glowing objects often known as 'UFOs'. Examples of plasma structures in ASDEX and DITE not previously published are also given. The paper also reports experiments in DITE to determine the origin of UFOs.
Modelisation of synchrotron radiation losses in realistic tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Albajar, F.; Johner, J.; Granata, G
2000-08-01
Synchrotron radiation losses become significant in the power balance of high-temperature plasmas envisaged for next step tokamaks. Due to the complexity of the exact calculation, these losses are usually roughly estimated with expressions derived from a plasma description using simplifying assumptions on the geometry, radiation absorption, and density and temperature profiles. In the present article, the complete formulation of the transport of synchrotron radiation is performed for realistic conditions of toroidal plasma geometry with elongated cross-section, using an exact method for the calculation of the absorption coefficient, and for arbitrary shapes of density and temperature profiles. The effects of toroidicity and temperature profile on synchrotron radiation losses are analyzed in detail. In particular, when the electron temperature profile is almost flat in the plasma center, as for example in ITB confinement regimes, synchrotron losses are found to be much stronger than in the case where the profile is represented by its best generalized parabolic approximation, though both cases give approximately the same thermal energy contents. Such an effect is not included in present approximate expressions. Finally, we propose a seven-variable fit for the fast calculation of synchrotron radiation losses. This fit is derived from a large database, which has been generated using a code implementing the complete formulation and optimized for massively parallel computing. (author)
In situ ``artificial plasma'' calibration of tokamak magnetic sensors
Shiraki, D.; Levesque, J. P.; Bialek, J.; Byrne, P. J.; DeBono, B. A.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.; Rath, N.
2013-06-01
A unique in situ calibration technique has been used to spatially calibrate and characterize the extensive new magnetic diagnostic set and close-fitting conducting wall of the High Beta Tokamak-Extended Pulse (HBT-EP) experiment. A new set of 216 Mirnov coils has recently been installed inside the vacuum chamber of the device for high-resolution measurements of magnetohydrodynamic phenomena including the effects of eddy currents in the nearby conducting wall. The spatial positions of these sensors are calibrated by energizing several large in situ calibration coils in turn, and using measurements of the magnetic fields produced by the various coils to solve for each sensor's position. Since the calibration coils are built near the nominal location of the plasma current centroid, the technique is referred to as an "artificial plasma" calibration. The fitting procedure for the sensor positions is described, and results of the spatial calibration are compared with those based on metrology. The time response of the sensors is compared with the evolution of the artificial plasma current to deduce the eddy current contribution to each signal. This is compared with simulations using the VALEN electromagnetic code, and the modeled copper thickness profiles of the HBT-EP conducting wall are adjusted to better match experimental measurements of the eddy current decay. Finally, the multiple coils of the artificial plasma system are also used to directly calibrate a non-uniformly wound Fourier Rogowski coil on HBT-EP.
Characteristics of Plasma Turbulence in the Mega Amp Spherical Tokamak
Ghim, Young-chul
2013-01-01
Turbulence is a major factor limiting the achievement of better tokamak performance as it enhances the transport of particles, momentum and heat which hinders the foremost objective of tokamaks. Hence, understanding and possibly being able to control turbulence in tokamaks is of paramount importance, not to mention our intellectual curiosity of it.
Turbulent transport of alpha particles in tokamak plasmas
Croitoru, A.; Palade, D. I.; Vlad, M.; Spineanu, F.
2017-03-01
We investigate the \\boldsymbol{E}× \\boldsymbol{B} diffusion of fusion born α particles in tokamak plasmas. We determine the transport regimes for a realistic model that has the characteristics of the ion temperature gradient (ITG) or of the trapped electron mode (TEM) driven turbulence. It includes a spectrum of potential fluctuations that is modeled using the results of the numerical simulations, the drift of the potential with the effective diamagnetic velocity and the parallel motion. Our semi-analytical statistical approach is based on the decorrelation trajectory method (DTM), which is adapted to the gyrokinetic approximation. We obtain the transport coefficients as a function of the parameters of the turbulence and of the energy of the α particles. According to our results, significant turbulent transport of the α particles can appear only at energies of the order of 100 KeV. We determine the corresponding conditions.
RF wave propagation and scattering in turbulent tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Horton, W., E-mail: wendell.horton@gmail.com; Michoski, C. [Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78654 (United States); Peysson, Y.; Decker, J. [CEA, IRFM, 13108, Saint-Paul, Durance Cedex (France)
2015-12-10
Drift wave turbulence driven by the steep electron and ion temperature gradients in H-mode divertor tokamaks produce scattering of the RF waves used for heating and current drive. The X-ray emission spectra produced by the fast electrons require the turbulence broaden RF wave spectrum. Both the 5 GHz Lower Hybrid waves and the 170 GHz electron cyclotron [EC] RF waves experience scattering and diffraction by the electron density fluctuations. With strong LHCD there are bifurcations in the coupled turbulent transport dynamics giving improved steady-state confinement states. The stochastic scattering of the RF rays makes the prediction of the distribution of the rays and the associated particle heating a statistical problem. Thus, we introduce a Fokker-Planck equation for the probably density of the RF rays. The general frame work of the coupled system of coupled high frequency current driving rays with the low-frequency turbulent transport determines the profiles of the plasma density and temperatures.
Magnetic Fluctuation Measurement in Sino United Spherical Tokamak Plasma
Institute of Scientific and Technical Information of China (English)
LIU Fei; WANG Wen-Hao; HE Ye-Xi; LIU Jun; TAN Yi; XIE Li-Feng; ZENG Long
2007-01-01
To investigate the magnetic fluctuations and for further transport study, the poloidal and radial magnetic field measurement is conducted on the Sino United Spherical Tokamak (SUNIST). Auto-power spectral density indicates that the magnetic fluctuation energy mainly concentrates in the frequency region lower than 10kHz. The magnetic field oscillations, which are characterized by harmonic frequencies of 40 kHz, are observed in the scrapeoff layer; by contrast, in the plasma core, the magnetic fluctuations are of Gaussian type. The time-frequency profiles show that the poloidal magnetic fluctuations are temporally intermittent. The autocorrelation calculation indicates that the fluctuations in decorrelation time vary between the core and the edge.
Transport Bifurcation Induced by Sheared Toroidal Flow in Tokamak Plasmas
Highcock, E G; Parra, F I; Schekochihin, A A; Roach, C M; Cowley, S C
2011-01-01
First-principles numerical simulations are used to describe a transport bifurcation in a differentially rotating tokamak plasma. Such a bifurcation is more probable in a region of zero magnetic shear, where the component of the sheared toroidal flow that is perpendicular to the magnetic field has the strongest suppressing effect on the turbulence, than one of finite magnetic shear. Where the magnetic shear is zero, there are no growing linear eigenmodes at any finite value of flow shear. However, subcritical turbulence can be sustained, owing to the transient growth of modes driven by the ion temperature gradient (ITG) and the parallel velocity gradient (PVG). Nonetheless, in a parameter space containing a wide range of temperature gradients and velocity shears, there is a sizeable window where all turbulence is suppressed. Combined with the relatively low transport of momentum by collisional (neoclassical) mechanisms, this produces the conditions for a bifurcation from low to high temperature and velocity gr...
Effect of density changes on tokamak plasma confinement
Spineanu, F
2015-01-01
A change of the particle density (by gas puff, pellets or impurity seeding) during the plasma discharge in tokamak produces a radial current and implicitly a torque and rotation that can modify the state of confinement. After ionization the newly born ions will evolve toward the periodic neoclassical orbits (trapped or circulating) but the first part of their excursion, which precedes the periodicity, is an effective radial current. It is short, spatially finite and unique for each new ion, but multiplied by the rate of ionization and it can produce a substantial total radial current. The associated torque induces rotation which modify the transport processes. We derive the magnitude of the radial current induced by ionization by three methods: the analysis of a simple physical picture, a numerical model and the neoclassical drift-kinetic treatment. The results of the three approaches are in agreement and show that the current can indeed be substantial. Many well known experimental observations can be reconsi...
Deposition of fuel pellets injected into tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Baylor, L.R.; Jernigan, T.C. [Oak Ridge National Lab., TN (United States); Hsieh, C. [General Atomics, San Diego, CA (United States)
1998-06-01
Pellet injection has been used on tokamak devices in a number of experiments to provide plasma fueling and density profile control. The mass deposition of these fuel pellets defined as the change in density profile caused by the pellet, has been found to show an outward displacement of the ablated material from that expected by mapping the theoretical ablation rate onto the flux surfaces. This suggests that fast transport of the pellet ablatant occurs during the flow along field lines that may be driven by {del}B drift effects. A comparison of the deposition of pellets from different machines shows similar behavior. Initial results from alternative injection locations designed to take advantage of the outward ablatant drift is presented.
Theory of self-organized critical transport in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Kishimoto, Y.; Tajima, T.; Horton, W.; LeBrun, M.J.; Kim, J.Y. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment]|[Texas Univ., Austin, TX (United States). Inst. for Fusion Studies
1995-07-01
A theoretical and computational study of the ion temperature gradient and {eta}{sub i} instabilities in tokamak plasmas has been carried out. In toroidal geometry the modes have a radially extended structure and their eigenfrequencies are constant over many rational surfaces that are coupled through toroidicity. These nonlocal properties of the ITG modes impose strong constraint on the drift mode fluctuations and the amciated transport, showing a self-organized characteristic. As any significant deviation away from marginal stability causes rapid temperature relaxation and intermittent bursts, the modes hover near marginality and exhibit strong kinetic characteristics. As a result, the temperature relaxation is self-semilar and nonlocal, leading to a radially increasing heat diffusivity. The nonlocal transport leads to the Bohm-like diffusion scaling. The heat input regulates the deviation of the temperature gradient away from marginality. The obtained transport scalings and properties are globally consistent with experimental observations of L-mode charges.
Toothbrush probe for instantaneous measurement of radial profile in tokamak boundary plasma
Energy Technology Data Exchange (ETDEWEB)
Uehara, Kazuya; Sengoku, Seio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Amemiya, Hiroshi
1997-04-01
A new probe for the instantaneous measurement of radial profiles of the boundary scrape-off layer (SOL) plasma has been developed in a tokamak. Five asymmetric double-probe chips are aligned in parallel to a strong magnetic field in the boundary plasma in a tokamak. This probe is named the `toothbrush probe` and can measure the ion temperature as well as the electron temperature and the plasma density in the SOL plasma within only one tokamak plasma shot. First, only one asymmetric probe is mounted on the divertor plate and it is tried to determine the ion temperature. Then, a manufactured toothbrush probe is mounted in the SOL plasma and the radial plasma profiles are simultaneously obtained. Data on the e-folding length of the plasma profile obtained by the toothbrush probe can determine the information on the transport properties such as the diffusion coefficient and the thermal conductivity of electrons and ions. (author)
Energy Technology Data Exchange (ETDEWEB)
Meglicki, Z
1995-09-19
We describe in detail the implementation of a weighted differences code, which is used to simulate a tokamak using the Maschke-Perrin solution as an initial condition. The document covers the mainlines of the program and the most important problem-specific functions used in the initialization, static tests, and dynamic evolution of the system. The mathematics of the Maschke-Perrin solution is discussed in parallel with its realisation within the code. The results of static and dynamic tests are presented in sections discussing their implementation.The code can also be obtained by ftp -anonymous from cisr.anu.edu.au Directory /pub/papers/meglicki/src/tokamak. This code is copyrighted. (author). 13 refs.
Sawtooth Activity in Ohmically Heated Plasma on HT-7 Tokamak
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Sawtooth activity on HT-7 tokamak has been investigated experimentally mainly by using soft x-ray diode array and magnetic probes. Their behaviors and occurrences are correlatedclosely to the discharge conditions: the electron density Ne, the electron temperature Te, the safetyfactor qa on plasma boundary and wall condition etc. When central line-averaged electron densityNe(0) is over 2.0×1013cm-3, major sawtooth activity emerges with a period of up to 6.5 ms and afluctuation amplitude of up to 2～30 % of SXR radiation signal. In some cases such as the safetyfactor between 4.2～4.7 and Zeff=3.0～6.0, a monster sawtooth activity often emerges withoutapparent deterioration of plasma confinement and without major disruption. During these events,abundant MHD phenomena are observed including partial sawtooth oscillations. In this paper, theobserved sawtooth behaviors and their dependence on the and their dependence density Ne andwall condition in ohmically heated plasma are introduced, the results are discussed and presented.
Low-n shear Alfven spectra in axisymmetric toroidal plasmas
Energy Technology Data Exchange (ETDEWEB)
Cheng, C.Z.; Chance, M.S.
1985-11-01
In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs.
Experimental observations of driven and intrinsic rotation in tokamak plasmas
Rice, J. E.
2016-08-01
Experimental observations of driven and intrinsic rotation in tokamak plasmas are reviewed. For momentum sources, there is direct drive from neutral beam injection, lower hybrid and ion cyclotron range of frequencies waves (including mode conversion flow drive), as well as indirect \\mathbf{j}× \\mathbf{B} forces from fast ion and electron orbit shifts, and toroidal magnetic field ripple loss. Counteracting rotation drive are sinks, such as from neutral drag and toroidal viscosity. Many of these observations are in agreement with the predictions of neo-classical theory while others are not, and some cases of intrinsic rotation remain puzzling. In contrast to particle and heat fluxes which depend on the relevant diffusivity and convection, there is an additional term in the momentum flux, the residual stress, which can act as the momentum source for intrinsic rotation. This term is independent of the velocity or its gradient, and its divergence constitutes an intrinsic torque. The residual stress, which ultimately responds to the underlying turbulence, depends on the confinement regime and is a complicated function of collisionality, plasma shape, and profiles of density, temperature, pressure and current density. This leads to the rich intrinsic rotation phenomenology. Future areas of study include integration of these many effects, advancement of quantitative explanations for intrinsic rotation and development of strategies for velocity profile control.
Linear Analysis of Drift Ballooning Modes in Tokamak Edge Plasmas
Tangri, Varun; Kritz, Arnold; Rafiq, Tariq; Pankin, Alexei
2012-10-01
The H-mode pedestal structure depends on the linear stability of drift ballooning modes (DBMs) in many H-mode pedestal models. Integrated modeling that uses these pedestal models requires fast evaluation of linear stability of DBMs. Linear analysis of DBMs is also needed in the computations of effective diffusivities associated with anomalous transport that is driven by the DBMs in tokamak edge plasmas. In this study several numerical techniques of linear analysis of the DBMs are investigated. Differentiation matrix based spectral methods are used to compute the physical eigenvalues of the DBMs. The model for DBMs used here consists of six differential equations [T. Rafiq et al. Phys. Plasmas, 17, 082511, (2010)]. It is important to differentiate among non-physical (numerical) modes and physical modes. The determination of the number of eigenvalues is solved by a computation of the `nearest' and `ordinal' distances. The Finite Difference, Hermite and Sinc based differentiation matrices are used. It is shown that spectral collocation methods are more accurate than finite difference methods. The technique that has been developed for calculating eigenvalues is quite general and is relevant in the computation of other modes that utilize the ballooning mode formalism.
Energy Technology Data Exchange (ETDEWEB)
Peters, M.
1996-01-16
In the first experiment the plasma current in the RTP tokamak is varied. Here the underlying idea was to check whether at a low plasma current, transport in the tokamak resembles transport in stellarators more than at higher currents. Secondly, experiments have been done to study the relation of the diffusivity {chi} to the temperature and its gradient in both W7-AS and RTP. In this case the underlying idea was to find the explanation for the phenomenon observed in both tokamaks and stellarators that the quality of the confinement degrades when more heating is applied. A possible explanation is that the diffusivity increases with the temperature or its gradient. Whereas in standard tokamak and stellarator experiments the temperature and its gradient are strongly correlated, a special capability of the plasma heating system of W7-AS and RTP can force them to decouple. (orig.).
Electromagnetic microinstabilities in tokamak plasmas using a global spectral approach
Energy Technology Data Exchange (ETDEWEB)
Falchetto, G. L
2002-03-01
Electromagnetic microinstabilities in tokamak plasmas are studied by means of a linear global eigenvalue numerical code. The code is the electromagnetic extension of an existing electrostatic global gyrokinetic spectral toroidal code, called GLOGYSTO. Ion dynamics is described by the gyrokinetic equation, so that ion finite Larmor radius effects are taken into account to all orders. Non adiabatic electrons are included in the model, with passing particles described by the drift-kinetic equation and trapped particles through the bounce averaged drift-kinetic equation. A low frequency electromagnetic perturbation is applied to a low -but finite- {beta}plasma (where the parameter {beta} identifies the ratio of plasma pressure to magnetic pressure); thus, the parallel perturbations of the magnetic field are neglected. The system is closed by the quasi-neutrality equation and the parallel component of Ampere's law. The formulation is applied to a large aspect ratio toroidal configuration, with circular shifted surfaces. Such a simple configuration enables one to derive analytically the gyrocenter trajectories. The system is solved in Fourier space, taking advantage of a decomposition adapted to the toroidal geometry. The major contributions of this thesis are as follows. The electromagnetic effects on toroidal Ion Temperature Gradient driven (ITG) modes are studied. The stabilization of these modes with increasing {beta}, as predicted in previous work, is confirmed. The inclusion of trapped electron dynamics enables the study of its coupling to the ITG modes and of Trapped Electron Modes (TEM) .The effects of finite {beta} are considered together with those of different magnetic shear profiles and of the Shafranov shift. The threshold for the destabilization of an electromagnetic mode is identified. Moreover, the global formulation yields for the first time the radial structure of this so-called Alfvenic Ion Temperature Gradient (AITG) mode. The stability of the
Neoclassical Simulation of Tokamak Plasmas using Continuum Gyrokinetc Code TEMPEST
Energy Technology Data Exchange (ETDEWEB)
Xu, X Q
2007-11-09
We present gyrokinetic neoclassical simulations of tokamak plasmas with self-consistent electric field for the first time using a fully nonlinear (full-f) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five dimensional computational grid in phase space. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving gyrokinetic Poisson equation with self-consistent poloidal variation. With our 4D ({psi}, {theta}, {epsilon}, {mu}) version of the TEMPEST code we compute radial particle and heat flux, the Geodesic-Acoustic Mode (GAM), and the development of neoclassical electric field, which we compare with neoclassical theory with a Lorentz collision model. The present work provides a numerical scheme and a new capability for self-consistently studying important aspects of neoclassical transport and rotations in toroidal magnetic fusion devices.
A novel flexible field-aligned coordinate system for tokamak edge plasma simulation
Leddy, Jarrod; Romanelli, Michele; Shanahan, Brendan; Walkden, Nick
2016-01-01
Tokamak plasmas are confined by a magnetic field that limits the particle and heat transport perpendicular to the field. Parallel to the field the ionised particles can move freely, so to obtain confinement the field lines are "closed" (ie. form closed surfaces of constant poloidal flux) in the core of a tokamak. Towards, the edge, however, the field lines begin to intersect physical surfaces, leading to interaction between neutral and ionised particles, and the potential melting of the material surface. Simulation of this interaction is important for predicting the performance and lifetime of future tokamak devices such as ITER. Field-aligned coordinates are commonly used in the simulation of tokamak plasmas due to the geometry and magnetic topology of the system. However, these coordinates are limited in the geometry they allow in the poloidal plane due to orthogonality requirements. A novel 3D coordinate system is proposed herein that relaxes this constraint so that any arbitrary, smoothly varying geometry...
Improved Multi-Mode anomalous transport module for tokamak plasmas
Luo, L.; Rafiq, T.; Kritz, A. H.
2013-10-01
The Multi-Mode anomalous transport module version 7.1 (MMM7.1) is a theory-based transport model that is used to predict temperature, density and rotation profiles for tokamak plasmas in integrated whole device modeling codes. The theoretical foundation of the current version, MMM7.1, has been significantly advanced since the first released version in 1995, MMM95. The latest version of the Multi-Mode model, MMM7.1, includes an improved Weiland model for the ITG, TEM, and MHD modes, the Horton model for short wavelength ETG modes and the Rafiq model for the drift resistive inertial ballooning modes (DRIBMs). The ETG transport threshold in the Horton model is refined by using the threshold obtained from toroidal gyrokinetic ETG turbulence simulations. The different components of the MMM7.1 model provide contributions to transport in the different regions of plasma discharge. To facilitate the implementation of the latest version of the Multi-Mode module in integrated predictive modeling codes, a clearly specified interface is described and a test program is provided in order to examine the predictions provided by MMM7.1. MMM7.1 is documented and organized as a standalone module, which fully complies with the National Transport Code Collaboration (NTCC) standards. The MMM7.1 module has been used both with a standalone driver program as well as within the PTRANSP code. Results are presented to illustrate the extent to which the various component models contribute to transport in both L-mode and H-mode discharges.
Impurity effects on trapped electron mode in tokamak plasmas
Du, Huarong; Wang, Zheng-Xiong; Dong, J. Q.
2016-07-01
The effects of impurity ions on the trapped electron mode (TEM) in tokamak plasmas are numerically investigated with the gyrokinetic integral eigenmode equation. It is shown that in the case of large electron temperature gradient ( η e ), the impurity ions have stabilizing effects on the TEM, regardless of peaking directions of their density profiles for all normalized electron density gradient R / L n e . Here, R is the major radius and L n e is the electron density gradient scale length. In the case of intermediate and/or small η e , the light impurity ions with conventional inwardly (outwardly) peaked density profiles have stabilizing effects on the TEM for large (small) R / L n e , while the light impurity ions with steep inwardly (outwardly) peaked density profiles can destabilize the TEM for small (large) R / L n e . Besides, the TEM driven by density gradient is stabilized (destabilized) by the light carbon or oxygen ions with inwardly (outwardly) peaked density profiles. In particular, for flat and/or moderate R / L n e , two independent unstable modes, corresponding respectively to the TEM and impurity mode, are found to coexist in plasmas with impurity ions of outwardly peaked density profiles. The high Z tungsten impurity ions play a stronger stabilizing role in the TEM than the low Z impurity ions (such as carbon and oxygen) do. In addition, the effects of magnetic shear and collision on the TEM instability are analyzed. It is shown that the collisionality considered in this work weakens the trapped electron response, leading to a more stable TEM instability, and that the stabilizing effects of the negative magnetic shear on the TEM are more significant when the impurity ions with outwardly peaked density profile are taken into account.
Dynamics and Feedback Control of Plasma Equilibrium Position in a Tokamak.
Burenko, Oleg
A brief history of the beginnings of nuclear fusion research involving toroidal closed-system magnetic plasma containment is presented. A tokamak machine is defined mathematically for the purposes of plasma equilibrium position perturbation analysis. The perturbation equations of a tokamak plasma equilibrium position are developed. Solution of the approximated perturbation equations is carried out. A unique, simple, and useful plasma displacement dynamics transfer function of a tokamak is developed. The dominant time constants of the dynamics transfer function are determined in a symbolic form. This symbolic form of the dynamics transfer function makes it possible to study the stability of a tokamak's plasma equilibrium position. Knowledge of the dynamics transfer function permits systematic syntheses of the required plasma displacement feedback control systems. The major parameters governing the plasma equilibrium position stability of a tokamak are shown to be (1) external magnetic field decay index, (2) transformer iron core effect, (3) plasma current, (4) radial rate-of-change inductance parameter, (5) vertical rate-of-change inductance parameter, and (6) vacuum vessel eddy-current time constant. An important and unique result is derived, showing that for a vacuum vessel eddy-current time constant exceeding a certain value the vertical plasma equilibrium position is stable, in spite of an intentional vertical instability design represented by a negative decay index. It is shown that a tokamak design having a theoretical set of positive decay index, negative radical rate-of-change inductance parameter, and positive vertical rate-of-change inductance parameter is expected to have a better plasma equilibrium position stability tolerance than a tokamak design having the same set with the signs reversed. The results of an actual hardware ISX-A tokamak plasma displacement feed-back control system design are presented. It is shown that a theoretical design computer
Field simulation of axisymmetric plasma screw pinches by alternating-direction-implicit methods
Energy Technology Data Exchange (ETDEWEB)
Lambert, M.A.
1996-06-01
An axisymmetric plasma screw pinch is an axisymmetric column of ionized gaseous plasma radially confined by forces from axial and azimuthal currents driven in the plasma and its surroundings. This dissertation is a contribution to detailed, high resolution computer simulation of dynamic plasma screw pinches in 2-d {ital rz}-coordinates. The simulation algorithm combines electron fluid and particle-in-cell (PIC) ion models to represent the plasma in a hybrid fashion. The plasma is assumed to be quasineutral; along with the Darwin approximation to the Maxwell equations, this implies application of Ampere`s law without displacement current. Electron inertia is assumed negligible so that advective terms in the electron momentum equation are ignored. Electrons and ions have separate scalar temperatures, and a scalar plasma electrical resistivity is assumed. Altemating-direction-implicit (ADI) methods are used to advance the electron fluid drift velocity and the magnetic fields in the simulation. The ADI methods allow time steps larger than allowed by explicit methods. Spatial regions where vacuum field equations have validity are determined by a cutoff density that invokes the quasineutral vacuum Maxwell equations (Darwin approximation). In this dissertation, the algorithm was first checked against ideal MM stability theory, and agreement was nicely demonstrated. However, such agreement is not a new contribution to the research field. Contributions to the research field include new treatments of the fields in vacuum regions of the pinch simulation. The new treatments predict a level of magnetohydrodynamic turbulence near the bulk plasma surface that is higher than predicted by other methods.
Field simulation of axisymmetric plasma screw pinches by alternating-direction-implicit methods
Energy Technology Data Exchange (ETDEWEB)
Lambert, Michael Allen [Univ. of California, Davis, CA (United States)
1996-06-01
An axisymmetric plasma screw pinch is an axisymmetric column of ionized gaseous plasma radially confined by forces from axial and azimuthal currents driven in the plasma and its surroundings. This dissertation is a contribution to detailed, high resolution computer simulation of dynamic plasma screw pinches in 2-d rz-coordinates. The simulation algorithm combines electron fluid and particle-in-cell (PIC) ion models to represent the plasma in a hybrid fashion. The plasma is assumed to be quasineutral; along with the Darwin approximation to the Maxwell equations, this implies application of Ampere`s law without displacement current. Electron inertia is assumed negligible so that advective terms in the electron momentum equation are ignored. Electrons and ions have separate scalar temperatures, and a scalar plasma electrical resistivity is assumed. Altemating-direction-implicit (ADI) methods are used to advance the electron fluid drift velocity and the magnetic fields in the simulation. The ADI methods allow time steps larger than allowed by explicit methods. Spatial regions where vacuum field equations have validity are determined by a cutoff density that invokes the quasineutral vacuum Maxwell equations (Darwin approximation). In this dissertation, the algorithm was first checked against ideal MM stability theory, and agreement was nicely demonstrated. However, such agreement is not a new contribution to the research field. Contributions to the research field include new treatments of the fields in vacuum regions of the pinch simulation. The new treatments predict a level of magnetohydrodynamic turbulence near the bulk plasma surface that is higher than predicted by other methods.
Identification of the ubiquitous Coriolis momentum pinch in JET tokamak plasmas
Weisen, H.; Camenen, Y.; Salmi, A.; Versloot, T. W.; de Vries, P. C.; Maslov, M.; Tala, T.; Beurskens, M.; Giroud, C.
2012-01-01
A broad survey of the experimental database of neutral beam heated plasmas in the JET tokamak has established the theoretically expected ubiquity, in rotating plasmas, of a convective transport mechanism which has its origin in the vertical particle drift resulting from the Coriolis force. This inwa
Energy Technology Data Exchange (ETDEWEB)
Colunga S, S
1990-07-15
In this report the simplified analysis of a method to detect the movement of the plasma column of a tokamak in the vertical direction and of the biggest radius is given. The peculiar case of the Tokamak Novillo of the Plasma Physics Laboratory of the ININ is studied. (Author)
Tokamak Plasmas : Measurement of temperature ﬂuctuations and anomalous transport in the SINP tokamak
Indian Academy of Sciences (India)
R Kumar; S K Saha
2000-11-01
Temperature ﬂuctuations have been measured in the edge region of the SINP tokamak. We ﬁnd that these ﬂuctuations have a comparatively high level (30–40%) and a broad spectrum. The temperature ﬂuctuations show a quite high coherence with density and potential ﬂuctuations and contribute considerably to the anomalous particle ﬂux.
Cremaschini, Claudio; Slaný, Petr; Stuchlík, Zdeněk; Karas, Vladimír
2013-01-01
The possible occurrence of equilibrium off-equatorial tori in the gravitational and electromagnetic fields of astrophysical compact objects has been recently proved based on non-ideal MHD theory. These stationary structures can represent plausible candidates for the modelling of coronal plasmas expected to arise in association with accretion discs. However, accretion disc coronae are formed by a highly diluted environment, and so the fluid description may be inappropriate. The question is posed of whether similar off-equatorial solutions can be determined also in the case of collisionless plasmas for which treatment based on kinetic theory, rather than fluid one, is demanded. In this paper the issue is addressed in the framework of the Vlasov-Maxwell description for non-relativistic multi-species axisymmetric plasmas subject to an external dominant spherical gravitational and dipolar magnetic field. Equilibrium configurations are investigated and explicit solutions for the species kinetic distribution functio...
High resolution equilibrium calculations of pedestal and SOL plasma in tokamaks
Medvedev, S. Yu; Martynov, A. A.; Drozdov, V. V.; Ivanov, A. A.; Poshekhonov, Yu Yu
2017-02-01
For integrated modeling of equilibrium, stability and dynamics of the divertor tokamak plasma with scrape-off layer (SOL) high resolution equilibrium calculations are needed. A new version of the CAXE equilibrium code computes the tokamak equilibrium on a numerical grid adaptive to magnetic surfaces both in the plasma region with closed flux surfaces and in the SOL region with open magnetic lines. The plasma profiles can be prescribed independently in each region with nested flux surfaces, and realistic SOL profiles with very short pressure drop off length can be accurately treated. The influence of the finite current density in SOL on the connection length is studied. From the point of view of the MHD equilibrium and stability modeling, self-consistent calculations of diverted tokamak configurations with finite current density at the separatrix require taking into account plasma outside the separatrix. Calculated high resolution equilibria provide an input to new versions of the ideal MHD stability codes treating tokamak plasma with SOL. The study of the influence of the pressure gradient profile in the pedestal plasma inside and outside the separatrix on the pedestal height limit set by external kink-ballooning mode stability is presented. Another possible application of the high resolution pedestal and SOL equilibrium code is a coupling to the SOLPS code with a purpose to increase equilibrium accuracy and support self-consistent plasma flow/equilibrium modeling.
Energy Technology Data Exchange (ETDEWEB)
Andrade, Maria Celia Ramos; Ludwig, Gerson Otto [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: mcr@plasma.inpe.br
2004-07-01
Different bootstrap current formulations are implemented in a self-consistent equilibrium calculation obtained from a direct variational technique in fixed boundary tokamak plasmas. The total plasma current profile is supposed to have contributions of the diamagnetic, Pfirsch-Schlueter, and the neoclassical Ohmic and bootstrap currents. The Ohmic component is calculated in terms of the neoclassical conductivity, compared here among different expressions, and the loop voltage determined consistently in order to give the prescribed value of the total plasma current. A comparison among several bootstrap current models for different viscosity coefficient calculations and distinct forms for the Coulomb collision operator is performed for a variety of plasma parameters of the small aspect ratio tokamak ETE (Experimento Tokamak Esferico) at the Associated Plasma Laboratory of INPE, in Brazil. We have performed this comparison for the ETE tokamak so that the differences among all the models reported here, mainly regarding plasma collisionality, can be better illustrated. The dependence of the bootstrap current ratio upon some plasma parameters in the frame of the self-consistent calculation is also analysed. We emphasize in this paper what we call the Hirshman-Sigmar/Shaing model, valid for all collisionality regimes and aspect ratios, and a fitted formulation proposed by Sauter, which has the same range of validity but is faster to compute than the previous one. The advantages or possible limitations of all these different formulations for the bootstrap current estimate are analysed throughout this work. (author)
Interaction of neutral atoms and plasma turbulence in the tokamak edge region
Wersal, Christoph; Ricci, Paolo; Jorge, Rogério; Morales, Jorge; Paruta, Paola; Riva, Fabio
2016-01-01
A novel first-principles self-consistent model that couples plasma and neutral atom physics suitable for the simulation of turbulent plasma behaviour in the tokamak edge region has been developed and implemented in the GBS code. While the plasma is modelled by the drift-reduced two fluid Braginskii equations, a kinetic model is used for the neutrals, valid in short and in long mean free path scenarios. The model includes ionization, charge-exchange, recombination, and elastic collisional proc...
Insight of breaking of powerful axisymmetrically-polarized laser pulses in under-dense plasma
Nakanii, Nobuhiko; Pathak, Naveen C; Masuda, Shinichi; Zhidkov, Alexei G; Nakahara, Hiroki; Iwasa, Kenta; Mizuta, Yoshio; Takeguchi, Naoki; Otsuka, Takamitsu P; Sueda, Keiichi; Nakamura, Hirotaka; Mori, Michiaki; Kando, Masaki; Kodama, Ryosuke
2015-01-01
Interaction of axisymmetrically-polarized (radially or azimuthally-polarized), relativistically intense laser pulses (ALP) with under-dense plasma is shown experimentally to be different from the interaction of conventional Gaussian pulses. The difference is clearly observed in distinct spectra of scattered laser light as well as in appearance of a strong side emission of second harmonic in the vicinity of focus spot. According 3D particle-in-cell simulations, this is a result of instability in the propagation of ALP in under-dense plasma. Laser wakefield acceleration of electrons by ALP, therefore, is less efficient than that by Gaussian laser pulses but ALP may be interesting for efficient electron self-injection.
Axisymmetric Bernstein modes in a finite-length non-neutral plasma: simulation and kinetic theory
Hart, Grant; Peterson, Bryan G.; Spencer, Ross L.
2016-10-01
We are using a 2-D PIC code to model high-frequency (near the cyclotron frequency) axisymmetric oscillations in a finite-length pure-ion plasma. We previously modeled these modes for infinite-length plasmas, where they are not detectable in the surface charge on the walls because of axisymmetry and lack of z-dependence. This is not true in a finite-length plasma, however, because the eigenfunction of the oscillation has to have nodes a short distance beyond the ends of the plasma. This gives the modes a cos (kz z) or sin (kz z) dependence, with a kz such that an integral number (approximately) of half-wavelengths fit into the plasma. This z-dependence makes the mode detectable in the surface charge on the walls. The modes also have r-dependence. The radial-velocity eigenfunctions of the modes behave as J1 (kr r) . We have simulated the plasma with different kz and kr values and find that increasing kz introduces a small frequency shift, either upward or downward depending on which mode is measured. The damping of the modes also increases as kz or kr increases. We are developing an appropriate kinetic theory of these modes that will include both the finite-Larmour-radius effects and the axial bouncing motion of the particles.
A discrete adaptive near-time optimum control for the plasma vertical position in a Tokamak
Scibile, L
2001-01-01
A nonlinear controller for the plasma vertical position in a Tokamak, based on a discrete-time adaptive near time optimum control algorithm (DANTOC) is designed to stabilize the system and to maximize the state-space region over which stability can be guaranteed. The controller is also robust to the edge localized modes (ELMs) and the 600 Hz noise from the thyristor power supplies that are the primary source of disturbances and measurement noise. The controller is tested in simulation for the JET Tokamak and the results confirm its efficacy in controlling the vertical position for different plasma configurations. The controller is also tested experimentally on a real Tokamak, COMPASS-D, and the results demonstrate the improvement with respect to a simple linear PD controller in the presence of disturbances and measurement noise. The emphasis of the is on the development of the design methodology. (38 refs).
A flexible software design to determine the plasma boundary in Damavand tokamak
Ghadiri, Rasoul; Sadeghi, Yahya; Esteki, Mohammad Hossein
2014-06-01
A plasma boundary reconstruction code has been designed by using current filament method to calculate the magnetic flux and consequently plasma boundary in Damavand tokamak. Hence, a computer-based code "The Plasma Boundary Reconstruction Code in Tokamak (PBRCT)" was developed to make a graphical user interface and to speed up the plasma boundary estimation algorithm. All required tools as the plasma boundary and magnetic surface display (MSD), error display, primary conditions and modeling panel as well as a search motor to determine a good position and number of the current filaments to find a precise model have been considered. The core is a 3000 lines Matlab code and the graphical user interface is 10,000 lines in C# language.
TPX diagnostics for tokamak operation, plasma control and machine protection
Energy Technology Data Exchange (ETDEWEB)
Edmonds, P.H. [Texas Univ., Austin, TX (United States). Fusion Research Center; Medley, S.S.; Young, K.M. [Princeton Univ., NJ (United States). Plasma Physics Lab.] [and others
1995-08-01
The diagnostics for TPX are at an early design phase, with emphasis on the diagnostic access interface with the major tokamak components. Account has to be taken of the very severe environment for diagnostic components located inside the vacuum vessel. The placement of subcontracts for the design and fabrication of the diagnostic systems is in process.
Energy Technology Data Exchange (ETDEWEB)
Perez-Navarro Gomerz, A.; Zurro Hernandez, B.
1976-07-01
A theoretical foundation review for light scattering by plasmas is presented. Furthermore, we have included a review of the experimental methods for electron density and temperature measurements, with spatial and time resolution, in a Tokamak plasma using spectral analysis of the scattered radiation. (Author) 13 refs.
Development of real-time plasma analysis and control algorithms for the TCV tokamak using Simulink
Felici, F.; Le, H. B.; J. I. Paley,; Duval, B. P.; Coda, S.; Moret, J. M.; Bortolon, A.; L. Federspiel,; Goodman, T. P.; Hommen, G.; A. Karpushov,; Piras, F.; A. Pitzschke,; J. Romero,; G. Sevillano,; Sauter, O.; Vijvers, W.; TCV team,
2014-01-01
One of the key features of the new digital plasma control system installed on the TCV tokamak is the possibility to rapidly design, test and deploy real-time algorithms. With this flexibility the new control system has been used for a large number of new experiments which exploit TCV's powerful
A novel flexible field-aligned coordinate system for tokamak edge plasma simulation
Leddy, J.; Dudson, B.; Romanelli, M.; Shanahan, B.; Walkden, N.
2017-03-01
Tokamak plasmas are confined by a magnetic field that limits the particle and heat transport perpendicular to the field. Parallel to the field the ionised particles can move freely, so to obtain confinement the field lines are ;closed; (i.e. form closed surfaces of constant poloidal flux) in the core of a tokamak. Towards, the edge, however, the field lines intersect physical surfaces, leading to interaction between neutral and ionised particles, and the potential melting of the material surface. Simulation of this interaction is important for predicting the performance and lifetime of future tokamak devices such as ITER. Field-aligned coordinates are commonly used in the simulation of tokamak plasmas due to the geometry and magnetic topology of the system. However, these coordinates are limited in the geometry they allow in the poloidal plane due to orthogonality requirements. A novel 3D coordinate system is proposed herein that relaxes this constraint so that any arbitrary, smoothly varying geometry can be matched in the poloidal plane while maintaining a field-aligned coordinate. This system is implemented in BOUT++ and tested for accuracy using the method of manufactured solutions. A MAST edge cross-section is simulated using a fluid plasma model and the results show expected behaviour for density, temperature, and velocity. Finally, simulations of an isolated divertor leg are conducted with and without neutrals to demonstrate the ion-neutral interaction near the divertor plate and the corresponding beneficial decrease in plasma temperature.
Nonlocal transient transport and thermal barriers in Rijnhuizen Tokamak project plasmas
Mantica, P.; Galli, P.; Gorini, G.; Hogeweij, G. M. D.; de Kloe, J.; Cardozo, N. J. L.; R. T. P. Team,
1999-01-01
In the Rijnhuizen Tokamak Project plasmas, a transient rise of the core electron temperature is observed when hydrogen pellets are injected tangentially to induce fast cooling of the peripheral region. High-resolution Thomson scattering measurements show that the T-e rise is associated with large te
Energy Technology Data Exchange (ETDEWEB)
Barbosa, Luis Filipe F.P.W.; Bosco, Edson del
1994-12-31
This report presents the project and analysis of the circuit for production of the toroidal magnetic field in the Tokamak ETE (Spherical Tokamak Experiment). The ETE is a Tokamak with a small-aspect-ratio parameter to be used for studying the plasma physics for the research on thermonuclear fusion. This machine is being constructed at the Laboratorio Associado de Plasma (LAP) of the Instituto Nacional de Pesquisas Espaciais (INPE) in Sao Jose dos Campos, SP, Brazil. (author). 20 refs., 39 figs., 4 tabs.
Influence of collisions on parametric instabilities induced by lower hybrid waves in tokamak plasmas
Castaldo, C.; Di Siena, A.; Fedele, R.; Napoli, F.; Amicucci, L.; Cesario, R.; Schettini, G.
2016-01-01
Parametric instabilities induced at the plasma edge by lower hybrid wave power externally coupled to tokamak plasmas have, via broadening of the antenna spectrum, strong influence on the power deposition and current drive in the core. For modeling the parametric instabilities at the tokamak plasma edge in lower hybrid current drive experiments, the effect of the collisions has been neglected so far. In the present work, a specific collisional parametric dispersion relation, useful to analyze these nonlinear phenomena near the lower hybrid antenna mouth, is derived for the first time, based on a kinetic model. Numerical solutions show that in such cold plasma regions the collisions prevent the onset of the parametric instabilities. This result is important for present lower hybrid current drive experiments, as well as in fusion reactor scenarios.
Upgrade of plasma density feedback control system in HT-7 tokamak
Institute of Scientific and Technical Information of China (English)
ZHAO Da-Zheng; LUO Jia-Rong; LI Gang; JI Zhen-Shan; WANG Feng
2004-01-01
The HT-7 is a superconducting tokamak in China used to make researches on the controlled nuclear fusion as a national project for the fusion research. The plasma density feedback control subsystem is the one of the subsystems of the distributed control system in HT-7 tokamak (HT7DCS). The main function of the subsystem is to control the plasma density on real-time. For this reason, the real-time capability and good stability are the most significant factors, which will influence the control results. Since the former plasma density feedback control system (FPDFCS) based on Windows operation system could not fulfill such requirements well, a new subsystem has to be developed. The paper describes the upgrade of the plasma density feedback control system (UPDFCS), based on the dual operation system (Windows and Linux), in detail.
Startup of Plasma Current in J-TEXT Tokamak Prompted by the Hα Line Emission Criterion
Institute of Scientific and Technical Information of China (English)
GAO Li; ZHUANG Ge; HU Xiwei; ZHANG Ming
2009-01-01
An Hα line-emission detection system was developed on the joint texas experimental tokamak (J-TEXT), which is used to determine the Hα emission level during the gas breakdown and hereafter to control the startup of the plasma current. The detector consists of an Hα in-terference filter, a focusing lens, a photodiode and a preamplifier. In the J-TEXT operation, the Hα emission is taken as a monitor signal which is highly sensitive to the generation of a plasma.Furthermore, the power supply control system using the above signal as an input is capable of de-termining whether and when to fire the Ohmic heating capacitor banks, which are applied to drive the plasma current ramp-up. The experimental results confirm that the Hα emission criterion is acceptable for controlling the plasma current promotion in the J-TEXT tokamak.
Directory of Open Access Journals (Sweden)
Minashin P.V.
2015-01-01
Full Text Available A method of spectroscopic diagnostics of the average perpendicular-to-magnetic-field momentum of the superthermal component of the electron velocity distribution (EVD, based on the high-number-harmonic electron cyclotron (EC radiation, is suggested for nuclear fusion-reactor plasmas under condition of a strong auxiliary heating (e.g. in tokamak DEMO, a next step after tokamak ITER. The method is based on solving an inverse problem for reconstruction of the EVD in parallel and perpendicular-to-magnetic-field components of electron momentum at high and moderate energies responsible for the emission of the high-number-harmonic EC radiation.
3D MHD VDE and disruptions simulations of tokamaks plasmas including some ITER scenarios
Paccagnella, R.; Strauss, H. R.; Breslau, J.
2009-03-01
Tokamaks vertical displacement events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model is completed with the presence of a 2D wall with finite resistivity which allows the study of the relatively slowly growing magnetic perturbation, the resistive wall mode (RWM), which is, in this paper, the main drive of the disruption evolution. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given.
Intrinsic rotation driven by non-Maxwellian equilibria in Tokamak plasmas.
Barnes, M; Parra, F I; Lee, J P; Belli, E A; Nave, M F F; White, A E
2013-08-02
The effect of small deviations from a Maxwellian equilibrium on turbulent momentum transport in tokamak plasmas is considered. These non-Maxwellian features, arising from diamagnetic effects, introduce a strong dependence of the radial flux of cocurrent toroidal angular momentum on collisionality: As the plasma goes from nearly collisionless to weakly collisional, the flux reverses direction from radially inward to outward. This indicates a collisionality-dependent transition from peaked to hollow rotation profiles, consistent with experimental observations of intrinsic rotation.
Intrinsic rotation driven by non-Maxwellian equilibria in tokamak plasmas
Barnes, M; Lee, J P; Belli, E A; Nave, M F F; White, A E
2013-01-01
The effect of small deviations from a Maxwellian equilibrium on turbulent momentum transport in tokamak plasmas is considered. These non-Maxwellian features, arising from diamagnetic effects, introduce a strong dependence of the radial flux of co-current toroidal angular momentum on collisionality: As the plasma goes from nearly collisionless to weakly collisional, the flux reverses direction from radially inward to outward. This indicates a collisionality-dependent transition from peaked to hollow rotation profiles, consistent with experimental observations of intrinsic rotation.
Monte-Carlo fluid approaches to detached plasmas in non-axisymmetric divertor configurations
Feng, Y.; Frerichs, H.; Kobayashi, M.; Reiter, D.
2017-03-01
Fluid transport modeling in three-dimensional boundaries of toroidal confinement devices is reviewed with the emphasis on a Monte-Carlo approach to simulate detached plasmas. The loss of axisymmetry in such configurations presents a major challenge for numerical implementation of the standard fluid model widely applied to fusion experimental devices. A large-scale effort has been made to address this problem under complementary aspects including different magnetic topologies and numerical techniques. In this paper, we give a brief review of the different strategies pioneered and the challenges involved. A more detailed description is provided for the Monte-Carlo code—EMC3-Eirene, where the physics model and the basic idea behind the applied Monte-Carlo method are presented. The focus is put on its applications to detachment studies for stellarators and tokamaks. Here, major achievements and difficulties encountered are described. Model limitations and further development plans are discussed.
Poloidal rotation induced by injecting lower hybrid waves in tokamak plasma edge
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The poloidal rotation of the magnetized edge plasma in tokamak driven by theponderomotive force which is generated by injecting lower hybrid wave(LHW) electric field hasbeen studied. The LHW is launched from a waveguide in the plasma edge, and by Brambilla’sgrill theory, analytic expressions for the wave electric field in the slab model of an inhomogeneouscold plasma have been derived. It is shown that a strong wave electric field will be generated inthe plasma edge by injecting LH wave of the power in MW magnitude, and this electric field willinduce a poloidal rotation with a sheared poloidal velocity.PACS: 52.55.Fa
Energy Technology Data Exchange (ETDEWEB)
1993-12-01
The long-range goal of the Numerical Tokamak Project (NTP) is the reliable prediction of tokamak performance using physics-based numerical tools describing tokamak physics. The NTP is accomplishing the development of the most advanced particle and extended fluid model`s on massively parallel processing (MPP) environments as part of a multi-institutional, multi-disciplinary numerical study of tokamak core fluctuations. The NTP is a continuing focus of the Office of Fusion Energy`s theory and computation program. Near-term HPCC work concentrates on developing a predictive numerical description of the core plasma transport in tokamaks driven by low-frequency collective fluctuations. This work addresses one of the greatest intellectual challenges to our understanding of the physics of tokamak performance and needs the most advanced computational resources to progress. We are conducting detailed comparisons of kinetic and fluid numerical models of tokamak turbulence. These comparisons are stimulating the improvement of each and the development of hybrid models which embody aspects of both. The combination of emerging massively parallel processing hardware and algorithmic improvements will result in an estimated 10**2--10**6 performance increase. Development of information processing and visualization tools is accelerating our comparison of computational models to one another, to experimental data, and to analytical theory, providing a bootstrap effect in our understanding of the target physics. The measure of success is the degree to which the experimentally observed scaling of fluctuation-driven transport may be predicted numerically. The NTP is advancing the HPCC Initiative through its state-of-the-art computational work. We are pushing the capability of high performance computing through our efforts which are strongly leveraged by OFE support.
Dispersion equations for field-aligned cyclotron waves in axisymmetric magnetospheric plasmas
Directory of Open Access Journals (Sweden)
N. I. Grishanov
2006-03-01
Full Text Available In this paper, we derive the dispersion equations for field-aligned cyclotron waves in two-dimensional (2-D magnetospheric plasmas with anisotropic temperature. Two magnetic field configurations are considered with dipole and circular magnetic field lines. The main contribution of the trapped particles to the transverse dielectric permittivity is estimated by solving the linearized Vlasov equation for their perturbed distribution functions, accounting for the cyclotron and bounce resonances, neglecting the drift effects, and assuming the weak connection of the left-hand and right-hand polarized waves. Both the bi-Maxwellian and bi-Lorentzian distribution functions are considered to model the ring current ions and electrons in the dipole magnetosphere. A numerical code has been developed to analyze the dispersion characteristics of electromagnetic ion-cyclotron waves in an electron-proton magnetospheric plasma with circular magnetic field lines, assuming that the steady-state distribution function of the energetic protons is bi-Maxwellian. As in the uniform magnetic field case, the growth rate of the proton-cyclotron instability (PCI in the 2-D magnetospheric plasmas is defined by the contribution of the energetic ions/protons to the imaginary part of the transverse permittivity elements. We demonstrate that the PCI growth rate in the 2-D axisymmetric plasmasphere can be significantly smaller than that for the straight magnetic field case with the same macroscopic bulk parameters.
Peeling-off of the external kink modes at tokamak plasma edge
Zheng, L J
2014-01-01
It is pointed that there is a current jump between the edge plasma inside the last closed magnetic surface and the scrape-off layer and the current jump can lead the external kink modes to convert to the tearing modes, due to the current interchange effects [L. J. Zheng and M. Furukawa, Phys. Plasmas 17, 052508 (2010)]. The magnetic reconnection in the presence of tearing modes subsequently causes the tokamak edge plasma to be peeled off to link to the diverters. In particular, the peeling or peeling-ballooning modes can become the "peeling-off" modes in this sense. This phenomenon indicates that the tokamak edge confinement can be worse than the expectation based on the conventional kink mode picture.
Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas
Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.
1980-01-01
The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.
Graves, J P; Chapman, I T; Coda, S; Lennholm, M; Albergante, M; Jucker, M
2012-01-10
Virtually collisionless magnetic mirror-trapped energetic ion populations often partially stabilize internally driven magnetohydrodynamic disturbances in the magnetosphere and in toroidal laboratory plasma devices such as the tokamak. This results in less frequent but dangerously enlarged plasma reorganization. Unique to the toroidal magnetic configuration are confined 'circulating' energetic particles that are not mirror trapped. Here we show that a newly discovered effect from hybrid kinetic-magnetohydrodynamic theory has been exploited in sophisticated phase space engineering techniques for controlling stability in the tokamak. These theoretical predictions have been confirmed, and the technique successfully applied in the Joint European Torus. Manipulation of auxiliary ion heating systems can create an asymmetry in the distribution of energetic circulating ions in the velocity orientated along magnetic field lines. We show the first experiments in which large sawtooth collapses have been controlled by this technique, and neoclassical tearing modes avoided, in high-performance reactor-relevant plasmas.
Institute of Scientific and Technical Information of China (English)
Shi Bing-Ren; Qu Wen-Xiao
2006-01-01
A ballooning mode equation for tokamak plasma, with the toroidicity and the Shafranov shift effects included, is derived for a shift circular flux tokamak configuration. Using this equation, the stability of the plasma configuration with an internal transport barrier (IT2 against the high n (the toroidal mode number) ideal magnetohydrodynamic (MHD) ballooning mode is analysed. It is shown that both the toroidicity and the Shafranov shift effects are stabilizing.In the ITB region, these effects give rise to a low shear stable channel between the first and the second stability regions.Out of the ITB region towards the plasma edge, the stabilizing effect of the Shafranov shift causes the unstable zone to be significantly narrowed.
Dynamic Optimization of Trajectory for Ramp-up Current Profile in Tokamak Plasmas
Ren, Zhigang; Ou, Yongsheng
2016-01-01
In this paper, we consider an open-loop, finite-time, optimal control problem of attaining a specific desired current profile during the ramp-up phase by finding the best open-loop actuator input trajectories. Average density, total power, and plasma current are used as control actuators to manipulate the profile shape in tokamak plasmas. Based on the control parameterization method, we propose a numerical solution procedure directly to solve the original PDE-constrained optimization problem using gradient-based optimization techniques such as sequential quadratic programming (SQP). This paper is aimed at proposing an effective framework for the solution of PDE-constrained optimization problem in tokamak plasmas. A more user-friendly and efficient graphical user interface (GUI) is designed in MATLAB and the numerical simulation results are verified to demonstrate its applicability. In addition, the proposed framework of combining existing PDE and numerical optimization solvers to solve PDE-constrained optimiz...
Resistive wall mode and neoclassical tearing mode coupling in rotating tokamak plasmas
McAdams, Rachel; Chapman, I T
2013-01-01
A model system of equations has been derived to describe a toroidally rotating tokamak plasma, unstable to Resistive Wall Modes (RWMs) and metastable to Neoclassical Tearing Modes (NTMs), using a linear RWM model and a nonlinear NTM model. If no wall is present, the NTM growth shows the typical threshold/saturation island widths, whereas a linearly unstable kink mode grows exponentially in this model plasma system. When a resistive wall is present, the growth of the linearly unstable RWM is accelerated by an unstable island: a form of coupled RWM-NTM mode. Crucially, this coupled system has no threshold island width, giving the impression of a triggerless NTM, observed in high beta tokamak discharges. In addition, increasing plasma rotation at the island location can mitigate its growth, but does not restore the threshold width.
Hofmann, F.; Dutch, M. J.; Favre, A.; Martin, Y.; Moret, J.-M.; Ward, D. J.
1998-03-01
A new vertical position control system, including an internal active coil, has become operational on TCV. The new system has made it possible to stabilize plasmas with open loop growth rates up to 4400 s-1, currents up to 1.0 MA and elongations up to 2.58. The closed loop stability of the new system has been analysed with a numerical model in which the plasma is assumed to be undeformable, and the power supply outputs are delayed with respect to their inputs. Model predictions agree with the main experimental results.
Energy Technology Data Exchange (ETDEWEB)
Hofmann, F.; Dutch, M.J.; Favre, A.; Martin, Y.; Moret, J.M.; Ward, D.J. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)
1997-12-01
A new vertical position control system, including an internal active coil, has become operational on TCV. The new system has made it possible to stabilize plasmas with open-loop growth rates up to 4400 sec{sup -1}, currents up to 1.0 MA, and elongations up to 2.58. The closed-loop stability of the new system has been analyzed with a numerical model in which the plasma is assumed undeformable, and the power supply outputs are delayed with respect to their inputs. Model predictions agree with the main experimental results. (author) 9 figs., 1 tab., 18 refs.
Coupled two-dimensional edge plasma and neutral gas modeling of tokamak scrape-off-layers
Energy Technology Data Exchange (ETDEWEB)
Maingi, R. [North Carolina State Univ., Raleigh, NC (United States)
1992-08-01
The objective of this study is to devise a detailed description of the tokamak scrape-off-layer (SOL), which includes the best available models of both the plasma and neutral species and the strong coupling between the two in many SOL regimes. A good estimate of both particle flux and heat flux profiles at the limiter/divertor target plates is desired. Peak heat flux is one of the limiting factors in determining the survival probability of plasma-facing-components at high power levels. Plate particle flux affects the neutral flux to the pump, which determines the particle exhaust rate. A technique which couples a two-dimensional (2-D) plasma and a 2-D neutral transport code has been developed (coupled code technique), but this procedure requires large amounts of computer time. Relevant physics has been added to an existing two-neutral-species model which takes the SOL plasma/neutral coupling into account in a simple manner (molecular physics model), and this model is compared with the coupled code technique mentioned above. The molecular physics model is benchmarked against experimental data from a divertor tokamak (DIII-D), and a similar model (single-species model) is benchmarked against data from a pump-limiter tokamak (Tore Supra). The models are then used to examine two key issues: free-streaming-limits (ion energy conduction and momentum flux) and the effects of the non-orthogonal geometry of magnetic flux surfaces and target plates on edge plasma parameter profiles.
Reedy, Todd Mitchell
An experimental investigation evaluating the effects of flow control on the near-wake downstream of a blunt-based axisymmetric body in supersonic flow has been conducted. To better understand and control the physical phenomena that govern these massively separated high-speed flows, this research examined both passive and active flow-control methodologies designed to alter the stability characteristics and structure of the near-wake. The passive control investigation consisted of inserting splitter plates into the recirculation region. The active control technique utilized energy deposition from multiple electric-arc plasma discharges placed around the base. The flow-control authority of both methodologies was evaluated with experimental diagnostics including particle image velocimetry, schlieren photography, surface flow visualization, pressure-sensitive paint, and discrete surface pressure measurements. Using a blowdown-type wind tunnel reconstructed specifically for these studies, baseline axisymmetric experiments without control were conducted for a nominal approach Mach number of 2.5. In addition to traditional base pressure measurements, mean velocity and turbulence quantities were acquired using two-component, planar particle image velocimetry. As a result, substantial insight was gained regarding the time-averaged and instantaneous near-wake flow fields. This dataset will supplement the previous benchmark point-wise laser Doppler velocimetry data of Herrin and Dutton (1994) for comparison with new computational predictive techniques. Next, experiments were conducted to study the effects of passive triangular splitter plates placed in the recirculation region behind a blunt-based axisymmetric body. By dividing the near-wake into 1/2, 1/3, and 1/4 cylindrical regions, the time-averaged base pressure distribution, time-series pressure fluctuations, and presumably the stability characteristics were altered. While the spatial base pressure distribution was
FPGA based Fuzzy Logic Controller for plasma position control in ADITYA Tokamak
Energy Technology Data Exchange (ETDEWEB)
Suratia, Pooja, E-mail: poojasuratia@yahoo.com [Electrical Engineering Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Kalabhavan, Vadodara 390001, Gujarat (India); Patel, Jigneshkumar, E-mail: jjp@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat (India); Rajpal, Rachana, E-mail: rachana@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat (India); Kotia, Sorum, E-mail: smkotia-eed@msubaroda.ac.in [Electrical Engineering Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Kalabhavan, Vadodara 390001, Gujarat (India); Govindarajan, J., E-mail: govindarajan@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat (India)
2012-11-15
Highlights: Black-Right-Pointing-Pointer Evaluation and comparison of the working performance of FLC is done with that of PID Controller. Black-Right-Pointing-Pointer FLC is designed using MATLAB Fuzzy Logic Toolbox, and validated on ADITYA RZIP model. Black-Right-Pointing-Pointer FLC was implemented on a FPGA. The close-loop testing is done by interfacing FPGA to MATLAB/Simulink. Black-Right-Pointing-Pointer Developed FLC controller is able to maintain the plasma column within required range of {+-}0.05 m and was found to give robust control against various disturbances and faster and smoother response compared to PID Controller. - Abstract: Tokamaks are the most promising devices for obtaining nuclear fusion energy from high-temperature, ionized gas termed as Plasma. The successful operation of tokamak depends on its ability to confine plasma at the geometric center of vacuum vessel with sufficient stability. The quality of plasma discharge in ADITYA Tokamak is strongly related to the radial position of the plasma column in the vacuum vessel. If the plasma column approaches too near to the wall of vacuum vessel, it leads to minor or complete disruption of plasma. Hence the control of plasma position throughout the entire plasma discharge duration is a fundamental requirement. This paper describes Fuzzy Logic Controller (FLC) which is designed for radial plasma position control. This controller is tested and evaluated on the ADITYA RZIP control model. The performance of this FLC was compared with that of Proportional-Integral-Derivative (PID) Controller and the response was found to be faster and smoother. FLC was implemented on a Field Programmable Gate Array (FPGA) chip with the use of a Very High-Speed Integrated-Circuits Hardware Description-Language (VHDL).
Magnetic loop generation by collisionless gravitationally bound plasmas in axisymmetric tori.
Cremaschini, Claudio; Stuchlík, Zdeněk
2013-04-01
Current-carrying string loops are adopted in astrophysics to model the dynamics of isolated flux tubes of magnetized plasma expected to arise in the gravitational field of compact objects, such as black holes. Recent studies suggest that they could provide a framework for the acceleration and collimation of jets of plasma observed in these systems. However, the problem remains of the search of physical mechanisms which can consistently explain the occurrence of such plasma toroidal structures characterized by nonvanishing charge currents and are able to self-generate magnetic loops. In this paper, the problem is addressed in the context of Vlasov-Maxwell theory for nonrelativistic collisionless plasmas subject to both gravitational and electromagnetic fields. A kinetic treatment of quasistationary axisymmetric configurations of charged particles exhibiting epicyclic motion is obtained. Explicit solutions for the species equilibrium phase-space distribution function are provided. These are shown to have generally a non-Maxwellian character and to be characterized by nonuniform fluid fields and temperature anisotropy. Calculation of the relevant fluid fields and analysis of the Ampere equation then show the existence of nonvanishing current densities. As a consequence, the occurrence of a kinetic dynamo is proved, which can explain the self-generation of both azimuthal and poloidal magnetic fields by the plasma itself. This mechanism can operate in the absence of instabilities, turbulence, or accretion phenomena and is intrinsically kinetic in character. In particular, several kinetic effects contribute to it, identified here with finite Larmor radius, diamagnetic and energy-correction effects together with temperature anisotropy, and non-Maxwellian features of the equilibrium distribution function.
Mitchell, N
2001-01-01
In recent proposals for next generation superconducting tokamaks, such as the ITER project, the nuclear burning plasma is confined by magnetic fields generated from a large set (up to 100 GJ stored energy) of superconducting magnets. These magnets suffer heat loads in operation from thermal and nuclear radiation from the surrounding components and plasma as well as eddy currents and AC losses generated within the magnets, together with the heat conduction through supports and resistive heat generated at the current lead transitions to room temperature. The initial cryoplant for such a tokamak is expected to have a steady state capacity of up to about 85 kW at 4.5 K, comparable to the system installed for LHC at CERN. Experimental tokamaks are expected to operate at least initially in a pulsed mode with 20-30 short plasma pulses and plasma burn periods each day. A conventional cryoplant, consisting of a cold box and a set of primary heat exchangers, is ill-suited to such a mode of operation as the instantaneou...
Second-harmonic ion cyclotron resonance heating scenarios of Aditya tokamak plasma
Indian Academy of Sciences (India)
Asim Kumar Chattopadhyay; S V Kulkarni; R Srinivasan; Aditya Team
2015-10-01
Plasma heating with the fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) is one of the auxiliary heating schemes of Aditya tokamak. Numerical simulation of second-harmonic resonance heating scenarios in low-temperature, low-density Aditya plasma has been carried out for fast magnetosonic wave absorption in ICRF range, using full-wave ion cyclotron heating code TORIC combined with Fokker–Planck quasilinear solver SSFPQL and the results are explained. In such low-temperature, low-density plasma, ion absorption for second-harmonic resonance heating is less but significant amount of direct electron heating is observed.
Shaing, K. C.; Sabbagh, S. A.
2016-07-01
Theory for neoclassical toroidal plasma viscosity has been developed to model transport phenomena, especially, toroidal plasma rotation for tokamaks with broken symmetry. Theoretical predictions are in agreement with the results of the numerical codes in the large aspect ratio limit. The theory has since been extended to include effects of finite aspect ratio and finite plasma β. Here, β is the ratio of the plasma thermal pressure to the magnetic field pressure. However, there are cases where the radial wavelength of the self-consistent perturbed magnetic field strength B on the perturbed magnetic surface is comparable to the width of the trapped particles, i.e., bananas. To accommodate those cases, the theory for neoclassical toroidal plasma viscosity is further extended here to include the effects of the finite banana width. The extended theory is developed using the orbit averaged drift kinetic equation in the low collisionality regimes. The results of the theory can now be used to model plasma transport, including toroidal plasma rotation, in real finite aspect ratio, and finite plasma β tokamaks with the radial wavelength of the perturbed symmetry breaking magnetic field strength comparable to or longer than the banana width.
HL-2A Tokamak Plasma Visible Light Imaging System
Institute of Scientific and Technical Information of China (English)
ZHENGYinjia; FENGZhen; LUOCuiwen; CHENGLiaoyuan
2003-01-01
Visible imagery is extremely useful to overview the edge and divertor structure. The plasma configuration and the position of the strike lines on the target plates can be also observed by imaging technique. By imaging the edge or core plasma with visible emission in the desired wavelength band, usually with a “tangential” view, the plasma position can be determined in principle.
Profile control of advanced tokamak plasmas in view of continuous operation
Mazon, D.
2015-07-01
The concept of the tokamak is a very good candidate to lead to a fusion reactor. In fact, certain regimes of functioning allow today the tokamaks to attain performances close to those requested by a reactor. Among the various scenarios of functioning nowadays considered for the reactor option, certain named 'advanced scenarios' are characterized by an improvement of the stability and confinement in the plasma core, as well as by a modification of the current profile, notably thank to an auto-generated 'bootstrap' current. The general frame of this paper treats the perspective of a real-time control of advanced regimes. Concrete examples will underline the impact of diagnostics on the identification of plasma models, from which the control algorithms are constructed. Several preliminary attempts will be described.
GEM detector development for tokamak plasma radiation diagnostics: SXR poloidal tomography
Chernyshova, Maryna; Malinowski, Karol; Ziółkowski, Adam; Kowalska-Strzeciwilk, Ewa; Czarski, Tomasz; Poźniak, Krzysztof T.; Kasprowicz, Grzegorz; Zabołotny, Wojciech; Wojeński, Andrzej; Kolasiński, Piotr; Krawczyk, Rafał D.
2015-09-01
An increased attention to tungsten material is related to a fact that it became a main candidate for the plasma facing material in ITER and future fusion reactor. The proposed work refers to the studies of W influence on the plasma performances by developing new detectors based on Gas Electron Multiplier GEM) technology for tomographic studies of tungsten transport in ITER-oriented tokamaks, e.g. WEST project. It presents current stage of design and developing of cylindrically bent SXR GEM detector construction for horizontal port implementation. Concept to overcome an influence of constraints on vertical port has been also presented. It is expected that the detecting unit under development, when implemented, will add to the safe operation of tokamak bringing creation of sustainable nuclear fusion reactors a step closer.
One dimensional simulation on stability of detached plasma in a tokamak divertor
Energy Technology Data Exchange (ETDEWEB)
Nakazawa, Shinji; Nakajima, Noriyoshi; Okamoto, Masao; Ohyabu, Nobuyoshi [National Inst. for Fusion Science, Toki, Gifu (Japan)
1999-06-01
The stability of radiation front in the Scrape-Off-Layer (SOL) of a tokamak is studied with a one dimensional fluid code; the time-dependent transport equations are solved in the direction parallel to a magnetic field line. The simulation results show that stable detached solutions exist, where the plasma temperature near the divertor target is {approx}2 eV. It is found that whenever such stable detached states are attained, the strong radiation front is contact with or at a small distance from the divertor target. When the energy externally injected into the SOL is decreased below a critical value, the radiation front starts to move towards the X-point, cooling the SOL plasma. In such cases, no stationary solutions such that the radiation front rests in the divertor channel are observed in our parameter space. This qualitatively corresponds to the results of tokamak divertor experiments which show the movement of radiation front. (author)
Energy Technology Data Exchange (ETDEWEB)
Meslin, B
1998-04-30
Plasma density control on the tokamak Tore Supra is important for the optimization of every experimental scenario dealing with the improvement of plasma performances. Specific conditions are required both in the plasma bulk and at the edge. Within the framework of the present study, a magnetic configuration is used in the e plasma edge of Tore Supra: the ergodic divertor configuration. A magnetic perturbation which is resonant with the permanent field destroys the plasma confinement locally, opening the field lines onto the material components. They aim of the study is the characterization of the edge density in every relevant scenario for Tore Supra. The first part of this work is dedicated to density and temperature measurements by a series of fixed Langmuir probes located at the very edge of the plasma. Thanks to them, density regimes have been put in evidence during experiments where the volume averaged density
Resistive MHD studies of high-beta tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Lynch, V.E.; Hicks, H.R.; Holmes, J.A.; Carreras, B.A.; Garcia, L.
1982-02-01
Numerical calculations have been performed to study the magnetohydrodynamic (MHD) activity in high-beta tokamaks such as ISX-B. These initial value calculations have been built on earlier low-beta techniques, but the beta effects create several new numerical issues. These issues are discussed and resolved. In addition to time-stepping modules, our system of computer codes includes equilibrium solvers (used to provide an initial condition) and output modules, such as a magnetic field line follower and an x-ray diagnostic code. The transition from current-driven modes at low beta to predominantly pressure-driven modes at high beta is described. The nonlinear studies yield x-ray emissivity plots which are compared with experiment.
Resistive MHD studies of high-. beta. -tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Lynch, V.E.; Carreras, B.A.; Hicks, H.R.; Holmes, J.A.; Garcia, L.
1981-01-01
Numerical calculations have been performed to study the MHD activity in high-..beta.. tokamaks such as ISX-B. These initial value calculations built on earlier low ..beta.. techniques, but the ..beta.. effects create several new numerical issues. These issues are discussed and resolved. In addition to time-stepping modules, our system of computer codes includes equilibrium solvers (used to provide an initial condition) and output modules, such as a magnetic field line follower and an X-ray diagnostic code. The transition from current driven modes at low ..beta.. to predominantly pressure driven modes at high ..beta.. is described. The nonlinear studies yield X-ray emissivity plots which are compared with experiment.
Self-Organized Criticality Processes in HL-1M Tokamak Plasma
Institute of Scientific and Technical Information of China (English)
HUANG Yuan; QIU Xiao-Ming; DING Xuan-Tong; WANG En-Yao
2003-01-01
We study the dynamics of laminar time between successive bursts in anomalous particle flux measured at the HL-1M tokamak plasma edge. The results reveal that the flux fluctuations are self-similar in a narrow range of time scales and that their probability distribution function is not Gaussian. These properties are not consistent with those predicted by self-organized criticality (SOC) models as well as the running sand-pile SOC model developed by Hwa and Kardar.
Chapman, I T; Scannell, R; Cooper, W A; Graves, J P; Hastie, R J; Naylor, G; Zocco, A
2010-12-17
Thomson scattering measurements with subcentimeter spatial resolution have been made during a sawtooth crash in a Mega Ampere Spherical Tokamak fusion plasma. The unparalleled resolution of the temperature profile has shed new light on the mechanisms that underlie the sawtooth. As magnetic reconnection occurs, the temperature gradient at the island boundary increases. The increased local temperature gradient is sufficient to make the helical core unstable to ideal magnetohydrodynamic instabilities, thought to be responsible for the rapidity of the collapse.
The construction of an electrode biasing system for driving plasma rotation in J-TEXT tokamak
Zhu, T. Z.; Chen, Z. P.; Sun, Yue; Nan, J. Y.; Liu, H.; Zhuang, G.; Wang, Z. J.
2014-05-01
A newly designed electrode biasing system has been constructed for driving plasma rotation in J-TEXT tokamak. To reduce the influence to the plasma, the system contains a pneumatic driving system so that it can reciprocate in a single discharge, with a stroke of about 5 cm in 100 ms. The power supply of the system can provide stable and adjustable dc voltage in the range of 0-700 V, with adjustable duration of 10-200 ms; its instantaneous power output can reach up to more than 200 kW. In addition, the power supply can also provide a multi-cycle voltage waveform, with adjustable pulse width and voltage amplitude. When applying a positive bias to the plasma, both an improvement of plasma confinement and the speed-up of plasma-edge toroidal rotation in the same direction of plasma current are observed in the experiments.
Effect of shear equilibrium flow in Tokamak plasma on resistive wall modes
Institute of Scientific and Technical Information of China (English)
Li Li; Liu Yue
2013-01-01
A code named LARWM with non-ideal magnetohydrodynamic equations in cylindrical model is used to describe the instability in Tokamak plasma surrounded by a conducting wall with finite resistivity.We mainly take three factors related to the shear equilibrium plasma flow into consideration to study the stabilizing effect of the shear flow on the resistive wall modes (RWMs).The three factors are the velocity amplitude of flow,the shear rate of flow on plasma surface,and the inertial energy of equilibrium plasma flow.In addition,a local shear plasma flow is also calculated by the LARWM code.Consequently,it is found that the inertial energy of the shear equilibrium plasma flow has an important role in the stabilization of the RWMs.
Measurements of plasma composition in the TEXTOR tokamak by collective Thomson scattering
DEFF Research Database (Denmark)
Stejner Pedersen, Morten; Korsholm, Søren Bang; Nielsen, Stefan Kragh;
2012-01-01
with wave vector components nearly perpendicular to the magnetic field. Under such conditions the sensitivity of the CTS spectrum to plasma composition is enhanced by the spectral signatures of the ion cyclotron motion and of weakly damped ion Bernstein waves. Recent experiments on TEXTOR demonstrated......We demonstrate the use of collective Thomson scattering (CTS) for spatially localized measurements of the isotopic composition of magnetically confined fusion plasmas. The experiments were conducted in the TEXTOR tokamak by scattering millimeter-wave probe radiation off plasma fluctuations...... the ability to resolve these signatures in the CTS spectrum as well as their sensitivity to the ion species mix in the plasma. This paper shows that the plasma composition can be inferred from the measurements through forward modeling of the CTS spectrum. We demonstrate that spectra measured in plasmas...
Analysis of tokamak plasma confinement modes using the fast Fourier transformation
Indian Academy of Sciences (India)
S R MIRMOEINI; A SALAR ELAHI; M GHORANNEVISS
2016-11-01
The Fourier analysis is a satisfactory technique for detecting plasma confinement modes in tokamaks. The confinement mode of tokamak plasma was analysed using the fast Fourier transformation (FFT). For this purpose, we used the data of Mirnov coils that is one of the identifying tools in the IR-T1 tokamak, with and without external field (electric biasing), and then compared it with each other. After the Fourier analysis of Mirnov coil data, the diagram of power spectrum density was depicted in different angles of Mirnov coils in the ‘presenceof external field’ as well as in the ‘absence of external field’. The power spectrum density (PSD) interprets the manner of power distribution of a signal with frequency. In this article, the number of plasma modes and the safety factor $q$ were obtained by using the mode number of $q = m/n$ ($m$ is the mode number). The maximum MHD activity was obtained in 30–35 kHz frequency, using the density of the energy spectrum. In addition, the number of different modes across 0–35 ms time was compared with each other in the presence and absence of theexternal field.
Energy Technology Data Exchange (ETDEWEB)
Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C. [and others
2001-01-10
The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.
The ion velocity distribution of tokamak plasmas: Rutherford scattering at TEXTOR
Energy Technology Data Exchange (ETDEWEB)
Tammen, H.F.
1995-01-10
One of the most promising ways to gererate electricity in the next century on a large scale is nuclear fusion. In this process two light nuclei fuse and create a new nucleus with a smaller mass than the total mass of the original nuclei, the mass deficit is released in the form of kinetic energy. Research into this field has already been carried out for some decades now, and will have to continue for several more decades before a commercially viable fusion reactor can be build. In order to obtain fusion, fuels of extremely high temperatures are needed to overcome the repulsive force of the nuclei involved. Under these circumstances the fuel is fully ionized: it consists of ions and electrons and is in the plasma state. The problem of confining such a hot substance is solved by using strong magnetic fields. One specific magnetic configuration, in common use, is called the tokamak. The plasma in this machine has a toroidal, i.e. doughnut shaped, configuration. For understanding the physical processes which take place in the plasma, a good temporally and spatially resolved knowledge of both the ion and electron velocity distribution is required. The situation concerning the electrons is favourable, but this is not the case for the ions. To improve the existing knowledge of the ion velocity distribution in tokamak plasmas, a Rutherford scattering diagnostic (RUSC), designed and built by the FOM-Institute for Plasmaphysics `Rijnhuizen`, was installed at the TEXTOR tokamak in Juelich (D). The principle of the diagnostic is as follows. A beam of monoenergetic particles (30 keV, He) is injected vertically into the plasma. A small part of these particles collides elastically with the moving plasma ions. By determining the energy of a scattered beam particle under a certain angle (7 ), the initial velocity of the plasma ion in one direction can be computed. (orig./WL).
Characterization of plasma current quench during disruption in EAST tokamak
Institute of Scientific and Technical Information of China (English)
陈大龙; 沈飙; 杨飞; 钱金平; 肖炳甲
2015-01-01
Preliminary analysis of plasma current quench is presented in this paper based on the disruption database. It demon-strates that 26.8%discharges have disrupted in the last 2012 campaign, in addition, plasma disruptive rate grows with the increase of plasma current. Best-fit linear and instantaneous plasma current quench rate is extracted from the recent EAST disruptions, showing that 80%–30%interval of the maximum plasma current is well fit for EAST device. The lowest area-normalized current quench time is 3.33 ms/m2 with the estimated plasma electron temperature being 7.3 eV∼9.5 eV. In the disruption case the maximum eddy current goes up to 400 kA, and a fraction of currents are respectively driven on upper and lower outer plate with nearly 100 MPa–200 MPa stress in the leg.
Energy Technology Data Exchange (ETDEWEB)
Gerbaud, T
2005-07-01
The turbulence developing in a tokamak's plasma is liable for a large transport of energy and particles, what slims the plasma magnetic confinement. This turbulence induces electromagnetic fluctuations inside the plasma, which imply local electronic density fluctuations. Using microwave reflectometers 50 - 110 GHz, operating like radars, one can probe the plasma at different depths, and then analyse the wave reflected by the plasma. Probe waves can be polarized ordinarily or extraordinarily, the difference lying in the dispersion relation of the plasma reflection index. The goal of this work is to compare density fluctuations spectrums, obtained in both polarization. Wave numbers spectrums and radials profiles of corresponding RMS values (equivalent to mean quadratic values) allow to conclude on a good agreement between the fluctuations density levels generated by measurement done in ordinary or extraordinary polarization. The comparison of wave numbers spectrums of density fluctuations underlines the growth of turbulence activity in the gradients zone. These results represent the first steps of a advanced analysis of fluctuations profiles and spectrums generated in ordinary polarization. (author)
Kim, Juhyung; Kim, S. S.; Jhang, Hogun
2016-09-01
Numerical studies are made of the effects of resistivity on linear plasma responses to resonant magnetic perturbations (RMPs) in tokamaks based on a reduced magnetohydrodynamic model. From a local two-field model, it is suggested that the ratio of the poloidal electron advection to the resistivity diffusion rate α m can be a figure of merit parameter in linear RMP penetration physics. The shielding efficiency is governed by α m , and when α m ≳ 1 , RMPs are effectively shielded. Global simulations using a four-field model [Hazeltine and Meiss, Phys. Rep. 121, 1 (1985)] show that there exists an effective threshold of the perpendicular electron flow ( Ve , ⊥ c ) beyond which RMPs cannot penetrate. Resistivity is found to determine Ve , ⊥ c which increases as resistivity becomes higher, making RMP penetration easier. At low resistivity, small Ve , ⊥ c renders the RMP penetration sensitive to ion collisionality and the change in q95. The kink response is observed to be closely related to the residual level of RMPs at rational surfaces and can be also strongly affected by resistivity.
Tokamak Plasmas : Electron temperature $(T_{e})$ measurements by Thomson scattering system
Indian Academy of Sciences (India)
R Rajesh; B Ramesh Kumar; S K Varshney; Manoj Kumar; Chhaya Chavda; Aruna Thakkar; N C Patel; Ajai Kumar; Aditya Team
2000-11-01
Thomson scattering technique based on high power laser has already proved its superoirity in measuring the electron temperature (e) and density (e) in fusion plasma devices like tokamaks. The method is a direct and unambiguous one, widely used for the localised and simultaneous measurements of the above parameters. In Thomson scattering experiment, the light scattered by the plasma electrons is used for the measurements. The plasma electron temperature is measured from the Doppler shifted scattered spectrum and density from the total scattered intensity. A single point Thomson scattering system involving a -switched ruby laser and PMTs as the detector is deployed in ADITYA tokamak to give the plasma electron parameters. The system is capable of providing the parameters e from 30 eV to 1 keV and e from 5 × 1012 cm-3-5× 1013 cm-3. The system is also able to give the parameter proﬁle from the plasma center ( = 0 cm) to a vertical position of = +22 cm to = -14 cm, with a spatial resolution of 1 cm on shot to shot basis. This paper discusses the initial measurements of the plasma temperature from ADITYA.
The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak
Energy Technology Data Exchange (ETDEWEB)
Lee, K.H. [Chungnam National University Graduate School, Taejeon (Korea); Im, K.H.; Cho, S.Y. [Korea Basic Science Institute, Taejeon (Korea); Kim, J.B. [Hyundai Heavy Industries Co., Ltd. (Korea); Woo, H.K. [Chungnam National University, Taejeon (Korea)
2000-11-01
The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, 10{sup -6} {approx} 10{sup -7} Pa, to produce clean plasma with low impurity containments. for this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least 250 deg.C, 350 deg.C respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses. (author). 9 refs., 11 figs., 1 tab.
The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak
Energy Technology Data Exchange (ETDEWEB)
Lee, K. H.; Woo, H. K. [Chungnam National Univ., Taejon (Korea, Republic of); Im, K. H.; Cho, S. Y. [korea Basic Science Institute, Taejon (Korea, Republic of); Kim, J. B. [Hyundai Heavy Industries Co., Ltd., Ulsan (Korea, Republic of)
2000-07-01
The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, 10{sup -6}{approx}10{sup -7}Pa, to produce clean plasma with low impurity containments. For this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least 250 .deg. C, 350 .deg. C respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses.
Deuterium--tritium plasmas in novel regimes in the Tokamak Fusion Test Reactor
Energy Technology Data Exchange (ETDEWEB)
Bell, M.G.; Batha, S.; Beer, M.; Bell, R.E.; Belov, A.; Berk, H.; Bernabei, S.; Bitter, M.; Breizman, B.; Bretz, N.L.; Budny, R.; Bush, C.E.; Callen, J.; Cauffman, S.; Chang, C.S.; Chang, Z.; Cheng, C.Z.; Darrow, D.S.; Dendy, R.O.; Dorland, W.; Duong, H.; Efthimion, P.C.; Ernst, D.; Evenson, H.; Fisch, N.J.; Fisher, R.; Fonck, R.J.; Fredrickson, E.D.; Fu, G.Y.; Furth, H.P.; Gorelenkov, N.N.; Goloborodko, V.Y.; Grek, B.; Grisham, L.R.; Hammett, G.W.; Hawryluk, R.J.; Heidbrink, W.; Herrmann, H.W.; Herrmann, M.C.; Hill, K.W.; Hogan, J.; Hooper, B.; Hosea, J.C.; Houlberg, W.A.; Hughes, M.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Kaita, R.; Kaye, S.; Kesner, J.; Kim, J.S.; Kissick, M.; Krasilnikov, A.V.; Kugel, H.; Kumar, A.; Lam, N.T.; Lamarche, P.; LeBlanc, B.; Levinton, F.M.; Ludescher, C.; Machuzak, J.; Majeski, R.P.; Manickam, J.; Mansfield, D.K.; Mauel, M.; Mazzucato, E.; McChesney, J.; McCune, D.C.; McKee, G.; McGuire, K.M.; Meade, D.M.; Medley, S.S.; Mikkelsen, D.R.; Mirnov, S.V.; Mueller, D.; Nagayama, Y.; Navratil, G.A.; Nazikian, R.; Okabayashi, M.; Osakabe, M.; Owens, D.K.; Park, H.K.; Park, W.; Paul, S.F.; Petrov, M.P.; Phillips, C.K.; Phillips, M.; Phillips, P.; Ramsey, A.T.; Rice, B.; Redi, M.H.; Rewoldt, G.; Reznik, S.; Roquemore, A.L.; Rogers, J.; Ruskov, E.; Sabbagh, S.A.; Sasao, M.; Schilling, G.; Schmidt, G.L.; Scott, S.D.; Semenov, I.; Senko, T.; Skinner, C.H.; Stevenson, T.; Strait, E.J.; Stratton, B.C.; Strachan, J.D.; Stodiek, W.; Synakowski, E.; Takahashi, H.; Tang, W.; Taylor, G.; Thompson, M.E.; von Goeler, S.; Von Halle, A.; Walters, R.T.; Wang, S.; White, R.; Wieland, R.M.; Williams, M.; Wilson, J.R.; Wong, K.L.; Wurden, G.A.; Yamada, M.; Yavorski, V.; Young, K.M.; Zakharov, L.; Zarnstorff, M.C.; Zweben, S.J. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)
1997-05-01
Experiments in the Tokamak Fusion Test Reactor (TFTR) [Phys. Plasmas {bold 2}, 2176 (1995)] have explored several novel regimes of improved tokamak confinement in deuterium{endash}tritium (D--T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high l{sub i}). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through {ital in situ} deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (q{sub a}{approx}4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-l{sub i} plasmas produced by rapid expansion of the minor cross section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D--T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D--T plasmas with q{sub 0}{gt}1 and weak magnetic shear in the central region, a toroidal Alfvn eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions. {copyright} {ital 1997 American Institute of Physics.}
On the Dirichlet Problem of Mixed Type for Lower Hybrid Waves in Axisymmetric Cold Plasmas
Lupo, Daniela; Monticelli, Dario D.; Payne, Kevin R.
2015-07-01
For a class of linear second order partial differential equations of mixed elliptic-hyperbolic type, which includes a well known model for analyzing possible heating in axisymmetric cold plasmas, we give results on the weak well-posedness of the Dirichlet problem and show that such solutions are characterized by a variational principle. The weak solutions are shown to be saddle points of natural functionals suggested by the divergence form of the PDEs. Moreover, the natural domains of the functionals are the weighted Sobolev spaces to which the solutions belong. In addition, all critical levels will be characterized in terms of global extrema of the functionals restricted to suitable infinite dimensional linear subspaces. These subspaces are defined in terms of a robust spectral theory with weights which is associated to the linear operator and is developed herein. Similar characterizations for the weighted eigenvalue problem and nonlinear variants will also be given. Finally, topological methods are employed to obtain existence results for nonlinear problems including perturbations in the gradient which are then applied to the well-posedness of the linear problem with lower order terms.
The Principle of Plasma Boundary Identification on HL-2A Tokamak
Institute of Scientific and Technical Information of China (English)
李强; 宋显明; 罗萃文; 袁保山; 毛苏英; 樊明杰; 刘莉
2004-01-01
Plasma boundary identification is a basic task for studies on equilibrium and confinement in a divertor tokamak. With the progress on the experiments after engineering experiments,the boundary identification becomes an important issue for HL-2A. In order to satisfy the requirements of preciseness, simplified measurements and quickness, the filament current method instead of solving the equilibrium equations is used to identify plasma boundary on HL-2A. The involved principle, mathematics and the progresses, which have been made with this method, are given.
Final Report: Spectral Analysis of L-shell Data in the Extreme Ultraviolet from Tokamak Plasmas
Energy Technology Data Exchange (ETDEWEB)
Lepson, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jernigan, J. Garrett [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beiersdorfer, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-02-05
We performed detailed analyses of extreme ultraviolet spectra taken by Lawrence Livermore National Laboratory on the National Spherical Torus Experiment at Princeton Plasma Physics Laboratory and on the Alcator CKmod tokamak at the M.I.T. Plasma Science and Fusion Center. We focused on the emission of iron, carbon, and other elements in several spectral band pass regions covered by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory. We documented emission lines of carbon not found in currently used solar databases and demonstrated that this emission was due to charge exchange.
Institute of Scientific and Technical Information of China (English)
ZHANG Guo-Ping; HE Ye-Xi; WANG Wen-Hao; GAO Zhe; ZENG Li; XIE Li-Feng; FENG Chun-Hua
2004-01-01
@@ Radial propagation of electrostatic fluctuations in the edge plasma of Sino-United Spherical Tokamak (SUNIST) has been measured using Langmuir probes. The propagation characteristics of the floating potential fluctuations are analysed by the two-point correlation technique. The results show radially outward propagation of the turbulent fluctuations at all measured radial positions. The power-average wavenumber profile is approximately constant in plasma edge region and suddenly increases to the limiter. These results are in good agreement with the model predictions proposed by Mattor which suggests that the drift wave propagation may be a source of edge turbulence.
Remote operation of the GOLEM tokamak with hydrogen and helium plasmas
Svoboda, V.; Dvornova, A.; Dejarnac, R.; Prochazka, M.; Zaprianov, S.; Akhmethanov, R.; Bogdanova, M.; Dimitrova, M.; Dimitrov, Zh; Grover, O.; Hlavata, L.; Ivanov, K.; Kruglov, K.; Marinova, P.; Masherov, P.; Mogulkin, A.; Mlynar, J.; Stockel, J.; Volynets, A.
2016-10-01
The GOLEM tokamak was operated remotely via Internet connection during the 6th International Workshop and Summer School on Plasma Physics. Performances of hydrogen and helium discharges are compared in this paper. It is found, at similar vacuum conditions, that helium discharges are shorter but the breakdown of the working gas can be quite easily achieved at almost the same loop voltage. The plasma current in helium discharges is slightly lower than in the case of hydrogen. Turbulent fluctuations of the floating potential measured by means of an array of Langmuir probes reveal a noticeably different character in the two discharges.
Edge plasma pressure measurements using a mechanical force sensor on the tokamak ISTTOK
Energy Technology Data Exchange (ETDEWEB)
Lunt, T [Humboldt-Universitaet zu Berlin, Newtonstrasse 15, 12489, Berlin (Germany); Silva, C [Associaco Euratom/IST, Centro de Fusao Nuclear, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal); Fernandes, H [Associaco Euratom/IST, Centro de Fusao Nuclear, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal); Hidalgo, C [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Pedrosa, M A [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Duarte, P [Associaco Euratom/IST, Centro de Fusao Nuclear, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal); Figueiredo, H [Associaco Euratom/IST, Centro de Fusao Nuclear, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal); Pereira, T [Associaco Euratom/IST, Centro de Fusao Nuclear, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal)
2007-11-15
In the present paper we report on a novel mechanical probe, which is able to measure the plasma pressure directly. The probe consists of two pendulums whose heads are exposed to the tokamak edge plasma, while the deflection is measured very sensitively outside the plasma by means of semi-conductor strain gauges. The plasma pressure was successfully measured in the ISTTOK edge plasma, its value being in good agreement with that derived from the electrical probe data (p{sub p} = 1-10 Pa). Furthermore, we discuss the possibility of determining the ion temperature T{sub i} = p{sub p}/n - T{sub e} by combining the pressure measurement with those of n and T{sub e} from the electrical probes. Although the derived ion temperatures-besides that in the region close to the limiter-were reasonable, its uncertainty is still very large.
Deuterium-tritium plasmas in novel regimes in the Tokamak Fusion Test Reactor
Energy Technology Data Exchange (ETDEWEB)
Bell, M.G.; Beer, M. [Princeton Univ., NJ (United States). Princeton Plasma Physics Lab.; Batha, S. [Fusion Physics and Technology, Torrance, CA (United States)] [and others
1997-02-01
Experiments in the Tokamak Fusion Test Reactor (TFTR) have explored several novel regimes of improved tokamak confinement in deuterium-tritium (D-T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high-l{sub i}). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through in-situ deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (q{sub a} {approx} 4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-l{sub i} plasmas produced by rapid expansion of the minor cross-section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D-T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D-T plasmas with q{sub 0} > 1 and weak magnetic shear in the central region, a toroidal Alfven eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode-conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions.
Interaction of CLAM Steel with Plasma in HT-7 Tokamak During High Parameter Operation
Institute of Scientific and Technical Information of China (English)
LI Chunjing; HUANG Qunying; FENG Yan; LI Jiangang; KONG Mingguang
2007-01-01
A Plasma Surface Interaction(PSI)experiment on China Low Activation Martensitic(CLAM)steel was done to check if CLAM steel could be used as a Plasma Facing Material (PFM).A specimen with a diameter of 45 mm was exposed to 897 shots of deuterium plasmas with a total duration of 712 sec at a minor radius of 30 cm in HT-7 tokamak.During the exposure experiment,no observable influence Was found on plasma performance.After exposure,the surface of the specimen seemed as smooth as before but with some colour change at the margin of the specimen.Even though some micro-damage,such as dense blisters,melting,splashing,depositions,and dust,Was found on local surfaces with Scanning Electron Microscopic(SEM)observation.The reflectivity of the specimen decreased only slightly.All of these shows CLAM steel has good stability and irradiation resistance.With further optimization,it could possibly be used as the first mirror material for plasma diagnostics in tokamaks.
Studies of instability and transport in tokamak plasmas with very weak magnetic shear
Energy Technology Data Exchange (ETDEWEB)
Dong, J.Q.; Zhang, Y.Z. [Southwestern Inst. of Physics, Chengdu (China)]|[International Center for Theoretical Physics, Trieste (Italy); Mahajan, S.M. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies
1997-04-01
Ion temperature gradient (ITG or {eta}{sub i}) driven microinstabilities are studied, using kinetic theory, for tokamak plasmas with very weak (positive or negative) magnetic shear (VWS). The gradient of magnetic shear as well as the effects of parallel and perpendicular velocity shear (v{prime}{sub {parallel}} and v{prime}{sub E}) are included in the defining equations. Two eigenmodes: the double (D) and the global (G) are found to coexist. Parametric dependence of these instabilities, and of the corresponding quasilinear transport is systematically analyzed. It is shown that, in VWS plasmas, a parallel velocity shear (PVS) may stabilize or destabilize the modes, depending on the individual as well as the relative signs of PVS and of the gradient of magnetic shear. The quasilinear transport induced by the instabilities may be significantly reduced with PVS in VWS plasmas. The v{prime}{sub E} values required to completely suppress the instabilities are much lower in VWS plasmas than they are in normal plasmas. Possible correlations with tokamak experiments are discussed.
Phase locking of multi-helicity neoclassical tearing modes in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Fitzpatrick, Richard [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)
2015-04-15
The attractive “hybrid” tokamak scenario combines comparatively high q{sub 95} operation with improved confinement compared with the conventional H{sub 98,y2} scaling law. Somewhat unusually, hybrid discharges often exhibit multiple neoclassical tearing modes (NTMs) possessing different mode numbers. The various NTMs are eventually observed to phase lock to one another, giving rise to a significant flattening, or even an inversion, of the core toroidal plasma rotation profile. This behavior is highly undesirable because the loss of core plasma rotation is known to have a deleterious effect on plasma stability. This paper presents a simple, single-fluid, cylindrical model of the phase locking of two NTMs with different poloidal and toroidal mode numbers in a tokamak plasma. Such locking takes place via a combination of nonlinear three-wave coupling and conventional toroidal coupling. In accordance with experimental observations, the model predicts that there is a bifurcation to a phase-locked state when the frequency mismatch between the modes is reduced to one half of its original value. In further accordance, the phase-locked state is characterized by the permanent alignment of one of the X-points of NTM island chains on the outboard mid-plane of the plasma, and a modified toroidal angular velocity profile, interior to the outermost coupled rational surface, which is such that the core rotation is flattened, or even inverted.
Non-axisymmetric ideal equilibrium and stability of ITER plasmas with rotating RMPs
Ham, C. J.; Cramp, R. G. J.; Gibson, S.; Lazerson, S. A.; Chapman, I. T.; Kirk, A.
2016-08-01
The magnetic perturbations produced by the resonant magnetic perturbation (RMP) coils will be rotated in ITER so that the spiral patterns due to strike point splitting which are locked to the RMP also rotate. This is to ensure even power deposition on the divertor plates. VMEC equilibria are calculated for different phases of the RMP rotation. It is demonstrated that the off harmonics rotate in the opposite direction to the main harmonic. This is an important topic for future research to control and optimize ITER appropriately. High confinement mode (H-mode) is favourable for the economics of a potential fusion power plant and its use is planned in ITER. However, the high pressure gradient at the edge of the plasma can trigger periodic eruptions called edge localized modes (ELMs). ELMs have the potential to shorten the life of the divertor in ITER (Loarte et al 2003 Plasma Phys. Control. Fusion 45 1549) and so methods for mitigating or suppressing ELMs in ITER will be important. Non-axisymmetric RMP coils will be installed in ITER for ELM control. Sampling theory is used to show that there will be significant a {{n}\\text{coils}}-{{n}\\text{rmp}} harmonic sideband. There are nine coils toroidally in ITER so {{n}\\text{coils}}=9 . This results in a significant n = 6 component to the {{n}\\text{rmp}}=3 applied field and a significant n = 5 component to the {{n}\\text{rmp}}=4 applied field. Although the vacuum field has similar amplitudes of these harmonics the plasma response to the various harmonics dictates the final equilibrium. Magnetic perturbations with toroidal mode number n = 3 and n = 4 are applied to a 15 MA, {{q}95}≈ 3 burning ITER plasma. We use a three-dimensional ideal magnetohydrodynamic model (VMEC) to calculate ITER equilibria with applied RMPs and to determine growth rates of infinite n ballooning modes (COBRA). The {{n}\\text{rmp}}=4 case shows little change in ballooning mode growth rate as the RMP is
Lyublinski, I. E.; Vertkov, A. V.; Zharkov, M. Yu; Sevryukov, O. N.; Dzhumaev, P. S.; Shumskiy, V. A.; Ivannikov, A. A.
2016-09-01
Capillary-Pore Systems (CPS) filled by liquid metals are considered as an alternative solution of materials choice for plasma facing component of tokamak reactor. Tin is viewed as one of the candidates for CPS because it has lower corrosiveness than gallium and lower saturated vapour pressure compared to lithium. The corrosion resistance of Mo, Nb and W in pure liquid tin was investigated. The corrosion tests were carried out in the static isothermal conditions at a temperature up to 1050°C. As a result of the corrosion study, it was found that Mo does not corrode in liquid Sn, as opposed to Nb and is compatible with liquid tin in temperatures of up to approx. 1000°C. This allows considering Mo as an alloy base material of the in-vessel tokamak elements based on liquid tin capillary pore systems.
x-ray irradiation analysis based on wavelet transform in tokamak plasma.
Ghanbari, K; Ghoranneviss, M; Elahi, A Salar; Saviz, S
2014-01-01
Hard x-ray emission from the Runaway electrons is an important issue in tokamaks. Suggesting methods to reduce the Runaway electrons and therefore the emitted hard x-ray is important for tokamak plasma operation. In this manuscript, we have investigated the effects of external fields on hard x-ray intensity and Magneto-Hydro-Dynamic (MHD) activity. In other words, we have presented the effects of positive biased limiter and Resonant Helical Field (RHF) on the MHD fluctuations and hard x-ray emission from the Runaway electrons. MHD activity and hard x-ray intensity were analyzed using Wavelet transform in the presence of external fields and without them. The results show that the MHD activity and therefore the hard x-ray intensity can be controlled by the external electric and magnetic fields.
Energy Technology Data Exchange (ETDEWEB)
Rawls, J.M. (ed.)
1979-10-01
An overall review of the tokamak program is given with particular emphasis upon developments over the past five years in the theoretical and experimental elements of the program. A summary of the key operating parameters for the principal tokamaks throughout the world is given. Also discussed are key issues in plasma confinement, plasma heating, and tokamak design. (MOW)
Fast ions and momentum transport in JET tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Salmi, A.
2012-07-01
Fast ions are an inseparable part of fusion plasmas. They can be generated using electromagnetic waves or injected into plasmas as neutrals to heat the bulk plasma and to drive toroidal rotation and current. In future power plants fusion born fast ions deliver the main heating into the plasma. Understanding and controlling the fast ions is of crucial importance for the operation of a power plant. Furthermore, fast ions provide ways to probe the properties of the thermal plasma and get insight of its confinement properties. In this thesis, numerical code packages are used and developed to simulate JET experiments for a range of physics issues related to fast ions. Namely, the clamping fast ion distribution at high energies with RF heating, fast ion ripple torque generation and the toroidal momentum transport properties using NBI modulation technique are investigated. Through a comparison of numerical simulations and the JET experimental data it is shown that the finite Larmor radius effects in ion cyclotron resonance heating are important and that they can prevent fast ion tail formation beyond certain energy. The identified mechanism could be used for tailoring the fast ion distribution in future experiments. Secondly, ASCOT simulations of NBI ions in a ripple field showed that most of the reduction of the toroidal rotation that has been observed in the JET enhanced ripple experiments could be attributed to fast ion ripple torque. Finally, fast ion torque calculations together with momentum transport analysis have led to the conclusion that momentum transport in not purely diffusive but that a convective component, which increases monotonically in radius, exists in a wide range of JET plasmas. Using parameter scans, the convective transport has been shown to be insensitive to collisionality and q-profile but to increase strongly against density gradient. (orig.)
Di Troia, Claudio
2015-01-01
A class of parametric distribution functions has been proposed in [C.DiTroia, Plasma Physics and Controlled Fusion,54,2012] as equilibrium distribution functions (EDFs) for charged particles in fusion plasmas, representing supra-thermal particles in anisotropic equilibria for Neutral Beam Injection, Ion Cyclotron Heating scenarios. Moreover, the EDFs can also represent nearly isotropic equilibria for Slowing-Down $alpha$ particles and core thermal plasma populations. These EDFs depend on constants of motion (COMs). Assuming an axisymmetric system with no equilibrium electric field, the EDF depends on the toroidal canonical momentum $P_\\phi$, the kinetic energy $w$ and the magnetic moment \\mu. In the present work, the EDFs are obtained from first principles and general hypothesis. The derivation is probabilistic and makes use of the Bayes' Theorem. The bayesian argument allows us to describe how far from the prior probability distribution function (pdf), e.g. Maxwellian, the plasma is, based on the information...
Energy Technology Data Exchange (ETDEWEB)
Chang, C S; Ku, S; Greengard, L; Park, G [Courant Institute of Mathematical Sciences, New York University, NY 10012 (United States); Diamond, P; Dif-Pradalier, G [University of California at San Diego, La Jolla, CA 92093 (United States); Adams, M; Keyes, D [Columbia University, New York, NY 10027 (United States); Barreto, R; D' Azevedo, E; Klasky, S; Podhorszki, N [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Chen, Y; Parker, S [University of Colorado at Boulder, Boulder, CO 80309 (United States); Cummings, J [California Institute of Technology, Pasadena, CA 91125 (United States); Ethier, S; Hahm, T S [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Hinton, F [Hinton Associates, Escondido, CA 92029 (United States); Lin, Z [University of California at Irvine, Irvine, CA 92697 (United States); Lofstead, J, E-mail: cschang@cims.nyu.ed [Georgia Institute of Technology, Atlanta, GA 30332 (United States)
2009-07-01
Performance prediction for ITER is based upon the ubiquitous experimental observation that the plasma energy confinement in the device core is strongly coupled to the edge confinement for an unknown reason. The coupling time-scale is much shorter than the plasma transport time-scale. In order to understand this critical observation, a multi-scale turbulence-neoclassical simulation of integrated edge-core plasma in a realistic diverted geometry is a necessity, but has been a formidable task. Thanks to the recent development in high performance computing, we have succeeded in the integrated multiscale gyrokinetic simulation of the ion-temperature-gradient driven turbulence in realistic diverted tokamak geometry for the first time. It is found that modification of the self-organized criticality in the core plasma by nonlocal core-edge coupling of ITG turbulence can be responsible for the core-edge confinement coupling.
Interaction of neutral atoms and plasma turbulence in the tokamak edge region
Wersal, Christoph; Ricci, Paolo; Jorge, Rogerio; Morales, Jorge; Paruta, Paola; Riva, Fabio
2016-10-01
A novel first-principles self-consistent model that couples plasma and neutral atom physics suitable for the simulation of turbulent plasma behaviour in the tokamak edge region has been developed and implemented in the GBS code. While the plasma is modelled by the drift-reduced two fluid Braginskii equations, a kinetic model is used for the neutrals, valid in short and in long mean free path scenarios. The model includes ionization, charge-exchange, recombination, and elastic collisional processes. The model was used to study the transition form the sheath to the conduction limited regime, to include gas puffs in the simulations, and to investigate the interplay between neutral atoms and plasma turbulence.
Real-time DSP-based shape determination and plasma position control in the ISTTOK tokamak
Energy Technology Data Exchange (ETDEWEB)
Carvalho, B. E-mail: bernardo@cfn.ist.utl.pt; Fernandes, H.; Silva, C.; Borba, D.; Varandas, C.A.F
2004-06-01
We have developed a digital signal processor-based system for real-time control of the ISTTOK plasma position based on a low-cost digital signal processor (DSP) board. A novel plasma shape reproduction method was developed using a Cauchy-condition expansion applied to the vacuum region around the plasma. This method showed to be best suited than classic methods such as Legendre-Fourier expansion (LFE) or current filaments (CF), particularly in small tokamaks with passive stabilizer conductors where the presence of strong eddy currents can cause significant errors in magnetic field sensors. We compare the results of the boundary reconstruction method with the measurements from a microwave interferometer diagnostic. We present an implementation in the DSP system that allows the real time control of the plasma position with a required 1 ms period.
Influence of external resonant magnetic perturbation field on edge plasma of small tokamak HYBTOK-II
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Y., E-mail: hayashi-yuki13@ees.nagoya-u.ac.jp [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Suzuki, Y.; Ohno, N. [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Okamoto, M. [Ishikawa National College of Technology, Kitachujo, Tsubata-cho, Kahoku-gun, Ishikawa 929-0392 (Japan); Kikuchi, Y. [University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Sakakibara, S.; Watanabe, K.; Takemura, Y. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan)
2015-08-15
Radial profile of externally applied resonant magnetic perturbation (RMP) field with mode numbers of m = 6 and n = 2 in a small tokamak device HYBTOK-II have been investigated using a magnetic probe array, which is able to measure the radial profile of magnetic field perturbation induced by applying RMP. Results of RMP penetration into the plasma show that the RMP decreased toward the plasma center, while they were amplified around the resonant surface with a safety factor q = 3 due to the formation of magnetic islands. This suggests that RMP fields for controlling edge plasmas may trigger some kind of MHD instabilities. In addition, simulation results, based on a linearized four-field model, which agrees with the experimental ones, indicates that the penetration and amplification process of RMP strongly depend on a Doppler-shifted frequency between the RMP and plasma rotation.
Integrated Plasma Simulation of Lower Hybrid Current Drive in Tokamaks
Bonoli, P. T.; Wright, J. C.; Harvey, R. W.; Batchelor, D. B.; Berry, L. A.; Kessel, C. E.; Jardin, S. C.
2012-03-01
It has been shown in Alcator C-Mod that the onset time for sawteeth can be delayed significantly (up to 0.5 s) relative to ohmically heated plasmas, through the injection of off-axis LH current drive power [1]. We are simulating these experiments using the Integrated Plasma Simulator (IPS) [2], where the driven LH current density profiles are computed using a ray tracing component (GENRAY) and Fokker Planck code (CQL3D) [3] that are run in a tightly coupled time advance. The background plasma is evolved using the TSC transport code with the Porcelli sawtooth model [4]. Predictions of the driven LH current profiles will be compared with simpler ``reduced'' models for LHCD such as the LSC code which is implemented in TSC and which is also invoked within the IPS. [4pt] [1] C. E. Kessel et al, Bull. of the Am. Phys. Soc. 53, Poster PP6.00074 (2008). [0pt] [2] D. Batchelor et al, Journal of Physics: Conf. Series 125, 012039 (2008). [0pt] [3] R. W. Harvey and M. G. McCoy, Proc. of the IAEA Tech. Comm. Meeting on Simulation and Modeling of Therm. Plasmas, Montreal, Canada (1992). [0pt] [4] S. C. Jardin et al, J. Comp. Phys. 66, 481 (1986).
Shaping Effects on Resistive-Plasma Resistive-Wall Mode Stability in a Tokamak
Rhodes, Dov; Cole, A. J.; Navratil, G. A.; Levesque, J. P.; Mauel, M. E.; Brennan, D. P.; Finn, J. M.; Fitzpatrick, R.
2016-10-01
A sharp-boundary MHD model is used to explore the effects of toroidal curvature and cross-sectional shaping on resistive-plasma resistive-wall modes in a tokamak. Building on the work of Fitzpatrick, we investigate mode stability with fixed toroidal number n =1 and a broad spectrum of poloidal m-numbers, given varying aspect-ratio, elongation, triangularity and up-down asymmetry. The speed and versatility of the sharp-boundary model facilitate exploration of a large parameter space, revealing qualitative trends to be further investigated by larger codes. In addition, the study addresses the effect of geometric mode-coupling on higher beta stability limits associated with an ideal-plasma or ideal-wall. These beta limits were used by Brennan and Finn to identify plasma response domains for feedback control. Present results show how geometric mode-coupling affects the stability limits and plasma response domains. The results are explained by an analytic reduced-MHD model with two coupled modes having different m-numbers. The next phase of this work will explore feedback control in different tokamak geometries. Supported by U.S. DOE Grant DE-FG02-86ER53222.
Identification and control of plasma vertical position using neural network in Damavand tokamak.
Rasouli, H; Rasouli, C; Koohi, A
2013-02-01
In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.
Transport timescale calculations of sawteeth and helical structures in non-circular tokamak plasmas
Jardin, Stephen; Ferraro, Nate; Breslau, Josh; Chen, Jin
2012-10-01
We present results of using the implicit 3D MHD code M3D-C^1 [1,2] to perform 3D nonlinear magnetohydrodynamics calculations of the internal dynamics of a shaped cross-section tokamak plasma that span the timescales associated with ideal and resistive stability as well as parallel and perpendicular transport. We specify the transport coefficients and apply a ``current controller'' that adjusts the boundary loop-voltage to keep the total plasma current fixed. The 3D 2-fluid plasma model advances the magnetic field, velocities, electron and ion temperatures, and plasma density. We find that the plasma either reaches a stationary quasi-helical state in which the central safety factor is approximately unity, or it periodically undergoes either simple or compound sawtooth oscillations [3] with a period that approaches a constant value. By comparing a dee-shaped cross section with an elliptical shaped cross section, it is shown that the plasma shape has a large effect on determining the sawtooth behavior and the associated mode activity. Application to ITER shaped tokamak plasmas predict the magnitude of the 3D boundary deformation as a result of a stationary quasi-helical state forming in the interior. [4pt] [1] J. Breslau, N. Ferraro, S.C. Jardin, Physics of Plasmas 16 092503 (2009) [0pt] [2] S. C. Jardin, N. Ferraro, J. Breslau, J. Chen, Computational Science and Discovery 5 014002 (2012) [0pt] [3] X. von Goeler, W. Stodiek, and N. Sauthoff, Phys. Rev. Lett. 33, 1201 (1974)
Optimal control of tokamak and stellarator plasma behaviour
Energy Technology Data Exchange (ETDEWEB)
Rastovic, Danilo [Control Systems Group, Nehajska 62, 10000 Zagreb (Croatia)]. E-mail: drastovi@tesla.vtszg.hr
2007-04-15
The control of plasma transport, laminar and turbulent, is investigated, using the methods of scaling, optimal control and adaptive Monte Carlo simulations. For this purpose, the asymptotic behaviour of kinetic equation is considered in order to obtain finite-dimensional invariant manifolds, and in this way the finite-dimensional theory of control can be applied. We imagine the labyrinth of open doors and after applying self-similarity, the motion moved through all the desired doors in repeatable ways as Brownian motions. We take local actions for each piece of contractive ergodic motion, and, after self-organization in adaptive invariant measures, the optimum movement of particles is obtained according to the principle of maximum entropy. This is true for deterministic and stochastic cases that serve as models for plasma dynamics.
Coherent structures in the boundary plasma of EAST Tokamak
DEFF Research Database (Denmark)
Yan, Ning
filaments in the SOL or slightly inside the separatrix. It is observed that the topological configuration of density and potential in the ELM filaments deviate from each other. Furthermore, isolated electromagnetic filaments have been clearly identified during the type-I-like ELMs. They propagate radially......In recent years, with the application of fast camera in fusion plasma, as well as other diagnostic of spatial-temporal resolution such as Langmuir probe, it has become generally clear that the turbulence transport is mostly dominant by cross-field propagation of coherent structures, namely blobs...... turbulence-simulation code based on the interchange instability as the main drive for the turbulence and structure motion in the scrape-off layer (SOL) plasma, with the input parameters from the EAST experiments. The simulations successfully reproduce the statistical characteristics of the SOL turbulence...
Kelvin-Helmholtz instabilities in tokamak edge plasmas
Energy Technology Data Exchange (ETDEWEB)
Garbet, X.; Fenzi, C.; Capes, H.; Devynck, P.; Antar, G
1999-07-15
The parallel Kelvin-Helmholtz instability is investigated as a possible explanation for poloidal asymmetries of density fluctuations which reverse with the plasma current direction. It is shown that these modes are localised around the position where the radial gradient of parallel velocity is maximum. Two mechanisms lead to unstable Kelvin-Helmholtz modes: the acceleration of ions in a presheath and the anomalous Stringer spin-up due to asymmetries of the particle flux. Up-down asymmetries are explained by combining these two effects. Depending on the limiter configuration, the Stringer effect amplifies or weakens the flow due to presheath acceleration. This type of asymmetry reverses with the plasma current direction. (authors)
Divertor plasma physics experiments on the DIII-D tokamak
Energy Technology Data Exchange (ETDEWEB)
Mahdavi, M.A.; Allen, S.L.; Evans, T.E. [and others
1996-10-01
In this paper we present an overview of the results and conclusions of our most recent divertor physics and development work. Using an array of new divertor diagnostics we have measured the plasma parameters over the entire divertor volume and gained new insights into several divertor physics issues. We present direct experimental evidence for momentum loss along the field lines, large heat convection, and copious volume recombination during detachment. These observations are supported by improved UEDGE modeling incorporating impurity radiation. We have demonstrated divertor exhaust enrichment of neon and argon by action of a forced scrape off layer (SOL) flow and demonstrated divertor pumping as a substitute for conventional wall conditioning. We have observed a divertor radiation zone with a parallel extent that is an order of magnitude larger than that estimated from a 1-D conduction limited model of plasma at coronal equilibrium. Using density profile control by divertor pumping and pellet injection we have attained H-mode confinement at densities above the Greenwald limit. Erosion rates of several candidate ITER plasma facing materials are measured and compared with predictions of a numerical model.
Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.
2015-10-01
Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E ×B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transport that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs˜0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E ×B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E ×B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Moreover, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport in advanced ST
An advanced plasma control system for the DIII-D tokamak
Energy Technology Data Exchange (ETDEWEB)
Ferron, J.R.; Kellman, A.; McKee, E.; Osborne, T.; Petrach, P.; Taylor, T.S.; Wight, J. [General Atomics, San Diego, CA (United States); Lazarus, E. [Oak Ridge National Lab., TN (United States)
1991-11-01
An advanced plasma control system is being implemented for the DIII-D tokamak utilizing digital technology. This system will regulate the position and shape of tokamak discharges that range from elongated limiter to single-null divertor and double-null divertor with elongation as high as 2.6. Development of this system is expected to lead to control system technology appropriate for use on future tokamaks such as ITER and BPX. The digital system will allow for increased precision in shape control through real time adjustment of the control algorithm to changes in the shape and discharge parameters such as {beta}{sub p}, {ell}{sub i} and scrape-off layer current. The system will be used for research on real time optimization of discharge performance for disruption avoidance, current and pressure profile control, optimization of rf antenna loading, or feedback on heat deposition patterns through divertor strike point position control, for example. Shape control with this system is based on linearization near a target shape of the controlled parameters as a function of the magnetic diagnostic signals. This digital system is unique in that it is designed to have the speed necessary to control the unstable vertical motion of highly elongated tokamak discharges such as those produced in DIII-D and planned for BPX and ITER. a 40 MHz Intel i860 processor is interfaced to up to 112 channels of analog input signals. The commands to the poloidal field coils can be updated at 80 {mu}s intervals for the control of vertical position with a delay between sampling of the analog signal and update of the command of less than 80 {mu}s.
Strong Scattering of High Power Millimeter Waves in Tokamak Plasmas with Tearing Modes
DEFF Research Database (Denmark)
Westerhof, E.; Nielsen, Stefan Kragh; Oosterbeek, J.W.;
2009-01-01
In tokamak plasmas with a tearing mode, strong scattering of high power millimeter waves, as used for heating and noninductive current drive, is shown to occur. This new wave scattering phenomenon is shown to be related to the passage of the O point of a magnetic island through the high power...... heating beam. The density determines the detailed phasing of the scattered radiation relative to the O-point passage. The scattering power depends strongly nonlinearly on the heating beam power. ©2009 The American Physical Society...
Plasma Turbulence in the Scrape-off Layer of the ISTTOK Tokamak
Jorge, Rogerio; Halpern, Federico D; Loureiro, Nuno F; Silva, Carlos
2016-01-01
The properties of plasma turbulence in a poloidally limited scrape-off layer (SOL) are addressed, with focus on ISTTOK, a large aspect ratio tokamak with a circular cross section. Theoretical investigations based on the drift-reduced Braginskii equations are carried out through linear calculations and non-linear simulations, in two- and three-dimensional geometries. The linear instabilities driving turbulence and the mechanisms that set the amplitude of turbulence as well as the SOL width are identified. A clear asymmetry is shown to exist between the low-field and the high-field sides of the machine. A comparison between experimental measurements and simulation results is presented.
Finite-orbit-width effects on the geodesic acoustic mode in the toroidally rotating tokamak plasma
Ren, Haijun
2016-01-01
The Landau damping of geodesic acoustic mode (GAM) in a torodial rotating tokamak plasma is analytically investigated by taking into account the finite-orbit-width (FOW) resonance effect to the 3rd order. The analytical result is shown to agree well with the numerical solution. The dependence of the damping rate on the toroidal Mach number $M$ relies on $k_r \\rho_i$. For sufficiently small $k_r \\rho_i$, the damping rate monotonically decreases with $M$. For relatively large $k_r \\rho_i$, the damping rate increases with $M$ until approaching the maximum and then decreases with $M$.
Shaping of the plasma column in a small aspect ratio tokamak
Herrera, Julio; Arroyo, Ismael; Chavez, Esteban; Segura, Miguel Angel
2016-10-01
This is a follow-up to the work presented in a precious meeting, on the conceptual design of a small aspect ratio tokamak of variable configuration. The base parameters for this device would be similar to those in the START tokamak. The shaping of the plasma column is known to have important effects in the plasma performance, including the value of β, bootstrap currents, and intrinsic rotation. The main feature being explored here is the inclusion of independent control coils in the inboard and outboard sides; six in the first case, and up to seven in the latter. By varying the strength in their currents it is possible to achieve a wide variety of shapes: elliptical, conventional D-shape, inverse D-shape, and Bean-shape. As the control coils are activated, the strength of the toroidal magnetic field needs to he weakened, in order to keep reasonable values of the safety factor q . The study presented here is made by means of the 3D-MAPTOR code, which produces the Poincaré maps of the magnetic field lines, given the currents. For this purpose, a seed plasma current must be provided. All studies presented here assume equatorial symmetry, due to limitations in the code.
Charge-exchange recombination spectroscopy of the plasma ion temperature at the T-10 tokamak
Krupin, V. A.; Tugarinov, S. N.; Barsukov, A. G.; Dnestrovskij, A. Yu.; Klyuchnikov, L. A.; Korobov, K. V.; Krasnyanskii, S. A.; Naumenko, N. N.; Nemets, A. R.; Sushkov, A. V.; Tilinin, G. N.
2013-08-01
Charge-exchange recombination spectroscopy (CXRS) based on a diagnostic neutral beam has been developed at the T-10 tokamak. The diagnostics allows one to measure the ion temperature profile in the cross section of the plasma column. In T-10 experiments, the measurement technique was adjusted and the elements of the CXRS diagnostics for ITER were tested. The used spectroscopic equipment makes it possible to reliably determine the ion temperature from the Doppler broadening of impurity lines (helium, carbon), as well as of the spectral lines of the working gas. The profiles of the plasma ion temperature in deuterium and helium discharges were measured at different plasma currents and densities, including with the use of active Doppler measurements of lines of different elements. The validity and reliability of ion temperature measurements performed by means of the developed CXRS diagnostics are analyzed.
Effect of biasing on plasma rotation in the edge of IR-T1 Tokamak
Energy Technology Data Exchange (ETDEWEB)
Mohammadi, S.; Ghoranneviss, M.; Arvin, R.; Gheydi, M.; Nikmohammadi, A. [Plasma physics Research Center, Science and Research Branch, Islamic Azad University, P.O.Box: 14665-768 Tehran (Iran, Islamic Republic of); Khorshid, P.; Bolourian, H. [Department of Physics, Islamic Azad University, Mashhad Branch, Mashhad (Iran, Islamic Republic of)
2011-07-01
Full text of publication follows: Electrode biasing experiments were carried out on the IR-T1 Tokamak. The effects of radial electric field (Er) on plasma fluid velocity and magnetic island rotation investigated by a Mach/Langmuir electric probe and an array of 12 Mirnov coils. The Results have shown a change in the fluid velocity during biasing regime. References: [1] Van Oost G. et al. 2001 Czech. J. of Phys. 51 957; [2] Effect of Plasma Biasing on Suppression of Electrostatic Fluctuation in the Edge Region of STP-3(M) Reversed Field Pinch J. Phys. Soc. Jpn. 74 (2005) pp.605-612; [3] Weynants R. R. and Van Oost G. 1993 Plasma Phys. Contr. Fusion 35 B177. (authors)
Hsu, S C
2006-01-01
A spherical tokamak (ST) with a plasma center column (PCC) can be formed via driven magnetic relaxation of a screw pinch plasma. An ST-PCC could in principle eliminate many problems associated with a material center column, a key weakness of the ST reactor concept. This work summarizes the design space for an ST-PCC in terms of flux amplification, aspect ratio, and elongation, based on the zero-beta Taylor-relaxed analysis of Tang & Boozer [Phys. Plasmas 13, 042514 (2006)]. The paper will discuss (1) equilibrium and stability properties of the ST-PCC, (2) issues for an engineering design, and (3) key differences between the proposed ST-PCC and the ongoing Proto-Sphera effort in Italy.
Proposed Experiment to Study Relaxation Formation of a Spherical Tokamak with a Plasma Center Column
Hsu, S. C.; Tang, X. Z.
2007-06-01
A spherical tokamak (ST) with a plasma center column (PCC) can be formed via driven magnetic relaxation of a screw pinch plasma. An ST-PCC could in principle eliminate many problems associated with a material center column, a key weakness of the ST reactor concept. This work summarizes the design space for an ST-PCC in terms of flux amplification, aspect ratio, and elongation, based on the zero-β Taylor-relaxed analysis of Tang & Boozer [Phys. Plasmas 13, 042514 (2006)]. The paper will discuss (1) equilibrium and stability properties of the ST-PCC, (2) issues for an engineering design, and (3) key differences between the proposed ST-PCC and the ongoing Proto-Sphera effort in Italy.
A study of quasi-mode parametric excitations in lower-hybrid heating of tokamak plasmas
Villalon, E.; Bers, A.
1980-03-01
A detailed linear and non-linear analysis of quasi-mode parametric excitations, relevant to experiments in supplementary heating of tokamak plasmas, is presented. The linear analysis includes the full ion-cyclotron harmonic quasi-mode spectrum, while the nonlinear one, considering depletion of the pump electric field, is applied to the recent Alcator A heating experiment. The quasi-mode excitations are studied independently for the plasma edge and the main bulk of the plasma, and for the two typical regimes in overall density. It is concluded that the excited spectrum has a frequency close to the initial pump frequency, while the wave-number spectrum may be different from the initial linear spectrum.
On the non-stiffness of edge transport in L-mode tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Sauter, O.; Brunner, S.; Kim, D.; Merlo, G.; Behn, R.; Coda, S.; Duval, B. P.; Federspiel, L.; Goodman, T. P.; Karpushov, A.; Merle, A.; Team, TCV, E-mail: olivier.sauter@epfl.ch [Centre de Recherches en Physique des Plasmas, Association EURATOM-Confédération Suisse, EPFL, PPB-Ecublens, 1015 Lausanne (Switzerland); Camenen, Y. [CNRS, UMR 7345, Aix-Marseille Université, Marseille (France)
2014-05-15
Transport analyses using first-principle turbulence codes and 11/2 -D transport codes usually study radial transport properties between the tokamak plasma magnetic axis and a normalized minor radius around 0.8. In this region, heat transport shows significantly stiff properties resulting in temperature scalelength values (R∕L{sub T}) that are relatively independent of the level of the radial heat flux. We have studied experimentally in the tokamak à configuration variable [F. Hofmann et al., Plasma Phys. Controlled Fusion 36, B277 (1994)] the radial electron transport properties of the edge region, close to the last closed flux surface, namely, between ρ{sub V}=√(V/V{sub edge})=0.8 to 1. It is shown that electron transport is not stiff in this region and high R∕L{sub Te} values (∼20–40) can be attained even for L-mode confinement. We can define a “pedestal” location, already in L-mode regimes, where the transport characteristics change from constant logarithmic gradient, inside ρ{sub V} = 0.8, to constant gradient between 0.8 and 1.0. In particular, we demonstrate, with well resolved T{sub e} and n{sub e} profiles, that the confinement improvement with plasma current I{sub p}, with or without auxiliary heating, is due to this non-stiff edge region. This new result is used to explain the significant confinement improvement observed with negative triangularity, which could not be explained by theory to date. Preliminary local gyrokinetic simulations are now consistent with an edge, less stiff, region that is more sensitive to triangularity than further inside. We also show that increasing the electron cyclotron heating power increases the edge temperature inverse scalelength, in contrast to the value in the main plasma region. The dependence of confinement on density in ohmic plasmas is also studied and brings new insight in the understanding of the transition between linear and saturated confinement regimes, as well as of the density limit and
Model analysis of edge relaxation phenomena in Tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Matsukawa, Shogo [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka (Japan); Itoh, Sanae I.; Yagi, Masatoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
2000-09-01
From the view point of the oscillatory characteristics, the heat transport in the plasma edge region is investigated based on a transition transport model with hysteresis nature. A hysteresis type flux-force relation is incorporated into the model by introducing a transition model of the heat diffusivity. For a given influx from the upstream side, the one dimensional heat transport equitation is solved numerically. The time evolution of the heat flux oscillation due to the hysteresis nature and the parameter dependences of its amplitude and frequency are examined. The non-monotonous relation between the frequency of the flux oscillation and the influx is obtained. The critical behavior of the transition between transport mechanisms, i.e., the hysteresis type and the discontinuous one, is expressed as power law relations of them. The self-organized criticality like behavior, i.e., power spectrum obeying power law, is found in a limiting case of the model. (author)
Runaway electron dynamics in tokamak plasmas with high impurity content
Martín-Solís, J. R.; Loarte, A.; Lehnen, M.
2015-09-01
The dynamics of high energy runaway electrons is analyzed for plasmas with high impurity content. It is shown that modified collision terms are required in order to account for the collisions of the relativistic runaway electrons with partially stripped impurity ions, including the effect of the collisions with free and bound electrons, as well as the scattering by the full nuclear and the electron-shielded ion charge. The effect of the impurities on the avalanche runaway growth rate is discussed. The results are applied, for illustration, to the interpretation of the runaway electron behavior during disruptions, where large amounts of impurities are expected, particularly during disruption mitigation by massive gas injection. The consequences for the electron synchrotron radiation losses and the resulting runaway electron dynamics are also analyzed.
Energy Technology Data Exchange (ETDEWEB)
Kenneth M. Young
2010-02-22
A Demonstration tokamak (Demo) is an essential next step toward a magnetic-fusion based reactor. One based on advanced-tokamak (AT) plasmas is especially appealing because of its relative compactness. However, it will require many plasma measurements to provide the necessary signals to feed to ancillary systems to protect the device and control the plasma. This note addresses the question of how much intrusion into the blanket system will be required to allow the measurements needed to provide the information required for plasma control. All diagnostics will require, at least, the same shielding designs as planned for ITER, while having the capability to maintain their calibration through very long pulses. Much work is required to define better the measurement needs and the quantity and quality of the measurements that will have to be made, and how they can be integrated into the other tokamak structures.
The O-X-B mode conversion scheme for ECRH of a high-density Tokamak plasma
DEFF Research Database (Denmark)
Hansen, F. R.; Lynov, Jens-Peter; Michelsen, Poul
1985-01-01
A method to apply electron cyclotron resonance heating (ECRH) to a Tokamak plasma with central density higher than the critical density for cut-off of the ordinary mode (O-mode) has been investigated. This method involves two mode conversions, from an O-mode via an extraordinary mode (X-mode) int......A method to apply electron cyclotron resonance heating (ECRH) to a Tokamak plasma with central density higher than the critical density for cut-off of the ordinary mode (O-mode) has been investigated. This method involves two mode conversions, from an O-mode via an extraordinary mode (X...
Characterization of Plasma Gun with TiH2/C60 Cartridge for Disruption Mitigation in Tokamaks
Bogatu, I. N.; Thompson, J. R.; Galkin, S. A.; Kim, J. S.; HyperV Technologies Corp. Team
2011-10-01
Impurity injection for disruption mitigation in tokamaks must be faster than growth time of plasma instabilities, requires sufficient mass to get critical electron density, high penetrability, and large assimilation fraction in the core plasma, with rapid impurity redistribution over the whole plasma. FAR-TECH, Inc. proposed the innovative idea to use hyper-velocity (>30 km/s), high-density (>1023 m-3) C60/C plasma jets with high ram pressure to deliver the impurity mass in plasma accelerator. We report the complete characterization of the TiH2/C60 cartridge with 5 kJ capacitive driver which demonstrated the capability of producing >30 mg of C60 gas in coaxial plasma gun (~35 cm length) prototype with TiH2/C60 cartridge for a small scale, proof-of-principle experiment on a tokamak. Work supported by the US DOE DE-FG02-08ER85196 grant.
Modeling of the equilibrium of a tokamak plasma; Modelisation de l'equilibre d'un plasma de tokamak
Energy Technology Data Exchange (ETDEWEB)
Grandgirard, V
1999-12-01
The simulation and the control of a plasma discharge in a tokamak require an efficient and accurate solving of the equilibrium because this equilibrium needs to be calculated again every microsecond to simulate discharges that can last up to 1000 seconds. The purpose of this thesis is to propose numerical methods in order to calculate these equilibrium with acceptable computer time and memory size. Chapter 1 deals with hydrodynamics equation and sets up the problem. Chapter 2 gives a method to take into account the boundary conditions. Chapter 3 is dedicated to the optimization of the inversion of the system matrix. This matrix being quasi-symmetric, the Woodbury method combined with Cholesky method has been used. This direct method has been compared with 2 iterative methods: GMRES (generalized minimal residual) and BCG (bi-conjugate gradient). The 2 last chapters study the control of the plasma equilibrium, this work is presented in the formalism of the optimized control of distributed systems and leads to non-linear equations of state and quadratic functionals that are solved numerically by a quadratic sequential method. This method is based on the replacement of the initial problem with a series of control problems involving linear equations of state. (A.C.)
D-T burning plasma characteristics in an A=2 tokamak reactor
Institute of Scientific and Technical Information of China (English)
石秉仁
2005-01-01
The deuterium-tritium (D-T) burning plasma characteristic in an aspect ratio A=2 tokamak reactor is studied based on a simple equilibrium configuration, the Soloviev-type configuration. Operation limits for the Troyon beta value and for the Greenwald density value as well as for the ITER H-mode confinement scaling are used as the benchmark.It is found that in addition to suitable elongation, large triangularity has advantage for arriving at high beta value and obtaining high fusion power output. Compared to the present ITER design, the A=2 system can have very good merit for the avoidance of disruptions by setting rather high edge q value while keeping relatively large total toroidal current.The main disadvantage of decreasing the aspect ratio is due to the loss of more useful space in the inward region that leads to the decrease of toroidal magnetic field in the plasma region, then worsening the fusion merit. Our analysis and calculation also present a trade-off in this respect. Due to simple equilibrium configuration assumed, some other important issues such as the bootstrap current alignment cannot be optimized. However, the present analysis can offer an insight into the advantages of the medium aspect ratio reactor system that is a blank in present-day tokamak study.
Li-BES detection system for plasma turbulence measurements on the COMPASS tokamak
Energy Technology Data Exchange (ETDEWEB)
Berta, M. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Széchenyi István University, Győr (Hungary); Anda, G.; Bencze, A.; Dunai, D. [Wigner – RCP, HAS, Budapest (Hungary); Háček, P., E-mail: hacek@ipp.cas.cz [Institute of Plasma Physics AS CR, Prague (Czech Republic); Faculty of Mathematics and Physics, Charles University in Prague, Prague (Czech Republic); Hron, M. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Kovácsik, A. [Wigner – RCP, HAS, Budapest (Hungary); Department of Nuclear Techniques, Budapest University of Technology and Economics, Budapest (Hungary); Krbec, J. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague (Czech Republic); Pánek, R. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Réfy, D.; Veres, G. [Wigner – RCP, HAS, Budapest (Hungary); Weinzettl, V. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Zoletnik, S. [Wigner – RCP, HAS, Budapest (Hungary)
2015-10-15
Highlights: • Li-BES detection system on the COMPASS tokamak is optimized observation system with high temporal resolution. • High sensitivity to low level light fluctuations. • Optics and detectors with electronics are placed in thermally stabilized compact box. • Fast deflection system allows us to measure background corrected electron density profiles on microsecond time-scale. - Abstract: A new Li beam emission spectroscopy (Li-BES) diagnostic system with a ∼ cm spatial resolution, and with beam energy ranging from 10 keV up to 120 keV and a 18 channel Avalanche photo diode (APD) detector system sampled at 2 MHz has been recently installed and tested on the COMPASS tokamak. This diagnostic allows to reconstruct density profile based on directly measured light profiles, and to follow turbulent behaviour of the edge plasma. The paper reports technical capabilities of this new system designed for fine spatio-temporal measurements of plasma electron density. Focusing on turbulence-induced fluctuation measurements, we demonstrate how physically relevant information can be extracted using the COMPASS Li-BES system.
Wang, Shaojie
2016-07-01
Anomalous current pinch, in addition to the anomalous diffusion due to stochastic magnetic perturbations, is theoretically found, which may qualitatively explain the recent DIII-D experiment on resonant magnetic field perturbation. The anomalous current pinch, which may resolve the long-standing issue of seed current in a fully bootstrapped tokamak, is also discussed for the electrostatic turbulence.
A novel design of feedback control system for plasma horizontal position in IR-T1 tokamak
Energy Technology Data Exchange (ETDEWEB)
Naghidokht, A.; Khodabakhsh, R. [Department of physics, Urmia University, Urmia (Iran, Islamic Republic of); Salar Elahi, A., E-mail: Salari_phy@yahoo.com [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Ghoranneviss, M. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)
2016-06-15
Determination of accurate plasma horizontal position during plasma discharge is essential to transport it to a control system based on feedback. By using the plasma-circuits linearized model, Proportional Integral Derivative (PID) based controllers and a first order transfer function representing the power supply (PS) dynamics of vertical coil system for IR-T1 tokamak, we analyzed step feedback response of the overall system of IR-T1 tokamak and corresponding Bode diagrams for two cases with and without the plasma resistance and the eddy currents distribution. Also we did experiments for determination of plasma horizontal displacement in this tokamak. This work is done by four magnetic probes that are installed on the circular contour of the tokamak. This data used as input to the feedback controller to validate the performance of it. Results of feedback response analysis show that the controller has good performance. Due to approximations in the controller design, construction, installation and implementation of the controller is necessary and this is the purpose of our future works.
Energy Technology Data Exchange (ETDEWEB)
Henriques, R. B., E-mail: rhenriques@ipfn.ist.utl.pt; Malaquias, A.; Nedzelskiy, I. S.; Silva, C.; Coelho, R.; Figueiredo, H.; Fernandes, H. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)
2014-11-15
The Heavy Ion Beam Diagnostic (HIBD) on the tokamak ISTTOK (Instituto Superior Técnico TOKamak) has been modified, in terms of signal conditioning, to measure the local fluctuations of the n{sub e}σ{sub 1,2}(T{sub e}) product (plasma density times the effective ionization cross-section) along the tokamak minor diameter, in 12 sample volumes in the range of −0.7a < r < 0.7a, with a maximum delay time of 1 μs. The corresponding signals show high correlation with the magnetic Mirnov coils in the characteristic MHD frequency range of ISTTOK plasmas and enable the identification of tearing modes. This paper describes the HIBD signal conditioning system and presents a preliminary analysis of the radial profile measurements of local n{sub e}σ{sub 1,2}(T{sub e}) fluctuations.
Noori, Ehsanallah; Sadeghi, Yahya; Ghoranneviss, Mahmood
2016-10-01
In this study, magnetic measurement of poloidal fields were used to determine poloidal beta and plasma internal inductance of Damavand tokamak combination of poloidal beta and plasma internal inductance (β _p+{l_i}/{2} ), known as Shafranov parameter, was obtained experimentally in terms of normal and tangential components of the magnetic field. Plasma internal inductance and poloidal beta were obtained using parametrization method based on analytical solution of Grad-Shafranov equation (GSE) and compared with parabolic-like profile of toroidal current density approach for determination of the plasma internal inductance. Finding evolution of β _p+{l_i}/{2} and plasma internal inductance. Finding poloidal beta (Shafranov parameter and internal inductance) and using energy balance equation, thermal energy and energy confinement were determined qualitatively in terms of poloidal beta during a regular discharge of Damavand tokamak.
Measurements of Boundary Plasma in Synergy Discharges of IBW and LHCD on the HT-7 Tokamak
Institute of Scientific and Technical Information of China (English)
宋梅; 万宝年; 徐国盛; 陈忠勇; 刘海庆; 凌必利; 李成富
2003-01-01
By applying ion Bernstein wave (IBW) heating into the lower hybrid current drive (LHCD) plasma, improyed confinements have been obtained in the HT-7 tokamak. The central electron temperaturewas doubled and the storage energy was increased significantly. The core electron density and temperature were broadened and their profiles near the edge were steepened. A transport barrier has been formed in the vicinity of the limiter radial location. An enhanced shear in poloidal phase velocity was found in the same region with reduction of the fluctuation levels and the coherences between fluctuations. The results suggest that the improved confinement in the IBW and LHCD plasma is at least partially due to the modification of shear in poloidal velocity and then the suppression of fluctuations and fluctuation induced fluxes via de-correlation effect.
Nonlinear Transport Processes in Tokamak Plasmas. Part I: The Collisional Regimes
Sonnino, Giorgio
2008-01-01
An application of the thermodynamic field theory (TFT) to transport processes in L-mode tokamak plasmas is presented. The nonlinear corrections to the linear (Onsager) transport coefficients in the collisional regimes are derived. A quite encouraging result is the appearance of an asymmetry between the Pfirsch-Schlueter (P-S) ion and electron transport coefficients: the latter presents a nonlinear correction, which is absent for the ions, and makes the radial electron coefficients much larger than the former. Explicit calculations and comparisons between the neoclassical results and the TFT predictions for JET plasmas are also reported. We found that the nonlinear electron P-S transport coefficients exceed the values provided by neoclassical theory by a factor, which may be of the order 100. The nonlinear classical coefficients exceed the neoclassical ones by a factor, which may be of order 2. The expressions of the ion transport coefficients, determined by the neoclassical theory in these two regimes, remain...
Design of the power supply system for the plasma current modulation on J-TEXT tokamak
Energy Technology Data Exchange (ETDEWEB)
Zhang, M.; Shao, J.; Ma, S.X., E-mail: mashaoxiang@hust.edu.cn; Liang, X.; Yu, K.X.; Pan, Y.
2016-10-15
Highlights: • A modification scheme of heating field power supply system for plasma current modulation. • High-power fast control power supply with multilevel cascade circuit. • Restraining circulating current with coupled inductors in cyclic symmetric structure. - Abstract: In order to further study the influence of current modulation parameters on suppressing tearing instability, the plasma current should be modulated in a wider range. So a modification scheme is designed to improve the performance of ohmic heating power supply system on J-TEXT tokamak. A multilevel cascade circuit with carrier phase-shifted PWM technique has been proposed. Coupled inductors are connected in the form of cyclic symmetry to restrain the circulating current caused by multiple paralleled branches. The simulation proves this proposed current modulation power supply system matches output requirement and achieves good current sharing effect. Finally, a prototype is designed, and the experiment results can verify the correctness of the simulation model well.
ASCOT: redesigned Monte Carlo code for simulations of minority species in tokamak plasmas
Hirvijoki, Eero; Koskela, Tuomas; Kurki-Suonio, Taina; Miettunen, Juho; Sipilä, Seppo; Snicker, Antti; Äkäslompolo, Simppa
2013-01-01
A comprehensive description of methods for Monte Carlo studies of fast ions and impurity species in tokamak plasmas is presented. The described methods include Hamiltonian orbit-following in particle and guiding center phase space, test particle or guiding center solution of the kinetic equation applying stochastic differential equations in the presence of Coulomb collisions, Neoclassical tearing modes and Alfv\\'en eigenmodes as electromagnetic perturbations relevant for fast ions, together with plasma flow and atomic reactions relevant for impurity studies. Applying the methods, a complete reimplementation of a well-established minority species code is carried out as a response both to the increase in computing power during the last twenty years and to the weakly structured growth of the previous code which has made implementation of additional models impractical. Also, a thorough benchmark between the previous code and the reimplementation is accomplished, showing good agreement between the codes.
Tokamak edge plasma rotation in the presence of the biased electrode
Energy Technology Data Exchange (ETDEWEB)
Ghoranneviss, M.; Mohammadi, S. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Elahi, A. Salar, E-mail: Salari_phy@yahoo.com [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Arvin, R. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)
2013-02-15
Electrode biasing system was designed, constructed, and installed on the IR-T1 tokamak, and then biasing experiments were carried out. Also, using a Mach probes the effects of radial electric field (produced by biased electrode) on the poloidal and toroidal components of the edge plasma velocity were investigated. The results showed an increase in both toroidal and poloidal components of the edge plasma velocity during biasing regime. Results compared and discussed. During positive biasing, increased E{sub r} tends to slow the poloidal rotation in the electron diamagnetic drift direction, i.e., to speed up rotation in the ion diamagnetic drift direction. An increased toroidal rotation velocity has the opposite effect on the poloidal rotation.
Generation of a magnetic island by edge turbulence in tokamak plasmas
Poyé, A.; Agullo, O.; Muraglia, M.; Garbet, X.; Benkadda, S.; Sen, A.; Dubuit, N.
2015-03-01
We investigate, through extensive 3D magneto-hydro-dynamics numerical simulations, the nonlinear excitation of a large scale magnetic island and its dynamical properties due to the presence of small-scale turbulence. Turbulence is induced by a steep pressure gradient in the edge region [B. D. Scott, Plasma Phys. Controlled Fusion 49, S25 (2007)], close to the separatrix in tokamaks where there is an X-point magnetic configuration. We find that quasi-resonant localized interchange modes at the plasma edge can beat together and produce extended modes that transfer energy to the lowest order resonant surface in an inner stable zone and induce a seed magnetic island. The island width displays high frequency fluctuations that are associated with the fluctuating nature of the energy transfer process from the turbulence, while its mean size is controlled by the magnetic energy content of the turbulence.
Generation of a magnetic island by edge turbulence in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Poyé, A. [Aix-Marseille Université, CNRS, PIIM, UMR 7345, Marseille (France); Université de Bordeaux, CELIA Laboratory, Talence 33405 (France); Agullo, O.; Muraglia, M.; Benkadda, S.; Dubuit, N. [Aix-Marseille Université, CNRS, PIIM, UMR 7345, Marseille (France); France-Japan Magnetic Fusion Laboratory, LIA 336 CNRS, Marseille (France); Garbet, X. [IRFM, CEA, St-Paul-Lez-Durance 13108 (France); Sen, A. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2015-03-15
We investigate, through extensive 3D magneto-hydro-dynamics numerical simulations, the nonlinear excitation of a large scale magnetic island and its dynamical properties due to the presence of small-scale turbulence. Turbulence is induced by a steep pressure gradient in the edge region [B. D. Scott, Plasma Phys. Controlled Fusion 49, S25 (2007)], close to the separatrix in tokamaks where there is an X-point magnetic configuration. We find that quasi-resonant localized interchange modes at the plasma edge can beat together and produce extended modes that transfer energy to the lowest order resonant surface in an inner stable zone and induce a seed magnetic island. The island width displays high frequency fluctuations that are associated with the fluctuating nature of the energy transfer process from the turbulence, while its mean size is controlled by the magnetic energy content of the turbulence.
The Construction of Plasma Density Feedback Control System on J-TEXT Tokamak
Ke, Xin; Chen, Zhipeng; Ba, Weigang; Shu, Shuangbao; Gao, Li; Zhang, Ming; Zhuang, Ge
2016-02-01
The plasma density feedback control system (PDFCS) has been established on the Joint Texas Experimental Tokamak (J-TEXT) for meeting the need for an accurate plasma density in physical experiments. It consists of a density measurement subsystem, a feedback control subsystem and a gas puffing subsystem. According to the characteristic of the gas puffing system, a voltage amplitude control mode has been applied in the feedback control strategy, which is accomplished by the proportion, integral and differential (PID) controller. In this system, the quantity calibration of gas injection, adjusted responding to the change of the density signal, has been carried out. Some experimental results are shown and discussed. supported by the National Magnetic Confinement Fusion Science Program (Nos. 2014GB103001 and 2013GB106001) and National Natural Science Foundation of China (Nos. 11305070 and 11105028)
Plasma current start-up using the lower hybrid wave on the TST-2 spherical tokamak
Takase, Y.; Ejiri, A.; Inada, T.; Moeller, C. P.; Shinya, T.; Tsujii, N.; Yajima, S.; Furui, H.; Homma, H.; Imamura, K.; Nakamura, K.; Nakamura, K.; Sonehara, M.; Takeuchi, T.; Togashi, H.; Tsuda, S.; Yoshida, Y.
2015-12-01
Non-inductive plasma current start-up, ramp-up and sustainment by waves in the lower hybrid wave (LHW) frequency range at 200 MHz were investigated on the TST-2 spherical tokamak (R0 ≤ 0.38 m, a ≤ 0.25 m, Bt0 ≤ 0.3T, Ip ≤ 0.14 MA). Experimental results obtained using three types of antenna were compared. Both the highest plasma current (Ip = 18 kA) and the highest current drive figure of merit ηCD≡n¯eIpR0/PRF=1.4 ×1017 A/W/m2 were achieved using the capacitively-coupled combline (CCC) antenna, designed to excite the LHW with a sharp and highly directional wavenumber spectrum. For Ip greater than about 5 kA, high energy electrons accelerated by the LHW become the dominant carrier of plasma current. The low value of ηCD observed so far are believed to be caused by a rapid loss of energetic electrons and parasitic losses of the LHW energy in the plasma periphery. ηCD is expected to improve by an order of magnitude by increasing the plasma current to improve energetic electron confinement. In addition, edge power losses are expected to be reduced by increasing the toroidal magnetic field to improve wave accessibility to the plasma core, and by launching the LHW from the inboard upper region of the torus to achieve better single-pass absorption.
Impact of lithium on the plasma performance in the all-metal-wall tokamak ASDEX upgrade
Energy Technology Data Exchange (ETDEWEB)
Lang, P.T.; Moreno Quicios, R.; Arredondo Parra, R.; Ploeckl, B.; McDermott, R.; Neu, R.; Wolfrum, E. [MPI fuer Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Maingi, R.; Mansfield, D.K.; Diallo, A. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Collaboration: ASDEX Upgrade Team
2016-07-01
Several tokamaks reported improvement in key plasma parameters concurrent with the presence of lithium in the plasma. At ASDEX Upgrade explorative experiments have been performed to find out if such effects can be observed when operating with an all-metal-wall. A gas gun launcher was developed capable to inject pellets containing about 1.6 x 10{sup 20} Li atoms at 2 Hz. The speed of about 600 m/s is sufficient to achieve core penetration and to create a homogeneous Li concentration of up to 10 %. With a typical sustainment time on the order of 100 ms, only transient Li presence without any pile up was achieved. Deposition of Li on plasma facing components, which remained for several discharges after injection, was observed. This short lived wall conditioning showed beneficial effects during plasma start-up. However, the accompanying surface contamination negatively impacted some diagnostics. The Li impact on the confinement was investigated in a dedicated plasma scenario with a proven sensitivity to nitrogen and helium. In phases with N seeding enhancing the confinement by about 30 %, Li injection resulted in a very modest, transient loss of confinement (about 5 %). No Li impact was found for pure Deuterium plasmas.
Compressional Alfvén eigenmodes in rotating spherical tokamak plasmas
Smith, H. M.; Fredrickson, E. D.
2017-03-01
Spherical tokamaks often have a considerable toroidal plasma rotation of several tens of kHz. Compressional Alfvén eigenmodes in such devices therefore experience a frequency shift, which if the plasma were rotating as a rigid body, would be a simple Doppler shift. However, since the rotation frequency depends on minor radius, the eigenmodes are affected in a more complicated way. The eigenmode solver CAE3B (Smith et al 2009 Plasma Phys. Control. Fusion 51 075001) has been extended to account for toroidal plasma rotation. The results show that the eigenfrequency shift due to rotation can be approximated by a rigid body rotation with a frequency computed from a spatial average of the real rotation profile weighted with the eigenmode amplitude. To investigate the effect of extending the computational domain to the vessel wall, a simplified eigenmode equation, yet retaining plasma rotation, is solved by a modified version of the CAE code used in Fredrickson et al (2013 Phys. Plasmas 20 042112). In summary, both solving the full eigenmode equation, as in the CAE3B code, and placing the boundary at the vessel wall, as in the CAE code, significantly influences the calculated eigenfrequencies.
Energy Technology Data Exchange (ETDEWEB)
Hey, J.D.; Chu, C.C. [Plasma Physics Research Institute, University of Natal, Durban (South Africa)]. E-mails: hey@nu.ac.za; chu@nu.ac.za; Brezinsek, S.; Unterberg, B.; Mertens, Ph. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Juelich (Germany)]. E-mail: ph.mertens@fz-juelich.de
2002-03-28
Oxygen ion impurity radiation is a potential source of inaccuracy in ion temperature determination with the aid of the commonly used C VI transition n=8{yields}n'=7, produced by charge-exchange recombination (CXR) of C{sup 6+} ions, since the corresponding transition in O VI cannot be resolved under typical plasma conditions in the tokamak. In order to demonstrate the possible importance of oxygen ion impurity radiation, we have selected a convenient spectroscopic 'window' (about 8 A wide) containing the major Zeeman components of two prominent lines in the visible (multiplet 1), one emitted by C{sup 2+} and one by O{sup +}. Observations have been performed in this wavelength range, both tangentially and perpendicularly to the magnetic flux surfaces, in the second case with the aid of a special graphite test limiter. Measurements include the case of special plasma discharges in which oxygen gas was introduced from the test limiter. The temperatures of both species are evaluated from the Doppler broadening of the respective Zeeman components, and compared with the results from a model for collisional heating by impact with hot protons (deuterons) in the plasma edge. The spectra and derived results show that impurity identification in tokamak edge plasmas should not be carried out with the aid of spectral lines from highly excited levels populated by CXR, but using lines corresponding to much more species-specific transitions from lower ionization stages. The identification and quantitative analysis should be performed with the aid of carefully measured and calculated Zeeman-(Paschen-Back-) broadened line profiles, since these have features practically unique to the species under investigation. Some allowance may, however, be required for deviation, from a statistical distribution, of population among fine-structure sublevels. (author)
Advanced Fuels Reactor using Aneutronic Rodless Ultra Low Aspect Ratio Tokamak Hydrogenic Plasmas
Ribeiro, Celso
2015-11-01
The use of advanced fuels for fusion reactor is conventionally envisaged for field reversed configuration (FRC) devices. It is proposed here a preliminary study about the use of these fuels but on an aneutronic Rodless Ultra Low Aspect Ratio (RULART) hydrogenic plasmas. The idea is to inject micro-size boron pellets vertically at the inboard side (HFS, where TF is very high and the tokamak electron temperature is relatively low because of profile), synchronised with a proton NBI pointed to this region. Therefore, p-B reactions should occur and alpha particles produced. These pellets will act as an edge-like disturbance only (cp. killer pellet, although the vertical HFS should make this less critical, since the unablated part should appear in the bottom of the device). The boron cloud will appear at midplance, possibly as a MARFE-look like. Scaling of the p-B reactions by varying the NBI energy should be compared with the predictions of nuclear physics. This could be an alternative to the FRC approach, without the difficulties of the optimization of the FRC low confinement time. Instead, a robust good tokamak confinement with high local HFS TF (enhanced due to the ultra low aspect ratio and low pitch angle) is used. The plasma central post makes the RULART concept attractive because of the proximity of NBI path and also because a fraction of born alphas will cross the plasma post and dragged into it in the direction of the central plasma post current, escaping vertically into a hole in the bias plate and reaching the direct electricity converter, such as in the FRC concept.
Multi-machine scaling of the main SOL parallel heat flux width in tokamak limiter plasmas
Horacek, J.; Pitts, R. A.; Adamek, J.; Arnoux, G.; Bak, J.-G.; Brezinsek, S.; Dimitrova, M.; Goldston, R. J.; Gunn, J. P.; Havlicek, J.; Hong, S.-H.; Janky, F.; LaBombard, B.; Marsen, S.; Maddaluno, G.; Nie, L.; Pericoli, V.; Popov, Tsv; Panek, R.; Rudakov, D.; Seidl, J.; Seo, D. S.; Shimada, M.; Silva, C.; Stangeby, P. C.; Viola, B.; Vondracek, P.; Wang, H.; Xu, G. S.; Xu, Y.; Contributors, JET
2016-07-01
As in many of today’s tokamaks, plasma start-up in ITER will be performed in limiter configuration on either the inner or outer midplane first wall (FW). The massive, beryllium armored ITER FW panels are toroidally shaped to protect panel-to-panel misalignments, increasing the deposited power flux density compared with a purely cylindrical surface. The chosen shaping should thus be optimized for a given radial profile of parallel heat flux, {{q}||} in the scrape-off layer (SOL) to ensure optimal power spreading. For plasmas limited on the outer wall in tokamaks, this profile is commonly observed to decay exponentially as {{q}||}={{q}0}\\text{exp} ~≤ft(-r/λ q\\text{omp}\\right) , or, for inner wall limiter plasmas with the double exponential decay comprising a sharp near-SOL feature and a broader main SOL width, λ q\\text{omp} . The initial choice of λ q\\text{omp} , which is critical in ensuring that current ramp-up or down will be possible as planned in the ITER scenario design, was made on the basis of an extremely restricted L-mode divertor dataset, using infra-red thermography measurements on the outer divertor target to extrapolate to a heat flux width at the main plasma midplane. This unsatisfactory situation has now been significantly improved by a dedicated multi-machine ohmic and L-mode limiter plasma study, conducted under the auspices of the International Tokamak Physics Activity, involving 11 tokamaks covering a wide parameter range with R=\\text{0}\\text{.4--2}\\text{.8} \\text{m}, {{B}0}=\\text{1}\\text{.2--7}\\text{.5} \\text{T}, {{I}\\text{p}}=\\text{9--2500} \\text{kA}. Measurements of λ q\\text{omp} in the database are made exclusively on all devices using a variety of fast reciprocating Langmuir probes entering the plasma at a variety of poloidal locations, but with the majority being on the low field side. Statistical analysis of the database reveals nine reasonable engineering and dimensionless scalings. All yield, however, similar
Energy Technology Data Exchange (ETDEWEB)
Martin, R.; Manero, F.
1984-07-01
In this paper a description is given of the microwave interferometer used for measuring the plasma electronic density in the TJ-1 Tokamak of Fusion Division of JEN. The principles of the electronic density measurement are discussed in detail, as well as those concerning the determination of density pro files from experimental data. A description of the interferometer used in the TJ-1 Tokamak is given, together with a detailed analysis of the circuits which constitute the measuring chain. The working principles of the klystron reflex and hybrid rings are also presented. (Author) 23 refs.
Blob/hole formation and zonal-flow generation in the edge plasma of the JET tokamak
DEFF Research Database (Denmark)
Xu, G.S.; Naulin, Volker; Fundamenski, W.
2009-01-01
The first experimental evidence showing the connection between blob/hole formation and zonal-flow generation was obtained in the edge plasma of the JET tokamak. Holes as well as blobs are observed to be born in the edge shear layer, where zonal-flows shear off meso-scale coherent structures, lead...
A study on the fusion reactor - Development of x-ray spectrometer for diagnosis of tokamak plasma
Energy Technology Data Exchange (ETDEWEB)
Jang, Hong Young; Choi, Duk In; Seo, Sung Hun; Kwon, Gi Chung; Jun, Sang Jin; Heo, Sung Hoi; Lee, Chan Hui [Korea Advanced Institute of Science and Technolgoy, Taejon (Korea, Republic of)
1996-09-01
This report of research is on the development of X-ray Photo-Electron Spectrometer (PES) for diagnosis of tokamak plasma. The spectrometer utilizes the fact that the energy of photo-electron is given by the difference between the energy of X-ray and the binding energy of materials. In the research of this year, we constructed two spectrometers; one is operated in KAIST tokamak and the other in KT1 tokamak. In addition, we reviewed the characteristics of the x-ray filter, the photo-electric effect of carbon foils and the detection efficiency of MCP and x-ray radiation of plasma. We measured the x-ray radiation in tokamak and diagnosed the qualitative plasma parameters from the analysis of data. The major interesting plasma parameters, which we can diagnose with the spectrometer, are the electron temperature, Z{sub eff}, the spatial distribution of x-ray radiation and etc. 27 refs., 2 tabs., 20 figs. (author)
Energy Technology Data Exchange (ETDEWEB)
NONE
1994-05-27
If the US is to meet the energy needs of the future, it is essential that new technologies emerge to compensate for dwindling supplies of fossil fuels and the eventual depletion of fissionable uranium used in present-day nuclear reactors. Fusion energy has the potential to become a major source of energy for the future. Power from fusion energy would provide a substantially reduced environmental impact as compared with other forms of energy generation. Since fusion utilizes no fossil fuels, there would be no release of chemical combustion products to the atmosphere. Additionally, there are no fission products formed to present handling and disposal problems, and runaway fuel reactions are impossible due to the small amounts of deuterium and tritium present. The purpose of the TPX Project is to support the development of the physics and technology to extend tokamak operation into the continuously operating (steady-state) regime, and to demonstrate advances in fundamental tokamak performance. The purpose of TFTR D&D is to ensure compliance with DOE Order 5820.2A ``Radioactive Waste Management`` and to remove environmental and health hazards posed by the TFTR in a non-operational mode. There are two proposed actions evaluated in this environmental assessment (EA). The actions are related because one must take place before the other can proceed. The proposed actions assessed in this EA are: the decontamination and decommissioning (D&D) of the Tokamak Fusion Test Reactor (TFTR); to be followed by the construction and operation of the Tokamak Physics Experiment (TPX). Both of these proposed actions would take place primarily within the TFTR Test Cell Complex at the Princeton Plasma Physics Laboratory (PPPL). The TFTR is located on ``D-site`` at the James Forrestal Campus of Princeton University in Plainsboro Township, Middlesex County, New Jersey, and is operated by PPPL under contract with the United States Department of Energy (DOE).
Coherence imaging and tomography of fields and flows in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Howard, J.; Diallo, A.; Creese, M.; Blackwell, B.C. [Australian National Universityj, Canberra (Australia); Jaspers, R. [Eindhoven University of Technology, Eindhoven (Netherlands); Chung, J. [National Fusion Research Institute, Daejeon (Korea, Republic of); Allen, S.L.; Meyer, W.; Fenstermacher, M.E.; Porter, G.D.; Ellis, R.M. [Lawrence Livermore National Laboratory at General Atomics, San Diego (United States); Van Zeeland, M.E.; Boivin, R.L.; Brooks, N. [General Atomics, San Diego (United States)
2011-07-01
In the last few years we have developed various spatial heterodyne polarization interferometers for spectrally-resolved optical imaging of edge and core parameters in high temperature magnetized plasmas. Applications include imaging motional Stark effect and Zeeman effect polarimetry for determination of the magnetic field pitch angle, Thomson scattering, and passive and active (charge exchange recombination spectroscopy - CXRS) Doppler imaging of plasma temperature and flow. In this paper we summarize recent innovations in imaging instrumentation and will present first results of motional Stark effect imaging of the internal magnetic field on the TEXTOR tokamak and Doppler flow imaging in the H-1 heliac and DIII-D divertor. The TEXTOR instrument uses a hybrid spatio-temporal multiplexing approach to capture 2 dimensional images of the projected beam velocity and magnetic field vector fields. While the Doppler projection agrees very well with modeling, there are some discrepancies in the polarimetric image which appear to be related to imperfections in the optical coupling prism. This issue will be addressed during a new set of measurements commencing in April 2010. During 2009 we installed instruments for imaging flows in the divertor and scrape-off-layer in the DIII-D tokamak. In these experiments, single snapshot interferometric images of the plasma in CII 514 nm, and CIII 465 nm emission have been demodulated to obtain flow and ion temperature projections. Tomographic reconstructions of the flow fields show encouraging agreement with UEDGE modeling, pointing the way towards experiments that address important divertor transport issues in future. This document is composed of an abstract followed by the slides of the presentation. (authors)
Nonlinear evolution of multi-helicity neo-classical tearing modes in rotating tokamak plasmas
Wei, Lai; Wang, Zheng-Xiong; Wang, Jialei; Yang, Xuefeng
2016-10-01
Plasma perturbations from the core and/or boundary regions of tokamaks can provide seed islands for the excitation of neo-classical tearing modes (NTMs) with negative {{ Δ }\\prime} , where {{ Δ }\\prime} is the linear instability parameter of the classical tearing mode. In this work, by means of reduced magnetohydrodynamic simulations, we numerically investigate the nonlinear evolution of multi-helicity NTMs in rotating tokamak plasmas with these two types of plasma perturbations with different boundary conditions. In the first case of initial plasma perturbations from the core region with a zero boundary condition, the meta-stable property of seed-island triggered NTM with negative {{ Δ }\\prime} is verified in the single helicity simulation. Nevertheless in the multiple helicity simulation, this seed-island triggered NTM with negative {{ Δ }\\prime} can be suppressed by a spontaneous NTM with positive {{ Δ }\\prime} through the competitive interaction between NTMs with different helicities. If a fixed poloidal rotation is taken into account in the first case, two different helicity NTMs could coexist in the saturation stage, which is different qualitatively from the process without plasma rotation. In the second case of initial plasma perturbations from the boundary region with a nonzero boundary condition, as the amplitude of plasma perturbations on the boundary increases, the mode with negative {{ Δ }\\prime} gradually changes from the driven-reconnection state to the NTM state, accompanied by an enhancement of magnetic island width in the single helicity simulation. Nevertheless in the multi-helicity simulation, the spontaneous NTM with positive {{ Δ }\\prime} can make the driven-reconnection triggered NTM with negative {{ Δ }\\prime} transfer from the NTM state back to the driven-reconnection state again. The underlying mechanism behind these transitions is analyzed step by step. Effects of fixed and unfixed poloidal rotations on the nonlinear
Development of real-time plasma analysis and control algorithms for the TCV tokamak using SIMULINK
Energy Technology Data Exchange (ETDEWEB)
Felici, F., E-mail: f.felici@tue.nl [École Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association EURATOM-Suisse, 1015 Lausanne (Switzerland); Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology Group, P.O. Box 513, 5600MB Eindhoven (Netherlands); Le, H.B.; Paley, J.I.; Duval, B.P.; Coda, S.; Moret, J.-M.; Bortolon, A.; Federspiel, L.; Goodman, T.P. [École Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association EURATOM-Suisse, 1015 Lausanne (Switzerland); Hommen, G. [FOM-Institute DIFFER, Association EURATOM-FOM, Nieuwegein (Netherlands); Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology Group, P.O. Box 513, 5600MB Eindhoven (Netherlands); Karpushov, A.; Piras, F.; Pitzschke, A. [École Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association EURATOM-Suisse, 1015 Lausanne (Switzerland); Romero, J. [National Laboratory of Fusion, EURATOM-CIEMAT, Madrid (Spain); Sevillano, G. [Department of Automatic Control and Systems Engineering, Bilbao University of the Basque Country, Bilbao (Spain); Sauter, O.; Vijvers, W. [École Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association EURATOM-Suisse, 1015 Lausanne (Switzerland)
2014-03-15
Highlights: • A new digital control system for the TCV tokamak has been commissioned. • The system is entirely programmable by SIMULINK, allowing rapid algorithm development. • Different control system nodes can run different algorithms at varying sampling times. • The previous control system functions have been emulated and improved. • New capabilities include MHD control, profile control, equilibrium reconstruction. - Abstract: One of the key features of the new digital plasma control system installed on the TCV tokamak is the possibility to rapidly design, test and deploy real-time algorithms. With this flexibility the new control system has been used for a large number of new experiments which exploit TCV's powerful actuators consisting of 16 individually controllable poloidal field coils and 7 real-time steerable electron cyclotron (EC) launchers. The system has been used for various applications, ranging from event-based real-time MHD control to real-time current diffusion simulations. These advances have propelled real-time control to one of the cornerstones of the TCV experimental program. Use of the SIMULINK graphical programming language to directly program the control system has greatly facilitated algorithm development and allowed a multitude of different algorithms to be deployed in a short time. This paper will give an overview of the developed algorithms and their application in physics experiments.
Gourdain, P-A; Peebles, W A
2008-10-01
Reflectometry has successfully demonstrated measurements of many important parameters in high temperature tokamak fusion plasmas. However, implementing such capabilities in a high-field, large plasma, such as ITER, will be a significant challenge. In ITER, the ratio of plasma size (meters) to the required reflectometry source wavelength (millimeters) is significantly larger than in existing fusion experiments. This suggests that the flow of the launched reflectometer millimeter-wave power can be realistically analyzed using three-dimensional ray tracing techniques. The analytical and numerical studies presented will highlight the fact that the group velocity (or power flow) of the launched microwaves is dependent on the direction of wave propagation relative to the internal magnetic field. It is shown that this dependence strongly modifies power flow near the cutoff layer in a manner that embeds the local magnetic field direction in the "footprint" of the power returned toward the launch antenna. It will be shown that this can potentially be utilized to locally determine the magnetic field pitch angle at the cutoff location. The resultant beam drift and distortion due to magnetic field and relativistic effects also have significant consequences on the design of reflectometry systems for large, high-field fusion experiments. These effects are discussed in the context of the upcoming ITER burning plasma experiment.
Extended numerical modeling of impurity neoclassical transport in tokamak edge plasmas
Energy Technology Data Exchange (ETDEWEB)
Inoue, H.; Yamoto, S.; Hatayama, A. [Graduate School of Science and Technology, Keio University, Hiyoshi, Yokohama (Japan); Homma, Y. [Graduate School of Science and Technology, Keio University, Hiyoshi, Yokohama (Japan); Research Fellow of Japan Society for the Promotion of Science, Tokyo (Japan)
2016-08-15
Understanding of impurity transport in tokamaks is an important issue in order to reduce the impurity contamination in fusion core plasmas. Recently, a new kinetic numerical scheme of impurity classical/neoclassical transport has been developed. This numerical scheme makes it possible to include classical self-diffusion (CL SD), classical inward pinch (CL IWP), and classical temperature screening effect (CL TSE) of impurity ions. However, impurity neoclassical transport has been modeled only in the case where background plasmas are in the Pfirsch-Schluter (PS) regime. The purpose of this study is to extend our previous model to wider range of collisionality regimes, i.e., not only the PS regime, but also the plateau regime. As in the previous study, a kinetic model with Binary Collision Monte-Carlo Model (BMC) has been adopted. We focus on the modeling of the neoclassical self-diffusion (NC SD) and the neoclassical inward pinch (NC IWP). In order to simulate the neoclassical transport with the BCM, velocity distribution of background plasma ions has been modeled as a deformed Maxwell distribution which includes plasma density gradient. Some test simulations have been done. As for NC SD of impurity ions, our scheme reproduces the dependence on the collisionality parameter in wide range of collisionality regime. As for NC IWP, in cases where test impurity ions and background ions are in the PS and plateau regimes, parameter dependences have been reproduced. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Movable multi-probes for plasma boundary measurement in sino-united spherical tokamak
Energy Technology Data Exchange (ETDEWEB)
Chai, Song, E-mail: chso-1119@126.com; Wang, Wenhao; Tan, Yi; Gao, Zhe [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)
2014-11-15
A novel movable multi-probes is developed to get local magnetic and electrostatic profiles on Sino-UNIted Spherical Tokamak (SUNIST). This multi-probes combines a four-tips Langmuir probe, a magnetic coil, and a retarding field energy analyzer (RFEA). It can be used to simultaneously measure the poloidal magnetic field B{sub p}, electric field E{sub r}, electron temperature T{sub e}, electron density n{sub e}, and ion temperature T{sub i}. Its small overall size (20 × 20 × 38 mm{sup 3}) enables the movable multi-probes to measure the magnetic and electrostatic profiles in high spatial resolution, with negligible impact to plasma in SUNIST. This paper presents the design of the movable multi-probes, in particular, details of RFEA for reliable ion energy measurements. Preliminary experimental results of the movable multi-probes are given as well.
Fitzpatrick, Richard
2016-12-01
The simple analysis of Rutherford [Phys. Fluids 16, 1903 (1973)] is generalized in order to incorporate radial magnetic island asymmetry into the nonlinear theory of tearing mode stability in a low-β, large aspect-ratio, quasi-cylindrical, tokamak plasma. The calculation is restricted to cases in which the radial shifts of the island X- and O-points are (almost) equal and opposite. For the sake of simplicity, the calculation concentrates on a particular (but fairly general) class of radially asymmetric island magnetic flux-surfaces that can all be mapped to the same symmetric flux-surfaces by means of a suitable coordinate transform. The combination of island asymmetry (in which the radial shifts of the X- and O-points are almost equal and opposite) and temperature-induced changes in the inductive current profile in the immediate vicinity of the island is found to have no effect on tearing mode stability.
Fully Implicit Iterative Solving Method for the Fokker-Planck Equation in Tokamak Plasmas
Institute of Scientific and Technical Information of China (English)
ZHENG Pingwei; GONG Xueyu; YU Jun; DU Dan
2014-01-01
A three dimensional bounce-averaged Fokker-Planck (FP) numerical code has been newly developed based on fully implicit iterative solving method,and relativistic effect is also included in the code.The code has been tested against various benchmark cases:Ohmic conductivity in the presence of weak Ohmic electric field,runaway losses of electrons in the presence of strong Ohmic electric field,lower hybrid current drive and electron cyclotron current drive via two-or three-dimensional simulation.All the test cases run fast and correctly during calculations.As a result,the code provides a set of powerful tools for studying radio frequency wave heating and current drive in tokamak plasmas.
Numerical Studies of Two-Fluid Axisymmetric Steady-States with Flow in Ohmic NSTX-like Plasmas
Ferraro, Nathaniel; Jardin, Stephen
2008-11-01
Axisymmetric steady-states of the resistive two-fluid equations, including flow and gyroviscosity, are obtained by evolving these nonlinear equations from an initial ideal MHD equilibrium using the code M3D-C^1 [1], which has now been extended to toroidal geometry. Steady-states for high-β, inductively driven discharges in diverted NSTX geometries are studied. Excellent agreement with theoretical predictions of cross-surface Pfirsch-Schlüter flows in the axisymmetric steady-states is found. The dependence of flow velocities with resistivity is explored. It is found that in the two-fluid model, the statistical steady-state may be a fixed point, a limit cycle, or chaotic, depending on the parameters. Two-fluid terms lead to a preferred direction of toroidal rotation. The inclusion of gyroviscosity is observed to alter the character of the steady-state. The three-dimensional linear stability of simple equilibria in this two-fluid model are also explored using M3D-C^1 [2]. [1] N. Ferraro, S. Jardin. Phys. Plasmas 13:092101 (2006). [2] S. Jardin, N. Ferraro, J. Breslau, J. Chen, and M. Chance. Initial results for linear 3D Toroidal Two-Fluid stability using M3D-C1. APS DPP Conference, Dallas, TX (2008).
Energy Technology Data Exchange (ETDEWEB)
Stoschus, Henning
2011-10-13
Small three-dimensional (3D) magnetic perturbations can be used as a tool to control the edge plasma parameters in magnetically confined plasmas in high confinement mode (''H-mode'') to suppress edge instabilities inherent to this regime, the Edge Localized Modes (ELMs). In this work, the impact of rotating 3D resonant magnetic perturbation (RMP) fields on the edge plasma structure characterized by electron density and temperature fields is investigated. We study a low confinement (L-mode) edge plasma (r/a>0.9) with high resistivity (edge electron collisionality {nu}{sup *}{sub e}>4) at the TEXTOR tokamak. The plasma structure in the plasma edge is measured by a set of high resolution diagnostics: a fast CCD camera ({delta}t=20 {mu}s) is set up in order to visualize the plasma structure in terms of electron density variations. A supersonic helium beam diagnostic is established as standard diagnostic at TEXTOR to measure electron density n{sub e} and temperature T{sub e} with high spatial ({delta}r=2 mm) and temporal resolution ({delta}t=20 {mu}s). The measured plasma structure is compared to modeling results from the fluid plasma and kinetic neutral transport code EMC3-EIRENE. A sequence of five new observations is discussed: (1) Imaging of electron density variations in the plasma edge shows that a fast rotating RMP field imposes an edge plasma structure, which rotates with the external RMP rotation frequency of vertical stroke {nu}{sub RMP} vertical stroke =1 kHz. (2) Measurements of the electron density and temperature provide strong experimental evidence that in the far edge a rotating 3D scrape-off layer (SOL) exists with helical exhaust channels to the plasma wall components. (3) Radially inward, the plasma structure at the next rational flux surface is found to depend on the relative rotation between external RMP field and intrinsic plasma rotation. For low relative rotation the plasma structure is dominated by a particle and energy loss
Optical boundary reconstruction of tokamak plasmas for feedback control of plasma position and shape
Hommen, G.; de M. Baar,; Nuij, P.; McArdle, G.; Akers, R.; Steinbuch, M.
2010-01-01
A new diagnostic is developed to reconstruct the plasma boundary using visible wavelength images. Exploiting the plasma's edge localized and toroidally symmetric emission profile, a new coordinate transform is presented to reconstruct the plasma boundary from a poloidal view image. The plasma b
Bootstrap current for the edge pedestal plasma in a diverted tokamak geometry
Energy Technology Data Exchange (ETDEWEB)
Koh, S.; Choe, W. [Korea Advanced Institute of Science and Technology, Department of Physics, Daejeon 305-701 (Korea, Republic of); Chang, C. S.; Ku, S.; Menard, J. E. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Weitzner, H. [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)
2012-07-15
The edge bootstrap current plays a critical role in the equilibrium and stability of the steep edge pedestal plasma. The pedestal plasma has an unconventional and difficult neoclassical property, as compared with the core plasma. It has a narrow passing particle region in velocity space that can be easily modified or destroyed by Coulomb collisions. At the same time, the edge pedestal plasma has steep pressure and electrostatic potential gradients whose scale-lengths are comparable with the ion banana width, and includes a magnetic separatrix surface, across which the topological properties of the magnetic field and particle orbits change abruptly. A drift-kinetic particle code XGC0, equipped with a mass-momentum-energy conserving collision operator, is used to study the edge bootstrap current in a realistic diverted magnetic field geometry with a self-consistent radial electric field. When the edge electrons are in the weakly collisional banana regime, surprisingly, the present kinetic simulation confirms that the existing analytic expressions [represented by O. Sauter et al., Phys. Plasmas 6, 2834 (1999)] are still valid in this unconventional region, except in a thin radial layer in contact with the magnetic separatrix. The agreement arises from the dominance of the electron contribution to the bootstrap current compared with ion contribution and from a reasonable separation of the trapped-passing dynamics without a strong collisional mixing. However, when the pedestal electrons are in plateau-collisional regime, there is significant deviation of numerical results from the existing analytic formulas, mainly due to large effective collisionality of the passing and the boundary layer trapped particles in edge region. In a conventional aspect ratio tokamak, the edge bootstrap current from kinetic simulation can be significantly less than that from the Sauter formula if the electron collisionality is high. On the other hand, when the aspect ratio is close to unity
An optimal real-time controller for vertical plasma stabilization
Cruz, N; Coda, S; Duval, B P; Le, H B; Rodrigues, A P; Varandas, C A F; Correia, C M B A; Goncalves, B S
2014-01-01
Modern Tokamaks have evolved from the initial axisymmetric circular plasma shape to an elongated axisymmetric plasma shape that improves the energy confinement time and the triple product, which is a generally used figure of merit for the conditions needed for fusion reactor performance. However, the elongated plasma cross section introduces a vertical instability that demands a real-time feedback control loop to stabilize the plasma vertical position and velocity. At the Tokamak \\`a Configuration Variable (TCV) in-vessel poloidal field coils driven by fast switching power supplies are used to stabilize highly elongated plasmas. TCV plasma experiments have used a PID algorithm based controller to correct the plasma vertical position. In late 2013 experiments a new optimal real-time controller was tested improving the stability of the plasma. This contribution describes the new optimal real-time controller developed. The choice of the model that describes the plasma response to the actuators is discussed. The ...
Energy Technology Data Exchange (ETDEWEB)
Abe, Mitsushi; Takeuchi, Kazuhiro; Fukumoto, Hideshi; Shimizu, Masashi; Otsuka, Michio (Hitachi Ltd., Ibaraki (Japan). Energy Research Lab.)
1990-02-01
Electromagnetic interactions between plasmas and a vacuum vessel during disruptions are examined experimentally in the Hitachi tokamak HT-2. Eddy currents which flow in the toroidal direction and poloidal coil currents are determined from the measured magnetic data. The currents enable calculation of the electromagnetic force on the vacuum vessel and resistively dissipated magnetic energy. Eddy currents and electromagnetic forces are mainly due to the plasma displacement (shell effect), not decay of the plasma current. Large plasma current quench rate -dI{sub p}/dt is associated with scraping of the plasma by the inner limiter through the rapid plasma radial movement, and the decay rate in circular plasma is twice as large as that in elongated plasma. The magnetic energy dissipation is mainly due to the eddy current of the net toroidal current mode which is induced by large current quench rate. (author).
Abe, Mitsushi; Takeuchi, Kazuhiro; Fukumoto, Hideshi; Shimizu, Masashi; Otsuka, Michio
1990-02-01
Electromagnetic interactions between plasmas and a vacuum vessel during disruptions are examined experimentally in the Hitachi tokamak HT-2. Eddy currents which flow in the toroidal direction and poloidal coil currents are determined from the measured magnetic data. The currents enable calculation of the electromagnetic force on the vacuum vessel and resistively dissipated magnetic energy. Eddy currents and electromagnetic forces are mainly due to the plasma displacement (shell effect), not decay of the plasma current. Large plasma current quench rate -dIP/dt is associated with scraping of the plasma by the inner limiter through the rapid plasma radial movement, and the decay rate in circular plasma is twice as large as that in elongated plasma. The magnetic energy dissipation is mainly due to the eddy current of the net toroidal current mode which is induced by large current quench rate.
Properties of plasma radiation during discharges with improved confinement on HL-2A Tokamak
Institute of Scientific and Technical Information of China (English)
Gao Jin-Ming; Liu Yi; Li Wei; Cui Zheng-Ying; Zhou Yan; Huang Yuan; Ji Xiao-Quan
2010-01-01
In the recent experiment on the HL-2A tokamak,two types of improved confinement regimes have been achieved in different configurations.One is the improved confinement regime in Umiter configuration during electron cyclotron resonant heating(ECRH),characterized by a sharp decrease in Hσ emission accompanied by an increase in the total radiation of plasma,the line averaged electron density and the stored energy of plasma.The other is high confinement regime(H-mode)in divertor configuration during a combination of ECRH and Neutral beam injection(NBI)heating,characterized with edge localized modes(ELMs)besides the features mentioned above.The ELMs are found to be localized on the plasma edge(r/α≥0.8),causing average losses of particles and stored energy in the ranges of about1-3% and 3-5% respectively during a single ELM event.So far,the ELMs observed in the HL-2A are type Ⅲ ELMs with low amplitude and high repetition frequency in a range from 200 Hz to 350 Hz.An investigation of the radiated power density profiles shows that radiative cooling effect plays a significant role in the transition back to the L-mode and the triggering of ELM events.
Plasma facing components: a conceptual design strategy for the first wall in FAST tokamak
Labate, C.; Di Gironimo, G.; Renno, F.
2015-09-01
Satellite tokamaks are conceived with the main purpose of developing new or alternative ITER- and DEMO-relevant technologies, able to contribute in resolving the pending issues about plasma operation. In particular, a high criticality needs to be associated to the design of plasma facing components, i.e. first wall (FW) and divertor, due to physical, topological and thermo-structural reasons. In such a context, the design of the FW in FAST fusion plant, whose operational range is close to ITER’s one, takes place. According to the mission of experimental satellites, the FW design strategy, which is presented in this paper relies on a series of innovative design choices and proposals with a particular attention to the typical key points of plasma facing components design. Such an approach, taking into account a series of involved physical constraints and functional requirements to be fulfilled, marks a clear borderline with the FW solution adopted in ITER, in terms of basic ideas, manufacturing aspects, remote maintenance procedure, manifolds management, cooling cycle and support system configuration.
Momentum and heat transfer from lower hybrid antennas to the tokamak edge plasma
Energy Technology Data Exchange (ETDEWEB)
Fuchs, V.; Goniche, M.; Gunn, J.; Petrzilka, V
2001-02-01
The momentum and heat transfer from the Lower Hybrid (LH) grill electric field to tokamak edge plasma are derived within the framework of quasi-linear theory. Results are supported by test electron simulations. An LH power loss of the order of 1- 5% of total radiated power is found to occur in an interaction layer of the size of about 0.3 cm in the radial direction limited by electron Landau damping of the LH slow wave. The underlying electron distribution function describing fast electrons generated in both the parallel and anti-parallel (to{sup {yields}} B{sub 0}) directions is approximated by a sum of drifting Maxwellian with
Energy Technology Data Exchange (ETDEWEB)
Schmitz, D.
2006-07-15
Within the scope of this work itermittent events in the plasma edge of the tokamak TEXTOR were characterized. For the data of measurements of the density and the poloidal electrical field were analysed. The data was collected by a reciprocating and a fixed probe as well as by a lithium beam. The intermittent behaviour was quantified by the statistical moments of the data. If intermittency is high, coherent structures (also called blobs) can be detected. The detected blobs were described using the statistical method of conditional averaging. The main results can be summarised as follows: Intermittent behavoiur has been detected in the scrap off layer of the tokamak TEXTOR and it is increasing with the radius from the last closed flux surface (LCFS) on. On the midplane the blobs in the limiter geometry have a radial size of up to 8 cm and move onto the wall with velocities as high as (1-7)% of the ion sound speed. It was found that intermittent transport causes 40% of the total perpendicular transport in the investigated discharges. In the upper part of the tokamak there is less intermittency. This is reasonable if intermittency is caused by interchange instabilities which mainly occur on the low field side of the tokamak. With the Dynamic Ergodic Divertor (DED) and the associated formation of tearing modes intermittency is increasing. This can also be due to the steeper gradient of density in the scrap off layer close to the LCFS which is caused by gas puffing used for the regulation of the density. Outside the LCFS the ergodic field does not have any influence on the characteristics of blobs. Within the LCFS density holes have been found which propagate towards the centre of the plasma. The radial transport due to blobs is still the same. In general the velocity of the detected blobs is proportional to the square root of their poloidal size. That confirms the prediction of the blob model in which the nonlinear development of interchange instabilities causes the
Simulation of damage to tokamaks plasma facing components during intense abnormal power deposition
Energy Technology Data Exchange (ETDEWEB)
Genco, F., E-mail: fgenco@purdue.edu; Hassanein, A., E-mail: hassanein@purdue.edu
2014-04-15
Highlights: • HEIGHTS-PIC a new technique based on particle in cell method to study disruptions events, ELMS and VDE is benchmarked in this paper with the use of the MK-200 experiments. • Disruptions simulations results for erosion and erosion rate are proposed showing good agreement with published experimental available data for such conditions. • Results are also compared with other published results produced by FOREV1/FOREV2 computer package and the original HEIGHTS computer package. • Accuracy of the simulations results is proposed with specific aim to address the use of number of super particles adopted versus computational time. - Abstract: Intense power deposition on plasma facing components (PFC) is expected in tokamaks during loss of confinement events such as disruptions, vertical displacement events (VDE), runaway electrons (RE), or during normal operating conditions such as edge-localized modes (ELM). These highly energetic events are damaging enough to hinder long term operation and may not be easily mitigated without loss of structural or functional performance of the PFC. Surface erosion, melted/ablated-vaporized material splashing, and material transport into the bulk plasma are reliability-threatening for the machine and system performance. A novel particle-in-cell (PIC) technique has been developed and integrated into the existing HEIGHTS package in order to obtain a global view of the plasma evolution upon energy impingement. This newly developed PIC technique is benchmarked against plasma gun experimental data, the original HEIGHTS computer package, and laser experiments. Benchmarking results are shown in this paper for various relevant reactor and experimental devices. The evolution of the plasma vapor cloud is followed temporally and results are explained and commented as a function of the computational time needed and the accuracy of the calculation.
Saha, S. K.; Kumar, R.; Hui, A. K.
2001-11-01
Plasma diamagnetism has been measured in the SINP tokamak by a toroidal flux loop placed inside the vacuum vessel. The flux due to the strong toroidal field has been compensated for by a coplaner annular loop which encircles but does not contain the plasma column. The influence of the eddy currents in the vacuum vessel and the conducting shell in these loops has been calculated analytically by a circuit model using the theory of linear networks and compensated accordingly. This method has been shown to yield an almost exact compensation for toroidal flux (˜0.01%) as well as pickups from other fields. Typical results with plasma shots have been presented.
Energy Technology Data Exchange (ETDEWEB)
Cook, G.O. Jr.
1982-12-01
The Topolotron is an axisymmetric, toroidal magnetic fusion concept in which two-dimensional effects are important, as well as all three magnetic field components. The particular MHD model employed is basically the one-fluid, two-temperature model using classical Braginskii transport with viscous effects ignored. The model is augmented by Saha-Boltzmann dissociation and partial ionization physics, a simple radiation loss mechanism, and an additional resistivity due to electron-neutral collisions. While retaining all velocity and magnetic field components, the assumption of axisymmetry is made, and the resulting equations are expanded in cylindrical coordinates. The major approximation technique is then applied: spline collocation, which reduces these equations to a set of ordinary differential equations.
Recent Advances in the Design of Quasi-axisymmetric Stellarator Plasma Configurations
Energy Technology Data Exchange (ETDEWEB)
Reiman, A.; Ku, L.; Monticello, D.; Hirschman, S.; Hudson, S.; Kessel, C. [and others
2001-01-30
Strategies for the improvement of quasi-axisymmetric stellarator configurations are explored. Calculations of equilibrium flux surfaces for candidate configurations are also presented. One optimization strategy is found to generate configurations with improved neoclassical confinement, simpler coils with lower current density, and improved flux surface quality relative to previous designs. The flux surface calculations find significant differences in the extent of islands and stochastic regions between candidate configurations. (These calculations do not incorporate the predicted beneficial effects of perturbed bootstrap currents.) A method is demonstrated for removing low-order islands from candidate configurations by relatively small modifications of the configuration. One configuration is identified as having particularly desirable properties for a proposed experiment.
Influence of the magnetic field expansion on the core plasma in an axisymmetric mirror trap
Soldatkina, E.; Anikeev, M.; Bagryansky, P.; Korzhavina, M.; Maximov, V.; Savkin, V.; Yakovlev, D.; Yushmanov, P.; Dunaevsky, A.
2017-02-01
First measurements of plasma parameters in an expander of a mirror trap with sub-fusion plasma parameters are reported. Potential drop near the end plates of the expander appears to be much lower than the electron temperature in the center of the trap. Characteristic energy of electrons in the expander region is also substantially lower than the electron temperature in the confinement plasma. Variation of the magnetic field expansion ratio K between 30 and 160 does not influence the main parameters of the confinement plasma. Electron temperatures of the confinement plasma of about 700 eV were achieved at K = 30.
Numerical computation of gravitational field for general axisymmetric objects
Fukushima, Toshio
2016-10-01
We developed a numerical method to compute the gravitational field of a general axisymmetric object. The method (i) numerically evaluates a double integral of the ring potential by the split quadrature method using the double exponential rules, and (ii) derives the acceleration vector by numerically differentiating the numerically integrated potential by Ridder's algorithm. Numerical comparison with the analytical solutions for a finite uniform spheroid and an infinitely extended object of the Miyamoto-Nagai density distribution confirmed the 13- and 11-digit accuracy of the potential and the acceleration vector computed by the method, respectively. By using the method, we present the gravitational potential contour map and/or the rotation curve of various axisymmetric objects: (i) finite uniform objects covering rhombic spindles and circular toroids, (ii) infinitely extended spheroids including Sérsic and Navarro-Frenk-White spheroids, and (iii) other axisymmetric objects such as an X/peanut-shaped object like NGC 128, a power-law disc with a central hole like the protoplanetary disc of TW Hya, and a tear-drop-shaped toroid like an axisymmetric equilibrium solution of plasma charge distribution in an International Thermonuclear Experimental Reactor-like tokamak. The method is directly applicable to the electrostatic field and will be easily extended for the magnetostatic field. The FORTRAN 90 programs of the new method and some test results are electronically available.
Kinetic full wave analyses of O-X-B mode conversion of EC waves in tokamak plasmas
Fukuyama, Atsushi; Khan, Shabbir Ahmad; Igami, Hiroe; Idei, Hiroshi
2016-10-01
For heating and current drive in a high-density plasma of tokamak, especially spherical tokamak, the use of electron Bernstein waves and the O-X-B mode conversion were proposed and experimental observations have been reported. In order to evaluate the power deposition profile and the current drive efficiency, kinetic full wave analysis using an integral form of dielectric tensor has been developed. The incident angle dependence of wave structure and O-X-B mode conversion efficiency is examined using one-dimensional analysis in the major radius direction. Two-dimensional analyses on the horizontal plane and the poloidal plane are also conducted, and the wave structure and the power deposition profile are compared with those of previous analyses using ray tracing method and cold plasma approximation. This work is supported by JSPS KAKENHI Grant Number JP26630471.
Favorable effects of turbulent plasma mixing on the performance of innovative tokamak divertors
Ryutov, D. D.; Cohen, R. H.; Rognlien, T. D.; Umansky, M. V.
2013-10-01
The problem of reducing the heat load on plasma-facing components is one of the most demanding issues for MFE devices. The general approach to the solution of this problem is the use of a specially configured poloidal magnetic field, so called magnetic divertors. In recent years, novel divertors possessing the 2-nd and 3-rd order nulls of the poloidal field (PF) have been proposed. They are called a ``snowflake'' (SF) and a ``cloverleaf'' (CL) divertor, respectively, due to characteristic shape of the magnetic separatrix. Among several beneficial features of such divertors is an effect of strong turbulent plasma mixing that is intrinsic to the zone of weak PF near the null-point. The turbulence spreads the heat flux between multiple divertor exhaust channels and increases the heat flux width within each channel. Among physical processes affecting the onset of convection the curvature-driven mode of axisymmetric rolls is most prominent. The effect is quite significant for the SF and is even stronger for the CL divertor. Projections to future ITER-scale facilities are discussed. Work performed for U.S. DoE by LLNL under Contract DE-AC52-07NA27344.
Transport analysis of high radiation and high density plasmas in the ASDEX Upgrade tokamak
Directory of Open Access Journals (Sweden)
Casali L.
2014-01-01
Full Text Available Future fusion reactors, foreseen in the “European road map” such as DEMO, will operate under more demanding conditions compared to present devices. They will require high divertor and core radiation by impurity seeding to reduce heat loads on divertor target plates. In addition, DEMO will have to work at high core densities to reach adequate fusion performance. The performance of fusion reactors depends on three essential parameters: temperature, density and energy confinement time. The latter characterizes the loss rate due to both radiation and transport processes. The DEMO foreseen scenarios described above were not investigated so far, but are now addressed at the ASDEX Upgrade tokamak. In this work we present the transport analysis of such scenarios. Plasma with high radiation by impurity seeding: transport analysis taking into account the radiation distribution shows no change in transport during impurity seeding. The observed confinement improvement is an effect of higher pedestal temperatures which extend to the core via stiffness. A non coronal radiation model was developed and compared to the bolometric measurements in order to provide a reliable radiation profile for transport calculations. High density plasmas with pellets: the analysis of kinetic profiles reveals a transient phase at the start of the pellet fuelling due to a slower density build up compared to the temperature decrease. The low particle diffusion can explain the confinement behaviour.
Plasma discharge in ferritic first wall vacuum vessel of the Hitachi Tokamak HT-2
Energy Technology Data Exchange (ETDEWEB)
Abe, Mitsushi; Nakayama, Takeshi; Asano, Katsuhiko; Otsuka, Michio [Hitachi Ltd., Tokyo (Japan)
1997-11-01
A tokamak discharge with ferritic material first wall was tried successfully. The Hitachi Tokamak HT-2 had a stainless steel SUS304 vacuum vessel and modified to have a ferritic plate first wall for experiments to investigate the possibility of ferritic material usage in magnetic fusion devices. The achieved vacuum pressure and times used for discharge cleaning was roughly identical with the stainless steel first wall or the original HT-2. We concluded that ferritic material vacuum vessel is possible for tokamaks. (author)
Energy Technology Data Exchange (ETDEWEB)
Mantsinen, M. [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Technical Physics
1999-06-01
Heating with electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is a well-established method for auxiliary heating of present-day tokamak plasmas and is envisaged as one of the main heating techniques for the International Thermonuclear Experimental Reactor (ITER) and future reactor plasmas. In order to predict the performance of ICRF heating in future machines, it is important to benchmark present theoretical modelling with experimental results on present tokamaks. This thesis reports on development and experimental evaluation of theoretical models for ICRF heating at the Joint European Torus (JET). Several ICRF physics effects and scenarios have been studied. Direct importance to the ITER is the theoretical analysis of ICRF heating experiments with deuterium-tritium (D-T) plasmas. These experiments clearly demonstrate the potential of ICRF heating for auxiliary heating of reactor plasmas. In particular, scenarios with potential for good bulk ion heating and enhanced D-T fusion reactivity have been identified. Good bulk ion heating is essential for reactor plasmas in order to obtain a high ion temperature and a high fusion reactivity. In JET good bulk ion heating with ICRF waves has been achieved in high-performance discharges by adding ICRF heating to neutral beam injection. In these experiments, as in other JET discharges where damping at higher harmonics of the ion cyclotron frequency takes place, so-called finite Larmor radius (FLR) effects play an important role. Due to FLR effects, the resonating ion velocity distribution function can have a strong influence on the power deposition. Evidence for this effect has been obtained from the third harmonic deuterium heating experiments. Because of FLR effects, the wave-particle interaction can also become weak at certain ion energies, which prevents resonating ions from reaching higher energies. When interacting with the wave, an ion receives not only a change in energy but also a change in
Ren, Jing; Liu, Yueqiang; Liu, Yue; Medvedev, S. Yu; Wang, Zhirui; Xia, Guoliang
2016-11-01
The effects of an ideal/resistive conducting wall, the drift kinetic resonances, as well as the toroidal plasma flow, on the stability of the ideal external kink mode are numerically investigated for a reactor-relevant tokamak plasma with strongly negative triangularity (NTR) shaping. Comparison is made for a similar plasma equilibrium, but with positive triangularity (PTR). It is found that the ideal wall stabilization is less efficient for the kink stabilization in the NTR plasma due to a less ‘external’ eigenmode structure compared to the PTR plasma. The associated plasma displacement in the NTR plasma does not ‘balloon’ near the outboard mid-plane, as is normally the case for the pressure-driven kink-ballooning instability in PTR plasmas, but being more pronounced near the X-points. The toroidal flow plays a similar role for the kink stability for both NTR and PTR plasmas. The drift kinetic damping is less efficient for the ideal external kink mode in the NTR plasma, despite a somewhat larger fraction of the particle trapping near the plasma edge compared to the PTR equilibrium. However, the drift kinetic damping of the resistive wall mode (RWM) in the NTR plasma is generally as efficient as that of the PTR plasma, although the RWM window, in terms of the normalized pressure, is narrower for the NTR plasma.
Energy Technology Data Exchange (ETDEWEB)
Wijnands, T.J. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee]|[CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere
1997-03-01
This work is focussed on an important and recent development in present day Controlled Nuclear Fusion Research and Tokamaks. The aim is to optimise the energy confinement for a certain magnetic configuration by adapting the radial distribution of the current. Of particular interest are feedback control scenarios with stationary modifications of the current profile using current, driven by Lower Hybrid waves. A new feedback control system has been developed for Tore Supra and has made a large number of new operation scenarios possible. In one of the experiments described here, there is no energy exchange between the poloidal field system and the plasma, the current is controlled by the power of the Lower Hybrid waves while the launched wave spectrum is used to optimise the current profile shape and the energy confinement. (author) 151 refs.
Houyin, Wang; Jiansheng, Hu; Yaowei, Yu; Bin, Cao; Jinhua, Wu; Guoqing, Shen; Zhao, Wan; EAST, Contributors
2017-01-01
Although the deuterium and helium have almost the same mass, a Penning Optical Gas Analyzer (POGA) system on the basis of the spectroscopic method and Penning discharging has been designed on EAST, since 2014. The POGA system was developed successfully in 2015, it was the first time that EAST could detect helium partial pressure in deuterium plasma (wall conditioning and plasma operation scenario). With dedicated calibration and proper adjustment of the parameters, the minimum concentration of helium in deuterium gas can be measured as about 0.5% instead of 1% on the other tokamak devices. Moreover, the He and D2 partial pressures are measured simultaneously. At present, the measurable range of deuterium partial pressure is 1 × 10-7 mbar to 1 × 10-5 mbar, meanwhile the range of helium is 1 × 10-8 mbar to 1 × 10-5 mbar. The measurable range can be modified by means of the adjustment of POGA system’s parameters. It is possible to detect the interesting part of the gas with a time resolution of less than 5 ms (the 200 ms because of conductance of transfer pipe at present). The POGA system was routinely employed to wall conditioning and helium enrichment investigation in 2015. Last but not the least, the low temperature plasma of POGA is generated by normal penning gauge Pfeiffer IKR gauge instead of Alcatel CF2P, which has been suspended for a few years and was used for almost all the POGA systems in the world.
Relevant parameter space and stability of spherical tokamaks with a plasma center column
Lampugnani, L. G.; Garcia-Martinez, P. L.; Farengo, R.
2017-02-01
A spherical tokamak (ST) with a plasma center column (PCC) can be formed inside a simply connected chamber via driven magnetic relaxation. From a practical perspective, the ST-PCC could overcome many difficulties associated with the material center column of the standard ST reactor design. Besides, the ST-PCC concept can be regarded as an advanced helicity injected device that would enable novel experiments on the key physics of magnetic relaxation and reconnection. This is because the concept includes not only a PCC but also a coaxial helicity injector (CHI). This combination implies an improved level of flexibility in the helicity injection scheme required for the formation and sustainment phases. In this work, the parameter space determining the magnetic structure of the ST-PCC equilibria is studied under the assumption of fully relaxed plasmas. In particular, it is shown that the effect of the external bias field of the PCC and the CHI essentially depends on a single parameter that measures the relative amount of flux of these two entities. The effect of plasma elongation on the safety factor profile and the stability to the tilt mode are also analyzed. In the first part of this work, the stability of the system is explained in terms of the minimum energy principle, and relevant stability maps are constructed. While this picture provides an adequate insight into the underlying physics of the instability, it does not include the stabilizing effect of line-tying at the electrodes. In the second part, a dynamical stability analysis of the ST-PCC configurations, including the effect of line-tying, is performed by numerically solving the magnetohydrodynamic equations. A significant stability enhancement is observed when the PCC contains more than the 70% of the total external bias flux, and the elongation is not higher than two.
Resistive reduced MHD modeling of multi-edge-localized-mode cycles in Tokamak X-point plasmas.
Orain, F; Bécoulet, M; Huijsmans, G T A; Dif-Pradalier, G; Hoelzl, M; Morales, J; Garbet, X; Nardon, E; Pamela, S; Passeron, C; Latu, G; Fil, A; Cahyna, P
2015-01-23
The full dynamics of a multi-edge-localized-mode (ELM) cycle is modeled for the first time in realistic tokamak X-point geometry with the nonlinear reduced MHD code jorek. The diamagnetic rotation is found to be instrumental to stabilize the plasma after an ELM crash and to model the cyclic reconstruction and collapse of the plasma pressure profile. ELM relaxations are cyclically initiated each time the pedestal gradient crosses a triggering threshold. Diamagnetic drifts are also found to yield a near-symmetric ELM power deposition on the inner and outer divertor target plates, consistent with experimental measurements.
Numerical modeling of disperse material evaporation in axisymmetric thermal plasma reactor
Directory of Open Access Journals (Sweden)
Stefanović Predrag Lj.
2003-01-01
Full Text Available A numerical 3D Euler-Lagrangian stochastic-deterministic (LSD model of two-phase flow laden with solid particles was developed. The model includes the relevant physical effects, namely phase interaction, panicle dispersion by turbulence, lift forces, particle-particle collisions, particle-wall collisions, heat and mass transfer between phases, melting and evaporation of particles, vapour diffusion in the gas flow. It was applied to simulate the processes in thermal plasma reactors, designed for the production of the ceramic powders. Paper presents results of extensive numerical simulation provided (a to determine critical mechanism of interphase heat and mass transfer in plasma flows, (b to show relative influence of some plasma reactor parameters on solid precursor evaporation efficiency: 1 - inlet plasma temperature, 2 - inlet plasma velocity, 3 - particle initial diameter, 4 - particle injection angle a, and 5 - reactor wall temperature, (c to analyze the possibilities for high evaporation efficiency of different starting solid precursors (Si, Al, Ti, and B2O3 powder, and (d to compare different plasma reactor configurations in conjunction with disperse material evaporation efficiency.
Energy Technology Data Exchange (ETDEWEB)
Martins, Caroline G.L.; Roberto, M. [Instituto Tecnologico de Aeronautica (ITA/CTA), Sao Jose dos Campos, SP (Brazil); Carvalho, R. Egydio de [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil); Caldas, I.L. [Universidade de Sao Paulo (USP), SP (Brazil)
2012-07-01
Full text: We present a study that deals with meandering curves which arise after the reconnection process (or overlap) of resonances (1), that occurs only in non-twist discrete maps (2). Meandering curves formed by this kind of process play the role of barriers for chaotic transport in phase space, because inside the meandering region there is a special torus, called shearless torus, known as the strongest torus in a dynamical system (1). We introduce an extra perturbation in the Standard Non-twist Map (3), and we call this new map Labyrinthic Standard Non-twist Map (4). The labyrinthic map proposed in this work shows multiple reconnection processes of resonances, presenting multiple barriers for chaotic transport. Having applications in important areas such as the physics of thermonuclear plasmas confined in tokamaks for the extraction of clean energy. (1) D. del-Castillo-Negrete, J. M. Greene, P. J. Morrison, Physica D 91, 1 (1996) (2) A.J. Lichtenberg and M.A. Lieberman, Regular and Chaotic Dynamics (Springer, New York, 1992) (3) D. Del-Castillo-Negrete and P. J. Morrison, Phys. Fluids A 5, 948 (1993) (4) Caroline G. L. Martins; R. Egydio de Carvalho; I. L. Caldas; M. Roberto. Labyrinthic standard non-twist map. Journal of Physics A, Mathematical and Theoretical, v. 44, p. 045102 (2011). (author)
Characterization of Impurities in Tokamak Divertor Plasmas from Analysis of Spectral Profiles
Isler, R. C.; Brooks, N. H.; Zaniol, B.
2002-12-01
Studies of the production, transport, and radiative losses of impurities in present-day tokamak divertors provide input necessary for the design of future burning- plasma machines. Several types of information rely on detailed analysis of emission profiles. These include ion temperatures, ion flows along field lines, and impurity production mechanisms. Temperatures and flows are determined from Doppler broadening and shifts by comparing measured line shapes to theoretical profiles that include the nonlinear Zeeman/Paschen-Back effect. The two major production mechanisms for atomic carbon are physical and chemical sputtering. These processes can be distinguished by comparing atomic and molecular fluxes, which requires modeling the band emissions of CD and C2. They can also be differentiated from measurements of effective temperatures of C I (best profile fits to thermal distributions). Careful inspection of profiles that give high effective temperatures reveals that they are not actually Gaussian but have asymmetries and shifts that can be correlated to energy distributions expected for physical sputtering. Examples of all these applications are discussed in this review.
Fitzpatrick, Richard
2016-05-01
The effect of the perturbed ion polarization current on the stability of neoclassical tearing modes in tokamak plasmas is calculated using an improved, neoclassical, four-field, drift-magnetohydrodynamical model. The calculation involves the self-consistent determination of the pressure and scalar electric potential profiles in the vicinity of the associated magnetic island chain, which allows the chain's propagation velocity to be fixed. Two regimes are considered. First, a regime in which neoclassical ion poloidal flow damping is not strong enough to enhance the magnitude of the polarization current (relative to that found in slab geometry). Second, a regime in which neoclassical ion poloidal flow damping is strong enough to significantly enhance the magnitude of the polarization current. In both regimes, two types of solution are considered. First, a freely rotating solution (i.e., an island chain that is not interacting with a static, resonant, magnetic perturbation). Second, a locked solution (i.e., an island chain that has been brought to rest in the laboratory frame via interaction with a static, resonant, magnetic perturbation). In all cases, the polarization current is found to be either always stabilizing or stabilizing provided that ηi≡d ln Ti/d ln ne does not exceed some threshold value. In certain ranges of ηi, the polarization current is found to have a stabilizing effect on a freely rotating island, but a destabilizing effect on a corresponding locked island.
Energetic particle driven geodesic acoustic mode in a toroidally rotating tokamak plasma
Ren, Haijun
2017-01-01
Energetic particle (EP) driven geodesic acoustic modes (EGAMs) in toroidally rotating tokamak plasmas are analytically investigated using the hybrid kinetic-fluid model and gyrokinetic equations. By ignoring high-order terms and ion Landau damping, the kinetic dispersion relation is reduced to the hybrid one in the large safety factor limit. There is one high-frequency branch with a frequency larger than {ωt0} , the transit frequency of EPs with initial energy, which is always stable. Two low-frequency solutions with a frequency smaller than {ωt0} are complex conjugates in the hybrid limit. In the presence of ion Landau damping, the growth rate of the unstable branch is decreased and the damping rate of the damped branch is increased. The toroidal Mach number is shown to increase {{ Ω }\\text{r}} , the normalized real frequency of both branches. Although not affecting the instability critical condition, the Mach number decreases the growth rate when {{ Ω }\\text{r}} is larger than a critical value Ω \\text{r}\\text{cri} and enlarges the growth rate when {{ Ω }\\text{r}}Landau damping effect is negligible for large M. But the discrepancy between the kinetic dispersion relation and the hybrid one becomes ignorable only for q≳ 7 .
Energy Technology Data Exchange (ETDEWEB)
Brunner, S. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)
1997-08-01
Ion temperature gradient (ITG)-related instabilities are studied in tokamak-like plasmas with the help of a new global eigenvalue code. Ions are modelled in the frame of gyrokinetic theory so that finite Larmor radius effects of these particles are retained to all orders. Non-adiabatic trapped electron dynamics is taken into account through the bounce-averaged drift kinetic equation. Assuming electrostatic perturbations, the system is closed with the quasineutrality relation. Practical methods are presented which make this global approach feasible. These include a non-standard wave decomposition compatible with the curved geometry as well as adapting an efficient root finding algorithm for computing the unstable spectrum. These techniques are applied to a low pressure configuration given by a large aspect ratio torus with circular, concentric magnetic surfaces. Simulations from a linear, time evolution, particle in cell code provide a useful benchmark. Comparisons with local ballooning calculations for different parameter scans enable further validation while illustrating the limits of that representation at low toroidal wave numbers or for non-interchange-like instabilities. The stabilizing effect of negative magnetic shear is also considered, in which case the global results show not only an attenuation of the growth rate but also a reduction of the radial extent induced by a transition from the toroidal- to the slab-ITG mode. Contributions of trapped electrons to the ITG instability as well as the possible coupling to the trapped electron mode are clearly brought to the fore. (author) figs., tabs., 69 refs.
On extended analytic theory of 2D ballooning modes in tokamak plasmas
Abdoul, Peshwaz; Dickinson, David; Roach, Colin; Wilson, Howard
2016-10-01
We have extended the leading order ballooning theory which typically yields more unstable isolated mode (IM) that usually sit on the outboard mid-plane, to higher order where less unstable general mode (GM) sits at a different poloidal location. Our analytic theory has revealed that any poloidal shift of the mode with respect to the outboard mid-plane - arising from the effect of profile variations, for example - is always accompanied by an asymmetry of the radial eigenmode structure. Hence, GMs have radial asymmetry. Our theory can have important consequences, especially for calculations that invoke quasilinear theory to model intrinsic rotation arising from Reynolds stress. This is very important in ITER for which external torques are small. In such theories it is the radial asymmetry in the global GM mode which can generate a Reynolds stress that could in principle contribute to the poloidal flow during the low to high (L-H) mode transition in tokamaks. I am also an associate member at the York Plasma Institute, University of York and teaching at the Physics Department, University of Sulaimani, Kurdistan Region, Iraq.
Institute of Scientific and Technical Information of China (English)
Xu Xiao-Yuan; Wang Jun; Yu Yi; Wen Yi-Zhi; Yu Chang-Xuan; Liu Wan-Dong; Wan Bao-Nian; Gao Xiang; N. C. Luhmann; C. W. Domier; Jian Wang; Z. G. Xia; Zuowei Shen
2009-01-01
The fluctuation of the electron temperature has been measured by using the electron cyclotron emission imaging in the Hefei Tokamak-7 (HT-7) plasma. The electron temperature fluctuation with a broadband spectrum shows that it propagates in the electron diamagnetic drift direction, and the mean poloidal wave-number kg is calculated to be about 1.58 cm-1, or keps ≈0.34. It indicates that the fluctuation should come from the electron drift wave turbulence. The linear global scaling of the electron temperature fluctuation with the gradient of electron temperature is consistent with the mixing length scale qualitatively. Evolution of spectrum of the fluctuation during the sawtooth oscillation phases is investigated, and the fluctuation is found to increase with the gradient of electron temperature increasing during most phases of the sawtooth oscillation. The results indicate that the electron temperature gradient is probably the driver of the fluctuation enhancement. The steady heat flux driven by electron temperature fluctuation is estimated and compared with the results from power balance estimation.
Lyons, B. C.; Jardin, S. C.; Ramos, J. J.
2012-08-01
A new code, the Neoclassical Ion-Electron Solver (NIES), has been written to solve for stationary, axisymmetric distribution functions (f) in the conventional banana regime for both ions and electrons using a set of drift-kinetic equations (DKEs) with linearized Fokker-Planck-Landau collision operators. Solvability conditions on the DKEs determine the relevant non-adiabatic pieces of f (called h). We work in a 4D phase space in which ψ defines a flux surface, θ is the poloidal angle, v is the magnitude of the velocity referenced to the mean flow velocity, and λ is the dimensionless magnetic moment parameter. We expand h in finite elements in both v and λ. The Rosenbluth potentials, Φ and Ψ, which define the integral part of the collision operator, are expanded in Legendre series in cosχ, where χ is the pitch angle, Fourier series in cosθ, and finite elements in v. At each ψ, we solve a block tridiagonal system for hi (independent of fe), then solve another block tridiagonal system for he (dependent on fi). We demonstrate that such a formulation can be accurately and efficiently solved. NIES is coupled to the MHD equilibrium code JSOLVER [J. DeLucia et al., J. Comput. Phys. 37, 183-204 (1980)] allowing us to work with realistic magnetic geometries. The bootstrap current is calculated as a simple moment of the distribution function. Results are benchmarked against the Sauter analytic formulas and can be used as a kinetic closure for an MHD code (e.g., M3D -C1 [S. C. Jardin et al., Comput. Sci. Discovery 5, 014002 (2012)]).
Energy Technology Data Exchange (ETDEWEB)
Lyons, B. C. [Program in Plasma Physics, Princeton University, Princeton, New Jersey 08543-0451 (United States); Jardin, S. C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Ramos, J. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States)
2012-08-15
A new code, the Neoclassical Ion-Electron Solver (NIES), has been written to solve for stationary, axisymmetric distribution functions (f) in the conventional banana regime for both ions and electrons using a set of drift-kinetic equations (DKEs) with linearized Fokker-Planck-Landau collision operators. Solvability conditions on the DKEs determine the relevant non-adiabatic pieces of f (called h). We work in a 4D phase space in which {psi} defines a flux surface, {theta} is the poloidal angle, v is the magnitude of the velocity referenced to the mean flow velocity, and {lambda} is the dimensionless magnetic moment parameter. We expand h in finite elements in both v and {lambda}. The Rosenbluth potentials, {Phi} and {Psi}, which define the integral part of the collision operator, are expanded in Legendre series in cos{chi}, where {chi} is the pitch angle, Fourier series in cos{theta}, and finite elements in v. At each {psi}, we solve a block tridiagonal system for h{sub i} (independent of f{sub e}), then solve another block tridiagonal system for h{sub e} (dependent on f{sub i}). We demonstrate that such a formulation can be accurately and efficiently solved. NIES is coupled to the MHD equilibrium code JSOLVER [J. DeLucia et al., J. Comput. Phys. 37, 183-204 (1980)] allowing us to work with realistic magnetic geometries. The bootstrap current is calculated as a simple moment of the distribution function. Results are benchmarked against the Sauter analytic formulas and can be used as a kinetic closure for an MHD code (e.g., M3D-C{sup 1}[S. C. Jardin et al., Comput. Sci. Discovery 5, 014002 (2012)]).
Energy Technology Data Exchange (ETDEWEB)
B.C. Lyons, S.C. Jardin, and J.J. Ramos
2012-06-28
A new code, the Neoclassical Ion-Electron Solver (NIES), has been written to solve for stationary, axisymmetric distribution functions (f ) in the conventional banana regime for both ions and elec trons using a set of drift-kinetic equations (DKEs) with linearized Fokker-Planck-Landau collision operators. Solvability conditions on the DKEs determine the relevant non-adiabatic pieces of f (called h ). We work in a 4D phase space in which Ψ defines a flux surface, θ is the poloidal angle, v is the total velocity referenced to the mean flow velocity, and λ is the dimensionless magnetic moment parameter. We expand h in finite elements in both v and λ . The Rosenbluth potentials, φ and ψ, which define the integral part of the collision operator, are expanded in Legendre series in cos χ , where χ is the pitch angle, Fourier series in cos θ , and finite elements in v . At each ψ , we solve a block tridiagonal system for hi (independent of fe ), then solve another block tridiagonal system for he (dependent on fi ). We demonstrate that such a formulation can be accurately and efficiently solved. NIES is coupled to the MHD equilibrium code JSOLVER [J. DeLucia, et al., J. Comput. Phys. 37 , pp 183-204 (1980).] allowing us to work with realistic magnetic geometries. The bootstrap current is calculated as a simple moment of the distribution function. Results are benchmarked against the Sauter analytic formulas and can be used as a kinetic closure for an MHD code (e.g., M3D-C1 [S.C. Jardin, et al ., Computational Science & Discovery, 4 (2012).]).
Indian Academy of Sciences (India)
Nizami Gasilov
2007-04-01
In designing tokamaks, the maintenance of vertical stability of plasma is one of the most important problems. Systems of the passive and active feedbacks are applied for this purpose. Role of the passive system consisting of a vacuum vessel and passive coils is to suppress fast MHD (magnetohydrodynamic) instabilities. The active feedback system is applied to control slow motions of plasma. The objective of the paper is to investigate two successive problems, solution of which allows to determine the possibility of controlling plasma motions. One of these is the problem of vertical stability under the assumption of ideal conductivity of plasma and passive stabilizing elements. The problem is solved analytically and on the basis of the obtained solution a criterion of MHD-stability is formulated. The other problem is connected with the control of plasma vertical position with active feedback system. Calculation of feedback control parameters is formulated as an optimization problem and an approximate method to solve the problem is suggested. Numerical simulations are performed with parameters of the T-15M tokamak in order to justify the suggested method.
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
High-pressure gas injection has proved to be an effective disruption mitigation technique in DⅢ-D tokamak experiments. If the method can be applied in future tokamak reactors not only for disruption mitigation but also for plasma termination and fueling, it will have an attractive advantage over the pellet and liquid injection from the viewpoint of economy and engineering design. In order to investigate the feasibility of this option, a study has been carried out with relevant parameters for conveying tubes of different geometrical sizes and for different gases.These parameters include pressure drop, lagger time after the valve's opening, gas diffusion in an ultra-high vacuum condition, and particle number contour.
A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
Energy Technology Data Exchange (ETDEWEB)
Ku, S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hager, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Chang, C. S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kwon, J. M. [National Fusion Research Institute, Republic of Korea; Parker, S. E. [University of Colorado Boulder, USA
2016-06-01
In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles provide scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.
A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
Energy Technology Data Exchange (ETDEWEB)
Ku, S., E-mail: sku@pppl.gov [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Hager, R.; Chang, C.S. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Kwon, J.M. [National Fusion Research Institute (Korea, Republic of); Parker, S.E. [University of Colorado Boulder (United States)
2016-06-15
In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles provide scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.
A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
Ku, S.; Hager, R.; Chang, C. S.; Kwon, J. M.; Parker, S. E.
2016-06-01
In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles provide scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation - e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others - can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function - driven by ionization, charge exchange and wall loss - is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.
Impurities in a non-axisymmetric plasma: transport and effect on bootstrap current
Mollén, Albert; Smith, Håkan M; Braun, Stefanie; Helander, Per
2015-01-01
Impurities cause radiation losses and plasma dilution, and in stellarator plasmas the neoclassical ambipolar radial electric field is often unfavorable for avoiding strong impurity peaking. In this work we use a new continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21 (2014) 042503] which employs the full linearized Fokker-Planck operator, to calculate neoclassical impurity transport coefficients for a Wendelstein 7-X (W7-X) magnetic configuration. We compare SFINCS calculations with theoretical asymptotes in the high collisionality limit. In intermediate and high collisionality regimes, a momentum conserving collision operator is critical to correctly determine the impurity transport coefficients, and a simple pitch-angle scattering approximation can lead to transport predictions in the wrong direction. In the low collisionality regime pitch-angle scattering is sufficient to accurately describe impuri...
Impurities in a non-axisymmetric plasma: Transport and effect on bootstrap current
Energy Technology Data Exchange (ETDEWEB)
Mollén, A., E-mail: albertm@chalmers.se [Department of Applied Physics, Chalmers University of Technology, Göteborg (Sweden); Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); Landreman, M. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Smith, H. M.; Helander, P. [Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); Braun, S. [Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); German Aerospace Center, Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany)
2015-11-15
Impurities cause radiation losses and plasma dilution, and in stellarator plasmas the neoclassical ambipolar radial electric field is often unfavorable for avoiding strong impurity peaking. In this work we use a new continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21, 042503 (2014)] which employs the full linearized Fokker-Planck-Landau operator, to calculate neoclassical impurity transport coefficients for a Wendelstein 7-X (W7-X) magnetic configuration. We compare SFINCS calculations with theoretical asymptotes in the high collisionality limit. We observe and explain a 1/ν-scaling of the inter-species radial transport coefficient at low collisionality, arising due to the field term in the inter-species collision operator, and which is not found with simplified collision models even when momentum correction is applied. However, this type of scaling disappears if a radial electric field is present. We also use SFINCS to analyze how the impurity content affects the neoclassical impurity dynamics and the bootstrap current. We show that a change in plasma effective charge Z{sub eff} of order unity can affect the bootstrap current enough to cause a deviation in the divertor strike point locations.
Kouprienko, D. V.; Altukhov, A. B.; Gurchenko, A. D.; Gusakov, E. Z.; Kantor, M. Yu.; Lashkul, S. I.; Esipov, L. A.
2010-05-01
The dynamics of electron heat transport at improved energy confinement during lower hybrid plasma heating in the FT-2 tokamak was studied experimentally. Evolution of the profiles of the electron temperature and density was thoroughly investigated under conditions of fast variation in the plasma parameters. The energy balance in the electron channel is calculated with the help of the ASTRA code by using the measured plasma parameters. Correlation is revealed between the dynamics of electron heat transport and the behavior of small-scale drift turbulence measured using the enhanced scattering correlation diagnostics. The suppression of heat transfer and turbulence agrees well with the increase in the shear of poloidal plasma rotation calculated from experimental data in the neoclassical approximation.
Chirkov, A. Yu.
2015-09-01
Low gain (Q ~ 1) fusion plasma systems are of interest for concepts of fusion-fission hybrid reactors. Operational regimes of large modern tokamaks are close to Q ≈ 1. Therefore, they can be considered as prototypes of neutron sources for fusion-fission hybrids. Powerful neutral beam injection (NBI) can support the essential population of fast particles compared with the Maxwellial population. In such two-component plasma, fusion reaction rate is higher than for Maxwellian plasma. Increased reaction rate allows the development of relatively small-size and relatively inexpensive neutron sources. Possible operating regimes of the NBI-heated tokamak neutron source are discussed. In a relatively compact device, the predictions of physics of two-component fusion plasma have some volatility that causes taking into account variations of the operational parameters. Consequent parameter ranges are studied. The feasibility of regimes with Q ≈ 1 is shown for the relatively small and low-power system. The effect of NBI fraction in total heating power is analyzed.
A relativistic model of electron cyclotron current drive efficiency in tokamak plasmas
Lin-Liu Y.R.; Hu Y.J.; Hu Y.M.
2012-01-01
A fully relativistic model of electron cyclotron current drive (ECCD) efficiency based on the adjoint function techniques is considered. Numerical calculations of the current drive efficiency in a tokamak by using the variational approach are performed. A fully relativistic extension of the variational principle with the modified basis functions for the Spitzer function with momentum conservation in the electron-electron collision is described in general tokamak geometry. The model developed ...
First-principle description of collisional gyrokinetic turbulence in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Dif-Pradalier, G
2008-10-15
This dissertation starts in chapter 1 with a comprehensive introduction to nuclear fusion, its basic physics, goals and means. It especially defines the concept of a fusion plasma and some of its essential physical properties. The following chapter 2 discusses some fundamental concepts of statistical physics. It introduces the kinetic and the fluid frameworks, compares them and highlights their respective strengths and limitations. The end of the chapter is dedicated to the fluid theory. It presents two new sets of closure relations for fluid equations which retain important pieces of physics, relevant in the weakly collisional tokamak regimes: collective resonances which lead to Landau damping and entropy production. Nonetheless, since the evolution of the turbulence is intrinsically nonlinear and deeply influenced by velocity space effects, a kinetic collisional description is most relevant. First focusing on the kinetic aspect, chapter 3 introduces the so-called gyrokinetic framework along with the numerical solver - the GYSELA code - which will be used throughout this dissertation. Very generically, code solving is an initial value problem. The impact on turbulent nonlinear evolution of out of equilibrium initial conditions is discussed while studying transient flows, self-organizing dynamics and memory effects due to initial conditions. This dissertation introduces an operational definition, now of routine use in the GYSELA code, for the initial state and concludes on the special importance of the accurate calculation of the radial electric field. The GYSELA framework is further extended in chapter 4 to describe Coulomb collisions. The implementation of a collision operator acting on the full distribution function is presented. Its successful confrontation to collisional theory (neoclassical theory) is also shown. GYSELA is now part of the few gyrokinetic codes which can self-consistently address the interplay between turbulence and collisions. While
Plasma rotation and NTM onset driven by central EC deposition in TCV tokamak
Energy Technology Data Exchange (ETDEWEB)
Nowak, S.; Lazzaro, E. [Istituto di Fisica del Plasma CNR, Euratom Association, 20125 Milano (Italy); Sauter, O.; Canal, G.; Duval, B.; Federspiel, L.; Karpushov, A. N.; Kim, D.; Reimerders, H.; Rossel, J.; Testa, D.; Wagner, D. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association EURATOM-Confederation Suisse, 1015 Lausanne (Switzerland); Raju, D. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India); Collaboration: TCV Team
2014-02-12
The effects of the central electron cyclotron heating (ECH) and current drive (ECCD) on the spontaneous plasma rotation and on the presence of Tearing Modes (TM), observed in the TCV tokamak[1], were recently investigated as an interplay between the toroidal velocity and NTM onset in absence of sawteeth, ELMs and error fields [2–3]. In a set of reproducible TCV discharges (I{sub p}∼ −150 kA, B{sub t}∼ −1.4 T, ne,{sub av∼} 1.5 10{sup 19} m{sup −3}, T{sub e}∼ 3 keV and T{sub i}∼0.25 keV, q{sub 95}∼5.8) with both pure EC heating and current drive the cnt-Ip toroidal velocity was observed to be reduced with subsequent co-Ip appearance of 3/2 and 2/1 modes during the ramp up EC phases. The understanding of the capability of the on-axis EC power to modify the rotation profiles before and after the TM onset and of the sudden disappearance of 3/2 mode when 2/1 starts is the main purpose of this work. The velocity profile modifications are due to a direct effect of the EC absorbed power and also related to some variation of the perpendicular diffusion of the toroidal momentum and to magnetic braking effects of the kind of neoclassical toroidal viscosity (NTV) due to the NTM resonant field perturbations associated to the presence of TM. Numerical investigations are performed using a 1D toroidal momentum balance equation including contributions by external sources, as EC power, and NTV torques. Furthermore, the combined evolution of the 3/2 and 2/1 modes requires considering also coupling effects included in a generalized Rutherford equation for the modelling of the TM time growth.
Plasma current start-up experiments without a central solenoid in the iron core STOR-M tokamak
Mitarai, O.; Tomney, G.; Rohollohi, A.; Lewis, E.; McColl, D.; Xiao, C.; Hirose, A.
2015-06-01
Reproducible plasma current start-up without a central solenoid (CS) has been demonstrated using the outer ohmic heating (OH) coils in the iron core STOR-M tokamak (Mitarai et al 2014 Fusion Eng. Des. 89 2467-71). Although the outer OH coil current saturates the iron core eventually, it has been demonstrated that the plasma current can be maintained during the iron core saturation phase. In this work, further studies have been conducted to investigate the effects of the turn number of the outer OH coils (N = 4 or N = 6) in the CS-less discharges and to evaluate the plasma stability with respect to the n-decay index of the vertical magnetic field. For the loose coupling of the iron core with N = 4 turns, the plasma current can be sustained after the additional third capacitor bank is applied near the iron core saturation phase, showing the slow transition from the unsaturated to the partially saturated phase. For the case of stronger coupling of N = 6 turns, the plasma current is increased at the same fast bank voltage, but the main discharge is shortened from 35 to 20 ms. As the magnetizing current is smaller due to stronger coupling between the OH coils and the plasma current, the transition from the unsaturated to the saturated phase is slightly difficult at present. The present experimental results suggest a feasible operation scenario in a future spherical tokamak (ST) at least using loose iron core coupling for smoother transition from the unsaturated to the saturated iron core phase. Thus, a reliable plasma current start-up by the outer OH coils and the current ramp-up to a steady state by additional heating power and vertical field coils could be considered as an operation scenario for future ST reactors with an iron core transformer.
Institute of Scientific and Technical Information of China (English)
丁伯江; 匡光力; 刘岳修; 刘登成; 单家方; 刘甫坤; 沈慰慈; 石跃江; 吴振伟; 林建安; 俞家文; 徐汉东; 商连全; 张晓东; 刘小宁; 赵燕平; 李建刚
2002-01-01
Ramp-up experiments by means of lower hybrid wave on HT-7 superconducting tokamak have been performed and analyzed. A ramp-up rate of over 300 kA/s is obtained and a conversion efficiency of over 10% has been achieved during the ramp-up phase. The study of the dependence of conversion efficiency on plasma density shows that the conversion efficiency is affected by the driven current, which is mainly dominated by the competition of impurity concentration with wave accessibility condition. In addition, the effect of current profile may play an important role in determining the conversion efficiency.
Institute of Scientific and Technical Information of China (English)
丁伯江; 匡光力; 等
2002-01-01
Ramp-up experiments by means of lower hydrid wave on HT-7 superconducting tokamak have been performed and analyzed.A ramp-up rate of over 300kA/s is obtained and a conversion efficiency of over 10% has been achieved during the ramp-up phases.The study of the dependence of conversion efficiency on plasma density shows that the conversion efficiency is affected by the driven current,which is mainly dominated by the competition of impurity concentration with wave accessibility condition.In addition,the effect of current profile may play an important role in determining the conversion efficiency.
Institute of Scientific and Technical Information of China (English)
Wang Ai-Ke
2005-01-01
In the fluid model, we derive a dispersion relation for the toroidal drift modes of tokamak plasmas, including the ion pressure gradient and the magnetic field gradient and curvature. It is shown that the magnetic field gradient and curvature (MFGC) can cause instabilities at the rational surface, which are of toroidicity-induced (TI) modes. On the other hand, it is discovered that the ion pressure gradient can stabilize the present MFGC instabilities. The critical threshold of ion pressure gradient, which makes the growth rate reduced to zero, is obtained both analytically and numerically.
Energy Technology Data Exchange (ETDEWEB)
Budny, R.V.; Alper, B.; Borba, D.; Cordey, J.G.; Ernst, D.R.; Gowers, C. [and others
2001-02-02
First results of gyrokinetic analysis of JET [Joint European Torus] ELMy [Edge Localized Modes] H-mode [high-confinement modes] plasmas are presented. ELMy H-mode plasmas form the basis of conservative performance predictions for tokamak reactors of the size of ITER [International Thermonuclear Experimental Reactor]. Relatively high performance for long duration has been achieved and the scaling appears to be favorable. It will be necessary to sustain low Z(subscript eff) and high density for high fusion yield. This paper studies the degradation in confinement and increase in the anomalous heat transport observed in two JET plasmas: one with an intense gas puff and the other with a spontaneous transition between Type I to III ELMs at the heating power threshold. Linear gyrokinetic analysis gives the growth rate, gamma(subscript lin) of the fastest growing modes. The flow-shearing rate omega(subscript ExB) and gamma(subscript lin) are large near the top of the pedestal. Their ratio decreases approximately when the confinement degrades and the transport increases. This suggests that tokamak reactors may require intense toroidal or poloidal torque input to maintain sufficiently high |gamma(subscript ExB)|/gamma(subscript lin) near the top of the pedestal for high confinement.
Energy Technology Data Exchange (ETDEWEB)
Perez, R. V., E-mail: rvale006@fiu.edu; Boeglin, W. U.; Angulo, A.; Avila, P.; Leon, O.; Lopez, C. [Department of Physics, Florida International University, 11200 SW 8 ST, CP204, Miami, Florida 33199 (United States); Darrow, D. S. [Princeton Plasma Physics Laboratory, James Forrestal Campus, P.O. Box 451, Princeton, New Jersey 08543 (United States); Cecconello, M.; Klimek, I. [Department of Physics and Astronomy, Uppsala University, Uppsala SE-751 20 (Sweden); Allan, S. Y.; Akers, R. J.; Keeling, D. L.; McClements, K. G.; Scannell, R.; Conway, N. J. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Turnyanskiy, M. [ITER Physics Department, EFDA CSU Garching, Boltzmannstrasse 2, D-85748, Garching (Germany); Jones, O. M. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Michael, C. A. [Australian National University, Canberra ACT 0200 (Australia)
2014-11-15
The proton detector (PD) measures 3 MeV proton yield distributions from deuterium-deuterium fusion reactions within the Mega Amp Spherical Tokamak (MAST). The PD’s compact four-channel system of collimated and individually oriented silicon detectors probes different regions of the plasma, detecting protons (with gyro radii large enough to be unconfined) leaving the plasma on curved trajectories during neutral beam injection. From first PD data obtained during plasma operation in 2013, proton production rates (up to several hundred kHz and 1 ms time resolution) during sawtooth events were compared to the corresponding MAST neutron camera data. Fitted proton emission profiles in the poloidal plane demonstrate the capabilities of this new system.
Energy Technology Data Exchange (ETDEWEB)
Imrisek, M. [Institute of Plasma Physics ASCR, Prague (Czech Republic); Faculty of Mathematics and Physics, Charles University in Prague, Prague (Czech Republic); Weinzettl, V.; Mlynar, J.; Panek, R.; Hron, M. [Institute of Plasma Physics ASCR, Prague (Czech Republic); Odstrcil, T. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Odstrcil, M. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague (Czech Republic); Optical Research Center, University of Southampton, Southampton (United Kingdom); Ficker, O. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague (Czech Republic); Pinzon, J. R. [Institue Jean Lamour, Université de Lorraine, Nancy (France); Ehrlacher, C. [ENS Cachan, Paris (France)
2014-11-15
The soft x-ray diagnostic is suitable for monitoring plasma activity in the tokamak core, e.g., sawtooth instability. Moreover, spatially resolved measurements can provide information about plasma position and shape, which can supplement magnetic measurements. In this contribution, fast algorithms with the potential for a real-time use are tested on the data from the COMPASS tokamak. In addition, the soft x-ray data are compared with data from other diagnostics in order to discuss possible connection between sawtooth instability on one side and the transition to higher confinement mode, edge localized modes and productions of runaway electrons on the other side.
Timokhin, V. M.; Rykachevskii, A. I.; Miroshnikov, I. V.; Sergeev, V. Yu.; Kochergin, M. M.; Koval', A. N.; Mukhin, E. E.; Tolstyakov, S. Yu.; Voronin, A. V.
2016-08-01
A diagnostic technique that is based on measuring the ratios of neutral-helium line strengths has been developed for peripheral distributions of electron temperature and density of tokamak plasma. The main components of the technique are a four-channel filter-lens imaging polychromator (FLIP-4) and a Phantom Miro M110 high-speed camera for recording the images. The polychromator has been assembled, adjusted, and tested on an optical test bench. The optical system was installed on the spherical Globus-M tokamak. Some preliminary experiments were carried out. Images of the plasma-gun jet were obtained at neutralhelium lines.
Energy Technology Data Exchange (ETDEWEB)
Razavi, M.; Mollai, M.; Khorshid, P. [Department of Physics, Islamic Azad University, Mashhad Branch, Mashhad 91735-413 (Iran, Islamic Republic of); Nedzelskiy, I. [Instituto de Plasma e Fusao Nuclear, Lisboa 1049-001 (Portugal); Ghoranneviss, M. [Plasma Physics Research Center, Islamic Azad University, Tehran 14665-678 (Iran, Islamic Republic of)
2010-05-15
The modified Rogowski sine-coil (MRSC) has been designed and implemented for the plasma column horizontal displacement measurements on small IR-T1 tokamak. MRSC operation has been examined on test assembly and tokamak. Obtained results show high sensitivity to the plasma column horizontal displacement and negligible sensitivity to the vertical displacement; linearity in wide, {+-}0.1 m, range of the displacements; and excellent, 1.5%, agreement with the results of numerical solution of Biot-Savart and magnetic flux equations.
Directory of Open Access Journals (Sweden)
D. Y. Klimushkin
Full Text Available The structure of monochromatic MHD-waves with large azimuthal wave number m≫1 in a two-dimensional model of the magnetosphere has been investigated. A joint action of the field line curvature, finite plasma pressure, and transversal equilibrium current leads to the phenomenon that waves, standing along the field lines, are travelling across the magnetic shells. The wave propagation region, the transparency region, is bounded by the poloidal magnetic surface on one side and by the resonance surface on the other. In their meaning these surfaces correspond to the usual and singular turning points in the WKB-approximation, respectively. The wave is excited near the poloidal surface and propagates toward the resonance surface where it is totally absorbed due to the ionospheric dissipation. There are two transparency regions in a finite-beta magnetosphere, one of them corresponds to the Alfvén mode and the other to the slow magnetosound mode.
Key words. Magnetosphere · Azimuthally small-scale waves · MHD waves
Axisymmetric Alfvén resonances in a multi-component plasma at finite ion gyrofrequency
Directory of Open Access Journals (Sweden)
D. Yu. Klimushkin
2006-05-01
Full Text Available This paper deals with the spatial structure of zero azimuthal wave number ULF oscillations in a 1-D inhomogeneous multi-component plasma when a finite ion gyrofrequency is taken into account. Such oscillations may occur in the terrestrial magnetosphere as Pc1-3 waves or in the magnetosphere of the planet Mercury. The wave field was found to have a sharp peak on some magnetic surfaces, an analogy of the Alfvén (field line resonance in one-fluid MHD theory. The resonance can only take place for waves with frequencies in the intervals ω<ω_{ch} or Ω_{0}<ω< ω_{cp}, where ω_{ch} and ω_{cp} are heavy and light ions gyrofrequencies, and Ω_{0} is a kind of hybrid frequency. Contrary to ordinary Alfvén resonance, the wave resonance under consideration takes place even at the zero azimuthal wave number. The radial component of the wave electric field has a pole-type singularity, while the azimuthal component is finite but has a branching point singularity on the resonance surface. The later singularity can disappear at some frequencies. In the region adjacent to the resonant surface the mode is standing across the magnetic shells.
Energy Technology Data Exchange (ETDEWEB)
Bergeaud, V
2001-11-01
In an ignited fusion reactor, the plasma temperature is sustained by the fusion reactions. However, before this regime is reached, it is necessary to bring an additional power to the plasma. One of the methods that enables the coupling of power is the use of an electromagnetic wave in the ion cyclotron range of frequencies (ICRF). This thesis deals with the interaction between ICRF heating and the fast ions. The thesis contains a theoretical study of the influence of ICRF heating on the ion distribution function. A particular emphasis is put on the importance of the toroidal spectrum of the modes of propagation of the wave in the tokamak. It is necessary to take into account all these modes in order to correctly assess the strength of the wave particle interaction, especially for high energy particles (of the order of hundreds of keV). The classical treatment of the wave particle interaction is based on the hypothesis that the cyclotron phase of the particle and the wave phase are de-correlated between successive resonant interactions. One is therefore led to consider ICRF heating as a diffusive process. This hypothesis is reconsidered in this thesis and it is shown that strong correlations exist in a large part of the velocity space. For this study, a numerical code that computes the full trajectory of particles interacting with a complete electromagnetic field has been developed. The thesis also deals with the problem of fast ion losses due to the breaking of the toroidal symmetry of the confinement magnetic field (called the ripple modulation). Between two toroidal coils, local magnetic wells exist, and particles can be trapped there. When trapped they undergo a vertical drift that makes them quit the plasma rapidly. The ripple modulation also causes an enhancement of the radial diffusion, thereby increasing the losses. A Monte Carlo model describing these mechanisms is presented. This model is validated thanks to a comparison with an experimental database from
Energy Technology Data Exchange (ETDEWEB)
Bergeaud, V
2000-12-01
In an ignited fusion reactor, the plasma temperature is sustained by the fusion reactions. However, before this regime is reached, it is necessary to bring an additional power to the plasma. One of the methods that enables the coupling of power is the use of an electromagnetic wave in the ion cyclotron range of frequencies (ICRF). This thesis deals with the interaction between ICRF heating and the fast ions. The thesis contains a theoretical study of the influence of ICRF heating on the ion distribution function. A particular emphasis is put on the importance of the toroidal spectrum of the modes of propagation of the wave in the tokamak. It is necessary to take into account all these modes in order to correctly assess the strength of the wave particle interaction, especially for high energy particles (of the order of hundreds of keV). The classical treatment of the wave particle interaction is based on the hypothesis that the cyclotron phase of the particle and the wave phase are de-correlated between successive resonant interactions. One is therefore led to consider ICRF heating as a diffusive process. This hypothesis is reconsidered in this thesis and it is shown that strong correlations exist in a large part of the velocity space. For this study, a numerical code that computes the full trajectory of particles interacting with a complete electromagnetic field has been developed. The thesis also deals with the problem of fast ion losses due to the breaking of the toroidal symmetry of the confinement magnetic field (called the ripple modulation). Between two toroidal coils, local magnetic wells exist, and particles can be trapped there. When trapped they undergo a vertical drift that makes them quit the plasma rapidly. The ripple modulation also causes an enhancement of the radial diffusion, thereby increasing the losses. A Monte Carlo model describing these mechanisms is presented. This model is validated thanks to a comparison with an experimental database from
Energy Technology Data Exchange (ETDEWEB)
Sonnino, Giorgio, E-mail: gsonnino@ulb.ac.be [Department of Physics, Université Libre de Bruxelles (U.L.B.), Campus de la Plaine C.P. 231-Bvd du Triomphe, 1050 Brussels (Belgium); Royal Military Academy (RMA), Laboratory for Plasma Physics, Avenue de la Renaissance, 30, 1000 Brussels (Belgium); Cardinali, Alessandro; Zonca, Fulvio [EURATOM-ENEA Fusion Association, Via E.Fermi 45, C.P. 65-00044 Frascati, Rome (Italy); Sonnino, Alberto [Université Catholique de Louvain (UCL), Ecole Polytechnique de Louvain (EPL), Rue Archimède, 1 bte L6.11.01, 1348 Louvain-la-Neuve (Belgium); Nardone, Pasquale [Department of Physics, Université Libre de Bruxelles (U.L.B.), Campus de la Plaine C.P. 231-Bvd du Triomphe, 1050 Brussels (Belgium); Steinbrecher, György [EURATOM-MEdC Fusion Association, University of Craiova, Faculty of Exact Sciences, Str.A.I.Cuza Street 13, 200585 Craiova (Romania)
2014-03-15
Rotation of tokamak-plasmas, not at the mechanical equilibrium, is investigated using the Prigogine thermodynamic theorem. This theorem establishes that, for systems confined in rectangular boxes, the global motion of the system with barycentric velocity does not contribute to dissipation. This result, suitably applied to toroidally confined plasmas, suggests that the global barycentric rotations of the plasma, in the toroidal and poloidal directions, are pure reversible processes. In case of negligible viscosity and by supposing the validity of the balance equation for the internal forces, we show that the plasma, even not in the mechanical equilibrium, may freely rotate in the toroidal direction with an angular frequency, which may be higher than the neoclassical estimation. In addition, its toroidal rotation may cause the plasma to rotate globally in the poloidal direction at a speed faster than the expression found by the neoclassical theory. The eventual configuration is attained when the toroidal and poloidal angular frequencies reaches the values that minimize dissipation. The physical interpretation able to explain the reason why some layers of plasma may freely rotate in one direction while, at the same time, others may freely rotate in the opposite direction, is also provided. Invariance properties, herein studied, suggest that the dynamic phase equation might be of the second order in time. We then conclude that a deep and exhaustive study of the invariance properties of the dynamical and thermodynamic equations is the most correct and appropriate way for understanding the triggering mechanism leading to intrinsic plasma-rotation in toroidal magnetic configurations.
Miloshevsky, G. V.; Hassanein, A.
2010-11-01
Plasma-facing components (PFCs) in tokamaks are exposed to high-heat loads during abnormal events such as plasma disruptions and edge-localized modes. The most significant erosion and plasma contamination problem is macroscopic melt splashes and losses from metallic divertor plates and wall materials into core plasma. The classical linear stability analysis is used to assess the initial conditions for development and growth of surface waves at the plasma-liquid metal interface. The maximum velocity difference and critical wavelengths are predicted. The effects of plasma density, surface tension and magnetic field on the stability of plasma-liquid tungsten flows are analytically investigated. The numerical modelling predicts that macroscopic motion and melt-layer losses involve the onset of disturbances on the surface of the tungsten melt layer with relatively long wavelengths compared with the melt thickness, the formation of liquid tungsten ligaments at wave crests and their elongation by the plasma stream with splitting of the bulk of the melt, and the development of extremely long, thin threads that eventually break into liquid droplets. Ejection of these droplets in the form of fine spray can lead to significant plasma contamination and enhanced erosion of PFCs. The numerical results advance the current understanding of the physics involved in the mechanism of melt-layer breakdown and droplet generation processes. These findings may also have implications for free surface liquid metal flows considered as the first wall in the design of several types of future fusion reactors.
Energy Technology Data Exchange (ETDEWEB)
Uehara, Kazuya; Kawakami, Tomohide [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Amemiya, Hiroshi; Hoethker, K.; Cosler, A.; Bieger, W.
1995-06-01
An ion diagnostic system using electrostatic probes for measurements in the JFT-2M tokamak boundary plasma has been developed under the collaboration program between KFA and JAERI. The rotating double probe system, on which the Hoethker double probe and Amemiya asymmetric probe can mounted, are manufactured at KFA workshop while the linear driver to support the rotating double probe, the ion toothbrush probe, the Katsumata probe and the cubic Mach probe are developed at JAERI. This report describes the hardware of this probe system for ion diagnostics in the boundary plasma and preliminary data obtained by means of this system. Furthermore, results on the transport are estimated on the basis of these probe data. (author).
Halpern, Federico D
2016-01-01
The narrow power decay-length ($\\lambda_q$), recently found in the scrape-off layer (SOL) of inner-wall limited (IWL) discharges in tokamaks, is studied using 3D, flux-driven, global two-fluid turbulence simulations. The formation of the steep plasma profiles measured is found to arise due to radially sheared $\\vec{E}\\times\\vec{B}$ poloidal flows. A complex interaction between sheared flows and outflowing plasma currents regulates the turbulent saturation, determining the transport levels. We quantify the effects of sheared flows, obtaining theoretical estimates in agreement with our non-linear simulations. Analytical calculations suggest that the IWL $\\lambda_q$ is roughly equal to the turbulent correlation length.
Energy Technology Data Exchange (ETDEWEB)
Ku, S [Courant Institute of Mathematical Sciences, New York University (United States); Chang, C-S [Courant Institute of Mathematical Sciences, New York University (United States); Adams, M [Columbia University (United States); Cummings, J [California Institute of Technology (United States); Hinton, F [Hinton Associates (United States); Keyes, D [Columbia University (United States); Klasky, S [Oak Ridge National Laboratory (United States); Lee, W [Princeton Plasma Physics Laboratory (United States); Lin, Z [University of California at Irvine (United States); Parker, S [University of Colorado at Boulder (United States)
2006-09-15
A gyrokinetic neoclassical solution for a diverted tokamak edge plasma has been obtained for the first time using the massively parallel Jaguar XT3 computer at Oak Ridge National Laboratory. The solutions show similar characteristics to the experimental observations: electric potential is positive in the scrape-off layer and negative in the H-mode layer, and the parallel rotation is positive in the scrape-off layer and at the inside boundary of the H-mode layer. However, the solution also makes a new physical discovery that there is a strong ExB convective flow in the scrape-off plasma. A general introduction to the edge simulation problem is also presented.
Halpern, F. D.; Ricci, P.
2017-03-01
The narrow power decay-length ({λq} ), recently found in the scrape-off layer (SOL) of inner-wall limited (IWL) discharges in tokamaks, is studied using 3D, flux-driven, global two-fluid turbulence simulations. The formation of the steep plasma profiles is found to arise due to radially sheared \\mathbf{E}× \\mathbf{B} poloidal flows. A complex interaction between sheared flows and parallel plasma currents outflowing into the sheath regulates the turbulent saturation, determining the transport levels. We quantify the effects of sheared flows, obtaining theoretical estimates in agreement with our non-linear simulations. Analytical calculations suggest that the IWL {λq} is roughly equal to the turbulent correlation length.
Localization of the magnetic reconnection zone during sawtooth crashes in tokamak plasmas
Munsat, T.; Park, H. K.; Classen, I.G.J.; Domier, C.W.; Donne, A. J. H.; N C Luhmann Jr.,; Mazzucato, E.; van de Pol, M.J.
2007-01-01
Recent 2D spatially and temporally resolved measurements of electron temperature fluctuations in the tokamak core have revealed new information on the dynamics of the sawtooth crash. Measures of poloidal localization of the reconnection zone are achieved through direct analysis of the 2D data and th
Fusion Energy-Production from a Deuterium-Tritium Plasma in the Jet Tokamak
Rebut, P. H.; Gibson, A.; Huguet, M.; Adams, J. M.; Alper, B.; Altmann, H.; Andersen, A.; Andrew, P.; Angelone, M.; Aliarshad, S.; Baigger, P.; Bailey, W.; Balet, B.; Barabaschi, P.; Barker, P.; Barnsley, R.; Baronian, M.; Bartlett, D. V.; Baylor, L.; Bell, A. C.; Benali, G.; Bertoldi, P.; Bertolini, E.; Bhatnagar, V.; Bickley, A. J.; Binder, D.; Bindslev, H.; Bonicelli, T.; Booth, S. J.; Bosia, G.; Botman, M.; Boucher, D.; Boucquey, P.; Breger, P.; Brelen, H.; Brinkschulte, H.; Brooks, D.; Brown, A.; Brown, T.; Brusati, M.; Bryan, S.; Brzozowski, J.; Buchse, R.; Budd, T.; Bures, M.; Businaro, T.; Butcher, P.; Buttgereit, H.; Caldwellnichols, C.; Campbell, D. J.; Card, P.; Celentano, G.; Challis, C. D.; Chankin, A. V.; Cherubini, A.; Chiron, D.; Christiansen, J.; Chuilon, P.; Claesen, R.; Clement, S.; Clipsham, E.; Coad, J. P.; Coffey, I. H.; Colton, A.; Comiskey, M.; Conroy, S.; Cooke, M.; Cooper, D.; Cooper, S.; Cordey, J. G.; Core, W.; Corrigan, G.; Corti, S.; Costley, A. E.; Cottrell, G.; Cox, M.; Cripwell, P.; Dacosta, O.; Davies, J.; Davies, N.; de Blank, H.; De Esch, H.; Dekock, L.; Deksnis, E.; Delvart, F.; Dennehinnov, G. B.; Deschamps, G.; Dickson, W. J.; Dietz, K. J.; Dmitrenko, S. L.; Dmitrieva, M.; Dobbing, J.; Doglio, A.; Dolgetta, N.; Dorling, S. E.; Doyle, P. G.; Duchs, D. F.; Duquenoy, H.; Edwards, A.; Ehrenberg, J.; Ekedahl, A.; Elevant, T.; Erents, S.K.; Eriksson, L. G.; Fajemirokun, H.; Falter, H.; Freiling, J.; Freville, F.; Froger, C.; Froissard, P.; Fullard, K.; Gadeberg, M.; Galetsas, A.; Gallagher, T.; Gambier, D.; Garribba, M.; Gaze, P.; Giannella, R.; Gill, R. D.; Girard, A.; Gondhalekar, A.; Goodall, D.; Gormezano, C.; Gottardi, N. A.; Gowers, C.; Green, B. J.; Grievson, B.; Haange, R.; Haigh, A.; Hancock, C. J.; Harbour, P. J.; Hartrampf, T.; Hawkes, N. C.; Haynes, P.; Hemmerich, J. L.; Hender, T.; Hoekzema, J.; Holland, D.; Hone, M.; Horton, L.; How, J.; Huart, M.; Hughes, I.; Hughes, T. P.; Hugon, M.; Huo, Y.; Ida, K.; Ingram, B.; Irving, M.; Jacquinot, J.; Jaeckel, H.; Jaeger, J. F.; Janeschitz, G.; Jankovicz, Z.; Jarvis, O. N.; Jensen, F.; Jones, E. M.; Jones, H. D.; Jones, Lpdf; Jones, S.; Jones, T. T. C.; Junger, J. F.; Junique, F.; Kaye, A.; Keen, B. E.; Keilhacker, M.; Kelly, G. J.; Kerner, W.; Khudoleev, A.; Konig, R.; Konstantellos, A.; Kovanen, M.; Kramer, G.; Kupschus, P.; Lasser, R.; Last, J. R.; Laundy, B.; Laurotaroni, L.; Laveyry, M.; Lawson, K.; Lennholm, M.; Lingertat, J.; Litunovski, R. N.; Loarte, A.; Lobel, R.; Lomas, P.; Loughlin, M.; Lowry, C.; Lupo, J.; Maas, A. C.; Machuzak, J.; Macklin, B.; Maddison, G.; Maggi, C. F.; Magyar, G.; Mandl, W.; Marchese, V.; Marcon, G.; Marcus, F.; Mart, J.; Martin, D.; Martin, E.; Martinsolis, R.; Massmann, P.; Matthews, G.; McBryan, H.; McCracken, G.; McKivitt, J.; Meriguet, P.; Miele, P.; Miller, A.; Mills, J.; Mills, S. F.; Millward, P.; Milverton, P.; Minardi, E.; Mohanti, R.; Mondino, P. L.; Montgomery, D.; Montvai, A.; Morgan, P.; Morsi, H.; Muir, D.; Murphy, G.; Myrnas, R.; Nave, F.; Newbert, G.; Newman, M.; Nielsen, P.; Noll, P.; Obert, W.; Obrien, D.; Orchard, J.; Orourke, J.; Ostrom, R.; Ottaviani, M.; Pain, M.; Paoletti, F.; Papastergiou, S.; Parsons, W.; Pasini, D.; Patel, D.; Peacock, A.; Peacock, N.; Pearce, R. J. M.; Pearson, D.; Peng, J. F.; Desilva, R. P.; Perinic, G.; Perry, C.; Petrov, M.; Pick, M. A.; Plancoulaine, J.; Poffe, J. P.; Pohlchen, R.; Porcelli, F.; Porte, L.; Prentice, R.; Puppin, S.; Putvinskii, S.; Radford, G.; Raimondi, T.; Deandrade, M. C. R.; Reichle, R.; Reid, J.; Richards, S.; Righi, E.; Rimini, F.; Robinson, D.; Rolfe, A.; Ross, R. T.; Rossi, L.; Russ, R.; Rutter, P.; Sack, H. C.; Sadler, G.; Saibene, G.; Salanave, J. L.; Sanazzaro, G.; Santagiustina, A.; Sartori, R.; Sborchia, C.; Schild, P.; Schmid, M.; Schmidt, G.; Schunke, B.; Scott, S. M.; Serio, L.; Sibley, A.; Simonini, R.; Sips, A.C.C.; Smeulders, P.; Smith, R.; Stagg, R.; Stamp, M.; Stangeby, P.; Stankiewicz, R.; Start, D. F.; Steed, C. A.; Stork, D.; Stott, P.E.; Stubberfield, P.; Summers, D.; Summers, H.; Svensson, L.; Tagle, J. A.; Talbot, M.; Tanga, A.; Taroni, A.; Terella, C.; Terrington, A.; Tesini, A.; Thomas, P. R.; Thompson, E.; Thomsen, K.; Tibone, F.; Tiscornia, A.; Trevalion, P.; Tubbing, B.; Vanbelle, P.; Vanderbeken, H.; Vlases, G.; von Hellermann, M.; Wade, T.; Walker, C.; Walton, R.; Ward, D.; Watkins, M. L.; Watkins, N.; Watson, M. J.; Weber, S.; Wesson, J.; Wijnands, T. J.; Wilks, J.; Wilson, D.; Winkel, T.; Wolf, R.; Wong, D.; Woodward, C.; Wu, Y.; Wykes, M.; Young, D.; Young, I. D.; Zannelli, L.; Zolfaghari, A.; Zwingmann, W.
1992-01-01
The paper describes a series of experiments in the Joint European Torus (JET), culminating in the first tokamak discharges in deuterium-tritium fuelled mixtures. The experiments were undertaken within limits imposed by restrictions on vessel activation and tritium usage. The objectives were: (i) to
Magnetic confinement experiment -- 1: Tokamaks
Energy Technology Data Exchange (ETDEWEB)
Goldston, R.J.
1994-12-31
This report reviews presentations made at the 15th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion on experimental tokamak physics, particularly on advances in core plasma physics, divertor and edge physics, heating and current drive, and tokamak concept optimization.
Plasma-Material Interface Development for Future Spherical Tokamak-based Devices in NSTX.
Energy Technology Data Exchange (ETDEWEB)
et. al, V
2011-09-24
The divertor plasma-material interface (PMI) must be able to withstand steady-state heat fluxes up to 10 MW/m{sup 2} (a limit imposed by the present day divertor material and engineering constraints) with minimal material erosion, as well as to provide impurity control and ion density pumping capabilities. In spherical tokamaks (STs), the compact divertor geometry and the requirement of low core electron collisionality n*{sub e} at n{sub e} < 0.5-0.7 n{sub G} (where n{sub G} is the Greenwald density) for increased neutral beam current drive efficiency impose much greater demands on divertor and first-wall particle and heat flux mitigation solutions. In NSTX, divertor heat flux mitigation and impurity control with an innovative 'snowflake' divertor configuration and ion density pumping by evaporated lithium wall and divertor coatings are studied. Lithium coatings have enabled ion density reduction up to 50% in NSTX through the reduction of wall and divertor recycling rates. The 'snowflake' divertor configuration was obtained in NSTX in 0.8-1 MA 4-6 MW NBI-heated H-mode lithium-assisted discharges using three divertor coils. The snowflake divertor formation was always accompanied by a partial detachment of the outer strike point with an up to 50% increase in divertor radiation from intrinsic carbon, the peak divertor heat flux reduction from 3-6 MW/m{sup 2} to 0.5-1 MW/m{sup 2}, and a significant increase in divertor volume recombination. High core confinement was maintained with the snowflake divertor, evidenced by the t{sub E}, W{sub MHD} and the H98(y,2) factors similar to those of the standard divertor discharges. Core carbon concentration and radiated power were reduced by 30-70%, apparently as a result of reduced divertor physical and chemical sputtering in the snowflake divertor and ELMs. In the SFD discharges, the MHD stability of the H-mode pedestal region was altered leading to the re-appearance of medium size (DW/W = 5-10%), Type I
Energy Technology Data Exchange (ETDEWEB)
Mikhailovskii, A.B.; Sharapov, S.E.; Timofeev, A.V. [JET Joint Undertaking, Abingdon, Oxfordshire OX14 3EA (United Kingdom)
2000-07-01
The theory of MHD modes driven by strong ExB velocity shear in tokamaks given by Mikhailovskii and Sharapov (2000 Plasma Phys. Control. Fusion 42 57) is revised. It is suggested that, in the approximations taken by these authors, there are no MHD eigenmodes if the cross-field velocity shear is larger then the Alfven frequency shear. (author)
Hillesheim, J C; Peebles, W A; Rhodes, T L; Schmitz, L; White, A E; Carter, T A
2010-10-01
A novel multichannel, tunable Doppler backscattering (DBS)/reflectometry system has recently been developed and applied to a variety of DIII-D plasmas. Either DBS or reflectometry can be easily configured for use in a wide range of plasma conditions using a flexible quasi-optical antenna system. The multiple closely spaced channels, when combined with other fluctuation diagnostic systems, have opened up new measurements of plasma properties. For example, the toroidal and fine-scale radial structure of coherent plasma oscillations, such as geodesic acoustic modes, have been probed simultaneously in the core of high temperature plasmas by applying correlation analysis between two toroidally separated DBS systems, as well as within the multichannel array. When configured as a reflectometer, cross-correlation with electron cyclotron emission radiometry has uncovered detailed information regarding the crossphase relationship between density and temperature fluctuations. The density-temperature crossphase measurement yields insight into the physics of tokamak turbulence at a fundamental level that can be directly compared with predictions from nonlinear gyrokinetic simulations.
Energy Technology Data Exchange (ETDEWEB)
Hillesheim, J. C.; Peebles, W. A.; Rhodes, T. L.; Schmitz, L.; Carter, T. A. [Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095-1547 (United States); White, A. E. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States)
2010-10-15
A novel multichannel, tunable Doppler backscattering (DBS)/reflectometry system has recently been developed and applied to a variety of DIII-D plasmas. Either DBS or reflectometry can be easily configured for use in a wide range of plasma conditions using a flexible quasi-optical antenna system. The multiple closely spaced channels, when combined with other fluctuation diagnostic systems, have opened up new measurements of plasma properties. For example, the toroidal and fine-scale radial structure of coherent plasma oscillations, such as geodesic acoustic modes, have been probed simultaneously in the core of high temperature plasmas by applying correlation analysis between two toroidally separated DBS systems, as well as within the multichannel array. When configured as a reflectometer, cross-correlation with electron cyclotron emission radiometry has uncovered detailed information regarding the crossphase relationship between density and temperature fluctuations. The density-temperature crossphase measurement yields insight into the physics of tokamak turbulence at a fundamental level that can be directly compared with predictions from nonlinear gyrokinetic simulations.
Energy Technology Data Exchange (ETDEWEB)
Michelot, Y.
1995-10-01
Fast electrons are one of the basic ingredients of plasma operations in many existing thermonuclear fusion research devices. However, the understanding of fast electrons dynamics during creation and sustainment of the superthermal electrons tail is far for being satisfactory. For this reason, the Electron Cyclotron Transmission (ECT) diagnostic was implemented on Tore Supra tokamak. It consists on a microwave transmission system installed on a vertical chord crossing the plasma center and working in the frequency range 77-109 GHz. Variations of the wave amplitude during the propagation across the plasma may be due to refraction and resonant absorption. For the ECT, the most common manifestation of refraction is a reduction of the received power density with respect to the signal detected in vacuum, due to the spreading and deflection of the wave beam. Wave absorption is observed in the vicinity of the electron cyclotron harmonics and may be due both to thermal plasma and to superthermal electron tails. It has a characteristic frequency dependence due to the relativistic mass variation in the wave-electron resonance condition. This thesis presents the first measurements of: the extraordinary mode optical depth at the third harmonics, the electron temperature from the width of a cyclotron absorption line and the relaxation times of the electron distribution during lower hybrid current drive from the ordinary mode spectral superthermal absorption line at the first harmonic. (J.S.). 175 refs., 110 figs., 9 tabs., 3 annexes.
Energy Technology Data Exchange (ETDEWEB)
Jeronimo, Leonardo Cunha
2013-07-01
Over the last few years is remarkable, so increasingly evident the need for a new source of energy for mankind. One promising option is through nuclear fusion, where the plasma produced in the reactor can be converted into electrical energy. Therefore, knowing the characteristics of this plasma is very important to control it and understand it so desirable. One of the diagnostic options is called Thomson scattering . This is considered the most reliable method for the determination of important plasma parameters such as temperature and electron density, and may also help in the study and explanation of various internal mechanisms. The great advantage lies in the tact that they consist of a direct measurement and nonperturbative. But it is a diagnosis whose installation and execution is admittedly complex, limiting it only a few laboratories in the fíeld of fusion for the world. Among the main difficulties, wc can highlight the fact that the scattered signal is very small, thus requiring a large increase of the incident power. Moreover, the external physical conditions can cause mechanical vibrations that eliminate or minimize them as much as possible, is a great challenge, considering the optical micrometrically very sensitive and needs involved in the system. This work describes the entire process of installation and operation of Thomson scattering diagnostic in tokamak TCABR and through this diagnosis, we work on results of electron temperature, to finally be able to calculate the electron density of the plasma. (author)
Energy Technology Data Exchange (ETDEWEB)
Bongers, W. A.; Beveren, V. van; Westerhof, E.; Goede, A. P. H.; Krijger, B.; Berg, M. A. van den; Graswinckel, M. F.; Schueller, F. C. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Thoen, D. J. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Nuij, P. J. W. M. [Eindhoven University of Technology, Control Systems Technology Group, and Applied Physics Department, PO Box 513, NL-5600 MB Eindhoven (Netherlands); Baar, M. R. de; Donne, A. J. H.; Hennen, B. A. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, Control Systems Technology Group, and Applied Physics Department, PO Box 513, NL-5600 MB Eindhoven (Netherlands); Kantor, M. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Forschungszentrum Juelich GMBH, Institute of Energy and Climate research, Plasma Physics, Association EURATOM-FZJ, Trilateral Euregio Cluster, 52425 Juelich (Germany); Ioffe Institute, RAS, Saint-Petersburg, 195256 (Russian Federation)
2011-06-15
An intermediate frequency (IF) band digitizing radiometer system in the 100-200 GHz frequency range has been developed for Tokamak diagnostics and control, and other fields of research which require a high flexibility in frequency resolution combined with a large bandwidth and the retrieval of the full wave information of the mm-wave signals under investigation. The system is based on directly digitizing the IF band after down conversion. The enabling technology consists of a fast multi-giga sample analog to digital converter that has recently become available. Field programmable gate arrays (FPGA) are implemented to accomplish versatile real-time data analysis. A prototype system has been developed and tested and its performance has been compared with conventional electron cyclotron emission (ECE) spectrometer systems. On the TEXTOR Tokamak a proof of principle shows that ECE, together with high power injected and scattered radiation, becomes amenable to measurement by this device. In particular, its capability to measure the phase of coherent signals in the spectrum offers important advantages in diagnostics and control. One case developed in detail employs the FPGA in real-time fast Fourier transform (FFT) and additional signal processing. The major benefit of such a FFT-based system is the real-time trade-off that can be made between frequency and time resolution. For ECE diagnostics this corresponds to a flexible spatial resolution in the plasma, with potential application in smart sensing of plasma instabilities such as the neoclassical tearing mode (NTM) and sawtooth instabilities. The flexible resolution would allow for the measurement of the full mode content of plasma instabilities contained within the system bandwidth.
Bongers, W. A.; van Beveren, V.; Thoen, D. J.; Nuij, P. J. W. M.; de Baar, M. R.; Donné, A. J. H.; Westerhof, E.; Goede, A. P. H.; Krijger, B.; van den Berg, M. A.; Kantor, M.; Graswinckel, M. F.; Hennen, B. A.; Schüller, F. C.
2011-06-01
An intermediate frequency (IF) band digitizing radiometer system in the 100-200 GHz frequency range has been developed for Tokamak diagnostics and control, and other fields of research which require a high flexibility in frequency resolution combined with a large bandwidth and the retrieval of the full wave information of the mm-wave signals under investigation. The system is based on directly digitizing the IF band after down conversion. The enabling technology consists of a fast multi-giga sample analog to digital converter that has recently become available. Field programmable gate arrays (FPGA) are implemented to accomplish versatile real-time data analysis. A prototype system has been developed and tested and its performance has been compared with conventional electron cyclotron emission (ECE) spectrometer systems. On the TEXTOR Tokamak a proof of principle shows that ECE, together with high power injected and scattered radiation, becomes amenable to measurement by this device. In particular, its capability to measure the phase of coherent signals in the spectrum offers important advantages in diagnostics and control. One case developed in detail employs the FPGA in real-time fast Fourier transform (FFT) and additional signal processing. The major benefit of such a FFT-based system is the real-time trade-off that can be made between frequency and time resolution. For ECE diagnostics this corresponds to a flexible spatial resolution in the plasma, with potential application in smart sensing of plasma instabilities such as the neoclassical tearing mode (NTM) and sawtooth instabilities. The flexible resolution would allow for the measurement of the full mode content of plasma instabilities contained within the system bandwidth.
Kim, Deok-Kyu; Hong, Sang Hee
2005-06-01
A two-dimensional simulation modeling that has been performed in a self-consistent way for analysis on the fully coupled transports of plasma, recycling neutrals, and intrinsic carbon impurities in the divertor domain of tokamaks is presented. The numerical model coupling the three major species transports in the tokamak edge is based on a fluid-particle hybrid approach where the plasma is described as a single magnetohydrodynamic fluid while the neutrals and impurities are treated as kinetic particles using the Monte Carlo technique. This simulation code is applied to the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak [G. S. Lee, J. Kim, S. M. Hwang et al., Nucl. Fusion 40, 575 (2000)] to calculate the peak heat flux on the divertor plate and to explore the divertor plasma behavior depending on the upstream conditions in its base line operation mode for various values of input heating power and separatrix plasma density. The numerical modeling for the KSTAR tokamak shows that its full-powered operation is subject to the peak heat loads on the divertor plate exceeding an engineering limit, and reveals that the recycling zone is formed in front of the divertor by increasing plasma density and by reducing power flow into the scrape-off layer. Compared with other researchers' work, the present hybrid simulation more rigorously reproduces severe electron pressure losses along field lines by the presence of recycling zone accounting for the transitions between the sheath limited and the detached divertor regimes. The substantial profile changes in carbon impurity population and ionic composition also represent the key features of this divertor regime transition.
Farahania, N Darestani
2015-01-01
A formulation of a multi-input single-output closed-loop subspace system identification method is employed for the purpose of obtaining control-relevant model of the vacuum-plasma response in Damavand tokamak. Such a model is particularly well suited for robust controller design. The accuracy of the estimate of the plant dynamics is estimated by different experiments. The method described in this paper is a worst-case identification technique, in that it aims to minimize the error between the identified model and the true plant. The identified model fitness around defined operating point is more than 90% and with comparison by physical-based model it has better root mean square measure of the goodness of the fit.
Darestani Farahani, N.; Abbasi Davani, F.
2016-02-01
The formulation of a multi-input single-output closed-loop subspace method for system identification has been employed for the purpose of obtaining control-relevant model of the open loop response for plasma vertical movement in the Damavand tokamak. Such a model is particularly well suited for the robust controller design. The method described in this paper is a kind of worst-case identification technique, aiming to minimize the error between the identified model and the true plant. The accuracy of the estimation of the plant dynamics has been tested by different experiments. The fitness of the identified model around the defined operating point has been more than 90%, and compared to the physical-based model, it has better root mean squared error (RMSE) measure of the goodness of fitting.
Savrukhin, P. V.; Shestakov, E. A.
2016-11-01
Experiments in the T-10 tokamak [Alikaev et al., Plasma Phys. Controlled Fusion 30, 381 (1988)] have demonstrated the possibility of control of the plasma current and prevention of formation of the non-thermal (Eγ > 150 keV) electron beams after an energy quench at the density limit disruption using electron cyclotron heating (ECRH) and controlled operation of the Ohmic power supply system. Quasi-stable plasma operation with repetitive sawtooth oscillations can be restored after an energy quench using high auxiliary power Pec > 2-5 Poh. Optimal conditions of the plasma discharge recovery after an energy quench using auxiliary heating are identified. At high auxiliary power, restoration of the plasma discharge can be provided with the location of the EC resonance zone within the whole plasma cross section. The auxiliary power required for discharge restoration is minimal when the power is deposited around the m = 2, n = 1 magnetic island (here m and n poloidal and toroidal wave numbers). The threshold ECRH power increases linearly with plasma current. Prevention of the non-thermal electron beams during density limit disruption is associated with stabilization of bursts of the magnetohydrodynamic modes, creation of the saturated magnetic islands, and heating of the background plasma using ECRH. Plasma discharge recovery after an energy quench in a tokamak reactor using auxiliary heating and controllable reduction of the plasma current is discussed.
Majeski, Dick
2016-10-01
High edge electron temperatures (200 eV or greater) have been measured at the wall-limited plasma boundary in the Lithium Tokamak eXperiment (LTX). High edge temperatures, with flat electron temperature profiles, are a long-predicted consequence of low recycling boundary conditions. The temperature profile in LTX, measured by Thomson scattering, varies by as little as 10% from the plasma axis to the boundary, determined by the lithium-coated high field-side wall. The hydrogen plasma density in the outer scrape-off layer is very low, 2-3 x 1017 m-3 , consistent with a low recycling metallic lithium boundary. The plasma surface interaction in LTX is characterized by a low flux of high energy protons to the lithium PFC, with an estimated Debye sheath potential approaching 1 kV. Plasma-material interactions in LTX are consequently in a novel regime, where the impacting proton energy exceeds the peak in the sputtering yield for the lithium wall. In this regime, further increases in the edge temperature will decrease, rather than increase, the sputtering yield. Despite the high edge temperature, the core impurity content is low. Zeff is 1.2 - 1.5, with a very modest contribution (Gas puffing is used to increase the plasma density. After gas injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX which includes a 35A, 20 kV neutral beam injector to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. Two beam systems have been loaned to LTX by Tri Alpha Energy. Additional results from LTX, as well as progress on the upgrade - LTX- β - will be discussed. Work supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.
Shinya, T.; Takase, Y.; Yajima, S.; Moeller, C.; Yamazaki, H.; Tsujii, N.; Yoshida, Y.; Ejiri, A.; Togashi, H.; Toida, K.; Furui, H.; Homma, H.; Nakamura, K.; Roidl, B.; Sonehara, M.; Takahashi, W.; Takeuchi, T.
2017-03-01
Non-inductive plasma current start-up experiments were performed using the lower hybrid wave (LHW) on the TST-2 spherical tokamak. The density limit, observed in previous experiments using the outboard-launch antenna, disappeared after changing the plasma condition in the scrape-off layer, and the plasma current reached about 20 kA. In order to improve the LHW power deposition in the plasma core through an up-shift of the parallel wavenumber during the first pass through the plasma, a new top-launch antenna was designed, fabricated and installed. The plasma current ramp-up to 12 kA was achieved using the top-launch antenna alone in a preliminary experiment. Ray-tracing calculations using the measured plasma parameters showed a large up-shift during the first pass, satisfying the strong electron Landau damping condition in the plasma core.
Development of 3D ferromagnetic model of tokamak core with strong toroidal asymmetry
DEFF Research Database (Denmark)
Markovič, Tomáš; Gryaznevich, Mikhail; Ďuran, Ivan;
2015-01-01
Fully 3D model of strongly asymmetric tokamak core, based on boundary integral method approach (i.e. characterization of ferromagnet by its surface) is presented. The model is benchmarked on measurements on tokamak GOLEM, as well as compared to 2D axisymmetric core equivalent for this tokamak...
Effect of Magnetohydrodynamic Perturbations on the Orbit Loss of Alpha Particles in Tokamak Plasma
Institute of Scientific and Technical Information of China (English)
邬良能; 俞国扬
2002-01-01
We investigate the orbit loss of alpha particles under helical magnetic perturbation in a tokamak. The results show that low-frequency andlow-mode number magnetic perturbation can cause stochastic loss ofalpha particles.This effect is significant for those particles close to the boundary between the transit zone and the trapped zone.The particle loss is sensitive to the phase of the magnetic perturbation, indicating the modulation of the particle loss with respect to magnetic perturbation. It is also found that the precession of the particle banana orbit can even further enhance the particle loss.
Energy Technology Data Exchange (ETDEWEB)
Hong, Sang Hee; Choi, Byung Yong; Ahn, Hyun; Ju, Won Tae; Eom, You Sub [Seoul National University, Seoul (Korea, Republic of)
1995-08-01
For the fabrication of insulation coatings with good vacuum tightness, mechanical and electrical properties needed for voltage breaker and plasma facing components of tokamak vacuum vessel, a plasma spraying system equipped= with an improved power supply and a precision powder feeder is employed for the development of the optimum processes for ceramic insulation coatings. The material properties of the ceramic coatings for tokamak vacuum vessel components are evaluated by material tests and analyses to determine optimum processing parameters for insulation coatings. As a result of material evaluation for Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-TiO{sub 2} ceramic insulation coatings fabricated, Al{sub 2}O{sub 3}-3%TiO{sub 2} ceramic turn out to be the best insulation coating for tokamak use in respect of electrical and mechanical properties. Al{sub 2}O{sub 3} coating with dielectric strength values of more than 26 kV/mm can also be applicable to tokamak vacuum vessel components for electric insulation by improving its low adhesive strength. 23 refs., 9 tabs., 14 figs. (author)
Moving Divertor Plates in a Tokamak
Energy Technology Data Exchange (ETDEWEB)
S.J. Zweben, H. Zhang
2009-02-12
Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions.
Energy Technology Data Exchange (ETDEWEB)
Petrov, V. G.; Malyshev, A. Yu.; Markov, V. K.; Petrov, A. A. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Avino, F.; Angelis, R. de; Tudisco, O. [ENEA-UT Fusione Centro Ricerche Frascati (Italy)
2012-04-15
A pulsed time-of-flight refractometer was developed and tested to determine the mean plasma density in the T-11M tokamak by measuring the propagation time of nanosecond microwave pulses in plasma. Later, it was also proposed to use such an instrument to measure and control the mean plasma density in the ITER tokamak by probing the plasma with an extraordinary wave, the electric field of which is perpendicular to the magnetic field in plasma, in the transparency window at frequencies of 50-100 GHz. To avoid the effect of the density profile shape on the measurement results in the nonlinear mode of refractometer operation (near the cutoff), a system operating at two different probing frequencies was developed and tested. Such a system provides two values of the time delay, which can be used to estimate the peaking factor of the density distribution {alpha} and correctly determine the linear density Left-Pointing-Angle-Bracket Nl Right-Pointing-Angle-Bracket , regardless of the density profile (assuming a smooth density profile of the form of N({rho}) = N(0)(1 - {rho}{sup 2}){sup {alpha}}, where N(0) is the central plasma density and {rho} = r/a is the normalized plasma radius). The first experiments on density measurements in the FTU tokamak performed with this refractometer are described, and results from these experiments are presented. The formation of a thin dense plasma layer in the zone of a strong magnetic field (the so-called MARFE layer) at a relatively low (for FTU) plasma density of {approx}6 Multiplication-Sign 10{sup 19} m{sup -3} was detected. The thickness of this layer, determined from the refractometry data, agrees well with the data obtained using a digital camera.
Zhang, C.; Gauthier, E.; Pocheau, C.; Balorin, C.; Pascal, J. Y.; Jouve, M.; Aumeunier, M. H.; Courtois, X.; Loarer, Th.; Houry, M.
2017-03-01
For the long-pulse high-confinement discharges in tokamaks, the equilibrium of plasma requires a contact with the first wall materials. The heat flux resulting from this interaction is of the order of 10 MW/m2 for steady state conditions and up to 20 MW/m2 for transient phases. The monitoring on surface temperatures of the plasma facing components (PFCs) is a major concern to ensure safe operation and to optimize performances of experimental operations on large fusion facilities. Furthermore, this measurement is also required to study the physics associated to the plasma material interactions and the heat flux deposition process. In tokamaks, infrared (IR) thermography systems are routinely used to monitor the surface temperature of the PFCs. This measurement requires an accurate knowledge of the surface emissivity. However, and particularly for metallic materials such as tungsten, this emissivity value can vary over a wide range with both the surface condition and the temperature itself, which makes instantaneous measurement challenging. In this context, the multi-spectral infrared method appears as a very promising alternative solution. Indeed, the system has the advantage to carry out a non-intrusive measurement on thermal radiation while evaluating surface temperature without requiring a mandatory surface emissivity measurement. In this paper, a conceptual design for the multi-spectral infrared thermography is proposed. The numerical study of the multi-channel system based on the Levenberg-Marquardt (LM) nonlinear curve fitting is applied. The numerical results presented in this paper demonstrate the design allows for measurements over a large temperature range with a relative error of less than 10%. Furthermore, laboratory experiments have been performed from 200 °C to 740 °C to confirm the feasibility for temperature measurements on stainless steel and tungsten. In these experiments, the unfolding results from the multi-channel detection provide good
Cook, J W S; Dendy, R O
2010-01-01
We present particle-in-cell (PIC) simulations of minority energetic protons in deuterium plasmas, which demonstrate a collective instability responsible for emission near the lower hybrid frequency and its harmonics. The simulations capture the lower hybrid drift instability in a regime relevant to tokamak fusion plasmas, and show further that the excited electromagnetic fields collectively and collisionlessly couple free energy from the protons to directed electron motion. This results in an asymmetric tail antiparallel to the magnetic field. We focus on obliquely propagating modes under conditions approximating the outer mid-plane edge in a large tokamak, through which there pass confined centrally born fusion products on banana orbits that have large radial excursions. A fully self-consistent electromagnetic relativistic PIC code representing all vector field quantities and particle velocities in three dimensions as functions of a single spatial dimension is used to model this situation, by evolving the in...
McClements, K G; Dendy, R O; Carbajal, L; Chapman, S C; Cook, J W S; Harvey, R W; Heidbrink, W W; Pinches, S D
2014-01-01
Fast particle-driven waves in the ion cyclotron frequency range (ion cyclotron emission or ICE) have provided a valuable diagnostic of confined and escaping fast ions in many tokamaks. This is a passive, non-invasive diagnostic that would be compatible with the high radiation environment of deuterium-tritium plasmas in ITER, and could provide important information on fusion {\\alpha}-particles and beam ions in that device. In JET, ICE from confined fusion products scaled linearly with fusion reaction rate over six orders of magnitude and provided evidence that {\\alpha}-particle confinement was close to classical. In TFTR, ICE was observed from super-Alfv\\'enic {\\alpha}-particles in the plasma edge. The intensity of beam-driven ICE in DIII-D is more strongly correlated with drops in neutron rate during fishbone excitation than signals from more direct beam ion loss diagnostics. In ASDEX Upgrade ICE is produced by both super-Alfv\\'enic DD fusion products and sub-Alfv\\'enic deuterium beam ions.
Synakowski, E. J.; Batha, S. H.; Beer, M. A.; Bell, M. G.; Bell, R. E.; Budny, R. V.; Bush, C. E.; Efthimion, P. C.; Hahm, T. S.; Hammett, G. W.; LeBlanc, B.; Levinton, F.; Mazzucato, E.; Park, H.; Ramsey, A. T.; Schmidt, G.; Rewoldt, G.; Scott, S. D.; Taylor, G.; Zarnstorff, M. C.
1997-05-01
The roles of turbulence stabilization by sheared E×B flow and Shafranov shift gradients are examined for Tokamak Fusion Test Reactor [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)] enhanced reverse-shear (ERS) plasmas. Both effects in combination provide the basis of a positive-feedback model that predicts reinforced turbulence suppression with increasing pressure gradient. Local fluctuation behavior at the onset of ERS confinement is consistent with this framework. The power required for transitions into the ERS regime are lower when high power neutral beams are applied earlier in the current profile evolution, consistent with the suggestion that both effects play a role. Separation of the roles of E×B and Shafranov shift effects was performed by varying the E×B shear through changes in the toroidal velocity with nearly steady-state pressure profiles. Transport and fluctuation levels increase only when E×B shearing rates are driven below a critical value that is comparable to the fastest linear growth rates of the dominant instabilities. While a turbulence suppression criterion that involves the ratio of shearing to linear growth rates is in accord with many of these results, the existence of hidden dependencies of the criterion is suggested in experiments where the toroidal field was varied. The forward transition into the ERS regime has also been examined in strongly rotating plasmas. The power threshold is higher with unidirectional injection than with balance injection.
Energy Technology Data Exchange (ETDEWEB)
Chatthong, B. [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla (Thailand); Onjun, T. [School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani (Thailand)
2016-08-15
The hysteresis behaviour at the L-H-L transitions in tokamak plasma is investigated based on bifurcation concept. The formation of an edge transport barrier (ETB) is modeled via thermal and particle transport equations with the flow shear suppression effect on anomalous transport included. The anomalous transport is modeled based on critical gradients threshold and the flow shear is calculated from the force balance equation, couples the two transport equations leading to a non-linear behaviour. Analytical investigation reveals that the fluxes versus gradients space exhibits bifurcation behaviour with s -curve soft bifurcation type. Apparently, the backward H-L transition occurs at lower values than that of the forward L-H transition, illustrating hysteresis behaviour. The hysteresis properties, i.e. locations of threshold fluxes, gradients and their ratios are analyzed as a function of neoclassical and anomalous transport values and critical gradients. It is found that the minimum heat flux for maintaining H -mode depends on several plasma parameters including the strength of anomalous transport and neoclassical transport. In particular, the hysteresis depth becomes larger when neoclassical transport decreases or anomalous transport increases. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Angioni, C.; Bilato, R.; Casson, F. J.; Fable, E.; Mantica, P.; Odstrcil, T.; Valisa, M.; ASDEX Upgrade Team; Contributors, JET
2017-02-01
In tokamaks, the role of turbulent transport of heavy impurities, relative to that of neoclassical transport, increases with increasing size of the plasma, as clarified by means of general scalings, which use the ITER standard scenario parameters as reference, and by actual results from a selection of discharges from ASDEX Upgrade and JET. This motivates the theoretical investigation of the properties of the turbulent convection of heavy impurities by nonlinear gyrokinetic simulations in the experimentally relevant conditions of comparable ion and electron heat fluxes. These conditions also correspond to an intermediate regime between dominant ion temperature gradient turbulence and trapped electron mode turbulence. At moderate plasma toroidal rotation, the turbulent convection of heavy impurities, computed with nonlinear gyrokinetic simulations, is found to be directed outward, in contrast to that obtained by quasi-linear calculations based on the most unstable linear mode, which is directed inward. In this mixed turbulence regime, with comparable electron and ion heat fluxes, the nonlinear results of the impurity transport can be explained by the coexistence of both ion temperature gradient and trapped electron modes in the turbulent state, both contributing to the turbulent convection and diffusion of the impurity. The impact of toroidal rotation on the turbulent convection is also clarified.
Energy Technology Data Exchange (ETDEWEB)
Peng, Y. K.M.; Borowski, S. K.
1977-12-01
The scenario of toroidal plasma start-up with microwave initiation and heating near the electron cyclotron frequency is suggested and examined here. We assume microwave irradiation from the high field side and an anomalously large absorption of the extraordinary waves near the upper hybrid resonance. The dominant electron energy losses are assumed to be due to magnetic field curvature and parallel drifts, ionization of neutrals, cooling by ions, and radiation by low Z impurities. It is shown by particle and energy balance considerations that electron temperatures around 250 eV and densities of 10/sup 12/ to 10/sup 13/ cm/sup -3/ can be maintained, at least in a narrow region near the upper hybrid resonance, with modest microwave powers in the Impurity Study Experiment (ISX) (120 kW at 28 GHz) and The Next Step (TNS) (0.57 MW at 120 GHz). The loop voltages required for start-up from these initial plasmas are also estimated. It is shown that the loop voltage can be reduced by a factor of five to ten from that for unassisted start-up without an increase in the resistive loss in volt-seconds. If this reduction in loop voltage is verified in the ISX experiments, substantial savings in the cost of power supplies for the ohmic heating (OH) and equilibrium field (EF) coils can be realized in future large tokamaks.
Current drive with combined electron cyclotron wave and high harmonic fast wave in tokamak plasmas
Li, J. C.; Gong, X. Y.; Dong, J. Q.; Wang, J.; Zhang, N.; Zheng, P. W.; Yin, C. Y.
2016-12-01
The current driven by combined electron cyclotron wave (ECW) and high harmonic fast wave is investigated using the GENRAY/CQL3D package. It is shown that no significant synergetic current is found in a range of cases with a combined ECW and fast wave (FW). This result is consistent with a previous study [Harvey et al., in Proceedings of IAEA TCM on Fast Wave Current Drive in Reactor Scale Tokamaks (Synergy and Complimentarily with LHCD and ECRH), Arles, France, IAEA, Vienna, 1991]. However, a positive synergy effect does appear with the FW in the lower hybrid range of frequencies. This positive synergy effect can be explained using a picture of the electron distribution function induced by the ECW and a very high harmonic fast wave (helicon). The dependence of the synergy effect on the radial position of the power deposition, the wave power, the wave frequency, and the parallel refractive index is also analyzed, both numerically and physically.
Core Plasma Characteristics of a Spherical Tokamak D-3He Fusion Reactor
Institute of Scientific and Technical Information of China (English)
Shi Bingren
2005-01-01
The magnetic fusion reactor using the advanced D-3He fuels has the advantage of much less-neutron productions so that the consequent damages to the first wall are less serious. If the establishment of this kind of reactor becomes realistic, the exploration of 3He on the moon will be largely motivated. Based on recent progresses in the spherical torus (ST) research, we have physically designed a D-3He fusion reactor using the extrapolated results from the ST experiments and also the present-day tokamak scaling. It is found that the reactor size significantly depends on the wall reflection coefficient of the synchrotron radiation and of the impurity contaminations.The secondary reaction between D-D that promptly leads to the D-T reaction producing 14 MeV neutrons is also estimated. Comparison of this D-3He ST reactor with the D-T reactor is made.
Influence of Long-Term Plasma Irradiation on Metallic First Mirrors in HT-7 Tokamak
Institute of Scientific and Technical Information of China (English)
TANG Chunjiang; LI Renhong; CHEN Junling
2008-01-01
The first mirror (FM) samples made of polycrystal (PC) stainless steel (SS), molyb-denum (Mo) and tungsten (W) were mounted at different locations in HT-7 tokamak to investigate the surface modifications caused by erosion and deposition. The optical transmission character-istics of first mirror samples were measured by a spectrophotometer. It was found that different irradiation environment had different influences on the first mirror surfaces, especially with wave antenna nearby. In addition, the erosion made the refiectivity of FM degrade to some extents as a whole. But the deposition on the mirror influences more than erosion does. Comparing the mirrors of SS, W and Mo, irradiated in the same environment, the W-mirror had the least changes in reflectivity with regularity, while the SS-mirror had most serious changes.
Panis, Theodoros
2010-01-01
Direct damping rate measurements of AEs are obtained using the active MHD spectroscopy system installed on the JET tokamak. The system was recently equipped with new antennas, designed to study especially the modes of intermediate toroidal mode number n, |n| = 3 – 15, as the AEs of this range are most prone to destabilization by the fast particles in JET and in future burning plasma experiments such as ITER. The broad n-spectrum that is driven by the ...
Fusion potential for spherical and compact tokamaks
Energy Technology Data Exchange (ETDEWEB)
Sandzelius, Mikael
2003-02-01
The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high {beta}-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect.
Energy Technology Data Exchange (ETDEWEB)
Wootton, A.J.
1993-04-01
This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported.
Lee, Jungpyo; Wright, John; Bonoli, Paul; Harvey, Robert
2015-11-01
We describe a numerical model for the propagation and absorption of ion cyclotron waves in a tokamak with a non-Maxwellian velocity space distribution function. The non-Maxwellian distribution is calculated by solving Maxwell's equations and the Fokker-Plank equation self-consistently. This approach will be useful to interpret measurements of minority hydrogen tail formation during ICRF heating experiments in Alcator C-Mod. To couple the Maxwell equation solver with Fokker-Plank equation solver, the quasilinear diffusion coefficients for the fundamental ion cyclotron absorption and the first harmonic absorption are calculated. In a previous study, the all-orders spectral algorithm wave solver (AORSA) was coupled with the Fokker-Plank code (CQL3D) to find the self-consistent non-Maxwellian distribution. We derive the modified quasilinear diffusion coefficients for the finite Larmor radius (FLR) approximation using a significantly faster wave solver (TORIC) following the approach by Jaeger. The coupled TORIC-CQL3D model will be compared against results from AORSA-CQL3D in order to verify the accuracy of the reduced FLR physics in TORIC. Work supported by US Department of Energy Contract No. DE-FC02-01ER54648.
Halpern, F. D.; Horacek, J.; Pitts, R. A.; Ricci, P.
2016-08-01
The International Tokamak Physics Activity Topical Group on scrape-off layer and divertor physics has amassed a database comprising hundreds of reciprocating Langmuir probe measurements of the main scrape-off layer heat-flux width {λq} in inner-wall limited discharges. We have carried out an analysis, based on turbulent transport theory, of the variation of {λq} with respect to the dimensionless plasma parameters. Restricting our analysis to circular plasmas, we find that a model based on non-linearly saturated turbulence can well reproduce the {λq} values found in the database.
Plasma response to m/n = 3/1 resonant magnetic perturbation at J-TEXT Tokamak
Hu, Qiming; Li, Jianchao; Wang, Nengchao; Yu, Q.; Chen, Jie; Cheng, Zhifeng; Chen, Zhipeng; Ding, Yonghua; Jin, Hai; Li, Da; Li, Mao; Liu, Yang; Rao, Bo; Zhu, Lizhi; Zhuang, Ge; the J-TEXT Team
2016-09-01
The influence of resonant magnetic perturbations (RMPs) with a large m/n = 3/1 component on electron density has been studied at J-TEXT tokamak by using externally applied static and rotating RMPs, where m and n are the poloidal and toroidal mode number, respectively. The detailed time evolution of electron density profile, measured by the polarimeter-interferometer, shows that the electron density n e first increases (decreases) inside (around/outside) of the 3/1 rational surface (RS), and it is increased globally later together with enhanced edge recycling. Associated with field penetration, the toroidal rotation around the 3/1 RS is accelerated in the co-I p direction and the poloidal rotation is changed from the electron to ion diamagnetic drift direction. Spontaneous unlocking-penetration circles occur after field penetration if the RMPs amplitude is not strong enough. For sufficiently strong RMPs, the 2/1 locked mode is also triggered due to mode coupling, and the global density is increased. The field penetration threshold is found to be linearly proportional to n eL (line-integrated density) at the 3/1 RS but to (n eL)0.73 for n e at the plasma core. In addition, for rotating RMPs with a large 3/1 component, field penetration causes a global increase in electron density.
Sinha, Joyeeta; Coda, Stefano; Duval, Basil Paul; Galperti, Cristian; Moret, Jean-Marc; Reimerdes, Holger
2016-10-01
The dynamics of the plasma formation in TCV are revisited with the goal of improving reliability and developing new scenarios such as the creation of doublet configurations. A database for the plasma formation scenarios in TCV reveals that 15% of the attempts to form a plasma fail during the burn-through phase. Plasma formation dynamics are greatly affected by the difference between programmed and obtained plasma current ramp rates that can lead to oscillations in IP when the IP feedback control is activated. This mismatch in IP also propagates into the radial position control. Failed burn-throughs occur when the Ohmic heating power is insufficient either since IP rises too slow or due to a combined effect of the IP feedback oscillations and a regularly occurring MHD instability. Several strategies to improve the present plasma formation scenario have been implemented. Based on the improved understanding of the plasma formation dynamics, a strategy has been developed to create and control a doublet configuration by merging of two droplet-shaped plasma requiring simultaneous breakdown at two locations.
Fast transient transport phenomena measured by soft X-ray emission in TCV tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Furno, I. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)
2001-08-01
Energy and particle transport during sawtooth activity in TCV plasmas has been studied in this thesis with high temporal resolution many chord diagnostics. We indicated the influence of sawteeth on plasma profiles in ohmic conditions and in the presence of auxiliary electron cyclotron resonance heating and current drive. A 2-dimensional model for heat transport, including localised heat source and a magnetic island, has been used to interpret the experimental observations. These results provided a new interpretation of a coupled heat and transport phenomenon which is potentially important for plasma confinement. The observations validate the applicability and show the possibility of improvement of a 2-dimensional theoretic a1 model for the study of heat transport in the presence of localised heat source and a magnetic island. Furthermore, the TCV results showed a new possibility for the interpretation of a coupled heat and particle transport phenomenon previously understood only in stellarators. (author)
Photon Temperatures of Hard X-Ray Emission of LHCD Plasmas in HT-7 Tokamak
Institute of Scientific and Technical Information of China (English)
Jawad YOUNIS; WAN Baonian; CHEN Zhongyong; LIN Shiyao; SHI Yuejiang; SHAN Jiafang; LIU Fukun
2008-01-01
A detailed study of photon temperatures (Tph) of hard X-ray emission in lower hybrid current drive (LHCD) plasmas is presented.The photon temperature increases with the increase in plasma current and decreases with the increase in plasma density.In lower hybrid power and phase scanning experiments;there is no appreciable change in the photon temperature.The numerical results based on ray-tracing calculation and Fokker-Planck solver gives reasonable explanation for the experimental observation.Both experimental and numerical results reveal that the photon temperature depends mainly on global effects of the fast electron population,synergy between the fast electron and the loop voltage and the Coulomb slowing down.
Nondiffusive toroidal-momentum-transport in the JFT-2M tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Ida, Katsumi; Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan); Miura, Yukitoshi; Itoh, Sanae; Matsuda, Toshiaki
1998-12-01
A nondiffusive term in the toroidal-momentum-transport equation is evaluated by the analysis of the transport of toroidal rotation in the transient phase, where the direction of neutral beam injection is changed from parallel to the plasma current to antiparallel. The ratio of nondiffusive viscosity coefficient to diffusive viscosity coefficient is evaluated to be 0.1 to 0.3, which increases as the plasma current is decreased. Nondiffusive momentum transport is found to be in proportion to {nabla}T{sub i}. (author)
Observation of Blobs and Holes in the Boundary Plasma of EAST Tokamak
DEFF Research Database (Denmark)
Yan, Ning; Xu, Guosheng; Zhang, Wei
2011-01-01
Intermittent convective transport at the edge and in the scrape-off layer (SOL) of EAST was investigated by using fast reciprocating Langmuir probe. Holes, as part of plasma structures, were detected for the first time inside the shear layer. The amplitude probability distribution function...
Issues Arising from Plasma-Wall Interactions in Inner-Class Tokamaks
Energy Technology Data Exchange (ETDEWEB)
Wampler, William R.
1999-06-23
This section reviews physical processes involved in the implantation of energetic hydrogen into plasma facing materials and its subsequent diffusion, release, or immobilization by trapping or precipitation within the material. These topics have also been discussed in previous reviews. The term hydrogen or H is used here generically to refer to protium, deuterium or tritium.
The effect of toroidal plasma rotation on low-frequency reversed shear Alfven eigenmodes in tokamaks
Haverkort, J. W.
2012-01-01
The influence of toroidal plasma rotation on the existence of reversed shear Alfven eigenmodes (RSAEs) near their minimum frequency is investigated analytically. An existence condition is derived showing that a radially decreasing kinetic energy density is unfavourable for the existence of RSAEs. Th
Polarimetry data inversion in conditions of tokamak plasma: Model based tomography concept
Energy Technology Data Exchange (ETDEWEB)
Bieg, B. [Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin (Poland); Chrzanowski, J., E-mail: j.chrzanowski@am.szczecin.pl [Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin (Poland); Kravtsov, Yu. A. [Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin (Poland); Space Research Institute, Profsoyuznaya St. 82/34 Russian Academy of Science, Moscow 117997 (Russian Federation); Mazon, D. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France)
2015-10-15
Highlights: • Model based plasma tomography is presented. • Minimization procedure for the error function is suggested to be performed using the gradient method. • model based procedure of data inversion in the case of joint polarimetry–interferometry data. - Abstract: Model based plasma tomography is studied which fits a hypothetical multi-parameter plasma model to polarimetry and interferometry experimental data. Fitting procedure implies minimization of the error function, defined as a sum of squared differences between theoretical and empirical values. Minimization procedure for the function is suggested to be performed using the gradient method. Contrary to traditional tomography, which deals exclusively with observational data, model-based tomography (MBT) operates also with reasonable model of inhomogeneous plasma distribution and verifies which profile of a given class better fits experimental data. Model based tomography (MBT) restricts itself by definite class of models for instance power series, Fourier expansion etc. The basic equations of MBT are presented which generalize the equations of model based procedure of polarimetric data inversion in the case of joint polarimetry–interferometry data.
Bonoli, P. T.; Shiraiwa, S.; Wright, J. C.; Harvey, R. W.; Batchelor, D. B.; Berry, L. A.; Chen, Jin; Poli, F.; Kessel, C. E.; Jardin, S. C.
2012-10-01
Recent upgrades to the ion cyclotron RF (ICRF) and lower hybrid RF (LHRF) components of the Integrated Plasma Simulator [1] have made it possible to simulate LH current drive in the presence of ICRF minority heating and mode conversion electron heating. The background plasma is evolved in these simulations using the TSC transport code [2]. The driven LH current density profiles are computed using advanced ray tracing (GENRAY) and Fokker Planck (CQL3D) [3] components and predictions from GENRAY/CQL3D are compared with a ``reduced'' model for LHCD (the LSC [4] code). The ICRF TORIC solver is used for minority heating with a simplified (bi-Maxwellian) model for the non-thermal ion tail. Simulation results will be presented for LHCD in the presence of ICRF heating in Alcator C-Mod. [4pt] [1] D. Batchelor et al, Journal of Physics: Conf. Series 125, 012039 (2008).[0pt] [2] S. C. Jardin et al, J. Comp. Phys. 66, 481 (1986).[0pt] [3] R. W. Harvey and M. G. McCoy, Proc. of the IAEA Tech. Comm. Meeting on Simulation and Modeling of Therm. Plasmas, Montreal, Canada (1992).[0pt] [4] D. Ignat et al, Nucl. Fus. 34, 837 (1994).[0pt] [5] M. Brambilla, Plasma Phys. and Cont. Fusion 41,1 (1999).
Dendy, R O
2014-01-01
Ion cyclotron emission (ICE) was the first collective radiative instability, driven by confined fusion-born ions, observed from deuterium-tritium plasmas in JET and TFTR. ICE comprises strongly suprathermal emission, which has spectral peaks at multiple ion cyclotron harmonic frequencies as evaluated at the outer mid-plane edge of tokamak plasmas. The measured intensity of ICE spectral peaks scaled linearly with measured fusion reactivity in JET. In other large tokamak plasmas, ICE is currently used as an indicator of fast ions physics. The excitation mechanism for ICE is the magnetoacoustic cyclotron instability (MCI); in the case of JET and TFTR, the MCI is driven by a set of centrally born fusion products, lying just inside the trapped-passing boundary in velocity space, whose drift orbits make large radial excursions to the outer mid-plane edge. Diagnostic exploitation of ICE in future experiments therefore rests in part on deep understanding of the MCI, and recent advances in computational plasma physics...
Vlasov tokamak equilibria with shearad toroidal flow and anisotropic pressure
Kuiroukidis, Ap; Tasso, H
2015-01-01
By choosing appropriate deformed Maxwellian ion and electron distribution functions depending on the two particle constants of motion, i.e. the energy and toroidal angular momentum, we reduce the Vlasov axisymmetric equilibrium problem for quasineutral plasmas to a transcendental Grad-Shafranov-like equation. This equation is then solved numerically under the Dirichlet boundary condition for an analytically prescribed boundary possessing a lower X-point to construct tokamak equilibria with toroidal sheared ion flow and anisotropic pressure. Depending on the deformation of the distribution functions these steady states can have toroidal current densities either peaked on the magnetic axis or hollow. These two kinds of equilibria may be regarded as a bifurcation in connection with symmetry properties of the distribution functions on the magnetic axis.
Institute of Scientific and Technical Information of China (English)
WANG Ai-Ke; QIU Xiao-Ming
2001-01-01
Drift mode linear growth rate and quasi-linear ion thermal transport in the reversed magnetic shear plasma are investigated by using the two-fluid theory, previously developed by Weiland and the Chalmers group [J. Nucl.Fusion, 29 (1989) 1810; ibid. 30 (1990) 983]. The theory is here extended to include both the radial electrical field shear (dEr/dr) and the electron fluid velocity (Ve) in the sheared coordinate system. Here, Ve describes the coupling between the safety factor q and the Er × B velocity V E. Their influences on the growth rate and associated ion thermal transport are obtained numerically. In addition, the ion heat pinch in the reversed shear plasma is observed. Qualitatively, the present conclusions are in good agreement with the experimental results.
Institute of Scientific and Technical Information of China (English)
JIANGuangde; DONGJiaqi
2003-01-01
A numerical simulation code has been established with particle simulation method in order to study the gyro-kinetic equations for the electrostatic electron temperature gradient modes in toroidal plasmas. The flowchart is given as well for the code. The fourth-order adaptive step-size scheme is adopted, that saves computer time and is simple. The calculation code is useful for the research of the electron temperature gradient instability.
Leddy, Jarrod; Dudson, Ben
2016-10-01
Understanding the transport processes in the low temperature plasma at the boundary region of magnetic confinement fusion (MCF) devices is crucial to the design and operation of future fusion reactor devices. It influences the divertor heat load, and probably the core confinement as well. The dominant source of this transport is turbulence, which serves to mix the high and low temperature regions of the plasma. The nature of this plasma turbulence is affected by not only the plasma parameters, but also the neutral species that also exist in these low temperature regions. The interaction of neutrals with the plasma turbulence is studied in linear device geometry (for its simplicity, yet similarity in plasma parameters), and the result is a strong interaction that impacts the local plasma and neutral densities, momenta and energies. The neutral gas is found to affect plasma edge turbulence primarily through momentum exchange, reducing the radial electric field and enhancing cross-field transport, with consequent implications for the SOL width and divertor heat loads. Therefore, turbulent plasma and fluid simulations have been performed in multiple tokamak geometries to more closely examine the effects of this interaction. These cases were chosen for the variety in configuration with ISTOK having a toroidal limiter (ie. no divertor), DIII-D having a standard divertor configuration, and MAST-U having a super-X divertor with extended outer divertor legs. Progress towards the characterization of neutral impact on detachment and edge behavior will be presented.
Energy Technology Data Exchange (ETDEWEB)
Panis, T.
2010-12-15
Direct damping rate measurements of Alfven eigenmodes (AE) are obtained using the active MHD spectroscopy system installed on the JET tokamak. The system was recently equipped with new antennas, designed to study especially the modes of intermediate toroidal mode number n, ¦n¦ = 3 -- 15, as the AEs of this range are most prone to destabilization by the fast particles in JET and in future burning plasma experiments such as ITER. The broad n-spectrum that is driven by the new antennas and the more localized structure of intermediate-n AEs has important implications for the ability to measure damping rates of intermediate n. To obtain an extended database of high accuracy individual-n measurements, experimental work on technical and engineering aspects was indispensable both on the excitation side and on the detection side. On the excitation side, the electrical model of the AE exciter has been constructed during this thesis. The model is used to determine the operational capabilities of the exciter with the new antennas, to optimize the antenna currents and to design the relevant impedance matching circuits. On the detection side, the excitation of multiple-n, degenerate AEs at close frequencies prompted for a sophisticated method to correctly estimate the n-spectrum of the plasma response. To this end, a sparse spectrum representation method was adapted to deal with the complex and real-time data produced by the active MHD spectroscopy system. The n-decomposition of the plasma response requires an accurate relative calibration of the magnetic pick-up coils. An in situ method was developed and applied for the calibration of the coils using the direct coupling to the new AE antennas. A large collection of damping rate measurements of, mainly, toroidal AEs (TAEs) was obtained during the 2008/2009 JET experimental campaigns following the technical optimization of the antenna system. Selected measurements of ¦n¦ = 3, 4 and ¦n¦ = 7 TAEs are compared to the plasma
Transient snakes in an ohmic plasma associated with a minor disruption in the HT-7 Tokamak
Energy Technology Data Exchange (ETDEWEB)
Mao, Songtao; Xu, Liqing; Hu, Liqun; Chen, Kaiyun [Chinese Academy of Sciences, Hefei (China)
2014-05-15
A transient burst (∼2 ms, an order of the fast-particle slowdown timescale) of a spontaneous snake is observed for the first time in a HT-7 heavy impurity ohmic plasma. The features of the low-Z impurity snake are presented. The flatten electron profile due to the heavy impurity reveals the formation of a large magnetic island. The foot of the impurity accumulation is consistent with the location of the transient snake. The strong frequency-chirping behaviors and the spatial structures of the snake are also presented.
Energy Technology Data Exchange (ETDEWEB)
Gauthier, E., E-mail: eric.gauthier@cea.fr [CEA/DSM/IRFM, CEA Cadarache, Saint-Paul-lez-Durance (France); Brosset, C.; Roche, H.; Tsitrone, E.; Pégourié, B.; Martinez, A. [CEA/DSM/IRFM, CEA Cadarache, Saint-Paul-lez-Durance (France); Languille, P. [PIIM, CNRS-Université de Provence, Centre de St Jérôme, 13397 Marseille, Cedex 20 (France); Courtois, X.; Lallier, Y. [CEA/DSM/IRFM, CEA Cadarache, Saint-Paul-lez-Durance (France); Salami, M. [AVANTIS CONCEPT, 75 Rue Marcelin Berthelot, 13858 Aix en Provence (France)
2013-07-15
A diagnostic based on confocal microscopy was developed at CEA Cadarache in order to measure erosion on large plasma facing components during shutdown in situ in Tore Supra. This paper describes the diagnostic and presents results obtained on Beryllium and Carbon Fibre Composite (CFC) materials. Erosion in the range of 800 μm was found on one sector of the Toroidal Pumped Limiter (TPL) which provides, by integration to the full limiter a net carbon erosion of about 900 g over the period 2002–2007.
Energy Technology Data Exchange (ETDEWEB)
Van Belle, P.; Jarvis, O.N.; Sadler, G.J. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Cecil, F.E. [Colorado School of Mines, Golden, CO (United States)
1994-07-01
Alpha particle confinement is necessary for ignition of a D-T tokamak fusion plasma and for first wall protection. Due to high radiation backgrounds and temperatures, scintillators and semiconductor detectors may not be used to study alpha particles which are lost to the first wall during the D-T programs on JET and ITER. An alternative method of charged particle spectrometry capable of operation in these harsh environments, is proposed: it consists of thin foils of electrically isolated conductors with the flux of alpha particles determined by the positive current flowing from the foils. 2 refs., 3 figs.
Kornev, V. A.; Chernyshev, F. V.; Melnik, A. D.; Askinazi, L. G.; Wagner, F.; Vildjunas, M. I.; Zhubr, N. A.; Krikunov, S. V.; Lebedev, S. V.; Razumenko, D. V.; Tukachinsky, A. S.
2013-11-01
Horizontal displacement of plasma along the major radius has been found to significantly influence the fluxes of 2.45 MeV DD neutrons and high-energy charge-exchange atoms from neutral beam injection (NBI) heated plasma of the TUMAN-3M tokamak. An inward shift by Δ R = 1 cm causes 1.2-fold increase in the neutron flux and 1.9-fold increase in the charge-exchange atom flux. The observed increase in the neutron flux is attributed to joint action of several factors-in particular, improved high-energy ion capture and confinement and, probably, decreased impurity inflow from the walls, which leads to an increase in the density of target ions. A considerable increase in the flux of charge-exchange neutrals in inward-shifted plasma is due to the increased number of captured high-energy ions and, to some extent, the increased density of the neutral target. As a result of the increase in the content of high-energy ions, the central ion temperature T i (0) increased from 250 to 350 eV. The dependence of the neutron rate on major radius R 0 should be taken into account when designing compact tokamak-based neutron sources.
Toward a first-principles integrated simulation of tokamak edge plasmas
Energy Technology Data Exchange (ETDEWEB)
Chang, C S [New York University; Klasky, Scott A [ORNL; Cummings, Julian [California Institute of Technology, Pasadena; Samtaney, Ravi [Princeton Plasma Physics Laboratory (PPPL); Shoshani, A. [Lawrence Berkeley National Laboratory (LBNL); Sugiyama, L. [Massachusetts Institute of Technology (MIT); Keyes, David E [Columbia University; Ku, Seung-Hoe [New York University; Park, G. [New York University; Parker, Scott [University of Colorado, Boulder; Podhorszki, Norbert [ORNL; Strauss, H. [New York University; Abbasi, H. [Georgia Institute of Technology; Adams, Mark [Columbia University; Tchoua, Roselyne B [ORNL; Bateman, Glenn [Lehigh University, Bethlehem, PA; Bennett, K. [Rutgers University; Chen, Yang [University of Colorado, Boulder; D' Azevedo, Eduardo [ORNL; Docan, Ciprian [Rutgers University; Ethier, Stephane [Princeton Plasma Physics Laboratory (PPPL); Feibush, E. [Princeton Plasma Physics Laboratory (PPPL); Greengard, Leslie [New York University; Hahm, Taik Soo [Princeton Plasma Physics Laboratory (PPPL); Hinton, Fred [University of California, San Diego; Jin, Chen [ORNL; Khan, A. [University of Utah; Kritz, Arnold [Lehigh University, Bethlehem, PA; Krstic, Predrag S [ORNL; Lao, T. [Columbia University; Lee, Wei-Li [Princeton Plasma Physics Laboratory (PPPL); Lin, Zhihong [University of California, Irvine; Lofstead, J. [Georgia Institute of Technology; Mouallem, P. A. [North Carolina State University; Nagappan, M. [North Carolina State University; Pankin, A. [Lehigh University, Bethlehem, PA; Parashar, Manish [Rutgers University; Pindzola, Michael S. [Auburn University, Auburn, Alabama; Reinhold, Carlos O [ORNL; Schultz, David Robert [ORNL; Schwan, Karsten [Georgia Institute of Technology; Silver, D. [Rutgers University; Sim, A. [Lawrence Berkeley National Laboratory (LBNL); Stotler, D. [Princeton Plasma Physics Laboratory (PPPL); Vouk, M. A. [North Carolina State University; Wolf, M. [Georgia Institute of Technology; Weitzner, Harold [New York University; Worley, Patrick H [ORNL; Xiao, Y. [University of California, Irvine; Yoon, E. [Princeton Plasma Physics Laboratory (PPPL); Zorin, Denis [New York University
2008-01-01
Performance of the ITER is anticipated to be highly sensitive to the edge plasma condition. The edge pedestal in ITER needs to be predicted from an integrated simulation of the necessary firstprinciples, multi-scale physics codes. The mission of the SciDAC Fusion Simulation Project (FSP) Prototype Center for Plasma Edge Simulation (CPES) is to deliver such a code integration framework by (1) building new kinetic codes XGC0 and XGC1, which can simulate the edge pedestal buildup; (2) using and improving the existing MHD codes ELITE, M3D-OMP, M3D-MPP and NIMROD, for study of large-scale edge instabilities called Edge Localized Modes (ELMs); and (3) integrating the codes into a framework using cutting-edge computer science technology. Collaborative effort among physics, computer science, and applied mathematics within CPES has created the first working version of the End-to-end Framework for Fusion Integrated Simulation (EFFIS), which can be used to study the pedestal-ELM cycles.
Toward a first-principles integrated simulation of tokamak edge plasmas
Energy Technology Data Exchange (ETDEWEB)
Chang, C S; Ku, S; Park, G; Strauss, H [New York University, New York, NY 10012 (United States); Klasky, S; Podhorszki, N; Barreto, R; Azevedo, E D' [Oak Ridge National Laboratory, Oak Ridge, TN 37381 (United States); Cummings, J [California Institute of Technology, Pasadena, CA 91125 (United States); Samtaney, R [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Shoshani, A [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sugiyama, L [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Keyes, D; Adams, M [Columbia University, New York NY 10027 (United States); Parker, S; Chen, Y [University of Colorado at Boulder, Boulder, CO 80309 (United States); Abbasi, H [Georgia Institute of Technology, Atlanta, GA 30332 (United States); Bateman, G [Lehigh University, Bethlehem, PA 18015 (United States); Bennett, K; Docan, C [Rutgers University, New Brunswick, NJ 08901 (United States)], E-mail: cschang@cims.nyu.edu, E-mail: klasky@ornl.gov (and others)
2008-07-15
Performance of the ITER is anticipated to be highly sensitive to the edge plasma condition. The edge pedestal in ITER needs to be predicted from an integrated simulation of the necessary first-principles, multi-scale physics codes. The mission of the SciDAC Fusion Simulation Project (FSP) Prototype Center for Plasma Edge Simulation (CPES) is to deliver such a code integration framework by (1) building new kinetic codes XGC0 and XGC1, which can simulate the edge pedestal buildup; (2) using and improving the existing MHD codes ELITE, M3D-OMP, M3D-MPP and NIMROD, for study of large-scale edge instabilities called Edge Localized Modes (ELMs); and (3) integrating the codes into a framework using cutting-edge computer science technology. Collaborative effort among physics, computer science, and applied mathematics within CPES has created the first working version of the End-to-end Framework for Fusion Integrated Simulation (EFFIS), which can be used to study the pedestal-ELM cycles.
Kobayashi, T.; Itoh, K.; Ido, T.; Kamiya, K.; Itoh, S.-I.; Miura, Y.; Nagashima, Y.; Fujisawa, A.; Inagaki, S.; Ida, K.; Hoshino, K.
2016-01-01
Self-regulation between structure and turbulence, which is a fundamental process in the complex system, has been widely regarded as one of the central issues in modern physics. A typical example of that in magnetically confined plasmas is the Low confinement mode to High confinement mode (L-H) transition, which is intensely studied for more than thirty years since it provides a confinement improvement necessary for the realization of the fusion reactor. An essential issue in the L-H transition physics is the mechanism of the abrupt “radial” electric field generation in toroidal plasmas. To date, several models for the L-H transition have been proposed but the systematic experimental validation is still challenging. Here we report the systematic and quantitative model validations of the radial electric field excitation mechanism for the first time, using a data set of the turbulence and the radial electric field having a high spatiotemporal resolution. Examining time derivative of Poisson’s equation, the sum of the loss-cone loss current and the neoclassical bulk viscosity current is found to behave as the experimentally observed radial current that excites the radial electric field within a few factors of magnitude. PMID:27489128
Directory of Open Access Journals (Sweden)
Roy I.
2012-09-01
Full Text Available In order to obtain breakdown and suitable plasma parameters for low-voltage OH start-up, high level of EC-power was injected into T-10 tokamak. Input HF-power was varied in the range of 0.15–1.0 MW. Two HF-launcher systems with different output beams allowed to inject EC-waves with maximum power density 0.25 MW/cm2 and 0.01 MW/cm2. Dependence of breakdown time delay on HF-power was obtained. It was shown, that optimal plasma parameters were achieved in presence of plasma equilibrium currents I=3 kA (input HF-power=1.0 MW. Electron temperature Te=100÷150 eV and electron density ne=5·1012 cm−3 was measured in these discharges. These parameters remained constant during full HF-pulse-length.
Onchi, Takumi; Zushi, Hideki; Mishra, Kishore; Hanada, Kazuaki; Idei, Hiroshi; Nakamura, Kazuo; Fujisawa, Akihide; Nagashima, Yoshihiko; Hasegawa, Makoto; Kuzmin, Arseny; Nagaoka, Kenichi; QUEST Team
2014-10-01
Heat flux and plasma flow in the scrape off layer (SOL) are examined in the inboard poloidal null (IPN) configuration on the spherical tokamak (ST) QUEST. In the ST, trapped energetic electrons on the low field side are widely excursed from the last closed flux surface to SOL so that significant heat loss occurs. Interestingly, plasma flows in the core and the SOL are also observed in IPN though no inductive force like ohmic heating is applied. High heat flux (>1 MW/m2) and sonic flow (M > 1) in far-SOL arise in current ramp-up phase. In quasi-steady state, sawtooth-like oscillation of plasma current with 20 Hz has been observed. Heat flux and subsonic plasma flow in far-SOL are well correlated to plasma current oscillation. The toroidal Mach number largely increases from Mφ ~ 0.1 to ~ 0.5 and drops although the amplitude of plasma current is about 10% of that. Note that such flow modification occurs before plasma current crash, there may be some possibility that phenomena in the SOL or the edge trigger reactions in the core plasma. This work is supported by Grants-in-aid for Scientific Research (S24226020), NIFS Collaboration Research Program (NIFS12KUTR081), and the Collaborative Research Program of Research Institute for Applied Mechanics, Kyushu University.
Locality effects on bifurcation paradigm of L-H transition in tokamak plasmas
Directory of Open Access Journals (Sweden)
Boonyarit Chatthong
2015-12-01
Full Text Available The locality effects on bifurcation paradigm of L-H transition phenomenon in magnetic confinement plasmas are investigated. One dimensional thermal transport equation with both neoclassical and anomalous transports effects included is considered, where a flow shear due to pressure gradient component is included as a transport suppression mechanism. Three different locally driven models for anomalous transport are considered, including a constant transport model, pressure gradient driven transport model, and critical pressure gradient threshold transport model. Local stability analysis shows that the transition occurs at a threshold flux with hysteresis nature only if ratio of anomalous strength over neoclassical transport exceeds a critical value. The depth of the hysteresis loop depends on both neoclassical and anomalous transports, as well as the suppression strength. The reduction of the heat flux required to maintain H-mode can be as low as a factor of two, which is similar to experimental evidence.
Webster, A J
2014-01-01
The generic question is considered: How can we determine the probability of an otherwise quasirandom event, having been triggered by an external influence? A specific problem is the quantification of the success of techniques to trigger, and hence control, edge-localised plasma instabilities (ELMs) in magnetically confined fusion (MCF) experiments. The development of such techniques is essential to ensure tolerable heat loads on components in large MCF fusion devices, and is necessary for their development into economically successful power plants. Bayesian probability theory is used to rigorously formulate the problem and to provide a formal solution. Accurate but pragmatic methods are developed to estimate triggering probabilities, and are illustrated with experimental data. These allow results from experiments to be quantitatively assessed, and rigorously quantified conclusions to be formed.
Stability properties and fast ion confinement of hybrid tokamak plasma configurations
Graves, J. P.; Brunetti, D.; Pfefferle, D.; Faustin, J. M. P.; Cooper, W. A.; Kleiner, A.; Lanthaler, S.; Patten, H. W.; Raghunathan, M.
2015-11-01
In hybrid scenarios with flat q just above unity, extremely fast growing tearing modes are born from toroidal sidebands of the near resonant ideal internal kink mode. New scalings of the growth rate with the magnetic Reynolds number arise from two fluid effects and sheared toroidal flow. Non-linear saturated 1/1 dominant modes obtained from initial value stability calculation agree with the amplitude of the 1/1 component of a 3D VMEC equilibrium calculation. Viable and realistic equilibrium representation of such internal kink modes allow fast ion studies to be accurately established. Calculations of MAST neutral beam ion distributions using the VENUS-LEVIS code show very good agreement of observed impaired core fast ion confinement when long lived modes occur. The 3D ICRH code SCENIC also enables the establishment of minority RF distributions in hybrid plasmas susceptible to saturated near resonant internal kink modes.
Preliminary Study of Ideal Operational MHD Beta Limit in HL-2A Tokamak Plasmas
Institute of Scientific and Technical Information of China (English)
SHEN Yong; DONG Jiaqi; HE Hongda; A. D. TURNBULL
2009-01-01
Magnetohydrodynamic (MHD) n=1 kink mode with n the toroidal mode number is studied and the operational beta limit, constrained by the mode, is calculated for the equilibrium of HL-2A by using the GATO code. Approximately the same beta limit is obtained for configurations with a value of the axial safety factor q0 both larger and less than 1. Without the stabilization of the conducting wall, the beta limit is found to be 0.821% corresponding to a normalized beta value of βcN=2.56 for a typical HL-2A discharge with a plasma current Ip=0.245 MA, and the scaling of βcN～constant is confirmed.
Energy Technology Data Exchange (ETDEWEB)
Casali, Livia
2015-11-24
Fusion plasmas contain impurities, either intrinsic originating from the wall, or injected willfully with the aim of reducing power loads on machine components by converting heat flux into radiation. The understanding and the prediction of the effects of these impurities and their radiation on plasma performances is crucial in order to retain good confinement. In addition, it is important to understand the impact of pellet injection on plasma performance since this technique allows higher core densities which are required to maximise the fusion power. This thesis contributes to these efforts through both experimental investigations and modelling. Experiments were conducted at ASDEX Upgrade which has a full-W wall. Impurity seeding was applied to H-modes by injecting nitrogen and also medium-Z impurities such as Kr and Ar to assess the impact of both edge and central radiation on confinement. A database of about 25 discharges has been collected and analysed. A wide range of plasma parameters was achieved up to ITER relevant values such as high Greenwald and high radiation fractions. Transport analyses taking into account the radiation distribution reveal that edge localised radiation losses do not significantly impact confinement as long as the H-mode pedestal is sustained. N seeding induces higher pedestal pressure which is propagated to the core via profile stiffness. Central radiation must be limited and controlled to avoid confinement degradation. This requires reliable control of the impurity concentration but also possibilities to act on the ELM frequency which must be kept high enough to avoid an irreversible impurity accumulation in the centre and the consequent radiation collapse. The key role of the f{sub ELM} is confirmed also by the analysis of N+He discharges. Non-coronal effects affect the radiation of low-Z impurities at the plasma edge. Due to the radial transport, the steep temperature gradients and the ELM flush out, a local equilibrium cannot be
Energy Technology Data Exchange (ETDEWEB)
Casali, Livia
2015-11-24
Fusion plasmas contain impurities, either intrinsic originating from the wall, or injected willfully with the aim of reducing power loads on machine components by converting heat flux into radiation. The understanding and the prediction of the effects of these impurities and their radiation on plasma performances is crucial in order to retain good confinement. In addition, it is important to understand the impact of pellet injection on plasma performance since this technique allows higher core densities which are required to maximise the fusion power. This thesis contributes to these efforts through both experimental investigations and modelling. Experiments were conducted at ASDEX Upgrade which has a full-W wall. Impurity seeding was applied to H-modes by injecting nitrogen and also medium-Z impurities such as Kr and Ar to assess the impact of both edge and central radiation on confinement. A database of about 25 discharges has been collected and analysed. A wide range of plasma parameters was achieved up to ITER relevant values such as high Greenwald and high radiation fractions. Transport analyses taking into account the radiation distribution reveal that edge localised radiation losses do not significantly impact confinement as long as the H-mode pedestal is sustained. N seeding induces higher pedestal pressure which is propagated to the core via profile stiffness. Central radiation must be limited and controlled to avoid confinement degradation. This requires reliable control of the impurity concentration but also possibilities to act on the ELM frequency which must be kept high enough to avoid an irreversible impurity accumulation in the centre and the consequent radiation collapse. The key role of the f{sub ELM} is confirmed also by the analysis of N+He discharges. Non-coronal effects affect the radiation of low-Z impurities at the plasma edge. Due to the radial transport, the steep temperature gradients and the ELM flush out, a local equilibrium cannot be
Spherical tokamak development in Brazil
Energy Technology Data Exchange (ETDEWEB)
Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma; Barbosa, L.F.W. [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Mecanica Espacial e Controle; The high-power microwave sources group
2003-12-01
This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)
Spherical tokamak development in Brazil
Energy Technology Data Exchange (ETDEWEB)
Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] (and others)
2003-07-01
The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)
The ETE spherical Tokamak project
Energy Technology Data Exchange (ETDEWEB)
Ludwig, Gerson Otto; Andrade, Maria Celia Ramos de; Barbosa, Luis Filipe Wiltgen [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] [and others]. E-mail: ludwig@plasma.inpe.br
1999-07-01
This paper describes the general characteristics of spherical tokamaks, with a brief overview of work in the area of spherical torus already performed or in progress at several institutions. The paper presents also the historical development of the ETE (Spherical Tokamak Experiment) project, its research program, technical characteristics and status of construction in September, 1998 at the Associated plasma Laboratory (LAP) of the National Institute for Space Research (INPE) in Brazil. (author)
Energy Technology Data Exchange (ETDEWEB)
Turco, F
2008-06-15
In this work we addressed the issue of the phenomena typical of the non-inductive discharges in the Tore Supra tokamak, probed by means of localised perturbations of the current density profile, performed by electron cyclotron (EC) waves. In order to correctly utilize the current density profile, reconstructed by means of the CRONOS code we performed a sensitivity study on the code results. Concerning the MHD regimes we have shown that a dynamic evolution of the safety factor q which tends to shrink its profile appears to be the cause of the triggering of such regimes. From the operational point of view, deposing the EC current, generated in the same direction of the plasma current, outside the q{sub min} position results hazardous because it causes a rise in q{sub 0} and consequently the shrinking of the q profile which triggers the MHD regimes. On the contrary, the EC counter-current scans show that a very central deposition ({rho}(ECCD) < 0.1) lead almost certainly to an MHD regime, while a more external countercurrent generation has generally the quality of creating internal transport barriers (ITBs). The phenomenon of non-linear temperature oscillations (the O-regime) has also been addressed, to provide an analytical description as well as from the experimental point of view, concerning the triggering and canceling of the oscillating phases. By constructing a non-linear predator-prey system with noise, solved on two regions of space coupled by a diffusion term, we could reproduce the experimental temperature oscillations: this study allowed us to confirm that the oscillatory phenomenon is the manifestation of a Lotka-Volterra like coupling between j and T{sub e}. The experimental analysis led to the identification of the mechanism at the origin of the triggering and canceling of the O-regime in presence of a perturbation in a specific shape of magnetic shear perturbation. These results have been reproduced by the simulations preformed with the integrated
Energy Technology Data Exchange (ETDEWEB)
Daviot, R.
2010-05-15
The goal of this thesis is the development of a method of computation of those heat loads from measurements of temperature by infrared thermography. The research was conducted on three issues arising in current tokamaks but also future ones like ITER: the measurement of temperature on reflecting walls, the determination of thermal properties for deposits observed on the surface of tokamak components and the development of a three-dimensional, non-linear computation of heat loads. A comparison of several means of pyrometry, monochromatic, bi-chromatic and photothermal, is performed on an experiment of temperature measurement. We show that this measurement is sensitive to temperature gradients on the observed area. Layers resulting from carbon deposition by the plasma on the surface of components are modeled through a field of equivalent thermal resistance, without thermal inertia. The field of this resistance is determined, for each measurement points, from a comparison of surface temperature from infrared thermographs with the result of a simulation, which is based on a mono-dimensional linear model of components. The spatial distribution of the deposit on the component surface is obtained. Finally, a three-dimensional and non-linear computation of fields of heat fluxes, based on a finite element method, is developed here. Exact geometries of the component are used. The sensitivity of the computed heat fluxes is discussed regarding the accuracy of the temperature measurements. This computation is applied to two-dimensional temperature measurements of the JET tokamak. Several components of this tokamak are modeled, such as tiles of the divertor, upper limiter and inner and outer poloidal limiters. The distribution of heat fluxes on the surface of these components is computed and studied along the two main tokamak directions, poloidal and toroidal. Toroidal symmetry of the heat loads from one tile to another is shown. The influence of measurements spatial resolution
Rodrigues, Paulo; Bizarro, João P. S.
2013-04-01
The axisymmetry condition and two of Maxwell's equations are used to show that, in general, there are no nested magnetic surfaces around a poloidal-magnetic-field null for a sufficiently small value of the toroidal current density flowing there. Hence, the toroidal current density at the axis of a magnetic configuration with extreme shear reversal cannot continuously approach zero unless nested surfaces are first broken or particular values are assigned to boundary conditions and other plasma parameters. The threshold of the toroidal current-density at which the topology changes is shown to be set by such parameters, and some examples of the predicted topology transition are presented using analytical solutions of the Grad-Shafranov equation.
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, Paulo; Bizarro, Joao P. S. [Associacao Euratom-IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, 1049-001 Lisboa (Portugal)
2013-04-15
The axisymmetry condition and two of Maxwell's equations are used to show that, in general, there are no nested magnetic surfaces around a poloidal-magnetic-field null for a sufficiently small value of the toroidal current density flowing there. Hence, the toroidal current density at the axis of a magnetic configuration with extreme shear reversal cannot continuously approach zero unless nested surfaces are first broken or particular values are assigned to boundary conditions and other plasma parameters. The threshold of the toroidal current-density at which the topology changes is shown to be set by such parameters, and some examples of the predicted topology transition are presented using analytical solutions of the Grad-Shafranov equation.
Wersal, C.; Ricci, P.; Loizu, J.
2017-04-01
A refined two-point model is derived from the drift-reduced Braginskii equations for the limited tokamak scrape-off layer (SOL) by balancing the parallel and perpendicular transport of plasma and heat and taking into account the plasma–neutral interaction. The model estimates the electron temperature drop along a field line, from a region far from the limiter to the limiter plates. Self-consistent first-principles turbulence simulations of the SOL plasma including its interaction with neutral atoms are performed with the GBS code and compared to the refined two-point model. The refined two-point model is shown to be in very good agreement with the turbulence simulation results.
Bongers, WA.; Van Beveren, V.; Thoen, D.J.; Nuij, P.J.W.M.; De Baar, M.R.; Donné, A.J.H.; Westerhof, E.; Goede, A.P.H.; Krijger, B.; Van den Berg, M.A.; Kantor, M.; Graswinckel, M.F.; Hennen, B.A.; Schüller, F.C.
2011-01-01
An intermediate frequency (IF) band digitizing radiometer system in the 100–200 GHz frequency range has been developed for Tokamak diagnostics and control, and other fields of research which require a high flexibility in frequency resolution combined with a large bandwidth and the retrieval of the f
The role of limiter in Egyptor Tokamak
Ei-Sisi, A B
2002-01-01
In Egyptor Tokamak, the limiter is used for separation of the plasma from the vessel. In this work an overview of limiter types, and construction of limiter in Egyptor Tokamak is discussed. Also simulation results of the radial electron density distribution in case of limiter are presented. The results of the simulation are in agreement with the experimental and analytical results.
Himabindu, M.; Tyagi, Anil; Sharma, Devendra; Deshpande, Shishir P.; Bonnin, Xavier
2014-02-01
Computational analysis of coupled plasma and neutral transport in the Scrape-Off Layer (SOL) region of the Steady-State Superconducting Tokamak (SST-1) is done using SOLPS for Phase-I of double-null divertor plasma operations. An optimum set of plasma parameters is explored computationally for the first phase operations with the central objective of achieving an effective control over particle and power exhaust. While the transport of plasma species is treated using a fluid model in the B2.5 code, a full kinetic description is provided by the EIRENE code for the neutral particle transport in a realistic geometry. Cases with and without external gas puffing are analyzed for finding regimes where an effective control of plasma operations can be exercised by controlling the SOL plasma conditions over a range of heating powers. In the desired parameter range, a reasonable neutral penetration across the SOL is observed, capable of causing a variation of up to 15% of the total input power, in the power deposited on the divertors. Our computational characterization of the SOL plasma with input power 1 MW and lower hybrid current drive, for the separatrix density up to 1019 m-3, indicates that there will be access to high recycling operations producing reduction in the temperature and the peak heat flux at the divertor targets. This indicates that a control of the core plasma density and temperature would be achievable. A power balance analysis done using the kinetic neutral transport code EIRENE indicates about 60%-75% of the total power diverted to the targets, providing quantitative estimates for the relative power loading of the targets and the rest of the plasma facing components.
Energy Technology Data Exchange (ETDEWEB)
Kaita, R.; Kozub, T.; Logan, N.; Majeski, R.; Menard, J.; Zakharov, L.
2010-12-10
The lithium tokamak experiment LTX is a modest-sized spherical tokamak R0=0.4 m and a =0.26 m designed to investigate the low-recycling lithium wall operating regime for magnetically confined plasmas. LTX will reach this regime through a lithium-coated shell internal to the vacuum vessel, conformal to the plasma last-closed-flux surface, and heated to 300-400 oC. This structure is highly conductive and not axisymmetric. The three-dimensional nature of the shell causes the eddy currents and magnetic fields to be three-dimensional as well. In order to analyze the plasma equilibrium in the presence of three-dimensional eddy currents, an extensive array of unique magnetic diagnostics has been implemented. Sensors are designed to survive high temperatures and incidental contact with lithium and provide data on toroidal asymmetries as well as full coverage of the poloidal cross-section. The magnetic array has been utilized to determine the effects of nonaxisymmetric eddy currents and to model the start-up phase of LTX. Measurements from the magnetic array, coupled with two-dimensional field component modeling, have allowed a suitable field null and initial plasma current to be produced. For full magnetic reconstructions, a three-dimensional electromagnetic model of the vacuum vessel and shell is under development.
An enhanced tokamak startup model
Goswami, Rajiv; Artaud, Jean-François
2017-01-01
The startup of tokamaks has been examined in the past in varying degree of detail. This phase typically involves the burnthrough of impurities and the subsequent rampup of plasma current. A zero-dimensional (0D) model is most widely used where the time evolution of volume averaged quantities determines the detailed balance between the input and loss of particle and power. But, being a 0D setup, these studies do not take into consideration the co-evolution of plasma size and shape, and instead assume an unchanging minor and major radius. However, it is known that the plasma position and its minor radius can change appreciably as the plasma evolves in time to fill in the entire available volume. In this paper, an enhanced model for the tokamak startup is introduced, which for the first time takes into account the evolution of plasma geometry during this brief but highly dynamic period by including realistic one-dimensional (1D) effects within the broad 0D framework. In addition the effect of runaway electrons (REs) has also been incorporated. The paper demonstrates that the inclusion of plasma cross section evolution in conjunction with REs plays an important role in the formation and development of tokamak startup. The model is benchmarked against experimental results from ADITYA tokamak.
Energy Technology Data Exchange (ETDEWEB)
Bitter, M.; von Goeler, S.; Goldman, M.; Hill, K.W.; Horton, R.; Roney, W.; Sauthoff, N.; Stodiek, W.
1982-04-01
This paper describes measurements of the central ion and electron temperature of tokamak plasmas from the observation of the 1s - 2p resonance lines, and the associated dielectronic (1s/sup 2/nl - 1s2pnl, with n greater than or equal to 2) satellites, of helium-like iron (Fe XXV) and titanium (Ti XXI). The satellite to resonance line ratios are very sensitive to the electron temperature and are used as an electron temperature diagnostic. The ion temperature is deduced from the Doppler width of the 1s - 2p resonance lines. The measurements have been performed with high resolution Bragg crystal spectrometers on the PLT (Princeton Large Torus) and PDX (Poloidal Divertor Experiment) tokamaks. The details of the experimental arrangement and line evaluation are described, and the ion and electron temperature results are compared with those obtained from independent diagnostic techniques, such as the analysis of charge-exchange neutrals and measurements of the electron cyclotron radiation. The obtained experimental results permit a detailed comparison with theoretical predictions.
Transport in gyrokinetic tokamaks
Energy Technology Data Exchange (ETDEWEB)
Mynick, H.E.; Parker, S.E.
1995-01-01
A comprehensive study of transport in full-volume gyrokinetic (gk) simulations of ion temperature gradient driven turbulence in core tokamak plasmas is presented. Though this ``gyrokinetic tokamak`` is much simpler than experimental tokamaks, such simplicity is an asset, because a dependable nonlinear transport theory for such systems should be more attainable. Toward this end, we pursue two related lines of inquiry. (1) We study the scalings of gk tokamaks with respect to important system parameters. In contrast to real machines, the scalings of larger gk systems (a/{rho}{sub s} {approx_gt} 64) with minor radius, with current, and with a/{rho}{sub s} are roughly consistent with the approximate theoretical expectations for electrostatic turbulent transport which exist as yet. Smaller systems manifest quite different scalings, which aids in interpreting differing mass-scaling results in other work. (2) With the goal of developing a first-principles theory of gk transport, we use the gk data to infer the underlying transport physics. The data indicate that, of the many modes k present in the simulation, only a modest number (N{sub k} {approximately} 10) of k dominate the transport, and for each, only a handful (N{sub p} {approximately} 5) of couplings to other modes p appear to be significant, implying that the essential transport physics may be described by a far simpler system than would have been expected on the basis of earlier nonlinear theory alone. Part of this analysis is the inference of the coupling coefficients M{sub kpq} governing the nonlinear mode interactions, whose measurement from tokamak simulation data is presented here for the first time.
Versatile controllability of non-axisymmetric magnetic perturbations in KSTAR experiments
Energy Technology Data Exchange (ETDEWEB)
Han, Hyunsun, E-mail: hyunsun@nfri.re.kr; Jeon, Y.M.; Hahn, S.H.; Ahn, H.S.; Bak, J.G.; In, Y.; Kim, J.; Woo, M.H.; Kim, H.S.; Jin, J.K.; Park, B.H.; Yoon, S.W.
2016-10-15
Highlights: • A newly upgraded In-Vessel Control Coil(IVCC) system has been installed in KSTAR. • The system consists of broadband power supplies and a current connection patch panel. • The system has been confirmed for various dynamic demands of 3D magnetic field configurations. • It can help expand understanding of the 3D tokamak physics. - Abstract: A newly upgraded IVCC (In-Vessel Control Coil) system equipped with four broadband power supplies, along with a current connection patch panel, are introduced with a discussion of their capabilities on various KSTAR experiments. Until the 2014 KSTAR experimental campaign, the non-axisymmetric field configuration could not be changed in a shot, let alone the limited number of accessible configurations. With the installation of the new power supplies, such restrictions have been greatly reduced. Based on the 2015 KSTAR run-campaign, this new system was confirmed to easily cope with various dynamic demands for toroidal and poloidal phases of the 3D magnetic field in a shot. With newly equipped magnetic sensors, this enables us to extend the operational options and further explore the 3D physics for tokamak plasmas.
Energy Technology Data Exchange (ETDEWEB)
Sato, Masayasu; Isei, Nobuaki; Ishida, Sinichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
1995-11-01
Effect of relativistic frequency down-shift on the determination of the electron temperature profile from electron cyclotron emission(ECE) in JT-60U tokamak plasmas is studied. The radial shift of the electron temperature profile due to the effects is not negligible, compared with the spatial resolution of ECE measurement systems of JT-60U. Therefore it is necessary to correct the effect for precise measurement of the electron temperature profile. Dependencies of the shifted frequency on the electron density, electron temperature and toroidal magnetic field are studied for the uniform electron density and parabolic electron temperature profile in JT-60U. It is revealed to be necessary for the estimation of shift due to the relativistic down-shift frequency to take into account of the optical thickness. (author).
Kazakov, Yevgen
2016-10-01
This talk will report the first experimental results of novel three-ion ICRF scenarios (two or more majority ion species and one minority) for plasma heating and generating energetic ions in fusion facilities. The key feature of these scenarios is strong absorption of RF power possible at lower concentrations of minority ions than in two-ion plasmas. Effective plasma heating by injecting a small amount of 3He ions into H-D plasma mixtures with nH /ne 70 % has been successfully demonstrated in Alcator C-Mod and JET tokamaks. In C-Mod, efficient plasma heating was observed for 3He concentrations from 0.4-2%. During the discharges, a strong increase in Alfvén eigenmode activity was found to coincide with the addition of 3He to the H-D plasmas. Even lower 3He concentrations ( 0.2 %) were utilized in recent JET experiments. The potential of the D-(3He) -H scenario for plasma heating and generating MeV-range ions in JET plasmas was confirmed by a set of independent measurements, including stabilization of sawteeth, characteristic γ-ray emission, fast-ion loss detector. Furthermore, toroidal Alfvén eigenmodes with a range of toroidal mode numbers n were detected, which is another indication for the presence of significant population of high-energy 3He ions in a plasma. The discussed mechanism of resonant wave-particle interaction opens up various unexplored opportunities for ICRF system, including new scenarios for plasma heating. Three-ion ICRF scenarios are also relevant for the experimental programme of ITER. The possibility of using intrinsic 9Be impurities as the minority (instead of 3He) was suggested for heating bulk ions in D-T plasmas of JET and ITER, as well as heating trace amounts of 3He and 4He ions in H majority plasmas of ITER. The latest results and simulation comparisons will be presented. On behalf of Alcator C-Mod Team (MIT-PSFC, US) and JET Contributors (Culham, UK). Work supported by the US DOE (C-Mod DE-FC02-99ER54512 and SciDAC DE-FC02-01ER54648
Stabilization of the vertical instability by non-axisymmetric coils
Turnbull, A. D.; Reiman, A. H.; Lao, L. L.; Cooper, W. A.; Ferraro, N. M.; Buttery, R. J.
2016-08-01
In a published Physical Review Letter (Reiman 2007 Phys. Rev. Lett. 99 135007), it was shown that axisymmetric (or vertical) stability can be improved by placing a set of parallelogram coils above and below the plasma oriented at an angle to the constant toroidal planes. The physics of this stabilization can be understood as providing an effective additional positive stability index. The original work was based on a simplified model of a straight tokamak and is not straightforwardly applicable to a finite aspect ratio, strongly shaped plasma such as in DIII-D. Numerical calculations were performed in a real DIII-D -like configuration to provide a proof of principal that 3-D fields can, in fact raise the elongation limits as predicted. A four field period trapezioid-shaped coil set was developed in toroidal geometry and 3D equilibria were computed using trapezium coil currents of 10 kA , 100 kA , and 500 kA . The ideal magnetohydrodynamics growth rates were computed as a function of the conformal wall position for the n = 0 symmetry-preserving family. The results show an insignificant relative improvement in the stabilizing wall location for the two lower coil current cases, of the order of 10-3 and less. In contrast, the marginal wall position is increased by 7% as the coil current is increased to 500 kA , confirming the main prediction from the original study in a real geometry case. In DIII-D the shift in marginal wall position of 7% would correspond to being able to move the existing wall outward by 5 to 10 cm. While the predicted effect on the axisymmetric stability is real, it appears to require higher coil currents than could be provided in an upgrade to existing facilities. Additional optimization over the pitch of the coils, the number of field periods and the coil positions, as well as plasma parameters, such as the internal inductivity {{\\ell}\\text{i}} , β , and {{q}95} would mitigate this but seem unlikely to change the conclusion.
Jeon, Y M
2015-01-01
A free-boundary Tokamak Equilibrium Solver (TES), developed for advanced study of tokamak equilibra, is described with two distinctive features. One is a generalized method to resolve the intrinsic axisymmetric instability, which is encountered after all in equilibrium calculation with a free-boundary condition. The other is an extension to deal with a new divertor geometry such as snowflake or X divertors. For validations, the uniqueness of a solution is confirmed by the independence on variations of computational domain, the mathematical correctness and accuracy of equilibrium profiles are checked by a direct comparison with an analytic equilibrium known as a generalized Solovev equilibrium, and the governing force balance relation is tested by examining the intrinsic axisymmetric instabilities. As a valuable application, a snowflake equilibrium that requires a second order zero of the poloidal magnetic field is discussed in the circumstance of KSTAR coil system.
Electron Landau damping in toroidal plasma with Solov'ev equilibrium
Grishanov, N. I.; Azarenkov, N. A.
2013-12-01
The contribution of untrapped and two groups of trapped particles to the longitudinal (with respect to the magnetic field) elements of the dielectric susceptibility is determined by solving the drift-kinetic equations for such particles in axisymmetric tokamaks with Solov'ev equilibrium. The obtained dielectric characteristics are applicable for studying linear wave processes in the frequency range of Alfvén and fast magnetosonic waves in small- and large-aspect-ratio tokamaks with circular, elliptical, and D-shaped cross sections of magnetic surfaces. The high-frequency power absorbed in plasma via electron Landau damping is estimated by summing up terms containing the imaginary parts of both diagonal and non-diagonal elements of the longitudinal susceptibility. The imaginary part of the longitudinal susceptibility is calculated numerically for spherical tokamaks in a wide range of wave frequencies and magnetic surface radii.
Modelling of electron transport and of sawtooth activity in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Angioni, C
2001-10-01
Transport phenomena in tokamak plasmas strongly limit the particle and energy confinement and represent a crucial obstacle to controlled thermonuclear fusion. Within the vast framework of transport studies, three topics have been tackled in the present thesis: first, the computation of neoclassical transport coefficients for general axisymmetric equilibria and arbitrary collisionality regime; second, the analysis of the electron temperature behaviour and transport modelling of plasma discharges in the Tokamak a configuration Variable (TCV); third, the modelling and simulation of the sawtooth activity with different plasma heating conditions. The work dedicated to neoclassical theory has been undertaken in order to first analytically identify a set of equations suited for implementation in existing Fokker-Planck codes. Modifications of these codes enabled us to compute the neoclassical transport coefficients considering different realistic magnetic equilibrium configurations and covering a large range of variation of three key parameters: aspect ratio, collisionality, and effective charge number. A comparison of the numerical results with an analytical limit has permitted the identification of two expressions for the trapped particle fraction, capable of encapsulating the geometrical effects and thus enabling each transport coefficient to be fitted with a single analytical function. This has allowed us to provide simple analytical formulae for all the neoclassical transport coefficients valid for arbitrary aspect ratio and collisionality in general realistic geometry. This work is particularly useful for a correct evaluation of the neoclassical contribution in tokamak scenarios with large bootstrap cur- rent fraction, or improved confinement regimes with low anomalous transport and for the determination of the plasma current density profile, since the plasma conductivity is usually assumed neoclassical. These results have been included in the plasma transport code
Soft-X-Ray Tomography Diagnostic at the Rtp Tokamak
Da Cruz, D. F.; Donne, A. J. H.
1994-01-01
An 80-channel soft x-ray tomography system has been constructed for diagnosing the RTP (Rijnhuizen Tokamak Project) tokamak plasma. Five pinhole cameras, each with arrays of 16 detectors are distributed more or less homogeneously around a poloidal plasma cross section. The cameras are positioned clo
Zhao, K. J.; Shi, Yuejiang; Liu, H.; Diamond, P. H.; Li, F. M.; Cheng, J.; Chen, Z. P.; Nie, L.; Ding, Y. H.; Wu, Y. F.; Chen, Z. Y.; Rao, B.; Cheng, Z. F.; Gao, L.; Zhang, X. Q.; Yang, Z. J.; Wang, N. C.; Wang, L.; Jin, W.; Xu, J. Q.; Yan, L. W.; Dong, J. Q.; Zhuang, G.; J-TEXT Team
2016-07-01
The acceleration of the co-current toroidal rotations around resonant surfaces by resonant magnetic perturbations (RMPs) through turbulence is presented. These experiments were performed using a Langmuir probe array in the edge plasmas of the J-TEXT tokamak. This study aims at understanding the RMP effects on edge toroidal rotations and exploring its control method. With RMPs, the flat electron temperature T e profile, due to magnetic islands, appears around resonant surfaces (Zhao et al 2015 Nucl. Fusion 55 073022). When the resonant surface is closer to the last closed flux surface, the flat T e profile vanishes with RMPs. In both cases, the toroidal rotations significantly increase in the direction of the plasma current around the resonant surfaces with RMPs. The characteristics of turbulence are significantly affected by RMPs around the resonant surfaces. The turbulence intensity profile changes and the poloidal wave vector k θ increases with RMPs. The power fraction of the turbulence components in the ion diamagnetic drift direction increases with RMPs. The measurements of turbulent Reynolds stresses are consistent with the toroidal flows that can be driven by turbulence. The estimations of the energy transfer between the turbulence and toroidal flows suggest that turbulence energy transfers into toroidal flows. The result has the implication of the intrinsic rotation being driven by RMPs via turbulence.
Two-fluid simulations of driven reconnection in the mega-ampere spherical tokamak
Energy Technology Data Exchange (ETDEWEB)
Stanier, A.; Browning, P.; Gordovskyy, M. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom); McClements, K. G.; Gryaznevich, M. P. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Lukin, V. S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)
2013-12-15
In the merging-compression method of plasma start-up, two flux-ropes with parallel toroidal current are formed around in-vessel poloidal field coils, before merging to form a spherical tokamak plasma. This start-up method, used in the Mega-Ampere Spherical Tokamak (MAST), is studied as a high Lundquist number and low plasma-beta magnetic reconnection experiment. In this paper, 2D fluid simulations are presented of this merging process in order to understand the underlying physics, and better interpret the experimental data. These simulations examine the individual and combined effects of tight-aspect ratio geometry and two-fluid physics on the merging. The ideal self-driven flux-rope dynamics are coupled to the diffusion layer physics, resulting in a large range of phenomena. For resistive MHD simulations, the flux-ropes enter the sloshing regime for normalised resistivity η≲10{sup −5}. In Hall-MHD, three regimes are found for the qualitative behaviour of the current sheet, depending on the ratio of the current sheet width to the ion-sound radius. These are a stable collisional regime, an open X-point regime, and an intermediate regime that is highly unstable to tearing-type instabilities. In toroidal axisymmetric geometry, the final state after merging is a MAST-like spherical tokamak with nested flux-surfaces. It is also shown that the evolution of simulated 1D radial density profiles closely resembles the Thomson scattering electron density measurements in MAST. An intuitive explanation for the origin of the measured density structures is proposed, based upon the results of the toroidal Hall-MHD simulations.
Energy Technology Data Exchange (ETDEWEB)
Imbeaux, F
1999-09-22
Control of the current density profile is a critical issue in view to obtain high fusion performances in tokamak plasmas? It is therefore important to be able to control the power deposition profile of the lower hybrid wave, which has the highest current drive efficiency among all other non-inductive additional methods. Propagation and absorption of this wave are investigated in the Tore Supra tokamak using a new hard x-ray tomographic system and a new ray-tracing/Fokker-Planck code. These tools are described in detail and allow to analyse the lower hybrid power deposition profile dependence as a function of various plasma parameters (density, magnetic field, current) and of the injected wave spectrum. A good agreement between the code and the measurements found when the central electron temperature is greater than about 3 keV, that is in regimes where the wave undergoes only a few reflections before being absorbed. The simulations are then used to interpret the experimental trends. The lower hybrid power deposition profile is in nearly all discharges localised at a normalised minor radius of 0.2-0.3, and is weakly sensitive to variations of plasma parameters. It is hence difficult to perform an efficient control of the current profile generated by the lower hybrid wave in Tore Supra. This goal may nevertheless be reached by using an original method, which uses an auxiliary lower hybrid wave injected by a vertical port of the torus. This method is investigated by means of the simulation code. (author)
The ETE spherical Tokamak project. IAEA report
Energy Technology Data Exchange (ETDEWEB)
Ludwig, Gerson Otto; Del Bosco, E.; Berni, L.A.; Ferreira, J.G.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Barroso, J.J.; Castro, P.J.; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: ludwig@plasma.inpe.br
2002-07-01
This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the historical development of the ETE (Spherical Tokamak Experiment) project, its research program, technical characteristics and operating conditions as of October, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)
Energy Technology Data Exchange (ETDEWEB)
Evans, K.E. Jr.; Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Finn, P.A.; Jung, J.; Mattas, R.F.; Misra, B.; Smith, D.L.; Stevens, H.C.
1980-11-01
A tokamak D-D reactor design, utilizing the advantages of a deuterium-fueled reactor but with parameters not unnecessarily extended from existing D-T designs, is presented. Studies leading to the choice of a design and initial studies of the design are described. The studies are in the areas of plasma engineering, first-wall/blanket/shield design, magnet design, and tritium/fuel/vacuum requirements. Conclusions concerning D-D tokamak reactors are stated.
Bierwage, A.; Shinohara, K.; Todo, Y.; Aiba, N.; Ishikawa, M.; Matsunaga, G.; Takechi, M.; Yagi, M.
2016-10-01
Recurring bursts of chirping Alfvén modes as well as so-called Abrupt Large Events (ALE) that were observed in JT-60U tokamak plasmas driven by negative-ion-based neutral beams (N-NB) are reproduced in first-principle simulations performed with an extended version of the hybrid code MEGA. This code simulates the interactions between gyrokinetic fast ions and magnetohydrodynamic (MHD) modes in the presence of a realistic fast ion source and collisions, so that it self-consistently captures dynamics across a wide range of time scales (0.01-100 ms). Detailed comparisons with experimental measurements are performed. On the long time scale (10-100 ms) the simulation reproduces ALEs with the associated avalanche-like transport of fast ions. ALEs are shown to occur when multiple modes with toroidal mode numbers n = 1 , 2 , 3 are excited to large amplitudes. On the meso time scale (1-10 ms), bursts of chirping modes are reproduced, which are shown to be n = 1 energetic particle modes (EPM). On the short time scale (0.01-0.1 ms), pulsations and phase jumps are reproduced, which we interpret as the result of beating between multiple resonant wave packets. JSPS Grant-in-Aid for Scientific Research (No. 25820443, 16K18341). NIFS Collaborative Research Program (NIFS12KNTT016).
Magnetic confinement experiment. I: Tokamaks
Energy Technology Data Exchange (ETDEWEB)
Goldston, R.J.
1995-08-01
Reports were presented at this conference of important advances in all the key areas of experimental tokamak physics: Core Plasma Physics, Divertor and Edge Physics, Heating and Current Drive, and Tokamak Concept Optimization. In the area of Core Plasma Physics, the biggest news was certainly the production of 9.2 MW of fusion power in the Tokamak Fusion Test Reactor, and the observation of unexpectedly favorable performance in DT plasmas. There were also very important advances in the performance of ELM-free H- (and VH-) mode plasmas and in quasi-steady-state ELM`y operation in JT-60U, JET, and DIII-D. In all three devices ELM-free H-modes achieved nT{tau}`s {approximately} 2.5x greater than ELM`ing H-modes, but had not been sustained in quasi-steady-state. Important progress has been made on the understanding of the physical mechanism of the H-mode in DIII-D, and on the operating range in density for the H-mode in Compass and other devices.
First Divertor Operation on the HL-2A Tokamak
Institute of Scientific and Technical Information of China (English)
YANG Qing-Wei; CAO Zeng; LI Xiao-Dong; MAO Wei-Cheng; ZHOU Cai-Pin; WANG En-Yao; YAN Jian-Cheng; LIU Yong; HL-2A team; DING Xuan-Tong; YAN Long-Wen; XUAN Wei-Min; LIU De-Quan; CHEN Liao-Yuan; SONG Xian-Ming; YUAN Bao-Shan; ZHANG Jin-Hua
2004-01-01
@@ HL-2A device is the first divertor tokamak in China. One of its main subjects is to study the features of the divertor plasma. In the last campaign, the first divertor configuration has been achieved and sustained on the HL-2A tokamak. Here we give a brief description about the HL-2A tokamak, diagnostics arrangements, and the equilibrium analysis results on divertor configuration. The main results of divertor experiments are also presented.
Options for an ignited tokamak
Energy Technology Data Exchange (ETDEWEB)
Sheffield, J.
1984-02-01
It is expected that the next phase of the fusion program will involve a tokamak with the goals of providing an ignited plasma for pulses of hundreds of seconds. A simple model is described in this memorandum which establishes the physics conditions for such a self-sustaining plasma, for given ion and electron thermal diffusivities, in terms of R/a, b/a, I, B/q, epsilon ..beta../sub p/, anti T/sub i/, and anti T/sub e//anti T/sub i/. The model is used to produce plots showing the wide range of tokamaks that may ignite or have a given ignition margin. The constraints that limit this range are discussed.
Module description of TOKAMAK equilibrium code MEUDAS
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Masaei; Hayashi, Nobuhiko; Matsumoto, Taro; Ozeki, Takahisa [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
2002-01-01
The analysis of an axisymmetric MHD equilibrium serves as a foundation of TOKAMAK researches, such as a design of devices and theoretical research, the analysis of experiment result. For this reason, also in JAERI, an efficient MHD analysis code has been developed from start of TOKAMAK research. The free boundary equilibrium code ''MEUDAS'' which uses both the DCR method (Double-Cyclic-Reduction Method) and a Green's function can specify the pressure and the current distribution arbitrarily, and has been applied to the analysis of a broad physical subject as a code having rapidity and high precision. Also the MHD convergence calculation technique in ''MEUDAS'' has been built into various newly developed codes. This report explains in detail each module in ''MEUDAS'' for performing convergence calculation in solving the MHD equilibrium. (author)
Nedospasov, A. V.
1992-12-01
Edge turbulence is of decisive importance for the distribution of particle and energy fluxes to the walls of tokamaks. Despite the availability of extensive experimental data on the turbulence properties, its nature still remains a subject for discussion. This paper contains a review of the most recent theoretical and experimental studies in the field, including mainly the studies to which Wootton (A.J. Wooton, J. Nucl. Mater. 176 & 177 (1990) 77) referred to most in his review at PSI-9 and those published later. The available theoretical models of edge turbulence with volume dissipation due to collisions fail to fully interpret the entire combination of experimental facts. In the scrape-off layer of a tokamak the dissipation prevails due to the flow of current through potential shifts near the surface of limiters of divertor plates. The different origins of turbulence at the edge and in the core plasma due to such dissipation are discussed in this paper. Recent data on the electron temperature fluctuations enabled one to evaluate the electric probe measurements of turbulent flows of particles and heat critically. The latest data on the suppression of turbulence in the case of L-H transitions are given. In doing so, the possibility of exciting current instabilities in biasing experiments (rather than only to the suppression of existing turbulence) is given some attention. Possible objectives of further studies are also discussed.
Genco, Filippo
Damage to plasma-facing components (PFC) due to various plasma instabilities is still a major concern for the successful development of fusion energy and represents a significant research obstacle in the community. It is of great importance to fully understand the behavior and lifetime expectancy of PFC under both low energy cycles during normal events and highly energetic events as disruptions, Edge-Localized Modes (ELM), Vertical Displacement Events (VDE), and Run-away electron (RE). The consequences of these high energetic dumps with energy fluxes ranging from 10 MJ/m2 up to 200 MJ/m 2 applied in very short periods (0.1 to 5 ms) can be catastrophic both for safety and economic reasons. Those phenomena can cause a) large temperature increase in the target material b) consequent melting, evaporation and erosion losses due to the extremely high heat fluxes c) possible structural damage and permanent degradation of the entire bulk material with probable burnout of the coolant tubes; d) plasma contamination, transport of target material into the chamber far from where it was originally picked. The modeling of off-normal events such as Disruptions and ELMs requires the simultaneous solution of three main problems along time: a) the heat transfer in the plasma facing component b) the interaction of the produced vapor from the surface with the incoming plasma particles c) the transport of the radiation produced in the vapor-plasma cloud. In addition the moving boundaries problem has to be considered and solved at the material surface. Considering the carbon divertor as target, the moving boundaries are two since for the given conditions, carbon doesn't melt: the plasma front and the moving eroded material surface. The current solution methods for this problem use finite differences and moving coordinates system based on the Crank-Nicholson method and Alternating Directions Implicit Method (ADI). Currently Particle-In-Cell (PIC) methods are widely used for solving
Energy Technology Data Exchange (ETDEWEB)
Aiba, N. [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Hirota, M. [Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)
2015-08-15
In a rotating toroidal plasma surrounded by a resistive wall, it is shown that linear magnetohydrodynamic (MHD) instabilities can be excited by interplay between the resistive wall mode (RWM) and stable ideal MHD modes, where the RWM can couple with not only a stable external kink mode but also various stable Alfvén eigenmodes that abound in a toroidal plasma. The RWM growth rate is shown to peak repeatedly as the rotation frequency reaches specific values for which the frequencies of the ideal MHD modes are Doppler-shifted to the small RWM frequency. Such destabilization can be observed even when the RWM in a static plasma is stable. A dispersion relation clarifies that the unstable mode changes from the RWM to the ideal MHD mode destabilized by wall resistivity when the rotation frequency passes through these specific values. The unstable mode is excited at these rotation frequencies even though plasma rotation also tends to stabilize the RWM from the combination of the continuum damping and the ion Landau damping.
The effect of toroidal plasma rotation on low-frequency reversed shear Alfvén eigenmodes in tokamaks
Haverkort, J.W.
2012-01-01
The influence of toroidal plasma rotation on the existence of reversed shear Alfvén eigenmodes (RSAEs) near their minimum frequency is investigated analytically. An existence condition is derived showing that a radially decreasing kinetic energy density is unfavourable for the existence of RSAEs. Th
Tamain, P.; Bufferand, H.; Ciraolo, G.; Colin, C.; Galassi, D.; Ghendrih, Ph.; Schwander, F.; Serre, E.
2016-09-01
The new code TOKAM3X simulates plasma turbulence in full torus geometry including the open field lines of the Scrape-off Layer (SOL) and the edge closed field lines region in the vicinity of the separatrix. Based on drift-reduced Braginskii equations, TOKAM3X is able to simulate both limited and diverted plasmas. Turbulence is flux driven by incoming particles from the core plasma and no scale separation between the equilibrium and the fluctuations is assumed so that interactions between large scale flows and turbulence are consistently treated. Based on a domain decomposition, specific numerical schemes are proposed using conservative finite-differences associated to a semi-implicit time advancement. The process computation is multi-threaded and based on MPI and OpenMP libraries. In this paper, fluid model equations are presented together with the proposed numerical methods. The code is verified using the manufactured solution technique and validated through documented simple experiments. Finally, first simulations of edge plasma turbulence in X-point geometry are also introduced in a JET geometry.
Energy Technology Data Exchange (ETDEWEB)
F. Ed Cecil
2011-06-30
This report summarizes the accomplishment of sixteen years of work toward the development of thin foil Faraday collectors as a lost energetic ion diagnostic for high temperature magnetic confinement fusion plasmas. Following initial, proof of principle accelerator based studies, devices have been tested on TFTR, NSTX, ALCATOR, DIII-D, and JET (KA-1 and KA-2). The reference numbers refer to the attached list of publications. The JET diagnostic KA-2 continues in operation and hopefully will provide valuable diagnostic information during a possible d-t campaign on JET in the coming years. A thin Faraday foil spectrometer, by virtue of its radiation hardness, may likewise provide a solution to the very challenging problem of lost alpha particle measurements on ITER and other future burning plasma machines.
Albert, Christopher G; Kapper, Gernot; Kasilov, Sergei V; Kernbichler, Winfried; Martitsch, Andreas F
2016-01-01
Toroidal torque generated by neoclassical viscosity caused by external non-resonant, non-axisymmetric perturbations has a significant influence on toroidal plasma rotation in tokamaks. In this article, a derivation for the expressions of toroidal torque and radial transport in resonant regimes is provided within quasilinear theory in canonical action-angle variables. The proposed approach treats all low-collisional quasilinear resonant NTV regimes including superbanana plateau and drift-orbit resonances in a unified way and allows for magnetic drift in all regimes. It is valid for perturbations on toroidally symmetric flux surfaces of the unperturbed equilibrium without specific assumptions on geometry or aspect ratio. The resulting expressions are shown to match existing analytical results in the large aspect ratio limit. Numerical results from the newly developed code NEO-RT are compared to calculations by the quasilinear version of the code NEO-2 at low collisionalities. The importance of the magnetic shea...
The Spherical Tokamak MEDUSA for Mexico
Ribeiro, C.; Salvador, M.; Gonzalez, J.; Munoz, O.; Tapia, A.; Arredondo, V.; Chavez, R.; Nieto, A.; Gonzalez, J.; Garza, A.; Estrada, I.; Jasso, E.; Acosta, C.; Briones, C.; Cavazos, G.; Martinez, J.; Morones, J.; Almaguer, J.; Fonck, R.
2011-10-01
The former spherical tokamak MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R Mexican Fusion Network. Strong liaison within national and international plasma physics communities is expected. New activities on plasma & engineering modeling are expected to be developed in parallel by using the existing facilities such as a multi-platform computer (Silicon Graphics Altix XE250, 128G RAM, 3.7TB HD, 2.7GHz, quad-core processor), ancillary graph system (NVIDIA Quadro FE 2000/1GB GDDR-5 PCI X16 128, 3.2GHz), and COMSOL Multiphysics-Solid Works programs.
Energy Technology Data Exchange (ETDEWEB)
Barbosa, Luis Felipe de F.P.W.; Del Bosco, Edson
1997-12-31
This reports presents a summary on the thermonuclear fusion and application for energy supply purposes. The tokamak device operation and the magnetic field production systems are described. The ETE tokamak is a small aspect ratio device designed for plasma physics and thermonuclear fusion studies, which presently is under construction at the Laboratorio Associado de Plasma (LAP), Instituto Nacional de Pesquisas Espaciais (INPE) - S.J. dos Campos - S. Paulo. (author) 55 refs., 40 figs.
Neoclassical toroidal torque generation by auxiliary heating in non-axisymmetric tori
Lazzaro, E.; Nowak, S.; Sauter, O.
2016-12-01
In conditions of ideal axisymmetry, for a magnetized plasma in a generic bounded domain, necessarily toroidal, the uniform absorption of external energy (e.g. rf or isotropic alpha heating) clearly cannot give rise to net forces or torques. A rather common experimental observation on contemporary tokamaks is that the near central absorption of auxiliary heating power (often ICH, ECH, and LHCD) and current drive in presence of non axisymmetric magnetic perturbations, including tearing modes, drives a bulk plasma rotation in the co - I p direction. Also growing tearing modes provide a nonlinear magnetic braking that tends to flatten the rotation profile and clamp it at the q-rational surfaces. The physical origin of the torque associated with P aux absorption could be due the effects of asymmetry in deposition or in the equilibrium configuration, but here we consider also the effect of the response of the so called neoclassical offset velocity to the power dependent heat flow increment. The neoclassical toroidal viscosity (NTV), due to error fields, internal magnetic kink or tearing modes tends to relax the plasma rotation to this asymptotic speed, which in absence of auxiliary heating is of the order of the ion diamagnetic velocity. It can be shown by a kinetic calculation, this offset velocity is a function of the absorbed heat and therefore of the injected auxiliary power, thereby forcing the plasma rotation in a direction opposite to the initial, to large values. The problem is discussed in the frame of the theoretical models of neoclassical toroidal viscosity.
Energy Technology Data Exchange (ETDEWEB)
Messiaen, A.M.; Ongena, J.; Samm, U.; Unterberg, B.; Van Wassenhove, G.; Durodie, F.; Jaspers, R.; Tokar, M.Z.; Vandenplas, P.E.; Van Oost, G.; Winter, J.; Wolf, G.H.; Bertschinger, G.; Bonheure, G.; Dumortier, P.; Euringer, H.; Finken, K.H.; Fuchs, G.; Giesen, B.; Koch, R.; Koenen, L.; Koenigs, C.; Koslowski, H.R.; Kraemer-Flecken, A.; Lyssoivan, A.; Mank, G.; Rapp, J.; Schoon, N.; Telesca, G.; Uhlemann, R.; Vervier, M.; Waidmann, G.; Weynants, R.R. [Laboratoire de Physique des Plasmas-Laboratorium voor Plasmafysica, Association ``EURATOM-Belgian State,`` Ecole Royale Militaire, B-1040 Brussels, Koninklijke Militaire School (Belgium)]|[Institut fuer Plasmaphysik, Forschungszentrum Juelich, GmbH Association ``Euratom-KFA,`` D-52425 Juelich (Federal Republic of Germany)]|[FOM Instituut voor Plasmafysica Rijnhuizen, Associatie ``FOM-EURATOM,`` Nieuwegein (The Netherlands)
1996-09-01
Stationary high energy confinement is observed on TEXTOR-94 for times limited only by the flux swing of the transformer using strong edge radiation cooling. Necessary tools are the feedback control of the radiated power and of the plasma energy content. At the highest densities obtained (up to 1.2 times the Greenwald limit), energy confinement exceeds the edge-localized-mode-free {ital H}-mode scaling ITERH93-P by more than 20{percent}. {beta} limits of TEXTOR-94 are reached with {ital f}{sub H89}/{ital q}{sub {ital a}}{approx_equal}0.6. No detrimental effect of the seeded impurity is seen. These high confinement discharges meet many conditions necessary for a fusion reactor regime. {copyright} {ital 1996 The American Physical Society.}
Global gyrokinetic simulation of tokamak transport
Energy Technology Data Exchange (ETDEWEB)
Furnish, G.; Horton, W.; Kishimoto, Y.; LeBrun, M.J.; Tajima, T. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies]|[Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan)
1998-10-01
A kinetic simulation code based on the gyrokinetic ion dynamics in global general metric (including a tokamak with circular or noncircular cross-section) has been developed. This gyrokinetic simulation is capable of examining the global and semi-global driftwave structures and their associated transport in a tokamak plasma. The authors investigate the property of the ion temperature gradient (ITG) or {eta}{sub i}({eta}{sub i} {equivalent_to} {partial_derivative}{ell}nT{sub i}/{partial_derivative}{ell}n n{sub i}) driven drift waves in a tokamak plasma. The emergent semi-global drift wave modes give rise to thermal transport characterized by the Bohm scaling.
Wang, Jialei; Wang, Zheng-Xiong; Wei, Lai; Liu, Yue
2017-04-01
The control of neo-classical tearing modes (NTMs) by the differential rotation in the reversed magnetic shear (RMS) configuration with different separations Δ {{r}\\text{s}} between two rational surfaces is numerically studied by means of reduced magnetohydrodynamic (MHD) simulations. It is found that the differential rotation with a strong shear at the outer resonant surface can effectively suppress the explosive burst of double tearing modes (DTMs)/NTMs. Critical values of the strength of rotation to suppress the burst are also presented for different bootstrap current fractions {{f}\\text{b}} . Furthermore, a couple of measurable parameters ≤ft(δ, κ \\right) , corresponding respectively to the triangularity and elongation of the magnetic islands at the outer resonant surface, are introduced to characterize the deformation of islands in the nonlinear phase. It is found that the triangularity δ is more likely to precisely predict the onset of burst than the island width w and elongation κ . For a given Δ {{r}\\text{s}} , the critical value of triangularity {δ\\text{crit}} is obtained by scanning different plasma parameters. Establishing such a database of ≤ft(δ,κ \\right) is helpful to effectively control the development of NTMs in the RMS experimental discharges.
Ions Measurement at the Edge of HT-7 Tokamak
Institute of Scientific and Technical Information of China (English)
Ling Bili; Wang Enyao; Gao wei; Wan Baonian; Li Jiangang
2005-01-01
A reliable method of measuring ions and ion temperature in tokamak plasma is necessary, for which an omegatron-like instrument has been developed on the HT-7 tokamak. The basic layout of the omegatron-like instrument is shown in this article. The measurement of working gas ion has been performed in the last experimental campaign on HT-7 tokamak. The relations among ion current, the electron repeller voltage and trap voltage have been investigated. This omegatron-like instrument has also provided the edge-plasma ion temperature.
Paz-Soldan, C.
2013-10-01
Small deformations of the otherwise axisymmetric field, known as ``error fields'' (EFs), lead to large changes in global MHD stability. This talk will compare results from both 1) a line-tied screw-pinch with rotating conducting walls and 2) the DIII-D tokamak to illustrate that in both devices the EF has greatest effect where it overlaps with the spatial structure of its global kink mode. In both configurations the kink structure in the symmetry direction is well described by a single mode number (azimuthal m = 1 , toroidal n = 1 , respectively) and EF ordering is clear. In the asymmetric direction (axial and poloidal, respectively) the harmonics of the kink are coupled (by line-tying and toroidicity, respectively) and thus EF ordering is not straightforward. In the pinch, the kink is axially localized to the anode region and consequently the anode EF dominates the MHD stability. In DIII-D, the poloidal harmonics of the n = 1 EF whose pitch is smaller than the local field-line pitch are empirically shown to be dominant across a wide breadth of EF optimization experiments. In analogy with the pinch, these harmonics are also where overlap with the kink is greatest and thus where the largest plasma kink response is found. The robustness of the kink structure further enables vacuum-field cost-function minimization techniques to accurately predict optimal EF correction coil currents by strongly weighting the kink-like poloidal harmonics in the minimization. To test the limits of this paradigm recent experiments in DIII-D imposed field structures that lack kink-overlapping harmonics, yielding ~10X less sensitivity. The very different plasmas of the pinch and tokamak thus both demonstrate the dominance of the kink mode in determining optimal EF correction. Supported by US DOE under DE-AC05-06OR23100, DE-FG02-00ER54603, DE-FC02-04ER54698, and NSF 0903900.
Tokamak Transport Studies Using Perturbation Analysis
Cardozo, N. J. L.; Dehaas, J. C. M.; Hogeweij, G. M. D.; Orourke, J.; Sips, A.C.C.; Tubbing, B. J. D.
1990-01-01
Studies of the transport properties of tokamak plasmas using perturbation analysis are discussed. The focus is on experiments with not too large perturbations, such as sawtooth induced heat and density pulse propagation, power modulation and oscillatory gas-puff experiments. The approximations made
Song, Yuntao; Du, Shijun
2013-01-01
Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study
Rogério de Moraes Oliveira
2003-01-01
Para cumprir um dos principais planos de pesquisa do Experimento Tokamak Esférico - ETE, que é o de investigar a região de borda da coluna de plasma em dispositivos de baixa razão de aspecto, desenvolveu-se um sistema de diagnóstico baseado em um Feixe de Lítio Neutro e Rápido - FLNR. Nos diagnósticos de feixes atômicos, como é o caso do FLNR, os perfis da densidade de elétrons são obtidos pela medida da emissão do feixe neutro de lítio. Quando átomos de lítio são injetados em um plasma eles ...
Vertically stabilized elongated cross-section tokamak
Sheffield, George V.
1977-01-01
This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.
Tokamak Spectroscopy for X-Ray Astronomy
Fournier, Kevin B.; Finkenthal, M.; Pacella, D.; May, M. J.; Soukhanovskii, V.; Mattioli, M.; Leigheb, M.; Rice, J. E.
2000-01-01
This paper presents the measured x-ray and Extreme Ultraviolet (XUV) spectra of three astrophysically abundant elements (Fe, Ca and Ne) from three different tokamak plasmas. In every case, each spectrum touches on an issue of atomic physics that is important for simulation codes to be used in the analysis of high spectral resolution data from current and future x-ray telescopes. The utility of the tokamak as a laboratory test bed for astrophysical data is demonstrated. Simple models generated with the HULLAC suite of codes demonstrate how the atomic physics issues studied can affect the interpretation of astrophysical data.
Tokamak power systems studies, FY 1985
Energy Technology Data Exchange (ETDEWEB)
Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Smith, D.L.; Sze, D.K.
1985-12-01
The Tokamak Power System Studies (TPSS) at ANL in FY-1985 were devoted to exploring innovative design concepts which have the potential for making substantial improvements in the tokamak as a commercial power reactor. Major objectives of this work included improved reactor economics, improved environmental and safety features, and the exploration of a wide range of reactor plant outputs with emphasis on reduced plant sizes compared to STARFIRE. The activities concentrated on three areas: plasma engineering, impurity control, and blanket/first wall/shield technology. 205 refs., 125 figs., 107 tabs.
Comparison between 2D turbulence model ESEL and experimental data from AUG and COMPASS tokamaks
DEFF Research Database (Denmark)
Ondac, Peter; Horacek, Jan; Seidl, Jakub;
2015-01-01
In this article we have used the 2D fluid turbulence numerical model, ESEL, to simulate turbulent transport in edge tokamak plasma. Basic plasma parameters from the ASDEX Upgrade and COMPASS tokamaks are used as input for the model, and the output is compared with experimental observations obtained...
System assessment of helical reactors in comparison with tokamaks
Energy Technology Data Exchange (ETDEWEB)
Yamazaki, K.; Imagawa, S.; Muroga, T.; Sagara, A.; Okamura, S.
2002-10-01
A comparative assessment of tokamak and helical reactors has been performed using equivalent physics/engineering model and common costing model. Higher-temperature plasma operation is required in tokamak reactors to increase bootstrap current fraction and to reduce current-drive (CD) power. In helical systems, lower-temperature operation is feasible and desirable to reduce helical ripple transport. The capital cost of helical reactor is rather high, however, the cost of electricity (COE) is almost same as that of tokamak reactor because of smaller re-circulation power (no CD power) and less-frequent blanket replacement (lower neutron wall loading). The standard LHD-type helical reactor with 5% beta value is economically equivalent to the standard tokamak with 3% beta. The COE of lower-aspect ratio helical reactor is on the same level of high-{beta}{sub N} tokamak reactors. (author)
Auluck, S K H
2014-01-01
Direct measurement of axial magnetic field in the PF-1000 dense plasma focus (DPF), and its reported correlation with neutron emission, call for a fresh look at previous reports of existence of axial magnetic field component in the DPF from other laboratories, and associated data suggesting toroidal directionality of fast ions participating in fusion reactions, with a view to understand the underlying physics. In this context, recent work dealing with application of the hyperbolic conservation law formalism to the DPF is extended in this paper to a curvilinear coordinate system, which reflects the shape of the DPF current sheath. Locally-unidirectional shock propagation in this coordinate system enables construction of a system of 7 one-dimensional hyperbolic conservation law equations with geometric source terms, taking into account all the components of magnetic field and flow velocity. Rankine-Hugoniot jump conditions for this system lead to expressions for the axial magnetic field and three components of ...
Energy Technology Data Exchange (ETDEWEB)
Tsitrone, E.
1995-12-01
Two key problems in the development of a controlled fusion reactor are: -the control of the ashes resulting from the fusion reaction (helium) and of the impurities coming from the wall erosion, which affect the central plasma performances by diluting the fuel and dissipating a part of the produced energy by radiation. - the removal of the heat carried to the walls by charged particles, which is highly concentrated (peak values of several tens of MW per m{sup 2}). Two types of systems are generally used for the plasma-wall interface: throat limiter and axisymmetric divertor. Neither is an ideal candidate to control simultaneously the heat and particle fluxes. This thesis investigates an alternative configuration, the vented limiter, tested for the first time on the Tore Supra tokamak. The vented limiter principle lies on the recycling neutrals collection by slots, in such a way that local thermal overload is avoided. It is shown experimentally that the surface temperature of the prototype installed in Tore Supra remains uniform. As far as the particle collection is concerned, even though the pressure in the vented limiter is lower than the pressure in the throat limiter by a factor 3 for deuterium and 4 helium, it is sufficient to control the plasma density. Moreover, as with a throat limiter, the pressure exhibits a quadratic evolution with the plasma density. To interpret these results, a model describing the plasma recycling on the limiter and the pumping by the slots has been developed. The model has been validated by a comparison with the experimental data. It was then used to propose an optimized version of the prototype with reshaped slots. This should improve the pumping efficiency by a factor 2, in deuterium as well as in helium, but without removing the discrepancy between both pumping efficiencies. (Abstract Truncated)
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-06-12
The Fusion Research Center (FRC) at the University Texas will operate the tokamak TEXT-U and its associated systems for experimental research in basic plasma physics. While the tokamak is not innovative, the research program, diagnostics and planned experiments are. The fusion community will reap the benefits of the success in completing the upgrades (auxiliary heating, divertor, diagnostics, wall conditioning), developing diverted discharges in both double and single null configurations, exploring improved confinement regimes including a limiter H-mode, and developing unique, critical turbulence diagnostics. With these new regimes, the authors are poised to perform the sort of turbulence and transport studies for which the TEXT group has distinguished itself and for which the upgrade was intended. TEXT-U is also a facility for collaborators to perform innovative experiments and develop diagnostics before transferring them to larger machines. The general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The emphasis of the proposed research is to provide well-documented plasmas which will be used to suggest and evaluate theories, to explore control techniques, to develop advanced diagnostics and analysis techniques, and to extend current drive techniques. Up to 1 MW of electron cyclotron heating (ECH) will be used not only for heating but as a localized, perturbative tool. Areas of proposed research are: (1) core turbulence and transport; (2) edge turbulence and transport; (3) turbulence analysis; (4) improved confinement; (5) ECH physics; (6) Alfven wave current drive; and (7) diagnostic development.
Simulation of EAST vertical displacement events by tokamak simulation code
Qiu, Qinglai; Xiao, Bingjia; Guo, Yong; Liu, Lei; Xing, Zhe; Humphreys, D. A.
2016-10-01
Vertical instability is a potentially serious hazard for elongated plasma. In this paper, the tokamak simulation code (TSC) is used to simulate vertical displacement events (VDE) on the experimental advanced superconducting tokamak (EAST). Key parameters from simulations, including plasma current, plasma shape and position, flux contours and magnetic measurements match experimental data well. The growth rates simulated by TSC are in good agreement with TokSys results. In addition to modeling the free drift, an EAST fast vertical control model enables TSC to simulate the course of VDE recovery. The trajectories of the plasma current center and control currents on internal coils (IC) fit experimental data well.
Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices
Evans, T. E.
2015-12-01
Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δ b\\bot\\text{ext}≈ {{10}-4}\\to {{10}-3}~\\text{T} ). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes (ELMs). At the same time, theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design (Loarte et al 2014 Nucl. Fusion 54 033007). This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.
Viewgraphs presented at the ASDEX/DOE workshop on disruptions in divertor tokamaks
Energy Technology Data Exchange (ETDEWEB)
Granetz, R.; Gruber, O.; Zohm, H. [and others
1994-09-01
The emphasis of this year`s ASDEX/DOE workshop was on disruptions in diverted tokamaks. The meeting was held here at MIT on 14--15 March. It is particularly appropriate that MIT hosted the workshop this year, since Alcator C-Mod had just recently completed its very first run campaign, and disruptions are one of the key areas of research in our program. There were a total of 14 speakers, with participants from IPP (Garching), CRPP (Lausanne), Culham, General Atomics, PPPL, Sandia, ORNL, the ITER JCT, and MIT. The subjects addressed included statistical analysis of disruption probabilities in ASDEX, modelling of the vertical axisymmetric plasma motion in DIII-D, impact of disruptions on the design of the ITER divertors, modelling of runaway electrons, and TSC calculations of disruption-induced currents and forces in TPX, etc. One item of particular interest to us was the experimental correlation of halo current magnitude with plasma current on ASDEX-Upgrade. The data indicates at least a linear, and possibly even a quadractic dependence. This has important implications for Alcator C-Mod, since it would predict halo currents of order 1 MA or more at full performance. At the conclusion of the talks, an informal discussion of disruption databases was held, primarily for the purpose of helping us develop a useful one for C-Mod.
Anomalous fast ion losses at high β on the tokamak fusion test reactor
Energy Technology Data Exchange (ETDEWEB)
Fredrickson, E. D.; Bell, M. G.; Budny, R. V.; Darrow, D. S.; White, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)
2015-03-15
This paper describes experiments carried out on the Tokamak Fusion Test Reactor (TFTR) [R. J. Hawryluk et al., Plasma Phys. Controlled Fusion 33, 1509 (1991)] to investigate the dependence of β-limiting disruption characteristics on toroidal field strength. The hard disruptions found at the β-limit in high field plasmas were not found at low field, even for β's 50% higher than the empirical β-limit of β{sub n} ≈ 2 at high field. Comparisons of experimentally measured β's to TRANSP simulations suggest anomalous loss of up to half of the beam fast ions in the highest β, low field shots. The anomalous transport responsible for the fast ion losses may at the same time broaden the pressure profile. Toroidal Alfvén eigenmodes, fishbone instabilities, and Geodesic Acoustic Modes are investigated as possible causes of the enhanced losses. Here, we present the first observations of high frequency fishbones [F. Zonca et al., Nucl. Fusion 49, 085009 (2009)] on TFTR. The interpretation of Axi-symmetric Beam-driven Modes as Geodesic Acoustic Modes and their possible correlation with transport barrier formation are also presented.
Enhanced confinement regimes and control technology in the DIII-D tokamak
Energy Technology Data Exchange (ETDEWEB)
Lohr, J.; Burrell, K.H. [General Atomics, San Diego, CA (United States); Coda, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States)] [and others
1993-07-01
Advanced tokamak performance has been demonstrated in the DIII-D tokamak in a series of experiments which brought together developments in technology and improved understanding of the physical principles underlying tokamak operation. The achievement of greatly improved confinement coupled with development of new systems for real time plasma control have permitted investigation of the heretofore hidden or poorly controlled variables which together determine global confinement. These experiments, which included work in transport and control of the plasma boundary, point toward development of operationally and economically attractive reactors based on the tokamak. Some of these experiments are described.
Modelling of electron transport and of sawtooth activity in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Angioni, C
2001-10-01
Transport phenomena in tokamak plasmas strongly limit the particle and energy confinement and represent a crucial obstacle to controlled thermonuclear fusion. Within the vast framework of transport studies, three topics have been tackled in the present thesis: first, the computation of neoclassical transport coefficients for general axisymmetric equilibria and arbitrary collisionality regime; second, the analysis of the electron temperature behaviour and transport modelling of plasma discharges in the Tokamak a configuration Variable (TCV); third, the modelling and simulation of the sawtooth activity with different plasma heating conditions. The work dedicated to neoclassical theory has been undertaken in order to first analytically identify a set of equations suited for implementation in existing Fokker-Planck codes. Modifications of these codes enabled us to compute the neoclassical transport coefficients considering different realistic magnetic equilibrium configurations and covering a large range of variation of three key parameters: aspect ratio, collisionality, and effective charge number. A comparison of the numerical results with an analytical limit has permitted the identification of two expressions for the trapped particle fraction, capable of encapsulating the geometrical effects and thus enabling each transport coefficient to be fitted with a single analytical function. This has allowed us to provide simple analytical formulae for all the neoclassical transport coefficients valid for arbitrary aspect ratio and collisionality in general realistic geometry. This work is particularly useful for a correct evaluation of the neoclassical contribution in tokamak scenarios with large bootstrap cur- rent fraction, or improved confinement regimes with low anomalous transport and for the determination of the plasma current density profile, since the plasma conductivity is usually assumed neoclassical. These results have been included in the plasma transport code
Institute of Scientific and Technical Information of China (English)
沈永才; 程飞; 吴义恒
2016-01-01
In this paper,process of obtaining impurity emissivity on tokamak plasma has been studied .By using matrix inver-sion, emissivity can be calculated according to brightness of impurity spectral lines .As an example, Mo emissivities have been cal-culated by using this method based on the assumed brightness .%对托卡马克等离子体中获得杂质局部体发射率的过程进行研究，提出了一种采用求逆矩阵的方法进行 A-bel反演，根据弦积分的杂质光亮度分布获得杂质局部体发射率。结合托卡马克装置假象的钼杂质弦积分剖面，采用该方法获得了杂质的体发射率分布。
Energy Technology Data Exchange (ETDEWEB)
Costanzo, L
2001-10-01
The control of power deposition onto plasma facing components in tokamaks is a determining factor for future thermonuclear fusion reactors. Plasma surface interaction can be performed using limiters or divertors. The ergodic divertor installed on Tore Supra is an atypical example of a magnetic divertor. It consists in applying a magnetic perturbation which establishes a particular topology of the plasma in contact with the wall (edge plasma). We carried out dedicated experiments in order to study parallel heat flux which strike the divertor neutralizers. This quantitative and qualitative analysis of heat flux as a function of experimental conditions allows to determine the profiles of power deposition along the neutralizers. The influence of plasma electron density, additional heating, impurities and injected gas was established. An experimental study of the sheath heat transmission factor {gamma} was carried out by correlating measurements made with Langmuir probes and infrared imaging. This study gave rise to a major conclusion: for ohmic discharges with deuterium injection and most of the time with helium, it was experimentally confirmed that {gamma}=7 in agreement with classical sheath theory. However, an increase of this factor with additional power has been shown. Detached plasma, which is an attractive regime in order to reduce the power deposition, requires an optimized control. A new measurement of the detachment onset has been developed. It is based on the variation of heat flux onto the plates derived from infrared measurements. A detachment cartography with the determination of a new 2D 'IR' Degree of Detachment was carried out allowing to locate the zone where the detachment starts. We can apply this concept both to other tokamaks such as JET and ITER. A comparison between the axisymmetric divertor and the ergodic divertor is also presented concerning the power deposition in the two configurations. Low heat flux with the ergodic divertor is a
UCLA Tokamak Program Close Out Report.
Energy Technology Data Exchange (ETDEWEB)
Taylor, Robert John [UCLA/retired
2014-02-04
The results of UCLA experimental fusion program are summarized. Starting with smaller devices like Microtor, Macrotor, CCT and ending the research on the large (5 m) Electric Tokamak. CCT was the most diagnosed device for H-mode like physics and the effects of rotation induced radial fields. ICRF heating was also studied but plasma heating of University Type Tokamaks did not produce useful results due to plasma edge disturbances of the antennae. The Electric Tokamak produced better confinement in the seconds range. However, it presented very good particle confinement due to an "electric particle pinch". This effect prevented us from reaching a quasi steady state. This particle accumulation effect was numerically explained by Shaing's enhanced neoclassical theory. The PI believes that ITER will have a good energy confinement time but deleteriously large particle confinement time and it will disrupt on particle pinching at nominal average densities. The US fusion research program did not study particle transport effects due to its undue focus on the physics of energy confinement time. Energy confinement time is not an issue for energy producing tokamaks. Controlling the ash flow will be very expensive.
NEOCLASSICAL TRANSPORT IN A TOKAMAK WITH ELECTRIC SHEAR
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Neoclassical transport theory for a tokamak in the presence of a large radial electric field with shear is developed using Hamiltonian formalism. Diffusion coefficients are derived in both the plateau and banana regimes where the squeezing factor in coefficients can greatly affect diffusion at the plasma edge. Rotation speeds are calculated in the scrape-off region. They are in good agreement with the measurements on the TdeV tokamak.
TIBER: Tokamak Ignition/Burn Experimental Research. Final design report
Energy Technology Data Exchange (ETDEWEB)
Henning, C.D.; Logan, B.G.; Barr, W.L.; Bulmer, R.H.; Doggett, J.N.; Johnson, B.M.; Lee, J.D.; Hoard, R.W.; Miller, J.R.; Slack, D.S.
1985-11-01
The Tokamak Ignition/Burn Experimental Research (TIBER) device is the smallest superconductivity tokamak designed to date. In the design plasma shaping is used to achieve a high plasma beta. Neutron shielding is minimized to achieve the desired small device size, but the superconducting magnets must be shielded sufficiently to reduce the neutron heat load and the gamma-ray dose to various components of the device. Specifications of the plasma-shaping coil, the shielding, coaling, requirements, and heating modes are given. 61 refs., 92 figs., 30 tabs. (WRF)
Ham, C J; Kirk, A; Saarelma, S
2013-01-01
It is known that magnetic perturbations can mitigate edge localized modes (ELMs) in experiments, for example MAST (Kirk et al 2013 Nucl. Fusion 53 043007). One hypothesis is that the magnetic perturbations cause a three dimensional corrugation of the plasma and this corrugated plasma has different stability properties to peeling-ballooning modes compared to an axisymmetric plasma. It has been shown in an up-down symmetric plasma that magnetic perturbations in tokamaks will break the usual axisymmetry of the plasma causing three dimensional displacements (Chapman et al 2012 Plasma Phys. Control. Fusion 54 105013). We produce a free boundary three-dimensional equilibrium of a lower single null MAST relevant plasma using VMEC (S P Hirshman and J C Whitson 1983 Phys. Fluids 26 3553). The current and pressure profiles used for the modelling are similar to those deduced from axisymmetric analysis of experimental data with ELMs. We focus on the effect of applying $n=3$ and $n=6$ magnetic perturbations using the RMP ...
Kazakhstan tokamak for material testing conceptual design and basic parameters
Energy Technology Data Exchange (ETDEWEB)
Korotkov, V.A. E-mail: korotkov@sintez.niiefa.spb.su; Azizov, E.A.; Cherepnin, Yu.S.; Dokouka, V.N.; Ya.Dvorkin, N.; Khayrutdinov, R.R.; Krylov, V.A.; Kuzmin, E.G.; Leykin, I.N.; Mineev, A.B.; Shkolnik, V.S.; Shestakov, V.P.; Shapovalov, G.V.; Tazhibaeva, I.L.; Tikhomirov, L.N.; Yagnov, V.A
2001-10-01
The construction of a special machine for plasma facing material testing under powerful and particle and heat flux deposition is necessary for progress of researches in the field of controlled fusion to industrial application. Kazakhstan tokamak for material testing (KTM) is planned as spherical tokamak with moderate-to-low aspect ratio (A=2) and high plasma and vacuum vessel elongation, that allows to reach high plasma parameters, large power-intensity at a compact arrangement of design elements and low requirements to a toroidal magnetic field. KTM tokamak is planned in order to investigate the following issues: (1) Plasma confinement in tokamak with A=2, plasma parameters and configurations working window; (2) Differed kinds of divertor plates under power flux of plasma to divertor volume; (3) Plasma-wall interaction (different materials and coating) and plasma-limiter configurations. In the paper the basic parameters of the machine are given. The design of magnet system with poloidal field coils, vacuum vessel and divertor are submitted.
Stability and heating of a poloidal divertor tokamak
Energy Technology Data Exchange (ETDEWEB)
Biddle, A. P.; Dexter, R. N.; Holly, D. T.; Lipschultz, B.; Osborne, T. H.; Prager, S. C.; Shepard, D.A., Sprott, J.C.; Witherspoon, F. D.
1980-06-01
Five experimental studies - two stability and three heating investigations - have been carried out on Tokapole II, a Tokamak with a four node poloidal divertor. First, discharges have been attained with safety factor q as low as 0.6 over most of the column without degradation of confinement, and correlation of helical instability onset with current profile shape is being studied. Second, the axisymmetric instability has been investigated in detail for various noncircular cross-sectional shapes, and results have been compared with a numerical stability code adapted to the Tokapole machine. Third, application of high power fast wave ion cyclotron resonance heating doubles the ion temperature and permits observation of heating as a function of harmonic number and spatial location of the resonance. Fourth, low power shear Alfven wave propagation is underway to test the applicability of this heating method to tokamaks. Fifth, preionization by electron cyclotron heating has been employed to reduce the startup loop voltage by approx. 60%.
Controlling tokamak geometry with three-dimensional magnetic perturbations
Energy Technology Data Exchange (ETDEWEB)
Bird, T. M., E-mail: tbird@ipp.mpg.de [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Hegna, C. C. [Departments of Engineering Physics and Physics, University of Wisconsin-Madison, 1500 Engineering Dr., Madison, Wisconsin 53703 (United States)
2014-10-15
It is shown that small externally applied magnetic perturbations can significantly alter important geometric properties of magnetic flux surfaces in tokamaks. Through 3D shaping, experimentally relevant perturbation levels are large enough to influence turbulent transport and MHD stability in the pedestal region. It is shown that the dominant pitch-resonant flux surface deformations are primarily induced by non-resonant 3D fields, particularly in the presence of significant axisymmetric shaping. The spectral content of the applied 3D field can be used to control these effects.
Energy Technology Data Exchange (ETDEWEB)
Lopez C, R.; Melendez L, L.; Valencia A, R.; Chavez A, E.; Colunga S, S.; Gaytan G, E
1992-02-15
In this work the obtained results of the investigation about the experimental characterization of those low energy pulsed discharges of the Tokamak Novillo are reported. With this it is possible to fix the one operation point but appropriate of the Tokamak to condition the chamber in the smallest possible time for the cleaning discharges regime before beginning the main discharge. The characterization of the cleaning discharges in those Tokamaks is an unique process and characteristic of each device, since the good points of operation are consequence of those particularities of the design of the machine. In the case of the Tokamak Novillo, besides characterizing it a contribution is made to the cleaning discharges regime which consists on the one product of the current peak to peak of plasma by the duration of the discharge Ip{sub t} like reference parameter for the optimization of the operation of the device in the cleaning discharge regime. The maximum value of the parameter I{sub (p)}t, under different work conditions, allowed to find the good operation point to condition the discharges chamber of the Tokamak Novillo in short time and to arrive to a regime in which is not necessary the preionization for the obtaining of the cleaning discharges. (Author)
Internal Kink Instability in Shaped Tokamaks
Institute of Scientific and Technical Information of China (English)
王中天; 王龙
2002-01-01
A criterion of an ideal internal kink mode is derived for a shaped tokamak configuration in which q-profile is very flat in the core region. A combining criterion is obtained including the necessary criterion of Mercier and the sufficient criterion of Lortz. The new criterion makes progress compared with the necessary criterion of Mercier. In the elongated plasma, a poloidal beta can cause instability, while the triangularity has a stabilizing effect. The result is applicable for DIII-D and SUNIST.
EU Integrated Tokamak Modelling (ITM) Task Force
Institute of Scientific and Technical Information of China (English)
A Becoulet
2007-01-01
@@ At the end of 2003, the European Fusion Development Agreement (EFDA) structure set-up a long-term European task force (TF) in charge of "co-ordinating the development of a coherent set of validated simulation tools for the purpose of benchmarking on existing tokamak experiments, with the ultimate aim of providing a comprehensive simulation package for ITER plasmas" [http://www.efda-taskforce-itm.org/].
Sliding Mode Control of a Tokamak Transformer
Energy Technology Data Exchange (ETDEWEB)
Romero, J. A.; Coda, S.; Felici, F.; Moret, J. M.; Paley, J.; Sevillano, G.; Garrido, I.; Le, H. B.
2012-06-08
A novel inductive control system for a tokamak transformer is described. The system uses the flux change provided by the transformer primary coil to control the electric current and the internal inductance of the secondary plasma circuit load. The internal inductance control is used to regulate the slow flux penetration in the highly conductive plasma due to the skin effect, providing first-order control over the shape of the plasma current density profile. Inferred loop voltages at specific locations inside the plasma are included in a state feedback structure to improve controller performance. Experimental tests have shown that the plasma internal inductance can be controlled inductively for a whole pulse starting just 30ms after plasma breakdown. The details of the control system design are presented, including the transformer model, observer algorithms and controller design. (Author) 67 refs.
Development of the Fast Ionization Gauge in the HL-2A Tokamak
Institute of Scientific and Technical Information of China (English)
WANGMingxu; LIBo; YANGZhigang; LIAOZhiqing; YANLongwen; ZHANGNianman; YANDonghai
2003-01-01
The neutral gas pressure near plasma or divertor plates is very important for the plasma-wall interaction, which determine the operation mode of divertom and confinement performances of plasma in tokamaks. The commercial ionization gauge does not work in strong magnetic field and noisy enviroment encountered in tokamaks. The measuring errom of pressure commercial ionizationare very large by the gauge mounted on the pumping system or through a long pipe to the vacuum vessel. A new ionization gauge,
ADX - Advanced Divertor and RF Tokamak Experiment
Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl
2015-11-01
The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.
Design and construction of Alborz tokamak vacuum vessel system
Energy Technology Data Exchange (ETDEWEB)
Mardani, M., E-mail: mohsenmardani@gmail.com [Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Amrollahi, R.; Koohestani, S. [Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of)
2012-09-15
Highlights: Black-Right-Pointing-Pointer The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. Black-Right-Pointing-Pointer As one of the key components for the device, the vacuum vessel can provide ultra-high vacuum and clean environment for the plasma operation. Black-Right-Pointing-Pointer A limiter is a solid surface which defines the edge of the plasma and designed to protect the wall from the plasma, localizes the plasma-surface interaction and localizes the particle recycling. Black-Right-Pointing-Pointer Structural analyses were confirmed by FEM model for dead weight, vacuum pressure and plasma disruptions loads. - Abstract: The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. At the heart of the tokamak is the vacuum vessel and limiter which collectively are referred to as the vacuum vessel system. As one of the key components for the device, the vacuum vessel can provide ultra-high vacuum and clean environment for the plasma operation. The VV systems need upper and lower vertical ports, horizontal ports and oblique ports for diagnostics, vacuum pumping, gas puffing, and maintenance accesses. A limiter is a solid surface which defines the edge of the plasma and designed to protect the wall from the plasma, localizes the plasma-surface interaction and localizes the particle recycling. Basic structure analyses were confirmed by FEM model for dead weight, vacuum pressure and plasma disruptions loads. Stresses at general part of the VV body are lower than the structure material allowable stress (117 MPa) and this analysis show that the maximum stresses occur near the gravity support, and is about 98 MPa.
2013-01-01
Hydrogen majority plasmas will be used in the initial non-activated phase of ITER operation. Optimizing ion cyclotron resonance heating (ICRH) in such scenarios will help in achieving H-mode in these plasmas. Past JET experiments with the carbon wall revealed a significant impact of intrinsic impurities on the ICRH performance in (3He)-H plasmas relevant for the full-field initial ITER phase. High plasma contamination with carbon impurities resulted in the appearance of a supplementary mode c...
Researches on the Neutral Gas Pressure in the Divertor Chamber of the HL-2A Tokamak
Institute of Scientific and Technical Information of China (English)
WANGMingxu; LIBo; YANGZhigang; YANLongwen; HONGWenyu; YUANBaoshan; LIULi; CAOZeng; CUIChenghe; LIUYong; WANGEnyao; ZHANGNianman
2003-01-01
The neutral gas pressure in divertor chamber is a very basic and important physics parameter because it determines the temperature of charged particles, the thermal flux density onto divertor plates, the erosion of divertor plates, impurity retaining and exhausting, particle transportation and confinement performance of plasma in tokamaks. Therefore, the pressure measurement in divertor chamber is taken into account in many large tokamaks.
Princeton Plasma Physics Laboratory
Energy Technology Data Exchange (ETDEWEB)
1990-01-01
This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.
A CONCEPT FOR NEXT STEP ADVANCED TOKAMAK FUSION DEVICE
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A concept is introduced for initiating the design study of a special class of tokamak,which has a magnetic confinement configuration intermediate between contemporary advanced tokamak and the recently established spherical torus (ST,also well known by the name "spherical tokamak").The leading design parameter in the present proposal is a dimensionless geometrical parameter, the machine aspect ratio A＝R0/a0＝2.0,where the parameters a0 and R0 denote,respectively,the plasma (equatorial) minor radius and the plasma major radius.The aim of this choice is to technologically and experimentally go beyond the aspect ratio frontier (R0/a0≈2.5) of present day tokamaks and enter a broad unexplored domain existing on the (a0,R0) parameter space in current international tokamak database,between the data region already moderately well covered by the advanced conventional tokamaks and the data region planned to be covered by STs.Plasma minor radius a0 has been chosen to be the second basic design parameter, and consequently,the plasma major radius R0 is regarded as a dependent design parameter.In the present concept,a nominal plasma minor radius a0＝1.2m is adopted to be the principal design value,and smaller values of a0 can be used for auxiliary design purposes,to establish extensive database linkage with existing tokamaks.Plasma minor radius can also be adjusted by mechanical and/or electromagnetic means to smaller values during experiments,for making suitable data linkages to existing machines with higher aspect ratios and smaller plasma minor radii.The basic design parameters proposed enable the adaptation of several confinement techniques recently developed by STs,and thereby a specially arranged central-bore region inside the envisioned tokamak torus,with retrieved space in the direction of plasma minor radius,will be available for technological adjustments and maneuverings to facilitate implementation of engineering instrumentation and real time high
A novel approach to linearization of the electromagnetic parameters of tokamaks with an iron core
Energy Technology Data Exchange (ETDEWEB)
Fu, P. E-mail: fupeng@mail.ipp.ac.cn; Liu, Z.Z.; Zou, J.H
2002-05-01
The equivalent model of an iron core tokamak is developed, in which the electromagnetic parameters of several pairs of coils in opposite series (PCOS) are not dependent on the saturation of the iron core during tokamak operation. With this the electromagnetic parameters of all the coils in an iron core tokamak can be linearized, As an example, the electromagnetic parameters of Hefei Super-conductive Tokamak with iron core (HT-7) are linearized, and it is in good agreement with the experimental results. The linearization approach can be applied in real time plasma control and electromagnetic analysis.
Princeton Plasma Physics Laboratory:
Energy Technology Data Exchange (ETDEWEB)
Phillips, C.A. (ed.)
1986-01-01
This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.
Energy Technology Data Exchange (ETDEWEB)
Chavez A, E.; Melendez L, L.; Colunga S, S.; Valencia A, R.; Lopez C, R.; Gaytan G, E
1991-07-15
The charged particles that constitute the plasma in the tokamaks are located in magnetic fields that determine its behavior. The poloidal magnetic field of the plasma current and the toroidal magnetic field of the tokamak possess relatively big gradients, which produce drifts on these particles. These drifts are largely the cause of the continuous lost of particles and of energy of the confinement region. In this work the results of numerical calculations of a modification to the 'traditional' toroidal magnetic field that one waits it diminishes the drifts by gradient and improve the confinement properties of the tokamaks. (Author)
Measurement of Current Profile in a Tokamak Through AC Modulation
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The plasma current is modulated with an alternating current (ac) component in a frequency range of 90 Hz～900 Hz in the plateau discharge phase in the CT-6B tokamak. A plasma electric conductivity profile in a form of (1 - r2/a2)α with a parameter α, which is fitted with the experimental data, can be determined. The effects of magnetic shear in a tokamak field configuration on the current penetration are taken into account in the numerical simulation. The measurement method and obtained results are discussed.
Computer simulation of transport driven current in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Nunan, W.J.; Dawson, J.M. (University of California at Los Angeles, Department of Physics, 405 Hilgard Avenue, Los Angeles, California 90024-1547 (United States))
1994-09-19
We have investigated transport driven current in tokamaks via 2+1/2 dimensional, electromagnetic, particle-in-cell simulations. These have demonstrated a steady increase of toroidal current in centrally fueled plasmas. Neoclassical theory predicts that the bootstrap current vanishes at large aspect ratio, but we see equal or greater current growth in straight cylindrical plasmas. These results indicate that a centrally fueled and heated tokamak may sustain its toroidal current, even without the seed current'' which the neoclassical bootstrap theory requires.
On circulating power of steady state tokamaks
Energy Technology Data Exchange (ETDEWEB)
Itoh, Kimitaka [National Inst. for Fusion Science, Nagoya (Japan); Itoh, Sanae; Fukuyama, Atsushi; Yagi, Masatoshi
1996-03-01
Circulating power for the sustenance and profile control of the steady state tokamak plasmas is discussed. The simultaneous fulfillment of the MHD stability at high beta value, the improved confinement and the stationary equilibrium requires the rotation drive as well as the current drive. In addition to the current drive efficiency, the efficiency for the rotation drive is investigated. The direct rotation drive by the external torque, such as the case of beam injection, is not efficient enough. The mechanism and the magnitude of the spontaneous plasma rotation are studied. (author)
Disruption mitigation using laser ablation of high-Z impurities in HL-1M tokamak
Institute of Scientific and Technical Information of China (English)
Zheng Yong-Zhen; Feng Xing-Ya; Guo Gan-Cheng; Xu De-Ming; Zheng Yin-Jia
2006-01-01
A preliminary experiment triggering a plasma current quench by laser ablation of high-Z impurities has been performed in the HL-1M tokamak. The injection of impurities with higher electric charges into tokamak plasmas can increase the radiation cooling of the plasma. Resistive, highly radiating plasma formed prior to the thermal quench can dissipate both the thermal and magnetic energies, which is possibly a simple and potential approach to reducing significantly the plasma thermal energy and magnetic energy before a disruption thereby a safe plasma termination is obtained.
Energy Technology Data Exchange (ETDEWEB)
Crisanti, F.; Apruzzese, G.; Frigione, D.; Kroegler, H.; Lovisetto, L.; Mazzitelli, G.; Podda, S. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Energia
1996-09-01
On the FTU Tokamak the plasma physics operations started on the 20/4/90. The first plasma had a plasma current Ip=0.75 MA for about a second. The experimental phase lasted until 7/7/94, when a long shut-down begun for installing the toroidal limiter in the inner side of the vacuum vessel. In these four years of operations plasma experiments have been successfully exploited, e.g. experiments of single and multiple pellet injections; full current drive up to Ip=300 KA was obtained by using waves at the frequency of the Lower Hybrid; analysis of ohmic plasma parameters with different materials (from the low Z silicon to high Z tungsten) as plasma facing element was performed. In this work a statistical analysis of the full period of operation is presented. Moreover, a comparison with the statistical data from other Tokamaks is attempted.
Influence of various physics phenomena on fast-wave current drive in advanced tokamaks
Energy Technology Data Exchange (ETDEWEB)
Batchelor, D.B.; Jaeger, E.F.; Carter, M.D.; Goldfinger, R.C.; Stallings, D.C. [Oak Ridge National Lab., TN (United States)
1992-12-31
The need for some type of noninductive current drive in advanced tokamaks has been recognized for some time. In reactor-grade plasmas, as envisioned in the International Thermonuclear Experimental Reactor (ITER), high density and temperature may limit the penetration of lower hybrid (LH) waves to only the outer layers of the plasma. Fast waves in the ion cyclotron range of frequencies (ICRF), however, can easily penetrate to the center of such high-density plasmas. With sufficient directivity in the launched wave spectrum, currents can be driven by combined damping of the fast waves on resonant electrons through electron Landau damping (ELD) and transit-time magnetic pumping (TTMP). Experiments to study the feasibility of fast-wave current drive (FWCD) have only recently begun, but theoretical predictions look promising. In this paper we analyze the influence of the relevant physics phenomena, which are not necessarily independent, on current drive performance. Such phenomena include diffraction and other nongeometrical optics processes, k{sub ||} modification, single-pass absorption, and antenna characteristics, such as poloidal extent and poloidal location. To do this, we apply a two-and-one-half dimensional (2 1/2-D), full-wave code (PICES) for modeling ion cyclotron resonance heating (ICRH) and current drive based on the poloidal mode expansion method and the reduced-order expansion. By 2 1/2-D, we mean that 3-D wave fields are calculated in axisymmetric geometry (2-D solution domain - r, {theta}), while the correct toroidal dependence of the antenna source currents is obtained from a 2-D (r, {phi}) recessed antenna code. The model includes the poloidal and toroidal structure of the antennas, the modification of the k{sub ||} spectrum due to the poloidal magnetic field, and a nonperturbative solution for E{sub ||}. A semianalytical model for current drive, including trapped electron effects, is employed. (author) 10 refs., 4 figs.
Plasma performance of TFCX and JET with sawtoothing
Energy Technology Data Exchange (ETDEWEB)
Hively, L.M.; Mikkelsen, D.R.
1984-11-01
The plasma performance is assessed for two tokamak reactor experiments, the Tokamak Fusion Core Experiment (TFCX) and the Joint European Torus (JET). Both machines appear ignitable for a reasonable range of transport assumptions.
Simulating W Impurity Transport in Tokamaks
Younkin, Timothy R.; Green, David L.; Lasa, Ane; Canik, John M.; Wirth, Brian D.
2016-10-01
The extreme heat and charged particle flux to plasma facing materials in magnetically confined fusion devices has motivated Tungsten experiments such as the ``W-Ring'' experiment on the DIII-D tokamak to investigate W divertor viability. In this domain, the transport of W impurities from their tile locations to other first-wall tiles is highly relevant to material lifetimes and tokamak operation. Here we present initial results from a simulation of this W transport. Given that sputtered impurities may experience prompt redeposition near the divertor strikepoint, or migrate far from its origin to the midplane, there is a need to track the global, 3-D, impurity redistribution. This is done by directly integrating the 6-D Lorentz equation of motion (plus thermal gradient terms and relevant Monte-Carlo operators) for the impurity ions and neutrals under background plasma parameters determined by the SOLPS edge plasma code. The geometric details of the plasma facing components are represented to a fidelity sufficient to examine the global impurity migration trends with initial work also presented on advanced surface meshing capabilities targeting high fidelity simulation. This work is supported by U.S. DOE Office of Science SciDAC project on plasma-surface interactions under US DOE contract DE-AC05-00OR22725.
Energy Technology Data Exchange (ETDEWEB)
Galkowski, A. [Institute of Atomic Energy, Otwock-Swierk (Poland)
1994-12-31
Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad`s ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs.
Rapidly Moving Divertor Plates In A Tokamak
Energy Technology Data Exchange (ETDEWEB)
S. Zweben
2011-05-16
It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ~10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.
A dynamo model for axisymmetric and non-axisymmetric solar magnetic fields
Jiang, J
2007-01-01
Increasing observations are becoming available about a relatively weak, but persistent, non-axisymmetric magnetic field co-existing with the dominant axisymmetric field on the Sun. It indicates that the non-axisymmetric magnetic field plays an important role in the origin of solar activity. A linear non-axisymmetric alpha2-Omega dynamo model is set up to discuss the characteristics of the axisymmetric m=0 and the first non-axisymmetric m=1 modes and to provide further the theoretical bases to explain the active longitude, flip-flop and other non-axisymmetric phenomena. The model consists of a updated solar internal differential rotation, a turbulent diffusivity varied with depth and an alpha-effect working at the tachocline in rotating spherical systems. The difference between the alpha2-Omega and the alpha-Omega models and the conditions to favor the non-axisymmetric modes with the solar-like parameters are also presented.
Growth of axisymmetric instabilities in ASDEX upgrade
Energy Technology Data Exchange (ETDEWEB)
Sehmer, Till; Lackner, Karl; Strumberger, Erika; Fable, Emiliano; Kardaun, Otto [Max-Planck-Institut fuer Plasma-Physik, EURATOM Association Boltzmannstrasse 2, 85748 Garching (Germany); McCarthy, Patrick [University College Cork (Ireland)
2014-07-01
Modern poloidal divertor tokamaks, such as ASDEX upgrade (AUG), produce elongated plasmas, which are unstable against vertical displacement. The growth rate of this 2D instability in the presence of stabilizing passive conductors (PSL) with finite resistivity was calculated for 5416 AUG typical equilibria. For this, a general ideal MHD code package (NEMEC, CAS3DN, STARWALL) was used, which is able to take into account also the 3D structure of the PSL. The comparison of the resulting growth rates with the previously used rigid displacement model (movement only in z-direction, no skin effect for PSL considered, no induced surface currents) shows that the latter simplified model gives a consistently lower limit for typical AUG parameters (elongation, triangularity, current profile and axis position in radial direction). A statistical analysis of the results of the rigid displacement model shows the expected dependencies except for the triangularity, which has a stabilizing effect in this model. Based on results of our present, more general model, we conclude that a rigid displacement model gives an over-optimistic result regarding the effect of triangularity, in line with the experimental observation on AUG of an increasing discrepancy between previously predicted and observed growth rates for strongly triangular plasmas.
Oomens, A. A. M.
1998-01-01
From a discussion of fusion reactor designs based on today's well-established experience gained in the operation of large tokamaks, it is concluded that such reactors are economically not attractive. The physics involved in the various options for concept improvement is described and the main e
Oomens, A. A. M.
1996-01-01
From a discussion of fusion reactor designs based on today's well-established experience gained in the operation of large tokamaks, it is concluded that such reactors are economically not attractive. The physics involved in the various options for concept improvement is described and the main e
The Dynamic Mutation Characteristics of Thermonuclear Reaction in Tokamak
Directory of Open Access Journals (Sweden)
Jing Li
2014-01-01
Full Text Available The stability and bifurcations of multiple limit cycles for the physical model of thermonuclear reaction in Tokamak are investigated in this paper. The one-dimensional Ginzburg-Landau type perturbed diffusion equations for the density of the plasma and the radial electric field near the plasma edge in Tokamak are established. First, the equations are transformed to the average equations with the method of multiple scales and the average equations turn to be a Z2-symmetric perturbed polynomial Hamiltonian system of degree 5. Then, with the bifurcations theory and method of detection function, the qualitative behavior of the unperturbed system and the number of the limit cycles of the perturbed system for certain groups of parameter are analyzed. At last, the stability of the limit cycles is studied and the physical meaning of Tokamak equations under these parameter groups is given.
Texas Experimental Tokamak. Technical progress report, April 1990--April 1993
Energy Technology Data Exchange (ETDEWEB)
Wootton, A.J.
1993-04-01
This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported.
Non Axi-symmetric Anisotropy of Solar Wind Turbulence
Turner, A J; Chapman, S C; Hnat, B; Mueller, W -C
2011-01-01
A key prediction of turbulence theories is frame-invariance, and in magnetohydrodynamic (MHD) turbulence, axisymmetry of fluctuations with respect to the background magnetic field. Paradoxically the power in fluctuations in the turbulent solar wind are observed to be ordered with respect to the bulk macroscopic flow as well as the background magnetic field. Here, non- axisymmetry across the inertial and dissipation ranges is quantified using in-situ observations from Cluster. The observed inertial range non- axisymmetry is reproduced by a 'fly through' sampling of a Direct Numerical Simulation of MHD turbulence. Furthermore, 'fly through' sampling of a linear superposition of transverse waves with axisymmetric fluctuations generates the trend in non- axisymmetry with power spectral exponent. The observed non-axisymmetric anisotropy may thus simply arise as a sampling effect related to Taylor's hypothesis and is not related to the plasma dynamics itself.
Gyrokinetic Simulation of Global Turbulent Transport Properties in Tokamak Experiments
Energy Technology Data Exchange (ETDEWEB)
Wang, W.X.; Lin, Z.; Tang, W.M.; Lee, W.W.; Ethier, S.; Lewandowski, J.L.V.; Rewoldt, G.; Hahm, T.S.; Manickam, J.
2006-01-01
A general geometry gyro-kinetic model for particle simulation of plasma turbulence in tokamak experiments is described. It incorporates the comprehensive influence of noncircular cross section, realistic plasma profiles, plasma rotation, neoclassical (equilibrium) electric fields, and Coulomb collisions. An interesting result of global turbulence development in a shaped tokamak plasma is presented with regard to nonlinear turbulence spreading into the linearly stable region. The mutual interaction between turbulence and zonal flows in collisionless plasmas is studied with a focus on identifying possible nonlinear saturation mechanisms for zonal flows. A bursting temporal behavior with a period longer than the geodesic acoustic oscillation period is observed even in a collisionless system. Our simulation results suggest that the zonal flows can drive turbulence. However, this process is too weak to be an effective zonal flow saturation mechanism.
HL-2A tokamak disruption forecasting based on an artificial neural network
Institute of Scientific and Technical Information of China (English)
Wang Hao; Wang Ai-Ke; Yang Qing-Wei; Ding Xuan-Tong; Dong Jia-Qi; Sanuki H; Itoh K
2007-01-01
Artificial neural networks are trained to forecast the plasma disruption in HL-2A tokamak. Optimized network architecture is obtained. Saliency analysis is made to assess the relative importance of different diagnostic signals as network input. The trained networks can successfully detect the disruptive pulses of HL-2A tokamak. The results obtained show the possibiliry of developing a neural network predictor that intervenes well in edvance for avoiding plasma disruption or mitigating its effects.
Alternate Data Acquisition and Real-time Monitoring System on HT-7 Tokamak
Institute of Scientific and Technical Information of China (English)
Wei Peijie; Luo Jiarong; Wang Hua; Li Guiming
2005-01-01
A new system called alternate data acquisition and real-time monitoring system has been developed for long-time discharge in tokamak operation. It can support continuous on-line data acquisition at a high sampling rate and a graphic display of the plasma parameters during the discharge. Thus operators can monitor and control the plasma state in real time. An application of this system has been demonstrated on the HT-7 tokamak.
Kazakov, Ye O; Van Eester, D
2013-01-01
Hydrogen majority plasmas will be used in the initial non-activated phase of ITER operation. Optimizing ion cyclotron resonance heating (ICRH) in such scenarios will help in achieving H-mode in these plasmas. Past JET experiments with the carbon wall revealed a significant impact of intrinsic impurities on the ICRH performance in (3He)-H plasmas. High plasma contamination with carbon impurities resulted in the appearance of a supplementary mode conversion layer and significant reduction in the transition concentration of 3He minority ions, defined as the concentration at which the change from minority heating to mode conversion regime occurs. In view of the installation of the new ITER-like wall at JET, it is important to evaluate the effect of Be and W impurities on ICRH scenarios in (3He)-H plasmas. In this paper, an approximate analytical expression for the transition concentration of 3He minority ions is derived as a function of plasma and ICRH parameters, and accounting for typical impurity species at JE...
The first results of electrode biasing experiments in the IR-T1 tokamak
Energy Technology Data Exchange (ETDEWEB)
Ghoranneviss, M; Salar Elahi, A; Mohammadi, S; Arvin, R, E-mail: salari_phy@yahoo.co [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, PO Box 14665-678, Tehran (Iran, Islamic Republic of)
2010-09-15
We report here the first results of our movable electrode biasing experiments performed in the IR-T1 tokamak. For this study, a movable electrode biasing system was designed, constructed and installed on the IR-T1 tokamak. A positive voltage was applied to an electrode inserted in the tokamak limiter. The plasma current, poloidal and radial components of the magnetic fields, loop voltage and diamagnetic flux in the absence and presence of the biased electrode were measured. Results of the improvement done to plasma equilibrium behaviour are compared and discussed in this paper.
Equilibrium reconstruction in the TCA/Br tokamak; Reconstrucao do equilibrio no tokamak TCA/BR
Energy Technology Data Exchange (ETDEWEB)
Sa, Wanderley Pires de
1996-12-31
The accurate and rapid determination of the Magnetohydrodynamic (MHD) equilibrium configuration in tokamaks is a subject for the magnetic confinement of the plasma. With the knowledge of characteristic plasma MHD equilibrium parameters it is possible to control the plasma position during its formation using feed-back techniques. It is also necessary an on-line analysis between successive discharges to program external parameters for the subsequent discharges. In this work it is investigated the MHD equilibrium configuration reconstruction of the TCA/BR tokamak from external magnetic measurements, using a method that is able to fast determine the main parameters of discharge. The thesis has two parts. Firstly it is presented the development of an equilibrium code that solves de Grad-Shafranov equation for the TCA/BR tokamak geometry. Secondly it is presented the MHD equilibrium reconstruction process from external magnetic field and flux measurements using the Function Parametrization FP method. this method. This method is based on the statistical analysis of a database of simulated equilibrium configurations, with the goal of obtaining a simple relationship between the parameters that characterize the equilibrium and the measurements. The results from FP are compared with conventional methods. (author) 68 refs., 31 figs., 16 tabs.