WorldWideScience

Sample records for axisymmetric tandem mirror

  1. Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies

    International Nuclear Information System (INIS)

    The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma.At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies have employed a low-beta code written especially to analyze the beam injection/stabilization process,and a new code SYMTRAN (by Hua and Fowler)that solves the coupled radial and axial particle and energy transport in a K-S T-M. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values.The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma.Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging.Our studies have confirmed the viability of the K-S T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution.In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions of the K-S T-M

  2. Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies

    International Nuclear Information System (INIS)

    The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma. At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies have employed a low-beta code written especially to analyze the beam injection/stabilization process, and a new code SYMTRAN (by Hua and Fowler) that solves the coupled radial and axial particle and energy transport in a K-S TM. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values. The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma. Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging. Our studies have confirmed the viability of the K-S-T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution. In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions of the K

  3. Kinetically Stabilized Axisymmetric Tandem Mirrors: Summary of Studies

    Energy Technology Data Exchange (ETDEWEB)

    Post, R F

    2005-02-08

    The path to practical fusion power through plasma confinement in magnetic fields, if it is solely based on the present front-runner, the tokamak, is clearly long, expensive, and arduous. The root causes for this situation lie in the effects of endemic plasma turbulence and in the complexity the tokamak's ''closed'' field geometry. The studies carried out in the investigations described in the attached reports are aimed at finding an approach that does not suffer from these problems. This goal is to be achieved by employing an axisymmetric ''open'' magnetic field geometry, i.e. one generated by a linear array of circular magnet coils, and employing the magnetic mirror effect in accomplishing the plugging of end leakage. More specifically, the studies were aimed at utilizing the tandem-mirror concept in an axisymmetric configuration to achieve performance superior to the tokamak, and in a far simpler system, one for which the cost and development time could be much lower than that for the tokamak, as exemplified by ITER and its follow-ons. An important stimulus for investigating axisymmetric versions of the tandem mirror is the fact that, beginning from early days in fusion research there have been examples of axisymmetric mirror experiments where the plasma exhibited crossfield transport far below the turbulence-enhanced rates characteristic of tokamaks, in specific cases approaching the ''classical'' rate. From the standpoint of theory, axisymmetric mirror-based systems have special characteristics that help explain the low levels of turbulence that have been observed. Among these are the facts that there are no parallel currents in the equilibrium state, and that the drift surfaces of all of the trapped particles are closed surfaces, as shown early on by Teller and Northrop. In addition, in such systems it is possible to arrange that the radial boundary of the confined plasma terminates without

  4. The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror Status Study Group

    Energy Technology Data Exchange (ETDEWEB)

    Simonen, T; Cohen, R; Correll, D; Fowler, K; Post, D; Berk, H; Horton, W; Hooper, E B; Fisch, N; Hassam, A; Baldwin, D; Pearlstein, D; Logan, G; Turner, B; Moir, R; Molvik, A; Ryutov, D; Ivanov, A A; Kesner, J; Cohen, B; McLean, H; Tamano, T; Tang, X Z; Imai, T

    2008-10-24

    Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT

  5. The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror Status Study Group

    International Nuclear Information System (INIS)

    Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT

  6. Magnetic design of the axisymmetric throttle-coil addition to the tandem mirror experiment-upgrade

    International Nuclear Information System (INIS)

    The TMX-U magnet set has incorporated new axisymmetric throttle coils and fan-reversing transition magnets. This new magnet geometry, which will allow for the experimental verification of new physics issues related to axicell tandem mirrors, encompasses both engineering and physics considerations. Engineering considerations include structural integrity plus neutral beam and diagnostic access. Physics issues include the stability and radial transport of the confined plasma. We have calculated the magnetic field using the magnetic field code, EFFI, and the plasma stability and surface curvatures using the plasma stability code, TEBASCO. Our magnet design allows the axisymmetric throttle mirror to be varied from the end-cell mirror value of 2 to a peak of 6 T

  7. Alpha particle confinement in tandem mirrors

    International Nuclear Information System (INIS)

    Mechanisms leading to loss of alpha particles from non-axisymmetric tandem mirrors are considered. Stochastic diffusion due to bounce-drift resonances, which can cause rapid radial losses of high-energy alpha particles, can be suppressed by imposing a 20% rise in axisymmetric fields before the quadrupole transition sections. Alpha particles should then be well-confined until thermal energies when they enter the resonant plateau require. A fast code for computation of drift behavior in reactors is described. Sample calculations are presented for resonant particles in a proposed coil set for the Tandem Mirror Next Step

  8. Tandem mirror fusion research

    International Nuclear Information System (INIS)

    The tandem mirror program has evolved considerably in the last decade. Of significance is the viable reactor concept embodied in the MARS design. An aggressive experimental program, culminating in the operation of MFTF-B in late 1986, will provide a firm basis for refining the MARS design as necessary for constructing a reactor prototype in the 1990s

  9. Compact neutron imaging system using axisymmetric mirrors

    Science.gov (United States)

    Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E

    2014-05-27

    A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.

  10. Magneto-hydrodynamically stable axisymmetric mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D.; Cohen, B. I.; Molvik, A. W. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Berk, H. L. [University of Texas, Austin, Texas 78712 (United States); Simonen, T. C. [University of California, Berkeley, California 94720 (United States)

    2011-09-15

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  11. Negative tandem mirror

    International Nuclear Information System (INIS)

    A tandem mirror configuration can be created by combining hot electron end cell plasmas with neutral beam pumping. A region of large negative potential formed in each end cell confines electrons in the central cell. The requirement of charge neutrality causes the central cell potential to become negative with respect to ground in order to confine ions as well as electrons. We discuss the method of producing and calculating the desired axial potential profile, and show the calculated axial potential profile and plasma parameters for a negative configuration of TMX-Upgrade

  12. Fueling of tandem mirror reactors

    International Nuclear Information System (INIS)

    This paper summarizes the fueling requirements for experimental and demonstration tandem mirror reactors (TMRs), reviews the status of conventional pellet injectors, and identifies some candidate accelerators that may be needed for fueling tandem mirror reactors. Characteristics and limitations of three types of accelerators are described; neutral beam injectors, electromagnetic rail guns, and laser beam drivers. Based on these characteristics and limitations, a computer module was developed for the Tandem Mirror Reactor Systems Code (TMRSC) to select the pellet injector/accelerator combination which most nearly satisfies the fueling requirements for a given machine design

  13. Introduction to tandem mirror physics

    International Nuclear Information System (INIS)

    This monograph, prepared jointly by the MIT Plasma Fusion Center Mirror Fusion group and SAI, Boulder, Colorado, presents a review of the development of mirror fusion theory from its conception some thirty years ago to the present. Pertinent historic experiments and their contribution are discussed to set the stage for a detailed analysis of current experiments and the problems which remain to be solved in bringing tandem mirror magnetic confinement fusion to fruition. In particular, Chapter III discusses in detail the equilibrium and stability questions which must be dealt with before tandem mirror reactors become feasible, while Chapters IV and V discuss some of the current machines and those under construction which will help to resolve critical issues in both physics and engineering whose solutions are necessary to the commercialization of tandem mirror fusion

  14. Theoretical studies in tandem mirror physics

    International Nuclear Information System (INIS)

    Recent developments in six areas of tandem-mirror theory are explored. Specifically, FLR terms (including electric-field drift) have been added to our 3-D paraxial MHD equilibrium code. Our low-frequency MHD stability analysis with FLR, which previously included only m/sub theta/ = 1 rigid perturbations, has been extended to incorporate moderate m/sub theta/, rotational drive, finite-beta effects on wall stabilization, and the well-digging effect of energetic electrons by using three computational techniques. In addition, we have examined the microstability of relativistic electrons with a loss-cone distribution, emphasizing the whistler and cyclotron-maser instabilities. We have also studied techniques for controlling radial transport, including the floating of segmented end plates and the tuning of transition-region coils, and have quantified the residual transport in a tandem mirror with axisymmetric throttle coils. Earlier work on the effect of ECRH on potentials in thermal-barrier cells has been extended. The transition between the weak- and strong-heating regimes has been examined using Fokker-Planck and Monte Carlo codes; an analytic model for the potentials relative to the end wall has been developed. Finally, our investigation of drift-frequency pumping of thermal-barrier ions has demonstrated that pumping is optimized when the magnetic fluctuation is perpendicular to both the unperturbed field and the thin fan, and that an adequate pumping rate is obtainable in future machines

  15. Tandem mirror technology demonstration facility

    International Nuclear Information System (INIS)

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M2) on an 8-m2 test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m2 and give the necessary experience for successful operation of an ETR

  16. Tandem mirror technology demonstration facility

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  17. Parametric studies of tandem mirror reactors

    International Nuclear Information System (INIS)

    This report, along with its companion, An Improved Tandem Mirror Reactor, discusses the recent progress and present status of our tandem mirror reactor studies. This report presents the detailed results of parametric studies up to, but not including, the very new ideas involving thermal barriers

  18. ICRF wave propagation and absorption in axisymmetric mirrors. Progress report, July 1-November 30, 1985

    International Nuclear Information System (INIS)

    A numerical code called GARFIELD has been developed to calculate the structure of ICRF electric fields in axisymmetric mirrors. It is being used to investigate ICRF wave structure of central cells of tandem mirror experiments. Fields are solved on a 2-D grid in the axial and radial directions. This permits us to study the effect that axial as well as radial variations of the magnetic field and density have on ICRF wave propagation and absorption. Much of this time frame was spent writing the code and refining the numerics. Initial calculations have been completed for the Phaedrus tandem mirror. These show that there is an evanescent fast wave structure in the radial direction, a standing wave formation in the axial direction, and a small amount of propagating ion cyclotron wave towards a shallow magnetic beach in the center of the mirror

  19. The Kinetic Stabilizer: A Route to Simpler Tandem Mirror Systems?

    Energy Technology Data Exchange (ETDEWEB)

    Post, R

    2001-05-30

    This paper discusses a new approach to an MHD stabilizing technique for magnetic fusion systems of the axisymmetric ''open-ended'' variety. The concept is adaptable to tandem-mirror systems and would result in a major simplification of such systems, accompanied by a substantial improvement in their confinement characteristics, The paper first discusses the present impetus to find a simpler and less expensive route to fusion than that offered by the mainline approach, the tokamak. The history of magnetic fusion research shows that closed and open systems exhibit very different confinement characteristics. Closed systems, such as the tokamak, the stellarator, or the reversed-field pinch have cross-field transport that is dominated by plasma turbulence. By contrast, there are examples of open-systems where turbulence, if present at all, was at such low levels that the transport agreed with ''classical'' predictions. The clearest examples are ones in which the field geometry was axiymmetric. However axisymmetric mirror systems are subject to MHD instability. Thus in the years following the famous Ioffe experiment, most open systems have employed asymmetric magnetic fields, with attendant problems of complexity and enhanced cross-field transport. This paper proposes a new means of stabilizing axisymmetric mirror-based systems. The idea, called the ''Kinetic Stabilizer'' has roots in experiments performed with the axisymmetric Gas Dynamic Trap at Novosibirsk. In these experiments, performed in a high collisionality plasma regime, it was shown that the presence of the effluent plasma in the positive-curvature expanding-field region outside the mirrors was effective in stabilizing a high-beta (30 percent) confined plasma against MHD modes. In the plasmas of tandem-mirror systems the density of the effluent plasma is too low to employ this method of stabilization. The Kinetic Stabilizer solves this problem by using

  20. Tandem mirror next step conceptual design

    International Nuclear Information System (INIS)

    A study was made to define the features of the experimental mirror fusion device - The Tandem Mirror Next Step, or TMNS - that will bridge the gap between present mirror confinement experiments and a power-producing reactor. We outline the project goals, describe some initial device parameters, and relate the technological requirements to ongoing development programs

  1. Tandem Mirror Reactor Systems Code (Version I)

    International Nuclear Information System (INIS)

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost

  2. Tandem mirror plasma confinement apparatus

    International Nuclear Information System (INIS)

    Apparatus and method are described for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell

  3. From x-ray telescopes to neutron scattering: using axisymmetric mirrors to focus a neutron beam

    OpenAIRE

    Khaykovich, B.; Gubarev, M. V.; Bagdasarova, Y.; Ramsey, B. D.; Moncton, D.E.

    2012-01-01

    We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in x-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We have implemented a system containing four nested Ni mirror pairs, which was tested by focusing a polychromatic neutron beam at the MIT Reactor. In ...

  4. Progress in the tandem mirror program

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T.K.; Borchers, R.R.

    1981-09-13

    Experimental results in TMX have confirmed the basic principles of the tandem-mirror concept. A center-cell particle confinement parameter eta tau approx. 10/sup 11/ cm/sup -3/ s has been obtained at ion temperatures around 100 eV, which is a hundred-fold improvement over single mirrors at the same temperatures. For TMX these results have been obtained at peak beta values in the center cell in the range 10 to 40%, not yet limited by MHD activity; and ion-cyclotron resonant heating (ICRH) in the Phaedrus tandem-mirror experiment has produced beta values approx. 25%, which is several times the ideal MHD limit for that device. In addition, it has been demonstrated that the end fan chambers of TMX simultaneously isolate the hot electrons from the end walls, provide adequate pumping and conveniently dispose of the exhaust plasma energy either by thermal deposition on the end wall or by direct conversion to electricity (at 48% efficiency in agreement with calculations). Also, evidence was obtained for inherent divertor action in TMX, presumably in part responsible for the observed low impurity level (<0.5% low-Z ions in the center cell).

  5. Some new ideas for Tandem Mirror blankets

    International Nuclear Information System (INIS)

    The Tandem Mirror Reactor, with its cylindrical central cell, has led to numerous blanket designs taking advantage of the simple geometry. Also many new applications for fusion neutrons are now being considered. To the pure fusion electricity producers and hybrids producing fissile fuel, we are adding studies of synthetic fuel producers and fission-suppressed hybrids. The three blanket concepts presented are new ideas and should be considered illustrative of the breadth of Livermore's application studies. They are not meant to imply fully analyzed designs

  6. Remote maintenance of tandem mirror hybrid coils

    International Nuclear Information System (INIS)

    Hybrid Coils (superconducting coils with normal conducting inserts) are being employed with increasing frequency on Tandem Mirror Devices to obtain high field strengths. The normal conducting copper inserts are short lived in comparison to their encircling superconductors. It becomes desirable, therefore, to devise design features and maintenance procedures to replace the inner normal conducting coils without simultaneously replacing the longer lived (and significantly more costly) superconducting coils. The high neutron wall loadings require that the task be accomplished by remote control. The approach is to permanently mount the coil assemblies on track mounted carriages which serve, during machine operation merely as structural supports, but during maintenance procedures as moveable transport devices. The carriages incorporate all necessary provisions to facilitate remote maintenance operations and to adjust and align the coil assemblies with respect to adjacent machine components. The vacuum vessel is severed on both sides of the hybrid coil by means of a remote cutting machine. The entire coil is transported horizontally, normal to the machine axis to a nearby repair station. Prepositioned carriage mounted repair equipment at the repair station withdraws the damaged normal coil as a single entity and inserts a preassembled spare unit. The repaired hybrid coil is reassembled to the reactor. A cost and risk effective procedure has been evolved to maintain one of the more critical components of a Tandem Mirror Machine

  7. Tandem mirror magnet system for the mirror fusion test facility

    International Nuclear Information System (INIS)

    The Tandem Mirror Fusion Test Facility (MFTF-B) will be a large magnetic fusion experimental facility containing 22 supercounducting magnets including solenoids and C-coils. State-of-the-art technology will be used extensively to complete this facility before 1985. Niobium titanium superconductor and stainless steel structural cases will be the principle materials of construction. Cooling will be pool boiling and thermosiphon flow of 4.5 K liquid helium. Combined weight of the magnets will be over 1500 tonnes and the stored energy will be over 1600 MJ. Magnetic field strength in some coils will be more than 8 T. Detail design of the magnet system will begin early 1981. Basic requirements and conceptual design are disclosed in this paper

  8. Tandem mirror magnet system for the mirror fusion test facility

    Energy Technology Data Exchange (ETDEWEB)

    Bulmer, R.H.; Van Sant, J.H.

    1980-10-14

    The Tandem Mirror Fusion Test Facility (MFTF-B) will be a large magnetic fusion experimental facility containing 22 supercounducting magnets including solenoids and C-coils. State-of-the-art technology will be used extensively to complete this facility before 1985. Niobium titanium superconductor and stainless steel structural cases will be the principle materials of construction. Cooling will be pool boiling and thermosiphon flow of 4.5 K liquid helium. Combined weight of the magnets will be over 1500 tonnes and the stored energy will be over 1600 MJ. Magnetic field strength in some coils will be more than 8 T. Detail design of the magnet system will begin early 1981. Basic requirements and conceptual design are disclosed in this paper.

  9. Catalyzed deuterium fueled tandem mirror reactor assessment

    International Nuclear Information System (INIS)

    This study was part of a Department of Energy supported alternate fusion fuels program at Science Applications International Corp. The purpose of this portion of the study is to perform an assessment of a conceptual tandem mirror reactor (TMR) that is fueled by the catalyzed-deuterium (Cat-d) fuel cycle with respect to the physics, technology, safety, and cost. Achievable stable betas and magnet configurations are found to be comparable for the Cat-d and d-t fueled TMR. A comparison with respect to cost, reactor performance, and technology requirements for a Cat-d fueled reactor and a comparable d-t fueled reactor such as MARS is also made

  10. Status of tandem-mirror confinement

    International Nuclear Information System (INIS)

    Recent end-stopping experiments in TMX-Upgrade show strong plugging of the central cell by lower-density plugs, requiring both electron-cyclotron heating (ECRH) and 470 neutral-beam injection, consistent with the thermal-barrier concept. These experiments have low density (n 12 cm-3) due to inefficient ECRH power coupling. Hot-ion and hot-electron buildup are consistent with Fokker-Planck calculations. No ion-cyclotron activity is observed in the plugs; occasional electron-cyclotron activity is observed. With plugging, axial lifetimes (tau/sub parallel/ > 40 ms) are larger than radial (tau/sub perpendicular/ = 5 to 10 ms) due to observed non-ambipolar ion transport. Recent tandem-mirror theoretical activities are also surveyed

  11. Preliminary design of a tandem mirror reactor

    International Nuclear Information System (INIS)

    The purpose of this thesis is to examine the TARA mirror experiment as a possible tandem mirror reactor configuration. This is a preliminary study to size the coil structure based on using the smallest end cell axial length that physics and engineering allow, zeroing the central cell parallel currents and having interchange stability. The input powers are estimated for the final reactor design so a Q value may be estimated. The Q value is defined as the fusion power divided by the total injected power absorbed by the plasma. A computer study was performed on the effect of the transition size, the transition vertical spacing and transition current. These parameters affect the central cell parallel currents, the recircularization of the flux tube and the ratio of central cell beta to anchor beta needed for marginal stability. Two designs were identified. The first uses 100 keV and 13 keV neutral beams to pump the ions that trap in the thermal barrier. The Q value of this reactor is 11.3. The second reactor uses a pump beam at 40 keV. This energy is chosen because there is a resonance for the charge exchange cross section between D0 and He2+ at this energy, thus the alpha ash will be pumped along with the deuterium and tritium. The Q value of this reactor is 11.6

  12. Charge exchange cooling in the tandem mirror plasma confinement apparatus

    International Nuclear Information System (INIS)

    A method and apparatus are described for cooling a plasma confined in the center mirror cell of the tandem mirror apparatus by injecting cold neutral species of the plasma into at least one mirroring region of the center mirror cell. The cooling is due to the loss of warm charged species through charge exchange with the cold neutral species with resulting diffusion of the warm neutral species out of the plasma

  13. From x-ray telescopes to neutron scattering: Using axisymmetric mirrors to focus a neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Khaykovich, B., E-mail: bkh@mit.ed [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany Street, Cambridge, MA 02139 (United States); Gubarev, M.V. [Marshall Space Flight Center, NASA, VP62, Huntsville, AL 35812 (United States); Bagdasarova, Y. [Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Ramsey, B.D. [Marshall Space Flight Center, NASA, VP62, Huntsville, AL 35812 (United States); Moncton, D.E. [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany Street, Cambridge, MA 02139 (United States); Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2011-03-01

    We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in X-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We implemented a system containing four nested Ni mirror pairs, which was tested by the focusing of a polychromatic neutron beam at the MIT Reactor. In addition, we have carried out extensive ray-tracing simulations of the mirrors and their performance in different situations. The major advantages of the Wolter mirrors are nesting for large angular collection and aberration-free performance. We discuss how these advantages can be utilized to benefit various neutron scattering methods, such as imaging, SANS, and time-of-flight spectroscopy.

  14. From x-ray telescopes to neutron scattering: Using axisymmetric mirrors to focus a neutron beam

    International Nuclear Information System (INIS)

    We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in X-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We implemented a system containing four nested Ni mirror pairs, which was tested by the focusing of a polychromatic neutron beam at the MIT Reactor. In addition, we have carried out extensive ray-tracing simulations of the mirrors and their performance in different situations. The major advantages of the Wolter mirrors are nesting for large angular collection and aberration-free performance. We discuss how these advantages can be utilized to benefit various neutron scattering methods, such as imaging, SANS, and time-of-flight spectroscopy.

  15. Results from the Tara tandem mirror experiment

    International Nuclear Information System (INIS)

    A summary of the experimental results from the Tara tandem mirror experiment is presented. Optimization of the fueling configuration, slow wave ion cyclotron heating from a magnetic ''plateau'' using an aperture antenna design, and enhanced stabilization from a magnetic divertor have allowed the attainment of a stable start up plasma (T/sub i,perpendicular/ = 800 - 1500 eV, n/sub e/ = 4 - 5 x 1012 cm-3, T/sub e/ = 70 - 80 eV). Plugging experiments using radiofrequency waves near the plug midplane ion cyclotron frequency have proved successful in reducing endloss, while simultaneously leading to an increase in central cell density. The plugging potentials have been limited to approximately the ion parallel temperature. This limitation is due to low frequency instabilities localized in the plug. Axial plugging experiments using electron cyclotron (ECH) resonant microwave radiation in the plug cells have had ambiguous results. Endloss reductions up to 100% have been achieved without build-up of central cell densities or the appearance of the reflected particles at the other end of the machine. We conjecture that rapid radial losses accompany the use of ECH, although the mechanisms for this loss remain unidentified. 9 refs., 9 figs

  16. A tandem mirror hybrid plume plasma propulsion facility

    Science.gov (United States)

    Yang, T. F.; Krueger, W. A.; Peng, S.; Urbahn, J.; Chang-Diaz, F. R.

    1988-01-01

    This paper discusses a novel concept in electrodeless plasma propulsion, in which the materials problems are ameliorated by an electrodeless magnetic confinement scheme borrowed from the tandem mirror approach to controlled thermonuclear fusion. The concept also features a two-stage magnetic nozzle with an annular hypersonic coaxial gas injector near the throat. The nozzle produces hybrid plume by the coaxial injection of hypersonic neutral gas, and the gas layer thus formed protects the material walls from the hot plasma and, through increased collisions, helps detach it from the diverging magnetic field. The tandem mirror plasma propulsion facility is capable of delivering a variable I(sp). The results of numerical simulation of this concept are presented together with those from an experimental tandem-mirror plasma propulsion device.

  17. Comparative end-plug study for tandem mirror reactors

    International Nuclear Information System (INIS)

    A comparative evaluation was made of several end plug configurations for tandem mirror fusion reactors with thermal barriers. The axicell configuration has been selected for further study and will be the basis for a detailed conceptual design study to be carried out over the next two years. The axicell end plug has a simple mirror cell produced by two circular coils followed by a transition coil and a yin-yang pair, which provides for MHD stability

  18. Interim report on the tandem mirror hybrid design study

    International Nuclear Information System (INIS)

    The initial phase of a 2-year design study of a tandem mirror fusion reactor is presented. The following chapters are included: (1) mechanical design of the plant; (2) plasma physics; (3) blanket design; (4) magnet design; (5) injector design; (6) direct convertor design; (7) balance of plant design; (8) fission burner reactor; (9) environment and safety; and (10) economic analysis

  19. Interim report on the tandem mirror hybrid design study

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W. (ed.)

    1979-08-01

    The initial phase of a 2-year design study of a tandem mirror fusion reactor is presented. The following chapters are included: (1) mechanical design of the plant; (2) plasma physics; (3) blanket design; (4) magnet design; (5) injector design; (6) direct convertor design; (7) balance of plant design; (8) fission burner reactor; (9) environment and safety; and (10) economic analysis. (MOW)

  20. Trapped Particle Instability in Kinetic Stabilized Tandem Mirror

    Science.gov (United States)

    Berk, Herbert; Pratt, Jane

    2009-11-01

    The kinetic stabilizer tandem mirror (KSTM) devised by R. F. Post (J. Fus. Energy 2007) is an innovative concept devised to stabilize a symmetric tandem mirror machines using a concept devised by D. Ryutov (Proc. of Course and Workshop, Varenna, Italy, 1987) and empirically verified in the Gas Dynamic Trap (Ivanov, et. al. Trans. Fusion Technology 39, 127, 2001). The KSTM uses the momentum flux of unconfined particles that only sample the outer end regions of the mirror where there is very favorable field line curvature. Charged ion beams at relatively low energy are externally injected into the ends and reflected out from the ends. MHD stability with a power drain less than the fusion power production can be achieved. We examine the effect of fast growing trapped particle instability (Berk et. al. Sov J. Plasma Phys. 1983) on the overall stability. In this case stability is very sensitive to the electron connection between the stabilizer and end plug.

  1. Design of axisymmetric multi-mirror grazing incidence system to increase the numerical aperture of neutron and X-ray microscopes

    Science.gov (United States)

    Aoki, Sadao; Watanabe, Norio; Asami, Hiroshi; Shimada, Akihiro

    2016-04-01

    An axisymmetric multi-mirror system for neutron and X-ray microscopes is proposed to increase their numerical aperture and collection efficiency. A Wolter type-I mirror is used as the basis of the multi-mirror system at grazing incidence. The addition of an even number of hyperboloid mirrors to the Wolter type-I mirror can satisfy both an equal optical path length and Abbe's sine condition. The numerical aperture increases in proportion to the number of mirrors. The optical parameters of the system with four tandem mirrors are calculated for neutrons and X-rays with a wavelength of 0.4 nm by assuming that the average grazing angle of incidence is 5.4 mrad and the magnification is 10. The inner diameters of the mirrors are limited to <10 mm considering the total length of the optical system. Tolerance of off-axis distance was calculated using a ray-tracing computer simulation. Ray tracing shows that a blur size <14 nm will be possible at an off-axis displacement of 10 μm.

  2. The ''Kinetic Stabilizer'': A Simpler Tandem Mirror Confinement?

    Energy Technology Data Exchange (ETDEWEB)

    Post, R.F.

    2000-06-15

    ;'stabilizer plasma'' outside a mirror, will be discussed. To create this plasma ion beams are injected along the field lines in such a way as to be reflected before they reach the mirrors, thus forming a localized peak in the plasma density. It will be shown that the power required to produce these stabilizing plasmas is much less than the power per meter of fusion power systems that might employ this technique. Use of the Kinetic Stabilizer idea may therefore permit the construction of tandem mirror fusion power systems that are much smaller and simpler than those based on the use of non-axisymmetric fields to achieve MHD stability.

  3. Summary of results from the Tandem Mirror Experiment (TMX)

    International Nuclear Information System (INIS)

    This report summarizes results from the successful experimental operation of the Tandem Mirror Experiment (TMX) over the period October 1978 through September 1980. The experimental program, summarized by the DOE milestones given in Table 1-1, had three basic phases: (1) an 8-month checkout period, October 1978 through May 1979; (2) a 6-month initial period of operation, June through November 1979, during which the basic principles of the tandem configuration were demonstrated (i.e., plasma confinement was improved over that of a single-cell mirror); and (3) a 10-month period, December 1979 through September 1980, during which the initial TMX results were corroborated by additional diagnostic measurements and many detailed physics investigations were carried out. This report summarizes the early results, presents results of recent data analysis, and outlines areas of ongoing research and data analysis which will be reported in future journal publications

  4. Neutral beam control systems for the Tandem Mirror Experiment

    International Nuclear Information System (INIS)

    The Tandem Mirror Experiment (TMX) is presently developing the technology and approaches which will be used in larger fusion systems. This paper describes some of the designs which were used in creating the control system for the TMX neutral beams. To create a system of controls that would work near these large, rapid switching current sources required a mixture of different technologies: fiberoptic data transmission, printed circuit and wirewrap techniques, etc

  5. Preliminary design of a Tandem-Mirror-Next-Step facility

    International Nuclear Information System (INIS)

    The Tandem-Mirror-Next-Step (TMNS) facility is designed to demonstrate the engineering feasibility of a tandem-mirror reactor. The facility is based on a deuterium-tritium (D-T) burning, tandem-mirror device with a fusion power output of 245 MW. The fusion power density in the central cell is 2.1 MW/m3, with a resultant neutron wall loading of 0.5 MW/m2. Overall machine length is 116 m, and the effective central-cell length is 50.9 m. The magnet system includes end cells with yin-yang magnets to provide magnetohydrodynamic (MHD) stability and thermal-barrier cells to help achieve a plasma Q of 4.7 (where Q = fusion power/injected power). Neutral beams at energies up to 200 keV are used for plasma heating, fueling, and barrier pumping. Electron cyclotron resonant heating at 50 and 100 GHz is used to control the electron temperature in the barriers. Based on the resulting engineering design, the overall cost of the facility is estimated to be just under $1 billion. Unresolved physics issues include central-cell β-limits against MHD ballooning modes (the assumed reference value of β exceeds the current theory-derived limit), and the removal of thermalized α-particles from the plasma

  6. Efficient trap of a coaxial gun plasma in an axisymmetric mirror with an internal hoop

    International Nuclear Information System (INIS)

    A method to trap a high temperature and high density plasma from a coaxial gun in a mirror machine is described. The method is to inject plasma parallel to the axis from a coaxial gun located off the axis. The validity of the method is experimentally demonstrated with an MHD-stabilized axisymmetric mirror with an internal hoop. Density, electron and ion temperatures and their time behaviors were measured and it was made clear that a high density high temperature plasma was well trapped in the mirror by the parallel off-axis injection while the plasma was little trapped by on-axis injection. The plasma parameters obtained were also compared with those of a conventional titanium washer gun plasma. The causes to restrict the maximum ion temperature and of its quick decay are discussed. (author)

  7. Configuration and layout of the tandem mirror Fusion Power Demonstrator

    International Nuclear Information System (INIS)

    Studies have been performed during the past year to determine the configuration of a tandem mirror Fusion Power Demonstrator (FPD) machine capable of producing 1750 MW of fusion power. The FPD is seen as the next logical step after the Mirror Fusion Test Facility-B (MFTF-B) toward operation of a power reactor. The design of the FPD machine allows a phased construction: Phase I, a hydrogen or deuterium checkout machine; Phase 2, a DT breakeven machine; Phase 3, development of the Phase 2 machine to provide net power and act as a reactor demonstrator. These phases are essential to the development of remote handling equipment and the design of components that will ultimately be remotely handled. Phasing also permits more modes funding early in the program with some costs committed only after reaching major milestones

  8. Orbit averaged radial buildup code for tandem mirror geometry

    International Nuclear Information System (INIS)

    The radial Fokker-Planck (RFP) model of A. Futch was modified to treat plasma buildup in the tandem mirror plug and center cell with a self-consistent model (TOARBUC). Two major changes have been made to the original version of this code. First, the center cell is treated as having separate electron and ion confining potentials with the ion potential having the opposite sign of that in a conventional mirror. Second, a two-electron-temperature treatment derived by R. Cohen was included in the present model to allow the plug and center cell to have different T/sub e/'s as observed in the experiment. The following sections explain these changes in greater detail

  9. Magnetic ripple correction in tandem mirrors by ferromagnetic inserts

    International Nuclear Information System (INIS)

    Magnetic ripple of 1% or more caused by discrete solenoid coils in the central cells of tandem mirrors may severely affect the MHD stability. The ripple amplitude can be reduced by an order of magnitude by ferromagnetic annuli inserted within the coils at the regions of ripple maxima. The inserts need not affect the accessibility, coil diameter, or capital cost, since large quantities of steel are required within the coils for the neutron blanket and shield. Design of the ripple correction is simplified and linearized by the cylindrical geometry and by the saturation of the ferromagnetic steel

  10. Mechanical design aspects of a tandem mirror fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Neef, W.S. Jr.

    1977-04-25

    Two ''plugs'' of dense plasma at either end of a central solenoid cell form the basis of a new mirror fusion power plant concept. A central cell blanket design is presented. Modules on crawler tracks serviced by remote welding and handling machines of very simple design are important features resulting from linear axisymmetric geometry. Three blanket designs are considered and the best one presented in some detail. It has lithium as the breeder material, helium cooled. ''Plug'' magnet field strengths must be high. A novel magnet is presented to satisfy the physics of the end plugs. Beam sources at 1,200 KV present special problems. Methods of voltage standoff, arc damage control, and neutralization are discussed. New secondary containment ideas are presented to allow removable roof sections of balanced design.

  11. Mechanical design aspects of a tandem mirror fusion reactor

    International Nuclear Information System (INIS)

    Two ''plugs'' of dense plasma at either end of a central solenoid cell form the basis of a new mirror fusion power plant concept. A central cell blanket design is presented. Modules on crawler tracks serviced by remote welding and handling machines of very simple design are important features resulting from linear axisymmetric geometry. Three blanket designs are considered and the best one presented in some detail. It has lithium as the breeder material, helium cooled. ''Plug'' magnet field strengths must be high. A novel magnet is presented to satisfy the physics of the end plugs. Beam sources at 1,200 KV present special problems. Methods of voltage standoff, arc damage control, and neutralization are discussed. New secondary containment ideas are presented to allow removable roof sections of balanced design

  12. Tandem-mirror end plugs for future fusion reactors

    Science.gov (United States)

    1981-06-01

    Electrostatic fields for confining central-cell plasma are achieved by heating the electrons in end-plugs via electron-cyclotron-resonance heating. Four end-plug magnetic configurations are being developed and tested to determine which will provide the best thermal barrier between plug- and central-cell electrons in a fusion reactor: (1) the inside barrier, with its auxiliary solenoid; (2) the auxiliary-mirror-cell (A-cell) barrier, which makes use of C-shaped magnet coils; (3) the axisymmetric-cusp barrier, using circular coils; and (4) the electron-ring barrier, in which two magnetic coils are stabilized by a ring of hot electrons. Calculations of the magnetohydrodynamic (MHD) stability are being performed with respect to the magnetic curvatures of each end-plug configuration. Models for describing the behavior of plasmas with finite ion orbits are being developed to predict MHD stability. Charge-exchange pumping systems for reactors with inside, A-cell, and axisymmetric-cusp barriers have already been designed, and a pumping system for removing thermalized helium ions is being explored.

  13. SOFTWARE-CONTROLLED SYSTEM OF ULTRA-PRECISION MACHINING AXISYMMETRIC ASPHERIC MIRROR

    Institute of Scientific and Technical Information of China (English)

    GUO Yinbiao; WEI Lizhen

    2006-01-01

    In order to improve machining accuracy and efficiency, a software-controlled system of ultra-precision machining for axisymmetric aspheric mirror, using techniques of error compensation,remote transmission and modularization, is designed based on industrial PC, Windows 2000 work platform and Visual Basic 6.0. By experiments, this system realizes functions of ultra-precision machining, machining error compensation, remote data transmission and automatic data transformation among first machining, compensation machining and accuracy measurement. The actual application shows that error compensation improves machining accuracy, remote transmission improves machining efficiency while modularization avoids repeated work and improves design efficiency. Therefore, the system has met ultra-precision machining need for aspheric mirror.

  14. Trapped Particle Instabilities in the Kinetically Stabilized Tandem Mirror

    Science.gov (United States)

    Pratt, J.; Berk, H. L.; Horton, W.

    2009-05-01

    The kinetically stabilized tandem mirror (KSTM) is an innovative design to stabilize MHD modes in an axially symmetric tandem mirror machine (Post, J. Fus. Energy 2007). Originally proposed by Ryutov (Ryutov, Proc. of Course and Workshop, Varenna, Italy, 1987), this stabilizer has been empirically verified in the Gas Dynamic Trap (Ivanov, Anakeev et.al. Trans. Fusion Technology. 39, 127, 2001). The KSTM uses the momentum flux of escaping particles that sample good magnetic-field-line-curvature region outside the central confinement region. Charged ion beams at relatively low energy are externally injected from the ends into the expander region at an energy that is consistent with a stable MHD prediction and acceptable power loss for fusion. If stable, the KSTM would be extremely useful for limiting radial diffusion since the chaotic step size is minimized. We confirm that MHD stability is achieved in the KSTM. We examine the effect of the trapped particle instability discussed in Berk, Rosenbluth, et al. Sov. J. Plasma Phys. 1983 on overall stability. In this case stability is very sensitive to the electron connection between the stabilizer and the end plug.

  15. Gas box control system for Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    The Tandem Mirror Experiment-Upgrade (TMX-U) uses several methods to feed gas (usually deuterium) at different energies into the plasma region of the machine. One is an arrangement of eight high-speed piezo-electric valves mounted on special manifolds (gas box) that feed cold gas directly to the plasma. This paper describes the electronic valve control and data acquisition portions of the gas box, which are controlled by a desk-top computer. Various flow profiles have been developed and stored in the control computer for ready access by the operator. The system uses two modes of operation, one that exercises and characterizes the valves and one that operates the valves with the rest of the experiment. Both the valve control signals and the pressure transducers data are recorded on the diagnostics computer so that they are available for experiment analysis

  16. Calculation of density profiles in tandem mirrors fueled by pellets

    International Nuclear Information System (INIS)

    We have modified the LLNL radial transport code TMT to model reactor regime plasmas, fueled by pellets. The source profiles arising from pellet fueling are obtained from existing pellet ablation models. Because inward radial diffusion due to inverted profiles must compete with trapping of central cell ions in the transition region for tandem mirrors, pellets must penetrate fairly far into the plasma. In fact, based on our radial calculations, a pellet with a velocity of 10 km/sec cannot sustain the central flux tubes; a velocity more like 100 km/sec will be necessary. We also find that the central cell radial diffusion must exceed classical by about a factor of 100

  17. Vacuum vessel for the tandem Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    In 1980, the US Department of Energy gave the Lawrence Livermore National Laboratory approval to design and build a tandem Mirror Fusion Test Facility (MFTF-B) to support the goals of the National Mirror Program. We designed the MFTF-B vacuum vessel both to maintain the required ultrahigh vacuum environment and to structurally support the 42 superconducting magnets plus auxiliary internal and external equipment. During our design work, we made extensive use of both simple and complex computer models to arrive at a cost-effective final configuration. As part of this work, we conducted a unique dynamic analysis to study the interaction of the 32,000-tonne concrete-shielding vault with the 2850-tonne vacuum vessel system. To maintain a vacuum of 2 x 10-8 torr during the physics experiments inside the vessel, we designed a vacuum pumping system of enormous capacity. The vacuum vessel (4200-m3 internal volume) has been fabricated and erected, and acceptance tests have been completed at the Livermore site. The rest of the machine has been assembled, and individual systems have been successfully checked. On October 1, 1985, we began a series of integrated engineering tests to verify the operation of all components as a complete system

  18. Preliminary design study of the Tandem Mirror Reactor (TMR)

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.; Barr, W.L.; Carlson, G.A.

    1978-07-15

    This report describes work done in Fiscal Year 1977 by the Fusion Reactor Studies Group of LLL on the conceptual design of a 1000-MW(e) Tandem Mirror Reactor (TMR). The high Q (defined as the ratio of fusion power to injection power) predicted for the TMR (approximately 5) reduces the recirculating power to a nondominant problem and results in an attractive mirror fusion power plant. The fusion plasma of the TMR is contained in the 100-m-long central cell where the magnetic field strength is a modest 2 T. The blanket for neutron energy recovery and tritium breeding is cylindrical and, along with the solenoidal magnet, is divided into 3-m-long modules to facilitate maintenance. The central cell is fueled (but not heated) by the injection of low-energy neutral beams near its ends. Thus, the central cell is simple and of low technology. The end-cell plasmas must be of high density and high energy in order to plug and heat (via the electrons) the central-cell plasma. The present conceptual design uses 1.2-MeV neutral-beam injection for the end plugs and a cryogenic-aluminum, Yin-Yang magnet that produces an incremental field of about 1 T over a field of 16 T produced by a pair of Nb/sub 3/Sn superconducting solenoids. Important design problems remain in both the neutral-beam injector and in the end-plug magnet. Also remaining are important physics questions such as alpha-beam particle transport and end-plug stability. These questions are discussed at length in the report and suggestions for future work are given.

  19. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    International Nuclear Information System (INIS)

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units

  20. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W.; Ribe, F.L.

    1981-01-21

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  1. TMX-U [Tandem Mirror Experiment-Upgrade]: Final report, Volume 1

    International Nuclear Information System (INIS)

    This paper discusses the plasma control and the physics accomplishments of the Tandem Mirror Experiment-Upgrade. This particular volume discusses potential measurements, plasma confinement, and hot electron and ion physics. 230 refs

  2. TMX-U [Tandem Mirror Experiment-Upgrade]: Final report, Volume 2

    International Nuclear Information System (INIS)

    This paper discusses the plasma control and the physics accomplishments of the Tandem Mirror Experiment-Upgrade. This particular volume discusses fueling, ion heating, Fokker-Planck modeling, plasma stability and technical development. 270 refs

  3. Mechanical design of the Tandem Mirror Experiment Upgrade vacuum system

    International Nuclear Information System (INIS)

    The Tandem Mirror Experiment Upgrade (TMX Upgrade) vacuum system uses most of the vacuum system from the original TMX and substantially increases its capabilities. The vacuum system provides the main structure for the experimental apparatus, as well as providing and maintaining the vacuum environment. The vacuum vessel provides the structure supporting all magnets, as they are contained inside the vacuum vessel, all of the neutral-beam injectors, and the various diagnostics. The vessel provides the main vacuum enclosure and the various access ports required by the magnet system, injector system, internal vacuum system, and plasma diagnostics. The vacuum environment is created and maintained by two systems, the external vacuum system and the internal vacuum system. The external system consists of mechanical pumps, turbopumps, and cryopumps, and creates a vacuum inside the vessel down to a minimum pressure of 10-6 Torr. The internal vacuum system further reduces the pressure into the 10-8 Torr range and provides the fast pumping required to handle the excess gas from the neutral-beam injector system during a plasma shot. The internal vacuum system consists of titanium sublimators and liquid nitrogen (LN) liners that separate the vacuum vessel into various pumping regions

  4. Mechanical design of the Tandem Mirror Experiment Upgrade vacuum system

    Energy Technology Data Exchange (ETDEWEB)

    Lang, D.D.; Calderon, M.O.; Thomas, S.R.; Garner, D.R.

    1981-09-24

    The Tandem Mirror Experiment Upgrade (TMX Upgrade) vacuum system uses most of the vacuum system from the original TMX and substantially increases its capabilities. The vacuum system provides the main structure for the experimental apparatus, as well as providing and maintaining the vacuum environment. The vacuum vessel provides the structure supporting all magnets, as they are contained inside the vacuum vessel, all of the neutral-beam injectors, and the various diagnostics. The vessel provides the main vacuum enclosure and the various access ports required by the magnet system, injector system, internal vacuum system, and plasma diagnostics. The vacuum environment is created and maintained by two systems, the external vacuum system and the internal vacuum system. The external system consists of mechanical pumps, turbopumps, and cryopumps, and creates a vacuum inside the vessel down to a minimum pressure of 10/sup -6/ Torr. The internal vacuum system further reduces the pressure into the 10/sup -8/ Torr range and provides the fast pumping required to handle the excess gas from the neutral-beam injector system during a plasma shot. The internal vacuum system consists of titanium sublimators and liquid nitrogen (LN) liners that separate the vacuum vessel into various pumping regions.

  5. Electron and ion cyclotron heating calculations in the tandem-mirror modeling code MERTH

    International Nuclear Information System (INIS)

    To better understand and predict tandem-mirror experiments, we are building a comprehensive Mirror Equilibrium Radial Transport and Heating (MERTH) code. In this paper we first describe our method for developing the code. Then we report our plans for the installation of physics packages for electron- and ion-cyclotron heating of the plasma

  6. A d-d tandem mirror reactor assessment

    International Nuclear Information System (INIS)

    A conceptual tandem mirror reactor (TMR) that is fueled by the catalyzed-deuterium fuel cycle is assessed with respect to physics, technology, safety, and cost. A comparison with respect to these issues is made between this reactor and a deuterium-tritium fueled TMR similar to that developed for the MARS study. Both designs have ends stoppered by a combination of magnetic and electrostatic fields and fusion takes place within the solenoid. The magnetic field end plugs are formed by a combination of 24 Tesla coils and a system of 8 Tesla yin-yang coils to provide stability. The ambipolar potential electron and ion plugs are formed in the yin-yangs and are created by a combination of neutral beams and electron cyclotron resonance heating (ECRH). Fusion power is converted to electricity in a TMR by two methods: by volumetric heat generation from neutron bombardment in the blanket and by direct conversion of the energy from changed particles escaping from the ends of the TMR. Thermal energy from neutrons is converted more efficiently for a Cat-d TMR because of relative blanket simplicity. Both Cat-d and d-t TMRs can utilize high efficiency direct conversion, but the former has a greater percentage of fusion power in charge particles. The total activation of the first wall and blanket due to neutron bombardment is similar for the Cat-d and d-t TMRs, but the tritium inventory is about three orders of magnitude greater in the latter. It is determined that although the Cat-d TMR operates at a higher ion temperature and is generally larger than a d-t TMR, the first wall and blanket lifetimes are an order of magnitude larger, and the capital costs are comparable for the same net power output

  7. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap (''vortex'' confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of ''vortex'' confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  8. Construction and operational experience of the Tandem Mirror Experiment-Upgrade (TMX-U)

    International Nuclear Information System (INIS)

    The Tandem Mirror Experiment-Upgrade (TMX-U) incorporates two new features at Lawrence Livermore National Laboratory (LLNL) tandem mirror program, thermal barriers in the end plugs and injection of the neutral beams at several oblique angles. The thermal barriers isolate the electrons in the end plugs from those in the central cell, making it possible to heat them independently with microwaves. In addition, this innovation produces a large potential gradient in the end plugs with lower magnetic fields and lower neutral-beam energies than would be possible in a conventional tandem mirror device. The TMX-U is also designed to test neutral-beam-injection angles as an experimental parameter. We use angles other than 900 to produce a plasma with improved microstability

  9. Small-scale experimental tests of tandem mirror machines with thermal barriers

    International Nuclear Information System (INIS)

    A summary is given of current physical understanding of tandem mirrors with thermal barriers. Physicists who understand tandem mirrors can use this document as a preliminary guide to the physical issues and experimental problems involved. This report will focus upon the issues that can be tested experimentally, and on the areas needing experimental and theoretical inventions. The next section discusses the plasma potentials and plasma confinement which correspond to a tandem mirror with thermal barriers, assuming the barriers exist in steady-state. The creation of a barrier is discussed, i.e., the natural tendency of the barrier cell to fill with plasma must be countered by pumping ions out of the barrier. The design of a barrier-pumping experiment for TMX is described

  10. Plasma diagnostic techniques in thermal-barrier tandem-mirror fusion experiments

    International Nuclear Information System (INIS)

    We review two classes of plasma diagnostic techniques used in thermal-barrier tandem-mirror fusion experiments. The emphasis of the first class is to study mirror-trapped electrons at the thermal-barrier location. The focus of the second class is to measure the spatial and temporal behavior of the plasma space potential at various axial locations. The design and operation of the instruments in these two categories are discussed and data that are representative of their performance is presented

  11. Design for the magnetic field requirements of the tandem mirror experiment

    International Nuclear Information System (INIS)

    The tandem mirror magnetic geometry is described, followed by an analysis of the magnet set designed to meet the requirements of the TMX experiment. The final magnet line-up is composed of a baseball coil with two C coils for each plug, six solenoidal coils for the central cell, and two RC coils plus one octupole coil for each transition

  12. Annual progress report on fusion plasma theory task III: auxiliary heating in tokamaks and tandem mirrors

    International Nuclear Information System (INIS)

    The research we have accomplished during the past year has focussed on ICRF coupling, heating and breakeven studies for tokamaks and ECRF fundamental second harmonic heating in tandem mirrors. The studies have included ICRF Fokker-Planck heating and breakeven studies for large tokamaks such as JET, fundamental work on a new wave power absorption and conservation relation for ICRF in inhomogeneous plasmas, a formulation and code development for ICRF waveguide coupling in tokamak edge regions. ECRF ray tracing studies have been carried out for fundamental and second harmonic propagation, absorption and whistler microinstabilities in tandem mirror plug and barrier regions of Phaedrus, TMX-U and TASKA. The two-dimensional velocity space, time dependent Fokker-Planck heating studies have concentrated on D-T breakeven scenarios for fundamental minority deuterium and second harmonic tritium regimes

  13. Fusion plasma theory. Task III. Auxiliary heating in tokamaks and tandem mirrors. Final report

    International Nuclear Information System (INIS)

    The research we have accomplished with this contract has focused on ICRF coupling, heating and breakeven studies for tokamaks and ECRF fundamental and second harmonic heating in tandem mirrors. The highlights include reviewed publication of ICRF Fokker-Planck heating and breakeven studies with international collaboration with the JET group, fundamental work on a differential equation for wave fields and a new wave power absorption and conservation relation for ICRF in inhomogeneous plasmas and a formulation and code development of slab matrix and differential equation solutions for ICRF waveguide coupling in tokamak edge regions. ECRF ray tracing studies have been carried out, and a reviewed paper published for fundamental and second harmonic propagation, absorption and whistler microinstabilities in tandem mirror plug and barrier regions of Phaedrus, TMX-U and TASKA

  14. Design of an 18 Tesla, tandem mirror, fusion reactor, hybrid choke coil

    International Nuclear Information System (INIS)

    A hybrid, part normal part superconducting 18-Tesla solenoid choke coil is designed for a tandem mirror fusion reactor. The present state of the art is represented by the 12-Tesla, superconducting NbSn coil. Future applications other than tandem mirror fusion devices needing high field solenoids might require hybrid magnets of the type described herein. The hybrid design was generated because of critical field performance limitations on present, practical superconducting wires. A hybrid design might be required (due to structural limits) even if the critical field were higher. Also, hybrids could be a cost-effective way of getting very high fields for certain applications. The 18-Tesla solenoid described is composed of an inner coil made of water-cooled, high-strength zirconium copper which generates 3 Tesla. A superconducting NbSn background coil contributes the remaining 15 Tesla. The focus of the design study was on the inner coil. Demonstration fabrication and testing was performed

  15. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    International Nuclear Information System (INIS)

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H2SO4-H2O system

  16. Feasibility study of a fission-suppressed tandem-mirror hybrid reactor

    International Nuclear Information System (INIS)

    Results of a conceptual design study of a U-233 producing fusion breeder consisting of a tandem mirror fusion device and two types of fission-suppressed blankets are presented. The majority of the study was devoted to the conceptual design and evaluation of the two blankets. However, studies in the areas of fusion engineering, reactor safety, fuel reprocessing, other fuel cycle issues, economics, and deployment were also performed

  17. Materials considerations for the coupling of thermochemical hydrogen cycles to tandem mirror reactors

    Energy Technology Data Exchange (ETDEWEB)

    Krikorian, O.H.

    1980-10-10

    Candidate materials are discussed and initial choices made for the critical elements in a liquid Li-Na Cauldron Tandem Mirror blanket and the General Atomic Sulfur-Iodine Cycle for thermochemical hydrogen production. V and Ti alloys provide low neutron activation, good radiation damage resistance, and good chemical compatibility for the Cauldron design. Aluminide coated In-800H and siliconized SiC are materials choices for heat exchanger components in the thermochemical cycle interface.

  18. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W. (ed.)

    1982-11-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  19. Materials considerations for the coupling of thermochemical hydrogen cycles to tandem mirror reactors

    International Nuclear Information System (INIS)

    Candidate materials are discussed and initial choices made for the critical elements in a liquid Li-Na Cauldron Tandem Mirror blanket and the General Atomic Sulfur-Iodine Cycle for thermochemical hydrogen production. V and Ti alloys provide low neutron activation, good radiation damage resistance, and good chemical compatibility for the Cauldron design. Aluminide coated In-800H and siliconized SiC are materials choices for heat exchanger components in the thermochemical cycle interface

  20. Demonstration of Achromatic Cold-Neutron Microscope Utilizing Axisymmetric Focusing Mirrors

    CERN Document Server

    Liu, D; Gubarev, M V; Ramsey, B D; Jacobson, D; Arif, M; Moncton, D E; Khaykovich, B

    2013-01-01

    An achromatic cold-neutron microscope with magnification 4 is demonstrated. The image-forming optics is composed of nested coaxial mirrors of full figures of revolution, so-called Wolter optics. The spatial resolution, field of view, and depth of focus are measured and found consistent with ray-tracing simulations. Methods of increasing the resolution and magnification are discussed, as well as the scientific case for the neutron microscope. In contrast to traditional pinhole-camera neutron imaging, the resolution of the microscope is determined by the mirrors rather than by the collimation of the beam, leading to possible dramatic improvements in the signal rate and resolution.

  1. An alpha loss-cone instability in the central cell of a tandem mirror reactor

    International Nuclear Information System (INIS)

    D-T fusion-born alpha particles are mirror-confined in the central cell of a tandem mirror reactor. The resulting anisotropic loss-cone distribution of the alpha particles in velocity space is capable of destabilizing low frequency plasma waves, thus affecting the energy balance in a tandem mirror plasma. The low frequency waves of a cold, cylindrical, sharp-boundary, D-T plasma are studied. Techniques have been developed to trace the wave propagation regions and search the wave eigenfrequencies. Three branches of waves are found, namely the Alfven, hybrid, and fast waves; but only the Alfven wave is destabilized by the alpha loss-cone instability. The modeling of the alpha distribution function for the linear and quasi-linear instability calculations is done by a diffusion-front method and a numerical finite difference method, respectively. Their validity is established by comparing them with a converged 80-term Legendre function expansion model of the alpha distribution. The growth rate of the instability is basically determined by the alpha number density, the loss-cone angle, and the polarization of the wave. These quantities are in turn mainly affected by the density and temperature of the plasma ions and electrons, the mirror ratio, and the plasma radius. 83 refs., 58 figs

  2. Demonstration of Achromatic Cold-Neutron Microscope Utilizing Axisymmetric Focusing Mirrors

    OpenAIRE

    Liu, D.; Hussey, D; Gubarev, M. V.; Ramsey, B. D.; Jacobson, D.; Arif, M.; Moncton, D.E.; Khaykovich, B.

    2013-01-01

    An achromatic cold-neutron microscope with magnification 4 is demonstrated. The image-forming optics is composed of nested coaxial mirrors of full figures of revolution, so-called Wolter optics. The spatial resolution, field of view, and depth of focus are measured and found consistent with ray-tracing simulations. Methods of increasing the resolution and magnification are discussed, as well as the scientific case for the neutron microscope. In contrast to traditional pinhole-camera neutron i...

  3. Hot-electron plasma formation and confinement in the tandem mirror experiment-upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Ress, D.B.

    1988-06-01

    The tandem mirror experiment-upgrade (TMX-U) at the Lawrence Livermore National Laboratory (LLNL) is the first experiment to investigate the thermal-barrier tandem-mirror concept. One attractive feature of the tandem magnetic mirror as a commercial power reactor is that the fusion reactions occur in an easily accessible center-cell. On the other hand, complicated end-cells are necessary to provide magnetohydrodynamic (MHD) stability and improved particle confinement of the center-cell plasma. In these end-cells, enhanced confinement is achieved with a particular axial potential profile that is formed with electron-cyclotron range-of-frequency heating (ECRF heating, ECRH). By modifying the loss rates of electrons at spatially distinct locations within the end-cells, the ECRH can tailor the plasma potential profile in the desired fashion. Specifically, the thermal-barrier concept requires generation of a population of energetic electrons near the midplane of each end-cell. To be effective, the transverse (to the magnetic field) spatial structure of the hot-electron plasma must be fairly uniform. In this dissertation we characterize the spatial structure of the ECRH-generated plasma, and determine how the structure builds up in time. Furthermore, the plasma should efficiently absorb the ECRF power, and a large fraction of the electrons must be well confined near the end-cell midplane. Therefore, we also examine in detail the ECRH power balance, determining how the ECRF power is absorbed by the plasma, and the processes through which that power is confined and lost. 43 refs., 69 figs., 6 tabs.

  4. Hot-electron plasma formation and confinement in the tandem mirror experiment-upgrade

    International Nuclear Information System (INIS)

    The tandem mirror experiment-upgrade (TMX-U) at the Lawrence Livermore National Laboratory (LLNL) is the first experiment to investigate the thermal-barrier tandem-mirror concept. One attractive feature of the tandem magnetic mirror as a commercial power reactor is that the fusion reactions occur in an easily accessible center-cell. On the other hand, complicated end-cells are necessary to provide magnetohydrodynamic (MHD) stability and improved particle confinement of the center-cell plasma. In these end-cells, enhanced confinement is achieved with a particular axial potential profile that is formed with electron-cyclotron range-of-frequency heating (ECRF heating, ECRH). By modifying the loss rates of electrons at spatially distinct locations within the end-cells, the ECRH can tailor the plasma potential profile in the desired fashion. Specifically, the thermal-barrier concept requires generation of a population of energetic electrons near the midplane of each end-cell. To be effective, the transverse (to the magnetic field) spatial structure of the hot-electron plasma must be fairly uniform. In this dissertation we characterize the spatial structure of the ECRH-generated plasma, and determine how the structure builds up in time. Furthermore, the plasma should efficiently absorb the ECRF power, and a large fraction of the electrons must be well confined near the end-cell midplane. Therefore, we also examine in detail the ECRH power balance, determining how the ECRF power is absorbed by the plasma, and the processes through which that power is confined and lost. 43 refs., 69 figs., 6 tabs

  5. Updated reference design of a liquid metal cooled tandem mirror fusion breeder

    International Nuclear Information System (INIS)

    Detailed studies of key techinical issues for liquid metal cooled fusion breeder (fusion-fission hybrid blankets) have been performed during the period 1983-4. Based upon the results of these studies, the 1982 reference liquid metal cooled tandem mirror fusion breeder blanket design was updated and is described. The updated reference blankets provides increased breeding and lower technological risk in comparison with the original reference blanket. In addition to the blanket design revisions, a plant concept, cost, and fuel cycle economics assessment is provided. The fusion breeder continues to promise an economical source of fissile fuel for the indefinite future

  6. Four years of magnet system operation on the Tandem Mirror Experiment-Upgrade (TMX-U)

    International Nuclear Information System (INIS)

    During the past four years, the Tandem Mirror Experiment-Upgrade (TMX-U) magnet system has operated successfully, delivering more than 13,300 full-power shots. This paper presents the expanded physics criteria and how they affect the magnetic field design. It compares our operational results with previously defined criteria for current repeatability, cooling, duty cycle and vacuum integrity. It also details the solutions to a few operational problems, including the discovery and repair of a ground fault in the east plug Ioffe and another in an east plug cee circuit power supply. 14 refs

  7. Measurement of ultrashort-pulse cross-polarization scattering in a tandem mirror

    Energy Technology Data Exchange (ETDEWEB)

    Kogi, Yuichiro; Mase, Atsushi [Advanced Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka (Japan); Hojo, Hitoshi; Itakura, Akiyoshi; Ichimura, Makoto; Yatsu, Kiyoshi [Plasma Research Center, Tsukuba Univ., Tsukuba, Ibaraki (Japan)

    2001-08-01

    Cross-polarization scattering (CPS) diagnostics using ultrashort pulse microwaves is applied to the GAMMA 10 tandem mirror for the measurement of internal magnetic fluctuations. The CPS process uses the mode conversion effect of electromagnetic waves by means of magnetic fluctuations in a plasma. The mode contamination of antennas and multiple reflections from the vacuum vessel make the CPS measurement difficult since they easily mask the CPS signal. By using polarizers and performing time-of-flight measurement on the ultrashort pulse, the spurious electromagnetic waves are eliminated and the identification of the CPS process is successful. (author)

  8. Cross-polarization scattering from low-frequency waves in a tandem mirror plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kogi, Yuichiro; Mase, Atsushi; Bruskin, L.G.; Oyama, Naoyuki; Tokuzawa, Tokihiko; Itakura, Akiyosi; Hojo, Hitoshi; Tamano, Teruo [Tsukuba Univ., Ibaraki (Japan). Plasma Research Center

    1997-05-01

    Cross-polarization scattering (CPS) diagnostic was applied to the central-cell plasma of the GAMMA 10 tandem mirror in order to study electromagnetic plasma waves with frequencies of less than 200 kHz. In the CPS process, an incident ordinary (extraordinary) wave is converted to an extraordinary (ordinary) wave by magnetic fluctuations in a plasma. The converted wave propagates through the cutoff layer and reaches the opposite diagnostic port. The experimental data suggest that the power spectral density of the CPS signal satisfies the Bragg condition, while the reflectometer detects the waves near the cutoff layer where the wave number cannot be resolved. (author)

  9. Studies of plasma transport relevant to tandem mirrors. Final technical report, March 1, 1982-February 28, 1985

    International Nuclear Information System (INIS)

    Experiments were performed on a pure electron plasma device. These plasmas are exceptionally well confined and their low background loss rate makes them well suited for controlled transport experiments. The confinement of electrons in these devices is similar to the confinement of ions in the central cell of a tandem mirror, i.e., the radial confinement is provided by a solenoidal magnetic field while the axial confinement is provided by electrostatic potentials. In addition, the various scaled parameters which are thought to determine the nature of the radial transport are similar for the two devices. However, the construction, operation, and understanding of the pure electron plasma is relatively simple compared to a tandem mirror machine. These considerations suggest that the pure electron plasma can be effectively employed to study the basic elements of the plasma transport theory used to describe radial particle losses in tandem mirrors

  10. Neutronics shielding analysis for the end plug of a tandem mirror fusion reactor

    Science.gov (United States)

    Ragheb, Magdi M. H.; Maynard, Charles W.

    1981-10-01

    A neutronics analysis using the Monte Carlo method is carried out for the end-plug penetration and magnet system of a tandem mirror fusion reactor. Detailed penetration and the magnets' three-dimensional configurations are modeled. A method of position dependent angular source biasing is developed to adequately sample the DT fusion source in the central cell region and obtain flux contributions at the penetration components. To assure cryogenic stability, the barrier cylindrical solenoid is identified as needing substantial shielding of about 1 m of a steel-lead-boron-carbide-water mixture. Heating rates there would require a thermal-hydraulic design similar to that in the central cell blanket region. The transition coils, however, need a minimal 0.2 m thickness shield. The leakage neutron flux at the direct converters is estimated at 1.3×1015 n/(m2·s), two orders of magnitude lower than that reported at the neutral beam injectors for tokamaks around 1017 n/(m2·s) for a 1 MW/m2 14 MeV neutron wall loading. This result is obtained through a coupling between the nuclear and plasma physics designs in which hydrogen ions rather than deuterium atoms are used for energy injection at the end plug, to avoid creating a neutron source there. This lower and controllable radiation leakage problem is perceived as a potential major advantage of tandem mirrors compared to tokamaks and laser reactor systems.

  11. TASKA-M - a low cost, near term tandem mirror device for fusion technology testing

    International Nuclear Information System (INIS)

    TASKA-M (Modifizierte Tandem Spiegelmaschine Karlsruhe) is a study of a dedicated fusion technology device based on the mirror principle, in continuation of the 1981/82 TASKA study. The main objective is to minimize cost while retaining key requirements of neutron flux and fluence for blanket and material development and for component testing in a nuclear environment. Direct costs are reduced to about 400 M$ by dropping reactor-relevant aspects not essential to technology testing: No thermal barrier and electrostatic plugging of the plasma; fusion power of 7 MW at an injected power of 44 MW; tritium supply from external sources. All technologies for operating the machine are expected to be available by 1990; the plasma physics relies on microstabilization in a sloshing ion population. (orig.)

  12. Plasma engineering for MINIMARS: a small commercial tandem mirror reactor with octopole plugs

    International Nuclear Information System (INIS)

    With the employment of a novel octopole end plug scheme, we examine the plasma engineering design of MINIMARS, a small compact fusion reactor based on the tandem mirror principle. With a net electric output of 600 MW/sub e/, MINIMARS is expressly designed for short construction times, factory built modules, and a passively safe blanket system. We show that the compact octopole/mantle provides several distinct improvements over the more conventional quadrupole (yin-yang) end plugs and enables ignition to be obtained with much shorter central cell length. In this way we can design economic small reactors which will minimize utility financial risk and provide attractive alternatives to the conventional larger fusion plants encountered to date

  13. Chemical engineering challenges in driving thermochemical hydrogen processes with the tandem mirror reactor

    International Nuclear Information System (INIS)

    The Tandem Mirror Reactor is described and compared with Tokamaks, both from a basic physics viewpoint and from the suitability of the respective reactor for synfuel production. Differences and similarities between the TMR as an electricity producer or a synfuel producer are also cited. The Thermochemical cycle chosen to link with the fusion energy source is the General Atomic Sulfur-Iodine Cycle, which is a purely thermal-driven process with no electrochemical steps. There are real chemical engineering challenges of getting this high quality heat into the large thermochemical plant in an efficient manner. We illustrate with some of our approaches to providing process heat via liquid sodium to drive a 1050 K, highly-endothermic, catalytic and fluidized-bed SO3 Decomposition Reactor. The technical, economic, and safety tradeoffs that arise are discussed

  14. Magnet power control system for the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    This paper describes the desktop computer/CAMAC-based system that controls the power source for the Tandem Mirror Experiment-Upgrade (TMX-U) magnet power system. Presently it contains 42 dc rectifier power supplies connected to 24 magnet coils arranged in 17 circuits. During each shot, the system delivers 22.6 MW dc to the magnets for about 3 s. The system is presently being changed to add six power supplies, two solenoidal throttle coils, and two reverse C-coils. When complete, the delivered power will increase to 36.9 MW. The closed-loop control system usually provides current (and thus, magnetic field) that is within 1% of the requested current. Achieving this accuracy required using grounding, shielding, and isolation methods to reduce noise and related problems. These are also discussed

  15. Applications of small computers for systems control on the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Desktop computers operating into a CAMAC-based interface are used to control and monitor the operation of the various subsystems on the Tandem Mirror Experiment-Upgrade (TMX-U) at Lawrence Livermore National Laboratory (LLNL). These systems include: shot sequencer/master timing, neutral beam control (four consoles), magnet power system control, ion-cyclotron resonant heating (ICRH) control, thermocouple monitoring, getter system control, gas fueling system control, and electron-cyclotron resonant heating (ECRH) monitoring. Two additional computers are used to control the TMX-U neutral beam test stand and provide computer-aided repair/test and development of CAMAC modules. These machines are usually programmed in BASIC, but some codes have been interpreted into assembly language to increase speed. Details of the computer interfaces and system complexity are described as well as the evolution of the systems to their present states

  16. Design, construction, and testing of the vacuum vessel for the tandem Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    In 1980, the US Department of Energy gave the Lawrence Livermore National Laboratory approval to design and build a tandem Mirror Fusion Test Facility (MFTF-B) to support the goals of the National Mirror Program. We designed the MFTF-B vacuum vessel both to maintain the required ultrahigh vacuum environment and to structurally support the 42 superconducting magnets plus auxiliary internal and external equipment. During our design work, we made extensive use of both simple and complex computer models to arrive at a cost-effective final configuration. As part of this work, we conducted a unique dynamic analysis to study the interaction of the 32,000-tonne concrete-shielding vault with the 2850-tonne vacuum vessel system. To maintain a vacuum of 2 x 10-8 Torr during the physics experiments inside the vessel, we designed a vacuum pumping system of enormous capacity. The vacuum vessel (4200 m3) has been fabricated, erected, and acceptance tests have been completed at the Livermore site. The rest of the machine has been assembled, and individual systems have been successfully checked. On October 1, 1985, we began a series of integrated engineering tests to verify the operation of all components as a complete system

  17. Design, construction, and testing of the vacuum vessel for the tandem Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    In 1980, the U.S. Department of Energy gave the Lawrence Livermore National Laboratory approval to design and build a tandem Mirror Fusion Test Facility (MFTF-B) to support the goals of the National Mirror Program. We designed the MFTF-B vacuum vessel both to maintain the required ultrahigh vacuum environment and to structurally support the 42 superconducting magnets plus auxiliary internal and external equipment. During our design work, we made extensive use of both simple and complex computer models to arrive at a cost-effective final configuration. As part of this work, we conducted a unique dynamic analysis to study the interaction of the 32 000 tonne concrete-shielding vault with the 2850 tonne vacuum vessel system. To maintain a vacuum of 2 x 10-8 Torr during the physics experiments inside the vessel, we designed a vacuum pumping system of enormous capacity. The vacuum vessel (4200 m3) has been fabricated, erected, and acceptance tests have been completed at the Livermore site. The rest of the machine has been assembled, and individual systems have been successfully checked. On October 1, 1985, we began a series of integrated engineering tests to verify the operation of all components as a complete system

  18. Utilizing subcooled, superfluid He-II in the design of a 12-Tesla tandem mirror experiment

    International Nuclear Information System (INIS)

    A design study of 12-T yin-yang coils for a conceptual Tandem Mirror Next Step facility has been recently performed by Lawrence Livermore National Laboratory in conjunction with the Convair Division of General Dynamics. The large magnets have major and mirror radii of 3.7 and 1.5 m, 0.70 x 3.75 m2 cross section, 46.3 MA turns, and an overall current density of 1765 A/cm2, obtained by the use of Nb3Sn and Nb-Ti superconductors. Each coil is composed of several subcoils separated by internal strengthening substructure to react the enormous electromagnetic forces. The size of the yin-yang coils, and hence the current density, was reduced by utilizing subcooled, superfluid He-II at 1.8 K for the coolant. This paper reviews the design study, with emphasis on He-II heat transport and conductor stability. Methods are also presented which allow the extension of Gorter-Mellink-channel calculations to encompass multiple, interconnecting coolant channels

  19. START/TM: a study of start-up and fractional power operation of tandem mirror fusion reactors

    International Nuclear Information System (INIS)

    Start-up, shutdown and fractional power operation are important parts of power reactor operation. Special requirements for operation during these phases often place design constraints on key subsystems and can influence the fundamental design approach. This report presents investigations of these problems for tandem mirror fusion reactors (TMR's) and is referred to as the START/TM study. As a basis for the work, the MARS conceptual tandem mirror reactor design is used as the general reactor model. An overall framework is developed for start-up and fractional power increases to full power, applicable to any fusion reactor. Five phases are identified that include initial commissioning, cold or hot shutdown, system testing and plasma initiation to a standby mode, staged power increases, and rated power operation. Both general and specific constraints associated with these phases are identified and a plasma shutdown scenario is developed

  20. Conceptual design study FY 1981: synfuels from fusion - using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    International Nuclear Information System (INIS)

    This report represents the second year's effort of a scoping and conceptual design study being conducted for the express purpose of evaluating the engineering potential of producing hydrogen by thermochemical cycles using a tandem mirror fusion driver. The hydrogen thus produced may then be used as a feedstock to produce fuels such as methane, methanol, or gasoline. The main objective of this second year's study has been to obtain some approximate cost figures for hydrogen production through a conceptual design study

  1. Computer aided design on the Tandem Mirror Experiment Upgrade (TMX-U)

    International Nuclear Information System (INIS)

    The Tandem Mirror Experiment-Upgrade (TMX-U) at Lawrence Livermore National Laboratory (LLNL) has been using a Computer Aided Design (CAD) graphics system to enhance its design capabilities since November of 1984. Three-dimensional models of the TMX-U magnet set, neutral beams, plasma, and containment vessel have been modeled on the system. These models are used for location verification, diagnostic placement, interference checking, and visualization of complex shapes generated on the Magnetic Fusion Energy Computer Center (MFECC) mainframes. The graphics system used at LLNL is a Computervision multi-application graphics system. Four other fusion laboratories, Princeton, Oak Ridge, General Atomic, and Los Alamos, have purchased this same CAD system. These sites are linked through the MFE computer network to allow for the exchange of design files and the transfer of physics and engineering data to and from the CAD systems. This paper gives examples of how the CAD system has been used to solve design and engineering problems for the TMX-U

  2. A tandem mirror plasma source for a hybrid plume plasma propulsion concept

    Science.gov (United States)

    Yang, T. F.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.; Chang, F. R.

    1985-01-01

    This paper describes a tandem mirror magnetic plasma confinement device to be considered as a hot plasma source for the hybrid plume rocket concept. The hot plasma from this device is injected into an exhaust duct, which will interact with an annular layer of hypersonic neutral gas. Such a device can be used to study the dynamics of the hybrid plume and to experimentally verify the numerical predictions obtained with computer codes. The basic system design is also geared toward being lightweight and compact, as well as having high power density (i.e., several kW/sq cm) at the exhaust. This feature is aimed toward the feasibility of 'space testing'. The plasma is heated by microwaves. A 50 percent heating efficiency can be obtained by using two half-circle antennas. The preliminary Monte Carlo modeling of test particles result reported here indicates that interaction does take place in the exhaust duct. Neutrals gain energy from the ion, which confirms the hybrid plume concept.

  3. Parametric study of axisymmetric fusion devices

    International Nuclear Information System (INIS)

    Three different axisymmetric magnetic mirror fusion machines are examined in order to optimize the ratio the fusion power produced by them to the power injected into them to maintain the plasma. These three devices were chosen to study the continuum between a simple mirror and a tandem mirror. This allowed the evolutionary process leading from the simple to the tandem mirror to be examined in detail. The Kelley mirror, which corresponds to the middle step, was examined in depth for the first time. A computer code that models the plasma in these machines was written to investigate the steady-state operation of these machines. The balance equations are solved by using an ordinary differential equation solver, LSODE, to numerically solve the system of differential equations. The computer model was used to examine parameter space to optimize Q for each of the three machines. When feasible, a comparison with a Fokker-Planck code was made for the optimal Q case for each machine. Finally, the possible roles these devices might fill was discussed

  4. Measurements of radial profiles of ion cyclotron resonance heating on the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    A small Radial Energy Analyzer (REA) was used on the Tandem Mirror Experiment-Upgrade (TMX-U), at Lawerence Livermore National Laboratory, to investigate the radial profiles of ion temperature, density, and plasma potential during Ion Cyclotron Resonance Heating (ICRH). The probe has been inserted into the central-cell plasma at temperatures of 200 eV and densities of 3 x 1012cm/sup /minus 3// without damage to the probe, or major degradation of the plasma. This analyzer has indicated an increase in ion temperature from near 20 eV before ICRH to near 150 eV during ICRH, with about 60 kW of broadcast power. The REA measurements were cross-checked against other diagnostics on TMX-U and found to be consistent. The ion density measurement was compared to the line-density measured by microwave interferometry and found to agree within 10 to 20%. A radial intergral of n/sub i/T/sub i/ as measured by the REA shows good agreement with the diamagnetic loop measurement of plasma energy. The radial density profile is observed to broaden during the RF heating pulses, without inducing additional radial losses in the core plasma. The radial profile of plasma is seen to vary from axially peaked, to nearly flat as the plasma conditions carried over the series of experiments. To relate the increase in ion temperature to power absorbed by the plasma, a power balance as a function of radius was performed. The RF power absorbed is set equal to the sum of the losses during ICRH, minus those without ICRH. This method accounts for more than 70% of the broadcast power using a simple power balance model. The measured radial profile of the RF heating was compared to the calculations of two codes, ANTENA and GARFIELD, to test their effectiveness as predictors of power absorption profiles for TMX-U. 62 refs., 63 figs., 7 tabs

  5. Measurements of radial profiles of ion cyclotron resonance heating on the Tandem Mirror Experiment-Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Falabella, S.

    1988-05-11

    A small Radial Energy Analyzer (REA) was used on the Tandem Mirror Experiment-Upgrade (TMX-U), at Lawerence Livermore National Laboratory, to investigate the radial profiles of ion temperature, density, and plasma potential during Ion Cyclotron Resonance Heating (ICRH). The probe has been inserted into the central-cell plasma at temperatures of 200 eV and densities of 3 x 10/sup 12/cm/sup /minus 3// without damage to the probe, or major degradation of the plasma. This analyzer has indicated an increase in ion temperature from near 20 eV before ICRH to near 150 eV during ICRH, with about 60 kW of broadcast power. The REA measurements were cross-checked against other diagnostics on TMX-U and found to be consistent. The ion density measurement was compared to the line-density measured by microwave interferometry and found to agree within 10 to 20%. A radial intergral of n/sub i/T/sub i/ as measured by the REA shows good agreement with the diamagnetic loop measurement of plasma energy. The radial density profile is observed to broaden during the RF heating pulses, without inducing additional radial losses in the core plasma. The radial profile of plasma is seen to vary from axially peaked, to nearly flat as the plasma conditions carried over the series of experiments. To relate the increase in ion temperature to power absorbed by the plasma, a power balance as a function of radius was performed. The RF power absorbed is set equal to the sum of the losses during ICRH, minus those without ICRH. This method accounts for more than 70% of the broadcast power using a simple power balance model. The measured radial profile of the RF heating was compared to the calculations of two codes, ANTENA and GARFIELD, to test their effectiveness as predictors of power absorption profiles for TMX-U. 62 refs., 63 figs., 7 tabs.

  6. Mirroring

    DEFF Research Database (Denmark)

    Wegener, Charlotte; Wegener, Gregers

    2016-01-01

    and metaphorical value of mirroring for creativity theory across two different research fields — neuroscience and learning. We engage in a mutual (possibly creative) exploration of mirroring from ‘mirror neurons’ to mirroring in social learning theory. One of the most fascinating aspects of mirroring......Most definitions of creativity emphasise originality. The creative product is recognised as distinct from other products and the creative person as someone who stands out from the crowd. What tend to be overlooked are acts of mirroring as a crucial element of the creative process. The human ability...... to empathise and socialise is partly due to another, more fundamental ability to duplicate the stance of the other (see also Chapter 13). Through mirroring, we attune to other people and thus create resonance and preparedness for mutual creative exploration. In this chapter, we investigate the object...

  7. TMRBAR: a code to calculate plasma parameters for tandem-mirror reactors operating in the MARS mode

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, R.B.

    1983-08-30

    The purpose of this report is to document the plasma power balance model currently used by LLNL to calculate steady state operating points for tandem mirror reactors. The code developed from this model, TMRBAR, has been used to predict the performance and define supplementary heating requirements for drivers used in the Mirror Advanced Reactor Study (MARS) and for the Fusion Power Demonstration (FPD) study. The equations solved included particle and energy balance for central cell and end cell species, quasineutrality at several cardinal points in the end cell region, as well as calculations of volumes, densities and average energies based on given constraints of beta profiles and fusion power output. Alpha particle ash is treated self-consistently, but no other impurity species is treated.

  8. Development of procedures to ensure quality and integrity in Tandem Mirror Experiment-Upgrade (TMX-U) diagnostics systems

    International Nuclear Information System (INIS)

    The diagnostic systems for Tandem Mirror Experiment-Upgrade (TMX-U) have grown from eleven initial systems to more than twenty systems. During operation, diagnostic system modifications are sometimes required to complete experimental objectives. Also, during operations new diagnostic systems are being developed and implemented. To ensure and maintain the quality and integrity of the data signals, a set of plans and systematic actions are being developed. This paper reviews the procedures set in place to maintain the integrity of existing data systems and ensure the performance objectives of new diagnostics being added

  9. Technician support for operation and maintenance of large fusion experiments: the tandem mirror experiment upgrade (TMX-U) approach

    International Nuclear Information System (INIS)

    As experiments continue to grow in size and complexity, a few technicians will no longer be able to maintain and operate the complete experiment. Specialization is becoming the norm. Subsystems are becoming very large and complex, requiring a great deal of experience and training for technicians to become qualified maintenance/operation personnel. Formal in-house and off-site programs supplement on-the-job training to fulfill the qualification criteria. This paper presents the Tandem Mirror Experiment-Upgrade (TMX-U) approach to manpower staffing, some problems encountered, possible improvements, and safety considerations for the successful operation of a large experimental facility

  10. Polarizing holographic reflector for electron cyclotron resonant heating (ECRH) on the Tandem Mirror Experiment Upgrade (TMX-U)

    International Nuclear Information System (INIS)

    A reflector for electron cyclotron resonant heating on the Tandem Mirror Experiment Upgrade has been designed to convert the high-power TE01 output of the circular waveguide system into a linearly polarized gaussian intensity pattern in the plasma. The reflector is a computer-generated holographic optical element with a twist polarizer. Its design, fabrication, and performance are discussed. Results of the low- and high-power tests are presented. Low-power tests were used to determine the beam pattern and the degree of cross-polarization. High-power tests verified that arcing across the grooves of the twist polarizer does not occur

  11. Magnetic mirror confinement concepts system studies

    International Nuclear Information System (INIS)

    This report discusses the following topics: world survey of mirror confinement research facilities; data base on mirror confinement program budget milestone; Fokker-Planck modeling of tandem mirror confinement; review of diagnostic capabilities for tandem mirror research; tandem mirror reactor concept development; tandem mirror data base; and primer on tokamak confinement

  12. Progress of divertor simulation research toward the realization of detached plasma using a large tandem mirror device

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Y., E-mail: nakashma@prc.tsukuba.ac.jp [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Takeda, H.; Ichimura, K.; Hosoi, K.; Oki, K.; Sakamoto, M.; Hirata, M.; Ichimura, M.; Ikezoe, R.; Imai, T.; Iwamoto, M.; Hosoda, Y.; Katanuma, I.; Kariya, T.; Kigure, S.; Kohagura, J.; Minami, R.; Numakura, T.; Takahashi, S.; Yoshikawa, M. [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); and others

    2015-08-15

    This paper describes the results of the experiments performed on Tandem Mirror device GAMMA 10/PDX mainly using a new “divertor simulation experimental module (D-module)” installed on one of the end mirror exits which is specially designed to investigate the physics of plasma detachment. The additional ICRF heating in the anchor-cells, connected to both ends of the central-cell, significantly increases the density in the both cells, which attained the generation of the highest particle flux up to 10{sup 23} particles/s m{sup 2} at the end-mirror exit. H{sub 2} and noble gas injection to enhance the radiation cooling in D-module was performed and a remarkable reduction of the electron temperature (from few tens eV to <3 eV) on the target plate were successfully achieved associated with the strong reduction of particle and heat flux. A significant effect of simultaneous injection with hydrogen and noble gases for detached plasma formation was recognized for the first time.

  13. TANDEM

    Data.gov (United States)

    Federal Laboratory Consortium — The Tandem Van de Graaff facility provides researchers with beams of more than 40 different types of ions - atoms that have been stripped of their electrons. One of...

  14. Monte Carlo studies of tandem-mirror plasmas interacting with waves in the ion-cyclotron range of frequencies (ICRF). Annual report, October 1, 1982-September 30, 1983

    International Nuclear Information System (INIS)

    A study of RF start-up, RF Fueling, and RF Anchor operation in Tandem Mirrors has been completed. Significant results include finding little performance difference between inboard and outboard antennas, and an optimum central-cell electron-to-ion-temperature ratio of between one and two. Several variance-reduction techniques, improved RF operators and a Monte Carlo neutral model have been incorporated in the code. Ongoing activities include studies of central-cell ICRF heating and hot-electron anchor operation of Tandem Mirrors, and Development of Monte Carlo non-maxwellian scattering operators. Completion of these ongoing activities, conversion of our Monte Carlo ICRF code to the NMECC CRAYS, and initial development of a new Monte Carlo RF code for 3-D mirror equilibrium geometries comprises our proposed program for FY '84

  15. Tandem mirror experiment upgrade (TMX-U) throttle, mechanical design, construction, installation, and alignment

    International Nuclear Information System (INIS)

    We will soon add a high-field axisymmetric throttle region to the central cell of the TMX-U. Field amplitude will be adjusted between 2.25 and 6.0 T. This field is produced by adding a high-field solenoid and a cee coil to each end of the central cell. We describe these coils as well as the additions to the restraint structure. We analyzed the stresses within the solenoid using the STANSOL code. In addition, we performed a finite-element structural analysis of the complete magnet set with the SAP4 code. Particular attention was paid to the transition section where the new magnets were added and where the currents in the existing magnets were increased. The peak temperature rise in the throttle coil was calculated to be 410C above ambient

  16. Special topics reports for the reference tandem mirror fusion breeder. Volume 4. Structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Orient, G.; Westmann, R.A.; Ghoniem, N.M.; Garner, J.K.; Gromada, R.G.

    1984-12-01

    This report presents a structural analysis of the reference fission suppressed fusion breeder blanket. An axisymmetric structural model is used to analyze thermal and pressure stresses in the blanket. Results indicate that the first wall must be decoupled from the back of the blanket to avoid large thermal stresses. The composite first wall appears to be adequate to resist buckling, and is further strengthened by radial diaphragms. Semieliptical closures for the module ends appear to be feasible, although the attachment of these end closures to the composite first wall has not been analyzed. Radiation effects have not been included in the structural model, but an assessment of creep and swelling indicates a 4 to 5 year blanket life at an assumed strain limit of 2%. Design modifications which will reduce thermal stresses and simplify manufacturing are recommended.

  17. Task II: ECRH and transport modeling in tandem mirrors and divertor physics. Annual progress report on fusion plasma theory, January 1, 1983-December 31, 1983

    International Nuclear Information System (INIS)

    The research performed under Task II of this contract has focused on (1) the coupling of an ECRH ray tracing and absorption code to a tandem mirror transport code in order to self-consistently model the temporal and spatial evolution of the plasma, and (2) the further development of a semi-analytical kinetic model for plasma flow in divertors and pumped limiters. Work on these topics is briefly summarized in this progress report

  18. Organization and performance of the neutral beam system for the Tandem Mirror Experiment-Upgrade (TMX-U)

    International Nuclear Information System (INIS)

    The Tandem Mirror Experiment-Upgrade (TMX-U) at Lawrence Livermore National Laboratory (LLNL) uses 24 neutral-beam injectors to heat and fuel the experimental plasmas. This system is unique because TMX-U operates four times more injectors than any other fusion experiment. These injectors deliver an average of 50 A (accel) at 17 keV for 75 ms. Source conditioning time has been reduced to approximately four days for the entire system after extended machine air cycles. TMX-U is also unique because it has 35 usable injector assemblies for the 24 power systems. This quantity of injectors makes possible the development of new hardware and injector modifications, and the reconditioning of damaged sources without affecting machine operation. Efficient operation of a system of this size requires coordinated interaction between the injector service groups and the physics organization. We describe the current state of TMX-U performance and the aspects of group interaction essential to a project of this size

  19. X-ray detection system development for tandem mirror experiment upgrade (TMX-U): hardware and software

    International Nuclear Information System (INIS)

    This x-ray detection system measures the electron Bremsstrahlung spectrum from the Tandem Mirror Experiment-Upgrade (TMX-U). From this spectrum, we can calculate the electron temperature. The low energy portion of the spectrum (0.5 to 40 keV) is measured by a liquid-nitrogen-cooled, lithium-drifted silicon detector. The higher energy spectrometer uses an intrinsic germanium detector to accommodate the 100 to 200 keV spectra. The system proceeds as follows. The preamplified detector signals are digitized by a high-speed A-to-D converter located in a Computer Automated Measurement and Control (CAMAC) crate. The data is then stored in a histogramming memory via a data router. The CAMAC crate interfaces with a local desktop computer or the main data acquisition computer that stores the data. The software sets up the modules, acquires the energy spectra (with sample times as short as 2 ms) and plots it. Up to 40 time-resolved spectra are available during one plasma cycle. The actual module configuration, CAMAC interfacing and software that runs the system are the subjects of this paper

  20. X-ray imaging studies of electron cyclotron microwave-heated plasmas in the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    An x-ray pinhole camera designed to efficiently detect photons with energies between 5 and 250 keV was built to image bremsstrahlung emission from a microwave-heated hot electron plasma. This plasma is formed at one of the thermal barrier locations in the Tandem Experiment-Upgrade at Lawrence Livermore National Laboratory. The instrument consists of a lead aperture, an x-ray converter in the form of a sodium-activated cesium iodide scintillator, light intensifier electronics, and a recording medium that may either be high speed film or a CCD array. The nominal spatial and temporal resolutions are one part in 40 and 17 msec, respectively. The component requirements for optimum performance were determined both analytically and by computer simulation, and were verified experimentally. The details of these results are presented. The instrument has been used to measure x-ray emission from the TMX-U west end cell. Data acquired with the x-ray camera has allowed us to infer the temporal evolution of the mirror-trapped electron radial profile

  1. Neutronic evaluation of fissile fuel breeding blankets for the fission-suppressed Tandem-Mirror Hybrid Reactor

    International Nuclear Information System (INIS)

    A computational study was performed on the blanket design of the Lawrence Livermore National Laboratory (LLNL) fission-suppressed Tandem Mirror Hybrid Reactor (TMHR) to qualify the methods and data bases available at Oak Ridge National Laboratory (ORNL) for use in analyzing the neutronic performance of fissile fuel breeding blankets. The eventual goal of the study was to establish the capability for analysis and optimization of advanced fissile fuel production blanket designs. Discrete ordinates radiation transport calculations were performed in one-dimensional cylindrical geometry to obtain the blanket spatial distribution and energy spectra of the neutron and gamma-ray fluxes resulting from the monoenergetic (14.1 MeV) fusion first wall source. Key macroscopic cross sections of the blanket materials were then folded with the flux spectra to obtain reaction rates critical to evaluating blanket feasibility. Finally, a time-dependent depletion analysis was performed to evaluate the blanket performance during equilibrium cycle conditions. The results of the study are presented both as graphs and tables

  2. Investigation of auxiliary heating in tandem mirrors and tokamaks and barrier cell pumping. Annual progress report, October 1, 1980 to December 31, 1981

    International Nuclear Information System (INIS)

    The research has focussed on physics questions concerned with ECRH heating in tandem mirror plugs, pumping of tandem mirror thermal barriers by drift orbits, ICRH heating in tokamaks, and bundle divertors. We have concluded that drift-orbit pumping of thermal barriers is not feasible because the azimuthal E Vector X B Vector drift limits the excursion of trapped ions from a flux surface. We have developed a three-dimensional weakly relativistic (T/sub e/ less than or equal to 50 keV) ray tracing and absorption code for electron cyclotron heating in tandem mirror plugs and barriers. Cases run for TMX, MFTF-B and reactors at T/sub e/ > 10 keV show that strong absorption per pass is present and a careful choice of wave frequency and launch angle is required to ensure wave penetration and absorption in the plasma core. In the area of ion cyclotron frequency range heating in tokamaks, a three-dimensional hot plasma ray tracing theory and code has been developed to handle rays launched from any poloidal angle in the tokamak cross section. Wave heating in the central strong absorption zones is currently being investigated using a full wave solution for the various heating regimes

  3. Measurement of effect of electron cyclotron heating in a tandem mirror plasma using a semiconductor detector array and an electrostatic energy analyzer

    Science.gov (United States)

    Minami, R.; Imai, T.; Kariya, T.; Numakura, T.; Uehara, M.; Tsumura, K.; Ebashi, Y.; Kajino, S.; Endo, Y.; Nakashima, Y.

    2016-11-01

    Temporally and spatially resolved soft x-ray and end-loss-electron analyses of the electron cyclotron heated plasmas are carried out by using a semiconductor detector array and an electrostatic energy analyzer in the GAMMA 10 tandem mirror. The flux and the energy spectrum of the end loss electrons are measured by a multi-grid energy analyzer. Recently, the electron cyclotron heating power modulation experiments have been started in order to generate and control the high heat flux and to make the edge localized mode-like intermittent heat load pattern for the divertor simulation studies by the use of these detectors for electron properties.

  4. Soft x-ray intensity profile measurements of electron cyclotron heated plasmas using semiconductor detector arrays in GAMMA 10 tandem mirror.

    Science.gov (United States)

    Minami, R; Imai, T; Kariya, T; Numakura, T; Eguchi, T; Kawarasaki, R; Nakazawa, K; Kato, T; Sato, F; Nanzai, H; Uehara, M; Endo, Y; Ichimura, M

    2014-11-01

    Temporally and spatially resolved soft x-ray analyses of electron cyclotron heated plasmas are carried out by using semiconductor detector arrays in the GAMMA 10 tandem mirror. The detector array has 16-channel for the measurements of plasma x-ray profiles so as to make x-ray tomographic reconstructions. The characteristics of the detector array make it possible to obtain spatially resolved plasma electron temperatures down to a few tens eV and investigate various magnetohydrodynamic activities. High power electron cyclotron heating experiment for the central-cell region in GAMMA 10 has been started in order to reduce the electron drag by increasing the electron temperature.

  5. Application of structural-mechanics methods to the design of large tandem-mirror fusion devices (MFTF-B). Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Karpenko, V.N.; Ng, D.S.

    1985-08-15

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory requires state-of-the-art structural-mechanics methods to deal with access constraints for plasma heating and diagnostics, alignment requirements, and load complexity and variety. Large interactive structures required an integrated analytical approach to achieve a reasonable level of overall system optimization. The Tandem Magnet Generator (TMG) creates a magnet configuration for the EFFI calculation of electromagnetic-field forces that, coupled with other loads, form the input loading to magnet and vessel finite-element models. The analytical results provide the data base for detailed design of magnet, vessel, foundation, and interaction effects. 13 refs.

  6. Magneto-hydrodynamically stable axisymmetric mirrorsa)

    Science.gov (United States)

    Ryutov, D. D.; Berk, H. L.; Cohen, B. I.; Molvik, A. W.; Simonen, T. C.

    2011-09-01

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  7. Microwave measurement test results of circular waveguide components for electron cyclotron resonant heating (ECRH) of the Tandem Mirror Experiment-Upgrade (TMX-U)

    International Nuclear Information System (INIS)

    Development of high-power components for electron cyclotron resonant heating (ECRH) applications requires extensive testing. In this paper we describe the high-power testing of various circular waveguide components designed for application on the Tandem Mirror Experiment-Upgrade (TMX-U). These include a 2.5-in. vacuum valve, polarizing reflectors, directional couplers, mode converters, and flexible waveguides. All of these components were tested to 200 kW power level with 40-ms pulses. Cold tests were used to determine field distribution. The techniques used in these tests are illustrated. The new high-power test facility at Lawrence Livermore National Laboratory (LLNL) is described and test procedures are discussed. We discuss the following test results: efficiency at high power of mode converters, comparison of high power vs low power for waveguide components, and full power tests of the waveguide system. We also explain the reasons behind selection of these systems for use on TMX-U

  8. Proposed tandem mirror research program for FY87 presented to the MFAC subcommittee on mirror research, July 8-9, 1986

    International Nuclear Information System (INIS)

    We have reexamined the goal of approx.1013 cm-3 central-cell density with end-plugging and reconfirmed its importance as a test of thermal barrier end-plugging performance in either Tara or TMX-U. We conclude that, when all factors are considered including the impact on other programs interlinked with LLNL in the present OFE budget, the lowest cost approach to have a fair chance to meet this goal is to extend Tara operation for the full FY87. Continuation of TMX-U operation in FY87, in addition to the full year of Tara operation, would greatly improve the chance of success. Continuation of the mirror program into FY88 and beyond would be based on an experimental program in TMX-U and Tara at a minimum budget level of $25M/y, with restart of MFTF-B requiring an increase in the national fusion budget. The experimental program to be investigated by TMX-U and Tara would include improvement in the mgnetic geometry (stability, beta limits, and transport), continued plug studies (longer pulse length, impurities, drift pumping, and ECH efficiency), and transport studies (chi/sub e/, fueling, and halo formation)

  9. Design scoping study of the 12T Yin-Yang magnet system for the Tandem Mirror Next Step (TMNS). Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    The overall objective of this engineering study was to determine the feasibility of designing a Yin-Yang magnet capable of producing a peak field in the windings of 12T for the Tandem Mirror Next Step (TMNS) program. As part of this technical study, a rough order of magnitude (ROM) cost estimate of the winding for this magnet was undertaken. The preferred approach to the winding design of the TMNS plug coil utilizes innovative design concepts to meet the structural, electrical and thermodynamic requirements of the magnet system. Structurally, the coil is radially partitioned into four sections, preventing the accumulation of the radial loads and reacting them into the structural case. To safely dissipate the 13.34 GJ of energy stored in each Yin-Yang magnet, the winding has been electrically subdivided into parallel or nested coils, each having its own power supply and protection circuitry. This arrangement effectively divides the total stored energy of the coils into manageable subsystems. The windings are cooled with superfluid helium II, operated at 1.8K and 1.2 atmospheres. The superior cooling capabilities of helium II have enabled the overall winding envelope to be minimized, providing a current density of 2367 A/CM/sup 2/, excluding substructure.

  10. Design scoping study of the 12T Yin-Yang magnet system for the Tandem Mirror Next Step (TMNS). Final report

    International Nuclear Information System (INIS)

    The overall objective of this engineering study was to determine the feasibility of designing a Yin-Yang magnet capable of producing a peak field in the windings of 12T for the Tandem Mirror Next Step (TMNS) program. As part of this technical study, a rough order of magnitude (ROM) cost estimate of the winding for this magnet was undertaken. The preferred approach to the winding design of the TMNS plug coil utilizes innovative design concepts to meet the structural, electrical and thermodynamic requirements of the magnet system. Structurally, the coil is radially partitioned into four sections, preventing the accumulation of the radial loads and reacting them into the structural case. To safely dissipate the 13.34 GJ of energy stored in each Yin-Yang magnet, the winding has been electrically subdivided into parallel or nested coils, each having its own power supply and protection circuitry. This arrangement effectively divides the total stored energy of the coils into manageable subsystems. The windings are cooled with superfluid helium II, operated at 1.8K and 1.2 atmospheres. The superior cooling capabilities of helium II have enabled the overall winding envelope to be minimized, providing a current density of 2367 A/CM2, excluding substructure

  11. Calibration experiments of 3He neutron detectors for analyzing neutron emissivity in the hot-ion mode on the GAMMA 10 tandem mirror

    Science.gov (United States)

    Kohagura, J.; Cho, T.; Hirata, M.; Watanabe, H.; Minami, R.; Numakura, T.; Yoshida, M.; Ito, H.; Tatematsu, Y.; Yatsu, K.; Miyoshi, S.; Ogura, K.; Kondoh, T.; Nishitani, T.; Kwon, M.; England, A. C.

    2003-03-01

    Under the international fusion cooperating research, 3He neutron detectors in the GAMMA 10 tandem mirror are calibrated by the use of a 252Cf spontaneous fission neutron source (8.96×104 n/s). The calibration experiments are carried out with a "rail system" placed along the magnetic axis of the GAMMA 10 central-cell region, where hot ions in the plasma experiments with the bulk temperatures of ˜10 keV are produced. As compared to a previous neutron monitoring system with a BF3 detector in GAMMA 10, the present 3He systems are designed with about two orders-of-magnitude higher neutron-counting efficiency for analyzing a neutron emissivity from the plasmas in a single plasma discharge alone. Two 3He systems are installed near the middle and the end of the central cell so as to identify the central-cell hot-ion axial profile. The filling pressure of 3He, the effective length, and the diameter of the detector are designed as 5 bar, 300 mm, and 50 mm, respectively. The detector output spectra are carefully analyzed by the use of a preamplifier, a shaping amplifier, as well as a multichannel analyzer for each 3He detector. In the present article, the neutron-counting data from the two 3He detectors due to the on-axis 252Cf scan are interpreted in terms of the d-2 intensity dependence (d being the distance between the detector and the neutron source) as well as the effects of the central-cell magnetic coils and the other machine structural components.

  12. Small mirror fusion reactors

    International Nuclear Information System (INIS)

    Basic requirements for the pilot plants are that they produce a net product and that they have a potential for commercial upgrade. We have investigated a small standard mirror fusion-fission hybrid, a two-component tandem mirror hybrid, and two versions of a field-reversed mirror fusion reactor--one a steady state, single cell reactor with a neutral beam-sustained plasma, the other a moving ring field-reversed mirror where the plasma passes through a reaction chamber with no energy addition

  13. The Status of Research Regarding Magnetic Mirrors as a Fusion Neutron Source or Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Simonen, T

    2008-12-23

    Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT

  14. The Status of Research Regarding Magnetic Mirrors as a Fusion Neutron Source or Power Plant

    International Nuclear Information System (INIS)

    Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT

  15. Axisymmetric Grazing-Incidence Focusing Optics for Small-Angle Neutron Scattering

    OpenAIRE

    Liu, Dazhi; Gubarev, Mikhail V.; Resta, Giacomo; Ramsey, Brian D.; Moncton, David E.; Khaykovich, Boris

    2012-01-01

    We propose and design novel axisymmetric focusing mirrors, known as Wolter optics, for small-angle neutron scattering instruments. Ray-tracing simulations show that using the mirrors can result in more than an order-of-magnitude increase in the neutron flux reaching detectors, while decreasing the minimum wave vector transfer. Such mirrors are made of Ni using a mature technology. They can be coated with neutron supermirror multilayers, and multiple mirrors can be nested to improve their flux...

  16. Superconducting magnets for mirror machines

    International Nuclear Information System (INIS)

    The simple mirror configuration, consisting of a long solenoid with increased field strength at the ends (magnetic mirrors), proved to be an unstable plasma container and was replaced by the minimum absolute value of B mirror configuration. The Yin-Yang minimum absolute value of B coil was chosen for the Mirror Fusion Test Facility (MFTF) experiment and recent conceptual designs of standard mirror reactors. For the multicell field-reversed mirror reactor concept we returned to the long solenoid configuration, augmented by normal copper mirror coils and Ioffe bars placed at the first wall radius to provide a shallow magnetic well for each field-reversed plasma layer. The central cell of the tandem mirror is also a long solenoid while the end plug cells require a minimum absolute value of B configuration

  17. Physics of mirror systems

    International Nuclear Information System (INIS)

    In recent years the emphasis in research on the magnetic mirror approach to fusion has been shifted to address what are essentially economically-motivated issues. The introduction of the Tandem Mirror idea solved in principal the problem of low Q (low fusion power gain) of mirror-based fusion systems. In order to optimize the tandem mirror idea from an economic standpoint, some important improvements have been suggested. These improvements include the thermal barrier idea of Baldwin and Logan and the axicell concept of Kesner. These new modifications introduce some special physics considerations. Among these are (1) The MHD stability properties of high energy electron components in the end cells; (2) The optimization of end-cell magnetic field configurations with the objective of minimizing equilibrium parallel currents; (3) The suppression of microstabilities by use of sloshing ion distributions. Following a brief outline of tandem mirror concepts, the above three topics are discussed, with illustrative examples taken from earlier work or from recent design studies

  18. Novel neutron focusing mirrors for compact neutron sources

    OpenAIRE

    Gubarev, M. V.; Zavlin, V. E.; Katz, R.; Resta, G.; Robertson, L; Crow, L.; Ramsey, B. D.; Khaykovich, Boris; Liu, DaZhi; Moncton, David E.

    2012-01-01

    We demonstrated neutron beam focusing and neutron imaging using axisymmetric optics, based on pairs of confocal ellipsoid and hyperboloid mirrors. Such systems, known as Wolter mirrors, are commonly used in x-ray telescopes. A system containing four nested Ni mirror pairs was implemented and tested by focusing a polychromatic neutron beam at the MIT Reactor and conducting an imaging experiment at HFIR. The major advantage of the Wolter mirrors is the possibility of nesting for large angular c...

  19. Helically linked mirror arrangement

    International Nuclear Information System (INIS)

    A scheme is described for helical linking of mirror sections, which endeavors to combine the better features of toroidal and mirror devices by eliminating the longitudinal loss of mirror machines, having moderately high average β and steady state operation. This scheme is aimed at a device, with closed magnetic surfaces having rotational transform for equilibrium, one or more axisymmetric straight sections for reduced radial loss, a simple geometrical axis for the links and an overall positive magnetic well depth for stability. We start by describing several other attempts at linking of mirror sections, made both in the past and the present. Then a description of our helically linked mirror scheme is given. This example has three identical straight sections connected by three sections having helical geometric axes. A theoretical analysis of the magnetic field and single-particle orbits in them leads to the conclusion that most of the passing particles would be confined in the device and they would have orbits independent of pitch angle under certain conditions. Numerical results are presented, which agree well with the theoretical results as far as passing particle orbits are concerned

  20. Axisymmetric multiwormholes revisited

    Science.gov (United States)

    Clément, Gérard

    2016-06-01

    The construction of stationary axisymmetric multiwormhole solutions to gravitating field theories admitting toroidal reductions to three-dimensional gravitating sigma models is reviewed. We show that, as in the multi-black hole case, strut singularities always appear in this construction, except for very special configurations with an odd number of centers. We also review the analytical continuation of the multicenter solution across the n cuts associated with the wormhole mouths. The resulting Riemann manifold has 2^n sheets interconnected by 2^{n-1}n wormholes. We find that the maximally extended multicenter solution can never be asymptotically locally flat in all the Riemann sheets.

  1. Axisymmetric multiwormholes revisited

    CERN Document Server

    Clément, Gérard

    2015-01-01

    The construction of stationary axisymmetric multiwormhole solutions to gravitating field theories admitting toroidal reductions to three-dimensional gravitating sigma models is reviewed. We show that, as in the multi-black hole case, strut singularities always appear in this construction, except for very special configurations with an odd number of centers. We also review the analytical continuation of the multicenter solution across the $n$ cuts associated with the wormhole mouths. The resulting Riemann manifold has $2^n$ sheets interconnected by $2^{n-1}n$ wormholes. We find that the maximally extended multicenter solution can never be asymptotically locally flat in all the Riemann sheets.

  2. Axisymmetric control in tokamaks

    International Nuclear Information System (INIS)

    Vertically elongated tokamak plasmas are intrinsically susceptible to vertical axisymmetric instabilities as a result of the quadrupole field which must be applied to produce the elongation. The present work analyzes the axisymmetric control necessary to stabilize elongated equilibria, with special application to the Alcator C-MOD tokamak. A rigid current-conserving filamentary plasma model is applied to Alcator C-MOD stability analysis, and limitations of the model are addressed. A more physically accurate nonrigid plasma model is developed using a perturbed equilibrium approach to estimate linearized plasma response to conductor current variations. This model includes novel flux conservation and vacuum vessel stabilization effects. It is found that the nonrigid model predicts significantly higher growth rates than predicted by the rigid model applied to the same equilibria. The nonrigid model is then applied to active control system design. Multivariable pole placement techniques are used to determine performance optimized control laws. Formalisms are developed for implementing and improving nominal feedback laws using the C-MOD digital-analog hybrid control system architecture. A proportional-derivative output observer which does not require solution of the nonlinear Ricatti equation is developed to help accomplish this implementation. The nonrigid flux conserving perturbed equilibrium plasma model indicates that equilibria with separatrix elongation of at least sep = 1.85 can be stabilized robustly with the present control architecture and conductor/sensor configuration

  3. Evolution of the mirror approach to fusion: some conjectures

    Energy Technology Data Exchange (ETDEWEB)

    Post, R.E.

    1984-09-18

    Some possible directions for the future evolution of the mirror approach to fusion are outlined, in the context of economically-motivated criteria. Speculations are given as to the potential advantages, economic and otherwise, of the use of axially-symmetric systems, operated in semi-collisional regimes of lower Q (fusion power balance ratio) than that projected for present-day tandem mirror designs. These regims include barely tandem modes, and ion-heated modes, in association with higher efficiency direct conversion. Another possible economically advantageous approach mentioned is the use of a tandem mirror plasma to stabilize a FRM (field-reversed mirror) plasma, with potential synergistic advantages.

  4. Einstein's Mirror

    Science.gov (United States)

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-01-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…

  5. Evolution of the mirror machine

    International Nuclear Information System (INIS)

    The history of the magnetic-mirror approach to a fusion reactor is primarily the history of our understanding and control of several crucial physics issues, coupled with progress in the technology of heating and confining a reacting plasma. The basic requirement of an MHD-stable plasma equilibrium was achieved following the early introduction of minimum-B multipolar magnetic fields. In refined form, the same magnetic-well principle carries over to our present experiments and to reactor designs. The higher frequency microinstabilities, arising from the non-Maxwellian particle distributions inherent in mirror machines, have gradually come under control as theoretical prescriptions for distribution functions have been applied in the experiments. Even with stability, the classical plasma leakage through the mirrors posed a serious question for reactor viability until the principle of electrostatic axial stoppering was applied in the tandem mirror configuration. Experiments to test this principle successfully demonstrated the substantial improvement in confinement predicted. Concurrent with advances in mirror plasma physics, development of both high-power neutral beam injectors and high-speed vacuum pumping techniques has played a crucial role in ongoing experiments. Together with superconducting magnets, cryogenic pumping, and high-power radiofrequency heating, these technologies have evolved to a level that extrapolates readily to meet the requirements of a tandem mirror fusion reactor

  6. Stability of Axisymmetric Liquid Bridges

    CERN Document Server

    Rubinstein, Boris

    2016-01-01

    We study stability of axisymmetric liquid bridges between two axisymmetric solid bodies in the absence of gravity under arbitrary asymmetric perturbations which are expanded into a set of angular Fourier modes. We determine the stability region boundary for every angular mode in case of both fixed and free contact lines. Application of this approach allows us to demonstrate existence of stable convex nodoid menisci between two spheres.

  7. Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt

    2014-10-01

    This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank

  8. Chiral mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Plum, Eric, E-mail: erp@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Zheludev, Nikolay I., E-mail: niz@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637378 (Singapore)

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.

  9. Axisymmetric annular curtain stability

    International Nuclear Information System (INIS)

    A temporal stability analysis was carried out to investigate the stability of an axially moving viscous annular liquid jet subject to axisymmetric disturbances in surrounding co-flowing viscous gas media. We investigated in this study the effects of inertia, surface tension, the gas-to-liquid density ratio, the inner-to-outer radius ratio and the gas-to-liquid viscosity ratio on the stability of the jet. With an increase in inertia, the growth rate of the unstable disturbances is found to increase. The dominant (or most unstable) wavenumber decreases with increasing Reynolds number for larger values of the gas-to-liquid viscosity ratio. However, an opposite tendency for the most unstable wavenumber is predicted for small viscosity ratio in the same inertia range. The surrounding gas density, in the presence of viscosity, always reduces the growth rate, hence stabilizing the flow. There exists a critical value of the density ratio above which the flow becomes stable for very small viscosity ratio, whereas for large viscosity ratio, no stable flow appears in the same range of the density ratio. The curvature has a significant destabilizing effect on the thin annular jet, whereas for a relatively thick jet, the maximum growth rate decreases as the inner radius increases, irrespective of the surrounding gas viscosity. The degree of instability increases with Weber number for a relatively large viscosity ratio. In contrast, for small viscosity ratio, the growth rate exhibits a dramatic dependence on the surface tension. There is a small Weber number range, which depends on the viscosity ratio, where the flow is stable. The viscosity ratio always stabilizes the flow. However, the dominant wavenumber increases with increasing viscosity ratio. The range of unstable wavenumbers is affected only by the curvature effect. (paper)

  10. Mirror matter

    OpenAIRE

    Ignatiev, A. Yu.; Volkas, R. R.

    2003-01-01

    One of the deepest unsolved puzzles of subatomic physics is why Nature prefers the left particles to the right ones. Mirror matter is an attempt to understand this mystery by assuming the existence of a "parallel''world where this preference is exactly opposite. Thus in the Universe consisting of the ordinary and the mirror matter the symmetry between the left and right is completely restored. Mirror matter is constrained to interact with us only very weakly. Still, its existence can be infer...

  11. Tandem mirror reactor with thermal barriers

    International Nuclear Information System (INIS)

    This report gives detailed information in the form of the following chapters: (1) overview, (2) plasma physics, (3) magnets, (4) end-plug neutral beams, (5) barrier pump neutral beams, (6) ecr heating, (7) plasma direct converter, and (8) central cell

  12. Phaedrus tandem mirror. Status report, Spring 1983

    International Nuclear Information System (INIS)

    During the spring of 1983, the Phaedrus group undertook a major up to air to improve diagnostic capabilities, modify RF antennas and clean up the inner vacuum surfaces of accumulated getter material. This time was also used to analyze more thoroughly our present data base and correlate it with relevant theoretical predictions. A neutral beam build up code has been developed to model RF central stream trapping and heating, neutral gas charge exchange losses with finite gyroradius effects, and beam aiming sensitivity. MHD stability of the central cell stand alone operation has been explained by a radial ponderomotive force which opposes the centrifugal force due to bad field line curvature. First drafts of research papers on RF trapping, electron cyclotron heating, the stand alone mode, and MHD instability studies were completed. All of these papers require more experiments to tie up loose ends but the loose ends were identified more clearly by this process. The remainder of this report will be organized by experimental area, describing in limited detail the status of current research, recent modifications to diagnostic and machine hardware and immediate future experimental objectives

  13. Mirror Advanced Reactor Study (MARS) final report summary

    International Nuclear Information System (INIS)

    The Mirror Advanced Reactor Study (MARS) has resulted in an overview of a first-generation tandem mirror reactor. The central cell fusion plasma is self-sustained by alpha heating (ignition), while electron-cyclotron resonance heating and negative ion beams maintain the electrostatic confining potentials in the end plugs. Plug injection power is reduced by the use of high-field choke coils and thermal barriers, concepts to be tested in the Tandem Mirror Experiment-Upgrade (TMX-U) and Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory

  14. Mirror Advanced Reactor Study interim design report

    International Nuclear Information System (INIS)

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design

  15. Mirror Advanced Reactor Study interim design report

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  16. Streamline topology of axisymmetric flows

    DEFF Research Database (Denmark)

    Brøns, Morten

    Topological fluid mechanics in the sense of the present paper is the study and classification of flow patterns close to a critical point. Here we discuss the topology of steady viscous incompressible axisymmetric flows in the vicinity of the axis. Following previous studies the velocity field $v...

  17. TASKA - Tandem Spiegelmaschine Karlsruhe. Vol. 2

    International Nuclear Information System (INIS)

    TASKA (Tandem Spiegelmaschine Karlsruhe) is a near term engineering test facility based on a tandem mirror concept with thermal barriers. The main objectives of this study were to develop a preconceptual design of a facility that could provide engineering design information for a Demonstration Fusion Power Reactor. Thus TASKA has to serve as testbed for technologies of plasma engineering, superconducting magnets, materials, plasma heating, breeding and test blankets, tritium technology, and remote handling. (orig.)

  18. TASKA - Tandem Spiegelmaschine Karlsruhe. Vol. 1

    International Nuclear Information System (INIS)

    TASKA (Tandem Spiegelmaschine Karlsruhe) is a near term engineering test facility based on a tandem mirror concept with thermal barriers. The main objectives of this study were to develop a preconceptual design of a facility that could provide engineering design information for a Demonstration Fusion Power Reactor. Thus TASKA has to serve as testbed for technologies of plasma engineering, superconducting magnets, materials, plasma heating, breeding and test blankets, tritium technology, and remote handling. (orig.)

  19. Mirror, mirror on the wall

    CERN Multimedia

    2005-01-01

    RICH 2, one of the two Ring Imaging Cherenkov detectors of the LHCb experiment, is being prepared to join the other detector elements ready for the first proton-proton collisions at LHC. The mirrors of the RICH2 detector are meticulously assembled in a clean room.In a large dark room, men in white move around an immense structure some 7 metres high, 10 metres wide and nearly 2.5 metres deep. Apparently effortlessly, they are installing the two large high-precision spherical mirrors. These mirrors will focus Cherenkov light, created by the charged particles that will traverse this detector, onto the photon detectors. Each spherical mirror wall is made up of facets like a fly's eye. Twenty-eight individual thin glass mirrors will all point to the same point in space to within a few micro-radians. The development of these mirrors has been technically demanding : Ideally they should be massless, sturdy, precise and have high reflectivity. In practice, though not massless, they are made from a mere 6 mm thin gl...

  20. Experiments in axisymmetric supersonic jets

    Science.gov (United States)

    Moore, Cyrille Dennis

    An experimental study of the effects of exit Mach number and density ratio on the development of axisymmetric jets is described in this thesis. Jet exit Mach numbers of 1.41, 2.0, and 3.0, were studied for jets of helium, argon, and nitrogen. The jets exit into a gas at rest (velocity ratio = 0), in order to better isolate the effects of compressibility and density ratio. Density ratios vary from 0.23 to 5.5.In order to generate shock free-jets, unique nozzles were designed and constructed for each gas and Mach number combination. A plating method for the construction of the nozzles was developed to ensure high-accuracy and a good surface finish at a cost significantly less than direct-machining techniques.The spreading rate of the jet for several downstream locations is measured with a pitot probe. Centerline data are used to characterise the length of the potential core of the jet, which correlates well with the relative spreading rates. Limited frequency data is obtained through the use of piezo-resistive pressure probes. This method is promising for flows that are not conducive to hot-wire probes.Spark shadography is used to visualize both the mean and instantaneous flow, with the minimum spark time being 20 nanoseconds. The convection velocity of large-scale disturbances is estimated from the visible Mach-type acoustic waves emanating from the jet.For a wide range of jet Mach and Reynolds numbers, the convection velocity of the large scale disturbances in the potential core region of the jet is approximately 0.8 times the jet velocity, the approximate velocity of the first helical instability mode of the jet.The main objectives of the present work were to investigate the effects of compressibility and density on the initial development of the axisymmetric jet. Although the data are not sufficient to determine if the convective Mach number concept used in 2-d shear layer research will work in the case of an axisymmetric jet, it is clear that the axisymmetric

  1. Mirror Technology

    Science.gov (United States)

    1992-01-01

    Under a NASA contract, MI-CVD developed a process for producing bulk silicon carbide by means of a chemical vapor deposition process. The technology allows growth of a high purity material with superior mechanical/thermal properties and high polishability - ideal for mirror applications. The company employed the technology to develop three research mirrors for NASA Langley and is now marketing it as CVD SILICON CARBIDE. Its advantages include light weight, thermal stability and high reflectivity. The material has nuclear research facility applications and is of interest to industrial users of high power lasers.

  2. [Mirror neurons].

    Science.gov (United States)

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal. Some of them also respond to the emotional expression of other animals of the same species. These mirror neurons have also been found in humans. They respond to or "reflect" actions of other individuals in the brain and are thought to represent the basis for imitation and empathy and hence the neurobiological substrate for "theory of mind", the potential origin of language and the so-called moral instinct.

  3. A dynamo model for axisymmetric and non-axisymmetric solar magnetic fields

    CERN Document Server

    Jiang, J

    2007-01-01

    Increasing observations are becoming available about a relatively weak, but persistent, non-axisymmetric magnetic field co-existing with the dominant axisymmetric field on the Sun. It indicates that the non-axisymmetric magnetic field plays an important role in the origin of solar activity. A linear non-axisymmetric alpha2-Omega dynamo model is set up to discuss the characteristics of the axisymmetric m=0 and the first non-axisymmetric m=1 modes and to provide further the theoretical bases to explain the active longitude, flip-flop and other non-axisymmetric phenomena. The model consists of a updated solar internal differential rotation, a turbulent diffusivity varied with depth and an alpha-effect working at the tachocline in rotating spherical systems. The difference between the alpha2-Omega and the alpha-Omega models and the conditions to favor the non-axisymmetric modes with the solar-like parameters are also presented.

  4. What do mirror neurons mirror?

    NARCIS (Netherlands)

    Uithol, S.; Rooij, I.J.E.I. van; Bekkering, H.; Haselager, W.F.G.

    2011-01-01

    Single cell recordings in monkeys provide strong evidence for an important role of the motor system in action understanding. This evidence is backed up by data from studies of the (human) mirror neuron system using neuroimaging or TMS techniques, and behavioral experiments. Although the data acquire

  5. Mirror monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Mankos, Marian [Electron Optica, Inc., Palo Alto, CA (United States); Shadman, Khashayar [Electron Optica, Inc., Palo Alto, CA (United States)

    2014-12-02

    In this SBIR project, Electron Optica, Inc. (EOI) is developing a mirror electron monochromator (MirrorChrom) attachment to new and retrofitted electron microscopes (EMs) for improving the energy resolution of the EM from the characteristic range of 0.2-0.5 eV to the range of 10-50 meV. This improvement will enhance the characterization of materials by imaging and spectroscopy. In particular, the monochromator will refine the energy spectra characterizing materials, as obtained from transmission EMs [TEMs] fitted with electron spectrometers, and it will increase the spatial resolution of the images of materials taken with scanning EMs (SEMs) operated at low voltages. EOI’s MirrorChrom technology utilizes a magnetic prism to simultaneously deflect the electron beam off the axis of the microscope column by 90° and disperse the electrons in proportional to their energies into a module with an electron mirror and a knife-edge. The knife-edge cuts off the tails of the energy distribution to reduce the energy spread of the electrons that are reflected, and subsequently deflected, back into the microscope column. The knife-edge is less prone to contamination, and thereby charging, than the conventional slits used in existing monochromators, which improves the reliability and stability of the module. The overall design of the MirrorChrom exploits the symmetry inherent in reversing the electron trajectory in order to maintain the beam brightness – a parameter that impacts how well the electron beam can be focused downstream onto a sample. During phase I, EOI drafted a set of candidate monochromator architectures and evaluated the trade-offs between energy resolution and beam current to achieve the optimum design for three particular applications with market potential: increasing the spatial resolution of low voltage SEMs, increasing the energy resolution of low voltage TEMs (beam energy of 5-20 keV), and increasing the energy resolution of conventional TEMs (beam

  6. Magnetic-mirror principle as applied to fusion research

    International Nuclear Information System (INIS)

    A tutorial account is given of the key physics issues in the confinement of high temperature plasma in magnetic mirror systems. The role of adiabatic invariants and particle drifts and their relationship to equilibrium and stability are discussed, in the context of the various forms of mirror field geometry. Collisional effects and the development and the control of ambipolar potentials are reviewed. The topic of microinstabilities is discussed together with the means for their control. The properties and advantages for fusion power purposes of various special embodiments of the mirror idea, including tandem mirrors, are discussed

  7. Axisymmetric Coanda-assisted vectoring

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Dustin; Smith, Barton L. [Utah State University, Mechanical and Aerospace Engineering, Logan, UT (United States)

    2009-01-15

    An experimental demonstration of a jet vectoring technique used in our novel spray method called Coanda-assisted Spray Manipulation (CSM) is presented. CSM makes use of the Coanda effect on axisymmetric geometries through the interaction of two jets: a primary jet and a control jet. The primary jet has larger volume flow rate but generally a smaller momentum flux than the control jet. The primary jet flows through the center of a rounded collar. The control jet is parallel to the primary and is adjacent to the convex collar. The Reynolds number range for the primary jet at the exit plane was between 20,000 and 80,000. The flow was in the incompressible Mach number range (Mach<0.3). The control jet attaches to the convex wall and vectors according to known Coanda effect principles, entraining and vectoring the primary jet, resulting in controllable r-{theta} directional spraying. Several annular control slots and collar radii were tested over a range of momentum flux ratios to determine the effects of these variables on the vectored jet angle and spreading. Two and Three-component Particle Image Velocimetry systems were used to determine the vectoring angle and the profile of the combined jet in each experiment. The experiments show that the control slot and expansion radius, along with the momentum ratios of the two jets predominantly affected the vectoring angle and profile of the combined jets. (orig.)

  8. Axisymmetric Coanda-assisted vectoring

    Science.gov (United States)

    Allen, Dustin; Smith, Barton L.

    2009-01-01

    An experimental demonstration of a jet vectoring technique used in our novel spray method called Coanda-assisted Spray Manipulation (CSM) is presented. CSM makes use of the Coanda effect on axisymmetric geometries through the interaction of two jets: a primary jet and a control jet. The primary jet has larger volume flow rate but generally a smaller momentum flux than the control jet. The primary jet flows through the center of a rounded collar. The control jet is parallel to the primary and is adjacent to the convex collar. The Reynolds number range for the primary jet at the exit plane was between 20,000 and 80,000. The flow was in the incompressible Mach number range (Mach Coanda effect principles, entraining and vectoring the primary jet, resulting in controllable r - θ directional spraying. Several annular control slots and collar radii were tested over a range of momentum flux ratios to determine the effects of these variables on the vectored jet angle and spreading. Two and Three-component Particle Image Velocimetry systems were used to determine the vectoring angle and the profile of the combined jet in each experiment. The experiments show that the control slot and expansion radius, along with the momentum ratios of the two jets predominantly affected the vectoring angle and profile of the combined jets.

  9. Mirror Fusion Test Facility: an intermediate device to a mirror fusion reactor

    International Nuclear Information System (INIS)

    The Mirror Fusion Test Facility (MFTF-B) now under construction at Lawrence Livermore National Laboratory represents more than an order-of-magnitude step from earlier magnetic-mirror experiments toward a future mirror fusion reactor. In fact, when the device begins operating in 1986, the Lawson criteria of ntau = 1014 cm-3.s will almost be achieved for D-T equivalent operation, thus signifying scientific breakeven. Major steps have been taken to develop MFTF-B technologies for tandem mirrors. Steady-state, high-field, superconducting magnets at reactor-revelant scales are used in the machine. The 30-s beam pulses, ECRH, and ICRH will also introduce steady-state technologies in those systems

  10. Structure of stationary and axisymmetric metrics

    International Nuclear Information System (INIS)

    We study the structure of stationary and axisymmetric metrics solving the vacuum Einstein equations of general relativity in four and higher dimensions, building on recent work in Phys. Rev. D 70, 124002 (2004). We write the Einstein equations in a new form that naturally identifies the sources for such metrics. The sources live in a one-dimensional subspace and the entire metric is uniquely determined by them. We study in detail the structure of stationary and axisymmetric metrics in four dimensions, and consider as an example the sources of the Kerr black hole

  11. Boundary element method for internal axisymmetric flow

    Directory of Open Access Journals (Sweden)

    Gokhman Alexander

    1999-01-01

    Full Text Available We present an accurate fast method for the computation of potential internal axisymmetric flow based on the boundary element technique. We prove that the computed velocity field asymptotically satisfies reasonable boundary conditions at infinity for various types of inlet/exit. Computation of internal axisymmetric potential flow is an essential ingredient in the three-dimensional problem of computation of velocity fields in turbomachines. We include the results of a practical application of the method to the computation of flow in turbomachines of Kaplan and Francis types.

  12. Experimental progress in magnetic-mirror fusion research

    Science.gov (United States)

    Simonen, T. C.

    1981-08-01

    This paper discusses experimental progress in the control, confinement, and understanding of magnetic-mirror confined plasmas. A summary is given of the data base established in previous experiments on which magnetic-mirror principles are based. It includes a detailed description of present tandem and field-reversed mirror experimental results. The discussion also includes the concepts and parameters of experiments now under construction; it is shown how these experiments can both test new thermal-barrier concepts and bridge the gap between existing facilities and eventual power producers. Consideration is given to small-scale physics-oriented experiments, aimed at testing new ideas and refining the knowledge of mirror confinement. The paper concludes with an extensive bibliography of reports from the field of magnetic-mirror fusion.

  13. Structural design considerations in the Mirror Fusion Test Facility (MFTF-B) vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Vepa, K.; Sterbentz, W.H.

    1981-02-10

    In view of favorable results from the Tandem Mirror Experiment (TMX) also at LLNL, the MFTF project is now being rescoped into a large tandem mirror configuration (MFTF-B), which is the mainline approach to a mirror fusion reactor. This paper concerns itself with the structural aspects of the design of the vessel. The vessel and its intended functions are described. The major structural design issues, especially those influenced by the analysis, are described. The objectives of the finite element analysis and their realization are discussed at length.

  14. Axisymmetric Toroidal Equilibrium with Sheared Toroidal Flows

    Institute of Scientific and Technical Information of China (English)

    SHIBingren

    2002-01-01

    Since the early 1960' s, the developments of the tokamak research make plasma flows a reality in many devices where neutral beam injections were used as heating in general and refueling in particular. Compared to the static axi-symmetric toroidal equilibrium that

  15. Axisymmetric Toroidal Equilibrium with Sheared Toroidal Flows

    Institute of Scientific and Technical Information of China (English)

    石秉仁

    2002-01-01

    Problem of the axisymmetric toroidal equilibrium with pure sheared toroidal flow is involved. For standard tokamak equilibrium, general approximate solutions are analytically pursued for arbitrary current profile and non-circular cross-section. Equilibrium properties including the flow-induced density asymmetry are analyzed.

  16. Topological fluid mechanics of Axisymmetric Flow

    DEFF Research Database (Denmark)

    Brøns, Morten

    1998-01-01

    Topological fluid mechanics in the sense of the present paper is the study and classification of flow patterns close to a critical point. Here we discuss the topology of steady viscous incompressible axisymmetric flows in the vicinity of the axis. Following previous studies the velocity field v...

  17. The Mirror Oscilloscpoe

    NARCIS (Netherlands)

    Goudriaan, B.

    2003-01-01

    This project is about designing and realizing an oscilloscope based on a laser beam reflected by two mirrors. The ¿Mirror Oscilloscope¿ uses two voice-coils actuators with mounted mirrors to reflect laser light, such that an image of a harmonic signal is projected on a projection screen. For trackin

  18. The TESS [Tandem Experiment Simulation Studies] computer code user's manual

    International Nuclear Information System (INIS)

    TESS (Tandem Experiment Simulation Studies) is a one-dimensional, bounded particle-in-cell (PIC) simulation code designed to investigate the confinement and transport of plasma in a magnetic mirror device, including tandem mirror configurations. Mirror plasmas may be modeled in a system which includes an applied magnetic field and/or a self-consistent or applied electrostatic potential. The PIC code TESS is similar to the PIC code DIPSI (Direct Implicit Plasma Surface Interactions) which is designed to study plasma transport to and interaction with a solid surface. The codes TESS and DIPSI are direct descendants of the PIC code ES1 that was created by A. B. Langdon. This document provides the user with a brief description of the methods used in the code and a tutorial on the use of the code. 10 refs., 2 tabs

  19. Water Cooled Mirror Design

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holloway, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pulliam, Elias Noel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  20. Orbital effect in the stationary axisymmetric field

    Institute of Scientific and Technical Information of China (English)

    Gong Tian-Xi; Wang Yong-Jiu

    2008-01-01

    This paper uses an elegant mathematical method to calculate the orbital effects in the axisymmetric field created by the spinning mass with electric charge and a large number of magnetic monopoles. In comparison with that in the Reissner-Nordstrom (R-N) field, the correction terms caused by the spinning mass decrease the advanced effect as the revolution direction of the test particle coincides with that of the Kerr field, however, the correction terms caused by the spinning charged mass increase the advance effect as the revolution direction of the test particle coincides with that of the Kerr-Newman-Kasnya (KNK) field. Generalizing the effect in the axisymmetric field, it obtains interesting results by discussing the parameters of the celestial body, these parameters provide a feasible experimental verification of the general relativity.

  1. Global stability analysis of axisymmetric boundary layers

    CERN Document Server

    Vinod, N

    2016-01-01

    This paper presents the linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inlet. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes(LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes are nega...

  2. Orbital effect in the stationary axisymmetric field

    International Nuclear Information System (INIS)

    This paper uses an elegant mathematical method to calculate the orbital effects in the axisymmetric field created by the spinning mass with electric charge and a large number of magnetic monopoles. In comparison with that in the Reissner–Nordström (R–N) field, the correction terms caused by the spinning mass decrease the advanced effect as the revolution direction of the test particle coincides with that of the Kerr field, however, the correction terms caused by the spinning charged mass increase the advance effect as the revolution direction of the test particle coincides with that of the Kerr–Newman–Kasnya (KNK) field. Generalizing the effect in the axisymmetric field, it obtains interesting results by discussing the parameters of the celestial body, these parameters provide a feasible experimental verification of the general relativity. (general)

  3. An axisymmetric steady state vortex ring model

    CERN Document Server

    Wang, Ruo-Qian

    2016-01-01

    Based on the solution of Atanasiu et al. (2004), a theoretical model for axisymmetric vortex flows is derived in the present study by solving the vorticity transport equation for an inviscid, incompressible fluid in cylindrical coordinates. The model can describe a variety of axisymmetric flows with particular boundary conditions at a moderately high Reynolds number. This paper shows one example: a high Reynolds number laminar vortex ring. The model can represent a family of vortex rings by specifying the modulus function using a Rayleigh distribution function. The characteristics of this vortex ring family are illustrated by numerical methods. For verification, the model results compare well with the recent direct numerical simulations (DNS) in terms of the vorticity distribution and streamline patterns, cross-sectional areas of the vortex core and bubble, and radial vorticity distribution through the vortex center. Most importantly, the asymmetry and elliptical outline of the vorticity profile are well capt...

  4. Collapse of Non-Axisymmetric Cavities

    OpenAIRE

    Enriquez, Oscar R.; Peters, Ivo R.; Gekle, Stephan; Schmidt, Laura; Versluis, Michel; van der Meer, Devaraj; Lohse, Detlef

    2009-01-01

    A round disk with a harmonic disturbance impacts on a water surface and creates a non-axisymmetric cavity which collapses under the influence of hydrostatic pressure. We use disks deformed with mode m=2 to m=6. For all mode numbers we find clear evidence for a phase inversion of the cavity wall during the collapse. We present a fluid dynamics video showing high speed imaging of different modes, pointing out the characteristic features during collapse.

  5. AXISYMMETRIC ELASTICITY PROBLEM OF CUBIC QUASICRYSTAL

    Institute of Scientific and Technical Information of China (English)

    ZHOU WANG-MIN; FAN TIAN-YOU

    2000-01-01

    A method for analyzing the elasticity problem of cubic quasicrystal is developed. The axisymmetric elasticity problem of cubic quasicrystal is reduced to a single higher-order partial differential equation by introducing a displacement function. As an example, the solutions of elastic field of cubic quasicrystal with a penny-shaped crack are obtained,and the stress intensity factor and strain energy release rate are determined.

  6. Numerical description of cavitation on axisymmetric bodies

    Energy Technology Data Exchange (ETDEWEB)

    Hickox, C.E.; Hailey, C.E.; Wolfe, W.P.; Watts, H.A.; Gross, R.J.; Ingber, M.S.

    1988-01-01

    This paper reports on ongoing studies which are directed toward the development of predictive techniques for the modeling of steady cavitation on axisymmetric bodies. The primary goal of the modeling effort is the prediction of cavity shape and pressure distribution from which forces and moments can be calculated. Here we present an overview of the modeling techniques developed and compare predictions with experimental data obtained from water tunnel tests for both limited and supercavitation. 14 refs., 4 figs.

  7. Analysis of Axisymmetric Crushing of Frusta

    OpenAIRE

    M.M.A. Khan; H. Abbas; N K Gupta

    2003-01-01

    The paper presents a curved-fold model with variable straight length for the axisymmetric crushing of thin frusta. The folding considered in the model is partly inside and partly outside. The variation of circumferential strain during the formation of a fold has been taken into account. The size of the fold and mean, as well as variation of crushing load, has been computed mathematically. The study is purely analytical and does not involve any empirical constant; and hence, can be used...

  8. Axisymmetric long liquid bridges stability and resonances

    OpenAIRE

    Meseguer Ruiz, José; Sanz Andres, Angel Pedro; Perales Perales, José Manuel

    1990-01-01

    In this paper mathematical expressions for minimum-volume stability limits and resonance frequencies of axisymmetric long liquid bridges are presented. These expressions are valid for a wide range of liquid bridge configurations, accounting for ef-fects like unequal disks and axial microgravity in the case of minimum-volume stability limits,and unequal disks, axial microgravity,non-zero viscosity and liquid bridge volume different from the cylindrical one in the case of resonance frequenc...

  9. Axisymmetric oscillations of magnetic neutron stars

    CERN Document Server

    Lee, U

    2006-01-01

    We calculate axisymmetric oscillations of rotating neutron stars composed of the surface fluid ocean, solid crust, and fluid core, taking account of a dipole magnetic field as strong as $B_S\\sim 10^{15}$G at the surface. The adiabatic oscillation equations for the solid crust threaded by a dipole magnetic field are derived in Newtonian dynamics, on the assumption that the axis of rotation is aligned with the magnetic axis so that perturbations on the equilibrium can be represented by series expansions in terms of spherical harmonic functions $Y_l^m(\\theta,\\phi)$ with different degrees $l$ for a given azimuthal wave number $m$ around the the magnetic axis. Although the three component models can support a rich variety of oscillation modes, axisymmetric ($m=0$) toroidal $_{l}t_n$ and spheroidal $_ls_n$ shear waves propagating in the solid crust are our main concerns, where $l$ and $n$ denote the harmonic degree and the radial order of the modes, respectively. In the absence of rotation, axisymmetric spheroidal ...

  10. Upgrading of the tandem

    International Nuclear Information System (INIS)

    The program of the tandem-linac accelerator system is summarized under the following headings: operating experience for the tandem, operation of the superconducting linac, upgrading of the tandem (ion sources, vacuum systems, terminal box, stripping foils, beam bunching), installation of the booster, planned accelerator system improvements, experimental facilities development at the super conducting-linac booster (new beam line, layout and installation of the 00 beam line in the new experiment area, beam optics calculations, 65-in. scattering chamber, split-pole spectrograph, sum/multiplicity detector, nuclear target making and development), and university use of the tandem accelerator

  11. Mesmerising mirror neurons.

    Science.gov (United States)

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition.

  12. Manufacturing of Lightweight Mirror

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fabrication of the lightweight mirror is one of the key techniques for many large optical systems. CAD,CAM and CNC technologies are adopted in designing and manufacturing such mirrors in CIOMP. Better working efficiency and higher lightweight grade have been achieved. The results show that mirrors up to 70% weight reduction and 0.02λ(rms.) surface accuracy or better can be obtained.

  13. Modeling of ICRH experiments in the Tara tandem mirror

    International Nuclear Information System (INIS)

    The production and heating of the central cell plasma in Tara are provided by a slot antenna located on the midplane bump of the axial magnetic field profile. Slow ion cyclotron waves excited by the slot propagate down a magnetic beach to ion cyclotron resonance layers located on either side of the bump where the rf power is strongly damped by the ions. Two different theoretical models are being used to study the efficiency of coupling to slow waves in this configuration. Wave propagation models which are based on the infinite plasma dispersion relation for a cold plasma indicate that radially propagating left hand polarized slow waves are converted to right hand polarized fast waves at the Alfven resonance layer due to the radial density gradient. If this were to occur we would expect a lower coupling efficiency to the ions in the plasma core. On the other hand, a nonlocal kinetic model of rf wave propagation in a nonuniform plasma slab indicates that a significant left hand component of the electric field extends beyond the Alfven resonance layer. Preliminary experimental measurements of the radial inductive field profile agree qualitatively with the predictions of the cold plasma model, however, there is insufficient data at this time to establish that a density limit for slow wave accessibility to the plasma core exists

  14. Equilibrium and stability of the Tara tandem mirror experiment

    International Nuclear Information System (INIS)

    The MHD equilibrium and stability of the Tara machine is analyzed. MHD equilibrium theory is shown to predict small distortions away from circular pressure surfaces in the Tara experiment due to parallel currents generated in the nonaxisymmetric anchors. Central cell fluctuations are dominated by radially rigid, m = 1 flute modes in which the entire column oscillates about the machine axis. These modes can be stabilized by outboard quadrupole anchors, but are also sensitive to gas input and central cell ion cyclotron heating (ICH) power levels. During the strong endloss reduction realized in plugging experiments, the source for the anchor plasma is cut off with a consequent decline in ion beta leading to a reappearance of central cell flute modes. A magnetic divertor installed at the central cell mid-plane in order to ameliorate this difficulty has significantly enlarged the stable operating parameter regime. Axially localized instabilities are clearly observed in the plug cells during the application of plug ICH and are conjectured to exist during the application of axicell ECH. 23 refs., 8 figs

  15. Impurity ion diagnostics in the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    We constructed some spectroscopic measurement systems that cover the wavelength range from soft X-ray (SX) to visible lights. We have observed the absolute impunity line intensities, Doppler line broadenings, Doppler shifts by ultraviolet and visible spectrograph and time dependent radial profiles of the impurity lines by the vacuum ultraviolet (VUV) and the SX spectrographs. We determined the radiation loss in the wavelength range from visible to VUV and carbon ion density. These spectroscopic systems could be powerful tools to diagnose the GAMMA 10 plasma in a long pulse operation. (author)

  16. Impurity ion diagnostics in the GAMMA 10 tandem mirror

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Masayuki; Okamoto, Yuuji; Kawamori, Eiichiro [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki (Japan)] (and others)

    2000-07-01

    We constructed some spectroscopic measurement systems that cover the wavelength range from soft X-ray (SX) to visible lights. We have observed the absolute impunity line intensities, Doppler line broadenings, Doppler shifts by ultraviolet and visible spectrograph and time dependent radial profiles of the impurity lines by the vacuum ultraviolet (VUV) and the SX spectrographs. We determined the radiation loss in the wavelength range from visible to VUV and carbon ion density. These spectroscopic systems could be powerful tools to diagnose the GAMMA 10 plasma in a long pulse operation. (author)

  17. Low Cost Method of Manufacturing Cooled Axisymmetric Scramjets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Scramjet engine developers are working on advanced axisymmetric engine concepts that may not be feasible due to limitations of currently available manufacturing...

  18. Preferential axisymmetric field growth in kinematic geodynamo models

    Science.gov (United States)

    Livermore, Philip W.; Jackson, Andrew

    2004-11-01

    Earth's magnetic field, generated by fluid motion and inductive processes in Earth's core, has a predominantly axisymmetric dipolar component. Yet indefinite self-excitation of purely axisymmetric fields through any dynamo mechanism is specifically disallowed, begging the question of why the geodynamo sustains this dominant axisymmetric component. By considering a number of different fluid flow models modified from existing studies, we show that axisymmetric fields are consistently the most easily regenerated magnetic fields on short timescales, despite the fact that on long timescales they must die away. We argue that this transient field generation may play an important role in generating Earth's magnetic field, especially in the recovery after reversals.

  19. Corticospinal mirror neurons.

    Science.gov (United States)

    Kraskov, A; Philipp, R; Waldert, S; Vigneswaran, G; Quallo, M M; Lemon, R N

    2014-01-01

    Here, we report the properties of neurons with mirror-like characteristics that were identified as pyramidal tract neurons (PTNs) and recorded in the ventral premotor cortex (area F5) and primary motor cortex (M1) of three macaque monkeys. We analysed the neurons' discharge while the monkeys performed active grasp of either food or an object, and also while they observed an experimenter carrying out a similar range of grasps. A considerable proportion of tested PTNs showed clear mirror-like properties (52% F5 and 58% M1). Some PTNs exhibited 'classical' mirror neuron properties, increasing activity for both execution and observation, while others decreased their discharge during observation ('suppression mirror-neurons'). These experiments not only demonstrate the existence of PTNs as mirror neurons in M1, but also reveal some interesting differences between M1 and F5 mirror PTNs. Although observation-related changes in the discharge of PTNs must reach the spinal cord and will include some direct projections to motoneurons supplying grasping muscles, there was no EMG activity in these muscles during action observation. We suggest that the mirror neuron system is involved in the withholding of unwanted movement during action observation. Mirror neurons are differentially recruited in the behaviour that switches rapidly between making your own movements and observing those of others.

  20. Bronze rainbow hologram mirrors

    Science.gov (United States)

    Dawson, P.

    2006-02-01

    This project draws on holographic embossing techniques, ancient artistic conventions of bronze mirror design and modelling and casting processes to accomplish portraiture of reflection. Laser scanning, 3D computer graphics and holographic imaging are employed to enable a permanent 3D static holographic image to appear integrated with the real-time moving reflection of a viewer's face in a polished bronze disc. The disc and the figure which holds it (caryatid) are cast in bronze from a lost wax model, a technique which has been used for millennia to make personal mirrors. The Caryatid form of bronze mirror which went through many permutations in ancient Egyptian, Greece and Rome shows a plethora of expressive figure poses ranging from sleek nudes to highly embellished multifigure arrangements. The prototype of this series was made for Australian choreographer Graeme Murphy, Artistic Director of the Sydney Dance Company. Each subsequent mirror will be unique in figure and holographic imagery as arranged between artist and subject. Conceptually this project references both the modern experience of viewing mirrors retrieved from ancient tombs, which due to deterioration of the surface no longer reflect, and the functioning of Chinese Magic mirrors, which have the ability to project a predetermined image. Inspired by the metaphorical potential of these mirrors, which do not reflect the immediate reality of the viewer, this bronze hologram mirror series enables each viewer to reflect upon himself or herself observing simultaneously the holographic image and their own partially obliterated reflection.

  1. The mirror box

    Science.gov (United States)

    Thompson, Gene; Mathieson, Don

    2001-11-01

    The mirror box is an old standby in magic shows and an impressive demonstration of the law of reflection for the physics instructor. The box creates the illusion of an object floating in space by the use of a plane mirror.

  2. Axisymmetric oscillations of magnetic neutron stars

    Science.gov (United States)

    Lee, Umin

    2007-01-01

    We calculate axisymmetric oscillations of rotating neutron stars composed of the surface fluid ocean, solid crust and fluid core, taking account of a dipole magnetic field as strong as BS ~ 1015 G at the surface. The adiabatic oscillation equations for the solid crust threaded by a dipole magnetic field are derived in Newtonian dynamics, on the assumption that the axis of rotation is aligned with the magnetic axis so that perturbations on the equilibrium can be represented by series expansions in terms of spherical harmonic functions Yml(θ, φ) with different degrees l for a given azimuthal wave number m around the magnetic axis. Although the three component models can support a rich variety of oscillation modes, axisymmetric (m = 0) toroidal ltn and spheroidal lsn shear waves propagating in the solid crust are our main concerns, where l and n denote the harmonic degree and the radial order of the modes, respectively. In the absence of rotation, axisymmetric spheroidal and toroidal modes are completely decoupled, and we consider the effects of rotation on the oscillation modes only in the limit of slow rotation. We find that the oscillation frequencies of the fundamental toroidal torsional modes ltn in the crust are hardly affected by the magnetic field as strong as BS ~ 1015 G at the surface. As the radial order n of the shear modes in the crust becomes higher, however, both spheroidal and toroidal modes become susceptible to the magnetic field, and their frequencies in general get higher with increasing BS. We also find that the surface g modes and the crust/ocean interfacial modes are suppressed by a strong magnetic field, and that there appear magnetic modes in the presence of a strong magnetic field.

  3. Axisymmetric instability in a thinning electrified jet.

    Science.gov (United States)

    Dharmansh; Chokshi, Paresh

    2016-04-01

    The axisymmetric stability of an electrified jet is analyzed under electrospinning conditions using the linear stability theory. The fluid is considered Newtonian with a finite electrical conductivity, modeled as a leaky dielectric medium. While the previous studies impose axisymmetric disturbances on a cylindrical jet of uniform radius, referred to as the base state, in the present study the actual thinning jet profile, obtained as the steady-state solution of the one-dimensional slender filament model, is treated as the base state. The analysis takes into account the role of variation in the jet variables like radius, velocity, electric field, and surface charge density along the thinning jet in the stability behavior. The eigenspectrum of the axisymmetric disturbance growth rate is constructed from the linearized disturbance equations discretized using the Chebyshev collocation method. The most unstable growth rate for the thinning jet is significantly different from that for the uniform radius jet. For the same electrospinning conditions, while the uniform radius jet is predicted to be highly unstable, the thinning jet profile is found to be unstable but with a relatively very low growth rate. The stabilizing role of the thinning jet is attributed to the variation in the surface charge density as well as the extensional deformation rate in the fluid ignored in the uniform radius jet analysis. The dominant mode for the thinning jet is an oscillatory conducting mode driven by the field-charge coupling. The disturbance energy balance finds the electric force to be the dominant force responsible for the disturbance growth, potentially leading to bead formation along the fiber. The role of various material and process parameters in the stability behavior is also investigated. PMID:27176407

  4. Comment on "Conformally flat stationary axisymmetric metrics"

    CERN Document Server

    Barnes, A; Senovilla, José MM

    2003-01-01

    Garcia and Campuzano claim to have found a previously overlooked family of stationary and axisymmetric conformally flat spacetimes, contradicting an old theorem of Collinson. In both these papers it is tacitly assumed that the isometry group is orthogonally transitive. Under the same assumption, we point out here that Collinson's result still holds if one demands the existence of an axis of symmetry on which the axial Killing vector vanishes. On the other hand if the assumption of orthogonal transitivity is dropped, a wider class of metrics is allowed and it is possible to find explicit counterexamples to Collinson's result.

  5. Reversed straining in axisymmetric compression test

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Wanheim, Tarras; Lindegren, Maria;

    2005-01-01

    in an expansion of the bore. After unloading, the container will try to reduce this expansion and thus in many cases cause a reversed plastic deformation of the work-piece. This will have an effect on the resulting diameter of the work-piece and – above all – on the resulting mechanical properties. In order...... to simulate these conditions a reversed axisymmetrical material tester is designed and constructed. Three different materials were tested, aluminum alloy AA6082, technically pure copper (99.5%) and cold forging steel Ma8, at different temperatures found during cold forging....

  6. Travelling waves in axisymmetric pipe flows

    International Nuclear Information System (INIS)

    The weakly nonlinear dynamics of axisymmetric Poiseuille pipe flows is investigated. It is shown that small perturbations of the laminar flow with amplitude ε ∼ O(Re−2.5) obey a coupled system of nonlinear Korteweg–de Vries-type equations. To leading order, these support inviscid soliton-type solutions and periodic waves in the form of toroidal vortex tubes that, due to viscous effects, slowly decay in time on a longer time scale t ∼ O(ε−2.5). (paper)

  7. Distribution of Topological Defects on Axisymmetric Surface

    Institute of Scientific and Technical Information of China (English)

    SI Tie-Yan; DUAN Yi-Shi

    2006-01-01

    We propose a general method of determining the distribution of topological defects on axisymmetric surface,and study the distribution of topological defects on biconcave-discoid surface, which is the geometric configuration of red blood cell. There are three most possible cases of the distribution of the topological defects on the biconcave surface:four defects charged with 1/2, two defects charged with +1, or one defect charged with 2. For the four defect charged with 1/2, they sit at the vertices of a square imbedded in the equator of biconcave surface.

  8. Analysis of Axisymmetric Crushing of Frusta

    Directory of Open Access Journals (Sweden)

    M.M.A. Khan

    2003-01-01

    Full Text Available The paper presents a curved-fold model with variable straight length for the axisymmetric crushing of thin frusta. The folding considered in the model is partly inside and partly outside. The variation of circumferential strain during the formation of a fold has been taken into account. The size of the fold and mean, as well as variation of crushing load, has been computed mathematically. The study is purely analytical and does not involve any empirical constant; and hence, can be used in general. The model's predictions have been compared with experimental results and a reasonably good agreement has been observed. "

  9. VERTICAL VIBRATION ANALYSIS OF AXISYMMETRIC SATURATED SOIL

    Institute of Scientific and Technical Information of China (English)

    CAI Yuan-qiang; XU Chang-jie; ZHENG Zao-feng; WU Da-zhi

    2006-01-01

    Based on Biot's dynamic consolidation equations, by means of Laplace-Hankel transform technology, the integral solutions of stress and displacement in saturated soil with subjacent rock-stratum under axisymmetric arbitrary excitations were derived. Influence of the reflected wave generated by the boundary was revealed. Numerical results indicate that the vibration frequency has some effect on the vertical displacement of saturated soil. The vertical displacement at the surface of saturated soil lags in phase with the load. Furthermore, the dynamic permeability coefficient of saturated soil has significant effect on the vertical displacement at the initial stage of load applied, but when the load becomes stable, the effect is inapparent.

  10. Diagnostics for mirror machines

    International Nuclear Information System (INIS)

    This paper is subdivided into three chapters to match three corresponding lectures. The goals of the first chapter are to define the neutral-beam-heated, quasi-d.c. mirror confinement systems under discussion here and to give a general example of mirror diagnostics by listing and very briefly discussing the diagnostics used on the 2XIIB experiment at the Lawrence Livermore Laboratory. The second chapter develops mirror machine diagnostics in more detail, and adds background for a few selected diagnostics of particular importance to mirror machine studies. The third chapter discusses the special diagnostic needs of future mirror machines, with emphasis on diagnostics involving the higher-power neutral beams used with them

  11. Classification of Stellar Orbits in Axisymmetric Galaxies

    Science.gov (United States)

    Li, Baile; Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood

    2015-09-01

    It is known that two supermassive black holes (SMBHs) cannot merge in a spherical galaxy within a Hubble time; an emerging picture is that galaxy geometry, rotation, and large potential perturbations may usher the SMBH binary through the critical three-body scattering phase and ultimately drive the SMBH to coalesce. We explore the orbital content within an N-body model of a mildly flattened, non-rotating, SMBH-embedded elliptical galaxy. When used as the foundation for a study on the SMBH binary coalescence, the black holes bypassed the binary stalling often seen within spherical galaxies and merged on gigayear timescales. Using both frequency-mapping and angular momentum criteria, we identify a wealth of resonant orbits in the axisymmetric model, including saucers, that are absent from an otherwise identical spherical system and that can potentially interact with the binary. We quantified the set of orbits that could be scattered by the SMBH binary, and found that the axisymmetric model contained nearly six times the number of these potential loss cone orbits compared to our equivalent spherical model. In this flattened model, the mass of these orbits is more than three times that of the SMBH, which is consistent with what the SMBH binary needs to scatter to transition into the gravitational wave regime.

  12. Axisymmetric fretting analysis in coated cylinder

    Indian Academy of Sciences (India)

    M Ramesh; Satish V Kailas; K R Y Simha

    2008-06-01

    Fretting is essentially a contact fatigue phenomenon, although bulk stresses and material properties contribute to final failure. The near surface state of stress developed under oscillatory contact between machine elements plays a major role in deciding the severity of fretting. It is possible to enhance tribological properties by coating the surface. There is rather scanty literature available on fretting analysis of coated components. Presence of such coatings has a large influence on the near surface state of stress. The effect of coatings on the severity of fretting is the focus of this paper. Results obtained for both hard and soft coatings are compared with the results obtained for the homogeneous case. The component geometry and loading are chosen to be cylindrical to enable 3D elastic axisymmetric fretting analysis. The results are compared with 2D models (strip and half-plane) to examine their utility and validity for understanding axisymmetric fretting. Contact pressure and frictional shear loading cases are solved separately and superposed appropriately depending on the coefficient of friction considered. Results for different values of coefficient of friction and elastic mismatch are illustrated through contour plots of stresses and strains. These results are expected to be helpful for identifying fretting failure zones and fracture mechanisms in coated components. Analytical results presented here could serve as useful benchmarks for calibrating numerical codes and experimental techniques.

  13. Classification of Stellar Orbits in Axisymmetric Galaxies

    CERN Document Server

    Li, Baile; Khan, Fazeel

    2014-01-01

    It is known that two supermassive black holes (SMBHs) cannot merge in a spherical galaxy within a Hubble time; an emerging picture is that galaxy geometry, rotation, and large potential perturbations may usher the SMBH binary through the critical three-body scattering phase and ultimately drive the SMBH to coalesce. We explore the orbital content within an N-body model of a mildly- flattened, non-rotating, SMBH-embedded elliptical galaxy. When used as the foundation for a study on the SMBH binary coalescence, the black holes bypassed the binary stalling often seen within spherical galaxies and merged on Gyr timescales (Khan et al. 2013). Using both frequency-mapping and angular momentum criteria, we identify a wealth of resonant orbits in the axisymmetric model, including saucers, that are absent from an otherwise identical spherical system and that can potentially interact with the binary. We quantified the set of orbits that could be scattered by the SMBH binary, and found that the axisymmetric model contai...

  14. Axisymmetric bending oscillations of stellar disks

    CERN Document Server

    Sellwood, J A

    1996-01-01

    Self-gravitating stellar disks with random motion support both exponentially growing and, in some cases, purely oscillatory axisymmetric bending modes, unlike their cold disk counterparts. A razor-thin disk with even a very small degree of random motion in the plane is both unstable and possesses a discrete spectrum of neutral modes, irrespective of the sharpness of the edge. Random motion normal to the disk plane has a stabilizing effect but at the same time allows bending waves to couple to the internal vibrations of the particles, which causes the formerly neutral modes to decay through Landau damping. Focusing first on instabilities, I here determine the degree of random motion normal to the plane needed to suppress global, axisymmetric, bending instabilities in a family of self-gravitating disks. As found previously, bending instabilities are suppressed only when the thickness exceeds that expected from a na\\"\\i ve local criterion when the degree of pressure support within the disk plane is comparable to...

  15. Linear lateral vibration of axisymmetric liquid briges

    Science.gov (United States)

    Ferrera, C.; Montanero, J. M.; Cabezas, M. G.

    A liquid bridge is a mass of liquid sustained by the action of the surface tension force between two parallel supporting disks Apart from their basic scientific interest a liquid bridge can be considered as the simplest idealization of the configuration appearing in the floating zone technique used for crystal growth and purification of high melting point materials footnote Messeguer et al emph Crystal Growth Res bf 5 27 1999 This has conferred considerable interest on the study of liquid bridges not only in fluid mechanics but also in the field of material engineering The axisymmetric dynamics of an isothermal liquid bridge has been frequently analysed over the past years The studies have considered different phenomena such as free oscillations footnote Montanero emph E J Mech B Fluids bf 22 169 2003 footnote Acero and Montanero emph Phys Fluids bf 17 078105 2005 forced vibrations footnote Perales and Messeguer emph Phys Fluids A bf 4 1110 1992 g-jitter effects footnote Messeguer and Perales emph Phys Fluids A bf 3 2332 1991 extensional deformation footnote Zhang et al emph J Fluid Mech bf 329 207 1996 and breakup process footnote Espino et al emph Phys Fluids bf 14 3710 2002 among others Works considering the nonaxisymmetric dynamical behaviour of a liquid bridge has been far less common footnote Sanz and Diez emph J Fluid Mech bf 205 503 1989 In the present study the linear vibration of an axisymmetric liquid

  16. COHERENT STRUCTURES IN COUNTERCURRENT AXISYMMETRIC SHEAR FLOWS

    Institute of Scientific and Technical Information of China (English)

    谢锡麟; 麻伟巍; 周慧良

    2003-01-01

    The dynamical behaviors of coherent structures in countercurrent axisymmetric shear flows are experimentally studied. The forward velocity U1 and the velocity ratio R = (U1 - U2)/(U1 +U2), where U2 denotes the suction velocity, are considered as the control parameters. Two kinds of vortex structures, i.e., axisymmetric and helical structures, were discovered with respect to different regimes in the R versus U1 diagram. In the case of U1 ranging from 3 to 20 m/s and R from 1 to 3, the axisymmetric structures play an important role. Based on the dynamical behaviors of axisymmetric structures, a critical forward velocity Ucr1 = 6.8 m/s was defined, subsequently, the subcritical velocity regime: U1 > Ucr1 and the supercritical velocity regime: U1 < Ucr1. In the subcritical velocity regime,the flow system contains shear layer self-excited oscillations in a certain range of the velocity ratio with respect to any forward velocity. In the supercritical velocity regime, the effect of the velocity ratio could be explained by the relative movement and the spatial evolution of the axisymmetric structure undergoes the following stages: (1) Kelvin-Helmholtz instability leading to vortex rolling up, (2) first time vortex agglomeration, (3) jet column self-excited oscillation, (4) shear layer self-excited oscillation,(5) "ordered tearing", (6) turbulence in the case of U1 < 4 m/s (the "ordered tearing" does not exist when U1 > 4m/s), correspondingly, the spatial evolution of the temporal asymptotic behavior of a dynamical system can be described as follows: (1) Hopf bifurcation, (2) subharmonic bifurcation, (3)reversed superharmonic bifurcation, (4) superharmonic bifurcation, (5) chaos ("weak turbulence") in the case of U1 < 4 m/s (superharmonic bifurcation does not exist when U1 > 4 m/s). The proposed new terms, superharmonic and reversed superharmonic bifurcations, are characterized of the frequency doubling rather than the period doubling. A kind of unfamiliar

  17. Space Mirror Alignment System

    Science.gov (United States)

    Jau, Bruno M.; McKinney, Colin; Smythe, Robert F.; Palmer, Dean L.

    2011-01-01

    An optical alignment mirror mechanism (AMM) has been developed with angular positioning accuracy of +/-0.2 arcsec. This requires the mirror s linear positioning actuators to have positioning resolutions of +/-112 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are 0.1 arc-sec angular mirror positioning accuracy, which translates into linear positioning resolutions at the actuator of 50 nm. The mechanism consists of a structure with sets of cross-directional flexures that enable the mirror s tip and tilt motion, a mirror with its kinematic mount, and two linear actuators. An actuator comprises a brushless DC motor, a linear ball screw, and a piezoelectric brake that holds the mirror s position while the unit is unpowered. An interferometric linear position sensor senses the actuator s position. The AMMs were developed for an Astrometric Beam Combiner (ABC) optical bench, which is part of an interferometer development. Custom electronics were also developed to accommodate the presence of multiple AMMs within the ABC and provide a compact, all-in-one solution to power and control the AMMs.

  18. Active array design for FAME: Freeform Active Mirror Experiment

    Science.gov (United States)

    Jaskó, Attila; Aitink-Kroes, Gabby; Agócs, Tibor; Venema, Lars; Hugot, Emmanuel; Schnetler, Hermine; Bányai, Evelin

    2014-07-01

    In this paper a status report is given on the development of the FAME (Freeform Active Mirror Experiment) active array. Further information regarding this project can be found in the paper by Venema et al. (this conference). Freeform optics provide the opportunity to drastically reduce the complexity of the future optical instruments. In order to produce these non-axisymmetric freeform optics with up to 1 mm deviation from the best fit sphere, it is necessary to come up with new design and manufacturing methods. The way we would like to create novel freeform optics is by fine tuning a preformed high surface-quality thin mirror using an array which is actively controlled by actuators. In the following we introduce the tools deployed to create and assess the individual designs. The result is an active array having optimal number and lay-out of actuators.

  19. The Mirror Oscilloscpoe

    OpenAIRE

    Goudriaan, B.

    2003-01-01

    This project is about designing and realizing an oscilloscope based on a laser beam reflected by two mirrors. The ¿Mirror Oscilloscope¿ uses two voice-coils actuators with mounted mirrors to reflect laser light, such that an image of a harmonic signal is projected on a projection screen. For tracking of the input signal an encoder is chosen as a position feedback sensor. Using a 20sim model, 20sim¿s code-generation tool and the AD VisualDSP++ environment, an uploadable program is made, interp...

  20. Tandem mobile robot system

    Science.gov (United States)

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  1. Modern magnetic mirror systems. Status and perspectives

    International Nuclear Information System (INIS)

    Full text: Principles of multi-mirror plasma confinement and gas-dynamic one were proposed in the Budker INP in early and late 70 s, correspondingly. The first experiments have demonstrated a correctness of these approaches. In the paper the status of the experiments on two modern magnetic mirror devices is discussed. At present, the multi-mirror system GOL-3 has 12 m long magnetic system which consists of 55 mirror cells. The magnetic field strength is 4.8 T in the mirrors and 3.2 T in middle planes of each cell. Dense (ne > 1021 m-3) plasma in the solenoid is heated by high current relativistic electron beam (E = 1 MeV, Ib = 30 kA, Τb = 8 x 10-6 s) and is confined in the multi-mirror system. Note a simplicity of this method of plasma confinement (axial symmetry of the magnetic configuration), practicability of high β (order of 1 or even more). The present day parameters are: Te ∼ Ti ∼ 2 keV. Such plasma is sustained during ΤE ∼ 1 ms and there are no physical limitations to increase them. But even with present day parameters a lot of experiments can be made on plasma-wall interaction (study of evaporation, erosion and ionization of wall materials, propagation of ions of these materials along magnetic field lines at long distances, disruption and ELM simulations, etc) using the streams (up to 50 MJ/m2) flowing out along the axis. The second system is Gas Dynamic Trap (GDT). It is an axisymmetric mirror system with very high mirror ratio (R ∼ 102). The distance between mirrors, L = 7 meters and magnetic field in them is 15 T. Recently it was demonstrated that the GDT concept based on use of 'warm' plasma and oblique injection of D-T neutral beams can lead to creation of a simplest plasma neutron source with high density 14 MeV neutron flux reaching up to 2 MW/m2 on the limited part (order of 1 m2) of the device. The principles of the GDT operation have been already demonstrated at moderate parameters of plasma and NB injection. In particular, stable

  2. Mirror image proteins.

    Science.gov (United States)

    Zhao, Le; Lu, Wuyuan

    2014-10-01

    Proteins composed entirely of unnatural d-amino acids and the achiral amino acid glycine are mirror image forms of their native l-protein counterparts. Recent advances in chemical protein synthesis afford unique and facile synthetic access to domain-sized mirror image d-proteins, enabling protein research to be conducted through 'the looking glass' and in a way previously unattainable. d-Proteins can facilitate structure determination of their native l-forms that are difficult to crystallize (racemic X-ray crystallography); d-proteins can serve as the bait for library screening to ultimately yield pharmacologically superior d-peptide/d-protein therapeutics (mirror-image phage display); d-proteins can also be used as a powerful mechanistic tool for probing molecular events in biology. This review examines recent progress in the application of mirror image proteins to structural biology, drug discovery, and immunology.

  3. Mirror reactor surface study

    International Nuclear Information System (INIS)

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included

  4. The Athena Mirror

    Science.gov (United States)

    Wille, Eric

    2016-07-01

    The Athena mission (Advanced Telescope for High Energy Astrophysics) requires lightweight X-ray Wolter optics with a high angular resolution and large effective area. For achieving an effective area of 2 m^2 (at 1 keV) and an angular resolution of below 5 arcsec, the Silicon Pore Optics technology was developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the current design of the Athena mirror concentrating on the technology development status of the Silicon Pore Optics, ranging from the manufacturing of single mirror plates towards complete focusing mirror modules and their integration into the mirror structure.

  5. Manufacturing parabolic mirrors

    CERN Multimedia

    1975-01-01

    The photo shows the construction of a vertical centrifuge mounted on an air cushion, with a precision of 1/10000 during rotation, used for the manufacture of very high=precision parabolic mirrors. (See Annual Report 1974.)

  6. Minimal Mirror Twin Higgs

    CERN Document Server

    Barbieri, Riccardo; Harigaya, Keisuke

    2016-01-01

    In a Mirror Twin World with a maximally symmetric Higgs sector the little hierarchy of the Standard Model can be significantly mitigated, perhaps displacing the cutoff scale above the LHC reach. We show that consistency with observations requires that the Z2 parity exchanging the Standard Model with its mirror be broken in the Yukawa couplings. A minimal such effective field theory, with this sole Z2 breaking, can generate the Z2 breaking in the Higgs sector necessary for the Twin Higgs mechanism, and has constrained and correlated signals in invisible Higgs decays, direct Dark Matter Detection and Dark Radiation, all within reach of foreseen experiments. For dark matter, both mirror neutrons and a variety of self-interacting mirror atoms are considered. Neutrino mass signals and the effects of a possible additional Z2 breaking from the vacuum expectation values of B-L breaking fields are also discussed.

  7. The obsidian mirror The obsidian mirror

    Directory of Open Access Journals (Sweden)

    Maria do Socorro Reis Amorin

    2008-04-01

    Full Text Available The author James Norman is an American who has always lived in Mexico during the summer. He seems to love Mexican - Indian traditions and he is well acquainted with the pre-historic culture as it is shown in his book: "The Obsidian Mirror". "The Obsidian Mirror" is a mysterious story about an archeologist: Quigley that lives in a small village in Mexico-San Marcos. He is searching for antiques that belong to some tribes of pre-historic Indians in order to find out their mysteries. Quigley becomes so engaged in his work that his mind has reached a stage that is impossible to separate between Quigley the archeologist, and Quigley as an ancient Indian. The culture, the myth, the sensation of Omen - characteristics of the Indians are within himself. As a result, Quigley acts sometimes as a real Indian. The author James Norman is an American who has always lived in Mexico during the summer. He seems to love Mexican - Indian traditions and he is well acquainted with the pre-historic culture as it is shown in his book: "The Obsidian Mirror". "The Obsidian Mirror" is a mysterious story about an archeologist: Quigley that lives in a small village in Mexico-San Marcos. He is searching for antiques that belong to some tribes of pre-historic Indians in order to find out their mysteries. Quigley becomes so engaged in his work that his mind has reached a stage that is impossible to separate between Quigley the archeologist, and Quigley as an ancient Indian. The culture, the myth, the sensation of Omen - characteristics of the Indians are within himself. As a result, Quigley acts sometimes as a real Indian.

  8. Liquid mirrors a review

    CERN Document Server

    Borra, E F

    1994-01-01

    The surface of a spinning liquid takes the shape of a paraboloid that can be used as a reflecting mirror. This very old and nearly forgotten concept has recently been revived and I review its present status. Extensive interferometric tests of liquid mirrors (the largest one having a diameter of 2.5-meters ) show excellent optical qualities. I discuss the factors that can limit the optical quality of liquid mirrors, how to minimize them as well as the basic technology. A handful of liquid mirrors have now been built that are used for scientific work. I show representative data obtained from 2.65-m diameter liquid mirror telescopes used for astronomy and the atmospheric sciences (lidar). Section 5, of particular interest to cosmologists, or astronomers using surveys, examines the expected performance of 4-m liquid mirror telescopes dedicated to cosmological surveys. It is rather impressive, due to the fact that the instruments work full- time on four-year surveys: Spectrophotometry reaches B=24 for all objects ...

  9. Notes on moving mirrors

    CERN Document Server

    Obadia, N

    2001-01-01

    The Davies-Fulling (DF) model describes the scattering of a massless field by a non-inertial mirror in two dimensions. In this paper, we generalize this model in two different ways. First, we consider partially reflecting mirrors. We show that the Bogoliubov coefficients relating inertial modes can be expressed in terms of the frequency dependent reflection factor which is specified in the rest frame of the mirror and the transformation from the inertial modes to the modes at rest with respect to the mirror. In this perspective, the DF model is simply the limiting case when this factor is unity for all frequencies. In the second part, we introduce an alternative model which is based on self-interactions described by an action principle. When the coupling is constant, this model can be solved exactly and gives rise to a partially reflecting mirror. The usefulness of this dynamical model lies in the possibility of switching off the coupling between the mirror and the field. This allows to obtain regularized exp...

  10. Lagrangian mixing in an axisymmetric hurricane model

    Directory of Open Access Journals (Sweden)

    B. Rutherford

    2009-09-01

    Full Text Available This paper discusses the extension of established Lagrangian mixing measures to make them applicable to data extracted from a 2-D axisymmetric hurricane simulation. Because of the non-steady and unbounded characteristics of the simulation, the previous measures are extended to a moving frame approach to create time-dependent mixing rates that are dependent upon the initial time of particle integration, and are computed for nonlocal regions. The global measures of mixing derived from finite-time Lyapunov exponents, relative dispersion, and a measured mixing rate are applied to distinct regions representing different characteristic feautures within the model. It is shown that these time-dependent mixing rates exhibit correlations with maximal tangential winds during a quasi-steady state, establishing a connection between mixing and hurricane intensity.

  11. Improved micromorph tandem cell performance through enhanced top cell currents

    Energy Technology Data Exchange (ETDEWEB)

    Platz, R.; Vaucher, N.P.; Fischer, D.; Meier, J.; Shah, A. [Univ. de Neuchatel (Switzerland). Inst. de Microtechnique

    1997-12-31

    Two approaches to increasing the current in the amorphous silicon top cell of an amorphous silicon/microcrystalline silicon (a-Si:H/{micro}c-Si:H) tandem cell are presented. The goal is to raise the stabilized efficiency of such cells. The deposition of the amorphous top cell at higher than standard substrate temperature is shown to reduce the optical gap of the i-layer and to increase the current which is generated with a given i-layer thickness. Furthermore, a selectively reflecting ZnO interface layer between the component cells is presented as a viable tool for enhancing the current generation in the top cell by selective reflection of light. The authors present a micromorph tandem cell containing the amorphous top cell deposited at high substrate temperature, and additionally the ZnO mirror layer. A top cell thickness of 150 nm is shown to be sufficient to provide a current density of 13mA/cm{sup 2} in the top cell. Finally, the influence of such thin top cells on the stabilized efficiency of the tandem cell is investigated by experiment and by means of semi-empirical modeling. Model and experiment confirm that such reduced-gap top cells, together with current enhancement due to the mirror layer, have a high potential for improving the stabilized efficiency of micromorph tandem cells.

  12. FAME: Freeform Active Mirrors Experiment: manufacturing process development

    Science.gov (United States)

    Challita, Zalpha; Hugot, Emmanuel; Venema, Lars; Schnetler, Hermine; Ferrari, Marc; Cuby, Jean-Gabriel

    2014-07-01

    Extreme freeform mirrors couple a non-axisymmetrical shape and an extreme asphericity, i.e. more than one millimeter of deviation from the best fit sphere. In astronomical instrumentation, such a large asphericity allows compact instruments, using less optical components. However, the lack of freeform mirrors manufacturing facilities is a real issue. We present the concept and development of an innovative manufacturing process based on plasticity forming which allow imprinting permanent deformations on mirrors, following a pre-defined mold. The aim of this activity, pursued in the frame of the OPTICON-FAME (Freeform Active Mirrors Experiment) project, is to demonstrate the suitability of this method for VIS/NIR/MIR applications. The process developed can operate on thin and flat polished initial substrates. Three study cases have been highlighted by FEA (Finite Element Analysis) and the real tests associated were performed on thin substrates in AISI420b stainless steel with 100 mm optical diameter. A comparison between FEA and tests is performed to study the evolution of the mechanical behaviour and the optical quality. The opto-mechanical results will allow a fine tuning of FEA parameters to optimize the residual form errors obtained through this process to converge toward an innovative and recurrent process.

  13. Axisymmetric Plume Simulations with NASA's DSMC Analysis Code

    Science.gov (United States)

    Stewart, B. D.; Lumpkin, F. E., III

    2012-01-01

    A comparison of axisymmetric Direct Simulation Monte Carlo (DSMC) Analysis Code (DAC) results to analytic and Computational Fluid Dynamics (CFD) solutions in the near continuum regime and to 3D DAC solutions in the rarefied regime for expansion plumes into a vacuum is performed to investigate the validity of the newest DAC axisymmetric implementation. This new implementation, based on the standard DSMC axisymmetric approach where the representative molecules are allowed to move in all three dimensions but are rotated back to the plane of symmetry by the end of the move step, has been fully integrated into the 3D-based DAC code and therefore retains all of DAC s features, such as being able to compute flow over complex geometries and to model chemistry. Axisymmetric DAC results for a spherically symmetric isentropic expansion are in very good agreement with a source flow analytic solution in the continuum regime and show departure from equilibrium downstream of the estimated breakdown location. Axisymmetric density contours also compare favorably against CFD results for the R1E thruster while temperature contours depart from equilibrium very rapidly away from the estimated breakdown surface. Finally, axisymmetric and 3D DAC results are in very good agreement over the entire plume region and, as expected, this new axisymmetric implementation shows a significant reduction in computer resources required to achieve accurate simulations for this problem over the 3D simulations.

  14. Asymmetric and axisymmetric dynamics of tropical cyclones

    Directory of Open Access Journals (Sweden)

    J. Persing

    2013-05-01

    Full Text Available We present the results of idealized numerical experiments to examine the difference between tropical cyclone evolution in three-dimensional (3-D and axisymmetric (AX model configurations. We focus on the prototype problem for intensification, which considers the evolution of an initially unsaturated AX vortex in gradient-wind balance on an f-plane. Consistent with findings of previous work, the mature intensity in the 3-D model is reduced relative to that in the AX model. In contrast with previous interpretations invoking barotropic instability and related horizontal mixing processes as a mechanism detrimental to the spin-up process, the results indicate that 3-D eddy processes associated with vortical plume structures can assist the intensification process by contributing to a radial contraction of the maximum tangential velocity and to a vertical extension of tangential winds through the depth of the troposphere. These plumes contribute significantly also to the azimuthally-averaged heating rate and the corresponding azimuthal-mean overturning circulation. The comparisons show that the resolved 3-D eddy momentum fluxes above the boundary layer exhibit counter-gradient characteristics and are generally not represented properly by the subgrid-scale parameterizations in the AX configuration. The resolved eddy fluxes act to support the contraction and intensification of the maximum tangential winds. The comparisons indicate fundamental differences between convective organization in the 3-D and AX configurations for meteorologically relevant forecast time scales. While the radial and vertical gradients of the system-scale angular rotation provide a hostile environment for deep convection in the 3-D model, with a corresponding tendency to strain the convective elements in the tangential direction, deep convection in the AX model does not suffer this tendency. Also, since during the 3-D intensification process the convection has not yet organized

  15. Modeling and simulation of axisymmetric stagnation flames

    Science.gov (United States)

    Sone, Kazuo

    Laminar flame modeling is an important element in turbulent combustion research. The accuracy of a turbulent combustion model is highly dependent upon our understanding of laminar flames and their behavior in many situations. How much we understand combustion can only be measured by how well the model describes and predicts combustion phenomena. One of the most commonly used methane combustion models is GRI-Mech 3.0. However, how well the model describes the reacting flow phenomena is still uncertain even after many attempts to validate the model or quantify uncertainties. In the present study, the behavior of laminar flames under different aerodynamic and thermodynamic conditions is studied numerically in a stagnation-flow configuration. In order to make such a numerical study possible, the spectral element method is reformulated to accommodate the large density variations in methane reacting flows. In addition, a new axisymmetric basis function set for the spectral element method that satisfies the correct behavior near the axis is developed, and efficient integration techniques are developed to accurately model axisymmetric reacting flow within a reasonable amount of computational time. The numerical method is implemented using an object-oriented programming technique, and the resulting computer program is verified with several different verification methods. The present study then shows variances with the commonly used GRI-Mech 3.0 chemical kinetics model through a direct simulation of laboratory flames that allows direct comparison to experimental data. It is shown that the methane combustion model based on GRI-Mech 3.0 works well for methane-air mixtures near stoichiometry. However, GRI-Mech 3.0 leads to an overprediction of laminar flame speed for lean mixtures and an underprediction for rich mixtures. This result is slightly different from conclusion drawn in previous work, in which experimental data are compared with a one-dimensional numerical solutions

  16. Carbon nanotube optical mirrors

    Science.gov (United States)

    Chen, Peter C.; Rabin, Douglas

    2015-01-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes (CNT) embedded in an epoxy matrix. CNT/epoxy is a multifunctional composite material that has sensing capabilities and can be made to incorporate self-actuation. Moreover, as the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and three-dimensional printing. Therefore, the technology holds promise for the development of a new generation of lightweight, compact "smart" telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics, active optics experiments, and numerical modeling. We discuss possible paths for future development.

  17. Smart materials optical mirrors

    Science.gov (United States)

    Chen, Peter C.; Rabin, Douglas M.

    2014-08-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes embedded in an epoxy matrix. CNT/epoxy is a multifunctional or `smart' composite material that has sensing capabilities and can be made to incorporate self-actuation as well. Moreover, since the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and 3D printing. The technology therefore holds promise for development of a new generation of lightweight, compact `smart' telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics. We discuss possible paths for future development.

  18. Non-axisymmetric, scale-free, razor-thin discs

    CERN Document Server

    Syer, D; Syer, Dave; Tremaine, Scott

    1996-01-01

    Galaxies exhibit a variety of non-axisymmetric structure (bars, spiral structure, lopsided structure, etc.). These suggest the following general problem: what are the possible stationary configurations of a two-dimensional self-gravitating fluid other than an axisymmetric razor-thin disc? We address a modest component of this problem: we seek non-axisymmetric razor-thin discs of two-dimensional barotropic fluid that are stationary in an inertial frame. We distinguish between `razor-thin' and `two-dimensional,' applying the latter term to the equation of state. Furthermore we assume that our systems are scale-free, which reduces the partial differential equations describing the system to ordinary differential equations. We also allow for the presence of an axisymmetric background potential. This simple and highly idealized problem already exhibits a rich variety of solutions, the richest being for m=1 symmetry.

  19. Unification with mirror fermions

    Directory of Open Access Journals (Sweden)

    Triantaphyllou George

    2014-04-01

    Full Text Available We present a new framework unifying interactions in nature by introducing mirror fermions, explaining the hierarchy between the weak scale and the coupling unification scale, which is found to lie close to Planck energies. A novel process leading to the emergence of symmetry is proposed, which not only reduces the arbitrariness of the scenario proposed but is also followed by significant cosmological implications. Phenomenology includes the probability of detection of mirror fermions via the corresponding composite bosonic states and the relevant quantum corrections at the LHC.

  20. Axisymmetric Consolidation of Unsaturated Soils by Differential Quadrature Method

    OpenAIRE

    Wan-Huan Zhou

    2013-01-01

    Axisymmetric consolidation in a sand drain foundation is a common problem in foundation engineering. In unsaturated soils, the excess pore-water and pore-air pressures simultaneously change during the consolidation procedure; and the solutions are not easy to obtain. The present paper uses the differential quadrature method (DQM) for axisymmetric consolidation of unsaturated soils in a sand drain foundation. The radial seepage of sand drain foundation is considered based on the framework of F...

  1. Mirror neurons and mirror systems in monkeys and humans.

    Science.gov (United States)

    Fabbri-Destro, Maddalena; Rizzolatti, Giacomo

    2008-06-01

    Mirror neurons are a distinct class of neurons that transform specific sensory information into a motor format. Mirror neurons have been originally discovered in the premotor and parietal cortex of the monkey. Subsequent neurophysiological (TMS, EEG, MEG) and brain imaging studies have shown that a mirror mechanism is also present in humans. According to its anatomical locations, mirror mechanism plays a role in action and intention understanding, imitation, speech, and emotion feeling.

  2. Axisymmetric, Ventilated Supercavitation in Unsteady, Horizontal Flow

    Science.gov (United States)

    Kawakami, Ellison; Lee, Seung-Jae; Arndt, Roger

    2012-11-01

    Drag reduction and/or speed augmentation of marine vehicles by means of supercavitation is a topic of great interest. During the initial launch of a supercavitating vehicle, an artificial supercavity is required until the vehicle can reach conditions at which a natural supercavity can be sustained. Previous studies at Saint Anthony Falls Laboratory (SAFL) focused on the behavior of ventilated supercavities in steady horizontal flows. In open waters, vehicles can encounter unsteady flows, especially when traveling under waves. A study has been carried out at SAFL to investigate the effects of unsteady flow on axisymmetric supercavities. An attempt is made to duplicate sea states seen in open waters. In an effort to track cavity dimensions throughout a wave cycle, an automated cavity tracking script has been developed. Using a high speed camera and the proper software, it is possible to synchronize cavity dimensions with pressure measurements taken inside the cavity. Results regarding supercavity shape, ventilation demand, cavitation parameters and closure methods are presented. It was found that flow unsteadiness caused a decrease in the overall length of the supercavity while having only a minimal effect on the maximum diameter. The supercavity volume varied with cavitation number and a possible relationship between the two is being explored. (Supported by ONR)

  3. Axisymmetric Vortex Simulations with Various Turbulence Models

    Directory of Open Access Journals (Sweden)

    Brian Howard Fiedler

    2010-10-01

    Full Text Available The CFD code FLUENTTM has been applied to a vortex within an updraft above a frictional lower boundary. The sensitivity of vortex intensity and structure to the choice of turbulent model is explored. A high Reynolds number of 108 is employed to make the investigation relevant to the atmospheric vortex known as a tornado. The simulations are axisymmetric and are integrated forward in time to equilibrium.  In a variety of turbulence models tested, the Reynolds Stress Model allows for the greatest intensification of the vortex, with the azimuthal wind speed near the surface being 2.4 times the speed of the updraft, consistent with the destructive nature of tornadoes.  The Standard k-e Model, which is simpler than the Reynolds Stress Model but still more detailed than what is commonly available in numerical weather prediction models, produces an azimuthal wind speed near the surface of at most 0.6 times the updraft speed.        

  4. Exact vectorial law for axisymmetric MHD turbulence

    Science.gov (United States)

    Galtier, S.

    2009-12-01

    3D incompressible MHD turbulence is investigated under the assumptions of homogeneity and axisymmetry. We demonstrate that previous works of Chandrasekhar (1950) may be improved significantly by using a different formalism for the representation of two-point correlation tensors. From this axisymmetric kinematics, the equations a la von Karman-Howarth are derived from which an exact relation is found in terms of measurable correlations. The relation is then analyzed in the particular case of a medium permeated by an imposed magnetic field. We make the ansatz that the development of anisotropy implies an algebraic relation between the axial and the radial components of the separation vector and we derive an exact vectorial law which is parametrized by the intensity of anisotropy. The critical balance proposed by Goldreich & Sridhar (1995) is used to fix this parameter and to obtain a unique exact expression; the particular limits of correlations transverse and parallel to the mean field are given for which simple expressions are found. Predictions for the energy spectra are also proposed by a straightforward dimensional analysis of the exact law; it gives a stronger theoretical background to the heuristic spectra previously proposed in the context of the critical balance. We also discuss the wave turbulence limit of an asymptotically large external magnetic field which appears as a natural limit of the vectorial relation. A new interpretation of the anisotropic solar wind observations is eventually discussed.

  5. Exact Vectorial Law for Axisymmetric Magnetohydrodynamics Turbulence

    Science.gov (United States)

    Galtier, S.

    2009-10-01

    Three-dimensional incompressible magnetohydrodynamics turbulence is investigated under the assumptions of homogeneity and axisymmetry. We demonstrate that previous works of Chandrasekhar may be improved significantly by using a different formalism for the representation of two-point correlation tensors. From this axisymmetric kinematics, the equations à la von Kármán-Howarth are derived from which an exact relation is found in terms of measurable correlations. The relation is then analyzed in the particular case of a medium permeated by an imposed magnetic field B0 . We make the ansatz that the development of anisotropy implies an algebraic relation between the axial and the radial components of the separation vector r and we derive an exact vectorial law which is parameterized by the intensity of anisotropy. The critical balance proposed by Goldreich & Sridhar is used to fix this parameter and to obtain a unique exact expression; the particular limits of correlations transverse and parallel to B0 are given for which simple expressions are found. Predictions for the energy spectra are also proposed by a straightforward dimensional analysis of the exact law; it gives a stronger theoretical background to the heuristic spectra previously proposed in the context of the critical balance. We also discuss the wave turbulence limit of an asymptotically large external magnetic field which appears as a natural limit of the vectorial relation. A new interpretation of the anisotropic solar wind observations is eventually discussed.

  6. Axisymmetric fully spectral code for hyperbolic equations

    CERN Document Server

    Macedo, Rodrigo P

    2014-01-01

    We present a fully pseudo-spectral scheme to solve axisymmetric hyperbolic equations of second order. With the Chebyshev polynomials as basis functions, the numerical grid is based on the Lobbato (for two spatial directions) and Radau (for the time direction) collocation points. The method solves two issues of previous algorithms which were restricted to one spatial dimension, namely, (i) the inversion of a dense matrix and (ii) the acquisition of a sufficiently good initial-guess for non-linear systems of equations. For the first issue, we use the iterative bi-conjugate gradient stabilized method, which we equip with a pre-conditioner based on a singly diagonally implicit Runge-Kutta ("SDIRK"-) method. The SDIRK-method also supplies the code with a good initial-guess. The numerical solutions are correct up to machine precision and we do not observe any restriction concerning the time step in comparison with the spatial resolution. As an application, we solve general-relativistic wave equations on a black-hol...

  7. Oscillations of magnetic stars: II. Axisymmetric toroidal and non-axisymmetric shear Alfven modes in a spherical shell

    CERN Document Server

    Reese, D; Rieutord, M

    2004-01-01

    We carry out numerical and mathematical investigations of shear Alfven waves inside of a spherical shell filled with an incompressible conducting fluid, and bathed in a strong dipolar magnetic field. We focus on axisymmetric toroidal and non-axisymmetric modes, in continuation of a previous work by Rincon & Rieutord (2003). Analytical expressions are obtained for toroidal eigenmodes and their corresponding frequencies at low diffusivities. These oscillations behave like magnetic shear layers, in which the magnetic poles play a key role, and hence become singular when diffusivities vanish. It is also demonstrated that non-axisymmetric modes are split into two categories, namely poloidal or toroidal types, following similar asymptotic behaviours as their axisymmetric counterparts when the diffusivities become arbitrarily small.

  8. Rearview Mirror Dimming Function

    Science.gov (United States)

    Layton, William

    2011-01-01

    Students are often unaware of the little tab on a rear-view mirror that is used to dim headlights from the rear. Those who know about this tab are usually interested in knowing how it works. Explanations of the optics involved can be found in Serway and Jewett and Jones and Edge. An alternate explanation is given.

  9. Surface micromachined scanning mirrors

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    1992-01-01

    Both aluminum cantilever and torsional scanning mirrors have been fabricated and their static and dynamic properties are studied experimentally and theoretically. The experiments showed resonance frequencies in the range of 163 k-Hz - 632 kHz for cantilever beams with Q values between 5 and 11. T...

  10. Mirror Symmetry Constructions

    CERN Document Server

    Clader, Emily

    2014-01-01

    These expository notes are based on lectures by Yongbin Ruan during a special semester on the B-model at the University of Michigan in Winter 2014. They outline and compare the mirror symmetry constructions of Batyrev-Borisov, Hori-Vafa, and Bergland-Hubsch-Krawitz.

  11. Rapidly convergent algorithms for 3-D tandem and stellarator equilibria in the paraxial approximation

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, B.

    1984-04-01

    Tandem and stellarator equilibria at high ..beta.. have proved hard to compute and the relaxation methods of Bauer et al., Chodura and Schluter, Hirshman, Strauss, and Pearlstein et al. have been slow to converge. This paper reports an extension of the low-..beta.. analytic method of Pearlstein, Kaiser, and Newcomb to arbitrary ..beta.. for tandem mirrors which converges in 10 to 20 iterations. Extensions of the method to stellarator equilibria are proposed and are very close to the analytic method of Johnson and Greene - the stellarator expansion. Most of the results of all these calculations can be adequately described by low-..beta.. approximations since the MHD stability limits occur at low ..beta... The tandem mirror, having weak curvature and a long central cell, allows finite Larmor radius effects to eliminate most ballooning modes and offers the possibility of really high average ..beta... This is the interest in developing such three-dimensional numerical algorithms.

  12. Derived Categories of BHK Mirrors

    CERN Document Server

    Favero, David

    2016-01-01

    We prove a derived analogue to the results of Borisov, Clarke, Kelly, and Shoemaker on the birationality of Berglund-Hubsch-Krawitz mirrors. Heavily bootstrapping off work of Seidel and Sheridan, we obtain Homological Mirror Symmetry for Berglund-Hubsch-Krawitz mirror pencils to hypersurfaces in projective space.

  13. Asymmetric and axisymmetric dynamics of tropical cyclones

    Science.gov (United States)

    Persing, J.; Montgomery, M. T.; McWilliams, J. C.; Smith, R. K.

    2013-12-01

    We present the results of idealized numerical experiments to examine the difference between tropical cyclone evolution in three-dimensional (3-D) and axisymmetric (AX) model configurations. We focus on the prototype problem for intensification, which considers the evolution of an initially unsaturated AX vortex in gradient-wind balance on an f plane. Consistent with findings of previous work, the mature intensity in the 3-D model is reduced relative to that in the AX model. In contrast with previous interpretations invoking barotropic instability and related horizontal mixing processes as a mechanism detrimental to the spin-up process, the results indicate that 3-D eddy processes associated with vortical plume structures can assist the intensification process by contributing to a radial contraction of the maximum tangential velocity and to a vertical extension of tangential winds through the depth of the troposphere. These plumes contribute significantly also to the azimuthally averaged heating rate and the corresponding azimuthal-mean overturning circulation. The comparisons show that the resolved 3-D eddy momentum fluxes above the boundary layer exhibit counter-gradient characteristics during a key spin-up period, and more generally are not solely diffusive. The effects of these eddies are thus not properly represented by the subgrid-scale parameterizations in the AX configuration. The resolved eddy fluxes act to support the contraction and intensification of the maximum tangential winds. The comparisons indicate fundamental differences between convective organization in the 3-D and AX configurations for meteorologically relevant forecast timescales. While the radial and vertical gradients of the system-scale angular rotation provide a hostile environment for deep convection in the 3-D model, with a corresponding tendency to strain the convective elements in the tangential direction, deep convection in the AX model does not suffer this tendency. Also, since

  14. Axisymmetric Control in Alcator C-Mod

    Science.gov (United States)

    Tinios, Gerasimos

    1995-01-01

    This thesis investigates the degree to which linear axisymmetric modeling of the response of a tokamak plasma can reproduce observed experimental behavior. The emphasis is on the vertical instability. The motivation for this work lies in the fact that, once dependable models have been developed, modern control theory methods can be used to design feedback laws for more effective and efficient tokamak control. The models are tested against experimental data from the Alcator C-Mod tokamak. A linear model for each subsystem of the closed-loop system constituting an Alcator C-Mod discharge under feedback control has been constructed. A non-rigid, approximately flux-conserving, perturbed equilibrium plasma response model is used in the comparison to experiment. A detailed toroidally symmetric model of the vacuum vessel and the supporting superstructure is used. Modeling of the power supplies feeding the active coils has been included. Experiments have been conducted with vertically unstable plasmas where the feedback was turned off and the plasma response was observed in an open -loop configuration. The closed-loop behavior has been examined by injecting step perturbations into the desired vertical position of the plasma. The agreement between theory and experiment in the open-loop configuration was very satisfactory, proving that the perturbed equilibrium plasma response model and a toroidally symmetric electromagnetic model of the vacuum vessel and the structure can be trusted for the purpose of calculations for control law design. When the power supplies and the feedback computer hardware are added to the system, however, as they are in the closed-loop configuration, they introduce nonlinearities that make it difficult to explain observed behavior with linear theory. Nonlinear simulation of the time evolution of the closed-loop experiments was able to account for the discrepancies between linear theory and experiment. (Copies available exclusively from MIT Libraries

  15. Mirror, Mirror, On The Wall: Collaborative Screen-Mirroring for Small Groups

    OpenAIRE

    McGill, Mark; Williamson, John; Brewster, Stephen A.

    2014-01-01

    Screen mirroring has been available to consumers for some time, however if every mobile device in the room supports screen mirroring to the main display (e.g. a shared TV), this necessitates a mechanism for managing its use. As such, this paper investigates allowing users in small intimacy groups (friends, family etc.) to self-manage mirrored use of the display, through passing/taking/requesting the display from whomever is currently mirroring to it. We examine the collaborative benefits this...

  16. Lightweight in-plane actuated deformable mirrors for space telescopes

    Science.gov (United States)

    Shepherd, Michael J.

    This research focused on lightweight, in-plane actuated, deformable mirrors, with the ultimate goal of developing a 20-meter or larger diameter light gathering aperture for space telescopes. Membrane optics is the study of these structures which may be stowed compactly and unfurled in orbit. This effort comprised four research areas: modelling, analytical solutions, surface control strategy, and scaling. Initially, experimental results were compared to theory using a 0.127 meter diameter deformable mirror testbed. The mirror was modelled using finite elements with MSC.Nastran software, where a boundary tension field was determined using laser vibrometer data. A non-linear solution technique was used to incorporate the membrane stiffening from the applied tension. Statically obtained actuator influence functions were compared to experimentally achieved data, and then a least squares approach was used as the basis for creating a quasi-static control algorithm. Experimental simultaneous tracking of Zernike tip, tilt, and defocus modes was successfully demonstrated. The analytical solutions to plate-membrane and beam-string ordinary differential equation representing the deformable mirror equations were developed. A simplified approach to modelling the axisymmetric cases was also presented. Significantly, it was shown both analytically and through numerical analysis that static actuation for a mirror with a discrete electrode pattern and a high tension-to-stiffness ratio was simply a localized piston displacement in the region of the actuator. Next, a novel static control strategy, the Modal Transformation Method, was developed for membrane mirrors. The method was implemented in finite element simulation, and shows the capability of the in-plane actuated mirror to form Zernike surfaces within an interior, or clear aperture, region using a number of statically-actuated structural modes. Lastly, the scaling problem for membrane optics was addressed. Linear modelling was

  17. Mirror image agnosia

    Directory of Open Access Journals (Sweden)

    Sadanandavalli Retnaswami Chandra

    2014-01-01

    Full Text Available Background: Gnosis is a modality-specific ability to access semantic knowledge of an object or stimulus in the presence of normal perception. Failure of this is agnosia or disorder of recognition. It can be highly selective within a mode. self-images are different from others as none has seen one′s own image except in reflection. Failure to recognize this image can be labeled as mirror image agnosia or Prosopagnosia for reflected self-image. Whereas mirror agnosia is a well-recognized situation where the person while looking at reflected images of other objects in the mirror he imagines that the objects are in fact inside the mirror and not outside. Material and Methods:: Five patients, four females, and one male presented with failure to recognize reflected self-image, resulting in patients conversing with the image as a friend, fighting because the person in mirror is wearing her nose stud, suspecting the reflected self-image to be an intruder; but did not have prosopagnosia for others faces, non living objects on self and also apraxias except dressing apraxia in one patient. This phenomena is new to our knowledge. Results: Mirror image agnosia is an unique phenomena which is seen in patients with parietal lobe atrophy without specificity to a category of dementing illness and seems to disappear as disease advances. Discussion: Reflected self-images probably have a specific neural substrate that gets affected very early in posterior dementias specially the ones which predominantly affect the right side. At that phase most patients are mistaken as suffering from psychiatric disorder as cognition is moderately preserved. As disease becomes more widespread this symptom becomes masked. A high degree of suspicion and proper assessment might help physicians to recognize the organic cause of the symptom so that early therapeutic interventions can be initiated. Further assessment of the symptom with FMRI and PET scan is likely to solve the mystery

  18. Bosonization and Mirror Symmetry

    CERN Document Server

    Kachru, Shamit; Torroba, Gonzalo; Wang, Huajia

    2016-01-01

    We study bosonization in 2+1 dimensions using mirror symmetry, a duality that relates pairs of supersymmetric theories. Upon breaking supersymmetry in a controlled way, we dynamically obtain the bosonization duality that equates the theory of a free Dirac fermion to QED3 with a single scalar boson. This duality may be used to demonstrate the bosonization duality relating an $O(2)$-symmetric Wilson-Fisher fixed point to QED3 with a single Dirac fermion, Peskin-Dasgupta-Halperin duality, and the recently conjectured duality relating the theory of a free Dirac fermion to fermionic QED3 with a single flavor. Chern-Simons and BF couplings for both dynamical and background gauge fields play a central role in our approach. In the course of our study, we describe a chiral mirror pair that may be viewed as the minimal supersymmetric generalization of the two bosonization dualities.

  19. Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    On October 1, 1977 work began at LLL on the Mirror Fusion Test Facility (MFTF), an advanced experimental fusion device. Scheduled for operation in late 1981, MFTF is designed as an intermediate step between present mirror machines, such as 2XIIB, and an experimental fusion reactor. This design incorporates improved technology and a better theoretical understanding of how neutral beam injection, plasma guns, and gas injection into the plasma region compensate for cooling and particle losses. With the new facility, we expect to achieve a confinement factor (n tau) of 1012 particles . sm/cm3--a tenfold increase over 2XIIB n tau values--and to increase plasma temperature to over 500 million K. The following article describes this new facility and reports on progress in some of the R and D projects that are providing the technological base for its construction

  20. Neutral beams for mirrors

    International Nuclear Information System (INIS)

    An important demonstration of negative ion technology is proposed for FY92 in the MFTF-α+T, an upgrade of the Mirror Fusion Test Facility at the Lawrence Livermore National Laboratory. This facility calls for 200-keV negative ions to form neutral beams that generate sloshing ions in the reactor end plugs. Three different beam lines are considered for this application. Their advantages and disadvantages are discussed

  1. Stationary and axisymmetric solutions of higher-dimensional general relativity

    International Nuclear Information System (INIS)

    We study stationary and axisymmetric solutions of General Relativity, i.e., pure gravity, in four or higher dimensions. D-dimensional stationary and axisymmetric solutions are defined as having D-2 commuting Killing vector fields. We derive a canonical form of the metric for such solutions that effectively reduces the Einstein equations to a differential equation on an axisymmetric D-2 by D-2 matrix field living in three-dimensional flat space (apart from a subclass of solutions that instead reduce to a set of equations on a D-2 by D-2 matrix field living in two-dimensional flat space). This generalizes the Papapetrou form of the metric for stationary and axisymmetric solutions in four dimensions, and furthermore generalizes the work on Weyl solutions in four and higher dimensions. We analyze then the sources for the solutions, which are in the form of thin rods along a line in the three-dimensional flat space that the matrix field can be seen to live in. As examples of stationary and axisymmetric solutions, we study the five-dimensional rotating black hole and the rotating black ring, write the metrics in the canonical form and analyze the structure of the rods for each solution

  2. Axisymmetric modes of rotating relativistic stars in the cowling approximation

    International Nuclear Information System (INIS)

    Axisymmetric pulsations of rotating neutron stars can be excited in several scenarios, such as core-collapse, crust and core-quakes and binary mergers and could become detectable either in gravitational waves or high-energy radiation. Here, we present a comprehensive study of all low-order axisymmetric modes of uniformly and rapidly rotating relativistic stars. Initial stationary configurations are appropriately perturbed and are numerically evolved using an axisymmetric, nonlinear relativistic hydrodynamics code, assuming time-independence of the gravitational field (Cowling approximation). The simulations are performed using a high-resolution shock-capturing finite-difference scheme accurate enough to maintain the initial rotation law for a large number of rotational periods, even for stars at the mass-shedding limit. Through Fourier transforms of the time evolution of selected fluid variables, we compute the frequencies of quasi-radial and non-radial modes with spherical harmonic indices l=0, 1, 2 and 3, for a sequence of rotating stars from the non-rotating limit to the mass-shedding limit. The frequencies of the axisymmetric modes are affected significantly by rotation only when the rotation rate exceeds about 50% of the maximum allowed. As expected, at large rotation rates, apparent mode crossings between different modes appear. In addition to the above modes, several axisymmetric inertial modes are also excited in our numerical evolutions. (orig.)

  3. Near surface stress analysis strategies for axisymmetric fretting

    Indian Academy of Sciences (India)

    M Ramesh; Satish V Kailas; K R Y Simha

    2008-06-01

    Fretting is essentially a surface phenomenon, but bulk stresses and material properties contribute to subsequent failure. This feature of fretting demands a thorough understanding of near surface stresses under the joint action of normal, shear and thermal loading. Axisymmetric fretting is of great concern in piping and coupling design. In this paper, we develop design tools for Near Surface Analysis (NSA) for understanding axisymmetric fretting. Axisymmetric Fretting Analysis (AFA) becomes formidable owing to localised tractions that call for Fourier transform techniques. We develop two different NSA strategies based on two-dimensional plane strain models: 2D strip model (2DS) and half-plane Flamant model (2DF). We compare the results of 2DS and 2DF with the exact results for AFA obtained using Love’s stress function in conjunction with Fourier transform. There is a good correspondence between stress components obtained from 2D-models.

  4. A spectrum of shadowed mirroring.

    Science.gov (United States)

    Wanamaker, Melissa C

    2012-04-01

    The central focus of this paper is to explore and extend Kohut's theory of maternal mirroring and to place it within the current context of psychoanalytic thinking. Kohut believed a child must experience "positive" mirroring from his or her mother in infancy and beyond to ensure development of a healthy self. Kohut alludes, however, to a possible situation in which the mother's face, metaphorically a mirror, can appear "faceless" to her child. From this I have inferred the concept of what I shall call "shadowed mirroring." Clinical and literary examples show that distorted, "shadowed" mirroring appears on a spectrum, with passive mirroring at one end and hostile (either verbal or nonverbal) mirroring on the other; some individuals experience both. I then consider how "shadowed mirroring," especially hostile mirroring, can be understood within the twin contexts of the overall mother-child relationship and present-day Intersubjective/Relational thinking that is both bidirectional and co-constructed. Shadowed mirroring can lead to severe personality dysfunction along the borderline-narcissistic range, as well as to difficulties in the areas of identity formation, failure of self-cohesiveness, and the blunting of certain humane qualities like empathy.

  5. A spectrum of shadowed mirroring.

    Science.gov (United States)

    Wanamaker, Melissa C

    2012-04-01

    The central focus of this paper is to explore and extend Kohut's theory of maternal mirroring and to place it within the current context of psychoanalytic thinking. Kohut believed a child must experience "positive" mirroring from his or her mother in infancy and beyond to ensure development of a healthy self. Kohut alludes, however, to a possible situation in which the mother's face, metaphorically a mirror, can appear "faceless" to her child. From this I have inferred the concept of what I shall call "shadowed mirroring." Clinical and literary examples show that distorted, "shadowed" mirroring appears on a spectrum, with passive mirroring at one end and hostile (either verbal or nonverbal) mirroring on the other; some individuals experience both. I then consider how "shadowed mirroring," especially hostile mirroring, can be understood within the twin contexts of the overall mother-child relationship and present-day Intersubjective/Relational thinking that is both bidirectional and co-constructed. Shadowed mirroring can lead to severe personality dysfunction along the borderline-narcissistic range, as well as to difficulties in the areas of identity formation, failure of self-cohesiveness, and the blunting of certain humane qualities like empathy. PMID:22489812

  6. Relating the "mirrorness" of mirror neurons to their origins.

    Science.gov (United States)

    Kilner, James M; Friston, Karl J

    2014-04-01

    Ever since their discovery, mirror neurons have generated much interest and debate. A commonly held view of mirror neuron function is that they transform "visual information into knowledge," thus enabling action understanding and non-verbal social communication between con-specifics (Rizzolatti & Craighero 2004). This functionality is thought to be so important that it has been argued that mirror neurons must be a result of selective pressure.

  7. Report of the workshop on rf heating in mirror systems

    International Nuclear Information System (INIS)

    This report is prepared from the proceedings of the Workshop on RF Heating in Magnetic Mirror Systems held at DOE Headquarters in Washington, DC, on March 10-12, 1980. The workshop was organized into four consecutive half-day sessions of prepared talks and one half-day discussion. The first session on tandem mirror concepts and program plans served to identify the opportunities for the application of rf power and the specific approaches that are being pursued. A summary of the ideas presented in this session is given. The following sessions of the workshop were devoted to an exposition of current theoretical and experimental knowledge on the interaction of rf power with magnetically confined, dense, high temperature plasmas at frequencies near the electron cyclotron resonance, lower hybrid resonance and ion cyclotron resonance (including magnetosonic) ranges. The conclusions from these proceedings are presented

  8. Study of axisymmetric flow problems by Hele-Shaw models

    Science.gov (United States)

    Rao, P. V.; Sachan, J. S.

    1980-05-01

    Hele-Shaw models have been applied for solving two-dimensional, irrotational flow problems such as flow past bodies or radial seepage flow. The gap between the two plates is varied as a cubic parabola in the radial direction. Results are presented for seven axisymmetric models, including a cylindrical body with 60-deg conical head forms, an axisymmetric sluice entrance with a compound elliptical transition and radial flow to a well with a free surface. Pressure distributions were computed and compared with water-tunnel data, wind-tunnel data, finite-differential solutions and exact solutions.

  9. Axisymmetric solitary waves on the surface of a ferrofluid

    CERN Document Server

    Bourdin, Elise; Falcon, Eric

    2010-01-01

    We report the first observation of axisymmetric solitary waves on the surface of a cylindrical magnetic fluid layer surrounding a current-carrying metallic tube. According to the ratio between the magnetic and capillary forces, both elevation and depression solitary waves are observed with profiles in good agreement with theoretical predictions based on the magnetic analogue of the Korteweg-deVries equation. We also report the first measurements of the velocity and the dispersion relation of axisymmetric linear waves propagating on the cylindrical ferrofluid layer that are found in good agreement with theoretical predictions.

  10. Potential flow past axisymmetric bodies at angle of attack

    Science.gov (United States)

    Kuhlman, J. M.; Shu, J.-Y.

    1984-01-01

    The Karamcheti (1966) suggestion concerning the use of higher order singularity techniques has been developed for the calculation of incompressible flow past an axisymmetric body at angle of attack. Attention is given to the results of a convergence study using this axial singularity method, where solution accuracy has been investigated for ellipsoids of slenderness ratio in the 1-10 range for both axial and inclined flow. Effects of singularity type, element number and size distribution, and singularity line inset distance, are noted, and a paneling scheme is developed which yields accurate results for the class of axisymmetric bodies having continuous body slopes with discontinuous curvature jumps.

  11. A Mirroring Theorem and its Application to a New Method of Unsupervised Hierarchical Pattern Classification

    CERN Document Server

    Deepthi, Dasika Ratna

    2009-01-01

    In this paper, we prove a crucial theorem called Mirroring Theorem which affirms that given a collection of samples with enough information in it such that it can be classified into classes and subclasses then (i) There exists a mapping which classifies and subclassifies these samples (ii) There exists a hierarchical classifier which can be constructed by using Mirroring Neural Networks (MNNs) in combination with a clustering algorithm that can approximate this mapping. Thus, the proof of the Mirroring theorem provides a theoretical basis for the existence and a practical feasibility of constructing hierarchical classifiers, given the maps. Our proposed Mirroring Theorem can also be considered as an extension to Kolmogrovs theorem in providing a realistic solution for unsupervised classification. The techniques we develop, are general in nature and have led to the construction of learning machines which are (i) tree like in structure, (ii) modular (iii) with each module running on a common algorithm (tandem a...

  12. Superconducting (radiation hardened) magnets for mirror fusion devices

    International Nuclear Information System (INIS)

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 1010 to 1011 rads, while magnet stability must be retained after the copper has been exposed to fluence above 1019 neutrons/cm2

  13. Variable focal length deformable mirror

    Science.gov (United States)

    Headley, Daniel; Ramsey, Marc; Schwarz, Jens

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  14. Focusing Mirror with Tunable Eccentricity

    CERN Document Server

    Stürmer, Moritz; Brunne, Jens; Wallrabe, Ulrike

    2013-01-01

    We present a new kind of varifocal mirror with independently adjustable curvatures in the major directions. For actuation we use two stacked piezo bending actuators with crossed in-plane polarization. This mirror can be used for example as an off-axis focusing device with tunable focal length and compensation for a variable angle of incidence or for coma correction. We demonstrate the prototype of such a mirror and characterize the mechanical deflection, as well as the focusing capabilities.

  15. Plane SPDC-Quantum Mirror

    OpenAIRE

    Ion, M. L. D.; Ion, D. B.

    2013-01-01

    In this paper the kinematical correlations from the phase conjugated optics (equivalently with crossing symmetric spontaneous parametric down conversion (SPDC) phenomena) in the nonlinear crystals are used for the description of a new kind of optical device called SPDC-quantum mirrors. Then, some important laws of the plane SPDC-quantum mirrors combined with usual mirrors or lens are proved only by using geometric optics concepts. In particular, these results allow us to obtain a new interpre...

  16. Look Into the Mirror

    Institute of Scientific and Technical Information of China (English)

    夏文虹

    2007-01-01

    Look into the mirror. Who is that girl I see, staring strange back at me? Is it a true myself or someone I have never known? Who am I? Why am I in this world? What am I going to do? So many times I questioned myself. I could never find a perfect answer. Why do I have to do such a lot of hard work? Why must I have so many exams? Why do I always read and read, write and write? Don't tell me it is the very life. Don't tell me these should be my happiness.

  17. Complex/Symplectic Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Wu-yen; Kachru, Shamit; /Stanford U., ITP /SLAC; Tomasiello, Alessandro; /Stanford U., ITP

    2005-10-28

    We construct a class of symplectic non-Kaehler and complex non-Kaehler string theory vacua, extending and providing evidence for an earlier suggestion by Polchinski and Strominger. The class admits a mirror pairing by construction. Comparing hints from a variety of sources, including ten-dimensional supergravity and KK reduction on SU(3)-structure manifolds, suggests a picture in which string theory extends Reid's fantasy to connect classes of both complex non-Kaehler and symplectic non-Kaehler manifolds.

  18. A regularity criterion for the angular velocity component in axisymmetric Navier-Stokes equations

    OpenAIRE

    Ondrej Kreml; Milan Pokorny

    2007-01-01

    We study the non-stationary Navier-Stokes equations in the entire three-dimensional space under the assumption that the data are axisymmetric. We extend the regularity criterion for axisymmetric weak solutions given in [10].

  19. A regularity criterion for the angular velocity component in axisymmetric Navier-Stokes equations

    Directory of Open Access Journals (Sweden)

    Ondrej Kreml

    2007-01-01

    Full Text Available We study the non-stationary Navier-Stokes equations in the entire three-dimensional space under the assumption that the data are axisymmetric. We extend the regularity criterion for axisymmetric weak solutions given in [10].

  20. Bifacial tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wojtczuk, Steven J.; Chiu, Philip T.; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

    2016-06-14

    A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

  1. Mirror development for CTA

    Science.gov (United States)

    Förster, A.; Doro, M.; Brun, P.; Canestrari, R.; Chadwick, P.; Font, L.; Ghigo, M.; Lorenz, E.; Mariotti, M.; Michalowski, J.; Niemiec, J.; Pareschi, G.; Peyaud, B.; Seweryn, K.

    2009-08-01

    The Cherenkov Telescope Array (CTA), currently in its early design phase, is a proposed new project for groundbased gamma-ray astronomy with at least 10 times higher sensitivity than current instruments. CTA is planned to consist of several tens of large Imaging Atmospheric Cherenkov Telescopes (IACTs) with a combined reflective surface of up to 10,000 m2. The challenge for the future CTA array is to develop lightweight and cost efficient mirrors with high production rates, good longterm durability and adequate optical properties. The technologies currently under investigation comprise different methods of carbon fibre/epoxy based substrates, sandwich concepts with cold-slumped surfaces made of thin float glass and different structural materials like aluminum honeycomb, glass foam or PU foam inside, and aluminum sandwich structures with either diamond milled surfaces or reflective foils. The current status of the mirror development for CTA will be summarized together with investigations on the improvement of the reflective surfaces and their protection against degradation.

  2. Braids, Walls, and Mirrors

    CERN Document Server

    Cecotti, Sergio; Vafa, Cumrun

    2011-01-01

    We construct 3d, N=2 supersymmetric gauge theories by considering a one-parameter `R-flow' of 4d, N=2 theories, where the central charges vary while preserving their phase order. Each BPS state in 4d leads to a BPS particle in 3d, and thus each chamber of the 4d theory leads to a distinct 3d theory. Pairs of 4d chambers related by wall-crossing, R-flow to mirror pairs of 3d theories. In particular, the 2-3 wall-crossing for the A_2 Argyres-Douglas theory leads to 3d mirror symmetry for N_f=1 SQED and the XYZ model. Although our formalism applies to arbitrary N=2 models, we focus on the case where the parent 4d theory consists of pairs of M5-branes wrapping a Riemann surface, and develop a general framework for describing 3d N=2 theories engineered by wrapping pairs of M5-branes on three-manifolds. Each 4d chamber, which corresponds to a dual 3d description, maps to a particular tetrahedral decomposition of the UV 3d geometry. In the IR the physics is captured by a single recombined M5-brane which is a branche...

  3. Superconductivity for mirror fusion

    International Nuclear Information System (INIS)

    Mirror experiments have led the way in applying superconductivity to fusion research because of unique requirements for high and steady magnetic fields. The first significant applications were Baseball II at LLL and IMP at ORNL, which used multifilamentary niobium--titanium and niobium--tin tape, respectively. Now the USSR at Kurchatov is building a smaller baseball coil with a 6.5 mm square multifilamentary niobium--titanium superconductor similar to the Baseball II conductor. However, the largest advance in fusion magnets will be used in the Mirror Fusion Test Facility (MFTF) now under construction at LLL. Improvements in the technology of the previous LLL experiment, Baseball II, have been made using new conductor joining techniques, a ventilated wrap-around copper stabilizer, and stronger structural welding methods. The MFTF coil winding is proceeding on a separate former to allow parallel construction of the main structure. Not only does this shorten the project schedule to equal that of other conventional constructions, but a second vacuum barrier is created between the magnet helium and the plasma environment for reliable operation

  4. Stationary axisymmetric spacetimes with a conformally coupled scalar field

    CERN Document Server

    Astorino, Marco

    2014-01-01

    Solution generating techniques for general relativity with a conformally (and minimally) coupled scalar field are pushed forward to build a wide class of asymptotically flat, axisymmetric and stationary spacetimes continuously connected to Kerr. This family contains, amongst other things, rotating extensions of the BBMB black hole and also its angular and mass multipolar generalisations. Further addition of NUT charge is also discussed.

  5. Unified characteristics line theory of spacial axisymmetric plastic problem

    Institute of Scientific and Technical Information of China (English)

    俞茂宏; 李建春; 张永强

    2001-01-01

    The unified strength theory proposed by Yu in 1991 is extended to spacial axisymmetric problem. A unified spacial axismymmetric characteristics line theory based on the unified strength theory is proposed. This theory takes account of different effects of intermediate principal stress on yielding or failure and the SD effect (tensile-compression strength difference) of materials. Various conventional axisymmetric characteristics line theories, whihc are based on the Haar-von Karman plastic condition, Szczepinski hypothesis, Tresca criterion, von Mises criterion and Mohr-Coulomb theory, are special cases of the new theory. Besides, a series of new spacial axisymmetric characteristics fields for different materials can be introduced. It forms a unified spacial axisymmetric characteristics theory. Two examples are calculated with the new theory, the results are compared with those obtained by the finite element program UEPP and those based on the Mohr-Coulomb strength theory. It is shown that the new theory is reliable and feasible. The economic benefit can be obtained from the engineering application of the new theory.

  6. Fluid dynamics analysis of a rotating axisymmetric part using FIDAP

    Science.gov (United States)

    Giles, G. E.; Kirkpatrick, J. R.; Wendel, M. W.; Bullock, J. S., IV

    1990-03-01

    The effect of fluid flow on electrochemical plating on a rotating axisymmetric part was investigated by using a finite element computer code, FIDAP. The results from these investigations compare well with analytical results for laminar flow conditions. The addition of a nonrotating shield was also investigated for laminar flow conditions. An attempt to extend these analyses to turbulent conditions was unsuccessful.

  7. Consistent lattice Boltzmann methods for incompressible axisymmetric flows

    Science.gov (United States)

    Zhang, Liangqi; Yang, Shiliang; Zeng, Zhong; Yin, Linmao; Zhao, Ya; Chew, Jia Wei

    2016-08-01

    In this work, consistent lattice Boltzmann (LB) methods for incompressible axisymmetric flows are developed based on two efficient axisymmetric LB models available in the literature. In accord with their respective original models, the proposed axisymmetric models evolve within the framework of the standard LB method and the source terms contain no gradient calculations. Moreover, the incompressibility conditions are realized with the Hermite expansion, thus the compressibility errors arising in the existing models are expected to be reduced by the proposed incompressible models. In addition, an extra relaxation parameter is added to the Bhatnagar-Gross-Krook collision operator to suppress the effect of the ghost variable and thus the numerical stability of the present models is significantly improved. Theoretical analyses, based on the Chapman-Enskog expansion and the equivalent moment system, are performed to derive the macroscopic equations from the LB models and the resulting truncation terms (i.e., the compressibility errors) are investigated. In addition, numerical validations are carried out based on four well-acknowledged benchmark tests and the accuracy and applicability of the proposed incompressible axisymmetric LB models are verified.

  8. Hawking radiation via tunnelling from general stationary axisymmetric black holes

    Institute of Scientific and Technical Information of China (English)

    Zhang Jing-Yi; Fan Jun-Hui

    2007-01-01

    Hawking radiation is viewed as a tunnelling process. In this way the emission rates of massless particles and massive particles tunnelling across the event horizon of general stationary axisymmetric black holes are calculated,separately. The emission spectra of these two different kinds of outgoing particles have the same functional form and both are consistent with an underlying unitary theory.

  9. Geometric integrator for charged particle orbits in axisymmetric fusion devices

    Science.gov (United States)

    Kasilov, S. V.; Runov, A. M.; Kernbichler, W.

    2016-10-01

    A semi-analytical geometric integrator of guiding centre orbits in an axisymmetric tokamak is described. The integrator preserves all three invariants of motion up to computer accuracy at the expense of reduced orbit accuracy and it is roughly an order of magnitude more efficient than a direct solution of the equations of guiding centre motion with a standard high order adaptive ODE integrator.

  10. Stability of a compound sessile drop at the axisymmetric configuration.

    Science.gov (United States)

    Zhang, Ying; Chatain, Dominique; Anna, Shelley L; Garoff, Stephen

    2016-01-15

    The equilibrium configuration of compound sessile drops has been calculated previously in the absence of gravity. Using the Laplace equations, we establish seven dimensionless parameters describing the axisymmetric configuration in the presence of gravity. The equilibrium axisymmetric configuration can be either stable or unstable depending on the fluid properties. A stability criterion is established by calculating forces on a perturbed Laplacian shape. In the zero Bond number limit, the stability criterion depends on the density ratio, two ratios of interfacial tensions, the volume ratio of the two drops, and the contact angle. We use Surface Evolver to examine the stability of compound sessile drops at small and large Bond numbers and compare with the zero Bond number approximation. Experimentally, we realize a stable axisymmetric compound sessile drop in air, where the buoyancy force exerted by the air is negligible. Finally, using a pair of fluids in which the density ratio can be tuned nearly independently of the interfacial tensions, the stability transition is verified for the axisymmetric configuration. Even though the perturbations are different for the theory, simulations and experiments, both simulations and experiments agree closely with the zero Bond number approximation, exhibiting a small discrepancy at large Bond number. PMID:26433481

  11. Modelling axisymmetric cod-ends made of different mesh types

    DEFF Research Database (Denmark)

    Priour, D.; Herrmann, Bent; O'Neill, F.G.

    2009-01-01

    Cod-ends are the rearmost part of trawl fishing gears. They collect the catch, and for many important species it is where fish selection takes place. Generally speaking they are axisymmetric, and their shape is influenced by the catch volume, the mesh shape, and the material characteristics...

  12. Numerical computation of gravitational field for general axisymmetric objects

    Science.gov (United States)

    Fukushima, Toshio

    2016-10-01

    We developed a numerical method to compute the gravitational field of a general axisymmetric object. The method (i) numerically evaluates a double integral of the ring potential by the split quadrature method using the double exponential rules, and (ii) derives the acceleration vector by numerically differentiating the numerically integrated potential by Ridder's algorithm. Numerical comparison with the analytical solutions for a finite uniform spheroid and an infinitely extended object of the Miyamoto-Nagai density distribution confirmed the 13- and 11-digit accuracy of the potential and the acceleration vector computed by the method, respectively. By using the method, we present the gravitational potential contour map and/or the rotation curve of various axisymmetric objects: (i) finite uniform objects covering rhombic spindles and circular toroids, (ii) infinitely extended spheroids including Sérsic and Navarro-Frenk-White spheroids, and (iii) other axisymmetric objects such as an X/peanut-shaped object like NGC 128, a power-law disc with a central hole like the protoplanetary disc of TW Hya, and a tear-drop-shaped toroid like an axisymmetric equilibrium solution of plasma charge distribution in an International Thermonuclear Experimental Reactor-like tokamak. The method is directly applicable to the electrostatic field and will be easily extended for the magnetostatic field. The FORTRAN 90 programs of the new method and some test results are electronically available.

  13. Non-axisymmetric flow characteristics in centrifugal compressor

    Science.gov (United States)

    Wang, Leilei; Lao, Dazhong; Liu, Yixiong; Yang, Ce

    2015-06-01

    The flow field distribution in centrifugal compressor is significantly affected by the non-axisymmetric geometry structure of the volute. The experimental and numerical simulation methods were adopted in this work to study the compressor flow field distribution with different flow conditions. The results show that the pressure distributionin volute is characterized by the circumferential non-uniform phenomenon and the pressure fluctuation on the high static pressure zone propagates reversely to upstream, which results in the non-axisymmetric flow inside the compressor. The non-uniform level of pressure distribution in large flow condition is higher than that in small flow condition, its effect on the upstream flow field is also stronger. Additionally, the non-uniform circumferential pressure distribution in volute brings the non-axisymmetric flow at impeller outlet. In different flow conditions,the circumferential variation of the absolute flow angle at impeller outlet is also different. Meanwhile, the non-axisymmetric flow characteristics in internal impeller can be also reflected by the distribution of the mass flow. The high static pressure region of the volute corresponds to the decrease of mass flow in upstream blade channel, while the low static pressure zone of the volute corresponds to the increase of the mass flow. In small flow condition, the mass flow difference in the blade channel is bigger than that in the large flow condition.

  14. Non-Axisymmetric Shaping of Tokamaks Preserving Quasi-Axisymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Long-Poe Ku and Allen H. Boozer

    2009-06-05

    If quasi-axisymmetry is preserved, non-axisymmetric shaping can be used to design tokamaks that do not require current drive, are resilient to disruptions, and have robust plasma stability without feedback. Suggestions for addressing the critical issues of tokamaks can only be validated when presented with sufficient specificity that validating experiments can be designed. The purpose of this paper is provide that specificity for non-axisymmetric shaping. To our knowledge, no other suggestions for the solution of a number of tokamak issues, such as disruptions, have reached this level of specificity. Sequences of three-field-period quasi-axisymmetric plasmas are studied. These sequences address the questions: (1) What can be achieved at various levels of non-axisymmetric shaping? (2) What simplifications to the coils can be achieved by going to a larger aspect ratio? (3) What range of shaping can be achieved in a single experimental facility? The sequences of plasmas found in this study provide a set of interesting and potentially important configurations.

  15. ON INTEGRITY ASSESSMENT OF AXISYMMETRIC COMPONENTS OPERATING WITHIN CREEP REGIME

    Institute of Scientific and Technical Information of China (English)

    ZARRABI K; LAWRENCE Ng

    2006-01-01

    A multiaxial paradigm for predicting creep damage/lives of components is described. Although in principle the paradigm is general, it is verified using axisymmetric experimental data. It is shown that the proposed paradigm is capable of predicting creep lives with an error of less than 2%. It is also shown that the proposed paradigm is more accurate than the reference stress method.

  16. Modification of the Argonne tandem

    International Nuclear Information System (INIS)

    For nuclear structure experiments with heavy ions it is necessary to have ion energies in excess of 5 MeV per nucleon. At the Argonne tandem FN accelerator this was accomplished by the addition of a superconducting linac. Modifications of the FN tandem to improve the performance of the pair is described

  17. Heliostat mirror survey and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lind, M.A.; Buckwalter, C.Q.; Daniel, J.L.; Hartman, J.S.; Thomas, M.T.; Pederson, L.R.

    1979-09-01

    The mirrors used on concentrating solar systems must be able to withstand severe and sustained environmental stresses for long periods of time if they are to be economically acceptable. Little is known about how commercially produced wet process silvered second surface mirrors will withstand the test of time in solar applications. Field experience in existing systems has shown that the performance of the reflective surface varies greatly with time and is influenced to a large extent by the construction details of the mirror module. Degradation of the reflective layer has been seen that ranges from non-observable to severe. The exact mechanisms involved in the degradation process are not well understood from either the phenomenological or microanalytical points of view and are thus subject to much debate. The three chapters of this report summarize the work recently performed in three general areas that are key to understanding and ultimately controlling the degradation phenomena. These areas are: a survey of the present commercial mirroring industry, the microanalytical examination of numerous degraded and nondegraded mirrors, and an investigation of several novel techniques that might be used to extend the life of heliostat mirrors. Appendices include: (a) list of mirror manufacturers and (b) recommended specifications for second surface silvered mirrors for central receiver heliostat applications. (WHK)

  18. JAERI tandem-accelerator and tandem-booster

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In 1982, aiming at the new development of atomic energy research, the tandem accelerator of Japan Atomic Energy Research Institute (JAERI) was installed. In fiscal year 1993, the superconducting boosters which can increase the ion energy by up to 4 times were added, and the research in the region below 1000 MeV became possible. Those are electrostatic type accelerators which are easy to be used especially in basic research field, and are useful for future research. The tandem accelerator has been operated while maintaining the first class performance as the accelerator for various kinds of heavy ion beam. It has the special shape among electrostatic type accelerators, and is excellent in the easiness of control and stability. The main particulars of the tandem accelerator are shown. As for the ion sources of the tandem accelerator, three cesium sputter type ion sources are installed on two high voltage stands. The kinds of the ions which can be accelerated are mainly negative ions. As the improvement, electron cyclotron resonance (ECR) ion sources are expected to be adopted. As for the tandem boosters, the 1/4 wavelength type resonance hollow cylinder was adopted. The constitution of the tandem boosters is explained. The way of utilizing the tandem accelerator system and the aim for hereafter are reported. (K.I.)

  19. More questions for mirror neurons.

    Science.gov (United States)

    Borg, Emma

    2013-09-01

    The mirror neuron system is widely held to provide direct access to the motor goals of others. This paper critically investigates this idea, focusing on the so-called 'intentional worry'. I explore two answers to the intentional worry: first that the worry is premised on too limited an understanding of mirror neuron behaviour (Sections 2 and 3), second that the appeal made to mirror neurons can be refined in such a way as to avoid the worry (Section 4). I argue that the first response requires an account of the mechanism by which small-scale gestures are supposedly mapped to larger chains of actions but that none of the extant accounts of this mechanism are plausible. Section 4 then briefly examines refinements of the mirror neuron-mindreading hypothesis which avoid the intentional worry. I conclude that these refinements may well be plausible but that they undermine many of the claims standardly made for mirror neurons.

  20. Mirror left-right symmetry

    International Nuclear Information System (INIS)

    We propose a novel SU(3)c×SU(2)L×SU(2)R×U(1)B-L left-right symmetric model where the standard model fermion and Higgs fields are SU(2)L doublets or SU(2) singlets while their mirror partners are SU(2)R doublets or SU(2) singlets. The scalar fields also include a real singlet for dark matter and two SU(2) triplets for seesaw. The mixing between the standard model and mirror fermions is forbidden by a Z2×Z2′ discrete symmetry. The mirror charged fermions can decay into their standard model partners with the dark-matter scalar while the mirror neutrinos can decay into the mirror charged fermions through the right-handed gauge interactions. Our model can have new implications on the strong CP problem, leptogenesis, collider phenomenology and dark matter detection.

  1. Mirror man: a case of skilled deliberate mirror writing.

    Science.gov (United States)

    McIntosh, Robert D; De Lucia, Natascia; Della Sala, Sergio

    2014-01-01

    Mirror writing is a striking behaviour that is common in children and can reemerge in adults following brain damage. Skilled deliberate mirror writing has also been reported, but only anecdotally. We provide the first quantitative study of skilled deliberate mirror writing. K.B. can write forward or backward, vertically upright or inverted, with the hands acting alone or simultaneously. K.B. is predominantly left handed, but writes habitually with his right hand. Of his writing formats, his left hand mirror writing is by far the most similar in style to his normal handwriting. When writing bimanually, he performs better when his two hands make mirror-symmetrical movements to write opposite scripts than if they move in the same direction to write similar scripts. He has no special facility for reading mirrored text. These features are consistent with prior anecdotal cases and support a motor basis for K.B.'s ability, according to which his skilled mirror writing results from the left hand execution of a low-level motor program for a right hand abductive writing action. Our methods offer a novel framework for investigating the sharing of motor representations across effectors.

  2. The kinaesthetic mirror illusion: How much does the mirror matter?

    Science.gov (United States)

    Chancel, Marie; Brun, Clémentine; Kavounoudias, Anne; Guerraz, Michel

    2016-06-01

    The reflection of a moving hand in a mirror positioned in the sagittal plane can create an illusion of symmetrical, bimanual movement. This illusion is implicitly presumed to be of visual origin. However, muscle proprioceptive afferents of the arm reflected in the mirror might also affect the perceived position and movement of the other arm. We characterized the relative contributions of visual and proprioceptive cues by performing two experiments. In Experiment 1, we sought to establish whether kinaesthetic illusions induced using the mirror paradigm would survive marked visual impoverishment (obtained by covering between 0 and 100 % of the mirror in 16 % steps). We found that the mirror illusion was only significantly influenced when the visual degradation was 84 % or more. In Experiment 2, we masked the muscle proprioceptive afferents of the arm reflected in the mirror by co-vibrating antagonistic muscles. We found that masking the proprioceptive afferents reduced the velocity of the illusory displacement of the other arm. These results confirm that the mirror illusion is not a purely visual illusion but emerges from a combination of congruent signals from the two arms, i.e. visual afferents from the virtually moving arm and proprioceptive afferents from the contralateral, moving arm. PMID:26790422

  3. Advanced Mirror & Modelling Technology Development

    Science.gov (United States)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  4. JWST NIRCam flight mirror assemblies

    Science.gov (United States)

    Mammini, Paul V.; Holmes, Howard C.; Huff, Lynn; Jacoby, Mike S.; Lopez, Frank

    2011-10-01

    The Near Infrared Camera (NIRCam) instrument for NASA's James Webb Space Telescope (JWST) has an optical prescription which includes numerous fold mirror assemblies. The instrument will operate at 35K after experiencing launch loads at ~293K. The optic mounts must accommodate all associated thermal and mechanical stresses, plus maintain exceptional optical quality during operation. Lockheed Martin Space Systems Company (LMSSC) conceived, designed, analyzed, assembled, tested, and integrated the mirror assemblies for the NIRCam instrument. This paper covers the design, analysis, assembly, and test of two of the instruments key fold mirrors.

  5. Plane SPDC-Quantum Mirror

    CERN Document Server

    Ion, M L D

    2013-01-01

    In this paper the kinematical correlations from the phase conjugated optics (equivalently with crossing symmetric spontaneous parametric down conversion (SPDC) phenomena) in the nonlinear crystals are used for the description of a new kind of optical device called SPDC-quantum mirrors. Then, some important laws of the plane SPDC-quantum mirrors combined with usual mirrors or lens are proved only by using geometric optics concepts. In particular, these results allow us to obtain a new interpretation of the recent experiments on the two-photon geometric optics.

  6. Polarimetry with multiple mirror telescopes

    Science.gov (United States)

    West, S. C.

    1986-01-01

    The polarizations of multiple mirror telescopes are calculated using Mueller calculus. It is found that the Multiple Mirror Telescope (MMT) produces a constant depolarization that is a function of wavelength and independent of sky position. The efficiency and crosstalk are modeled and experimentally verified. The two- and four-mirror new generation telescopes are found to produce sinusoidal depolarization for which an accurate interpretation of the incident Stokes vector requires inverse matrix calculations. Finally, the depolarization of f/1 paraboloids is calculated and found to be less than 0.1 percent at 3000 A.

  7. Evanescent Wave Atomic Mirror

    Science.gov (United States)

    Ghezali, S.; Taleb, A.

    2008-09-01

    A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely

  8. Mobility of an axisymmetric particle near an elastic interface

    CERN Document Server

    Daddi-Moussa-Ider, Abdallah; Gekle, Stephan

    2016-01-01

    Using a fully analytical theory, we compute the leading order corrections to the translational, rotational and translation-rotation coupling mobilities of an arbitrary axisymmetric particle immersed in a Newtonian fluid moving near an elastic cell membrane that exhibits resistance towards stretching and bending. The frequency-dependent mobility corrections are expressed as general relations involving separately the particle's shape-dependent bulk mobility and the shape-independent parameters such as the membrane-particle distance, the particle orientation and the characteristic frequencies associated with shearing and bending of the membrane. This makes the equations applicable to an arbitrary-shaped axisymmetric particle provided that its bulk mobilities are known, either analytically or numerically. For a spheroidal particle, these general relations reduce to simple expressions in terms of the particle's eccentricity. We find that the corrections to the translation-rotation coupling mobility are primarily d...

  9. A Non-axisymmetric Spherical α2-Dynamo

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Using the Chebyshev-tau method, the generation of oscillatory nonaxisymmetric stellar magnetic fields by the α2-dynamo is studied in spherical geometry. Following the boundary conditions given by Schubert & Zhang, the spherical α2-dynamo consists of a fully convective spherical shell with inner radius ri and outer radius ro. A comparison of the critical dynamo numbers of axisymmetric and φ-dependent modes for different thicknesses of the convective shell and different α-profiles leads to the following qualitative results: (I) when the angular factor of α-profile is sinnθ cosθ (n = 1, 2, 4) the solutions of the α2-dynamo are oscillatory and non-axisymmetric, (ii) the thinner the convective shell, the more easily is the nonaxisymmetric mode excited and the higher is the latitudinal wave number, (iii) the thickness of the outer convective shell has an effect on the symmetries of the magnetic fields.

  10. Stable photon orbits in stationary axisymmetric electrovacuum spacetimes

    CERN Document Server

    Dolan, Sam R

    2016-01-01

    We investigate the existence and phenomenology of stable photon orbits (SPOs) in stationary axisymmetric electrovacuum spacetimes in four dimensions. First, we classify the equatorial circular photon orbits of Kerr-Newman spacetimes in the charge-spin plane. Second, using a Hamiltonian formulation, we show that Reissner-Nordstr\\"om di-holes (a family encompassing the Majumdar-Papapetrou and Weyl-Bach special cases) admit SPOs, in a certain parameter regime that we investigate. Third, we explore the transition from order to chaos for typical SPOs bounded within a torus around a di-hole, via a selection of Poincar\\'e sections. Finally, for general axisymmetric stationary spacetimes, we show that the Einstein-Maxwell field equations allow for the existence of SPOs in electrovacuum; but not in pure vacuum.

  11. Stable photon orbits in stationary axisymmetric electrovacuum spacetimes

    Science.gov (United States)

    Dolan, Sam R.; Shipley, Jake O.

    2016-08-01

    We investigate the existence and phenomenology of stable photon orbits (SPOs) in stationary axisymmetric electrovacuum spacetimes in four dimensions. First, we review the classification of equatorial circular photon orbits on Kerr-Newman spacetimes in the charge-spin plane. Second, using a Hamiltonian formulation, we show that Reissner-Nordström diholes (a family encompassing the Majumdar-Papapetrou and Weyl-Bach special cases) admit SPOs, in a certain parameter regime that we investigate. Third, we explore the transition from order to chaos for typical SPOs bounded within a toroidal region around a dihole, via a selection of Poincaré sections. Finally, for general axisymmetric stationary spacetimes, we show that the Einstein-Maxwell field equations allow for the existence of SPOs in electro vacuum, but not in pure vacuum.

  12. AXISYMMETRIC FLOW THROUGH A PERMEABLE NEAR-SPHERE

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    An analytical approach is described for the axisymmetric flow through a permeable near-sphere with a modification to boundary conditions in order to account permeability. The Stokes equation was solved by a regular perturbation technique up to the second order correction in epsilon representing the deviation from the radius of nondeformed sphere. The drag and the flow rate were calculated and the results were evaluated from the point of geometry and the permeability of the surface. An attempt also was made to apply the theory to the filter feeding problem. The filter appendages of small ecologically important aquatic organisms were modeled as axisymmetric permeable bodies, therefore a rough model for this problem was considered here as an oblate spheroid or near-sphere.

  13. Axisymmetric equilibria of a gravitating plasma with incompressible flows

    CERN Document Server

    Throumoulopoulos, G N

    2001-01-01

    It is found that the ideal magnetohydrodynamic equilibrium of an axisymmetric gravitating magnetically confined plasma with incompressible flows is governed by a second-order elliptic differential equation for the poloidal magnetic flux function containing five flux functions coupled with a Poisson equation for the gravitation potential, and an algebraic relation for the pressure. This set of equations is amenable to analytic solutions. As an application, the magnetic-dipole static axisymmetric equilibria with vanishing poloidal plasma currents derived recently by Krasheninnikov, Catto, and Hazeltine [Phys. Rev. Lett. {\\bf 82}, 2689 (1999)] are extended to plasmas with finite poloidal currents, subject to gravitating forces from a massive body (a star or black hole) and inertial forces due to incompressible sheared flows. Explicit solutions are obtained in two regimes: (a) in the low-energy regime $\\beta_0\\approx \\gamma_0\\approx \\delta_0 \\approx\\epsilon_0\\ll 1$, where $\\beta_0$, $\\gamma_0$, $\\delta_0$, and $\\...

  14. Application of the PTT model to axisymmetric free surface flows

    Science.gov (United States)

    Merejolli, R.; Paulo, G. S.; Tomé, M. F.

    2013-10-01

    This work is concerned with numerical simulation of axisymmetric viscoelastic free surface flows using the Phan-Thien-Tanner (PTT) constitutive equation. A finite difference technique for solving the governing equations for unsteady incompressible flows written in Cylindrical coordinates on a staggered grid is described. The fluid is modelled by a Marker-and-Cell type method and an accurate representation of the fluid surface is employed. The full free surface stress conditions are applied. The numerical method is verified by comparing numerical predictions of fully developed flow in a pipe with the corresponding analytic solutions. To demonstrate that the numerical method can simulate axisymmetric free surface flows governed by the PTT model, numerical results of the flow evolution of a drop impacting on a rigid dry plate are presented. In these simulations, the rheological effects of the parameters ɛ and ξ are investigated.

  15. The axisymmetric jet in a rotating reference frame

    Energy Technology Data Exchange (ETDEWEB)

    Lawrie, A G W; Scott, J F; Godeferd, F; Cambon, C [LMFA, Ecole Centrale de Lyon (France); Duran-Matute, M; Flor, J-B [LEGI, Universite Joseph Fourier, Grenoble (France); Danaila, L, E-mail: andrew.lawrie@ec-lyon.fr [CORIA, Universite de Rouen (France)

    2011-12-22

    The axisymmetric jet is a geometrically simple, statistically stationary example of inhomogenous turbulence. Considering conservation of volume and momentum, Morton et al. (1956) offered a prediction of jet development, characterised solely by an unknown, constant entrainment coefficient. The presence of background rotation complicates the kinematics of the entrainment, and without special treatment, the jet suffers a helical instability. Here, we present one technique which stabilises the axisymmetric jet, yet preserves its desirable turbulent properties. The jet offers a steady-state flow in which there is an axial variation of local Rossby number, and after decay along the axis to a critical value, cones of inertial waves emerge. In this paper, we demonstrate these features using our numerical software MOBILE, offer our solution to stabilise the jet, and explain the mechanisms involved.

  16. Dynamics and thermodynamics of axisymmetric flows: I. Theory

    CERN Document Server

    Leprovost, N; Chavanis, P H; Leprovost, Nicolas; Chavanis, Pierre-Henri

    2005-01-01

    We develop new variational principles to study stability and equilibrium of axisymmetric flows. We show that there is an infinite number of steady state solutions. We show that these steady states maximize a (non-universal) $H$-function. We derive relaxation equations which can be used as numerical algorithm to construct stable stationary solutions of axisymmetric flows. In a second part, we develop a thermodynamical approach to the equilibrium states at some fixed coarse-grained scale. We show that the resulting distribution can be divided in a universal part coming from the conservation of robust invariants and one non-universal determined by the initial conditions through the fragile invariants (for freely evolving systems) or by a prior distribution encoding non-ideal effects such as viscosity, small-scale forcing and dissipation (for forced systems). Finally, we derive a parameterization of inviscid mixing to describe the dynamics of the system at the coarse-grained scale.

  17. Steady-State Axisymmetric MHD Solutions with Various Boundary Conditions

    CERN Document Server

    Wang, Lile

    2014-01-01

    Axisymmetric magnetohydrodynamics (MHD) can be invoked for describing astrophysical magnetized flows and formulated to model stellar magnetospheres including main sequence stars (e.g. the Sun), compact stellar objects [e.g. magnetic white dwarfs (MWDs), radio pulsars, anomalous X-ray pulsars (AXPs), magnetars, isolated neutron stars etc.], and planets as a major step forward towards a full three-dimensional model construction. Using powerful and reliable numerical solvers based on two distinct finite-difference method (FDM) and finite-element method (FEM) schemes of algorithm, we examine axisymmetric steady-state or stationary MHD models in Throumoulopoulos & Tasso (2001), finding that their separable semi-analytic nonlinear solutions are actually not unique given their specific selection of several free functionals and chosen boundary conditions. The multiplicity of nonlinear steady MHD solutions gives rise to differences in the total energies contained in the magnetic fields and flow velocity fields as ...

  18. Linear Stability of Hill's Vortex to Axisymmetric Perturbations

    CERN Document Server

    Protas, Bartosz

    2015-01-01

    We consider the linear stability of Hill's vortex with respect to axisymmetric perturbations. Given that Hill's vortex is a solution of a free-boundary problem, this stability analysis is performed by applying methods of shape differentiation to the contour dynamics formulation of the problem in a 3D axisymmetric geometry. This approach allows us to systematically account for the effect of boundary deformations on the linearized evolution of the vortex under the constraint of constant circulation. The resulting singular integro-differential operator defined on the vortex boundary is discretized with a highly accurate spectral approach. This operator has two unstable and two stable eigenvalues complemented by a continuous spectrum of neutrally-stable eigenvalues. By considering a family of suitably regularized (smoothed) eigenvalue problems solved with a range of numerical resolutions we demonstrate that the corresponding eigenfunctions are in fact singular objects in the form of infinitely sharp peaks localiz...

  19. Axisymmetric smoothed particle hydrodynamics with self-gravity

    OpenAIRE

    García Senz, Domingo; Relano, A.; Cabezón Gómez, Rubén Martín; Bravo Guil, Eduardo

    2008-01-01

    The axisymmetric form of the hydrodynamic equations within the smoothed particle hydrodynamics (SPH) formalism is presented and checked using idealized scenarios taken from astrophysics (free fall collapse, implosion and further pulsation of a Sun-like star), gas dynamics (wall heating problem, collision of two streams of gas) and inertial confinement fusion (ablative implosion of a small capsule). New material concerning the standard SPH formalism is given. That includes the numerical handli...

  20. Stationary and Axisymmetric Perfect-Fluid Solutions with Conformal Motion

    OpenAIRE

    Mars, Marc; Senovilla, Jose M M

    2002-01-01

    Stationary and axisymmetric perfect-fluid metrics are studied under the assumption of the existence of a conformal Killing vector field and in the general case of differential rotation. The possible Lie algebras for the conformal group and corresponding canonical line-elements are explicitly given. It turns out that only four different cases appear, the abelian and other three called I, II and III. We explicitly find all the solutions in the abelian and I cases. For the abelian case the gener...

  1. AXISYMMETRIC MHD INSTABILITIES IN SOLAR/STELLAR TACHOCLINES

    International Nuclear Information System (INIS)

    Extensive studies over the past decade showed that HD and MHD nonaxisymmetric instabilities exist in the solar tachocline for a wide range of toroidal field profiles, amplitudes, and latitude locations. Axisymmetric instabilities (m = 0) do not exist in two dimensions, and are excited in quasi-three-dimensional shallow-water systems only for very high field strengths (2 mG). We investigate here MHD axisymmetric instabilities in a three-dimensional thin-shell model of the solar/stellar tachocline, employing a hydrostatic, non-Boussinesq system of equations. We deduce a number of general properties of the instability by use of an integral theorem, as well as finding detailed numerical solutions for unstable modes. Toroidal bands become unstable to axisymmetric perturbations for solar-like field strengths (100 kG). The e-folding time can be months down to a few hours if the field strength is 1 mG or higher, which might occur in the solar core, white dwarfs, or neutron stars. These instabilities exist without rotation, with rotation, and with differential rotation, although both rotation and differential rotation have stabilizing effects. Broad toroidal fields are stable. The instability for modes with m = 0 is driven from the poleward shoulder of banded profiles by a perturbation magnetic curvature stress that overcomes the stabilizing Coriolis force. The nonaxisymmetric instability tips or deforms a band; with axisymmetric instability, the fluid can roll in latitude and radius, and can convert bands into tubes stacked in radius. The velocity produced by this instability in the case of low-latitude bands crosses the equator, and hence can provide a mechanism for interhemispheric coupling.

  2. Non-axisymmetric oscillations of differentially rotating relativistic stars

    OpenAIRE

    Passamonti, Andrea; Stavridis, Adamantios; Kokkotas, Kostas

    2007-01-01

    Non-axisymmetric oscillations of differentially rotating stars are studied using both slow rotation and Cowling approximation. The equilibrium stellar models are relativistic polytropes where differential rotation is described by the relativistic j-constant rotation law. The oscillation spectrum is studied versus three main parameters: the stellar compactness $M/R$, the degree of differential rotation $A$ and the number of maximun couplings $\\ell_{\\rm max}$. It is shown that the rotational sp...

  3. Study on the Interaction of Non-axisymmetric Binary Vortices

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the context of advection dynamics, 19 experiments (Exps.) are performed using a quasi-geostrophic barotropic vorticity equation model to explore the condition for the mergence of binary vortices and the self-organization of the larger scale vortex. Results show that the initial distance between the centers of binary vortices and the non-axisymmetric distributions of their initial vorticity are two factors affecting the mergence of binary vortices. There is a critical distance for the mergence of initial symmetric binary vortices, however, the mergence of initial non-axisymmetric binary vortices is also affected by the asymmetric structure of initial vortices. The self-organization processes in 19 experiments can be classified into two types: one is the merging of identical, axisymmetric binary vortices in which the interaction of the two vortices undergoes slowly change, rapid change, and the formation, stretching, and development of the filaments of vorticity, and the two vortices merge into a symmetric vortex, with its vorticity piled up in the inner region coming from the two initial vortices, and the vorticity of the spiral band in the outer region from the stretching of the filaments of the two initial vortices. And the other type is the merging of the two non-axisymmetric initial vortices of an elliptic vortex and an eccentric vortex hi which the elliptic vortex, on the one hand, mutually rotates, and on the other hand moves towards the center of the computational domain, at the same time expands its vorticity area, and at last forms the inner core of resultant state vortex; and the eccentric vortex mutually rotates, meanwhile continuously stretches, and finally forms the spiral band of resultant state vortex. The interaction process is characteristic of the vorticity piled up in the inner core region of resultant state vortex originating from the elliptic vortex and the vorticity in spiral band mainly from the successive stretch and rupture of the

  4. Viscosity Effects on the Dynamics of Long Axisymmetric Liquid Bridges

    OpenAIRE

    Meseguer Ruiz, José; Perales Perales, José Manuel

    1992-01-01

    In this paper the dynamics of axisymmetric liquid columns held by capillary forces between two circular, concentric, solid disks is considered. The problem has been solved by using an one-dimensional model known in the literature as the Cosserat model, which includes viscosity effects, where the axial velocity is considered constant in each section of the liquid bridge. The dynamic response of the bridge to an excitation consisting of a small amplitude vibration of the supporting disks has be...

  5. Stability of perturbed geodesics in $nD$ axisymmetric spacetimes

    CERN Document Server

    Coimbra-Araujo, C H

    2016-01-01

    The effect of self-gravity of a disk matter is evaluated by the simplest modes of oscillation frequencies for perturbed circular geodesics. It is plotted the radial profiles of free oscillations of an equatorial circular geodesic perturbed within the orbital plane or in the vertical direction. The calculation is carried out to geodesics of an axisymmetric $n$-dimensional spacetime. The profiles are computed by examples of disks embeded in five-dimensional or six-dimensional spacetime, where it is studied the motion of free test particles for three axisymmetric cases: (i) the Newtonian limit of a general proposed $5D$ and $6D$ axisymmetric spacetime; (ii) a simple Randall-Sundrum $5D$ spacetime; (iii) general $5D$ and $6D$ Randall-Sundrum spacetime. The equation of motion of such particles is derived and the stability study is computed for both horizontal and vertical directions, to see how extra dimensions could affect the system. In particular, we investigate a disk constructed from Schwarzschild and Chazy-C...

  6. Responder fast steering mirror

    Science.gov (United States)

    Bullard, Andrew; Shawki, Islam

    2013-10-01

    Raytheon Space and Airborne Systems (SAS) has designed, built and tested a 3.3-inch diameter fast steering mirror (FSM) for space application. This 2-axis FSM operates over a large angle (over 10 degree range), has a very high servo bandwidth (over 3.3 Khz closed loop bandwidth), has nanoradian-class noise, and is designed to support microradian class line of sight accuracy. The FSM maintains excellent performance over large temperature ranges (which includes wave front error) and has very high reliability with the help of fully redundant angle sensors and actuator circuits. The FSM is capable of achieving all its design requirements while also being reaction-compensated. The reaction compensation is achieved passively and does not need a separate control loop. The FSM has undergone various environmental testing which include exported forces and torques and thermal vacuum testing that support the FSM design claims. This paper presents the mechanical design and test results of the mechanism which satisfies the rigorous vacuum and space application requirements.

  7. Tinbergen on mirror neurons.

    Science.gov (United States)

    Heyes, Cecilia

    2014-01-01

    Fifty years ago, Niko Tinbergen defined the scope of behavioural biology with his four problems: causation, ontogeny, survival value and evolution. About 20 years ago, there was another highly significant development in behavioural biology-the discovery of mirror neurons (MNs). Here, I use Tinbergen's original four problems (rather than the list that appears in textbooks) to highlight the differences between two prominent accounts of MNs, the genetic and associative accounts; to suggest that the latter provides the defeasible 'best explanation' for current data on the causation and ontogeny of MNs; and to argue that functional analysis, of the kind that Tinbergen identified somewhat misleadingly with studies of 'survival value', should be a high priority for future research. In this kind of functional analysis, system-level theories would assign MNs a small, but potentially important, role in the achievement of action understanding-or another social cognitive function-by a production line of interacting component processes. These theories would be tested by experimental intervention in human and non-human animal samples with carefully documented and controlled developmental histories.

  8. Reflections on a Black Mirror

    CERN Document Server

    Good, Michael R R

    2016-01-01

    A black mirror is an accelerated boundary that produces particles in an exact correspondence to an evaporating black hole. We investigate the spectral dynamics of the particle creation during the formation process.

  9. Polarimetric calibration of large mirrors

    CERN Document Server

    Ariste, A Lopez

    2015-01-01

    Aims: To propose a method for the polarimetric calibration of large astronomical mirrors that does not require use of special optical devices nor knowledge of the exact polarization properties of the calibration target. Methods: We study the symmetries of the Mueller matrix of mirrors to exploit them for polarimetric calibration under the assumptions that only the orientation of the linear polarization plane of the calibration target is known with certainty. Results: A method is proposed to calibrate the polarization effects of single astronomical mirrors by the observation of calibration targets with known orientation of the linear polarization. We study the uncertainties of the method and the signal-to-noise ratios required for an acceptable calibration. We list astronomical targets ready for the method. We finally extend the method to the calibration of two or more mirrors, in particular to the case when they share the same incidence plane.

  10. Advanced Mirror Material System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Peregrine will bring together recent laboratory developments and mature the technology so that complete mirror and telescope assemblies can be reliably and robustly...

  11. Fast Picometer Mirror Mount Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a 6DOF controllable mirror mount with high dynamic range and fast tip/tilt capability for space based applications. It will enable the...

  12. Dielectric Coatings for IACT Mirrors

    CERN Document Server

    Förster, A; Chadwick, P; Held, M

    2013-01-01

    Imaging Atmospheric Cherenkov Telescopes for very-high energy gamma-ray astronomy need mirror with high reflectance roughly in the wavelength between 300 and 550 nm. The current standard reflective layer of such mirrors is aluminum. Being permanently exposed to the environment they show a constant degradation over the years. New and improved dielectric coatings have been developed to enhance their resistance to environmental impact and to extend their possible lifetime. In addition, these customized coatings have an increased reflectance of over 95% and are designed to significantly lower the night-sky background contribution. The development of such coatings for mirrors with areas up to 2 m2 and low application temperatures to suite the composite materials used for the new mirror susbtrates of the Cherenkov Telescope Array (CTA) and the results of extensive durability tests are presented.

  13. Some Reflections on Plane Mirrors and Images.

    Science.gov (United States)

    Galili, Igal; And Others

    1991-01-01

    Discusses the following questions based on the assumption that students' personal experiences and prior beliefs about plane mirrors can promote interesting discussions: (1) How mirror images are formed? (2) Why doesn't paper behave like a mirror? (3) Does a mirror left-right reverse objects? and (4) Why are corner images of two perpendicular…

  14. FAME: Freeform Active Mirrors Experiment

    Science.gov (United States)

    Hugot, Emmanuel; Agocs, Tibor; Challita, Zalpha; Jasko, Attila; Kroes, Gabby; Banyai, Evelin; Miller, Chris; Taylor, William; Schnetler, Hermine; Venema, Lars

    2014-07-01

    This paper discusses the development of a demonstrator freeform active mirror for future astronomical instruments both on Earth and in space. It consists of a system overview and progress in various areas of technology in the building blocks of the mirror: an extreme freeform thin face sheet, an active array, design tools and the metrology and control of the system. The demonstrator aims to investigate the applicability of the technique in high end astronomical systems, also for space and cryogenically.

  15. A Mirroring Theorem and its Application to a New Method of Unsupervised Hierarchical Pattern Classification

    Directory of Open Access Journals (Sweden)

    Dasika Ratna Deepthi

    2009-10-01

    Full Text Available In this paper, we prove a crucial theorem called “Mirroring Theorem” which affirms that given a collection of samples with enough information in it such that it can be classified into classes and sub-classes then (i There exists a mapping which classifies and subclassifies these samples (ii There exists a hierarchical classifier which can be constructed by using Mirroring Neural Networks (MNNs in combination with a clustering algorithm that can approximate this mapping. Thus, the proof of the Mirroring theorem provides a theoretical basis for the existence and a practical feasibility of constructing hierarchical classifiers, given the maps. Our proposed Mirroring Theorem can also be considered as an extension to Kolmogrov’s theorem in providing a realistic solution for unsupervised classification. The techniques we develop, are general in nature and have led to the construction of learning machines which are (i tree like in structure, (ii modular (iii with each module running on a common algorithm (tandem algorithm and (iv self-supervised. We have actually built the architecture, developed the tandem algorithm of such a hierarchical classifier and demonstrated it on an example problem.

  16. Alignment Mirror Mechanisms for Space Use

    Science.gov (United States)

    Jau, Bruno M.; McKinney, Colin M.; Smythe, Robert F.; Palmer, Dean

    2011-01-01

    The paper describes an optical Alignment Mirror Mechanism (AMM), and discusses its control scheme. The mirror's angular positioning accuracy requirement is +/- 0.2 arc-sec. This requires the mirror's linear positioning actuators to have a positioning accuracy of +/- 109 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are +/- 35 nm linear positioning capability at the actuator, which translates into +/- 0.07 arc-sec angular mirror positioning accuracy.

  17. Emission-Line Profiles of Accretion Disks with a Non-Axisymmetric Pattern

    OpenAIRE

    SANBUICHI, Kiyotaka; FUKUE, Jun; Kojima, Yasufumi

    1994-01-01

    In several cases, accretion disks may have non-axisymmetric patterns, such as one-armed oscillations and spiral shock waves. In such cases the line emissivity may also become non-axisymmetric. We examined the emission-line profiles for geometrically thin/thick, (non-) relativistic accretion disks while taking acount of the non-axisymmetric emissivity. The emission-line profiles were calculated numerically using a code based on the ray-tracing method. The emission-line profiles are usually ...

  18. Precision analysis of non-conformal reconstruction for the surface acoustic field on axisymmetric structures

    Institute of Scientific and Technical Information of China (English)

    HE Yuanan; HE Zuoyong

    2003-01-01

    Reconstruction of the surface acoustic field of axisymmetric body with arbitrary boundary conditions using near-field acoustic data is studied. The method of numerical reconstruction based on orthonormalization function expansion (OFE) and boundary element integral (BEI) is presented which can overcome the singular integral problem in the boundary integral equations. By numerical examples, the precision of reconstruction for the non-conformal surface with the axisymmetric or non-axisymmetric vibrating on axisymmetric body is given.The results of the numerical simulation are shown that this kind of reconstruction method is available for engineering.

  19. Metamaterial mirrors in optoelectronic devices

    KAUST Repository

    Esfandyarpour, Majid

    2014-06-22

    The phase reversal that occurs when light is reflected from a metallic mirror produces a standing wave with reduced intensity near the reflective surface. This effect is highly undesirable in optoelectronic devices that use metal films as both electrical contacts and optical mirrors, because it dictates a minimum spacing between the metal and the underlying active semiconductor layers, therefore posing a fundamental limit to the overall thickness of the device. Here, we show that this challenge can be circumvented by using a metamaterial mirror whose reflection phase is tunable from that of a perfect electric mirror († = €) to that of a perfect magnetic mirror († = 0). This tunability in reflection phase can also be exploited to optimize the standing wave profile in planar devices to maximize light-matter interaction. Specifically, we show that light absorption and photocurrent generation in a sub-100 nm active semiconductor layer of a model solar cell can be enhanced by ∼20% over a broad spectral band. © 2014 Macmillan Publishers Limited.

  20. Position sensors for segmented mirror

    Science.gov (United States)

    Rozière, Didier; Buous, Sébastien; Courteville, Alain

    2004-09-01

    There are currently several projects for giant telescopes with segmented mirrors under way. These future telescopes will have their primary mirror made of several thousand segments. The main advantage of segmentation is that it enables the active control of the whole mirror, so as to suppress the deformations of the support structure due to the wind, gravity, thermal inhomogeneities etc. ..., thus getting the best possible stigmatism. However, providing active control of segmented mirrors requires numerous accurate edges sensors. It is acknowledged that capacitance-based technology nowadays offers the best metrological performances-to-cost ratio. As the leader in capacitive technology, FOGALE nanotech offers an original concept which reduces the cost of instrumentation, sensors and electronics, while keeping a very high level of performances with a manufacturing process completely industrialised. We present here the sensors developed for the Segment Alignment Measurement System (SAMS) of the Southern African Large Telescope (SALT). This patented solution represents an important improvement in terms of cost, to market the Position Sensors for Segmented Mirrors of ELTs, whilst maintaining a very high performance level. We present here the concept, the laboratory qualification, and the first trials on the 7 central segments of SALT. The laboratory results are good, and we are now working on the on-site implementation to improve the immunity of the sensors to environment.

  1. Gasdynamic Multiple-Mirror Trap

    Science.gov (United States)

    Beklemishev, Alexei; Anikeev, Andrei; Bagryansky, Peter; Burdakov, Alexander; Gavrilenko, Dmitrii; Ivanov, Alexander; Polosatkin, Sergei; Sinitsky, Stanislav

    2013-10-01

    The new linear device for confinement of fusion plasmas, GDMT, is being developed at the Budker Institute of Nuclear Physics, Novosibirsk. The facility will combine features of existing GOL-3 and GDT devices: the central GDT-like cell with sloshing NBI ions, and the multiple-mirror plugs for suppression of axial losses. Such combination became feasible due to recent discoveries. In particular, the requirement of flute-mode stability can be relaxed by using vortex confinement, achieved by plasma biasing through open field lines. This allows the use of potentially destabilizing multiple-mirror sections. Another key effect is the enhanced multiple-mirror confinement at low densities, which is due to collective rather than coulomb scattering of ions. Hence the multiple-mirror plugs can work at pressures compatible with magnetic confinement. These two main technologies are supplemented by axial injection of pulsed electron beams. Besides additional plasma heating (like in GOL-3), such injection can be used for induced collective scattering in the multiple-mirror plugs and for plasma biasing. The new device is designed to be superconducting and modular. It will be built in stages, with the first stage, GDMT-T, intended for PMI studies. The work was financially supported by Ministry of Education and Science RF.

  2. Stability of perturbed geodesics in nD axisymmetric spacetimes

    Science.gov (United States)

    Coimbra-Araújo, C. H.; Anjos, R. C.

    2016-09-01

    The effect of self-gravity of a disk matter is evaluated by the simplest modes of oscillation frequencies for perturbed circular geodesics. We plotted the radial profiles of free oscillations of an equatorial circular geodesic perturbed within the orbital plane or in the vertical direction. The calculation is carried out to geodesics of an axisymmetric n-dimensional spacetime. The profiles are computed by examples of disks embeded in five-dimensional or six-dimensional spacetime, where we studied the motion of free test particles for three axisymmetric cases: (i) the Newtonian limit of a general proposed 5D and 6D axisymmetric spacetime; (ii) a simple Randall–Sundrum (RS) 5D spacetime; (iii) general 5D and 6D RS spacetime. The equation of motion of such particles is derived and the stability study is computed for both horizontal and vertical directions, to see how extra dimensions could affect the system. In particular, we investigate a disk constructed from Miyamoto–Nagai and Chazy–Curzon with a cut parameter to generate a disk potential. Those solutions have a simple extension for extra dimensions in case (i), and by solving vacuum Einstein field equations for a kind of RS–Weyl metric in cases (ii) and (iii). We find that it is possible to compute a range of possible solutions where such perturbed geodesics are stable. Basically, the stable solutions appear, for the radial direction, in special cases when the system has 5D and in all cases when the system has 6D and, for the axial direction, in all cases when the system has both 5D or 6D.

  3. Stability of perturbed geodesics in nD axisymmetric spacetimes

    Science.gov (United States)

    Coimbra-Araújo, C. H.; Anjos, R. C.

    2016-09-01

    The effect of self-gravity of a disk matter is evaluated by the simplest modes of oscillation frequencies for perturbed circular geodesics. We plotted the radial profiles of free oscillations of an equatorial circular geodesic perturbed within the orbital plane or in the vertical direction. The calculation is carried out to geodesics of an axisymmetric n-dimensional spacetime. The profiles are computed by examples of disks embeded in five-dimensional or six-dimensional spacetime, where we studied the motion of free test particles for three axisymmetric cases: (i) the Newtonian limit of a general proposed 5D and 6D axisymmetric spacetime; (ii) a simple Randall-Sundrum (RS) 5D spacetime; (iii) general 5D and 6D RS spacetime. The equation of motion of such particles is derived and the stability study is computed for both horizontal and vertical directions, to see how extra dimensions could affect the system. In particular, we investigate a disk constructed from Miyamoto-Nagai and Chazy-Curzon with a cut parameter to generate a disk potential. Those solutions have a simple extension for extra dimensions in case (i), and by solving vacuum Einstein field equations for a kind of RS-Weyl metric in cases (ii) and (iii). We find that it is possible to compute a range of possible solutions where such perturbed geodesics are stable. Basically, the stable solutions appear, for the radial direction, in special cases when the system has 5D and in all cases when the system has 6D and, for the axial direction, in all cases when the system has both 5D or 6D.

  4. Axisymmetric Turbulent Wakes with New Nonequilibrium Similarity Scalings

    Science.gov (United States)

    Nedić, J.; Vassilicos, J. C.; Ganapathisubramani, B.

    2013-10-01

    The recently discovered nonequilibrium turbulence dissipation law implies the existence of axisymmetric turbulent wake regions where the mean flow velocity deficit decays as the inverse of the distance from the wake-generating body and the wake width grows as the square root of that distance. This behavior is different from any documented boundary-free turbulent shear flow to date. Its existence is confirmed in wind tunnel experiments of wakes generated by plates with irregular edges placed normal to an incoming free stream. The wake characteristics of irregular bodies such as buildings, bridges, mountains, trees, coral reefs, and wind turbines are critical in many areas of environmental engineering and fluid mechanics.

  5. Axisymmetric flows from fluid injection into a confined porous medium

    Science.gov (United States)

    Guo, Bo; Zheng, Zhong; Celia, Michael A.; Stone, Howard A.

    2016-02-01

    We study the axisymmetric flows generated from fluid injection into a horizontal confined porous medium that is originally saturated with another fluid of different density and viscosity. Neglecting the effects of surface tension and fluid mixing, we use the lubrication approximation to obtain a nonlinear advection-diffusion equation that describes the time evolution of the sharp fluid-fluid interface. The flow behaviors are controlled by two dimensionless groups: M, the viscosity ratio of displaced fluid relative to injected fluid, and Γ, which measures the relative importance of buoyancy and fluid injection. For this axisymmetric geometry, the similarity solution involving R2/T (where R is the dimensionless radial coordinate and T is the dimensionless time) is an exact solution to the nonlinear governing equation for all times. Four analytical expressions are identified as asymptotic approximations (two of which are new solutions): (i) injection-driven flow with the injected fluid being more viscous than the displaced fluid (Γ ≪ 1 and M interface shape; (ii) injection-driven flow with injected and displaced fluids of equal viscosity (Γ ≪ 1 and M = 1), where we find a self-similar solution that predicts a distinct parabolic interface shape; (iii) injection-driven flow with a less viscous injected fluid (Γ ≪ 1 and M > 1) for which there is a rarefaction wave solution, assuming that the Saffman-Taylor instability does not occur at the reservoir scale; and (iv) buoyancy-driven flow (Γ ≫ 1) for which there is a well-known self-similar solution corresponding to gravity currents in an unconfined porous medium [S. Lyle et al. "Axisymmetric gravity currents in a porous medium," J. Fluid Mech. 543, 293-302 (2005)]. The various axisymmetric flows are summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime. The implications of the regime diagram are discussed using practical

  6. Diffusive dynamics and stochastic models of turbulent axisymmetric wakes

    CERN Document Server

    Rigas, G; Brackston, R D; Morrison, J F

    2015-01-01

    A modelling methodology to reproduce the experimental measurements of a turbulent flow under the presence of symmetry is presented. The flow is a three-dimensional wake generated by an axisymmetric body. We show that the dynamics of the turbulent wake- flow can be assimilated by a nonlinear two-dimensional Langevin equation, the deterministic part of which accounts for the broken symmetries which occur at the laminar and transitional regimes at low Reynolds numbers and the stochastic part of which accounts for the turbulent fluctuations. Comparison between theoretical and experimental results allows the extraction of the model parameters.

  7. Stability and Halo Formation in Axisymmetric Intense Beams

    CERN Document Server

    Gluckstern, R L; Gluckstern, Robert L.; Kurennoy, Sergey S.

    1998-01-01

    Beam stability and halo formation in high-intensity axisymmetric 2D beams in a uniform focusing channel are analyzed using particle-in-cell simulations. The tune depression - mismatch space is explored for the uniform (KV) distribution of the particle transverse-phase-space density, as well as for more realistic ones (in particular, the water-bag distribution), to determine the stability limits and halo parameters. The numerical results show an agreement with predictions of the analytical model for halo formation (R.L. Gluckstern, Phys. Rev. Letters, 73 (1994) 1247).

  8. Stability and Halo Formation in Axisymmetric Intense Beams.

    Science.gov (United States)

    Gluckstern, Robert L.; Kurennoy, Sergey S.

    1997-05-01

    Beam stability and halo formation in high-intensity axisymmetric 2D beams in a uniform focusing channel are analyzed using particle-in-cell simulations. The tune depression - mismatch space is explored for the uniform distribution of the particle transverse phase space density (Kapchinsky-Vladimirsky), as well as for more realistic ones (in particular, the water-bag distribution), to determine the stability limits and halo parameters. The numerical results obtained are compared and show an agreement with the predictions of the analytical model for halo formation developed earlier (R.L. Gluckstern, Phys. Rev. Lett., 73), 1247 (1994)..

  9. Stability and halo formation in axisymmetric intense beams

    Energy Technology Data Exchange (ETDEWEB)

    Gluckstern, R.L. [Univ. of Maryland, College Park, MD (United States); Kurennoy, S.S. [Los Alamos National Lab., NM (United States)

    1997-10-01

    Beam stability and halo formation in high-intensity axisymmetric 2D beams in a uniform focusing channel are analyzed using particle-in-cell simulations. The tune depression-mismatch space is explored for the uniform (KV) distribution of the particle transverse-phase-space density, as well as for more realistic ones (in particular, the water-bag distribution), to determine the stability limits and halo parameters. The numerical results show an agreement with predictions of the analytical model for halo formation.

  10. A high-precision algorithm for axisymmetric flow

    Directory of Open Access Journals (Sweden)

    A. Gokhman

    1995-01-01

    Full Text Available We present a new algorithm for highly accurate computation of axisymmetric potential flow. The principal feature of the algorithm is the use of orthogonal curvilinear coordinates. These coordinates are used to write down the equations and to specify quadrilateral elements following the boundary. In particular, boundary conditions for the Stokes' stream-function are satisfied exactly. The velocity field is determined by differentiating the stream-function. We avoid the use of quadratures in the evaluation of Galerkin integrals, and instead use splining of the boundaries of elements to take the double integrals of the shape functions in closed form. This is very accurate and not time consuming.

  11. Fusion-product transport in axisymmetric tokamaks: losses and thermalization

    International Nuclear Information System (INIS)

    High-energy fusion-product losses from an axisymmetric tokamak plasma are studied. Prompt-escape loss fluxes (i.e. prior to slowing down) are calculated including the non-separable dependence of flux as a function of poloidal angle and local angle-of-incidence at the first wall. Fusion-product (fp) thermalization and heating are calculated assuming classical slowing down. The present analytical model describes fast ion orbits and their distribution function in realistic, high-β, non-circular tokamak equilibria. First-orbit losses, trapping effects, and slowing-down drifts are also treated

  12. An axisymmetric PFEM formulation for bottle forming simulation

    Science.gov (United States)

    Ryzhakov, Pavel B.

    2016-05-01

    A numerical model for bottle forming simulation is proposed. It is based upon the Particle Finite Element Method (PFEM) and is developed for the simulation of bottles characterized by rotational symmetry. The PFEM strategy is adapted to suit the problem of interest. Axisymmetric version of the formulation is developed and a modified contact algorithm is applied. This results in a method characterized by excellent computational efficiency and volume conservation characteristics. The model is validated. An example modelling the final blow process is solved. Bottle wall thickness is estimated and the mass conservation of the method is analysed.

  13. Angle-action estimation in a general axisymmetric potential

    OpenAIRE

    Sanders, Jason

    2012-01-01

    The usefulness of angle-action variables in galaxy dynamics is well known, but their use is limited due to the difficulty of their calculation in realistic galaxy potentials. Here we present a method for estimating angle-action variables in a realistic Milky Way axisymmetric potential by locally fitting a St\\"ackel potential over the region an orbit probes. The quality of the method is assessed by comparison with other known methods for estimating angle-action variables of a range of disc and...

  14. Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet

    Science.gov (United States)

    Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.

    2000-01-01

    This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.

  15. Axisymmetric fundamental solutions for a finite layer with impeded boundaries

    Institute of Scientific and Technical Information of China (English)

    程泽海; 陈云敏; 凌道盛; 唐晓武

    2003-01-01

    Axisymmetric fundamental solutions that are applied in the consolidation calculations of a finite clay layer with impeded boundaries were derived. Laplace and Hankel integral transforms were utilized with respect to time and radial coordinates, respectively in the analysis. The derivation of fundamental solutions considers two boundary-value problems involving unit point loading and ring loading in the vertical. The solutions are extended to circular distributed and strip distributed normal load. The computation and analysis of settlements, vertical total stress and excess pore pressure in the consolidation layer subject to circular loading are presented.

  16. Exact solutions to some axisymmetric problems in magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sheriazdanov, G.B.

    1985-12-01

    Steady-state axisymmetric flow of an incompressible perfectly conducting fluid is analyzed with allowance for the circular motion and the azimuthal component of the magnetic field. In the case of a nonviscous fluid, an equation of motion integral is obtained which relates the Bernoulli function to the azimuthal component of the velocity and magnetic fields. For the case of the rotation of a viscous fluid as a solid, the Bernoulli integral depends on the stream function, Reynolds and Alfven numbers, and the twisting parameter. 5 references.

  17. Marginally stable circular orbits in stationary axisymmetric spacetimes

    CERN Document Server

    Beheshti, Shabnam

    2015-01-01

    We derive a necessary condition for the existence of marginally stable circular orbits of test particles in stationary axisymmetric spacetimes which possess a refection symmetry with respect to the equatorial plane; photon orbits are also addressed. Energy and angular momentum are shown to decouple from metric quantities, rendering a purely geometric characterization of circular orbits for this general class of metrics. The subsequent system is analyzed using resultants, providing an algorithmic approach for finding MSCO conditions. MSCOs are explicitly calculated for concrete examples of physical interest.

  18. Axisymmetric Vibration of Piezo-Lemv Composite Hollow Multilayer Cylinder

    Directory of Open Access Journals (Sweden)

    E. S. Nehru

    2012-01-01

    Full Text Available Axisymmetric vibration of an infinite piezolaminated multilayer hollow cylinder made of piezoelectric layers of 6 mm class and an isotropic LEMV (Linear Elastic Materials with Voids layers is studied. The frequency equations are obtained for the traction free outer surface with continuity conditions at the interfaces. Numerical results are carried out for the inner, middle, and outer hollow piezoelectric layers bonded by LEMV (It is hypothetical material layers and the dispersion curves are compared with that of a similar 3-layer model and of 3 and 5 layer models with inner, middle, and outer hollow piezoelectric layers bonded by CFRP (Carbon fiber reinforced plastics.

  19. A Generalization of Abel Inversion to non axisymmetric density distribution

    CERN Document Server

    Tomassini, P

    2001-01-01

    Abel Inversion is currently used in laser-plasma studies in order to estimate the electronic density $n_e$ from the phase-shift map $\\delta \\phi$ obtained via interferometry. The main limitation of the Abel method is due to the assumption of axial symmetry of the electronic density, which is often hardly fulfilled. In this paper we present an improvement to the Abel inversion technique in which the axial symmetry condition is relaxed by means of a truncated Legendre Polinomial expansion in the azimutal angle. With the help of simulated interferograms, we will show that the generalized Abel inversion generates accurate densities maps when applied to non axisymmetric density sources.

  20. Beautiful mirrors at the LHC.

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K.; Shepherd, W.; Tait, T. M. P.; Vega-Morales, R.; High Energy Physics; Northwestern Univ; Univ. of California at Irvine

    2010-01-01

    We explore the 'Beautiful Mirrors' model, which aims to explain the measured value of A{sub FB}{sup b}, discrepant at the 2.9{sigma} level. This scenario introduces vector-like quarks which mix with the bottom, subtly affecting its coupling to the Z. The spectrum of the new particles consists of two bottom-like quarks and a charge -4/3 quark, all of which have electroweak interactions with the third generation. We explore the phenomenology and discovery reach for these new particles at the LHC, exploring single mirror quark production modes whose rates are proportional to the same mixing parameters which resolve the A{sub FB}{sup b} anomaly. We find that for mirror quark masses {approx}< 500 GeV, a 14 TeV LHC with 300 fb{sup -1} is required to reasonably establish the scenario and extract the relevant mixing parameters.

  1. Composite single crystal silicon scan mirror substrates Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Single crystal silicon is a desirable mirror substrate for scan mirrors in space telescopes. As diameters of mirrors become larger, existing manufacturing...

  2. Mirror Fusion Test Facility magnet

    Energy Technology Data Exchange (ETDEWEB)

    Henning, C.H.; Hodges, A.J.; Van Sant, J.H.; Hinkle, R.E.; Horvath, J.A.; Hintz, R.E.; Dalder, E.; Baldi, R.; Tatro, R.

    1979-11-13

    The Mirror Fusion Test Facility (MFTF) is the largest of the mirror program experiments for magnetic fusion energy. It seeks to combine and extend the near-classical plasma confinement achieved in 2XIIB with the most advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from the 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime. Design specifics of the magnet are given. (MOW)

  3. Mirror Fusion Test Facility magnet

    International Nuclear Information System (INIS)

    The Mirror Fusion Test Facility (MFTF) is the largest of the mirror program experiments for magnetic fusion energy. It seeks to combine and extend the near-classical plasma confinement achieved in 2XIIB with the most advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from the 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime. Design specifics of the magnet are given

  4. NASA CONNECT: Algebra: Mirror, Mirror on the Universe

    Science.gov (United States)

    2000-01-01

    'Algebra: Mirror, Mirror on the Universe' is the last of seven programs in the 1999-2000 NASA CONNECT series. Produced by NASA Langley Research Center's Office of Education, NASA CONNECT is an award-winning series of instructional programs designed to enhance the teaching of math, science and technology concepts in grades 5-8. NASA CONNECT establishes the 'connection' between the mathematics, science, and technology concepts taught in the classroom and NASA research. Each program in the series supports the national mathematics, science, and technology standards; includes a resource-rich teacher guide; and uses a classroom experiment and web-based activity to complement and enhance the math, science, and technology concepts presented in the program. NASA CONNECT is FREE and the programs in the series are in the public domain. Visit our web site and register. http://connect.larc.nasa.gov In 'Algebra: Mirror, Mirror on the Universe', students will learn how algebra is used to explore the universe.

  5. Density fluctuations in the tendem mirror Gamma 10

    CERN Document Server

    Itakura, A; Fukuhara, M; Higaki, H; Hojo, H; Ichimura, M; Ishii, K; Shima, Y; Takiue, H; Yoshikawa, M; Cho, T

    2004-01-01

    The tandem mirror GAMMA 10 utilizes an electron cyclotron resonance heating (ECRH) for forming a confinement potential. Density fluctuation is observed using microwaves, such as interferometer, reflectometry and Fraunhofer diffraction (FD) method. An ultrashort-pulse reflectometry has an advantage of detecting fluctuation locally. The wave number can be obtained by the FD method. In the edge plasma region electrostatic probes are used. Fluctuation with coherent mode in several kHz is excited in the hot-ion mode plasma. When the ECRH is applied, electron density in the central cell increases gradually. On the contrary, intensity of the density fluctuation decreases and coherent mode is suppressed. Its frequency also varies with the density increase. In that time, radial potential distribution, i.e., electric field, changes along with the formation of plug potential. From this behaviour it is deduced that the fluctuation deeply relates to the potential formation and improvement of the confinement.

  6. Application of the Least Squares Method in Axisymmetric Biharmonic Problems

    Directory of Open Access Journals (Sweden)

    Vasyl Chekurin

    2016-01-01

    Full Text Available An approach for solving of the axisymmetric biharmonic boundary value problems for semi-infinite cylindrical domain was developed in the paper. On the lateral surface of the domain homogeneous Neumann boundary conditions are prescribed. On the remaining part of the domain’s boundary four different biharmonic boundary pieces of data are considered. To solve the formulated biharmonic problems the method of least squares on the boundary combined with the method of homogeneous solutions was used. That enabled reducing the problems to infinite systems of linear algebraic equations which can be solved with the use of reduction method. Convergence of the solution obtained with developed approach was studied numerically on some characteristic examples. The developed approach can be used particularly to solve axisymmetric elasticity problems for cylindrical bodies, the heights of which are equal to or exceed their diameters, when on their lateral surface normal and tangential tractions are prescribed and on the cylinder’s end faces various types of boundary conditions in stresses in displacements or mixed ones are given.

  7. Non-axisymmetric instabilities in discs with imposed zonal flows

    CERN Document Server

    Vanon, R

    2016-01-01

    We conduct a linear stability calculation of an ideal Keplerian flow on which a sinusoidal zonal flow is imposed. The analysis uses the shearing sheet model and is carried out both in isothermal and adiabatic conditions, with and without self-gravity (SG). In the non-SG regime a structure in the potential vorticity (PV) leads to a non-axisymmetric Kelvin-Helmholtz (KH) instability; in the short-wavelength limit its growth rate agrees with the incompressible calculation by Lithwick (2007), which only considers perturbations elongated in the streamwise direction. The instability's strength is analysed as a function of the structure's properties, and zonal flows are found to be stable if their wavelength is $\\gtrsim 8H$, where $H$ is the disc's scale height, regardless of the value of the adiabatic index $\\gamma$. The non-axisymmetric KH instability can operate in Rayleigh-stable conditions, and it therefore represents the limiting factor to the structure's properties. Introducing SG triggers a second non-axisym...

  8. Aerodynamics characteristic of axisymmetric surface protuberance in supersonic regime

    KAUST Repository

    Qamar, Adnan

    2012-01-01

    The present work deals with the problem of an axi-symmetric surface protuberance mounted on a spherical nosed body of revolution. The numerical computations are carried out for laminar supersonic viscous flow for trapezoidal shape axi-symmetric protuberances. A free stream Mach number ranging from 3 to 8 in steps of 1 at a fixed free stream Reynolds number of 1.8x10(4) has been used in the present study. The steady solutions are obtained using a time marching approach. A newly developed Particle Velocity Upwinding (PVU) scheme has been used for the computation. The spatial flow pattern exhibits a strong bow shock in front of the hemispherical nose, which engulfs the entire base body. Near the protuberance, the fluid particle decelerates due to the adverse pressure created by the protuberance and thus the flow separates in front of the protuberance. This point of separation is found to be a function of Mach number and the protuberance shape. A low-pressure expansion region dominates the base region of the obstacle. The reattachment point for the base separation is also a function of Mach number. As the Mach number is increased the reattachment point shifts toward the protuberances base. A weak recompression shock is also seen in the base, which affects the separated zone behind the protuberance. The important design parameters such as skin friction, heat transfer, drag, and surface pressure coefficients are reported extensively.

  9. Two-Dimensional Axisymmetric Collapse of Thermally Unstable Primordial Clouds

    CERN Document Server

    Baek, C H; Ryu, D; Baek, Chang Hyun; Kang, Hyesung; Ryu, Dongsu

    2003-01-01

    We have performed two-dimensional hydrodynamic simulations of the collapse of isolated axisymmetric clouds condensing via radiative cooling in a primordial background gas. In order to study the development of the so-called ``shape-instability'', we have considered two types of axisymmetric clouds, oblate and prolate clouds of various sizes and with axial ratios of $0.5 \\leq {R_{\\rm c,R}} /{R_{\\rm c,z}} \\leq 2$. We find that the degree of oblateness or prolateness is enhanced during the initial cooling phase. But it can be reversed later, if the initial contrast in cooling times between the cloud gas and the background gas is much greater than one. In such cases an oblate cloud collapses to a structure composed of an outer thin disk and a central prolate component. A prolate cloud, on the other hand, becomes a thin cigar-shape structure with a central dense oblate component. The reversal of shape in the central part of the cooled clouds is due to supersonic motions either along the disk plane in the case of ob...

  10. Mirror Advanced Reactor Study (MARS): executive summary and overview

    International Nuclear Information System (INIS)

    Two self-consistent MARS configurations are discussed - a 1200-MWe commercial electricity-generating plant and a synguels-generating plant that produces hydrogen with an energy equivalent to 26,000 barrels of oil per day. The MARS machine emphasizes the attractive features of the tandem mirror concept, including steady-state operation, a small-diameter high-beta plasma, a linear central cell with simple low-maintenance blankets, low first-wall heat fluxes (2), no driven plasma currents or associated disruptions, natural halo impurity diversion, and direct conversion of end-loss charged-particle power. The MARS electric plant produces 2600 MW of fusion power in a 130-m-long central cell. Advanced tandem-mirror plasma-engineering concepts, a high-efficiency liquid lithium-lead (Li17Pb83) blanket, and efficient direct electrical conversion of end loss power combine to produce a high net plant efficiency of 36%. With a total capital cost of $2.9 billion (constant 1983 dollars), the MARS electric plant produces busbar electricity at approx. 7 cents/kW-hour. The MARS synfuels plant produces 3500 MW of fusion power in a 150-m-long central cell. A helium-gas-cooled silicon carbide pebble-bed blanket provides high-temperature (10000C) heat to a thermochemical water-splitting cycle and the resulting hydrogen is catalytically converted to methanol for distribution. With a total capital cost of $3.6 billion (constant 1983 dollars), the synfuels plant produces methanol fuel at about $1.7/gal. The major features of the MARS reactor include sloshing-ion thermal barrier plugs for efficient plasma confinement, a high efficiency blanket, high-field (24-T) choke cells, drift pumping for trapped plasma species, quasi-optical electron-cyclotron resonant heating (ECRH) systems, and a component gridless direct converter

  11. Mirror Advanced Reactor Study (MARS): executive summary and overview

    Energy Technology Data Exchange (ETDEWEB)

    Logan, B.G.; Perkins, L.J.; Gordon, J.D.

    1984-07-01

    Two self-consistent MARS configurations are discussed - a 1200-MWe commercial electricity-generating plant and a synguels-generating plant that produces hydrogen with an energy equivalent to 26,000 barrels of oil per day. The MARS machine emphasizes the attractive features of the tandem mirror concept, including steady-state operation, a small-diameter high-beta plasma, a linear central cell with simple low-maintenance blankets, low first-wall heat fluxes (<10 W/cm/sup 2/), no driven plasma currents or associated disruptions, natural halo impurity diversion, and direct conversion of end-loss charged-particle power. The MARS electric plant produces 2600 MW of fusion power in a 130-m-long central cell. Advanced tandem-mirror plasma-engineering concepts, a high-efficiency liquid lithium-lead (Li/sub 17/Pb/sub 83/) blanket, and efficient direct electrical conversion of end loss power combine to produce a high net plant efficiency of 36%. With a total capital cost of $2.9 billion (constant 1983 dollars), the MARS electric plant produces busbar electricity at approx. 7 cents/kW-hour. The MARS synfuels plant produces 3500 MW of fusion power in a 150-m-long central cell. A helium-gas-cooled silicon carbide pebble-bed blanket provides high-temperature (1000/sup 0/C) heat to a thermochemical water-splitting cycle and the resulting hydrogen is catalytically converted to methanol for distribution. With a total capital cost of $3.6 billion (constant 1983 dollars), the synfuels plant produces methanol fuel at about $1.7/gal. The major features of the MARS reactor include sloshing-ion thermal barrier plugs for efficient plasma confinement, a high efficiency blanket, high-field (24-T) choke cells, drift pumping for trapped plasma species, quasi-optical electron-cyclotron resonant heating (ECRH) systems, and a component gridless direct converter.

  12. JAERI tandem annual report, 1982

    International Nuclear Information System (INIS)

    This annual report describes research activities which have been performed with JAERI tandem accelerator from September 1, 1981 to March 31, 1983. Summary reports of 38 papers, publications, personnel and a list of co-operative researches with universities are contained. (author)

  13. JAERI Tandem annual report 1983

    International Nuclear Information System (INIS)

    This annual report describes research activities which have been performed with JAERI tandem accelerator from April 1, 1983 to March 31, 1984. Summary reports of 32 papers, publications, personnel and a list of co-operative reserches with universities are contained. (author)

  14. [The ontogeny of the mirror neuron system].

    Science.gov (United States)

    Myowa-Yamakoshi, Masako

    2014-06-01

    Abstract Humans utilize the mirror neuron system to understand and predict others' actions. However, the ontogeny of the mirror neuron system remains unknown. Whether mirror neuron function is an innate trait or whether mirror neurons acquire their sensorimotor matching properties ontogenetically remains to be clarified. In this paper, I review the ontogenetic theory of the mirror neuron system. I then discuss the functioning of the mirror neuron system in the context of social cognitive abilities, which are unique to humans. Recently, some researchers argue that it is too early to interpret the function of mirror neurons as an understanding of the underlying psychological states of others. They imply that such functioning would require inferential cognitive processes that are known to involve areas outside the mirror neuron system. Filling in this missing link may be the key to elucidating the unique ability of humans to understand others' actions.

  15. Mirroring patients – or not

    DEFF Research Database (Denmark)

    Davidsen, Annette Sofie; Fosgerau, Christina Fogtmann

    2015-01-01

    For mentalization theorists, implicit mentalization is a key component of all forms of therapy. However, it has been difficult to grasp and to describe precisely how implicit mentalization works. It is said to take place partly by mirroring others in posture, facial expression and vocal tone. Based...

  16. Tokamak magnetohydrodynamic equilibrium states with axisymmetric boundary and a 3D helical core.

    Science.gov (United States)

    Cooper, W A; Graves, J P; Pochelon, A; Sauter, O; Villard, L

    2010-07-16

    Magnetohydrodynamic (MHD) equilibrium states with imposed axisymmetric boundary are computed in which a spontaneous bifurcation develops to produce an internal three-dimensional (3D) configuration with a helical structure in addition to the standard axisymmetric system. Equilibrium states with similar MHD energy levels are shown to develop very different geometric structures. The helical equilibrium states resemble saturated internal kink mode structures.

  17. Geodesic Acoustic Mode in Toroidally Axisymmetric Plasmas with Non-Circular Cross Sections

    Institute of Scientific and Technical Information of China (English)

    SHI Bing-Ren; LI Ji-Quan; DONG Jia-Qi

    2005-01-01

    @@ The geodesic acoustic mode in general toroidally axisymmetric plasmas such as Tokamak and spherical torus is studied in detail. The mode structure is found and the dispersion equation is derived and solved for arbitrary toroidally axi-symmetric plasmas. Besides the finite aspect ratio, effects of elongation and triangularity on this mode are clarified.

  18. Light Weight Silicon Mirrors for Space Instrumentation

    Science.gov (United States)

    Bly, Vincent T.; Hill, Peter C.; Hagopian, John G.; Strojay, Carl R.; Miller, Timothy

    2012-01-01

    Each mirror is a monolithic structure from a single crystal of silicon. The mirrors are light weighted after the optical surface is ground and polished. Mirrors made during the initial phase of this work were typically 1/50 lambda or better (RMS at 633 n m)

  19. The mirror neuron system : New frontiers

    NARCIS (Netherlands)

    Keysers, Christian; Fadiga, Luciano

    2008-01-01

    Since the discovery of mirror neurons, much effort has been invested into Studying their location and properties in the human brain. Here we review these original findings and introduce the Main topics of this special issue of Social Neuroscience. What does the mirror system code? How is the mirror

  20. Design of a separator/neutralizer to limit impurities and non-primary species in the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    The optimum plasma for the tandem Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory (LLNL) is very sensitive to heavy contaminates, such as oxygen and metals. Unfortunately the current neutral beam sources generate not only high energy deuterium particles but also high energy oxygen particles. A new MFTF-B separator/neutralizer has been designed to filter out the unwanted oxygen and allow only primary species neutrals to reach the plasma

  1. Spectral approach to axisymmetric evolution of Einstein's equations

    CERN Document Server

    Schell, Christian

    2014-01-01

    We present a new formulation of Einstein's equations for an axisymmetric spacetime with vanishing twist in vacuum. We propose a fully constrained scheme and use spherical polar coordinates. A general problem for this choice is the occurrence of coordinate singularities on the axis of symmetry and at the origin. Spherical harmonics are manifestly regular on the axis and hence take care of that issue automatically. In addition a spectral approach has computational advantages when the equations are implemented. Therefore we spectrally decompose all the variables in the appropriate harmonics. A central point in the formulation is the gauge choice. One of our results is that the commonly used maximal-isothermal gauge turns out to be incompatible with tensor harmonic expansions, and we introduce a new gauge that is better suited. We also address the regularisation of the coordinate singularity at the origin.

  2. Axisymmetric Nonlinear Waves And Structures in Hall Plasmas

    CERN Document Server

    Islam, Tanim

    2011-01-01

    A Hall plasma consists of a plasma with not all species frozen into the magnetic field. In this paper, a general equation for the evolution of an axisymmetric magnetic field in a Hall plasma is derived, with an integral similar to the Grad-Shafranov equation. Special solutions arising from curvature -- whistler drift modes that propagate along the electron drift as a Burger's shock, and nonlinear periodic and soliton-like solutions to the generalized Grad-Shafranov integral -- are analyzed. We derive analytical and numerical solutions in an electron-ion Hall plasma, in which electrons and ions are the only species in the plasmas. Results may then be applied to electron-ion-gas Hall plasmas, in which the ions are coupled to the motion of gases in low ionized plasmas (lower ionosphere and protostellar disks), and to dusty Hall plasmas (such as molecular clouds), in which the much heavier charged dust may be collisionally coupled to the gas.

  3. Fluidic Control of Aerodynamic Forces on an Axisymmetric Body

    Science.gov (United States)

    Abramson, Philip; Vukasinovic, Bojan; Glezer, Ari

    2007-11-01

    The aerodynamic forces and moments on a wind tunnel model of an axisymmetric bluff body are modified by induced local vectoring of the separated base flow. Control is effected by an array of four integrated aft-facing synthetic jets that emanate from narrow, azimuthally-segmented slots, equally distributed around the perimeter of the circular tail end within a small backward facing step that extends into a Coanda surface. The model is suspended in the wind tunnel by eight thin wires for minimal support interference with the wake. Fluidic actuation results in a localized, segmented vectoring of the separated base flow along the rear Coanda surface and induces asymmetric aerodynamic forces and moments to effect maneuvering during flight. The aerodynamic effects associated with quasi-steady and transitory differential, asymmetric activation of the Coanda effect are characterized using direct force and PIV measurements.

  4. QUASILOCAL ENERGY FOR STATIONARY AXISYMMETRIC EMDA BLACK HOLE

    Institute of Scientific and Technical Information of China (English)

    WANG SHI-LIANG; JING JI-LIANG

    2001-01-01

    By using Brown-York quasilocal energy theory we calculate the quasilocal energy of a stationary axisymmetic EMDA black hole and explore the universality of Martinez's conjecture in string theory. We show that the energy is positive and monotonically decreases to the ADM mass at spatial infinity, and the Martinez's conjecture, the Brown York quasilocal energy at the outer horizon reduces to twice its irreducible mass, is still valid for stationary axisymmetric EMDA black hole. From the result we also find that the Kerr-Sen spacetime keeps up with Martinez's conjecture. This is different from the Bose-Naing result that the quasilocal energy of the Kerr Sen spacetime does not approach the Martinez's conjecture.

  5. Free Vibrations of Axisymmetric Shells: Parabolic and Elliptic cases

    CERN Document Server

    Chaussade, Marie; Faou, Erwan; Yosibash, Zohar

    2016-01-01

    Approximate eigenpairs (quasimodes) of axisymmetric thin elastic domains with laterally clamped boundary conditions (Lam\\'e system) are determined by an asymptotic analysis as the thickness ($2\\varepsilon$) tends to zero. The departing point is the Koiter shell model that we reduce by asymptotic analysis to a scalar modelthat depends on two parameters: the angular frequency $k$ and the half-thickness $\\varepsilon$. Optimizing $k$ for each chosen $\\varepsilon$, we find power laws for $k$ in function of $\\varepsilon$ that provide the smallest eigenvalues of the scalar reductions.Corresponding eigenpairs generate quasimodes for the 3D Lam\\'e system by means of several reconstruction operators, including boundary layer terms. Numerical experiments demonstrate that in many cases the constructed eigenpair corresponds to the first eigenpair of the Lam\\'e system.Geometrical conditions are necessary to this approach: The Gaussian curvature has to be nonnegative and the azimuthal curvature has to dominate the meridian ...

  6. Time and "angular" dependent backgrounds from stationary axisymmetric solutions

    CERN Document Server

    Obregón, O; Ryan, M P; Obregon, Octavio; Quevedo, Hernando; Ryan, Michael P.

    2004-01-01

    Backgrounds depending on time and on "angular" variable, namely polarized and unpolarized $S^1 \\times S^2$ Gowdy models, are generated as the sector inside the horizons of the manifold corresponding to axisymmetric solutions. As is known, an analytical continuation of ordinary $D$-branes, $iD$-branes allows one to find $S$-brane solutions. Simple models have been constructed by means of analytic continuation of the Schwarzchild and the Kerr metrics. The possibility of studying the $i$-Gowdy models obtained here is outlined with an eye toward seeing if they could represent some kind of generalized $S$-branes depending not only on time but also on an ``angular'' variable.

  7. Axisymmetric equilibria with pressure anisotropy and plasma flow

    CERN Document Server

    Evangelias, Achilleas

    2016-01-01

    In this Master thesis we investigate the influence of pressure anisotropy and incompressible flow of arbitrary direction on the equilibrium properties of magnetically confined, axisymmetric toroidal plasmas. The main novel contribution is the derivation of a pertinent generalised Grad-Shafranov equation. This equation includes six free surface functions and recovers known Grad-Shafranov-like equations in the literature as well as the usual static, isotropic one. The form of the generalised equation indicates that pressure anisotropy and flow act additively on equilibrium. In addition, two sets of analytical solutions, an extended Solovev one with a plasma reaching the separatrix and an extended Hernegger-Maschke one for a plasma surrounded by a fixed boundary possessing an X-point, are constructed, particularly in relevance to the ITER and NSTX tokamaks. Furthermore, the impacts both of pressure anisotropy, through an anisotropy function assumed to be uniform on the magnetic surfaces, and plasma flow, via the...

  8. Axisymmetric equilibria with pressure anisotropy and plasma flow

    CERN Document Server

    Evangelias, A

    2016-01-01

    A generalised Grad-Shafranov equation that governs the equilibrium of an axisymmetric toroidal plasma with anisotropic pressure and incompressible flow of arbitrary direction is derived. This equation includes six free surface functions and recovers known Grad-Shafranov-like equations in the literature as well as the usual static, isotropic one. The form of the generalised equation indicates that pressure anisotropy and flow act additively on equilibrium. In addition, two sets of analytical solutions, an extended Solovev one with a plasma reaching the separatrix and an extended Hernegger-Maschke one for a plasma surrounded by a fixed boundary possessing an X-point, are constructed, particularly in relevance to the ITER and NSTX tokamaks. Furthermore, the impacts both of pressure anisotropy and plasma flow on these equilibria are examined. It turns out that depending on the maximum value and the shape of an anisotropy function, the anisotropy can act either paramagnetically or diamagnetically. Also, in most of...

  9. An Axisymmetrical Acoustic BEM Formulation Including Visco-Thermal Losses

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Juhl, Peter Møller

    2011-01-01

    Sound waves in air experience losses due to viscous friction and thermal exchange, which become particularly relevant in a thin boundary layer over the domain boundaries. The lossless wave equation can still be used when the thickness of the boundary layer is small as compared with the setup...... dimensions. However, this is not usually true for small devices such as microphones, hearing aids, couplers, MEMS devices, mobile phones, etc., and then the losses need to be modeled. In this paper a numerical implementation of the Boundary Element Method (BEM) which includes visco-thermal losses...... is presented. The formulation is based on the Kirchoff method, where acoustic, thermal and viscous effects are decoupled everywhere except at the boundaries. This BEM formulation does not impose geometrical restrictions to the setup and can be applied to any axisymmetrical object, as long as the division...

  10. Non-Radial Oscillations in an Axisymmetric MHD Incompressible Fluid

    Indian Academy of Sciences (India)

    A. Satya Narayanan

    2000-09-01

    It is well known from Helioseismology that the Sun exhibits oscillations on a global scale, most of which are non-radial in nature. These oscillations help us to get a clear picture of the internal structure of the Sun as has been demonstrated by the theoretical and observational (such as GONG) studies. In this study we formulate the linearised equations of motion for non-radial oscillations by perturbing the MHD equilibrium solution for an axisymmetric incompressible fluid. The fluid motion and the magnetic field are expressed as scalars , , and , respectively. In deriving the exact solution for the equilibrium state, we neglect the contribution due to meridional circulation. The perturbed quantities *, *, *, * are written in terms of orthogonal polynomials. A special case of the above formulation and its stability is discussed.

  11. Modular Coils and Plasma Configurations for Quasi-axisymmetric Stellarators

    Energy Technology Data Exchange (ETDEWEB)

    L.P. Ku and A.H. Boozer

    2010-09-10

    Characteristics of modular coils for quasi-axisymmetric stellarators that are related to the plasma aspect ratio, number of field periods and rotational transform have been examined systematically. It is observed that, for a given plasma aspect ratio, the coil complexity tends to increase with the increased number of field periods. For a given number of field periods, the toroidal excursion of coil winding is reduced as the plasma aspect ratio is increased. It is also clear that the larger the coil-plasma separation is, the more complex the coils become. It is further demonstrated that it is possible to use other types of coils to complement modular coils to improve both the physics and the modular coil characteristics.

  12. Cellular blebs: pressure-driven, axisymmetric, membrane protrusions

    KAUST Repository

    Woolley, Thomas E.

    2013-07-16

    Blebs are cellular protrusions that are used by cells for multiple purposes including locomotion. A mechanical model for the problem of pressure-driven blebs based on force and moment balances of an axisymmetric shell model is proposed. The formation of a bleb is initiated by weakening the shell over a small region, and the deformation of the cellular membrane from the cortex is obtained during inflation. However, simply weakening the shell leads to an area increase of more than 4 %, which is physically unrealistic. Thus, the model is extended to include a reconfiguration process that allows large blebs to form with small increases in area. It is observed that both geometric and biomechanical constraints are important in this process. In particular, it is shown that although blebs are driven by a pressure difference across the cellular membrane, it is not the limiting factor in determining bleb size. © 2013 Springer-Verlag Berlin Heidelberg.

  13. Axisymmetric nonlinear waves and structures in Hall plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Tanim [Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, California 94551-0808 (United States)

    2012-06-15

    In this paper, a general equation for the evolution of an axisymmetric magnetic field in a Hall plasma is derived, with an integral similar to the Grad-Shafranov equation. Special solutions arising from curvature-whistler drift modes that propagate along the electron drift as a Burger's shock and nonlinear periodic and soliton-like solutions to the generalized Grad-Shafranov integral-are analyzed. We derive analytical and numerical solutions in a classical electron-ion Hall plasma, in which electrons and ions are the only species in the plasmas. Results may then be applied to the following low-ionized astrophysical plasmas: in protostellar disks, in which the ions may be coupled to the motion of gases; and in molecular clouds and protostellar jets, in which the much heavier charged dust in a dusty Hall plasma may be collisionally coupled to the gas.

  14. Ideal, steady-state, axisymmetric magnetohydrodynamic equations with flow

    International Nuclear Information System (INIS)

    The motivation of this study is to gain additional understanding of the effect of rotation on the equilibrium of a plasma. The axisymmetric equilibria of ideal magnetohydrodynamics (MHD) with flow have been studied numerically and analytically. A general discussion is provided of previous work on plasmas with flow and comparisons are made to the static model. A variational principle has been derived for the two dimensional problem with comments as to appropriate boundary conditions. An inverse aspect ratio expansion has been used for a study of the toroidal flow equation for both low- and high-β. The inverse aspect ratio expansion has also been used for a study of equations with both poloidal and toroidal flow. An overview is provided of the adaptive finite-difference code which was developed to solve the full equations. (FI)

  15. Three-dimensional axisymmetric flow-focusing device using stereolithography.

    Science.gov (United States)

    Morimoto, Yuya; Tan, Wei-Heong; Takeuchi, Shoji

    2009-04-01

    This paper describes a three-dimensional microfluidic axisymmetric flow-focusing device (AFFD) fabricated using stereolithography. Using this method, we can fabricate AFFDs rapidly and automatically without cumbersome alignment needed in conventional methods. The AFFDs are able to be fabricated reproducibly with a micro-sized orifice of diameter around 250 mum. Using this device, we are able to produce monodisperse water-in-oil (W/O) droplets with a coefficient of variation (CV) of less than 4.5%, W/O droplets with encapsulated microbes (CV < 4.9%) and oil-in-water (O/W) droplets (CV < 3.2%) without any surface modifications. The diameter of these droplets range from 54 to 244 mum with respect to the flow rate ratio of the fluids used; these results are in good agreement with theoretical behavior. For applications of the AFFD, we demonstrate that these devices can be used to produce double emulsions and monodisperse hydrogel beads.

  16. Ion Acceleration in Plasmas Emerging from a Helicon-heated Magnetic-mirror Device

    Energy Technology Data Exchange (ETDEWEB)

    S.A. Cohen; N.S. Siefert; S. Stange; R.F. Boivin; E.E. Scime; F.M. Levinton

    2003-03-21

    Using laser-induced fluorescence, measurements have been made of metastable argon-ion, Ar{sup +}*(3d{sup 4} f{sub 7/2}), velocity distributions on the major axis of an axisymmetric magnetic-mirror device whose plasma is sustained by helicon wave absorption. Within the mirror, these ions have sub-eV temperature and, at most, a subthermal axial drift. In the region outside the mirror coils, conditions are found where these ions have a field-parallel velocity above the acoustic speed, to an axial energy of {approx}30 eV, while the field-parallel ion temperature remains low. The supersonic Ar{sup +}*(3d{sup 4} f{sub 7/2}) are accelerated to one-third of their final energy within a short region in the plasma column, {le}1 cm, and continue to accelerate over the next 5 cm. Neutral gas density strongly affects the supersonic Ar{sup +}*(3d{sup 4} f{sub 7/2}) density.

  17. [What mirror neurons have revealed: revisited].

    Science.gov (United States)

    Murata, Akira; Maeda, Kazutaka

    2014-06-01

    The first paper on mirror neurons was published in 1992. In the span of over two decades since then, much knowledge about the relationship between social cognitive function and the motor control system has been accumulated. Direct matching of visual actions and their corresponding motor representations is the most important functional property of mirror neuron. Many studies have emphasized intrinsic simulation as a core concept for mirror neurons. Mirror neurons are thought to play a role in social cognitive function. However, the function of mirror neurons in the macaque remains unclear, because such cognitive functions are limited or lacking in macaque monkeys. It is therefore important to discuss these neurons in the context of motor function. Rizzolatti and colleagues have stressed that the most important function of mirror neurons in macaques is recognition of actions performed by other individuals. I suggest that mirror neurons in the Macaque inferior pariental lobule might be correlated with body schema. In the parieto-premotor network, matching of corollary discharge and actual sensory feedback is an essential neuronal operation. Recently, neurons showing mirror properties were found in some cortical areas outside the mirror neuron system. The current work would revisit the outcomes of mirror neuron studies to discuss the function of mirror neurons in the monkey.

  18. Mirror neurons: their implications for group psychotherapy.

    Science.gov (United States)

    Schermer, Victor L

    2010-10-01

    Recently discovered mirror neurons in the motor cortex of the brain register the actions and intentions of both the organism and others in the environment. As such, they may play a significant role in social behavior and groups. This paper considers the potential implications of mirror neurons and related neural networks for group therapists, proposing that mirror neurons and mirror systems provide "hard-wired" support for the group therapist's belief in the centrality of relationships in the treatment process and exploring their value in accounting for group-as-a-whole phenomena. Mirror neurons further confirm the holistic, social nature of perception, action, and intention as distinct from a stimulus-response behaviorism. The implications of mirror neurons and mirroring processes for the group therapist role, interventions, and training are also discussed.

  19. Nanocrystal assembly for tandem catalysis

    Science.gov (United States)

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  20. "Nanocrystal bilayer for tandem catalysis"

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  1. Effects of large-scale non-axisymmetric perturbations in the mean-field solar dynamo

    CERN Document Server

    Pipin, V V

    2015-01-01

    We explore a response of the non-linear non-axisymmetric mean-field solar dynamo model to the shallow non-axisymmetric perturbations with the strength of 1G. The amplitude of the non-axisymmetric field depends on the initial condition, helicity conservation, the depth of perturbation. It is found that perturbation which is anchored at the 0.9R have a profound effect and it produce the transient magnetic cycle of the axisymmetric magnetic field if it is initiated at the growing phase of the cycle. The non-symmetric about equator perturbation results the hemispheric asymmetry of the magnetic activity. The evolution of the axisymmetric and non-axisymmetric field depends on how well the magnetic helicity is conserved. In the range of Rm=10^{4-6} the evolution returns to the normal course in the next cycle and the non-axisymmetric field is generated due to non-linear alpha-effect and the magnetic buoyancy. In the stationary state of evolution the large-scale magnetic field demonstrate, the phenomena of the "active...

  2. User's manual for the FLORA equilibrium and stability code

    International Nuclear Information System (INIS)

    This document provides a user's guide to the content and use of the two-dimensional axisymmetric equilibrium and stability code FLORA. FLORA addresses the low-frequency MHD stability of long-thin axisymmetric tandem mirror systems with finite pressure and finite-larmor-radius effects. FLORA solves an initial-value problem for interchange, rotational, and ballooning stability

  3. Averaging Analysis of Self—Excited Motion of a Quasi—Axisymmetrical Gyrostat

    Institute of Scientific and Technical Information of China (English)

    薛纭; 陈立群

    2002-01-01

    The averaging analysis was carried out to study the motion of a quasi-axisymmetrical gyrostat under a small-magnitude self-excited control troque.The common approach to investigating the problem of rigid body rotatyion under the action of a small torque known in the body frame was described.Using this approach,the problem(Grammel's problem for the case of small torque) that is maintaining the angular velocity of a quasi-axisymmetrical gyrostat using a control torque quadratic in the angular velocity was solved.Maintaining the angular velocity of a quasi-axisymmetrical gryostat using a control torque quadratic in the angular velocity was solved.

  4. Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta

    Science.gov (United States)

    Dasi, L. P.; Ge, L.; Simon, H. A.; Sotiropoulos, F.; Yoganathan, A. P.

    2007-06-01

    We present comprehensive particle image velocimetry measurements and direct numerical simulation (DNS) of physiological, pulsatile flow through a clinical quality bileaflet mechanical heart valve mounted in an idealized axisymmetric aorta geometry with a sudden expansion modeling the aortic sinus region. Instantaneous and ensemble-averaged velocity measurements as well as the associated statistics of leaflet kinematics are reported and analyzed in tandem to elucidate the structure of the velocity and vorticity fields of the ensuing flow-structure interaction. The measurements reveal that during the first half of the acceleration phase, the flow is laminar and repeatable from cycle to cycle. The valve housing shear layer rolls up into the sinus and begins to extract vorticity of opposite sign from the sinus wall. A start-up vortical structure is shed from the leaflets and is advected downstream as the leaflet shear layers become wavy and oscillatory. In the second half of flow acceleration the leaflet shear layers become unstable and break down into two von Karman-like vortex streets. The onset of vortex shedding from the valve leaflets is responsible for the growth of significant cycle-to-cycle vorticity oscillations. At peak flow, the housing and leaflet shear layers undergo secondary instabilities and break down rapidly into a chaotic, turbulent-like state with multiple small-scale vortical structures emerging in the flow. During the deceleration and closing phases all large-scale coherent flow features disappear and a chaotic small-scale vorticity field emerges, which persists even after the valve has closed. Probability density functions of the leaflet position during opening and closing phases show that the leaflet position fluctuates from cycle to cycle with larger fluctuations evident during valve closure. The DNS is carried out by prescribing the leaflet kinematics from the experimental data. The computed instantaneous vorticity fields are in very good

  5. Mirror-Symmetric Matrices and Their Application

    Institute of Scientific and Technical Information of China (English)

    李国林; 冯正和

    2002-01-01

    The well-known centrosymmetric matrices correctly reflect mirror-symmetry with no component or only one component on the mirror plane. Mirror-symmetric matrices defined in this paper can represent mirror-symmetric structures with various components on the mirror plane. Some basic properties of mirror-symmetric matrices were studied and applied to interconnection analysis. A generalized odd/even-mode decomposition scheme was developed based on the mirror reflection relationship for mirror-symmetric multiconductor transmission lines (MTLs). The per-unit-length (PUL) impedance matrix Z and admittance matrix Y can be divided into odd-mode and even-mode PUL matrices. Thus the order of the MTL system is reduced from n to k and k+p, where p(≥0)is the conductor number on the mirror plane. The analysis of mirror-symmetric matrices is related to the theory of symmetric group, which is the most effective tool for the study of symmetry.

  6. Experimental investigation about the effect of non-axisymmetric wake impact on a low speed axial compressor

    Science.gov (United States)

    Liu, Jianyong; Lu, Yajun; Li, Zhiping

    2010-05-01

    Non-axisymmetric wake impact experiments were carried out after the best exciting frequency for a low speed axial compressor had been found by axisymmetric wake impact experiments. When the number and circumferential distribution of inlet guide vanes (IGV) are logical the wakes of non-axisymmetric IGVs can exert beneficial unsteady exciting effect on their downstream rotor flow fields and improve the compressor’s performance. In the present paper, four non-axisymmetric wake impact plans were found working better than the axisymmetric wake impact plan. Compared with the base plan, the best non-axisymmetric plan increased the compressor’s peak efficiency, and the total pressure rise by 1.1 and 2%, and enhanced the stall margin by 4.4%. The main reason why non-axisymmetric plans worked better than the axisymmetric plan was explained as the change of the unsteady exciting signal arising from IGV wakes. Besides the high-frequency components, the non-axisymmetric plan generated a beneficial low-frequency square-wave exciting signal and other secondary frequency components. Compared with the axisymmetric plan, multi-frequency exciting wakes arising from the non-axisymmetric plans are easier to get coupling relation with complex vortices such as clearance vortices, passage vortices and shedding vortices.

  7. Manufacturing Large Membrane Mirrors at Low Cost

    Science.gov (United States)

    2007-01-01

    Relatively inexpensive processes have been developed for manufacturing lightweight, wide-aperture mirrors that consist mainly of reflectively coated, edge-supported polyimide membranes. The polyimide and other materials in these mirrors can withstand the environment of outer space, and the mirrors have other characteristics that make them attractive for use on Earth as well as in outer space: With respect to the smoothness of their surfaces and the accuracy with which they retain their shapes, these mirrors approach the optical quality of heavier, more expensive conventional mirrors. Unlike conventional mirrors, these mirrors can be stowed compactly and later deployed to their full sizes. In typical cases, deployment would be effected by inflation. Potential terrestrial and outer-space applications for these mirrors include large astronomical telescopes, solar concentrators for generating electric power and thermal power, and microwave reflectors for communication, radar, and short-distance transmission of electric power. The relatively low cost of manufacturing these mirrors stems, in part, from the use of inexpensive tooling. Unlike in the manufacture of conventional mirrors, there is no need for mandrels or molds that have highly precise surface figures and highly polished surfaces. The surface smoothness is an inherent property of a polyimide film. The shaped area of the film is never placed in contact with a mold or mandrel surface: Instead the shape of a mirror is determined by a combination of (1) the shape of a fixture that holds the film around its edge and (2) control of manufacturing- process parameters. In a demonstration of this manufacturing concept, spherical mirrors having aperture diameters of 0.5 and 1.0 m were fabricated from polyimide films having thicknesses ranging from <20 m to 150 m. These mirrors have been found to maintain their preformed shapes following deployment.

  8. Short Tandem Repeat DNA Internet Database

    Science.gov (United States)

    SRD 130 Short Tandem Repeat DNA Internet Database (Web, free access)   Short Tandem Repeat DNA Internet Database is intended to benefit research and application of short tandem repeat DNA markers for human identity testing. Facts and sequence information on each STR system, population data, commonly used multiplex STR systems, PCR primers and conditions, and a review of various technologies for analysis of STR alleles have been included.

  9. Technology demonstration report for the Mirror Fusion Test Facility (MFTF-B)

    International Nuclear Information System (INIS)

    This report describes the activities of the Mirror Fusion Test Facility (MFTF) Technology Demonstration Program during January and February 1982. It also documents the systems test, which verified all major technology and design objectives of the superconducting ying-yang magnet, vessel, and external vacuum, cryogenic, local control, instrumentation, and supervisory control and diagnostic systems. Because of this program, work on the design and construction of the tandem version of MFTF-B (axicell) is now proceeding with much greater design confidence and lower risks

  10. The characterization of tandem and corrugated wings

    Science.gov (United States)

    Lian, Yongsheng; Broering, Timothy; Hord, Kyle; Prater, Russell

    2014-02-01

    Dragonfly wings have two distinct features: a tandem configuration and wing corrugation. Both features have been extensively studied with the aim to understand the superior flight performance of dragonflies. In this paper we review recent development of tandem and corrugated wing aerodynamics. With regards to the tandem configuration, this review will focus on wing/wing and wing/vortex interactions at different flapping modes and wing spacing. In addition, the aerodynamics of tandem wings under gusty conditions will be reviewed and compared with isolated wings to demonstrate the gust resistance characteristics of flapping wings. Regarding corrugated wings, we review their structural and aerodynamic characteristics.

  11. Stabilization of the vertical instability by non-axisymmetric coils

    Science.gov (United States)

    Turnbull, A. D.; Reiman, A. H.; Lao, L. L.; Cooper, W. A.; Ferraro, N. M.; Buttery, R. J.

    2016-08-01

    In a published Physical Review Letter (Reiman 2007 Phys. Rev. Lett. 99 135007), it was shown that axisymmetric (or vertical) stability can be improved by placing a set of parallelogram coils above and below the plasma oriented at an angle to the constant toroidal planes. The physics of this stabilization can be understood as providing an effective additional positive stability index. The original work was based on a simplified model of a straight tokamak and is not straightforwardly applicable to a finite aspect ratio, strongly shaped plasma such as in DIII-D. Numerical calculations were performed in a real DIII-D -like configuration to provide a proof of principal that 3-D fields can, in fact raise the elongation limits as predicted. A four field period trapezioid-shaped coil set was developed in toroidal geometry and 3D equilibria were computed using trapezium coil currents of 10 kA , 100 kA , and 500 kA . The ideal magnetohydrodynamics growth rates were computed as a function of the conformal wall position for the n = 0 symmetry-preserving family. The results show an insignificant relative improvement in the stabilizing wall location for the two lower coil current cases, of the order of 10‑3 and less. In contrast, the marginal wall position is increased by 7% as the coil current is increased to 500 kA , confirming the main prediction from the original study in a real geometry case. In DIII-D the shift in marginal wall position of 7% would correspond to being able to move the existing wall outward by 5 to 10 cm. While the predicted effect on the axisymmetric stability is real, it appears to require higher coil currents than could be provided in an upgrade to existing facilities. Additional optimization over the pitch of the coils, the number of field periods and the coil positions, as well as plasma parameters, such as the internal inductivity {{\\ell}\\text{i}} , β , and {{q}95} would mitigate this but seem unlikely to change the conclusion.

  12. Automation of Axisymmetric Drop Shape Analysis Using Digital Image Processing

    Science.gov (United States)

    Cheng, Philip Wing Ping

    The Axisymmetric Drop Shape Analysis - Profile (ADSA-P) technique, as initiated by Rotenberg, is a user -oriented scheme to determine liquid-fluid interfacial tensions and contact angles from the shape of axisymmetric menisci, i.e., from sessile as well as pendant drops. The ADSA -P program requires as input several coordinate points along the drop profile, the value of the density difference between the bulk phases, and gravity. The solution yields interfacial tension and contact angle. Although the ADSA-P technique was in principle complete, it was found that it was of very limited practical use. The major difficulty with the method is the need for very precise coordinate points along the drop profile, which, up to now, could not be obtained readily. In the past, the coordinate points along the drop profile were obtained by manual digitization of photographs or negatives. From manual digitization data, the surface tension values obtained had an average error of +/-5% when compared with literature values. Another problem with the ADSA-P technique was that the computer program failed to converge for the case of very elongated pendant drops. To acquire the drop profile coordinates automatically, a technique which utilizes recent developments in digital image acquisition and analysis was developed. In order to determine the drop profile coordinates as precisely as possible, the errors due to optical distortions were eliminated. In addition, determination of drop profile coordinates to pixel and sub-pixel resolution was developed. It was found that high precision could be obtained through the use of sub-pixel resolution and a spline fitting method. The results obtained using the automatic digitization technique in conjunction with ADSA-P not only compared well with the conventional methods, but also outstripped the precision of conventional methods considerably. To solve the convergence problem of very elongated pendant drops, it was found that the reason for the

  13. Mirror Development for the Cherenkov Telescope Array

    CERN Document Server

    Förster, A; Baba, H; Bähr, J; Bonardi, A; Bonnoli, G; Brun, P; Canestrari, R; Chadwick, P; Chikawa, M; Carton, P -H; De Souza, V; Dipold, J; Doro, M; Durand, D; Dyrda, M; Giro, E; Glicenstein, J -F; Hanabata, Y; Hayashida, M; Hrabovski, M; Jeanney, C; Kagaya, M; Katagiri, H; Lessio, L; MANDAT, D; Mariotti, M; Medina, C; Michałowski, J; Micolon, P; Nakajima, D; Niemiec, J; Nozato, A; Palatka, M; Pareschi, G; Pech, M; Peyaud, B; Pühlhofer, G; Rataj, M; Rodeghiero, G; Rojas, G; Rousselle, J; Sakonaka, R; Schovanek, P; Seweryn, K; Schultz, C; Shu, S; Stinzing, F; Stodulski, M; Teshima, M; Travniczek, P; Van Eldik, C; Vassiliev, V; Wiśniewski, Ł; Wörnlein, A; Yoshida, T

    2013-01-01

    The Cherenkov Telescope Array (CTA) is a planned observatory for very-high energy gamma-ray astronomy. It will consist of several tens of telescopes of different sizes, with a total mirror area of up to 10,000 square meters. Most mirrors of current installations are either polished glass mirrors or diamond-turned aluminium mirrors, both labour intensive technologies. For CTA, several new technologies for a fast and cost-efficient production of light-weight and reliable mirror substrates have been developed and industrial pre-production has started for most of them. In addition, new or improved aluminium-based and dielectric surface coatings have been developed to increase the reflectance over the lifetime of the mirrors compared to those of current Cherenkov telescope instruments.

  14. Standard specification for silvered flat glass mirror

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification covers the requirements for silvered flat glass mirrors of rectangular shape supplied as cut sizes, stock sheets or as lehr ends and to which no further processing (such as edgework or other fabrication) has been done. 1.2 This specification covers the quality requirements of silvered annealed monolithic clear and tinted flat glass mirrors up to 6 mm (¼ in.) thick. The mirrors are intended to be used indoors for mirror glazing, for components of decorative accessories or for similar uses. 1.3 This specification does not address safety glazing materials nor requirements for mirror applications. Consult model building codes and other applicable standards for safety glazing applications. 1.4 Mirrors covered in this specification are not intended for use in environments where high humidity or airborne corrosion promoters, or both, are consistently present (such as swimming pool areas, ocean-going vessels, chemical laboratories and other corrosive environments). 1.5 The dimensional val...

  15. Magnetic helicity in non-axisymmetric mean-field solar dynamo

    CERN Document Server

    Pipin, V V

    2016-01-01

    The paper address the effects of magnetic helicity conservation in a non-linear nonaxisymmetric mean-field solar dynamo model. We study the evolution of the shallow non-axisymmetric magnetic field perturbation with the strength about 10G in the solar convection zone. The dynamo evolves from the pure axisymmetric stage through the short (about 2 years) transient phase when the non-axisymmetric m=1 dynamo mode is dominant to the final stage where the axisymmetry of the dynamo is almost restored. It is found that magnetic helicity is transferred forth and back over the spectral space during the transient phase. Also our simulations shows that the non-axisymmetric distributions of magnetic helicity tend to follows the regions of the Hale polarity rule.

  16. A Variational Principle for the Axisymmetric Stability of Rotating Relativistic Stars

    CERN Document Server

    Prabhu, Kartik; Wald, Robert M

    2016-01-01

    It is well known that all rotating perfect fluid stars in general relativity are unstable to certain non-axisymmetric perturbations via the Chandrasekhar-Friedman-Schutz (CFS) instability. However, the mechanism of the CFS instability requires, in an essential way, the loss of angular momentum by gravitational radiation and, in many instances, it acts on too long a timescale to be physically/astrophysically relevant. It is therefore of interest to examine the stability of rotating, relativistic stars to axisymmetric perturbations, where the CFS instability does not occur. In this paper, we provide a variational principle for testing the stability of perfect fluid stars to axisymmetric perturbations, which generalizes to axisymmetric perturbations of rotating stars a variational principle given by Chandrasekhar for spherical perturbations of static, spherical stars. Our variational principle provides a lower bound to the rate of exponential growth in the case of instability. The derivation closely parallels th...

  17. Non-axisymmetric vertical shear and convective instabilities as a mechanism of angular momentum transport

    CERN Document Server

    Volponi, Francesco

    2013-01-01

    Discs with a rotation profile depending on radius and height are subject to an axisymmetric linear instability, the vertical shear instability. Here we show that non-axisymmetric perturbations, while eventually stabilized, can sustain huge exponential amplifications with growth rate close to the axisymmetric one. Transient growths are therefore to all effects genuine instabilities. The ensuing angular momentum transport is positive. These growths occur when the product of the radial times the vertical wavenumbers (both evolving with time) is positive for a positive local vertical shear, or negative for a negative local vertical shear. We studied, as well, the interaction of these vertical shear induced growths with a convective instability. The asymptotic behaviour depends on the relative strength of the axisymmetric vertical shear (s_v) and convective (s_c) growth rates. For s_v > s_c we observed the same type of behaviour described above - large growths occur with asymptotic stabilization. When s_c > s_v th...

  18. Gravity and Mirror Gravity in Plebanski Formulation

    OpenAIRE

    Bennett, D. L.; Laperashvili, L. V.; Nielsen, H. B.; Tureanu, A.

    2012-01-01

    We present several theories of four-dimensional gravity in the Plebanski formulation, in which the tetrads and the connections are the independent dynamical variables. We consider the relation between different versions of gravitational theories: Einstenian, dual, 'mirror' gravities and gravity with torsion. According to Plebanski's assumption, our world, in which we live, is described by the self-dual left-handed gravity. We propose that if the Mirror World exists in Nature, then the 'mirror...

  19. Mirror World and Axion: Relaxing Cosmological Bounds

    CERN Document Server

    Maurizio, G

    2005-01-01

    The cosmological (upper) limit on the Peccei-Quinn constant, related to the primordial oscillations of the axion field, can be relaxed for a mirror axion model. The simple reason is that the mirror world is colder and so the behavior of the axion temperature-dependent mass is dominated by the contribution from the mirror sector. So the coherent oscillations start earlier and correspondingly the axion mass density \\Omega_a h^2 is reduced.

  20. A framework for tropical mirror symmetry

    OpenAIRE

    Boehm, Janko

    2011-01-01

    Applying tropical geometry a framework for mirror symmetry, including a mirror construction for Calabi-Yau varieties, was proposed by the author. We discuss the conceptual foundations of this construction based on a natural mirror map identifying deformations and divisors. We show how the construction specializes to that by Batyrev for hypersurfaces and its generalization by Batyrev and Borisov to complete intersections. Based on an explicit example we comment on the implementation in the Mac...

  1. A framework for tropical mirror symmetry

    CERN Document Server

    Boehm, Janko

    2011-01-01

    Applying tropical geometry a framework for mirror symmetry, including a mirror construction for Calabi-Yau varieties, was proposed by the author. We discuss the conceptual foundations of this construction based on a natural mirror map identifying deformations and divisors. We show how the construction specializes to that by Batyrev for hypersurfaces and its generalization by Batyrev and Borisov to complete intersections. Based on an explicit example we comment on the implementation in the Macaulay2 package SRdeformations.

  2. Deformable Mirrors Correct Optical Distortions

    Science.gov (United States)

    2010-01-01

    By combining the high sensitivity of space telescopes with revolutionary imaging technologies consisting primarily of adaptive optics, the Terrestrial Planet Finder is slated to have imaging power 100 times greater than the Hubble Space Telescope. To this end, Boston Micromachines Corporation, of Cambridge, Massachusetts, received Small Business Innovation Research (SBIR) contracts from the Jet Propulsion Laboratory for space-based adaptive optical technology. The work resulted in a microelectromechanical systems (MEMS) deformable mirror (DM) called the Kilo-DM. The company now offers a full line of MEMS DMs, which are being used in observatories across the world, in laser communication, and microscopy.

  3. Mirror QCD and Cosmological Constant

    CERN Document Server

    Pasechnik, Roman; Teryaev, Oleg

    2016-01-01

    An analog of Quantum Chromo Dynamics (QCD) sector known as mirror QCD (mQCD) can affect the cosmological evolution and help in resolving the Cosmological Constant problem. In this work, we explore an intriguing possibility for a compensation of the negative QCD vacuum contribution to the ground state energy density of the universe by means of a positive contribution from the chromomagnetic gluon condensate in mQCD. The trace anomaly compensation condition and the form of the mQCD coupling constant in the infrared limit have been proposed by analysing a partial non-perturbative solution of the Einstein--Yang-Mills equations of motion.

  4. Beautiful Mirrors at the LHC

    OpenAIRE

    Kumar, Kunal; Shepherd, William; Tait, Tim M. P.; Vega-Morales, Roberto(Laboratoire de Physique Théorique, CNRS-UMR 8627, Université Paris-Sud 11, F-91405, Orsay Cedex, France)

    2010-01-01

    We explore the "Beautiful Mirrors" model, which aims to explain the measured value of $A^b_{FB}$, discrepant at the $2.9\\sigma$ level. This scenario introduces vector-like quarks which mix with the bottom, subtly affecting its coupling to the $Z$. The spectrum of the new particles consists of two bottom-like quarks and a charge -4/3 quark, all of which have electroweak interactions with the third generation. We explore the phenomenology and discovery reach for these new particles at the LHC, ...

  5. Patch test function for axisymmetric element of conventional and couple stress theory

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The enhanced patch test proposed by Chen W J(2006) can be used to assess the convergence of the problem with non-homogeneous differential equations.Based on this theory,we establish the patch test function for axisymmetric elements of conventional and couple stress theories,and reach an important conclusion that the patch test function for axisymmetric elements cannot contain non-zero constant shear.

  6. Collapse of a non-axisymmetric, impact-created air cavity in water

    OpenAIRE

    Enriquez, Oscar R.; Peters, Ivo R.; Gekle, Stephan; Schmidt, Laura E.; Lohse, Detlef; van der Meer, Devaraj

    2011-01-01

    The axisymmetric collapse of a cylindrical air cavity in water follows a universal power law with logarithmic corrections. Nonetheless, it has been suggested that the introduction of a small azimuthal disturbance induces a long term memory effect, reflecting in oscillations which are no longer universal but remember the initial condition. In this work, we create non-axisymmetric air cavities by driving a metal disc through an initially-quiescent water surface and observe their subsequent grav...

  7. Axisymmetric and 3D calculations of melt flow during VCz growth

    Science.gov (United States)

    Bänsch, E.; Davis, D.; Langmach, H.; Miller, W.; Rehse, U.; Reinhardt, G.; Uhle, M.

    2004-05-01

    Axisymmetric and 3D calculations of melt flow have been performed for a configuration used at the vapour-pressure-controlled Czochalski growth of GaAs single crystals. Thermal boundary conditions were adapted from a global simulation of the temperature field. The axisymmetric calculations with the code NAVIER confirmed the ones previously perfomed with FIDAP TM. The 3D calculations showed that the flow exhibits an asymmetric transient behaviour beyond a certain critical Reynolds number.

  8. THE NON-AXISYMMETRICAL DYNAMIC RESPONSE OF TRANSVERSELY ISOTROPIC SATURATED POROELASTIC MEDIA

    Institute of Scientific and Technical Information of China (English)

    张引科; 黄义

    2001-01-01

    The Biot' s wave equations of transversely isotropic saturated poroelastic media excited by non- axisymmetrical harmonic source were solved by means of Fourier expansion and Hankel transform. Then the components of total stress in porous media are expressed with the solutions of Biot's wave equations. The method of research on non-axisymmetrical dynamic response of saturated porous media is discussed, and a numerical result is presented.

  9. Single Crystal Silicon Mirrors for Spaceflight Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a well understood process for manufacturing visible quality SCSi mirrors. Areas of research include stress relief, figure, finish, and light weighting...

  10. Analytic solution for a quartic electron mirror

    Energy Technology Data Exchange (ETDEWEB)

    Straton, Jack C., E-mail: straton@pdx.edu

    2015-01-15

    A converging electron mirror can be used to compensate for spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a diode (two-electrode) electrostatic mirror including the next term beyond the known hyperbolic shape. The latter is a solution of the Laplace equation to second order in the variables perpendicular to and along the mirror's radius (z{sup 2}−r{sup 2}/2) to which we add a quartic term (kλz{sup 4}). The analytical solution is found in terms of Jacobi cosine-amplitude functions. We find that a mirror less concave than the hyperbolic profile is more sensitive to changes in mirror voltages and the contrary holds for the mirror more concave than the hyperbolic profile. - Highlights: • We find the analytical solution for electron mirrors whose curvature has z4 dependence added to the usual z{sup 2} – r{sup 2}/2 terms. • The resulting Jacobi cosine-amplitude function reduces to the well-known cosh solution in the limit where the new term is 0. • This quartic term gives a mirror designer additional flexibility for eliminating spherical and chromatic aberrations. • The possibility of using these analytical results to approximately model spherical tetrode mirrors close to axis is noted.

  11. Mirror movements in progressive hemifacial atrophy

    Directory of Open Access Journals (Sweden)

    Rajesh Verma

    2015-01-01

    Full Text Available Mirror movements are simultaneous, involuntary, identical movements occurring during contralateral voluntary movements. These movements are considered as soft neurologic signs seen uncommonly in clinical practice. The mirror movements are described in various neurological disorders which include parkinsonism, cranio veretebral junction anamolies, and hemiplegic cerebral palsy. These movements are intriguing and can pose significant disability. However, no such observation regarding mirror movements in progressive hemifacial atrophy have been reported previously. We are reporting a teenage girl suffering from progressive hemifacial atrophy and epilepsy with demonstrable mirror movements in hand.

  12. Design and construction of the vacuum vessel for the tandem Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    We have designed the MFTF-B vacuum vessel both to maintain the required vacuum environment and to structurally support the 42 superconducting magnets plus auxiliary internal and external equipment. The design calculations were greatly aided by computer models, which also speeded our redesign effort when the machine configuration was changed to the Axicelll MFTF-B this past year. Our field construction and erection effort should meet the July 1984 completion date for the vacuum vessel

  13. Special topics reports for the reference tandem mirror fusion breeder. Volume 5. Neutronic issues and optimization

    International Nuclear Information System (INIS)

    More rigorous nuclear analysis, including the treatment of resonance self-shielding effects coupled with an optimization procedure, has resulted in improved performance of the Be/Li/Th blanket. Net U-233 breeding ratio has increased 36% (to 0.84) while at a U/Th ratio of 0.25 a/o energy multiplication has increased 12% (to 2.1) compared with earlier results

  14. Plasma-surface interactions in large tandem mirror devices-MFTF-B

    International Nuclear Information System (INIS)

    Present experiments on TMX-U and modeling of MFTF-B indicate that plasma-surface interactions can be controlled in MFTF-B. The MFTF-B configuration uses a hot electron population created by ECRH and a sloshing-ion population created by neutral beams in the thermal barrier region to create a potential that confines the central cell ions. Neutral beams and ICRH are used to heat the central cell ions. Plasma-surface interactions can be minimized at radial surfaces by control of the axial confinement of the edge plasma. The thermal barrier configuration is sensitive to the background neutral density, and requires low wall reflux and efficient shielding by the edge plasma. Glow discharge cleaning, titanium gettering, and control of the gas from neutral beams will be used to provide wall conditioning and to reduce the background gas pressure. The shielding efficiency of the plasma edge has been modeled in MFTF-B by comparing computer codes with current experimental measurements. In addition, it is very important to reduce high-energy neutral-beam-injected impurities; this is accomplished by using gettering or magnetic separation in the injector systems. Plasma-edge scrapers, diverter-like devices, and direct-conversion equipment will be located in the end region. Major disruptions are not anticipated. Finally, MFTF-B will also test some technological issues that are relevant to reactors: superconducting magnet systems and nearly steady-state (30 s) operation. (orig.)

  15. Interfacing the tandem mirror reactor to the sulfur-iodine process for hydrogen production

    International Nuclear Information System (INIS)

    The blanket is linked to the H2SO4 vaporization units and SO3 decomposition reactor with either sodium or helium. The engineering and safety problems associated with these choices are discussed. This H2SO4 step uses about 90% of the TMR heat and is best close-coupled to the nuclear island. The rest of the process we propose to be driven by steam and does not require close-coupling. The sodium loop coupling seems to be preferable at this time. We can operate with a blanket around 1200 K and the SO3 decomposer around 1050 K. This configuration offers double-barrier protection between Li-Na and the SO3 process gases. Heat pipes offer an attractive alternate to provide an additional barrier, added modularity for increased reliability, and tritium concentration and isolation operations with very little thermal penalty

  16. Plasma-surface interactions in large tandem mirror devices - MFTF-B

    International Nuclear Information System (INIS)

    Present experiments on TMX-U and modeling of MFTF-B indicate that plasma-surface interactions can be controlled in MFTF-B. The MFTF-B configuration uses a hot electron population created by ECRH and a sloshing-ion population created by neutral beams in the thermal barrier region to create a potential that confines the central cell ions. Neutral beams and ICRH are used to heat the central cell ions. Plasma-surface interactions can be minimized at radial surfaces by control of the axial confinement of the edge plasma. The thermal barrier configuration is sensitive to the background neutral density, and requires low wall reflux and efficient shielding by the edge plasma. Glow discharge cleaning, titanium gettering, and control of the gas from neutral beams will be used to provide wall conditioning and to reduce the background gas pressure. The shielding efficiency of the plasma edge has been modeled in MFTF-B by comparing computer codes with current experimental measurements. In addition, it is very important to reduce high-energy neutral-beam-injected impurities; this is accomplished by using gettering or magnetic separation in the injector systems. Plasma-edge scrapers, diverter-like devices, and direct-conversion equipment will be located in the end region. Major disruptions are not anticipated. Finally, MFTF-B will also test some technological issues that are revelant to reactors: superconducting magnet systems and nearly steady-state (30-s) operation

  17. Tandem mirror hybrid reactor study (LLL Purchase Order 6887809 dated August 31, 1979)

    International Nuclear Information System (INIS)

    The results, bases, qualifications, and exclusions of the preconceptual cost estimate are presented below. This estimate is an order-of-magnitude assessment of the direct level POP Costs. The direct level cost consists of: (1) total cost of all materials forming the permanent part of the completed plant, and (2) total cost of all labor engaged in installing and erecting all materials forming the permanent part of the completed plant. A cost summary and a supporting breakdown of this estimate are shown

  18. Surface analysis and a novel application of carbon sheet pump in the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Samples of carbon sheet pump (CSP) exposed to fast neutrals have been analyzed by using microscopic techniques in order to improve the performance of CSP and to examine the applicability of CSP to actual devices. It has been confirmed from the microscopic viewpoint for the first time that fast neutrals emitted from plasmas generated by the actual confinement device (GAMMA 10) are trapped by the C/C material. A numerical simulation is performed by means of the Monte Carlo simulation code TRIM (ver. TRVMC95) for the sake of the evaluation of the results obtained by elastic recoil detection technique. CSP has been newly applied to the shine-through beam dump of a neutral beam injector in order to test the pumping effect of CSP under the conditions of high heat and particle load (several MW/m2 and 2.5x1021 H/m2 s at the beam center, respectively). It also has been found from pressure-balance analysis that 80% of incident particles are trapped by CSP

  19. Tandem mirror hybrid reactor study (LLL Purchase Order 3323609 dated October 20, 1978)

    International Nuclear Information System (INIS)

    In any nuclear power plant, reactor design and performance are the major determining and driving factors of the plant economic and technical viability. However, the balance-of-plant (BOP) - which includes heat transport and energy conversion systems, plant auxiliary systems, plant electrical system, and structures and facilities - has a major effect on the plant economics. In fact, the BOP can account for as much as 70 to 85 percent of the total plant capital cost and therefore will have a significant impact upon the economic viability of the plant. Further, decisions made in the reactor design can have significant impact on the BOP design. A preconceptual BOP design and an order-of-magnitude cost estimate were developed for the helium cooled TMHR and are described

  20. Structural support of a yin-yang magnet for a tandem mirror reactor with thermal barriers

    International Nuclear Information System (INIS)

    This report contains a comprehensive summary covering work performed by Grumman Aerospace Corporation, in conjunction with the Lawrence Livermore National Laboratory, on the TMP yin-yang coils. The yin-yang coil pair used for our analysis has a major arc radius of 2.7 m and a minor arc radius of 1.18 m, compared with 2.5 m and 0.75 m for the MFTF. The maximum field on the present conductor is 9.05 Tesla. This magnetic field is created by, and interacts with, a conductor current which produces a 360 million Newton total force, tending to separate the parallel lobes of the major arcs

  1. The shape of an axisymmetric bubble in uniform motion

    Indian Academy of Sciences (India)

    P N Shankkar

    2005-09-01

    We consider in a frame fixed to a bubble translating with steady speed , the inviscid, axisymmetric, irrotational motion of the liquid past it. If all speeds are normalized by and lengths by $T/\\dfrac{1}{2} \\varrho U^{2}$, where is the surface tension of the liquid–bubble interface, it can be shown that the unknown bubble shape and field depend on a single parameter $ = (p_{b} − p_{∞})/\\dfrac{1}{2} \\varrho U^{2} − 1$ alone, where the pressures are the ones in the bubble and far away respectively. When is very large the bubble is almost spherical in shape while for $ ≤ ^{*} ≈ -0.315$, bubbles whose exteriors are simply connected do not exist. We solve the non-linear, free boundary problem for the whole range $^{*}$ < < ∞ by the use of an analytical representation for the bubble shape, a surface singularity method to compute potential flows and a generalized Newton's method to continue in . Apart from providing explicit representations for bubble shapes and detailed numerical values for the bubble parameters, we show that the classical linearized solution for large is a very good approximation, surprisingly, to as low values of as 2. We also show that Miksis et al [1] is inaccurate over the whole range and in serious error for large and small . These have been corrected.

  2. Axisymmetric bifurcations of thick spherical shells under inflation and compression

    KAUST Repository

    deBotton, G.

    2013-01-01

    Incremental equilibrium equations and corresponding boundary conditions for an isotropic, hyperelastic and incompressible material are summarized and then specialized to a form suitable for the analysis of a spherical shell subject to an internal or an external pressure. A thick-walled spherical shell during inflation is analyzed using four different material models. Specifically, one and two terms in the Ogden energy formulation, the Gent model and an I1 formulation recently proposed by Lopez-Pamies. We investigate the existence of local pressure maxima and minima and the dependence of the corresponding stretches on the material model and on shell thickness. These results are then used to investigate axisymmetric bifurcations of the inflated shell. The analysis is extended to determine the behavior of a thick-walled spherical shell subject to an external pressure. We find that the results of the two terms Ogden formulation, the Gent and the Lopez-Pamies models are very similar, for the one term Ogden material we identify additional critical stretches, which have not been reported in the literature before.© 2012 Published by Elsevier Ltd.

  3. Internal performance characteristics of vectored axisymmetric ejector nozzles

    Science.gov (United States)

    Lamb, Milton

    1993-01-01

    A series of vectoring axisymmetric ejector nozzles were designed and experimentally tested for internal performance and pumping characteristics at NASA-Langley Research Center. These ejector nozzles used convergent-divergent nozzles as the primary nozzles. The model geometric variables investigated were primary nozzle throat area, primary nozzle expansion ratio, effective ejector expansion ratio (ratio of shroud exit area to primary nozzle throat area), ratio of minimum ejector area to primary nozzle throat area, ratio of ejector upper slot height to lower slot height (measured on the vertical centerline), and thrust vector angle. The primary nozzle pressure ratio was varied from 2.0 to 10.0 depending upon primary nozzle throat area. The corrected ejector-to-primary nozzle weight-flow ratio was varied from 0 (no secondary flow) to approximately 0.21 (21 percent of primary weight-flow rate) depending on ejector nozzle configuration. In addition to the internal performance and pumping characteristics, static pressures were obtained on the shroud walls.

  4. Laboratory investigation of axisymmetric single vacuum well point

    Institute of Scientific and Technical Information of China (English)

    VU Van-tuan; YAO Lei-hua; WEI Ying-jie

    2016-01-01

    Vacuum well point is a new but faint soft ground treatment method. This work focuses on the consolidation behavior of a reconstituted soft clayey specimen under vacuum well point combined with surcharge loading. The laboratory test was conducted through a vacuum-surcharge consolidation apparatus, and the vacuum loading scheme was adopted for vacuum pressure application to investigate the vacuum effect on soil consolidation. In the testing process, some key parameters such as vacuum pressure, pore water pressure and settlement deformation were timely recorded. Furthermore, the water content, void ratio and permeability coefficient of samples collected after loading were measured to reflect the consolidation characteristics. By comparing with the membrane system and membraneless system, something different was found for the vacuum well point method. The results indicate that the consolidation behavior of an axisymmetric single vacuum well point is almost identical to the behavior of vacuum preloading combined with prefabricated vertical drain (PVD), except for the distribution of the vacuum pressure along the well drain due to the structure of the vacuum well point. And the vacuum well point method may be useful for the improvement of soft clayey deposit in a certain depth.

  5. Adhesion and detachment of a capsule in axisymmetric flow

    Science.gov (United States)

    Keh, M. P.; Leal, L. G.

    2016-05-01

    The adhesion and detachment of a capsule on a solid boundary surface is studied via a combination of scaling theory and numerical simulation and the behavior is compared and contrasted with a vesicle. It is shown that the dominant physical property for both capsules and vesicles is the area dilation modulus Ks of the membrane. The nonzero shear modulus Gs for capsules increases the resistance to deformation and thus decreases slightly the equilibrium contact radius for an adhered capsule compared to an adhered vesicle. The detachment process in this study is due to an external axisymmetric flow. Unlike a rigid body that must be pulled away without change of shape, capsules (and vesicles) almost always detach dominantly by peeling in which the contact radius decreases but the minimum separation distance does not change until the final moments of detachment. Compared to a vesicle with the same Ks, a capsule maintains a more compact shape and is harder to elongate under a given external flow. Hence, the detachment process is slower for capsules compared to vesicles with the same Ks.

  6. Computing Axisymmetric Jet Screech Tones using Unstructured Grids

    Science.gov (United States)

    Jorgenson, Philip C. E.; Loh, Ching Y.

    2003-01-01

    The purpose of this paper is to show that computations with an aeroacoustic feedback loop, the jet screech noise, can be obtained using truly unstructured grid technology. Numerical results are presented for a nozzle with two different lip thicknesses which will be referred to in this paper as a thin and a thick lip nozzle respectively. The space-time conservation element and solution element (CE/SE) method is used to solve the conservation laws of the compressible axisymmetric Navier-Stokes equations. The equations are time marched to predict the unsteady flow and the near-field screech tone noise issuing from an underexpanded circular jet. The CE/SE method uses an unstructured grid based data structure. The unstructured grids for these calculations are generated based on the method of Delaunay triangulation. Comparisons of numerical results with available experimental data are shown for flows corresponding to several different jet Mach numbers. Generally good agreement is obtained in terms of flow physics, screech tone frequency, and sound pressure level.

  7. MRI-driven Accretion onto Magnetized stars: Axisymmetric MHD Simulations

    CERN Document Server

    Romanova, Marina M; Koldoba, Alexander V; Lovelace, Richard V E

    2011-01-01

    We present the first results of a global axisymmetric simulation of accretion onto rotating magnetized stars from a turbulent, MRI-driven disk. The angular momentum is transported outward by the magnetic stress of the turbulent flow with a rate corresponding to a Shakura-Sunyaev viscosity parameter alpha\\approx 0.01-0.04. The result of the disk-magnetosphere interaction depends on the orientation of the poloidal field in the disk relative to that of the star at the disk-magnetosphere boundary. If fields have the same polarity, then the magnetic flux is accumulated at the boundary and blocks the accretion which leads to the accumulation of matter at the boundary. Subsequently, this matter accretes to the star in outburst before accumulating again. Hence, the cycling, `bursty' accretion is observed. If the disc and stellar fields have opposite polarity, then the field reconnection enhances the penetration of the disk matter towards the deeper field lines of the magnetosphere. However, the magnetic stress at the...

  8. Circulation Control on Axisymmetric Bodies using Synthetic Jets

    Science.gov (United States)

    Rinehart, Christopher; McMichael, James; Glezer, Ari

    2001-11-01

    The capability of fluidic actuation based on synthetic jets to modify the apparent aerodynamic shape of lifting surfaces and thereby modify the aerodynamic forces and moments has been demonstrated in a number of earlier investigations of stalled two-dimensional airfoils (e.g., Amitay et al., AIAA J., 39, 2001). The present work is a study of the fundamental ability of synthetic jets to favorably modify the flow over axisymmetric bodies at subsonic speeds. Aft-facing synthetic jets oriented tangentially to a circular Coanda surface at the base produce effective flow turning and lift generation, with ratios of lift to average jet momentum approaching values typical of conventional jet-based circulation control on two-dimensional airfoils. The result is interesting in that the body is not designed to be a lifting surface, and the actuation is effected over only a portion of the body’s circumference. The transient and steady global flow response to the actuation is demonstrated via phase- and time-averaged velocity measurements using particle image velocimetry (PIV).

  9. Unsteady Aerodynamic Flow Control of a Suspended Axisymmetric Moving Platform

    Science.gov (United States)

    Lambert, Thomas; Vukasinovic, Bojan; Glezer, Ari

    2011-11-01

    The aerodynamic forces on an axisymmetric wind tunnel model are altered by fluidic interaction of an azimuthal array of integrated synthetic jet actuators with the cross flow. Four-quadrant actuators are integrated into a Coanda surface on the aft section of the body, and the jets emanate from narrow, azimuthally segmented slots equally distributed around the model's perimeter. The model is suspended in the tunnel using eight wires each comprising miniature in-line force sensors and shape-memory-alloy (SMA) strands that are used to control the instantaneous forces and moments on the model and its orientation. The interaction of the actuation jets with the flow over the moving model is investigated using PIV and time-resolved force measurements to assess the transitory aerodynamic loading effected by coupling between the induced motion of the aerodynamic surface and the fluid dynamics that is driven by the actuation. It is shown that these interactions can lead to effective control of the aerodynamic forces and moments, and thereby of the model's motion. Supported by ARO.

  10. Synthetic Jet Control of a Yawing Axisymmetric Body

    Science.gov (United States)

    Lambert, Thomas; Vukasinovic, Bojan; Glezer, Ari

    2012-11-01

    The global aerodynamic forces and moments on an axisymmetric yawing body are controlled in wind tunnel experiments by exploiting the interaction of an array of synthetic jet actuators with the cross flow over the tail section of the body. The model is supported by a vertical wire through its aerodynamic center and is free to move in yaw. The baseline motion of the model is a yaw oscillation with amplitude and frequency that both monotonously increase with free stream velocity, characteristic of vortex shedding. The aft-facing control jet actuators emanate from narrow, azimuthally segmented slots around the perimeter of the tail section, and activation of the control jets effects the model's path through localized flow attachment on integrated Coanda surfaces. The control jets are used to control the yaw trajectory of the model using a closed loop PID controller. The baseline and controlled model motion is monitored using a laser vibrometer, and the flow evolution near the body and in its near wake is investigated using PIV. The coupled, time dependent response of the model to the actuation is investigated with emphasis on controlling its unstable modes. Supported by ARO.

  11. Two-integral distribution functions for axisymmetric systems

    CERN Document Server

    Jiang, Zhenglu

    2007-01-01

    Some formulae are presented for finding two-integral distribution functions (DFs) which depends only on the two classical integrals of the energy and the magnitude of the angular momentum with respect to the axis of symmetry for stellar systems with known axisymmetric densities. They come from an combination of the ideas of Eddington and Fricke and they are also an extension of those shown by Jiang and Ossipkov for finding anisotropic DFs for spherical galaxies. The density of the system is required to be expressed as a sum of products of functions of the potential and of the radial coordinate. The solution corresponding to this type of density is in turn a sum of products of functions of the energy and of the magnitude of the angular momentum about the axis of symmetry. The product of the density and its radial velocity dispersion can be also expressed as a sum of products of functions of the potential and of the radial coordinate. It can be further known that the density multipied by its rotational velocity...

  12. Axisymmetric constant mean curvature slices in the Kerr spacetime

    International Nuclear Information System (INIS)

    Recently, there have been efforts to solve Einstein’s equation in the context of a conformal compactification of spacetime. Of particular importance in this regard are the so-called constant mean curvature (CMC) foliations, characterized by spatial hyperboloidal hypersurfaces with a constant extrinsic mean curvature K. However, although of interest for general spacetimes, CMC slices are known explicitly only for the spherically symmetric Schwarzschild metric. This work is devoted to numerically determining axisymmetric CMC slices within the Kerr solution. We construct such slices outside the black hole horizon through an appropriate coordinate transformation in which an unknown auxiliary function A is involved. The condition K = const throughout the slice leads to a nonlinear partial differential equation for the function A, which is solved with a pseudo-spectral method. The results exhibit exponential convergence, as is to be expected in a pseudo-spectral scheme for analytic solutions. As a by-product, we identify CMC slices of the Schwarzschild solution which are not spherically symmetric. (paper)

  13. Axisymmetric Predictions of Fluid Flow inside a Rotating Cavity System

    Directory of Open Access Journals (Sweden)

    Mujeebuddin Memon

    2013-07-01

    Full Text Available Accurate prediction of fluid flow in the rotating cavity system is of practical interest as it is most commonly used in the gas turbine engines and compressors. This paper presents the numerical predictions of a rotating cavity flow system for Reynolds numbers of the range 1x105 < Re? < 4x105 and two different mass flow rates Cw=1092 and 2184. A finite-difference technique is employed for a Steady-state solution in the axisymmetric cylindrical polar coordinate frame of reference. The two low Reynolds number turbulence models, the low Reynolds number k-? model and the low Reynolds number second moment closure have been used to compute the basic characteristics of the flow inside the rotating cavity flow system. Different flow regions have been identified by computing flow structures and dimensions of those regions have also been studied under different flow rates. A comparison of the computed variation of moment coefficient of both the turbulence models are presented for the above mentioned parameters and the parametric effects on the moment coefficients have been discussed

  14. Axisymmetric equilibria with pressure anisotropy and plasma flow

    Science.gov (United States)

    Evangelias, A.; Throumoulopoulos, G. N.

    2016-04-01

    A generalised Grad-Shafranov equation that governs the equilibrium of an axisymmetric toroidal plasma with anisotropic pressure and incompressible flow of arbitrary direction is derived. This equation includes six free surface functions and recovers known Grad-Shafranov-like equations in the literature as well as the usual static, isotropic one. The form of the generalised equation indicates that pressure anisotropy and flow act additively on equilibrium. In addition, two sets of analytical solutions, an extended Solovev one with a plasma reaching the separatrix and an extended Hernegger-Maschke one for a plasma surrounded by a fixed boundary possessing an X-point, are constructed, particularly in relevance to the ITER and NSTX tokamaks. Furthermore, the impacts both of pressure anisotropy and plasma flow on these equilibria are examined. It turns out that depending on the maximum value and the shape of an anisotropy function, the anisotropy can act either paramagnetically or diamagnetically. Also, in most of the cases considered both the anisotropy and the flow have stronger effects on NSTX equilibria than on ITER ones.

  15. Axisymmetrically Tropical Cyclone-like Vortices with Secondary Circulations

    CERN Document Server

    Sun, Liang

    2013-01-01

    The secondary circulation of the tropical cyclone (TC) is related to its formation and intensification, thus becomes very important in the studies. The analytical solutions have both the primary and secondary circulation in a three-dimensionally nonhydrostatic and adiabatic model. We prove that there are three intrinsic radiuses for the axisymmetrically ideal incompressible flow. The first one is the radius of maximum primary circular velocity $r_m$. The second one is radius of the primary kernel $r_k>r_m$, across which the vorticity of the primary circulation changes sign and the vertical velocity changes direction. The last one is the radius of the maximum primary vorticity $r_d$, at which the vertical flow of the secondary circulation approaches its maximum, and across which the radius velocity changes sign. The first TC-like vortex solution has universal inflow or outflow. The relations between the intrinsic length scales are $r_k=\\sqrt{2}r_m$ and $r_d=2r_m$. The second one is a multi-planar solution, per...

  16. Non-axisymmetric Field Effects on Alcator C-Mod

    Science.gov (United States)

    Wolfe, S.; Hutchinson, I.; Granetz, R.; Rice, J.; Hubbard, A.; Irby, J.; Vieira, R.; Cochran, W.; Gwinn, D.; Rosati, J.; Lynn, A.

    2003-10-01

    A set of coils capable of producing non-axisymmetric, predominantly n=1, fields with different toroidal phase and a range of poloidal mode (m) spectra has been installed on Alcator C-Mod. This coilset has been used to suppress locked modes during low density or high current operation and also to induce locked modes in normally stable configurations in order to study error field effects. Locked modes are observed to result in braking of core toroidal rotation, modification of sawtooth activity, and significant reduction in energy and particle confinement. The inferred value of the threshold perturbation for producing a locked mode is of order B_21/B_T ˜ 10-4, where B_21 is the helically resonant m/n=2/1 field evaluated at the q=2 surface. This value is comparable to extrapolations based on experiments on JET and DIII-D, but is inconsistent with stronger BT and size scaling inferred from Compass-D results(R. J. Buttery, et al., 17th Fusion Energy Conference, Oct. 1998, Yokohama (IAEA-CN-69) EX8/5). The C-Mod result therefore has favorable implications for the locked mode threshold in ITER.

  17. Plasma equilibria and stationary flows in axisymmetric systems. Pt. 1

    International Nuclear Information System (INIS)

    During discharges within a tokamak device such as JET fluctuations are observed in the plasma, of plasma density, temperature, electric potential and of the magnetic field. These fluctuations have complicated structure and are linked with different kinds of instabilities. However, it is not clear which instabilities are most important in determining the behaviour of the plasma. A comprehensive numerical theory which can predict the effect of the instabilities on the transport of plasma in axisymmetric systems has been sought using the static Grad-Shafranov-Schlueter (SGSS) equation as a basis. However, the static equation was over simplified for the situation in JET with additional heating giving rise to large toroidal flows, and an extended equation (EGSS) was developed. The results of the study include the discovery of algebraic branches of solutions to the EGSS equation even for very small poloidal flows, solutions to the inverse problem for the SGSS and EGSS equations using Fourier decomposition, classification of the boundary condition at the magnetic axis, demonstration of a visible effect of the poloidal flow on the separation of the density surface and the magnetic surface an indication of the existence of multiple branches of solutions to the EGSS and SGSS equations and their relation to stability properties. (U.K.)

  18. The axisymmetric envelopes of RS Cnc and EP Aqr

    CERN Document Server

    Bertre, T Le; Nhung, P T; Winters, J M

    2016-01-01

    We report on observations obtained at IRAM on two semi-regular variable Asymptotic Giant Branch (AGB) stars, RS Cnc and EP Aqr, undergoing mass loss at an intermediate rate of ~ 10^-7 solar mass per year. Interferometric data obtained with the Plateau-de-Bure interferometer (NOEMA) have been combined with On-The-Fly maps obtained with the 30-m telescope in the CO(1-0) and (2-1) rotational lines. The spectral maps of spatially resolved sources reveal an axisymmetric morphology in which matter is flowing out at a low velocity (~ 2 km/s) in the equatorial planes, and at a larger velocity (~ 8 km/s) along the polar axes. There are indications that this kind of morpho-kinematics is relatively frequent among stars at the beginning of their evolution on the Thermally-Pulsing AGB, in particular among those that show composite CO line profiles, and that it might be caused by the presence of a companion. We discuss the progress that could be expected for our understanding of the mass loss mechanisms in this kind of sou...

  19. Arbitrary axisymmetric steady streaming: Flow, force and propulsion

    CERN Document Server

    Spelman, Tamsin A

    2015-01-01

    A well-developed method to induce mixing on microscopic scales is to exploit flows generated by steady streaming. Steady streaming is a classical fluid dynamics phenomenon whereby a time-periodic forcing in the bulk or along a boundary is enhanced by inertia to induce a non-zero net flow. Building on classical work for simple geometrical forcing and motivated by the complex shape oscillations of elastic capsules and bubbles, we develop the mathematical framework to quantify the steady streaming of a spherical body with arbitrary axisymmetric time-periodic boundary conditions. We compute the flow asymptotically for small-amplitude oscillations of the boundary in the limit where the viscous penetration length scale is much smaller than the body. In that case, the flow has a boundary layer structure and the fluid motion is solved by asymptotic matching. Our results, presented in the case of no-slip boundary conditions and extended to include the motion of vibrating free surfaces, recovers classical work as parti...

  20. MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services

    OpenAIRE

    Pratt, Brian; Howbert, J. Jeffry; Tasman, Natalie I.; Nilsson, Erik J.

    2011-01-01

    Summary: MR-Tandem adapts the popular X!Tandem peptide search engine to work with Hadoop MapReduce for reliable parallel execution of large searches. MR-Tandem runs on any Hadoop cluster but offers special support for Amazon Web Services for creating inexpensive on-demand Hadoop clusters, enabling search volumes that might not otherwise be feasible with the compute resources a researcher has at hand. MR-Tandem is designed to drop in wherever X!Tandem is already in use and requires no modifica...

  1. Plasma confinement apparatus using solenoidal and mirror coils

    International Nuclear Information System (INIS)

    A plasma confinement apparatus is described, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed

  2. Mirror particles and mirror matter: 50 years of speculations and searches

    CERN Document Server

    Okun, Lev Borisovich

    2006-01-01

    This text has been prepared for the talk at the ``ITEP Meeting on the future of heavy flavor physics'', Moscow, ITEP, July 24-25, 2006 (http://www.itep.ru/eng/bellemeeting). It describes emergence and evolution of concept of ``mirror particles'' and ``mirror matter'' and presents a concise guide to the ``mirror-land''.

  3. Interference in multilayer relativistic mirrors

    Science.gov (United States)

    Mirzanejhad, Saeed; Sohbatzadeh, Farshad; Babaei, Javad; Taghipour, Meisam; Mohammadzadeh, Zahra

    2015-10-01

    In this paper, reflection coefficient of a relativistic ultra-thin electron multilayer is calculated using electromagnetic interference procedures. The relativistic electron layers are assumed to be formed by nonlinear plasma wake waves that constitute the electron density cusps. It is shown that the interference between successive relativistic mirrors is restricted by the condition, τ p ≫ ( 2 γ 0 ) 5 / 2 / ω p 0 , where τp is the laser pulse duration. The results showed that tailoring the pulse amplitude, incident wave frequency value, incidence angle, and plasma density leads to increasing reflection coefficient a few orders of magnitudes. This constructive interference condition can be used for increasing conversion efficiency in the reflected energy from relativistic mirrors for the purpose of generating ultra-short coherence pulses in the extreme ultraviolet and x-ray regions. We also performed reflection from relativistic thin electron layers using relativistic 1D3V electromagnetic particle-in-cell (PIC) simulation. It was found that the results of PIC simulation are in agreement with analytical considerations.

  4. Shape memory composite deformable mirrors

    Science.gov (United States)

    Riva, M.; Bettini, P.; Di Landro, L.; Sala, G.

    2009-03-01

    This paper deals with some of the critical aspects regarding Shape Memory Composite (SMC) design: firstly some technological aspects concerning embedding technique and their efficiency secondarily the lack of useful numerical tools for this peculiar design. It has been taken into account as a possible application a deformable panel which is devoted to act as a substrate for a deformable mirror. The activity has been mainly focused to the study of embedding technologies, activation and authority. In detail it will be presented the "how to" manufacturing of some smart panels with embedded NiTiNol wires in order to show the technology developed for SMC structures. The first part of the work compares non conventional pull-out tests on wires embedded in composites laminates (real condition of application), with standard pull-out in pure epoxy resin blocks. Considering the numerical approach some different modeling techniques to be implemented in commercial codes (ABAQUS) have been investigated. The Turner's thermo-mechanical model has been adopted for the modeling of the benchmark: A spherical panel devoted to work as an active substrate for a Carbon Fiber Reinforced Plastic (CFRP) deformable mirror has been considered as a significant technological demonstrator and possible future application (f=240mm, r.o.c.=1996mm).

  5. Relativistic Tennis Using Flying Mirror

    Science.gov (United States)

    Pirozhkov, A. S.; Kando, M.; Esirkepov, T. Zh.; Ma, J.; Fukuda, Y.; Chen, L.-M.; Daito, I.; Ogura, K.; Homma, T.; Hayashi, Y.; Kotaki, H.; Sagisaka, A.; Mori, M.; Koga, J. K.; Kawachi, T.; Daido, H.; Bulanov, S. V.; Kimura, T.; Kato, Y.; Tajima, T.

    2008-06-01

    Upon reflection from a relativistic mirror, the electromagnetic pulse frequency is upshifted and the duration is shortened by the factor proportional to the relativistic gamma-factor squared due to the double Doppler effect. We present the results of the proof-of-principle experiment for frequency upshifting of the laser pulse reflected from the relativistic "flying mirror", which is a wake wave near the breaking threshold created by a strong driver pulse propagating in underdense plasma. Experimentally, the wake wave is created by a 2 TW, 76 fs Ti:S laser pulse from the JLITE-X laser system in helium plasma with the electron density of ≈4-6×1019 cm-3. The reflected signal is observed with a grazing-incidence spectrograph in 24 shots. The wavelength of the reflected radiation ranges from 7 to 14 nm, the corresponding frequency upshifting factors are ˜55-115, and the gamma-factors are y = 4-6. The reflected signal contains at least 3×107 photons/sr. This effect can be used to generate coherent high-frequency ultrashort pulses that inherit temporal shape and polarization from the original (low-frequency) ones. Apart from this, the reflected radiation contains important information about the wake wave itself, e.g. location, size, phase velocity, etc.

  6. Neurodegeneration and mirror image agnosia

    Directory of Open Access Journals (Sweden)

    Sadanandavalli Retnaswami Chandra

    2014-01-01

    Full Text Available Background: Normal Percept with abnormal meaning (Agnosias has been described from nineteenth century onwards. Later literature became abundant with information on the spectrum of Prosopagnosias. However, selective difficulty in identifying reflected self images with relatively better cognitive functions leads to problems in differentiating it from non-organic psychosis. Aim: In the present study, we investigated patients with dementia who showed difficulty in identifying reflected self images while they were being tested for problems in gnosis with reference to identification of reflected objects, animals, relatives, and themselves and correlate with neuropsychological and radiological parameters. Patients and Methods: Five such patients were identified and tested with a 45 cm × 45 cm mirror kept at 30-cm distance straight ahead of them. Results: Mirror image agnosia is seen in patients with moderate stage posterior dementias who showed neuropsychological and radiological evidence of right parietal dysfunction. Conclusion: Interpretation of reflected self images perception in real time probably involves distinct data-linking circuits in the right parietal lobe, which may get disrupted early in the course of the disease.

  7. Device operation of organic tandem solar cells

    NARCIS (Netherlands)

    Hadipour, A.; de Boer, B.; Blom, P. W. M.

    2008-01-01

    A generalized methodology is developed to obtain the current-voltage characteristic of polymer tandem solar cells by knowing the electrical performance of both sub cells. We demonstrate that the electrical characteristics of polymer tandem solar cells are correctly predicted for both the series and

  8. The injector of the Utrecht en tandem

    OpenAIRE

    Zwol, N.A. van; van der Borg, K.; de Haas, A.P.; Hoogenboom, A.M.; Strasters, B.A.; Vermeer, A.

    1984-01-01

    An injector has been built to obtain improved beam transmission through the EN tandem. The injector has been provided with a 90° analysing magnet, m/Δm = 300, and 130 kV preacceleration. Beam optics calculations have been made for the injector and tandem. The injector has been equipped with a fiber optics control and data acquisition system.

  9. Packet models revisited: tandem and priority systems

    NARCIS (Netherlands)

    Mandjes, M.R.H.

    2004-01-01

    We examine two extensions of traditional single-node packet-scale queueing models: tandem networks and (strict) priority systems. Two generic input processes are considered: periodic and Poisson arrivals. For the two-node tandem, an exact expression is derived for the joint distribution of the total

  10. Packet models revisited: tandem and priority systems

    NARCIS (Netherlands)

    M.R.H. Mandjes

    2004-01-01

    Abstract : We examine two extensions of traditional single-node packet-scale queueing models: tandem networks and (strict) priority systems. Two generic input processes are considered: periodic and Poisson arrivals. For the two-node tandem, an exact expression is derived for the joint distribution o

  11. Tandem Catalysis Utilizing Olefin Metathesis Reactions.

    Science.gov (United States)

    Zieliński, Grzegorz K; Grela, Karol

    2016-07-01

    Since olefin metathesis transformation has become a favored synthetic tool in organic synthesis, more and more distinct non-metathetical reactions of alkylidene ruthenium complexes have been developed. Depending on the conditions applied, the same olefin metathesis catalysts can efficiently promote isomerization reactions, hydrogenation of C=C double bonds, oxidation reactions, and many others. Importantly, these transformations can be carried out in tandem with olefin metathesis reactions. Through addition of one portion of a catalyst, a tandem process provides structurally advanced products from relatively simple substrates without the need for isolation of the intermediates. These aspects not only make tandem catalysis very attractive from a practical point of view, but also open new avenues in (retro)synthetic planning. However, in the literature, the term "tandem process" is sometimes used improperly to describe other types of multi-reaction sequences. In this Concept, a number of examples of tandem catalysis involving olefin metathesis are discussed with an emphasis on their synthetic value.

  12. Mirror matter and primordial black holes

    OpenAIRE

    Bell, Nicole F.; Volkas, Raymond R.

    1998-01-01

    A consequence of the evaporation of primordial black holes in the early universe may be the generation of mirror matter. This would have implications with regard to dark matter, and the number of light particle species in equilibrium at the time of big bang nucleosynthesis. The possibilities for the production of mirror matter by this mechanism are explored.

  13. Fast neutron activation analysis of ancient mirror

    International Nuclear Information System (INIS)

    About fifty specimens of ancient Chinese bronze mirror from various dynasties are analysed by fast neutron radiated from neutron generator. The contents of copper, tin and lead in the mirror are listed in this paper. Experimental method and measurement equipment are described too

  14. Segmented mirror control system hardware for CELT

    Science.gov (United States)

    Mast, Terry S.; Nelson, Jerry E.

    2000-07-01

    The primary mirror of the proposed California Extremely Large Telescope is a 30-meter diameter mosaic of hexagonal segments. The primary mirror active control will be achieved using four systems: sensors, actuators, processor, and alignment camera. We describe here the basic requirements of sensors and actuators, sketch a sensor design, and indicate interesting actuator alternatives.

  15. Do mirror neurons subserve action understanding?

    Science.gov (United States)

    Hickok, Gregory

    2013-04-12

    Mirror neurons were once widely believed to support action understanding via motor simulation of the observed actions. Recent evidence regarding the functional properties of mirror neurons in monkeys as well as much neuropsychological evidence in humans has shown that this is not the case.

  16. Unbroken Mirror Neurons in Autism Spectrum Disorders

    Science.gov (United States)

    Fan, Yang-Teng; Decety, Jean; Yang, Chia-Yen; Liu, Ji-Lin; Cheng, Yawei

    2010-01-01

    Background: The "broken mirror" theory of autism, which proposes that a dysfunction of the human mirror neuron system (MNS) is responsible for the core social and cognitive deficits in individuals with autism spectrum disorders (ASD), has received considerable attention despite weak empirical evidence. Methods: In this electroencephalographic…

  17. Where do mirror neurons come from?

    Science.gov (United States)

    Heyes, Cecilia

    2010-03-01

    Debates about the evolution of the 'mirror neuron system' imply that it is an adaptation for action understanding. Alternatively, mirror neurons may be a byproduct of associative learning. Here I argue that the adaptation and associative hypotheses both offer plausible accounts of the origin of mirror neurons, but the associative hypothesis has three advantages. First, it provides a straightforward, testable explanation for the differences between monkeys and humans that have led some researchers to question the existence of a mirror neuron system. Second, it is consistent with emerging evidence that mirror neurons contribute to a range of social cognitive functions, but do not play a dominant, specialised role in action understanding. Finally, the associative hypothesis is supported by recent data showing that, even in adulthood, the mirror neuron system can be transformed by sensorimotor learning. The associative account implies that mirror neurons come from sensorimotor experience, and that much of this experience is obtained through interaction with others. Therefore, if the associative account is correct, the mirror neuron system is a product, as well as a process, of social interaction.

  18. The Mirror Neuron System and Action Recognition

    Science.gov (United States)

    Buccino, Giovanni; Binkofski, Ferdinand; Riggio, Lucia

    2004-01-01

    Mirror neurons, first described in the rostral part of monkey ventral premotor cortex (area F5), discharge both when the animal performs a goal-directed hand action and when it observes another individual performing the same or a similar action. More recently, in the same area mirror neurons responding to the observation of mouth actions have been…

  19. Reflectivity-modulated grating-mirror

    DEFF Research Database (Denmark)

    2012-01-01

    to the oscillation axis. A modulated voltage (91) is applied in reverse bias between the n- and p-doped layers to modulate the refractive index of the electrooptic material layer (12) and thereby the reflectivity spectrum of the grating mirror (1). The reflectivity of the grating mirror (1) can be modulated between...

  20. Affective multimodal mirror: sensing and eliciting laughter

    NARCIS (Netherlands)

    Melder, W.A.; Truong, K.P.; Uyl, M. den; Leeuwen, D.A. van; Neerincx, M.A.; Loos, L.R.; Stock Plum, B.

    2007-01-01

    In this paper, we present a multimodal affective mirror that senses and elicits laughter. Currently, the mirror contains a vocal and a facial affect-sensing module, a component that fuses the output of these two modules to achieve a user-state assessment, a user state transition model, and a compone

  1. LED structure with enhanced mirror reflectivity

    Science.gov (United States)

    Bergmann, Michael; Donofrio, Matthew; Heikman, Sten; Schneider, Kevin S; Haberern, Kevin W; Edmond, John A

    2014-04-01

    Embodiments of the present invention are generally related to LED chips having improved overall emission by reducing the light-absorbing effects of barrier layers adjacent mirror contacts. In one embodiment, a LED chip comprises one or more LEDs, with each LED having an active region, a first contact under the active region having a highly reflective mirror, and a barrier layer adjacent the mirror. The barrier layer is smaller than the mirror such that it does not extend beyond the periphery of the mirror. In another possible embodiment, an insulator is further provided, with the insulator adjacent the barrier layer and adjacent portions of the mirror not contacted by the active region or by the barrier layer. In yet another embodiment, a second contact is provided on the active region. In a further embodiment, the barrier layer is smaller than the mirror such that the periphery of the mirror is at least 40% free of the barrier layer, and the second contact is below the first contact and accessible from the bottom of the chip.

  2. Coupled neoclassical-magnetohydrodynamic simulations of axisymmetric plasmas

    Science.gov (United States)

    Lyons, Brendan C.

    2014-10-01

    Neoclassical effects (e.g., the bootstrap current and neoclassical toroidal viscosity [NTV]) have a profound impact on many magnetohydrodynamic (MHD) instabilities, including tearing modes, edge-localized modes (ELMs), and resistive wall modes. High-fidelity simulations of such phenomena require a multiphysics code that self-consistently couples the kinetic and fluid models. We present the first results of the DK4D code, a dynamic drift-kinetic equation (DKE) solver being developed for this application. In this study, DK4D solves a set of time-dependent, axisymmetric DKEs for the non-Maxwellian part of the electron and ion distribution functions (fNM) with linearized Fokker-Planck-Landau collision operators. The plasma is formally assumed to be in the low- to finite-collisionality regimes. The form of the DKEs used were derived in a Chapman-Enskog-like fashion, ensuring that fNM carries no density, momentum, or temperature. Rather, these quantities are contained within the background Maxwellian and are evolved by an appropriate set of extended MHD equations. We will discuss computational methods used and benchmarks to other neoclassical models and codes. Furthermore, DK4D has been coupled to a reduced, transport-timescale MHD code, allowing for self-consistent simulations of the dynamic formation of the ohmic and bootstrap currents. Several applications of this hybrid code will be presented, including an ELM-like pressure collapse. We will also discuss plans for coupling to the spatially three-dimensional, extended MHD code M3D-C1 and generalizing to nonaxisymmetric geometries, with the goal of performing self-consistent hybrid simulations of tokamak instabilities and calculations of NTV torque. This work supported by the U.S. Department of Energy (DOE) under Grant Numbers DE-FC02-08ER54969 and DE-AC02-09CH11466.

  3. Theoretical issues on the spontaneous rotation of axisymmetric plasmas

    International Nuclear Information System (INIS)

    An extensive series of experiments have confirmed that the observed ‘spontaneous rotation’ phenomenon in axisymmetric plasmas is related to the confinement properties of these plasmas and connected to the excitation of collective modes associated with these properties (Coppi 2000 18th IAEA Fusion Energy Conf. (Sorrento, Italy, 2000) THP 1/17, www-pub.iaea.org/MTCD/publications/PDF/csp_008c/html/node343.htm and Coppi 2002 Nucl. Fusion 42 1). In particular, radially localized modes can extract angular momentum from the plasma column from which they grow while the background plasma has to recoil in the direction opposite to that of the mode phase velocity. In the case of the excitation of the plasma modes at the edge, the loss of their angular momentum can be connected to the directed particle ejection to the surrounding medium. The recoil angular momentum is then redistributed inside the plasma column mainly by the combination of an effective viscous diffusion and an inward angular momentum transport velocity that is connected, for instance, to ion temperature gradient (ITG) driven modes. The linear and quasi-linear theories of the collisionless trapped electron modes and of the toroidal ITG driven modes are re-examined in the context of their influence on angular momentum transport. Internal modes that produce magnetic reconnection and are electromagnetic in nature, acquire characteristic phase velocity directions in high temperature regimes and become relevant to the ‘generation’ of angular momentum. The drift-tearing mode, the ‘complex’ reconnecting mode and the m0 = 1 internal mode belong to this category, the last mode acquiring different features depending on the strength of its driving factor. Toroidal velocity profiles that reproduce the experimental observations are obtained considering a global angular momentum balance equation that includes the localized sources associated with the excited internal electrostatic and electromagnetic modes

  4. Mirror-image-induced magnetic modes.

    Science.gov (United States)

    Xifré-Pérez, Elisabet; Shi, Lei; Tuzer, Umut; Fenollosa, Roberto; Ramiro-Manzano, Fernando; Quidant, Romain; Meseguer, Francisco

    2013-01-22

    Reflection in a mirror changes the handedness of the real world, and right-handed objects turn left-handed and vice versa (M. Gardner, The Ambidextrous Universe, Penguin Books, 1964). Also, we learn from electromagnetism textbooks that a flat metallic mirror transforms an electric charge into a virtual opposite charge. Consequently, the mirror image of a magnet is another parallel virtual magnet as the mirror image changes both the charge sign and the curl handedness. Here we report the dramatic modification in the optical response of a silicon nanocavity induced by the interaction with its image through a flat metallic mirror. The system of real and virtual dipoles can be interpreted as an effective magnetic dipole responsible for a strong enhancement of the cavity scattering cross section.

  5. Mirror neurons through the lens of epigenetics.

    Science.gov (United States)

    Ferrari, Pier F; Tramacere, Antonella; Simpson, Elizabeth A; Iriki, Atsushi

    2013-09-01

    The consensus view in mirror neuron research is that mirror neurons comprise a uniform, stable execution-observation matching system. In this opinion article, we argue that, in light of recent evidence, this is at best an incomplete and oversimplified view of mirror neurons, where activity is actually variable and more plastic than previously theorized. We propose an epigenetic account for understanding developmental changes in sensorimotor systems, including variations in mirror neuron activity. Although associative and genetic accounts fail to consider the complexity of genetic and nongenetic interactions, we propose a new evolutionary developmental biology (evo-devo) perspective, which predicts that environmental differences early in development should produce variations in mirror neuron response patterns, tuning them to the social environment.

  6. Mirror neurons and their clinical relevance.

    Science.gov (United States)

    Rizzolatti, Giacomo; Fabbri-Destro, Maddalena; Cattaneo, Luigi

    2009-01-01

    One of the most exciting events in neurosciences over the past few years has been the discovery of a mechanism that unifies action perception and action execution. The essence of this 'mirror' mechanism is as follows: whenever individuals observe an action being done by someone else, a set of neurons that code for that action is activated in the observers' motor system. Since the observers are aware of the outcome of their motor acts, they also understand what the other individual is doing without the need for intermediate cognitive mediation. In this Review, after discussing the most pertinent data concerning the mirror mechanism, we examine the clinical relevance of this mechanism. We first discuss the relationship between mirror mechanism impairment and some core symptoms of autism. We then outline the theoretical principles of neurorehabilitation strategies based on the mirror mechanism. We conclude by examining the relationship between the mirror mechanism and some features of the environmental dependency syndromes.

  7. High reflection mirrors for pulse compression gratings.

    Science.gov (United States)

    Palmier, S; Neauport, J; Baclet, N; Lavastre, E; Dupuy, G

    2009-10-26

    We report an experimental investigation of high reflection mirrors used to fabricate gratings for pulse compression application at the wavelength of 1.053microm. Two kinds of mirrors are studied: the mixed Metal MultiLayer Dielectric (MMLD) mirrors which combine a gold metal layer with some e-beam evaporated dielectric bilayers on the top and the standard e-beam evaporated MultiLayer Dielectric (MLD) mirrors. Various samples were manufactured, damage tested at a pulse duration of 500fs. Damage sites were subsequently observed by means of Nomarski microscopy and white light interferometer microscopy. The comparison of the results evidences that if MMLD design can offer damage performances rather similar to MLD design, it also exhibits lower stresses; being thus an optimal mirror substrate for a pulse compression grating operating under vacuum.

  8. Computer Aided Process Planning for Non-Axisymmetric Deep Drawing Products

    Science.gov (United States)

    Park, Dong Hwan; Yarlagadda, Prasad K. D. V.

    2004-06-01

    In general, deep drawing products have various cross-section shapes such as cylindrical, rectangular and non-axisymmetric shapes. The application of the surface area calculation to non-axisymmetric deep drawing process has not been published yet. In this research, a surface area calculation for non-axisymmetric deep drawing products with elliptical shape was constructed for a design of blank shape of deep drawing products by using an AutoLISP function of AutoCAD software. A computer-aided process planning (CAPP) system for rotationally symmetric deep drawing products has been developed. However, the application of the system to non-axisymmetric components has not been reported yet. Thus, the CAPP system for non-axisymmetric deep drawing products with elliptical shape was constructed by using process sequence design. The system developed in this work consists of four modules. The first is recognition of shape module to recognize non-axisymmetric products. The second is a three-dimensional (3-D) modeling module to calculate the surface area for non-axisymmetric products. The third is a blank design module to create an oval-shaped blank with the identical surface area. The forth is a process planning module based on the production rules that play the best important role in an expert system for manufacturing. The production rules are generated and upgraded by interviewing field engineers. Especially, the drawing coefficient, the punch and die radii for elliptical shape products are considered as main design parameters. The suitability of this system was verified by applying to a real deep drawing product. This CAPP system constructed would be very useful to reduce lead-time for manufacturing and improve an accuracy of products.

  9. Mirror neurons: from origin to function.

    Science.gov (United States)

    Cook, Richard; Bird, Geoffrey; Catmur, Caroline; Press, Clare; Heyes, Cecilia

    2014-04-01

    This article argues that mirror neurons originate in sensorimotor associative learning and therefore a new approach is needed to investigate their functions. Mirror neurons were discovered about 20 years ago in the monkey brain, and there is now evidence that they are also present in the human brain. The intriguing feature of many mirror neurons is that they fire not only when the animal is performing an action, such as grasping an object using a power grip, but also when the animal passively observes a similar action performed by another agent. It is widely believed that mirror neurons are a genetic adaptation for action understanding; that they were designed by evolution to fulfill a specific socio-cognitive function. In contrast, we argue that mirror neurons are forged by domain-general processes of associative learning in the course of individual development, and, although they may have psychological functions, they do not necessarily have a specific evolutionary purpose or adaptive function. The evidence supporting this view shows that (1) mirror neurons do not consistently encode action "goals"; (2) the contingency- and context-sensitive nature of associative learning explains the full range of mirror neuron properties; (3) human infants receive enough sensorimotor experience to support associative learning of mirror neurons ("wealth of the stimulus"); and (4) mirror neurons can be changed in radical ways by sensorimotor training. The associative account implies that reliable information about the function of mirror neurons can be obtained only by research based on developmental history, system-level theory, and careful experimentation.

  10. Archetypal-Imaging and Mirror-Gazing

    Directory of Open Access Journals (Sweden)

    Giovanni B. Caputo

    2013-12-01

    Full Text Available Mirrors have been studied by cognitive psychology in order to understand self-recognition, self-identity, and self-consciousness. Moreover, the relevance of mirrors in spirituality, magic and arts may also suggest that mirrors can be symbols of unconscious contents. Carl G. Jung investigated mirrors in relation to the unconscious, particularly in Psychology and Alchemy. However, the relationship between the conscious behavior in front of a mirror and the unconscious meaning of mirrors has not been clarified. Recently, empirical research found that gazing at one’s own face in the mirror for a few minutes, at a low illumination level, produces the perception of bodily dysmorphic illusions of strange-faces. Healthy observers usually describe huge distortions of their own faces, monstrous beings, prototypical faces, faces of relatives and deceased, and faces of animals. In the psychiatric population, some schizophrenics show a dramatic increase of strange-face illusions. They can also describe the perception of multiple-others that fill the mirror surface surrounding their strange-face. Schizophrenics are usually convinced that strange-face illusions are truly real and identify themselves with strange-face illusions, diversely from healthy individuals who never identify with them. On the contrary, most patients with major depression do not perceive strange-face illusions, or they perceive very faint changes of their immobile faces in the mirror, like death statues. Strange-face illusions may be the psychodynamic projection of the subject’s unconscious archetypal contents into the mirror image. Therefore, strange-face illusions might provide both an ecological setting and an experimental technique for “imaging of the unconscious”. Future researches have been proposed.

  11. Large thin adaptive x-ray mirrors

    Science.gov (United States)

    Doel, Peter; Atkins, Carolyn; Thompson, Samantha; Brooks, David; Yao, Jun; Feldman, Charlotte; Willingale, Richard; Button, Tim; Zhang, Dou; James, Ady

    2007-09-01

    This paper describes the progress made in a proof of concept study and recent results of a research program into large active x-ray mirrors that is part of the UK Smart X-ray Optics project. The ultimate aim is to apply the techniques of active/adaptive optics to the next generation of nested shell astronomical X-ray space telescopes. A variety of deformable mirror technologies are currently available, the most promising of which for active X-ray mirrors are probably unimorph and bimorph piezoelectric mirrors. In this type of mirror one or more sheets of piezoelectric material are bonded to or coated with a passive reflective layer. On the back or between the piezoceramic layer/layers are series of electrodes. Application of an electric field causes the piezoelectric material to undergo local deformation thus changing the mirror shape. Starting in 2005 a proof of concept active mirror research program has been undertaken. This work included modelling and development of actively controlled thin shell mirrors. Finite element models of piezo-electric actuated mirrors have been developed and verified against experimental test systems. This has included the modelling and test of piezo-electric hexagonal unimorph segments. Various actuator types and low shrinkage conductive bonding methods have been investigated and laboratory tests of the use of piezo-electric actuators to adjust the form of an XMM-Newton space telescope engineering model mirror shell have been conducted and show that movement of the optics at the required level is achievable. Promising technological approaches have been identified including moulded piezo-ceramics and piezo-electrics fibre bundles.

  12. Archetypal-Imaging and Mirror-Gazing

    Science.gov (United States)

    Caputo, Giovanni B.

    2013-01-01

    Mirrors have been studied by cognitive psychology in order to understand self-recognition, self-identity, and self-consciousness. Moreover, the relevance of mirrors in spirituality, magic and arts may also suggest that mirrors can be symbols of unconscious contents. Carl G. Jung investigated mirrors in relation to the unconscious, particularly in Psychology and Alchemy. However, the relationship between the conscious behavior in front of a mirror and the unconscious meaning of mirrors has not been clarified. Recently, empirical research found that gazing at one’s own face in the mirror for a few minutes, at a low illumination level, produces the perception of bodily dysmorphic illusions of strange-faces. Healthy observers usually describe huge distortions of their own faces, monstrous beings, prototypical faces, faces of relatives and deceased, and faces of animals. In the psychiatric population, some schizophrenics show a dramatic increase of strange-face illusions. They can also describe the perception of multiple-others that fill the mirror surface surrounding their strange-face. Schizophrenics are usually convinced that strange-face illusions are truly real and identify themselves with strange-face illusions, diversely from healthy individuals who never identify with them. On the contrary, most patients with major depression do not perceive strange-face illusions, or they perceive very faint changes of their immobile faces in the mirror, like death statues. Strange-face illusions may be the psychodynamic projection of the subject’s unconscious archetypal contents into the mirror image. Therefore, strange-face illusions might provide both an ecological setting and an experimental technique for “imaging of the unconscious”. Future researches have been proposed. PMID:25379264

  13. Archetypal-imaging and mirror-gazing.

    Science.gov (United States)

    Caputo, Giovanni B

    2014-03-01

    Mirrors have been studied by cognitive psychology in order to understand self-recognition, self-identity, and self-consciousness. Moreover, the relevance of mirrors in spirituality, magic and arts may also suggest that mirrors can be symbols of unconscious contents. Carl G. Jung investigated mirrors in relation to the unconscious, particularly in Psychology and Alchemy. However, the relationship between the conscious behavior in front of a mirror and the unconscious meaning of mirrors has not been clarified. Recently, empirical research found that gazing at one's own face in the mirror for a few minutes, at a low illumination level, produces the perception of bodily dysmorphic illusions of strange-faces. Healthy observers usually describe huge distortions of their own faces, monstrous beings, prototypical faces, faces of relatives and deceased, and faces of animals. In the psychiatric population, some schizophrenics show a dramatic increase of strange-face illusions. They can also describe the perception of multiple-others that fill the mirror surface surrounding their strange-face. Schizophrenics are usually convinced that strange-face illusions are truly real and identify themselves with strange-face illusions, diversely from healthy individuals who never identify with them. On the contrary, most patients with major depression do not perceive strange-face illusions, or they perceive very faint changes of their immobile faces in the mirror, like death statues. Strange-face illusions may be the psychodynamic projection of the subject's unconscious archetypal contents into the mirror image. Therefore, strange-face illusions might provide both an ecological setting and an experimental technique for "imaging of the unconscious". Future researches have been proposed. PMID:25379264

  14. Archetypal-imaging and mirror-gazing.

    Science.gov (United States)

    Caputo, Giovanni B

    2014-03-01

    Mirrors have been studied by cognitive psychology in order to understand self-recognition, self-identity, and self-consciousness. Moreover, the relevance of mirrors in spirituality, magic and arts may also suggest that mirrors can be symbols of unconscious contents. Carl G. Jung investigated mirrors in relation to the unconscious, particularly in Psychology and Alchemy. However, the relationship between the conscious behavior in front of a mirror and the unconscious meaning of mirrors has not been clarified. Recently, empirical research found that gazing at one's own face in the mirror for a few minutes, at a low illumination level, produces the perception of bodily dysmorphic illusions of strange-faces. Healthy observers usually describe huge distortions of their own faces, monstrous beings, prototypical faces, faces of relatives and deceased, and faces of animals. In the psychiatric population, some schizophrenics show a dramatic increase of strange-face illusions. They can also describe the perception of multiple-others that fill the mirror surface surrounding their strange-face. Schizophrenics are usually convinced that strange-face illusions are truly real and identify themselves with strange-face illusions, diversely from healthy individuals who never identify with them. On the contrary, most patients with major depression do not perceive strange-face illusions, or they perceive very faint changes of their immobile faces in the mirror, like death statues. Strange-face illusions may be the psychodynamic projection of the subject's unconscious archetypal contents into the mirror image. Therefore, strange-face illusions might provide both an ecological setting and an experimental technique for "imaging of the unconscious". Future researches have been proposed.

  15. Status of JAERI tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi; Kanda, Susumu; Takeuchi, Suehiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2001-02-01

    JAERI Tandem Accelerator had been operated approximately 230 days in fiscal year of 1999. Meanwhile, we had three times of maintenance period with vent. Total operation-times were 5273 hours. We could not carry out the experiment using rare gas, due to malfunction of the RF power supply for the ECR ion source. The type of the RF power supply is peculiar and it is impossible to get spare parts for repair. We are now investigating the backup RF power supply. The power supply for the magnet became unstable due to degradation of insulation in the shunt resistance, which is used for feedback stabilization. Stability was recovered after cleaning. The acrylic resin shaft was cracked. This cracks have a potential for severe accidents. So far bearing of the shaft has no problem. The reason of cracks may be self-destruction by charge accumulation in the shaft. JAERI Tandem Accelerator is approximately 20 years old. There appear requirements on the higher ion currents for additional ion species. Therefore, authors are investigating cost effective improvement plans of RFQ (Radio Frequency Quadra-pole) and IH type accelerator based on KEK (High Energy Accelerator Research Organization) R and D. As a whole, maintenance services for the control system are increasing due to some changes of computer programs. There are some difficulties to keep skilled personnel for facilities operation. Authors are gradually increasing hired personnel with contract from 1993. However, loads for JAERI permanent staffs are still heavy. It takes much longer time to educate skilled persons especially for safety. (Y. Tanaka)

  16. Two-dimensional axisymmetric formulation of high order spherical harmonics methods for radiative heat transfer

    Science.gov (United States)

    Ge, Wenjun; Modest, Michael F.; Marquez, Ricardo

    2015-05-01

    The spherical harmonics (PN) method is a radiative transfer equation solver, which approximates the radiative intensity as a truncated series of spherical harmonics. For general 3-D configurations, N(N + 1) / 2 intensity coefficients must be solved from a system of coupled second-order elliptic PDEs. In 2-D axisymmetric applications, the number of equations and intensity coefficients reduces to (N + 1) 2 / 4 if the geometric relations of the intensity coefficients are taken into account. This paper presents the mathematical details for the transformation and its implementation on the OpenFOAM finite volume based CFD software platform. The transformation and implementation are applicable to any arbitrary axisymmetric geometry, but the examples to test the new formulation are based on a wedge grid, which is the most common axisymmetric geometry in CFD simulations, because OpenFOAM and most other platforms do not have true axisymmetric solvers. Two example problems for the new axisymmetric PN formulation are presented, and the results are verified with that of the general 3-D PN solver, a Photon Monte Carlo solver and exact solutions.

  17. Subsonic Euler Flows with Large Vorticity Through an Infinitely Long Axisymmetric Nozzle

    Science.gov (United States)

    Du, Lili; Duan, Ben

    2016-09-01

    This paper is a sequel to the earlier work Du and Duan (J Diff Equ 250:813-847, 2011) on well-posedness of steady subsonic Euler flows through infinitely long three-dimensional axisymmetric nozzles. In Du and Duan (J Diff Equ 250:813-847, 2011), the authors showed the existence and uniqueness of the global subsonic Euler flows through an infinitely long axisymmetric nozzle, when the variation of Bernoulli's function in the upstream is sufficiently small and the mass flux of the incoming flow is less than some critical value. The smallness of the variation of Bernoulli's function in the upstream prevents the attendance of the possible singularity in the nozzles, however, at the same time it also leads that the vorticity of the ideal flow is sufficiently small in the whole nozzle and the flows are indeed adjacent to axisymmetric potential flows. The purpose of this paper is to investigate the effects of the vorticity for the smooth subsonic ideal flows in infinitely long axisymmetric nozzles. We modify the formulation of the problem in the previous work Du and Duan (J Diff Equ 250:813-847, 2011) and the existence and uniqueness results on the smooth subsonic ideal polytropic flows in infinitely long axisymmetric nozzles without the restriction on the smallness of the vorticity are shown in this paper.

  18. Mirror neurons: functions, mechanisms and models.

    Science.gov (United States)

    Oztop, Erhan; Kawato, Mitsuo; Arbib, Michael A

    2013-04-12

    Mirror neurons for manipulation fire both when the animal manipulates an object in a specific way and when it sees another animal (or the experimenter) perform an action that is more or less similar. Such neurons were originally found in macaque monkeys, in the ventral premotor cortex, area F5 and later also in the inferior parietal lobule. Recent neuroimaging data indicate that the adult human brain is endowed with a "mirror neuron system," putatively containing mirror neurons and other neurons, for matching the observation and execution of actions. Mirror neurons may serve action recognition in monkeys as well as humans, whereas their putative role in imitation and language may be realized in human but not in monkey. This article shows the important role of computational models in providing sufficient and causal explanations for the observed phenomena involving mirror systems and the learning processes which form them, and underlines the need for additional circuitry to lift up the monkey mirror neuron circuit to sustain the posited cognitive functions attributed to the human mirror neuron system.

  19. Mirror matter, mirror gravity and galactic rotational curves

    Science.gov (United States)

    Berezhiani, Zurab; Pilo, Luigi; Rossi, Nicola

    2010-11-01

    We discuss astrophysical implications of the modified gravity model in which the two matter components, ordinary and dark, couple to separate gravitational fields that mix to each other through small mass terms. There are two spin-2 eigenstates: the massless graviton, which induces universal Newtonian attraction, and the massive one, which gives rise to the Yukawa-like potential which is repulsive between the ordinary and dark bodies. As a result for distances much smaller than the Yukawa radius r m the gravitation strength between the two types of matter becomes vanishing. If r m ˜10 kpc, the typical size of a galaxy, there are interesting implications for the nature of dark matter. In particular, one can avoid the problem of the cusp that is typical for the cold dark matter halos. Interestingly, the flat shape of the rotational curves can be explained even in the case of the collisional and dissipative dark matter (as e.g. mirror matter), which cannot give the extended halos but instead must form galactic discs similarly to the visible matter. The observed rotational curves for the large, medium-size and dwarf galaxies can be nicely reproduced. We also briefly discuss possible implications for the direct search of dark matter.

  20. Thermo-optically driven adaptive mirror

    Science.gov (United States)

    Reinert, Felix; Lüthy, Willy

    2006-02-01

    The ideal adaptive optical mirror combines large aperture with high spatial and temporal resolution and a phase shift of at least 2π. Further, a simple low-cost solution is preferred. No adaptive system can perfectly fulfill all these requirements. We present a system that has the potential to reach this goal with the exception of high temporal resolution. But even with a moderate temporal resolution of one second such a system can find practical applications. For example as a laser resonator mirror that allows to modify the intensity distribution of the emission, or to correct slowly varying aberrations of optical systems. Two possible mechanisms can be used to change the optical path length of the adaptive mirror: thermal expansion of the mirror substrate or the thermally induced change of the refractive index (thermal dispersion) of a medium in front of the mirror. Both mechanisms have been shown to lead to promising results. In both cases heating was performed by irradiation of light in the active medium. The thermal dispersion based adaptive mirror is built with a thin layer of a liquid in front of a mirror. To allow a modification of the refractive index by irradiation with a diode laser at 808 nm, a suitable absorber is dissolved in the water. With chopped irradiation a resolution of 3.8 Hz at 30 % contrast is measured. This mirror has been used in a laser resonator to modify the output distribution of the laser. The thermal expansion based adaptive mirror is built with a thin layer of a silicon elastomer with a gold coated front side. We present a preparation method to produce thin films of Sylgard on sapphire. With an irradiated intensity of only 370 mW/cm2 surface modulations of up to 350 nm are obtained. With a test pattern a resolution of 1.6 line-pairs per millimeter at 30 % contrast is measured. The temporal resolution is better than one second.