Global stability analysis of axisymmetric boundary layer over a circular cylinder
Bhoraniya, Ramesh; Vinod, Narayanan
2018-05-01
This paper presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of 2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.
Effect of compressibility on the global stability of axisymmetric wake flows
Meliga , Philippe; Sipp , D.; Chomaz , Jean-Marc
2010-01-01
International audience; We study the linear dynamics of global eigenmodes in compressible axisymmetric wake flows, up to the high subsonic regime. We consider both an afterbody flow at zero angle of attack and a sphere, and find that the sequence of bifurcations destabilizing the axisymmetric steady flow is independent of the Mach number and reminiscent of that documented in the incompressible wake past a sphere and a disk (Natarajan & Acrivos, J. Fluid Mech., vol. 254, 1993, p. 323), hence s...
Merlo, G.; Brunner, S.; Huang, Z.; Coda, S.; Görler, T.; Villard, L.; Bañón Navarro, A.; Dominski, J.; Fontana, M.; Jenko, F.; Porte, L.; Told, D.
2018-03-01
Axisymmetric (n = 0) density fluctuations measured in the TCV tokamak are observed to possess a frequency f 0 which is either varying (radially dispersive oscillations) or a constant over a large fraction of the plasma minor radius (radially global oscillations) as reported in a companion paper (Z Huang et al, this issue). Given that f 0 scales with the sound speed and given the poloidal structure of density fluctuations, these oscillations were interpreted as Geodesic Acoustic Modes, even though f 0 is in fact smaller than the local linear GAM frequency {f}{GAM}. In this work we employ the Eulerian gyrokinetic code GENE to simulate TCV relevant conditions and investigate the nature and properties of these oscillations, in particular their relation to the safety factor profile. Local and global simulations are carried out and a good qualitative agreement is observed between experiments and simulations. By varying also the plasma temperature and density profiles, we conclude that a variation of the edge safety factor alone is not sufficient to induce a transition from global to radially inhomogeneous oscillations, as was initially suggested by experimental results. This transition appears instead to be the combined result of variations in the different plasma profiles, collisionality and finite machine size effects. Simulations also show that radially global GAM-like oscillations can be observed in all fluxes and fluctuation fields, suggesting that they are the result of a complex nonlinear process involving also finite toroidal mode numbers and not just linear global GAM eigenmodes.
Global regularity for a family of 3D models of the axi-symmetric Navier–Stokes equations
Hou, Thomas Y.; Liu, Pengfei; Wang, Fei
2018-05-01
We consider a family of three-dimensional models for the axi-symmetric incompressible Navier–Stokes equations. The models are derived by changing the strength of the convection terms in the axisymmetric Navier–Stokes equations written using a set of transformed variables. We prove the global regularity of the family of models in the case that the strength of convection is slightly stronger than that of the original Navier–Stokes equations, which demonstrates the potential stabilizing effect of convection.
Non-axisymmetric line-driven disc winds - I. Disc perturbations
Dyda, Sergei; Proga, Daniel
2018-04-01
We study mass outflows driven from accretion discs by radiation pressure due to spectral lines. To investigate non-axisymmetric effects, we use the ATHENA++ code and develop a new module to account for radiation pressure driving. In 2D, our new simulations are consistent with previous 2D axisymmetric solutions by Proga et al., who used the ZEUS 2D code. Specifically, we find that the disc winds are time dependent, characterized by a dense stream confined to ˜45° relative to the disc mid-plane and bounded on the polar side by a less dense, fast stream. In 3D, we introduce a vertical, ϕ-dependent, subsonic velocity perturbation in the disc mid-plane. The perturbation does not change the overall character of the solution but global outflow properties such as the mass, momentum, and kinetic energy fluxes are altered by up to 100 per cent. Non-axisymmetric density structures develop and persist mainly at the base of the wind. They are relatively small, and their densities can be a few times higher than the azimuthal average. The structure of the non-axisymmetric and axisymmetric solutions differ also in other ways. Perhaps most importantly from the observational point of view are the differences in the so-called clumping factors, that serve as a proxy for emissivity due to two body processes. In particular, the spatially averaged clumping factor over the entire fast stream, while it is of a comparable value in both solutions, it varies about 10 times faster in the non-axisymmetric case.
Nonconforming axisymmetric elements for the analysis of containment structures
International Nuclear Information System (INIS)
Choi, C.K.; Kim, S.Y.
1989-01-01
In this study, the behaviors of the conforming isoparametric quadrilateral 4-node and triangular 3-nod axisymmetric solid elements are improved by adding nonconforming displacement modes. The convergence tests and the irregular mesh tests have been established through the analyses of a primary shield wall typed structure. For example study, a containment wall with internal pressure of 60 ksi has been analyzed. It shows that the nonconforming elements behave better than the conforming elements, especially, in the structurally discontinuous regions
SAFE-AXISYM, Stress Analysis of Axisymmetric Composite Structure by Finite Elements Method
International Nuclear Information System (INIS)
Cornell, D.C.
1967-01-01
1 - Nature of physical problem solved: SAFE-AXISYM is a program for the analysis of multi-material axisymmetric composite structures. It is designed for the analysis of heterogeneous structures such as reinforced and/or prestressed concrete vessels. The structure is assumed to be linearly elastic, and only bodies of revolution subjected to axisymmetric loading can be treated. 2 - Method of solution: SAFE-AXISYM uses a finite element method with a modified Gauss-Seidel iteration scheme. A reference grid subdivides the structure into ring-like small, finite elements, the vertices of which are called nodes. The grid may be generated by hand, by the computer or by a combination of the two methods. Each node has two degrees of freedom, translation in the and in the axial direction. Both zero and non-zero fixed displacement constraints may be assumed, and the loading condition may be mechanical and/or thermal. 3 - Restrictions on the complexity of the problem: Multi-material structures with varying rigidities converge very slowly. Not valid for incompressible materials. Maximum number of nodes = 475. Maximum number of elements = 1100
Flock, M.; Ruge, J. P.; Dzyurkevich, N.; Henning, Th.; Klahr, H.; Wolf, S.
2014-01-01
International audience; Aims. Recent observations by the Atacama Large Millimeter/submillimeter Array (ALMA) of disks around young stars revealed distinct asymmetries in the dust continuum emission. In this work we wish to study axisymmetric and non-axisymmetric structures that are generated by the magneto-rotational instability in the outer regions of protoplanetary disks. We combine the results of state-of-the-art numerical simulations with post-processing radiative transfer (RT) to generat...
SIGMARZ, Stress Analysis of Axisymmetric or Plane Structures
International Nuclear Information System (INIS)
1978-01-01
1 - Nature of the physical problem solved: Classic stress analysis program for axisymmetric or plane geometric structures. 2 - Method of solution: The finite element method is used. Input are the finite element nodes, the imposed displacements, the applied forces at the nodes and the volumetric distributed forces. The linear equation system is solved by the Cholesky method. 3 - Restrictions on the complexity of the problem: Maximum number of nodes: 800; Maximum number of elements: 1300; Maximum number of displacements: 300; Maximum band width: 72
Identification of multiple modes of axisymmetric or circularly repetitive structures
International Nuclear Information System (INIS)
Kopff, P.
1983-01-01
The axisymmetric structures, or those composed with circularly repetitive elements, often display multiple modes, which are not easy to separate by modal identification of experimental responses. To be able to solve in situ some problems related to the vibrational behaviour of reactor vessels or other such huge structures, ELECTRICITY DE FRANCE developed a few years ago, experimental capabilities providing heavy harmonic driving forces, and elaborate data acquisition, signal processing and modal identification software, self-contained in an integrated mobile test facility. The modal analysis techniques we have developed with the LABORATOIRE DE MECANIQUE Appliquee of University of BESANCON (FRANCE) were especially suited for identification of multiple or separation of quasi-multiple modes, i.e. very close and strongly coupled resonances. Besides, the curve fitting methods involved, compute the same complex eigen-frequencies for all the vibration pick-ups, for better accuracy of the related eigen-vector components. Moreover, the latest extensions of these algorithms give us the means to deal with non-linear behaviour. The performances of these programs are drawn from some experimental results on axisymmetric or circularly repetitive structure, we tested in our laboratory to validate the computational hypothesis used in models for seismic responses of breeder reactor vessels. (orig.)
Magnetohydrodynamic helical structures in nominally axisymmetric low-shear tokamak plasmas
International Nuclear Information System (INIS)
Graves, J P; Brunetti, D; Cooper, W A; Reimerdes, H; Halpern, F; Pochelon, A; Sauter, O; Chapman, I T
2013-01-01
The primary goal of hybrid scenarios in tokamaks is to enable high performance operation with large plasma currents whilst avoiding MHD instabilities. However, if a local minimum in the safety factor is allowed to approach unity, the energy required to overcome stabilizing magnetic field line bending is very small, and as a consequence, large MHD structures can be created, with typically dominant m = n = 1 helical component. If there is no exact q = 1 rational surface the essential character of these modes can be modelled assuming ideal nested magnetic flux surfaces. The methods used to characterize these structures include linear and non-linear ideal MHD stability calculations which evaluate the departure from an axisymmetric plasma state, and also equilibrium calculations using a 3D equilibrium code. While these approaches agree favourably for simulations of ITER relevant hybrid regimes in this paper, the relevance of the ideal MHD model itself is tested through empirical examination of helical states in MAST and TCV. While long lived modes in MAST do not have island structures, some of the continuous mode oscillations exhibited in high elongation experiments in TCV indicate that resistivity may play a role in further weakening the ability of the tokamak core to remain axisymmetric. The simulations and experiments consistently highlight the need to control the safety factor in hybrid scenarios planned for future fusion grade tokamaks such as ITER. (paper)
International Nuclear Information System (INIS)
Singh, Tarvinder; Singh, R.K.; Ghosh, A.K.
2008-10-01
In order to check the adequacy of the Indian Pressurized Heavy Water Reactor (PHWR) containment structure to withstand severe accident induced internal pressure load, the ultimate load capacity assessment is required. Reactor Safety Division (RSD) of Bhabha Atomic Research Centre (BARC) has initiated an experimental program at BARC Tarapur Containment Test Facility to evaluate the ultimate load capacity of Indian PHWR containment. For this study, BARC Containment Model (BARCOM), which is 1:4 scale representation of Tarapur Atomic Power Station (TAPS) unit-3 and 4 540 MWe PHWR Inner Containment of Pre-stressed Concrete has been constructed. The model includes all the important major design features of the prototype containment and simulates Main Air Lock (MAL), Steam Generator (SG), Emergency Air Lock (EAL) and Fueling Machine Air Lock (FMAL) openings. The design pressure (Pd) of BARCOM is 1.44kg/cm 2 (g), which is same as the prototype. The pretest analysis of BARCOM has been performed with finite element axi-symmetric modeling. The objective of this simulation was to understand the behavior of containment model under internal pressure and find out the various failure modes and critical locations important for instrumentation during the experiment. The structural response of the containment model is assessed in terms of wall and dome displacement; cracking of concrete, longitudinal and hoop strains and stresses. Another objective of the analysis was to predict the various failure modes of BARCOM with regard to the concrete cracking, reinforcement yielding and tendon inelastic behavior along with the estimation of the ultimate load capacity of the containment model. It is noted that the BARCOM has an ultimate load capacity factor of 3.54 Pd. However, further analysis is needed to quantify the factor of safety with detail 3D model, which should account for the local structural behavior due to various openings. Meanwhile, this preliminary simplified analysis helps to
Axisymmetric modeling of prestressing tendons in nuclear containment dome
Energy Technology Data Exchange (ETDEWEB)
Jeon, Se-Jin [DAEWOO E and C, Institute of Construction Technology, 60 Songjook-dong, Jangan-gu, Suwon, Kyonggi 440-210 (Korea, Republic of)]. E-mail: jsj@dwconst.co.kr; Chung, Chul-Hun [Department of Civil and Environmental Engineering, Dankook University, San 8, Hannam-dong, Youngsan-gu, Seoul 140-714 (Korea, Republic of)
2005-12-15
Simple axisymmetric modeling of a nuclear containment building has been often employed in practice to estimate structural behavior for the axisymmetric loadings such as internal pressure. In this case, the prestressing tendons placed in the containment dome should be axisymmetrically approximated, since most dome tendons are not arranged in an axisymmetric manner. Some procedures are proposed that can realistically implement the actual three-dimensional tendon stiffness and prestressing effect into the axisymmetric model. Prestressing tendons, which are arranged in two or three ways depending on a containment type, are converted into the equivalent layer to consider the stiffness contribution in meridional and hoop directions. In order to reflect the prestressing effect, the equivalent load method and the initial stress method are devised, respectively, and the corresponding loads or stresses are derived in terms of the axisymmetric model. The proposed schemes are verified through some numerical examples comparing the results of the axisymmetric models to those of the actual three-dimensional model. The examples show that the proper level of the prestressing in the hoop direction of the axisymmetric dome plays an important role in tracing the actual behavior induced by the prestressing. Finally, some correction factors are discussed that can further improve the analysis results.
Axisymmetric modeling of prestressing tendons in nuclear containment dome
International Nuclear Information System (INIS)
Jeon, Se-Jin; Chung, Chul-Hun
2005-01-01
Simple axisymmetric modeling of a nuclear containment building has been often employed in practice to estimate structural behavior for the axisymmetric loadings such as internal pressure. In this case, the prestressing tendons placed in the containment dome should be axisymmetrically approximated, since most dome tendons are not arranged in an axisymmetric manner. Some procedures are proposed that can realistically implement the actual three-dimensional tendon stiffness and prestressing effect into the axisymmetric model. Prestressing tendons, which are arranged in two or three ways depending on a containment type, are converted into the equivalent layer to consider the stiffness contribution in meridional and hoop directions. In order to reflect the prestressing effect, the equivalent load method and the initial stress method are devised, respectively, and the corresponding loads or stresses are derived in terms of the axisymmetric model. The proposed schemes are verified through some numerical examples comparing the results of the axisymmetric models to those of the actual three-dimensional model. The examples show that the proper level of the prestressing in the hoop direction of the axisymmetric dome plays an important role in tracing the actual behavior induced by the prestressing. Finally, some correction factors are discussed that can further improve the analysis results
Dynamic analysis of reactor containment building using axisymmetric finite element model
International Nuclear Information System (INIS)
Thakkar, S.K.; Dubey, R.N.
1989-01-01
The structural safety of nuclear reactor building during earthquake is of great importance in view of possibility of radiation hazards. The rational evaluation of forces and displacements in various portions of structure and foundation during strong ground motion is most important for safe performance and economic design of the reactor building. The accuracy of results of dynamic analysis is naturally dependent on the type of mathematical model employed. Three types of mathematical models are employed for dynamic analysis of reactor building beam model axisymmetric finite element model and three dimensional model. In this paper emphasis is laid on axisymmetric model. This model of containment building is considered a reinfinement over conventional beam model of the structure. The nuclear reactor building on a rocky foundation is considered herein. The foundation-structure interaction is relatively less in this condition. The objective of the paper is to highlight the significance of modelling of non-axisymmetric portion of building, such as reactor internals by equivalent axisymmetric body, on the structural response of the building
A new periodic imperfect quasi axisymmetric shell element
International Nuclear Information System (INIS)
Combescure, A.; Garuti, G.
1983-08-01
The object of this paper is to give the formulation and the validation of a ''quasi axisymmetric'' shell element: the main idea is to develop the theory of an imperfect quasi axisymmetric shell element. The imperfection is a variation of the circumferential radius of curvature rsub(theta). The equations are obtained by transporting the equilibrium equations from the actual geometry onto the theoretical axisymmetric (rsub(theta)=r 0 geometry. It is shown that the main hypothesis convenient to perform simply this transformation is that the membrane strains associated with that variation of geometry are less than 1% (that is always the case if you suppose that the imperfect structure is obtained from the perfect one by an inextensional displacement field). The formulation of the element is given in the general case. The rigidity matrices, are given in the particular case in which the imperfection has a component on a single Fourier harmonic. The comparison of theoretical and computed, 3D and quasi axisymmetric, solution or a very simple case shows the influence of the number of the Fourier harmonics chosen on the response of the structure. The influence of the initial imperfections on the natural frequency are studied with element and compared with 3D calculations. Comparison of 3D, quasi axisymmetric, and analytical buckling loads are given and explained. This element gives a very efficient tool for the calculation of thin shells of revolution (which are always imperfect) and especially unables easy parametric study of the variation of the buckling load and eigen frequencies with the amplitude and shapes of non axisymmetric imperfections
ON THE COMMONALITY OF 10–30 AU SIZED AXISYMMETRIC DUST STRUCTURES IN PROTOPLANETARY DISKS
International Nuclear Information System (INIS)
Zhang, Ke; Bergin, Edwin A.; Schwarz, Kamber R.; Blake, Geoffrey A.; Cleeves, L. Ilsedore; Hogerheijde, Michiel; Salinas, Vachail
2016-01-01
An unsolved problem in step-wise core-accretion planet formation is that rapid radial drift in gas-rich protoplanetary disks should drive millimeter-/meter-sized particles inward to the central star before large bodies can form. One promising solution is to confine solids within small-scale structures. Here, we investigate dust structures in the (sub)millimeter continuum emission of four disks (TW Hya, HL Tau, HD 163296, and DM Tau), a sample of disks with the highest spatial resolution Atacama Large Millimeter/submillimeter Array observations to date. We retrieve the surface brightness distributions using synthesized images and fitting visibilities with analytical functions. We find that the continuum emission of the four disks is ∼axisymmetric but rich in 10–30 AU-sized radial structures, possibly due to physical gaps, surface density enhancements, or localized dust opacity variations within the disks. These results suggest that small-scale axisymmetric dust structures are likely to be common, as a result of ubiquitous processes in disk evolution and planet formation. Compared with recent spatially resolved observations of CO snow lines in these same disks, all four systems show enhanced continuum emission from regions just beyond the CO condensation fronts, potentially suggesting a causal relationship between dust growth/trapping and snow lines
ON THE COMMONALITY OF 10–30 AU SIZED AXISYMMETRIC DUST STRUCTURES IN PROTOPLANETARY DISKS
Energy Technology Data Exchange (ETDEWEB)
Zhang, Ke; Bergin, Edwin A.; Schwarz, Kamber R. [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Blake, Geoffrey A. [Division of Geological and Planetary Sciences, California Institute of Technology, MC 150-21, Pasadena, CA 91125 (United States); Cleeves, L. Ilsedore [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hogerheijde, Michiel; Salinas, Vachail, E-mail: kezhang@umich.edu [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)
2016-02-10
An unsolved problem in step-wise core-accretion planet formation is that rapid radial drift in gas-rich protoplanetary disks should drive millimeter-/meter-sized particles inward to the central star before large bodies can form. One promising solution is to confine solids within small-scale structures. Here, we investigate dust structures in the (sub)millimeter continuum emission of four disks (TW Hya, HL Tau, HD 163296, and DM Tau), a sample of disks with the highest spatial resolution Atacama Large Millimeter/submillimeter Array observations to date. We retrieve the surface brightness distributions using synthesized images and fitting visibilities with analytical functions. We find that the continuum emission of the four disks is ∼axisymmetric but rich in 10–30 AU-sized radial structures, possibly due to physical gaps, surface density enhancements, or localized dust opacity variations within the disks. These results suggest that small-scale axisymmetric dust structures are likely to be common, as a result of ubiquitous processes in disk evolution and planet formation. Compared with recent spatially resolved observations of CO snow lines in these same disks, all four systems show enhanced continuum emission from regions just beyond the CO condensation fronts, potentially suggesting a causal relationship between dust growth/trapping and snow lines.
International Nuclear Information System (INIS)
Saha, S.; Dasgupta, A.; Basu, P.C.
1993-01-01
Seismic analysis of a Reactor Building is performed idealising the system as a beam model (BM) and also an Axi-symmetric model (ASM) and the results compared. In both the cases effect of Soil-Structure Interaction have been taken Into account. Since the lower boundary of the ASM was at a depth much lower than that of the BM, deconvolution of the specified Free-Field Motion (FFM) was necessary. The deconvolution has been performed using frequency domain approach. (author)
Elastic-plastic analysis of an axi-symmetric problem by a finite element method
International Nuclear Information System (INIS)
Isozaki, Toshikuni
1984-06-01
Generally speaking, many structures are designed and fabricated on the basis of an axi-symmetric structure. Finite Element Method is the capable method to solve these axi-symmetric problems beyond the elastic limit. As the first step to solve these problems, the computer program for the elastic-plastic analysis of the axi-symmetric problem is composed. The basic program is based upon that described in Zienkiewicz's text book to solve the elastic plane stress problem, taking the plastic stress matrix by Yamada's method into consideration and it is converted to solve the axi-symmetric problem. For the verification of the program, the plane strain problem of a cylindrical tube under internal pressure was solved. The computed results were compared with those shown in ADINA's user's manual. They showed close agreement. (author)
A time-dependent dusty gas dynamic model of axisymmetric cometary jets
International Nuclear Information System (INIS)
Korosmezey, A.; Gombosi, T.I.
1990-01-01
The present time-dependent, axisymmetric dusty gas dynamical model of inner cometary atmospheres solves the coupled and time-dependent equations of continuity, momentum, and energy for a gas-dust mixture between the surface of the nucleus and 100 km, using an axisymmetric 40 x 40 grid structure. A novel numerical method employing a second-order accurate Godunov-type scheme with dimensional splitting is used to solve the time-dependent pde system. It is established that a subsolar dust spike not predicted by previous calculations is generated by narrow axisymmetric jets, together with a jet cone whose opening angle depends on the jet length. 28 refs
Stationary axisymmetric Einstein--Maxwell field equations
International Nuclear Information System (INIS)
Catenacci, R.; Diaz Alonso, J.
1976-01-01
We show the existence of a formal identity between Einstein's and Ernst's stationary axisymmetric gravitational field equations and the Einstein--Maxwell and the Ernst equations for the electrostatic and magnetostatic axisymmetric cases. Our equations are invariant under very simple internal symmetry groups, and one of them appears to be new. We also obtain a method for associating two stationary axisymmetric vacuum solutions with every electrostatic known
International Nuclear Information System (INIS)
Nelson, E.M.
1993-12-01
Some two-dimensional finite element electromagnetic field solvers are described and tested. For TE and TM modes in homogeneous cylindrical waveguides and monopole modes in homogeneous axisymmetric structures, the solvers find approximate solutions to a weak formulation of the wave equation. Second-order isoparametric lagrangian triangular elements represent the field. For multipole modes in axisymmetric structures, the solver finds approximate solutions to a weak form of the curl-curl formulation of Maxwell's equations. Second-order triangular edge elements represent the radial (ρ) and axial (z) components of the field, while a second-order lagrangian basis represents the azimuthal (φ) component of the field weighted by the radius ρ. A reduced set of basis functions is employed for elements touching the axis. With this basis the spurious modes of the curl-curl formulation have zero frequency, so spurious modes are easily distinguished from non-static physical modes. Tests on an annular ring, a pillbox and a sphere indicate the solutions converge rapidly as the mesh is refined. Computed eigenvalues with relative errors of less than a few parts per million are obtained. Boundary conditions for symmetric, periodic and symmetric-periodic structures are discussed and included in the field solver. Boundary conditions for structures with inversion symmetry are also discussed. Special corner elements are described and employed to improve the accuracy of cylindrical waveguide and monopole modes with singular fields at sharp corners. The field solver is applied to three problems: (1) cross-field amplifier slow-wave circuits, (2) a detuned disk-loaded waveguide linear accelerator structure and (3) a 90 degrees overmoded waveguide bend. The detuned accelerator structure is a critical application of this high accuracy field solver. To maintain low long-range wakefields, tight design and manufacturing tolerances are required
Supersonic quasi-axisymmetric vortex breakdown
Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.
1991-01-01
An extensive computational study of supersonic quasi-axisymmetric vortex breakdown in a configured circular duct is presented. The unsteady, compressible, full Navier-Stokes (NS) equations are used. The NS equations are solved for the quasi-axisymmetric flows using an implicit, upwind, flux difference splitting, finite volume scheme. The quasi-axisymmetric solutions are time accurate and are obtained by forcing the components of the flowfield vector to be equal on two axial planes, which are in close proximity of each other. The effect of Reynolds number, for laminar flows, on the evolution and persistence of vortex breakdown, is studied. Finally, the effect of swirl ration at the duct inlet is investigated.
Axisymmetric vibrations of thin shells of revolution
International Nuclear Information System (INIS)
Suzuki, Katsuyoshi; Kikuchi, Norio; Kosawada, Tadashi; Takahashi, Shin
1983-01-01
The problem of free vibration of axisymmetric shells of revolution is important in connection with the design of pressure vessels, chemical equipment, aircrafts, structures and so on. In this study, the axisymmetrical vibration of a thin shell of revolution having a constant curvature in meridian direction was analyzed by thin shell theory. First, the Lagrangian during one period of the vibration of a shell of revolution was determined by the primary approximate theory of Love, and the vibration equations and boundary conditions were derived from its stopping condition. The vibration equations were strictly analyzed by using the series solution. The basic equations for the strain and strain energy of a shell were based on those of Novozhilov. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. The theory and the numerical calculation ore described. Especially in the frequency curves, the waving phenomena were observed frequently, which were not seen in non-axisymmetric vibration, accordingly also the vibration mode changed in complex state on the frequency curves of same order. The numerical calculation was carried out in the large computer center in Tohoku University. (Kako, I.)
Magneto-hydrodynamically stable axisymmetric mirrorsa)
Ryutov, D. D.; Berk, H. L.; Cohen, B. I.; Molvik, A. W.; Simonen, T. C.
2011-09-01
Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.
Magneto-hydrodynamically stable axisymmetric mirrors
Energy Technology Data Exchange (ETDEWEB)
Ryutov, D. D.; Cohen, B. I.; Molvik, A. W. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Berk, H. L. [University of Texas, Austin, Texas 78712 (United States); Simonen, T. C. [University of California, Berkeley, California 94720 (United States)
2011-09-15
Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.
Numerical calculation of axisymmetric non-neutral plasma equilibria
International Nuclear Information System (INIS)
Spencer, R.L.; Rasband, S.N.; Vanfleet, R.R.
1993-01-01
Efficient techniques for computing axisymmetric non-neutral plasma equilibria are described. These equilibria may be obtained either by requiring global thermal equilibrium, by specifying the midplane radial density profile, or by specifying the radial profile of ∫n dz. Both splines and finite-differences are used, and the accuracy of the two is compared by using a new characterization of the thermal equilibrium density profile which gives a simple formula for estimating the radial and axial gradient scale lengths of thermal equilibria. It is found that for global thermal equilibrium 1% accuracy is achieved with splines if the distance between neighboring splines is about two Debye lengths while finite differences require a grid spacing of about one-half Debye length to achieve the same accuracy
Axisymmetric MHD stability of sharp-boundary Tokamaks
International Nuclear Information System (INIS)
Rebhan, E.; Salat, A.
1976-09-01
For a sharp-boundary, constant pressure plasma model of axisymmetric equilibria the MHD stability problem of axisymmetric perturbations is solved by analytic reduction to a one-dimensional problem on the boundary and subsequent numerical treatment, using the energy principle. The stability boundaries are determined for arbitrary aspect ratio, arbitrary βsub(p) and elliptical, triangular and rectangular plasma cross-sections, wall stabilization not being taken into account. It is found that the axisymmetric stability strongly depends on the plasma shape and is almost independent of the safety factor q. (orig.) [de
International Nuclear Information System (INIS)
Cintra Filho, J. de S.
1981-01-01
The fluctuating temperature field structure is studied for the case of turbulent circular pipe flow. Experimentally determined integral length scales are used in modeling this structure in terms of axisymmetric forms. It is found that the appropriate angle of axisymmetry is larger than the one for modeling the large scale velocity structure. The axisymmetric model is then used to examine the validity and the prediction capability of the Tyldesley and Silver's non-spherical eddy diffusivity theory. (Author) [pt
Transition from gas to plasma kinetic equilibria in gravitating axisymmetric structures
International Nuclear Information System (INIS)
Cremaschini, Claudio; Stuchlík, Zdeněk
2014-01-01
The problem of the transition from gas to plasma in gravitating axisymmetric structures is addressed under the assumption of having initial and final states realized by kinetic Maxwellian-like equilibria. In astrophysics, the theory applies to accretion-disc scenarios around compact objects. A formulation based on non-relativistic kinetic theory for collisionless systems is adopted. Equilibrium solutions for the kinetic distribution functions describing the initial neutral matter and the resulting plasma state are constructed in terms of single-particle invariants and expressed by generalized Maxwellian distributions. The final plasma configuration is related to the initial gas distribution by the introduction of appropriate functional constraints. Qualitative aspects of the solution are investigated and physical properties of the system are pointed out. In particular, the admitted functional dependences of the fluid fields carried by the corresponding equilibrium distributions are determined. Then, the plasma is proved to violate the condition of quasi-neutrality, implying a net charge separation between ions and electrons. This result is shown to be independent of the precise realization of the plasma distribution function, while a physical mechanism able to support a non-neutral equilibrium state is proposed
Transition from gas to plasma kinetic equilibria in gravitating axisymmetric structures
Energy Technology Data Exchange (ETDEWEB)
Cremaschini, Claudio; Stuchlík, Zdeněk [Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo nám.13, CZ-74601 Opava (Czech Republic)
2014-04-15
The problem of the transition from gas to plasma in gravitating axisymmetric structures is addressed under the assumption of having initial and final states realized by kinetic Maxwellian-like equilibria. In astrophysics, the theory applies to accretion-disc scenarios around compact objects. A formulation based on non-relativistic kinetic theory for collisionless systems is adopted. Equilibrium solutions for the kinetic distribution functions describing the initial neutral matter and the resulting plasma state are constructed in terms of single-particle invariants and expressed by generalized Maxwellian distributions. The final plasma configuration is related to the initial gas distribution by the introduction of appropriate functional constraints. Qualitative aspects of the solution are investigated and physical properties of the system are pointed out. In particular, the admitted functional dependences of the fluid fields carried by the corresponding equilibrium distributions are determined. Then, the plasma is proved to violate the condition of quasi-neutrality, implying a net charge separation between ions and electrons. This result is shown to be independent of the precise realization of the plasma distribution function, while a physical mechanism able to support a non-neutral equilibrium state is proposed.
International Nuclear Information System (INIS)
Akeju, T.A.I.; Kelly, D.W.; Zienkiewicz, O.C.; Kanaka Raju, K.
1981-01-01
The eigenvalue equations governing the free vibration of axisymmetric solids are derived by means of a semi-analytical finite element scheme. In particular we investigated the use of an 8-node solid element in structures which exhibit a 'shell-like' behaviour. Bathe-Wilson subspace iteration algorithm is employed for the solution of the equations. The element is shown to give good results for beam and shell vibration problems. It is also utilised to solve a complex solid in the form of an internal component of a modern jet engine. This particular application is of considerable practical importance as the dynamics of such components form a dominant design constraint. (orig./HP)
Non-Axisymmetric Shaping of Tokamaks Preserving Quasi-Axisymmetry
Energy Technology Data Exchange (ETDEWEB)
Long-Poe Ku and Allen H. Boozer
2009-06-05
If quasi-axisymmetry is preserved, non-axisymmetric shaping can be used to design tokamaks that do not require current drive, are resilient to disruptions, and have robust plasma stability without feedback. Suggestions for addressing the critical issues of tokamaks can only be validated when presented with sufficient specificity that validating experiments can be designed. The purpose of this paper is provide that specificity for non-axisymmetric shaping. To our knowledge, no other suggestions for the solution of a number of tokamak issues, such as disruptions, have reached this level of specificity. Sequences of three-field-period quasi-axisymmetric plasmas are studied. These sequences address the questions: (1) What can be achieved at various levels of non-axisymmetric shaping? (2) What simplifications to the coils can be achieved by going to a larger aspect ratio? (3) What range of shaping can be achieved in a single experimental facility? The sequences of plasmas found in this study provide a set of interesting and potentially important configurations.
An axisymmetric inertia-gravity wave generator
Maurer, P.; Ghaemsaidi, S. J.; Joubaud, S.; Peacock, T.; Odier, P.
2017-10-01
There has been a rich interplay between laboratory experimental studies of internal waves and advancing understanding of their role in the ocean and atmosphere. In this study, we present and demonstrate the concept for a new form of laboratory internal wave generator that can excite axisymmetric wave fields of arbitrary radial structure. The construction and operation of the generator are detailed, and its capabilities are demonstrated through a pair of experiments using a Bessel function and a bourrelet (i.e., ring-shaped) configuration. The results of the experiments are compared with the predictions of an accompanying analytical model.
Development of axisymmetric lattice Boltzmann flux solver for complex multiphase flows
Wang, Yan; Shu, Chang; Yang, Li-Ming; Yuan, Hai-Zhuan
2018-05-01
This paper presents an axisymmetric lattice Boltzmann flux solver (LBFS) for simulating axisymmetric multiphase flows. In the solver, the two-dimensional (2D) multiphase LBFS is applied to reconstruct macroscopic fluxes excluding axisymmetric effects. Source terms accounting for axisymmetric effects are introduced directly into the governing equations. As compared to conventional axisymmetric multiphase lattice Boltzmann (LB) method, the present solver has the kinetic feature for flux evaluation and avoids complex derivations of external forcing terms. In addition, the present solver also saves considerable computational efforts in comparison with three-dimensional (3D) computations. The capability of the proposed solver in simulating complex multiphase flows is demonstrated by studying single bubble rising in a circular tube. The obtained results compare well with the published data.
Computation of compressible quasi-axisymmetric slender vortex flow and breakdown
Kandil, Osama A.; Kandil, Hamdy A.
1991-01-01
The unsteady, compressible Navier-Stokes equations are used to compute and analyze compressible quasi-axisymmetric isolated vortices. The Navier-Stokes equations are solved using an implicit, upwind, flux difference splitting finite volume scheme. The developed three dimensional solver was verified by comparing its solution profiles with those of a slender, quasi-axisymmetric vortex solver for a subsonic, quasi-axisymmetric vortex in an unbounded domain. The Navier-Stokes solver is then used to solve for a supersonic, quasi-axisymmetric vortex flow in a configured circular duct. Steady and unsteady vortex-shock interactions and breakdown were captured. The problem was also calculated using the Euler solver of the same code; the results were compared with those of the Navier-Stokes solver. The effect of the initial swirl was investigated.
Computer Aided Process Planning for Non-Axisymmetric Deep Drawing Products
Park, Dong Hwan; Yarlagadda, Prasad K. D. V.
2004-06-01
In general, deep drawing products have various cross-section shapes such as cylindrical, rectangular and non-axisymmetric shapes. The application of the surface area calculation to non-axisymmetric deep drawing process has not been published yet. In this research, a surface area calculation for non-axisymmetric deep drawing products with elliptical shape was constructed for a design of blank shape of deep drawing products by using an AutoLISP function of AutoCAD software. A computer-aided process planning (CAPP) system for rotationally symmetric deep drawing products has been developed. However, the application of the system to non-axisymmetric components has not been reported yet. Thus, the CAPP system for non-axisymmetric deep drawing products with elliptical shape was constructed by using process sequence design. The system developed in this work consists of four modules. The first is recognition of shape module to recognize non-axisymmetric products. The second is a three-dimensional (3-D) modeling module to calculate the surface area for non-axisymmetric products. The third is a blank design module to create an oval-shaped blank with the identical surface area. The forth is a process planning module based on the production rules that play the best important role in an expert system for manufacturing. The production rules are generated and upgraded by interviewing field engineers. Especially, the drawing coefficient, the punch and die radii for elliptical shape products are considered as main design parameters. The suitability of this system was verified by applying to a real deep drawing product. This CAPP system constructed would be very useful to reduce lead-time for manufacturing and improve an accuracy of products.
Axisymmetric vibrations of thick shells of revolution
International Nuclear Information System (INIS)
Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin
1983-01-01
Axisymmetric shells of revolution are used for chemical plants, nuclear power plants, aircrafts, structures and so on, and the elucidation of their free vibration is important for the design. In this study, the axisymmetric vibration of a barrel-shaped shell was analyzed by the modified thick shell theory. The Lagrangian during one period of the vibration of a shell of revolution was determined, and from its stopping condition, the vibration equations and the boundary conditions were derived. The vibration equations were analyzed strictly by using the series solution. Moreover, the basic equations for the strain of a shell and others were based on those of Love. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. By comparing the results of this study with the results by thin shell theory, the effects of shearing deformation and rotary inertia on the natural frequency and vibration mode were clarified. The theoretical analysis and the numerical calculation are described. The effects of shearing deformation and rotary inertia on the natural frequency became larger in the higher order vibration. The vibration mode did not much change in both theories. (Kako, I.)
Axisymmetric Tornado Simulations with a Semi-Slip Boundary
Directory of Open Access Journals (Sweden)
Brian H. Fiedler
2017-12-01
Full Text Available The structure of natural tornadoes and simulated analogs are sensitive to the lower boundary condition for friction. Three-dimensional numerical simulations of storms require a choice for turbulence parameterizations and resolution of wind near the lower boundary. This article explores some of the consequences of choices of a surface drag coefficient on the structure of a mature simulated tornado, using a conventional axisymmetric model. The surface drag parameterization is explored over the range of the semi-slip condition, including the extremes of no-slip and free-slip. A moderate semi-slip condition allows for an extreme pressure deficit, but without the unrealistic vortex breakdown of the no-slip condition.
Flow in axisymmetric expansion in a catalytic converter
DEFF Research Database (Denmark)
Gotfredsen, Erik; Meyer, Knud Erik
The flow in an axisymmetric expansion (circular diffusor) is used in many different engineering applications, such as heat exchangers, catalytic converters and filters. These applications require a relatively uniform flow at the inlet. To minimise the pressure loss, an ideal solution would...... Velocimetry (PIV) is a unique method that resolve the entire cross flow. This type of flow is expected to have a fluctuating ‘jet’-like structure from the smaller inlet pipe into the larger converter. The fluctuations of the jet are difficult, if not impossible, to capture with standard time averaged models...
Boundary element method for internal axisymmetric flow
Directory of Open Access Journals (Sweden)
Gokhman Alexander
1999-01-01
Full Text Available We present an accurate fast method for the computation of potential internal axisymmetric flow based on the boundary element technique. We prove that the computed velocity field asymptotically satisfies reasonable boundary conditions at infinity for various types of inlet/exit. Computation of internal axisymmetric potential flow is an essential ingredient in the three-dimensional problem of computation of velocity fields in turbomachines. We include the results of a practical application of the method to the computation of flow in turbomachines of Kaplan and Francis types.
International Nuclear Information System (INIS)
Patel, M.D.
1978-01-01
The Einstein's field equations for an enveloping radiating zone surrounding rotating axisymmetric collapsing source are studied. The solution has singularity along the axis of rotation. It is proved that on null hyper surface u = 0, the solution of the field equation for the radiating zone match with solution of axially symmetric vacuum field equations obtained by the author. Landau Lifshitz complex is used to obtain conserved total mass. (author)
Non-Axisymmetric Oscillation of Acoustically Levitated Water Drops at Specific Frequencies
International Nuclear Information System (INIS)
Chang-Le, Shen; Wen-Jun, Xie; Bing-Bo, Wei
2010-01-01
A category of non-axisymmetric oscillations of acoustically levitated water drops was observed. These oscillations can be qualitatively described by superposing a sectorial oscillating term upon the initial oblate shape resulting from the effect of acoustic radiation pressure. The oscillation frequencies are around 25 Hz for the 2-lobed mode and exactly 50 Hz for the 3- and 4-lobed modes. These oscillations were excited by the disturbance from the power supply. For the same water drop, higher mode oscillations were observed with more oblate initial shape, indicating that the eigenfrequencies of these non-axisymmetric oscillations decrease with increasing initial distortion. The maximum velocity and acceleration within the oscillating drop can attain 0.3m·s −1 and 98.7m·s −2 respectively, resulting in strong fluid convection and enhanced heat and mass transfer. (condensed matter: structure, mechanical and thermal properties)
Relativistic equations for axisymmetric gravitational collapse with escaping neutrinos
International Nuclear Information System (INIS)
Patel, M.D.
1979-01-01
Einstein's field equations for the dynamics of a self-gravitating axially symmetric source of a perfect fluid, presented by Chandrasekhar and Friedman (1964), are modified to allow emission of neutrinos. The boundary conditions at the outer surface of the radiating axisymmetric source are obtained by matching to an exterior solution of an axisymmetric rotating, radiating core. (auth.)
Energy Technology Data Exchange (ETDEWEB)
Henisey, Ken B. [Natural Science Division, Pepperdine University, Malibu, CA 90263 (United States); Blaes, Omer M. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Fragile, P. Chris [Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424 (United States)
2012-12-10
We study the spatial and temporal behavior of fluid in fully three-dimensional, general relativistic, magnetohydrodynamical simulations of both tilted and untilted black hole accretion flows. We uncover characteristically greater variability in tilted simulations at frequencies similar to those predicted by the formalism of trapped modes, but ultimately conclude that its spatial structure is inconsistent with a modal interpretation. We find instead that previously identified, transient, overdense clumps orbiting on roughly Keplerian trajectories appear generically in our global simulations, independent of tilt. Associated with these fluctuations are acoustic spiral waves interior to the orbits of the clumps. We show that the two non-axisymmetric standing shock structures that exist in the inner regions of these tilted flows effectively amplify the variability caused by these spiral waves to markedly higher levels than in untilted flows, which lack standing shocks. Our identification of clumps, spirals, and spiral-shock interactions in these fully general relativistic, magnetohydrodynamical simulations suggests that these features may be important dynamical elements in models that incorporate tilt as a way to explain the observed variability in black hole accretion flows.
A variational principle for the axisymmetric stability of rotating relativistic stars
International Nuclear Information System (INIS)
Prabhu, Kartik; Wald, Robert M; Schiffrin, Joshua S
2016-01-01
It is well known that all rotating perfect fluid stars in general relativity are unstable to certain non-axisymmetric perturbations via the Chandrasekhar–Friedman–Schutz (CFS) instability. However, the mechanism of the CFS instability requires, in an essential way, the loss of angular momentum by gravitational radiation and, in many instances, it acts on too long a timescale to be physically/astrophysically relevant. It is therefore of interest to examine the stability of rotating, relativistic stars to axisymmetric perturbations, where the CFS instability does not occur. In this paper, we provide a Rayleigh–Ritz-type variational principle for testing the stability of perfect fluid stars to axisymmetric perturbations, which generalizes to axisymmetric perturbations of rotating stars a variational principle given by Chandrasekhar for spherical perturbations of static, spherical stars. Our variational principle provides a lower bound to the rate of exponential growth in the case of instability. The derivation closely parallels the derivation of a recently obtained variational principle for analyzing the axisymmetric stability of black holes. (paper)
Axisymmetric multiphase lattice Boltzmann method for generic equations of state
Reijers, S.A.; Gelderblom, H.; Toschi, F.
2016-01-01
We present an axisymmetric lattice Boltzmann model based on the Kupershtokh et al. multiphase model that is capable of solving liquid–gas density ratios up to 103. Appropriate source terms are added to the lattice Boltzmann evolution equation to fully recover the axisymmetric multiphase conservation
Axisymmetric ideal magnetohydrodynamic equilibria with incompressible flows
International Nuclear Information System (INIS)
Tasso, H.; Throumoulopoulos, G.N.
1997-12-01
It is shown that the ideal MHD equilibrium states of an axisymmetric plasma with incompressible flows are governed by an elliptic partial differential equation for the poloidal magnetic flux function ψ containing five surface quantities along with a relation for the pressure. Exact equilibria are constructed including those with non vanishing poloidal and toroidal flows and differentially varying radial electric fields. Unlike the case in cylindrical incompressible equilibria with isothermal magnetic surfaces which should have necessarily circular cross sections [G. N. Throumoulopoulos and H. Tasso, Phys. Plasmas 4, 1492 (1997)], no restriction appears on the shapes of the magnetic surfaces in the corresponding axisymmetric equilibria. The latter equilibria satisfy a set of six ordinary differential equations which for flows parallel to the magnetic field B can be solved semianalytically. In addition, it is proved the non existence of incompressible axisymmetric equilibria with (a) purely poloidal flows and (b) non-parallel flows with isothermal magnetic surfaces and vertical stroke B vertical stroke = vertical stroke B vertical stroke (ψ) (omnigenous equilibria). (orig.)
Fast axisymmetric stability calculations using variational techniques
International Nuclear Information System (INIS)
Haney, S.W., Pearlstein, L.D.; Bulmer, R.H.
1991-01-01
A procedure for treating the axisymmetric (n = 0) stability of diverted plasmas in the presence of arbitrary, but toroidally symmetric, structures and active feedback circuits has been developed and implemented as a module in the TEQ free-boundary equilibrium code. This procedure is based on a variational solution of the ideal MHD normal mode equations. Inertia is ordered small but provides a constraint to allow the calculation of the poloidal and toroidal components of the plasma displacement. Feedback based on flux loop measurements is handled by introducing an adjoint system into the variational principle. Approximately 200 trial functions for the radial component of the plasma displacement and 200 magnetic surfaces are employed to obtain highly accurate estimates of the passive growth rate and the non-rigid eigenfunction. Nevertheless, the method is extremely fast: typically 10-20 sec of Cray 2 CPU time are required to analyze a realistic tokamak configuration. This speed, along with the direct coupling to the MHD equilibrium solver, allows interactive investigations of tokamak axisymmetric stability. Benchmarks with TSC and GATO are presented along with parameter scans for ITER and BPX. The results emphasize the importance of considering non-rigid mode effects which for ITER, yield higher nominal growth rates (non-rigid: 45 Hz, rigid: 25 Hz) and atypical internal inductance dependence (smaller l i more unstable)
Liu, Jianyong; Lu, Yajun; Li, Zhiping
2010-05-01
Non-axisymmetric wake impact experiments were carried out after the best exciting frequency for a low speed axial compressor had been found by axisymmetric wake impact experiments. When the number and circumferential distribution of inlet guide vanes (IGV) are logical the wakes of non-axisymmetric IGVs can exert beneficial unsteady exciting effect on their downstream rotor flow fields and improve the compressor’s performance. In the present paper, four non-axisymmetric wake impact plans were found working better than the axisymmetric wake impact plan. Compared with the base plan, the best non-axisymmetric plan increased the compressor’s peak efficiency, and the total pressure rise by 1.1 and 2%, and enhanced the stall margin by 4.4%. The main reason why non-axisymmetric plans worked better than the axisymmetric plan was explained as the change of the unsteady exciting signal arising from IGV wakes. Besides the high-frequency components, the non-axisymmetric plan generated a beneficial low-frequency square-wave exciting signal and other secondary frequency components. Compared with the axisymmetric plan, multi-frequency exciting wakes arising from the non-axisymmetric plans are easier to get coupling relation with complex vortices such as clearance vortices, passage vortices and shedding vortices.
Energy Technology Data Exchange (ETDEWEB)
J Squire, A Bhattacharjee [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
2014-07-01
We study the magnetorotational instability (MRI) (Balbus & Hawley 1998) using non-modal stability techniques.Despite the spectral instability of many forms of the MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very diff erent to the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localized in a completely di fferent region of space. These ideas lead – for both axisymmetric and non-axisymmetric modes – to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary diff erential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using non-modal analysis techniques, we conclude by analyzing local MRI growth over finite time-scales using these methods. The strong growth over a wide range of wave-numbers suggests that non-modal linear physics could be of fundamental importance in MRI turbulence (Squire & Bhattacharjee 2014).
Potential formation in axisymmetrized tandem mirror GAMMA 10
International Nuclear Information System (INIS)
Cho, T.; Ichimura, M.; Inutake, M.
1985-01-01
The paper reports experimental results on potential formation and end plugging in the axisymmetrized tandem mirror GAMMA 10. The plugging at both ends has been achieved by a combination of neutral beams and gyrotrons. The presence of a plug potential with a thermal barrier in an axisymmetric mirror has been confirmed by direct measurement of the axial potential profile. Enhancement of axial particle confinement has been observed during the end plugging. Non-ambipolar radial transport has been greatly reduced in the axisymmetrized magnetic configuration. The potentials measured by beam probes and end loss analysers are 0.7, 0.4 and 1.1 kV in the central, barrier and plug regions, respectively. Strong end plugging is observed when the central-cell density is higher than the densities in the plug and the barrier, and the plug density remains higher than the barrier density. The plug electron temperature is higher than the central temperature. Hot electrons forming a football-shaped profile have been stably produced in the axisymmetric mirror. The beta value and the fraction of the hot electrons reach up to 5% and 0.8, respectively. Central-cell ion-cyclotron resonance heating can sustain a stable plasma with higher density and ion temperature when resonance surfaces exist in both the anchor and the central cells. (author)
Axisymmetric plasma equilibria in a Kerr metric
Elsässer, Klaus
2001-10-01
Plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species. The quasi-neutrality assumption (no charge density, no toroidal current) allows to solve Maxwell's equations analytically for any axisymmetric stationary metric, and to reduce the fluid equations to one single scalar equation for the stream function \\chi of the positrons or ions, respectively. The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio m_e/m_i. The \\chi-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.
Influence of coherent structures on the evolution of an axisymmetric turbulent jet
Breda, Massimiliano; Buxton, Oliver R. H.
2018-03-01
The role of initial conditions in affecting the evolution toward self-similarity of an axisymmetric turbulent jet is examined. The jet's near-field coherence was manipulated by non-circular exit geometries of identical open area, De2, including a square and a fractal exit, for comparison with a classical round orifice jet. Hot-wire anemometry and 2D-planar particle image velocimetry experiments were performed between the exit and a location 26De downstream, where the Reynolds stress profiles are self-similar. This study shows that a fractal geometry significantly changes the near-field structure of the jet, breaking up the large-scale coherent structures, thereby affecting the entrainment rate of the background fluid into the jet stream. It is found that many of the jet's turbulent characteristics scale with the number of eddy turnover times rather than simply the streamwise coordinate, with the entrainment rate (amongst others) found to be comparable across the different jets after approximately 3-4 eddies have been overturned. The study is concluded by investigating the jet's evolution toward a self-similar state. No differences are found for the large-scale spreading rate of the jets in the weakly self-similar region, so defined as the region for which some, but not all of the terms of the mean turbulent kinetic energy equation are self-similar. However, the dissipation rate of the turbulent kinetic energy was found to vary more gradually in x than predicted according to the classical equilibrium theories of Kolmogorov. Instead, the dissipation was found to vary in a non-equilibrium fashion for all three jets tested.
Partial Fourier analysis of time-harmonic Maxwell's equations in axisymmetric domains
International Nuclear Information System (INIS)
Nkemzi, Boniface
2003-01-01
We analyze the Fourier method for treating time-harmonic Maxwell's equations in three-dimensional axisymmetric domains with non-axisymmetric data. The Fourier method reduces the three-dimensional boundary value problem to a system of decoupled two-dimensional boundary value problems on the plane meridian domain of the axisymmetric domain. The reduction process is fully described and suitable weighted spaces are introduced on the meridian domain to characterize the two-dimensional solutions. In particular, existence and uniqueness of solutions of the two-dimensional problems is proved and a priori estimates for the solutions are given. (author)
Forcing scheme analysis for the axisymmetric lattice Boltzmann method under incompressible limit.
Zhang, Liangqi; Yang, Shiliang; Zeng, Zhong; Chen, Jie; Yin, Linmao; Chew, Jia Wei
2017-04-01
Because the standard lattice Boltzmann (LB) method is proposed for Cartesian Navier-Stokes (NS) equations, additional source terms are necessary in the axisymmetric LB method for representing the axisymmetric effects. Therefore, the accuracy and applicability of the axisymmetric LB models depend on the forcing schemes adopted for discretization of the source terms. In this study, three forcing schemes, namely, the trapezium rule based scheme, the direct forcing scheme, and the semi-implicit centered scheme, are analyzed theoretically by investigating their derived macroscopic equations in the diffusive scale. Particularly, the finite difference interpretation of the standard LB method is extended to the LB equations with source terms, and then the accuracy of different forcing schemes is evaluated for the axisymmetric LB method. Theoretical analysis indicates that the discrete lattice effects arising from the direct forcing scheme are part of the truncation error terms and thus would not affect the overall accuracy of the standard LB method with general force term (i.e., only the source terms in the momentum equation are considered), but lead to incorrect macroscopic equations for the axisymmetric LB models. On the other hand, the trapezium rule based scheme and the semi-implicit centered scheme both have the advantage of avoiding the discrete lattice effects and recovering the correct macroscopic equations. Numerical tests applied for validating the theoretical analysis show that both the numerical stability and the accuracy of the axisymmetric LB simulations are affected by the direct forcing scheme, which indicate that forcing schemes free of the discrete lattice effects are necessary for the axisymmetric LB method.
Axisymmetric Lattice Boltzmann Model of Droplet Impact on Solid Surfaces
Dalgamoni, Hussein; Yong, Xin
2017-11-01
Droplet impact is a ubiquitous fluid phenomena encountered in scientific and engineering applications such as ink-jet printing, coating, electronics manufacturing, and many others. It is of great technological importance to understand the detailed dynamics of drop impact on various surfaces. The lattice Boltzmann method (LBM) emerges as an efficient method for modeling complex fluid systems involving rapidly evolving fluid-fluid and fluid-solid interfaces with complex geometries. In this work, we model droplet impact on flat solid substrates with well-defined wetting behavior using a two-phase axisymmetric LBM with high density and viscosity contrasts. We extend the two-dimensional Lee and Liu model to capture axisymmetric effect in the normal impact. First we compare the 2D axisymmetric results with the 2D and 3D results reported by Lee and Liu to probe the effect of axisymmetric terms. Then, we explore the effects of Weber number, Ohnesorge number, and droplet-surface equilibrium contact angle on the impact. The dynamic contact angle and spreading factor of the droplet during impact are investigated to qualitatively characterize the impact dynamics.
International Nuclear Information System (INIS)
Knight, C.E. Jr.
1975-01-01
Spherical pressure vessels may be produced by filament winding the composite material with a delta-axisymmetric pattern. This particular pattern yields a composite with high fiber density and efficient and reproducible structures. The pattern is readily defined mathematically and, thus, eases the analysis problem. (U.S.)
Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown
Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.
1991-01-01
The unsteady, compressible Navier-Stokes equations are used to compute and analyze compressible quasi-axisymmetric isolated vortices. The Navier-Stokes equations are solved using an implicit, upwind, flux-difference splitting finite-volume scheme. The developed three-dimensional solver has been verified by comparing its solution profiles with those of a slender, quasi-axisymmetric vortex solver for a subsonic, isolated quasi-axisymmetric vortex in an unbounded domain. The Navier-Stokes solver is then used to solve for a supersonic quasi-axisymmetric vortex flow in a configured circular duct. Steady and unsteady vortex-shock interactions and breakdown have been captured. The problem has also been calculated using the Euler solver of the same code and the results are compared with those of the Navier-Stokes solver. The effect of the initial swirl has been tentatively studied.
Lyapunov stability analysis of magnetohydrodynamic plasma equilibria with axisymmetric toroidal flow
International Nuclear Information System (INIS)
Almaguer, J.A.; Hameiri, E.; Herrera, J.; Holm, D.D.
1988-01-01
Lyapunov stability conditions for ideal magnetohydrodynamic (MHD) plasmas with mass flow in axisymmetric toroidal geometry are determined in the Eulerian representation. Axisymmetric equilibrium solutions of ideal MHD are associated to critical points of a nonlinearly conserved Lyapunov functional consisting of the sum of the total energy and the following flux-weighted quantities: the circulation along field lines, the angular momentum, the toroidal flux, and the mass content within each flux tube. Conditions sufficient for Lyapunov stability of these equilibria against axisymmetric perturbations are found by taking advantage of the Hamiltonian formalism for ideal MHD. In particular [see Eq. (60)], it is sufficient for Lyapunov stability under linearized dynamics that an axisymmetric equilibrium be subsonic in the appropriate rotating frame, lie in the first elliptic regime of the Bernoulli--Grad--Shafranov (BGS) system of equations, and satisfy one additional, more complicated, condition. Effects of boundary conditions, nonlinearity, and three-dimensionality on MHD stability are also discussed
Adaptative mixed methods to axisymmetric shells
International Nuclear Information System (INIS)
Malta, S.M.C.; Loula, A.F.D.; Garcia, E.L.M.
1989-09-01
The mixed Petrov-Galerkin method is applied to axisymmetric shells with uniform and non uniform meshes. Numerical experiments with a cylindrical shell showed a significant improvement in convergence and accuracy with adaptive meshes. (A.C.A.S.) [pt
Options for axisymmetric operation of MFTF-B
International Nuclear Information System (INIS)
Fenstermacher, M.E.; Devoto, R.S.; Thomassen, K.I.
1986-01-01
The flexibility of MFTF-B for axisymmetric experiments has been investigated. Interhcanging the axicell coils and increasing their separation results in an axisymmetric plug cell with 12:1 and 6:1 inner and outer mirror ratios, respectively. For axisymmetric operation, the sloshing-ion neutral beams, ECRH gyrotrons, and the pumping system would be moved to the axicell. Stabilization by E-rings could be explored in this configuration. With the addition of octopole magnets, off-axis multipole stabilization could also be tested. Operating points for octopole and E-ring-stabilized configurations with properties similar to those of the quadrupole MFTF-B, namely T/sub ic/ = 10 - 15 keV and n/sub c/ approx. = 3 x 10 13 cm -3 , have been obtained. Because of the negligible radial transport of central-cell ions, the required neutral-beam power in the central cell has been dramatically reduced. In addition, because MHD stabilization is achieved by off-axis hot electrons in both cases, much lower barrier beta is possible, which aids in reducing the barrier ECRH power. Total ECRH power in the end cell is projected to be approx. =1 MW. Possible operating points for both octopole and E-ring configurations are described along with the stability considerations involved
Numerical computation of gravitational field for general axisymmetric objects
Fukushima, Toshio
2016-10-01
We developed a numerical method to compute the gravitational field of a general axisymmetric object. The method (I) numerically evaluates a double integral of the ring potential by the split quadrature method using the double exponential rules, and (II) derives the acceleration vector by numerically differentiating the numerically integrated potential by Ridder's algorithm. Numerical comparison with the analytical solutions for a finite uniform spheroid and an infinitely extended object of the Miyamoto-Nagai density distribution confirmed the 13- and 11-digit accuracy of the potential and the acceleration vector computed by the method, respectively. By using the method, we present the gravitational potential contour map and/or the rotation curve of various axisymmetric objects: (I) finite uniform objects covering rhombic spindles and circular toroids, (II) infinitely extended spheroids including Sérsic and Navarro-Frenk-White spheroids, and (III) other axisymmetric objects such as an X/peanut-shaped object like NGC 128, a power-law disc with a central hole like the protoplanetary disc of TW Hya, and a tear-drop-shaped toroid like an axisymmetric equilibrium solution of plasma charge distribution in an International Thermonuclear Experimental Reactor-like tokamak. The method is directly applicable to the electrostatic field and will be easily extended for the magnetostatic field. The FORTRAN 90 programs of the new method and some test results are electronically available.
Edge Plasma Response to Non-Axisymmetric Fields in Tokamaks
Energy Technology Data Exchange (ETDEWEB)
Ferraro, N. M.; Lao, L. L.; Buttery, R. J.; Evans, T. E.; Snyder, P. B.; Wade, M.R., E-mail: ferraro@fusion.gat.com [General Atomics, San Diego (United States); Moyer, R. A.; Orlov, D. M. [University of California San Diego, La Jolla (United States); Lanctot, M. J. [Lawrence Livermore National Laboratory, Livermore (United States)
2012-09-15
Full text: The application of non-axisymmetric fields is found to have significant effects on the transport and stability of H-mode tokamak plasmas. These effects include dramatic changes in rotation and particle transport, and may lead to the partial or complete suppression of edge-localized modes (ELMs) under some circumstances. The physical mechanism underlying these effects is presently not well understood, in large part because the response of the plasma to non- axisymmetric fields is significant and complex. Here, recent advances in modeling the plasma response to non-axisymmetric fields are discussed. Calculations using a resistive two-fluid model in diverted toroidal geometry confirm the special role of the perpendicular electron velocity in suppressing the formation of islands in the plasma. The possibility that islands form near the top of the pedestal, where the zero-crossing of the perpendicular electron velocity may coincide with a mode-rational surface, is explored, and the implications for ELM suppression are discussed. Modeling results are compared with empirical data. It is shown that numerical modeling is successful in reproducing some experimentally observed effects of applied non-axisymmetric fields on the edge temperature and density profiles. The numerical model self-consistently includes the plasma, separatrix, and scrape-off layer. Rotation and diamagnetic effects are also included self-consistently. Solutions are calculated using the M3D-C1 extended-MHD code. (and others)
Global tree network for computing structures enabling global processing operations
Blumrich; Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.
2010-01-19
A system and method for enabling high-speed, low-latency global tree network communications among processing nodes interconnected according to a tree network structure. The global tree network enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations performed include one or more of: broadcast operations downstream from a root node to leaf nodes of a virtual tree, reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node. The global tree network is configurable to provide global barrier and interrupt functionality in asynchronous or synchronized manner, and, is physically and logically partitionable.
Modeling axisymmetric flows dynamics of films, jets, and drops
Middleman, Stanley
1995-01-01
This concise book is intended to fulfill two purposes: to provide an important supplement to classic texts by carrying fluid dynamics students on into the realm of free boundary flows; and to demonstrate the art of mathematical modeling based on knowledge, intuition, and observation. In the authors words, the overall goal is make the complex simple, without losing the essence--the virtue--of the complexity.Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops is the first book to cover the topics of axisymmetric laminar flows; free-boundary flows; and dynamics of drops, jets, and films. The text also features comparisons of models to experiments, and it includes a large selection of problems at the end of each chapter.Key Features* Contains problems at the end of each chapter* Compares real-world experimental data to theory* Provides one of the first comprehensive examinations of axisymmetric laminar flows, free-boundary flows, and dynamics of drops, jets, and films* Includes development of basic eq...
Topological Fluid Mechanics with Applications to Free Surfaces and Axisymmetric Flows
DEFF Research Database (Denmark)
Brøns, Morten
1996-01-01
Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow.......Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow....
Structural Health Monitoring Based on Combined Structural Global and Local Frequencies
Directory of Open Access Journals (Sweden)
Jilin Hou
2014-01-01
Full Text Available This paper presents a parameter estimation method for Structural Health Monitoring based on the combined measured structural global frequencies and structural local frequencies. First, the global test is experimented to obtain the low order modes which can reflect the global information of the structure. Secondly, the mass is added on the member of structure to increase the local dynamic characteristic and to make the member have local primary frequency, which belongs to structural local frequency and is sensitive to local parameters. Then the parameters of the structure can be optimized accurately using the combined structural global frequencies and structural local frequencies. The effectiveness and accuracy of the proposed method are verified by the experiment of a space truss.
Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt
2014-10-01
This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank
Computational study of axisymmetric modes in noncircular cross section tokamaks
International Nuclear Information System (INIS)
Johnson, J.L.; Chance, M.S.; Greene, J.M.; Grimm, R.C.; Jardin, S.C.; Kerner, W.; Manickam, J.; Weimer, K.E.
1976-09-01
A major computational program to investigate the MHD equilibrium, stability, and nonlinear evolution properties of realistic tokamak configurations is proceeding. Preliminary application is made to the Princeton PDX device. Both axisymmetric (n = 0) modes and kink (n = 1) modes are found; the growth rates depend sensitively on the configuration. A study of the nonlinear evolution of axisymmetric modes in such a device shows that flux conservation in the vacuum region can limit their growth
Axisymmetric Plasma Equilibria in General Relativity
Elsässer, Klaus
Axisymmetric plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species; they remain arbitrary if no gain and loss processes are considered, in close analogy to the free flux functions in ideal magnetohydrodynamics. Several simplifying assumptions allow the reduction of the basic equations to one single scalar equation for the stream function χ of positrons or ions, respectively, playing the rôle of the Grad/Shafranov equation in magnetohydrodynamics; in particular, Maxwell's equations can be solved analytically for a quasineutral plasma when both the charge density and the toroidal electric current density are negligible (in contrast to the Tokamak situation). The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio me/mi. The χ-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.
Axisymmetric control in tokamaks
International Nuclear Information System (INIS)
Humphreys, D.A.
1991-02-01
Vertically elongated tokamak plasmas are intrinsically susceptible to vertical axisymmetric instabilities as a result of the quadrupole field which must be applied to produce the elongation. The present work analyzes the axisymmetric control necessary to stabilize elongated equilibria, with special application to the Alcator C-MOD tokamak. A rigid current-conserving filamentary plasma model is applied to Alcator C-MOD stability analysis, and limitations of the model are addressed. A more physically accurate nonrigid plasma model is developed using a perturbed equilibrium approach to estimate linearized plasma response to conductor current variations. This model includes novel flux conservation and vacuum vessel stabilization effects. It is found that the nonrigid model predicts significantly higher growth rates than predicted by the rigid model applied to the same equilibria. The nonrigid model is then applied to active control system design. Multivariable pole placement techniques are used to determine performance optimized control laws. Formalisms are developed for implementing and improving nominal feedback laws using the C-MOD digital-analog hybrid control system architecture. A proportional-derivative output observer which does not require solution of the nonlinear Ricatti equation is developed to help accomplish this implementation. The nonrigid flux conserving perturbed equilibrium plasma model indicates that equilibria with separatrix elongation of at least κ sep = 1.85 can be stabilized robustly with the present control architecture and conductor/sensor configuration
Axisymmetric magnetohydrodynamic equilibria in local polar coordinates
International Nuclear Information System (INIS)
Clemente, R.A.
1982-01-01
The Grad--Shafranov equation for an ideal magnetohydrodynamic axisymmetric toroidal configuration is solved analytically in a local polar coordinate system using a novel method which produces solutions valid up to the second order in the inverse aspect ratio expansion
Engineering Design Study of Quasi-Axisymmetric Stellarator with Low Aspect Ratio
International Nuclear Information System (INIS)
Matsuoka, Keisuke; Okamura, Shoichi; Nishimura, Shin; Isobe, Mitsutaka; Suzuki, Chihiro; Shimizu, Akihiro; Tanaka, Nobuo; Hasegawa, Mitsuru; Naito, Hideji; Urata, Kazuhiro; Suzuki, Yutaka; Tsukamoto, Tadanori
2004-01-01
The engineering design of the quasi-axisymmetric stellarator CHS-qa is described, having a toroidal period number of 2, major radius of 1.5 m, and plasma aspect ratio of 3.2. Although the entire structure of the machine is highly nonaxisymmetric and deformative, the following major engineering concerns for the modular coils and the vacuum vessel have been resolved: (a) modular coil design (curvature and twist of conductors), (b) supporting structures for modular coils, (c) errors due to electromagnetic forces and misalignment in manufacturing processes (analysis shows that the magnetic surface is robust against such disturbances), (d) construction procedure for vacuum vessel and modular coils, and (e) ports for heating and diagnostics
International Nuclear Information System (INIS)
Choi, S. N.; Kim, H. N.; Jang, K. S.; Kim, H. J.
2000-01-01
The purpose of this paper is to determine a two dimensional axisymmetric model through a comparative study between a three dimensional and an axisymmetric finite element analysis of the reactor coolant piping nozzle subject to internal pressure. The finite element analysis results show that the stress adopting the axisymmetric model with the radius of equivalent spherical vessel are well agree with that adopting the three dimensional model. The radii of equivalent spherical vessel are 3.5 times and 7.3 times of the radius of the reactor coolant piping for the safety injection nozzle and for the residual heat removal nozzle, respectively
Surface pressure drag for hydrostatic two-layer flow over axisymmetric mountains
Energy Technology Data Exchange (ETDEWEB)
Leutbecher, M.
2000-07-01
The effect of partial reflections on surface pressure drag is investigated for hydrostatic gravity waves in two-layer flow with piecewise constant buoyancy frequency. The variation of normalized surface pressure drag with interface height is analyzed for axisymmetric mountains. The results are compared with the familiar solution for infinitely long ridges. The drag for the two-layer flow is normalized with the drag of one-layer flow, which has the buoyancy frequency of the lower layer. An analytical expression for the normalized drag of axisymmetric mountains is derived from linear theory of steady flow. Additionally, two-layer flow over finite-height axisymmetric mountains is simulated numerically for flow with higher stability in the upper layer. The temporal evolution of the surface pressure drag is examined in a series of experiments with different interface and mountain heights. The focus is on the linear regime and the nonlinear regime of nonbreaking gravity waves. The dispersion of gravity waves in flow over isolated mountains prevents that the entire wave spectrum is in resonance at the same interface height, which is the case in hydrostatic flow over infinitely long ridges. In consequence, the oscillation of the normalized drag with interface height is smaller for axisymmetric mountains than for infinitely long ridges. However, even for a reflection coefficient as low as 1/3 the drag of an axisymmetric mountain can be amplified by 50% and reduced by 40%. The nonlinear drag becomes steady in the numerical experiments in which no wave breaking occurs. The steady state nonlinear drag agrees quite well with the prediction of linear theory if the linear drag is computed for a slightly lowered interface. (orig.)
Frerichs, Heinke; Schmitz, Oliver; Covele, Brent; Guo, Houyang; Hill, David; Feng, Yuhe
2017-10-01
In the Small Angle Slot (SAS) divertor in DIII-D, the combination of misaligned slot structure and non-axisymmetric perturbations to the magnetic field causes the strike point to vary radially along the divertor slot and even leave it at some toroidal locations. This effect essentially introduces an opening in the divertor slot from where recycling neutrals can easily escape, and thereby degrade performance of the slot divertor. This effect has been approximated by a finite gap in the divertor baffle. Simulations with EMC3-EIRENE show that a toroidally localized loss of divertor closure can result in non-axisymmetric divertor densities and temperatures. This introduces a density window of 10-15% on top of the nominal threshold separatrix density during which a non-axisymmetric onset of local detachment occurs, initially leaving the gap and up to 60 deg beyond that still attached. Conversely, the impact of such toroidally localized divertor perturbations on the toroidal symmetry of midplane separatrix conditions is small. This work has been funded by the U.S. Department of Energy under Early Career Award Grant DE-SC0013911, and Grant DE-FC02-04ER54698.
Microfluidic step-emulsification in axisymmetric geometry.
Chakraborty, I; Ricouvier, J; Yazhgur, P; Tabeling, P; Leshansky, A M
2017-10-25
Biphasic step-emulsification (Z. Li et al., Lab Chip, 2015, 15, 1023) is a promising microfluidic technique for high-throughput production of μm and sub-μm highly monodisperse droplets. The step-emulsifier consists of a shallow (Hele-Shaw) microchannel operating with two co-flowing immiscible liquids and an abrupt expansion (i.e., step) to a deep and wide reservoir. Under certain conditions the confined stream of the disperse phase, engulfed by the co-flowing continuous phase, breaks into small highly monodisperse droplets at the step. Theoretical investigation of the corresponding hydrodynamics is complicated due to the complex geometry of the planar device, calling for numerical approaches. However, direct numerical simulations of the three dimensional surface-tension-dominated biphasic flows in confined geometries are computationally expensive. In the present paper we study a model problem of axisymmetric step-emulsification. This setup consists of a stable core-annular biphasic flow in a cylindrical capillary tube connected co-axially to a reservoir tube of a larger diameter through a sudden expansion mimicking the edge of the planar step-emulsifier. We demonstrate that the axisymmetric setup exhibits similar regimes of droplet generation to the planar device. A detailed parametric study of the underlying hydrodynamics is feasible via inexpensive (two dimensional) simulations owing to the axial symmetry. The phase diagram quantifying the different regimes of droplet generation in terms of governing dimensionless parameters is presented. We show that in qualitative agreement with experiments in planar devices, the size of the droplets generated in the step-emulsification regime is independent of the capillary number and almost insensitive to the viscosity ratio. These findings confirm that the step-emulsification regime is solely controlled by surface tension. The numerical predictions are in excellent agreement with in-house experiments with the axisymmetric
Axisymmetric solution with charge in general relativity
International Nuclear Information System (INIS)
Arutyunyan, G.G.; Papoyan, V.V.
1989-01-01
The possibility of generating solutions to the equations of general relativity from known solutions of the generalized theory of gravitation and vice versa is proved. An electrovac solution to Einstein's equations that describes a static axisymmetric gravitational field is found. 14 refs
Compact formulas for bounce/transit averaging in axisymmetric tokamak geometry
Energy Technology Data Exchange (ETDEWEB)
Duthoit, F.-X. [SNU Division of Graduate Education for Sustainabilization of Foundation Energy, Seoul National University, Seoul 151-742 (Korea, Republic of); Brizard, A. J. [Department of Physics, Saint Michael' s College, Colchester, Vermont 05439 (United States); Hahm, T. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)
2014-12-15
Compact formulas for bounce and transit orbit averaging of the fluctuation-amplitude eikonal factor in axisymmetric tokamak geometry, which is frequently encountered in bounce-gyrokinetic description of microturbulence, are given in terms of the Jacobi elliptic functions and elliptic integrals. These formulas are readily applicable to the calculation of the neoclassical susceptibility in the framework of modern bounce-gyrokinetic theory. In the long-wavelength limit for axisymmetric electrostatic perturbations, we recover the expression for the Rosenbluth-Hinton residual zonal flow [M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998)] accurately.
Seismic analysis of axisymmetric shells
International Nuclear Information System (INIS)
Jospin, R.J.; Toledo, E.M.; Feijoo, R.A.
1984-01-01
Axisymmetric shells subjected to multiple support excitation are studied. The shells are spatialy discretized by the finite element method and in order to obtain estimates for the maximum values of displacements and stresses the response spectrum tecnique is used. Finally, some numerical results are presented and discussed in the case of a shell of revolution with vertical symmetry axis, subjected to seismic ground motions in the horizontal, vertical and rocking directions. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Balakrishna, C; Sarma, B S [Defence Research and Development Laboratory, Hyderabad (India)
1989-02-01
A formulation for axisymmetric shell analysis under asymmetric load based on Fourier series representation and using field consistent 3 noded curved axisymmetric shell element is presented. Different field inconsistent/consistent interpolations for an element based on shear flexible theory have been studied for thick and thin shells under asymmetric loads. Various examples covering axisymmetric as well as asymmetric loading cases have been analyzed and numerical results show a good agreement with the available results in the case of thin shells. 12 refs.
RESONANT ABSORPTION OF AXISYMMETRIC MODES IN TWISTED MAGNETIC FLUX TUBES
Energy Technology Data Exchange (ETDEWEB)
Giagkiozis, I.; Verth, G. [Solar Plasma Physics Research Centre, School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield, S3 7RH (United Kingdom); Goossens, M.; Doorsselaere, T. Van [Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Fedun, V. [Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, Amy Johnson Building, Sheffield, S1 3JD (United Kingdom)
2016-06-01
It has been shown recently that magnetic twist and axisymmetric MHD modes are ubiquitous in the solar atmosphere, and therefore the study of resonant absorption for these modes has become a pressing issue because it can have important consequences for heating magnetic flux tubes in the solar atmosphere and the observed damping. In this investigation, for the first time, we calculate the damping rate for axisymmetric MHD waves in weakly twisted magnetic flux tubes. Our aim is to investigate the impact of resonant damping of these modes for solar atmospheric conditions. This analytical study is based on an idealized configuration of a straight magnetic flux tube with a weak magnetic twist inside as well as outside the tube. By implementing the conservation laws derived by Sakurai et al. and the analytic solutions for weakly twisted flux tubes obtained recently by Giagkiozis et al. we derive a dispersion relation for resonantly damped axisymmetric modes in the spectrum of the Alfvén continuum. We also obtain an insightful analytical expression for the damping rate in the long wavelength limit. Furthermore, it is shown that both the longitudinal magnetic field and the density, which are allowed to vary continuously in the inhomogeneous layer, have a significant impact on the damping time. Given the conditions in the solar atmosphere, resonantly damped axisymmetric modes are highly likely to be ubiquitous and play an important role in energy dissipation. We also suggest that, given the character of these waves, it is likely that they have already been observed in the guise of Alfvén waves.
Shear flow over a plane wall with an axisymmetric cavity or a circular orifice of finite thickness
International Nuclear Information System (INIS)
Pozrikidis, C.
1994-01-01
Shear flow over a plane wall that contains an axisymmetric depression or pore is studied using a new boundary integral method which is suitable for computing three-dimensional Stokes flow within axisymmetric domains. Numerical results are presented for cavities in the shape of a section of a sphere or a circular cylinder of finite length, and for a family of pores or orifices with finite thickness. The results illustrate the distribution of shear stresses over the plane wall and inside the cavities or pores. It is found that in most cases, the distribution of shear stresses over the plane wall, around the depressions, is well approximated with that for flow over an orifice of infinitesimal thickness for which an exact solution is available. The kinematic structure of the flow is discussed with reference to eddy formation and three-dimensional flow reversal. It is shown that the thickness of a circular orifice or depth of a pore play an important role in determining the kinematical structure of the flow underneath the orifice in the lower half-space
Meyer, V.; Maxit, L.; Guyader, J.-L.; Leissing, T.
2016-01-01
The vibroacoustic behavior of axisymmetric stiffened shells immersed in water has been intensively studied in the past. On the contrary, little attention has been paid to the modeling of these shells coupled to non-axisymmetric internal frames. Indeed, breaking the axisymmetry couples the circumferential orders of the Fourier series and considerably increases the computational costs. In order to tackle this issue, we propose a sub-structuring approach called the Condensed Transfer Function (CTF) method that will allow assembling a model of axisymmetric stiffened shell with models of non-axisymmetric internal frames. The CTF method is developed in the general case of mechanical subsystems coupled along curves. A set of orthonormal functions called condensation functions, which depend on the curvilinear abscissa along the coupling line, is considered. This set is then used as a basis for approximating and decomposing the displacements and the applied forces at the line junctions. Thanks to the definition and calculation of condensed transfer functions for each uncoupled subsystem and by using the superposition principle for passive linear systems, the behavior of the coupled subsystems can be deduced. A plane plate is considered as a test case to study the convergence of the method with respect to the type and the number of condensation functions taken into account. The CTF method is then applied to couple a submerged non-periodically stiffened shell described using the Circumferential Admittance Approach (CAA) with internal substructures described by Finite Element Method (FEM). The influence of non-axisymmetric internal substructures can finally be studied and it is shown that it tends to increase the radiation efficiency of the shell and can modify the vibrational and acoustic energy distribution.
Global model structures for ∗-modules
DEFF Research Database (Denmark)
Böhme, Benjamin
2018-01-01
We extend Schwede's work on the unstable global homotopy theory of orthogonal spaces and L-spaces to the category of ∗-modules (i.e., unstable S-modules). We prove a theorem which transports model structures and their properties from L-spaces to ∗-modules and show that the resulting global model...... structure for ∗-modules is monoidally Quillen equivalent to that of orthogonal spaces. As a consequence, there are induced Quillen equivalences between the associated model categories of monoids, which identify equivalent models for the global homotopy theory of A∞-spaces....
International Nuclear Information System (INIS)
Galishin, A.Z.
1995-01-01
The nonaxisymmetric thermoelastic stress-strain state (SSS) of branched laminar orthotropic shells was considered; the axisymmetric thermoviscoelastic SSS of branched laminar orthotropic shells was considered; and the axisymmetric thermoviscoelastoplastic SSS of branched laminar isotropic shells was considered, taking into account of the transverse-shear deformation. In the present work, in contrast, the axisymmetric thermoviscoelastoplastic SSS of branched laminar isotropic shells is considered, taking account of transverse-shear and torsional deformation. Layers that are made from orthotropic materials and deform in the elastic region may be present
The numerical solution of ICRF fields in axisymmetric mirrors
International Nuclear Information System (INIS)
Phillips, M.W.; Todd, A.M.M.
1986-01-01
The numerics of a numerical code called GARFIELD (Grumman Aerospace RF fIELD code) designed to calculate the three-dimensional structure of ICRF fields in axisymmetric mirrors is presented. The code solves the electromagnetic wave equation for the electric field using a cold plasma dispersion relation with a small collision term to simulate absorption. The full wave solution including E.B is computed. The fields are Fourier analyzed in the poloidal direction and solved on a grid in the axial and radial directions. A two-dimensional equilibrium can be used as the source of equilibrium data. This allows us to extend previous studies of ICRF wave propagation and absorption in mirrors to include the effect of axial variation of the magnetic field and density. (orig.)
Axisymmetric instability in a noncircular tokamak
International Nuclear Information System (INIS)
Lipschultz, B.
1979-10-01
The stability of dee, inverse-dee and square cross section plasmas to axisymmetric modes has been investigated experimentally in Tokapole II, a tokamak with a four-null poloidal divertor. Experimental results are closely compared with predictions of two numerical stability codes - the PEST code (ideal MHD, linear stability) adapted to tokapole geometry and a code which follows the nonlinear evolution of shapes similar to tokapole equilibria
On the axisymmetric Lewis metric
International Nuclear Information System (INIS)
Gariel, J.; Marcilhacy, G.
2001-03-01
We obtain the general solution of the axisymmetric stationary vacuum spacetime of Lewis. After precising the fundamental hypothesis of Lewis, we demonstrate that the solution is related to an arbitrary harmonic function. Formally, these solutions are the same as for the corresponding cylindrically symmetric case, and can be classified in a similar way. Furthermore, the interpretation, in the cylindrically symmetric system, of the field equations as decribing the motion of a classical particle in a central force field is still valid. (author)
International Nuclear Information System (INIS)
Kondo, Shuji; Nanbu, Kenichi
2001-01-01
An axisymmetrical particle-in-cell/Monte Carlo simulation is performed for modeling direct current-driven planar magnetron discharge. The axisymmetrical structure of plasma parameters such as plasma density, electric field, and electron and ion energy is examined in detail. The effects of applied voltage and magnetic field strength on the discharge are also clarified. The model apparatus has a narrow target-anode gap of 20 mm to make the computational time manageable. This resulted in the current densities which are very low compared to actual experimental results for a wider target-anode gap. The current-voltage characteristics show a negative slope in contrast with many experimental results. However, this is understandable from Gu and Lieberman's similarity equation. The negative slope appears to be due to the narrow gap
Integrable motion of a vortex dipole in an axisymmetric flow
International Nuclear Information System (INIS)
Sutyrin, G.G.; Perrot, X.; Carton, X.
2008-01-01
The evolution of a self-propelling vortex dipole, embedded in an external nondivergent flow with constant potential vorticity, is studied in an equivalent-barotropic model commonly used in geophysical, astrophysical and plasma studies. In addition to the conservation of the Hamiltonian for an arbitrary point vortex dipole, it is found that the angular momentum is also conserved when the external flow is axisymmetric. This reduces the original four degrees of freedom to only two, so that the solution is expressed in quadratures. In particular, the scattering of antisymmetric dipoles approaching from the infinity is analyzed in the presence of an axisymmetric oceanic flow typical for the vicinity of isolated seamounts
Controlled Wake of a Moving Axisymmetric Bluff Body
Lee, E.; Vukasinovic, B.; Glezer, A.
2017-11-01
The aerodynamic loads exerted on a wire-mounted axisymmetric bluff body in prescribed rigid motion are controlled by fluidic manipulation of its near wake. The body is supported by a six-degree of freedom eight-wire traverse and its motion is controlled using a dedicated servo actuator and inline load cell for each wire. The instantaneous aerodynamic forces and moments on the moving body are manipulated by controlled interactions of an azimuthal array of integrated synthetic jet actuators with the cross flow to induce localized flow attachment over the body's aft end and thereby alter the symmetry of the wake. The coupled interactions between the wake structure and the effected aerodynamic loads during prescribed time-periodic and transitory (gust like) motions are investigated with emphasis on enhancing or diminishing the loads for maneuver control, and decoupling the body's motion from its far wake.
Global/local methods for probabilistic structural analysis
Millwater, H. R.; Wu, Y.-T.
1993-04-01
A probabilistic global/local method is proposed to reduce the computational requirements of probabilistic structural analysis. A coarser global model is used for most of the computations with a local more refined model used only at key probabilistic conditions. The global model is used to establish the cumulative distribution function (cdf) and the Most Probable Point (MPP). The local model then uses the predicted MPP to adjust the cdf value. The global/local method is used within the advanced mean value probabilistic algorithm. The local model can be more refined with respect to the g1obal model in terms of finer mesh, smaller time step, tighter tolerances, etc. and can be used with linear or nonlinear models. The basis for this approach is described in terms of the correlation between the global and local models which can be estimated from the global and local MPPs. A numerical example is presented using the NESSUS probabilistic structural analysis program with the finite element method used for the structural modeling. The results clearly indicate a significant computer savings with minimal loss in accuracy.
Numerical simulation of the generation mechanism of axisymmetric supersonic jet screech tones
Li, X. D.; Gao, J. H.
2005-08-01
In this paper an axisymmetric computational aeroacoustic procedure is developed to investigate the generation mechanism of axisymmetric supersonic jet screech tones. The axisymmetric Navier-Stokes equations and the two equations standard k-ɛ turbulence model modified by Turpin and Troyes ["Validation of a two-equation turbulence model for axisymmetric reacting and non-reaction flows," AIAA Paper No. 2000-3463 (2000)] are solved in the generalized curvilinear coordinate system. A generalized wall function is applied in the nozzle exit wall region. The dispersion-relation-preserving scheme is applied for space discretization. The 2N storage low-dissipation and low-dispersion Runge-Kutta scheme is employed for time integration. Much attention is paid to far-field boundary conditions and turbulence model. The underexpanded axisymmetric supersonic jet screech tones are simulated over the Mach number from 1.05 to 1.2. Numerical results are presented and compared with the experimental data by other researchers. The simulated wavelengths of A0, A1, A2, and B modes and part of simulated amplitudes agree very well with the measurement data by Ponton and Seiner ["The effects of nozzle exit lip thickness on plume resonance," J. Sound Vib. 154, 531 (1992)]. In particular, the phenomena of modes jumping have been captured correctly although the numerical procedure has to be improved to predict the amplitudes of supersonic jet screech tones more accurately. Furthermore, the phenomena of shock motions are analyzed. The predicted splitting and combination of shock cells are similar with the experimental observations of Panda ["Shock oscillation in underexpanded screeching jets," J. Fluid. Mech. 363, 173 (1998)]. Finally, the receptivity process is numerically studied and analyzed. It is shown that the receptivity zone is associated with the initial thin shear layer, and the incoming and reflected sound waves.
Direct numerical simulation of axisymmetric laminar low-density jets
Gomez Lendinez, Daniel; Coenen, Wilfried; Sevilla, Alejandro
2017-11-01
The stability of submerged laminar axisymmetric low-density jets has been investigated experimentally (Kyle & Sreenivasan 1993, Hallberg & Strykowski 2006) and with linear analysis (Jendoubi & Strykowski 1994, Coenen & Sevilla 2012, Coenen et al. 2017). These jets become globally unstable when the Reynolds number is larger than a certain critical value which depends on the density ratio and on the velocity profile at the injector outlet. In this work, Direct Numerical Simulations using FreeFEM + + (Hecht 2012) with P1 elements for pressure and P2 for velocity and density are performed to complement the above mentioned studies. Density and velocity fields are analyzed at long time showing the unforced space-time evolution of nonlinear disturbances propagating along the jet. Using the Stuart-Landau model to fit the numerical results for the self-excited oscillations we have computed a neutral stability curve that shows good agreement with experiments and stability theory. Thanks to Spanish MINECO under projects DPI2014-59292-C3-1-P and DPI2015-71901-REDT for financial support.
Axisymmetric instability in a noncircular tokamak: experiment and theory
International Nuclear Information System (INIS)
Lipschultz, B.; Prager, S.C.; Todd, A.M.M.; Delucia, J.
1979-09-01
The stability of dee, inverse-dee and square cross section plasmas to axisymmetric modes has been investigated experimentally in Tokapole II, a tokamak with a four-null poloidal divertor. Experimental results are closely compared with predictions of two numerical stability codes -- the PEST code (ideal MHD, linear stability) adapted to tokapole geometry and a code which follows the nonlinear evolution of shapes similar to tokapole equilibria. Experimentally, the square is vertically stable and both dee's unstable to a vertical nonrigid axisymmetric shift. The central magnetic axis displacement grows exponentially with a growth time approximately 10 3 poloidal Alfven times plasma time. Proper initial positioning of the plasma on the midplane allows passive feedback to nonlinearly restore vertical motion to a small stable oscillation. Experimental poloidal flux plots are produced directly from internal magnetic probe measurements
International Nuclear Information System (INIS)
Katanuma, I.; Kiwamoto, Y.; Adachi, S.; Inutake, M.; Ishii, K.; Yatsu, K.; Sawada, K.; Miyoshi, S.
1987-05-01
Calculations are made for neoclassical resonant-plateau transports in the geometry of the effectively axisymmetrized tandem mirror GAMMA 10 magnetic field, which has minimum B inbord anchors inside the axisymmetric plug/barrier mirror cells. Azimuthal drifts at the local non-axisymmetric regions are included. The radial potential profile is determined by solving selfconsistently the charge neutrality equation. A finite resistance connecting end plate to machine ground provides appropriate boundary conditions on the radial electrostatic potential distribution so that it can be determined uniquely. The calculation is consistent with experimental results of GAMMA 10. (author)
Low Cost Method of Manufacturing Cooled Axisymmetric Scramjets, Phase I
National Aeronautics and Space Administration — Scramjet engine developers are working on advanced axisymmetric engine concepts that may not be feasible due to limitations of currently available manufacturing...
Numerical solutions of ICRF fields in axisymmetric mirrors
International Nuclear Information System (INIS)
Phillips, M.W.
1985-01-01
The results of a new numerical code called GARFIELD (Grumman Aerospace Rf Field code) that calculates ICRF Fields in axisymmetric mirror geometry (such as the central cell of a tandem mirror or an RF test stand) are presented. The code solves the electromagnetic wave equation using a cold plasma dispersion relation with a small collision frequency to simulate absorption. The purpose of the calculation is to examine how ICRF wave structure and propagation is effected by the axial variation of the magnetic field in a mirror for various antenna designs. In the code the wave equation is solved in flux coordinates using a finite element method. This should allow more complex dielectric tensors to be modeled in the future. The resulting matrix is solved iteratively, to maximize the allowable size of the spatial grid. Results for a typical antenna array in a simple mirror will be shown
Feedback stabilization of axisymmetric modes in tokamaks
International Nuclear Information System (INIS)
Jardin, S.C.; Larrabee, D.A.
1982-01-01
Noncircular tokamak plasmas can be unstable to ideal MHD axisymmetric instabilities. Passive conductors with finite resistivity will at best slow down these instabilities to the resistive (L/R) time of the conductors. An active feedback system far from the plasma which responds on this resistive time can stabilize the system provided its mutual inductance with the passive coils is small enough
The spectrum of axisymmetric torsional Alfven waves
International Nuclear Information System (INIS)
Sy, W.N.
1977-03-01
The spectrum of axisymmetric torsional Alfven waves propagating in a cylindrical, non-uniform, resistive plasma waveguide has been analysed by a method of singular perturbations. A simple condition has been derived which predicts whether the spectrum is continuous or discrete under given physical conditions. Application of this result to resolve an apparent discrepancy in experimental observations is briefly discussed. (Author)
Thin circular cylinder under axisymmetrical thermal and mechanical loading
International Nuclear Information System (INIS)
Arnaudeau, F.; Zarka, J.; Gerij, J.
1977-01-01
To assess structural integrity of components subjected to cyclic thermal loadings one must look at thermal ratchetting as a possible failure mode. Considering a thin circular cylinder subjected to constant internal pressure and cyclically varying thermal gradient through the thickness Bree, J. Strain Analysis 2 (1967) No.3, obtained a diagram that serves as a foundation for many design rules (e.g.: ASME code). The upper part of the french LMFBR main vessel is subjected to an axisymmetrical axial thermal loading and an axial load (own weight). Operation of the reactor leads to cyclic variations of the axial thermal loading. The question that arises is whether or not the Bree diagram is realistic for such loading conditions. A special purpose computer code (Ratch) was developed to analyse a thin circular cylinder subjected to axisymmetrical mechanical and thermal loadings. The Mendelson's approach of this problem is followed. Classical Kirchoff-Love hypothesis of thin shells is used and a state of plane stress is assumed. Space integrations are performed by Gaussian quadrature in the axial direction and by Simpson's one third rule throughout the thickness. Thermoelastic-plastic constitutive equations are solved with an implicit scheme (Nguyen). Thermovisco-plastic constitutive equations are solved with an explicit time integration scheme (Treanor's algorithm especially fitted). A Bree type diagram is obtained for an axial step of temperature which varies cyclically and a sustained constant axial load. The material behavior is assumed perfectly plastic and creep effect is not considered. Results show that the domain where no ratchetting occurs is reduced when compared with the domain predicted by the Bree diagram
ASCOT-1, Thermohydraulics of Axisymmetric PWR Core with Homogeneous Flow During LOCA
International Nuclear Information System (INIS)
1978-01-01
1 - Nature of the physical problem solved: ASCOT-1 is used to analyze the thermo-hydraulic behaviour in a PWR core during a loss-of-coolant accident. 2 - Method of solution: The core is assumed to be axisymmetric two-dimensional and the conservation laws are solved by the method of characteristics. For the temperature response of fuel in the annular regions into which the core is divided, the heat conduction equations are solved by an explicit method with averaged flow conditions. 3 - Restrictions on the complexity of the problem: Axisymmetric two-dimensional homogeneous flows
Axisymmetrical separator for separating particulate matter from a fluid carrying medium
Linhardt, Hans D.
1984-09-04
A separator for separating particles carried in a fluid carrying medium is disclosed. The separator includes an elongated duct and associated openings incorporated in a solid body. The duct is axisymmetrical relative to its longitudinal axis, and includes a curved wall portion having a curved cross-section taken along the longitudinal axis. An axisymmetrical opening located downstream of the curved wall portion leads from the duct into an axisymmetrical channel which is substantially radially disposed relative to the longitudinal axis. Continuation of the duct downstream of the opening is a discharge portion which is substantially colinear with the longitudinal axis. In operation, a substantial majority of the fluid carrying medium leaves the duct radially through the opening and channel in a state substantially free of particles. A remaining small portion of the fluid carrying medium and a substantial majority of the particles are channelled into the discharge portion by centrifugal forces arising due to travel of the particles along the curved walls. For industrial scale separation of particles from a fluid carrying medium, such as for the clean-up of stack gases, an array of several hundred to several thousand of the separators is provided.
Energy Technology Data Exchange (ETDEWEB)
Iga, Keita, E-mail: iga@aori.u-tokyo.ac.jp [Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564 (Japan)
2017-12-15
Axisymmetric flow in a cylindrical tank over a rotating bottom is investigated and its approximate solution with an analytic expression is obtained. The interior region, comprising the majority of the fluid, consists of two sub-regions. It is easily shown that a rigid-body rotational flow with the same rotation rate as that of the bottom is formed in the inner interior and that a potential flow with constant angular momentum occurs in the outer interior sub-region. However, the radius that divides these two sub-regions has not been determined. To determine this radius, the structures of the boundary layers are investigated in detail. These boundary layers surround the interior regions, and include the boundaries between the interior region and the side wall of the tank, between the interior and the bottom, and between the inner and outer interior sub-regions. By connecting the flows in the boundary layers, the vertical circulation as a whole is established, and consequently the radius dividing the two interior sub-regions is successfully determined as a function of the aspect ratio of the water layer region. This axisymmetric flow will be utilized as the basic state for investigating theoretically various non-axisymmetric phenomena observed in laboratory experiments. (paper)
Experimental studies on an axisymmetric divertor in DIVA(JFT-2a)
International Nuclear Information System (INIS)
Yamamoto, Shin
1979-03-01
DIVA(JFT-2a) is the first tokamak with an axisymmetric divertor in the world. Objectives of the experiments were i) Plasma production and confinement in a tokamak with a separatrix magnetic surface, and ii) divertor effects on radiation loss and plasma confinement. The results so far are as follows: i) The equilibrium with a separatrix magnetic surface is stable during the discharge. ii) There is an ergodic region near the separatrix magnetic surface due to non-axisymmetric magnetic perturbations. iii) The divertor reduces radiation loss and increases energy confinement time. iv) The divertor does not affect the transport process in the main plasma. (author)
Stable operation of an effectively axisymmetric neutral beam driven tandem mirror
International Nuclear Information System (INIS)
Molvik, A.W.; Barter, J.D.; Buchenauer, D.A.; Casper, T.A.; Correll, D.L.; Dimonte, G.; Falabella, S.; Foote, J.H.; Pincosy, P.A.
1990-01-01
A quiescent plasma is sustained for 80 energy confinement times by only gas fuelling and neutral beam heating in an axisymmetric region of the Tandem Mirror Experiment Upgrade (TMX-U). This plasma should be unstable because of the bad magnetic curvature and the absence of ion cyclotron heating which previously provided ponderomotive stabilization to sustain plasmas in bad-curvature regions of other axisymmetric mirror experiments. The TMX-U data are consistent with stabilization by a symbiosis between two mechanisms - line tying, which reduces the growth rate, and finite Larmor radius edge stabilization, which can result in quiescent operation. (author). 42 refs, 8 figs, 1 tab
Nemeth, Michael P.; Schultz, Marc R.
2012-01-01
A detailed exact solution is presented for laminated-composite circular cylinders with general wall construction and that undergo axisymmetric deformations. The overall solution is formulated in a general, systematic way and is based on the solution of a single fourth-order, nonhomogeneous ordinary differential equation with constant coefficients in which the radial displacement is the dependent variable. Moreover, the effects of general anisotropy are included and positive-definiteness of the strain energy is used to define uniquely the form of the basis functions spanning the solution space of the ordinary differential equation. Loading conditions are considered that include axisymmetric edge loads, surface tractions, and temperature fields. Likewise, all possible axisymmetric boundary conditions are considered. Results are presented for five examples that demonstrate a wide range of behavior for specially orthotropic and fully anisotropic cylinders.
Nagataki, Shigehiro
1999-01-01
We have tried to reproduce the solar system abundances using the nucleosynthesis products of Type Ia and Type II supernovae. In particular, we examined the effects of axisymmetrically deformed explosions in Type II supernovae. 44Ca and 47,48Ti are enhanced considerably in axisymmetrically deformed explosion models because of the active alpha-rich freezeout. The enhancement of nuclei around A=45 is a welcome result since it solves the problem of the nuclei shortage. Moreover, 59Co, 63,65Cu, and 66Zn are enhanced enough to reproduce the solar system abundances. The enhancement of Cu and Zn means the possibility that these nuclei, which have been said to be produced by the slow process, can be synthesized fairly well during the explosive nucleosynthesis. To discuss their origin quantitatively, the position of the mass cut is a very important parameter that is very difficult to determine numerically at present. We also stress that an axisymmetrically deformed explosion of Type II supernovae of the degree that is considered in this analysis is not excluded by the results of calculations of explosive nucleosynthesis, that is, the nucleosynthesis products are not extremely disturbed and the solar system abundances can be reproduced fairly well by the axisymmetrically deformed explosion models. This conclusion will be good for the theory of core collapse including the rotation of an iron core, magnetic field, and axisymmetrically modified neutrino radiation from a rotating protoneutron star, which possibly can cause an axisymmetrically deformed explosion.
Experimental and numerical research on cavitating flows around axisymmetric bodies
International Nuclear Information System (INIS)
Haipeng, Wei; Song, Fu; Qin, Wu; Biao, Huang; Guoyu, Wang
2014-01-01
We investigated the cavitating flows around different axisymmetric bodies based on experiments and numerical simulation. In the numerical simulation, the multiphase Reynolds averaged Navier Stokes equations (RANS) were solved via the commercial computational fluid dynamics code CFX. The modified k-wSST turbulence model was used along with the transport equation-based cavitation model. In the experiments, a high-speed video technique was used to observe the unsteady cavitating flow patterns, and the dynamic force measurement system was used to measure the hydrodynamics of the axisymmetric bodies under different cavitation conditions. Results are shown for the hemisphere bodies, conical bodies and blunt bodies. Reasonable agreements were obtained between the computational and experimental results. The results show that for the hemispherical body, the cavity consists of quasi-steady transparent region and unsteady foggy water-vapor mixture region, which contains small-scale vortices and is dominated by bubble clusters, causing irregular disturbances at the cavity interfaces. The curvature at the front of the conical body is larger, resulting in that the flow separates at the shoulder of the axisymmetric body. The cavity stretches downstream and reaches to a fixed cavity length and shape. For blunt bodies, the incipient cavitation number is larger than that for the hemispherical body. A large cloud cavity is formed at the shoulder of the blunt body in the cores of vortices in high shear separation regions and the re-entrant jet does not significantly interact with the cavity interface when it moves upstream. As to the dynamic characteristics of unsteady cavitating flows around the axisymmetric bodies, the pulsation frequency for the hemispherical body is larger than that for the blunt body. For the hemispherical body, the pulsation is mainly caused by the high-frequency, small-scale shedding at the rear end of the cavity, while for the blunt body, the main factor for
Axisymmetric tokamak scapeoff transport
International Nuclear Information System (INIS)
Singer, C.E.; Langer, W.D.
1982-08-01
We present the first self-consistent estimate of the magnitude of each term in a fluid treatment of plasma transport for a plasma lying in regions of open field lines in an axisymmetric tokamak. The fluid consists of a pure hydrogen plasma with sources which arise from its interaction with neutral hydrogen atoms. The analysis and results are limited to the high collisionality regime, which is optimal for a gaseous neutralizer divertor, or to a cold plasma mantle in a tokamak reactor. In this regime, both classical and neoclassical transport processes are important, and loss of particles and energy by diamagnetic flow are also significant. The prospect of extending the analysis to the lower collisionality regimes encountered in many existing experiments is discussed
Numerical Investigation of Pressure Losses in Axisymmetric Sudden Expansion with a Chamfer
Energy Technology Data Exchange (ETDEWEB)
Bae, Youngmin; Kim, Youngin; Kim, Keung Koo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
In this paper, the pressure losses through axisymmetric sudden expansions with a chamfer are analyzed by means of numerical simulation, with an emphasis on the effect of the Reynolds number. In this study, we investigate numerically the turbulent flow in axisymmetric sudden expansions having a slight chamfer on the edge. With the aim of investigating the impact of Reynolds number on the expansion losses in a time-averaged sense, an extensive set of simulations is carried out. On the basis of numerical results, we also propose a general correlation to estimate the local loss coefficient in sudden expansions with a chamfer.
Numerical Investigation of Pressure Losses in Axisymmetric Sudden Expansion with a Chamfer
International Nuclear Information System (INIS)
Bae, Youngmin; Kim, Youngin; Kim, Keung Koo
2014-01-01
In this paper, the pressure losses through axisymmetric sudden expansions with a chamfer are analyzed by means of numerical simulation, with an emphasis on the effect of the Reynolds number. In this study, we investigate numerically the turbulent flow in axisymmetric sudden expansions having a slight chamfer on the edge. With the aim of investigating the impact of Reynolds number on the expansion losses in a time-averaged sense, an extensive set of simulations is carried out. On the basis of numerical results, we also propose a general correlation to estimate the local loss coefficient in sudden expansions with a chamfer
International Nuclear Information System (INIS)
Mei Jianwei
2012-01-01
We suggest a way to study possible conformal symmetries on black hole horizons. We do this by carrying out a Kaluza-Klein-like reduction of the Einstein-Hilbert action along the ignorable coordinates of stationary and axisymmetric black holes. Rigid diffeomorphism invariance of the m-ignorable coordinates then becomes a global SL(m, R) gauge symmetry of the reduced action. Related to each non-vanishing angular velocity, there is a particular SL(2, R) subgroup, which can be extended to the Witt algebra on the black hole horizons. The classical Einstein-Hilbert action thus has k-copies of infinite-dimensional conformal symmetries on a given black hole horizon, with k being the number of non-vanishing angular velocities of the black hole. (paper)
Axisymmetric free convection boundary-layer flow past slender bodies
Kuiken, H.K.
1968-01-01
Radial curvature effects on axisymmetric free convection boundary-layer flow are investigated for vertical cylinders and cones for some special non-uniform temperature differences between the surface and the ambient fluid. The solution is given as a power series expansion, the first term being equal
Axisymmetric core collapse simulations using characteristic numerical relativity
International Nuclear Information System (INIS)
Siebel, Florian; Mueller, Ewald; Font, Jose A.; Papadopoulos, Philippos
2003-01-01
We present results from nonrotating axisymmetric stellar core collapse simulations in general relativity. Our hydrodynamics code has proved robust and accurate enough to allow for a detailed analysis of the global dynamics of the collapse. Contrary to traditional approaches based on the 3+1 formulation of the gravitational field equations, our framework uses a foliation based on a family of outgoing light cones, emanating from a regular center, and terminating at future null infinity. Such a coordinate system is well adapted to the study of interesting dynamical spacetimes in relativistic astrophysics such as stellar core collapse and neutron star formation. Perhaps most importantly this procedure allows for the extraction of gravitational waves at future null infinity, along with the commonly used quadrupole formalism for the gravitational wave extraction. Our results concerning the gravitational wave signals show noticeable disagreement when those are extracted by computing the Bondi news at future null infinity on the one hand and by using the quadrupole formula on the other hand. We have a strong indication that for our setup the quadrupole formula on the null cone does not lead to physical gravitational wave signals. The Bondi gravitational wave signals extracted at infinity show typical oscillation frequencies of about 0.5 kHz
Asymptotic properties of axisymmetric Stokes flow of a viscous liquid with intersecting boundaries
International Nuclear Information System (INIS)
Voinov, O.V.
2004-01-01
The general axisymmetric problem on the liquid flow by the low Reynolds number when the boundary surfaces (both of the solid body and free one) are intersecting at the certain angle on the moving line, is considered. The work is aimed at establishing the asymptotic regularities of the behavior of the current function and voltages in the small vicinity of the intersection (contact) line of the boundary surfaces. The asymptotic analysis makes it possible to consider the arbitrary axisymmetric Stokes flow with the intersecting boundaries [ru
Directory of Open Access Journals (Sweden)
Jie Fu
2017-02-01
Full Text Available Vertical wire feeding with an axisymmetric multi-laser source (feeding the wire vertically into the molten pool has exhibited great advantages over LAM (laser additive manufacturing with paraxial wire feeding, which has an anisotropic forming problem in different scanning directions. This paper investigates the forming ability of vertical wire feeding with an axisymmetric multi-laser source, and the microstructure and mechanical properties of the fabricated components. It has been found that vertical wire feeding with an axisymmetric multi-laser source has a strong forming ability with no anisotropic forming problem when fabricating the complex parts in a three-axis machine tool. Most of the grains in the samples are equiaxed grains, and a small amount of short columnar grains exist which are parallel to each other. The microstructure of the fabricated samples exhibits a fine basket-weave structure and martensite due to the fast cooling rate which was caused by the small size of the molten pool and the additional heat dissipation from the feeding wire. The static tensile test shows that the average ultimate tensile strength is 1140 MPa in the scanning direction and 1115 MPa in the building direction, and the average elongation is about 6% in both directions.
Decay of passive scalar fluctuations in axisymmetric turbulence
Yoshimatsu, Katsunori; Davidson, Peter A.; Kaneda, Yukio
2016-11-01
Passive scalar fluctuations in axisymmetric Saffman turbulence are examined theoretically and numerically. Theoretical predictions are verified by direct numerical simulation (DNS). According to the DNS, self-similar decay of the turbulence and the persistency of the large-scale anisotropy are found for its fully developed turbulence. The DNS confirms the time-independence of the Corrsin integral.
Static axisymmetric discs and gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Chamorro, A.; Gregory, R.; Stewart, J.M.
1987-09-08
Regular static axisymmetric vacuum solutions of Einstein's field equations representing the exterior field of a finite thin disc are found. These are used to describe the slow collapse of a disc-like object. If no conditions are placed on the matter, a naked singularity is formed and the cosmic censorship hypothesis would be violated. Imposition of the weak energy condition, however, prevents slow collapse to a singularity and preserves the validity of this hypothesis. The validity of the hoop conjecture is also discussed.
Bull, Diana
2014-01-01
A stochastic approach is used to gain a sophisticated understanding of a non-axisymmetric floating oscillating water column's response to random waves. A linear, frequency-domain performance model that links the oscillating structure to air-pressure fluctuations with a Wells Turbine in 3-dimensions is used to study the device performance at a northern California deployment location. Both short-term, sea-state, and long-term, annual, predictions are made regarding the devices performance. U...
CLASSIFICATION OF STELLAR ORBITS IN AXISYMMETRIC GALAXIES
Energy Technology Data Exchange (ETDEWEB)
Li, Baile; Holley-Bockelmann, Kelly [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Khan, Fazeel Mahmood, E-mail: baile.li@vanderbilt.edu, E-mail: k.holley@vanderbilt.edu, E-mail: khanfazeel.ist@gmail.com [Department of Space Science, Institute of Space Technology, P.O. Box 2750 Islamabad (Pakistan)
2015-09-20
It is known that two supermassive black holes (SMBHs) cannot merge in a spherical galaxy within a Hubble time; an emerging picture is that galaxy geometry, rotation, and large potential perturbations may usher the SMBH binary through the critical three-body scattering phase and ultimately drive the SMBH to coalesce. We explore the orbital content within an N-body model of a mildly flattened, non-rotating, SMBH-embedded elliptical galaxy. When used as the foundation for a study on the SMBH binary coalescence, the black holes bypassed the binary stalling often seen within spherical galaxies and merged on gigayear timescales. Using both frequency-mapping and angular momentum criteria, we identify a wealth of resonant orbits in the axisymmetric model, including saucers, that are absent from an otherwise identical spherical system and that can potentially interact with the binary. We quantified the set of orbits that could be scattered by the SMBH binary, and found that the axisymmetric model contained nearly six times the number of these potential loss cone orbits compared to our equivalent spherical model. In this flattened model, the mass of these orbits is more than three times that of the SMBH, which is consistent with what the SMBH binary needs to scatter to transition into the gravitational wave regime.
Multitude scaling laws in axisymmetric turbulent wake
Layek, G. C.; Sunita
2018-03-01
We establish theoretically multitude scaling laws of a self-similar (statistical) axisymmetric turbulent wake. At infinite Reynolds number limit, the flow evolves as general power law and a new exponential law of streamwise distance, consistent with the criterion of equilibrium similarity hypothesis. We found power law scalings for components of the homogeneous dissipation rate (ɛ) obeying the non-Richardson-Kolmogorov cascade as ɛu˜ku3 /2/(l R elm ) , ɛv˜kv3 /2/l , kv˜ku/R el2 m, 0 stress, l is the local length scale, and Rel is the Reynolds number. The Richardson-Kolmogorov cascade corresponds to m = 0. For m ≈ 1, the power law agrees with non-equilibrium scaling laws observed in recent experiments of the axisymmetric wake. On the contrary, the exponential scaling law follows the above dissipation law with different regions of existence for power index m = 3. At finite Reynolds number with kinematic viscosity ν, scalings obey the dissipation laws ɛu ˜ νku/l2 and ɛv ˜ νkv/l2 with kv˜ku/R eln. The value of n is preferably 0 and 2. Different possibilities of scaling laws and symmetry breaking process are discussed at length.
Global Electricity Trade Network: Structures and Implications
Ji, Ling; Jia, Xiaoping; Chiu, Anthony S. F.; Xu, Ming
2016-01-01
Nations increasingly trade electricity, and understanding the structure of the global power grid can help identify nations that are critical for its reliability. This study examines the global grid as a network with nations as nodes and international electricity trade as links. We analyze the structure of the global electricity trade network and find that the network consists of four sub-networks, and provide a detailed analysis of the largest network, Eurasia. Russia, China, Ukraine, and Azerbaijan have high betweenness measures in the Eurasian sub-network, indicating the degrees of centrality of the positions they hold. The analysis reveals that the Eurasian sub-network consists of seven communities based on the network structure. We find that the communities do not fully align with geographical proximity, and that the present international electricity trade in the Eurasian sub-network causes an approximately 11 million additional tons of CO2 emissions. PMID:27504825
Ideal magnetohydrodynamic stability of axisymmetric mirrors
International Nuclear Information System (INIS)
D'Ippolito, D.A.; Hafizi, B.; Myra, J.R.
1982-01-01
The governing partial differential equation for general mode-number pressure-driven ballooning modes in a long-thin, axisymmetric plasma is derived within the context of ideal magnetohydrodynamics. It is shown that the equation reduces in special limits to the Hain--Luest equation, the high-m diffuse p(psi) ballooning equation, and the low-m sharp-boundary equation. A low-β analytic solution of the full partial differential equation is presented for quasiflute modes in an idealized tandem mirror model to elucidate the relationship of the various limiting cases
Reversed straining in axisymmetric compression test
DEFF Research Database (Denmark)
Arentoft, Mogens; Wanheim, Tarras; Lindegren, Maria
2005-01-01
A large group of the cold forging processes is carried out in a thick – walled container with the deformation force transmitted through a punch moving axially in the container. The work piece, being entrapped between punch and container will expand and exert a radial pressure resulting in an expa...... to simulate these conditions a reversed axisymmetrical material tester is designed and constructed. Three different materials were tested, aluminum alloy AA6082, technically pure copper (99.5%) and cold forging steel Ma8, at different temperatures found during cold forging....
Topological fluid mechanics of Axisymmetric Flow
DEFF Research Database (Denmark)
Brøns, Morten
1998-01-01
Topological fluid mechanics in the sense of the present paper is the study and classification of flow patterns close to a critical point. Here we discuss the topology of steady viscous incompressible axisymmetric flows in the vicinity of the axis. Following previous studies the velocity field v...... to the authors knowledge has not been used systematically to high orders in topological fluid mechanics. We compare the general results with experimental and computational results on the Vogel-Ronneberg flow. We show that the topology changes observed when recirculating bubbles on the vortex axis are created...
Numerical description of cavitation on axisymmetric bodies
Energy Technology Data Exchange (ETDEWEB)
Hickox, C.E.; Hailey, C.E.; Wolfe, W.P.; Watts, H.A.; Gross, R.J.; Ingber, M.S.
1988-01-01
This paper reports on ongoing studies which are directed toward the development of predictive techniques for the modeling of steady cavitation on axisymmetric bodies. The primary goal of the modeling effort is the prediction of cavity shape and pressure distribution from which forces and moments can be calculated. Here we present an overview of the modeling techniques developed and compare predictions with experimental data obtained from water tunnel tests for both limited and supercavitation. 14 refs., 4 figs.
Direct methods of soil-structure interaction analysis for earthquake loadings(II)
Energy Technology Data Exchange (ETDEWEB)
Yun, Chung Bang; Lee, S R; Kim, J M; Park, K L; Oh, S B; Choi, J S; Kim, Y S [Korea Advanced Institute of Science Technology, Daejeon (Korea, Republic of)
1994-07-15
In this study, methods for 3-D soil-structure interaction analysis have been studied. They are 3-D axisymmetric analysis method, 3-D axisymmetric finite element method incorporating infinite elements, and 3-D boundary element methods. The computer code, named as 'KIESSI - PF', has been developed which is based on the 3-D axisymmetric finite element method coupled with infinite element method. It is able to simulate forced vibration test results of a soil-structure interaction system. The Hualien FVT post-correlation analysis before backfill and the blind prediction analysis after backfill have been carried out using the developed computer code 'KIESSI - PF'.
Direct methods of soil-structure interaction analysis for earthquake loadings(II)
International Nuclear Information System (INIS)
Yun, Chung Bang; Lee, S. R.; Kim, J. M.; Park, K. L.; Oh, S. B.; Choi, J. S.; Kim, Y. S.
1994-07-01
In this study, methods for 3-D soil-structure interaction analysis have been studied. They are 3-D axisymmetric analysis method, 3-D axisymmetric finite element method incorporating infinite elements, and 3-D boundary element methods. The computer code, named as 'KIESSI - PF', has been developed which is based on the 3-D axisymmetric finite element method coupled with infinite element method. It is able to simulate forced vibration test results of a soil-structure interaction system. The Hualien FVT post-correlation analysis before backfill and the blind prediction analysis after backfill have been carried out using the developed computer code 'KIESSI - PF'
The shape of an axisymmetric bubble in uniform motion
Indian Academy of Sciences (India)
Axisymmetric bubble shapes; non-linear free boundary problems; surface singularity methods in potential flows. PACS Nos 47.55.Dz; 47.11.+j; 47.15.Hg. 1. .... should be fast and reasonably accurate, (c) the iterative procedure for determining .... curve while K2 is the other associated principal curvature; K2 can be deduced.
Modelling axisymmetric cod-ends made of different mesh types
DEFF Research Database (Denmark)
Priour, D.; Herrmann, Bent; O'Neill, F.G.
2009-01-01
the selectivity process has become more important. This paper presents a model of the deformation of an axisymmetric cod-end. The twine tension and the catch pressure acting on the knots of each mesh along the cod-end profile are calculated, and a Newton-Raphson scheme is used to estimate the equilibrium position...
Emergency Entry with One Control Torque: Non-Axisymmetric Diagonal Inertia Matrix
Llama, Eduardo Garcia
2011-01-01
In another work, a method was presented, primarily conceived as an emergency backup system, that addressed the problem of a space capsule that needed to execute a safe atmospheric entry from an arbitrary initial attitude and angular rate in the absence of nominal control capability. The proposed concept permits the arrest of a tumbling motion, orientation to the heat shield forward position and the attainment of a ballistic roll rate of a rigid spacecraft with the use of control in one axis only. To show the feasibility of such concept, the technique of single input single output (SISO) feedback linearization using the Lie derivative method was employed and the problem was solved for different number of jets and for different configurations of the inertia matrix: the axisymmetric inertia matrix (I(sub xx) > I(sub yy) = I(sub zz)), a partially complete inertia matrix with I(sub xx) > I(sub yy) > I(sub zz), I(sub xz) not = 0 and a realistic complete inertia matrix with I(sub xx) > I(sub yy) > I)sub zz), I(sub ij) not= 0. The closed loop stability of the proposed non-linear control on the total angle of attack, Theta, was analyzed through the zero dynamics of the internal dynamics for the case where the inertia matrix is axisymmetric (I(sub xx) > I(sub yy) = I(sub zz)). This note focuses on the problem of the diagonal non-axisymmetric inertia matrix (I(sub xx) > I(sub yy) > I(sub zz)), which is half way between the axisymmetric and the partially complete inertia matrices. In this note, the control law for this type of inertia matrix will be determined and its closed-loop stability will be analyzed using the same methods that were used in the other work. In particular, it will be proven that the control system is stable in closed-loop when the actuators only provide a roll torque.
Elastoplastic buckling of quasi axisymmetric shells of revolution
International Nuclear Information System (INIS)
Combescure, A.
1987-01-01
This paper gives the formulation of a finite element which allows the computation of quasi axisymmetric shells of revolution. This element has two nodes and the displacement field is developped in Fourier series. In this paper, an emphasis is put on the elastic and plastic buckling formulation. Two examples are developped in details showing the applicability and the interest of such a finite element. (orig.)
An axisymmetric gravitational collapse code
Energy Technology Data Exchange (ETDEWEB)
Choptuik, Matthew W [CIAR Cosmology and Gravity Program, Department of Physics and Astronomy, University of British Columbia, Vancouver BC, V6T 1Z1 (Canada); Hirschmann, Eric W [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84604 (United States); Liebling, Steven L [Southampton College, Long Island University, Southampton, NY 11968 (United States); Pretorius, Frans [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)
2003-05-07
We present a new numerical code designed to solve the Einstein field equations for axisymmetric spacetimes. The long-term goal of this project is to construct a code that will be capable of studying many problems of interest in axisymmetry, including gravitational collapse, critical phenomena, investigations of cosmic censorship and head-on black-hole collisions. Our objective here is to detail the (2+1)+1 formalism we use to arrive at the corresponding system of equations and the numerical methods we use to solve them. We are able to obtain stable evolution, despite the singular nature of the coordinate system on the axis, by enforcing appropriate regularity conditions on all variables and by adding numerical dissipation to hyperbolic equations.
An axisymmetric gravitational collapse code
International Nuclear Information System (INIS)
Choptuik, Matthew W; Hirschmann, Eric W; Liebling, Steven L; Pretorius, Frans
2003-01-01
We present a new numerical code designed to solve the Einstein field equations for axisymmetric spacetimes. The long-term goal of this project is to construct a code that will be capable of studying many problems of interest in axisymmetry, including gravitational collapse, critical phenomena, investigations of cosmic censorship and head-on black-hole collisions. Our objective here is to detail the (2+1)+1 formalism we use to arrive at the corresponding system of equations and the numerical methods we use to solve them. We are able to obtain stable evolution, despite the singular nature of the coordinate system on the axis, by enforcing appropriate regularity conditions on all variables and by adding numerical dissipation to hyperbolic equations
International Nuclear Information System (INIS)
Weatherby, J.R.
1987-09-01
Results of axisymmetric structural analyses of a 1:6 scale model of a reinforced concrete nuclear containment building are presented. Both a finite element shell analysis and a simplified membrane analysis were made to predict the structural response and ultimate pressure capacity of the model. Analytical results indicate that the model will fail at an internal pressure of 187 psig when the stress level in the hoop reinforcement at the midsection of the cylinder exceeds the ultimate strength of the bar splices. 5 refs., 34 figs., 6 tabs
Application of Quasi-Newton methods to the analysis of axisymmetric pressure vessels
International Nuclear Information System (INIS)
Parisi, D.A.C.
1987-01-01
This work studies the application of Quasi-Newton techniques to material nonlinear analysis of axisymmetrical pressure vessels by the finite element method. In the formulation the material bahavior is described by an isotropic elastoplastic model with strain hardening. The continum is discretized through triangular finite elements of axisymmetrical solids with linear interpolation of the displacement field. The incremental governing equations are derived by the virtual work. The solution of the system of simultaneous nonlinear equations is solved iteratively by the Quasi-Newton method employing the BFGS update. The numerical performance of the proposed method is compared with the Newton-Raphson method and some of its variants through some selected examples. (author) [pt
Vortical motion in the head of an axisymmetric gravity current
Patterson, M.D.; Simpson, J.E.; Dalziel, S.B.; Heijst, van G.J.F.
2006-01-01
A series of experiments that examine the initial development of an axisymmetric gravity current have been carried out. The experiments highlight the growth of a ring vortex that dominates the dynamics of the gravity current's early time propagation. In particular, the experiments show three distinct
Shi, Q.; Liu, T.; Musterd, S.; Cao, G.
2017-01-01
Recent studies on the social structural change in global cities have recognized globalization, migration, and institutional factors as three main forces underlying this process. However, effects of these factors have rarely been synthetically examined and the social structure of emerging Chinese
Large scale organized motion in isothermal swirling flow through an axisymmetric dump combustor
International Nuclear Information System (INIS)
Daddis, E.D.; Lieber, B.B.; Nejad, A.S.; Ahmed, S.A.
1990-01-01
This paper reports on velocity measurements that were obtained in a model axisymmetric dump combustor which included a coaxial swirler by means of a two component laser Doppler velocimeter (LDV) at a Reynolds number of 125,000. The frequency spectrum of the velocity fluctuations is obtained via the Fast Fourier Transform (FFT). The velocity field downstream of the dump plane is characterized, in addition to background turbulence, by large scale organized structures which are manifested as sharp spikes of the spectrum at relatively low frequencies. The decomposition of velocity disturbances to background turbulence and large scale structures can then be achieved through spectral methods which include matched filters and spectral factorization. These methods are demonstrated here for axial velocity obtained one step height downstream of the dump plane. Subsequent analysis of the various velocity disturbances shows that large scale structures account for about 25% of the apparent normal stresses at this particular location. Naturally, large scale structures evolve spatially and their contribution to the apparent stress tensor may vary depending on the location in the flow field
Directory of Open Access Journals (Sweden)
Simon Heru Prassetyo
2018-04-01
Full Text Available Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical (H-M interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit (ADE scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in non-uniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourth-order finite difference (FD approximation to the spatial derivatives of the axisymmetric fluid–diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps, giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua (FLAC. This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%–50% that of FLAC's basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%
CSIR Research Space (South Africa)
Shatalov, MY
2010-01-01
Full Text Available artefacts. An elaborate discussion of these artefacts is given by Yenwong-Fai, (Yenwong-Fai, 2008). These artefacts could be simply detected and eliminated from the dispersion plots by program tools.Our algorithm, as it has been implemented, does.... Arthur G. Every and our student Alfred S. Yenwong-Fai participating in the investigation of the non-axisymmetric case of the piezoelectric cylinder vibrations (Shatalov, et al. 2009). I also want to thank Mr. Yuri M. Shatalov who investigated...
Shtemler, Yu.; Mond, M.; Liverts, E.
2018-02-01
The excitation of nonaxisymmetric quasi-resonant triads by clustering around a dominant axisymmetric explosively unstable magnetorotational instability (MRI) in Keplerian discs is investigated. Clustering, namely, the mutual interactions of a large number of quasi-resonant triads that are connected by a single dominant explosively unstable axisymmetric triad, is invoked in order to provide a viable mechanism for the stabilization of the explosive nature of the latter. The results, however, are of wider scope as the proposed clustering scenario also provides a strong mechanism for the excitation of high-amplitude nonaxisymmetric perturbations. The latter play a major role in the nonlinear evolution of the MRI on the route to fully developed turbulence.
Direct methods of soil-structure interaction analysis for earthquake loadings(II)
Energy Technology Data Exchange (ETDEWEB)
Yun, Chung Bang; Lee, S. R.; Kim, J. M.; Park, K. L.; Oh, S. B.; Choi, J. S.; Kim, Y. S. [Korea Advanced Institute of Science Technology, Daejeon (Korea, Republic of)
1994-07-15
In this study, methods for 3-D soil-structure interaction analysis have been studied. They are 3-D axisymmetric analysis method, 3-D axisymmetric finite element method incorporating infinite elements, and 3-D boundary element methods. The computer code, named as 'KIESSI - PF', has been developed which is based on the 3-D axisymmetric finite element method coupled with infinite element method. It is able to simulate forced vibration test results of a soil-structure interaction system. The Hualien FVT post-correlation analysis before backfill and the blind prediction analysis after backfill have been carried out using the developed computer code 'KIESSI - PF'.
ON THE GLOBAL STRUCTURE OF PULSAR FORCE-FREE MAGNETOSPHERE
International Nuclear Information System (INIS)
Petrova, S. A.
2013-01-01
The dipolar magnetic field structure of a neutron star is modified by the plasma originating in the pulsar magnetosphere. In the simplest case of a stationary axisymmetric force-free magnetosphere, a self-consistent description of the fields and currents is given by the well-known pulsar equation. Here we revise the commonly used boundary conditions of the problem in order to incorporate the plasma-producing gaps and to provide a framework for a truly self-consistent treatment of the pulsar magnetosphere. A generalized multipolar solution of the pulsar equation is found, which, as compared to the customary split monopole solution, is suggested to better represent the character of the dipolar force-free field at large distances. In particular, the outer gap location entirely inside the light cylinder implies that beyond the light cylinder the null and critical lines should be aligned and become parallel to the equator at a certain altitude. Our scheme of the pulsar force-free magnetosphere, which will hopefully be followed by extensive analytic and numerical studies, may have numerous implications for different fields of pulsar research.
Energy Technology Data Exchange (ETDEWEB)
Stacey, W. M. [Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Bae, C. [National Fusion Research Institute, Daejoen (Korea, Republic of)
2015-06-15
A systematic formalism for the calculation of rotation in non-axisymmetric tokamaks with 3D magnetic fields is described. The Braginskii Ωτ-ordered viscous stress tensor formalism, generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry, and the resulting fluid moment equations provide a systematic formalism for the calculation of toroidal and poloidal rotation and radial ion flow in tokamaks in the presence of various non-axisymmetric “neoclassical toroidal viscosity” mechanisms. The relation among rotation velocities, radial ion particle flux, ion orbit loss, and radial electric field is discussed, and the possibility of controlling these quantities by producing externally controllable toroidal and/or poloidal currents in the edge plasma for this purpose is suggested for future investigation.
Effect of Axisymmetric Aft Wall Angle Cavity in Supersonic Flow Field
Jeyakumar, S.; Assis, Shan M.; Jayaraman, K.
2018-03-01
Cavity plays a significant role in scramjet combustors to enhance mixing and flame holding of supersonic streams. In this study, the characteristics of axisymmetric cavity with varying aft wall angles in a non-reacting supersonic flow field are experimentally investigated. The experiments are conducted in a blow-down type supersonic flow facility. The facility consists of a supersonic nozzle followed by a circular cross sectional duct. The axisymmetric cavity is incorporated inside the duct. Cavity aft wall is inclined with two consecutive angles. The performance of the aft wall cavities are compared with rectangular cavity. Decreasing aft wall angle reduces the cavity drag due to the stable flow field which is vital for flame holding in supersonic combustor. Uniform mixing and gradual decrease in stagnation pressure loss can be achieved by decreasing the cavity aft wall angle.
CRUCIB: an axisymmetric convection code
International Nuclear Information System (INIS)
Bertram, L.A.
1975-03-01
The CRUCIB code was written in support of an experimental program aimed at measurement of thermal diffusivities of refractory liquids. Precise values of diffusivity are necessary to realistic analysis of reactor safety problems, nuclear waste disposal procedures, and fundamental metal forming processes. The code calculates the axisymmetric transient convective motions produced in a right circular cylindrical crucible, which is surface heated by an annular heat pulse. Emphasis of this report is placed on the input-output options of the CRUCIB code, which are tailored to assess the importance of the convective heat transfer in determining the surface temperature distribution. Use is limited to Prandtl numbers less than unity; larger values can be accommodated by replacement of a single block of the code, if desired. (U.S.)
Streamline topology of axisymmetric flows
DEFF Research Database (Denmark)
Brøns, Morten
Topological fluid mechanics in the sense of the present paper is the study and classification of flow patterns close to a critical point. Here we discuss the topology of steady viscous incompressible axisymmetric flows in the vicinity of the axis. Following previous studies the velocity field $v...... to the authors knowledge has not been used systematically to high orders in topological fluid mechanics. We compare the general results with experimental and computational results on the Vogel-Ronneberg flow. We show that the topology changes observed when recirculating bubbles on the vortex axis are created...... and interact follow the topological classification and that the complete set of patterns found is contained in a codimension-4 unfolding of the most simple singular configuration....
Application of global elements to a reinforced concrete structure
International Nuclear Information System (INIS)
Morand, O.
1994-01-01
The dimensioning of nuclear facilities requires to take into account the possible risk of earthquakes. However such installations are generally complex structures with reinforced concrete poles, walls, beams and porches. In this study, a seismic analysis of such a structure is proposed. The use of the Castem 2000 global element code was attempted to dynamically simulate the behaviour of the reinforced concrete elements. However, no suitable modeling has been found for the storeys, the functioning of which being dominated by carrying walls. Concerning the porch-type storeys, monotonous static loads were simulated and provided information on the local and global behaviour of these structures. Thus, representative global elements could be realized for these structures. Results obtained are satisfactory for these storeys which essentially undergo a bending deformation. (J.S.)
International Nuclear Information System (INIS)
Millard, A.; Hoffmann, A.; Gauvain, J.; Nahas, G.
1982-06-01
The application of global methods to design reinforced concrete structures was investigated. The dynamic calculation of beam structures can be carried out very economically and with suitable accuracy by these methods. Moreover, one ideal application of global methods is design to failure, in order to estimate the safety margins of a given structure subject to accidental stresses, such as explosions, earthquakes, aircraft crash etc. In all cases, the global method combined with finite element programs serves to determine the failure automatically, and offers a good estimate of the failure load [fr
SEAWAT-based simulation of axisymmetric heat transport.
Vandenbohede, Alexander; Louwyck, Andy; Vlamynck, Nele
2014-01-01
Simulation of heat transport has its applications in geothermal exploitation of aquifers and the analysis of temperature dependent chemical reactions. Under homogeneous conditions and in the absence of a regional hydraulic gradient, groundwater flow and heat transport from or to a well exhibit radial symmetry, and governing equations are reduced by one dimension (1D) which increases computational efficiency importantly. Solute transport codes can simulate heat transport and input parameters may be modified such that the Cartesian geometry can handle radial flow. In this article, SEAWAT is evaluated as simulator for heat transport under radial flow conditions. The 1971, 1D analytical solution of Gelhar and Collins is used to compare axisymmetric transport with retardation (i.e., as a result of thermal equilibrium between fluid and solid) and a large diffusion (conduction). It is shown that an axisymmetric simulation compares well with a fully three dimensional (3D) simulation of an aquifer thermal energy storage systems. The influence of grid discretization, solver parameters, and advection solution is illustrated. Because of the high diffusion to simulate conduction, convergence criterion for heat transport must be set much smaller (10(-10) ) than for solute transport (10(-6) ). Grid discretization should be considered carefully, in particular the subdivision of the screen interval. On the other hand, different methods to calculate the pumping or injection rate distribution over different nodes of a multilayer well lead to small differences only. © 2013, National Ground Water Association.
Calculation of rf fields in axisymmetric cavities
International Nuclear Information System (INIS)
Iwashita, Y.
1985-01-01
A new code, PISCES, has been developed for calculating a complete set of rf electromagnetic modes in an axisymmetric cavity. The finite-element method is used with up to third-order shape functions. Although two components are enough to express these modes, three components are used as unknown variables to take advantage of the symmetry of the element matrix. The unknowns are taken to be either the electric field components or the magnetic field components. The zero-divergence condition will be satisfied by the shape function within each element
FLEXURAL STRESS ANALYSIS OF RIGID PAVEMENTS USING AXI-SYMMETRIC AND PLANE STRAIN FEM
Directory of Open Access Journals (Sweden)
V.A. Sawant
2017-11-01
Full Text Available The design of pavement involves a study of soils and paving materials, their response under load for different climatic conditions. In the present study, an attempt has been made to compare stresses predicted using two finite element analyses. First analysis is based on the twodimensional plane strain assumption where as in second approach axi-symmetric condition is assumed to consider three-dimensional behavior of rigid pavement. The results are compared with flexural stresses obtained from conventional Portland Cement Association method. The computed flexural stresses obtained from axi-symmetric condition are found to be in close agreement with PCA method. Results of plane strain analysis show a fair agreement after application of an appropriate multiplication factor
Globalization, financial capitalism, and corporate social responsibility: Structural tensions
Directory of Open Access Journals (Sweden)
David Barbosa Ramírez
2014-12-01
Full Text Available Globalization and financial capitalism keep a synergy in a global context whose problems such as environmental degradation, social inequity, economic crises and corruption are intensified. Corporate Social Responsibility emerges as a mechanism that seeks to mitigate some of these problems, although its effectiveness and impact today are challenged. The system which globalization, financial capitalism and social responsibility are a part of, is currently facing a number of structural tensions that contribute to the analysis, understanding and solving of the mentioned problems. This paper identifies and analyzes four of the aforementioned structural tensions.
Global/local methods research using a common structural analysis framework
Knight, Norman F., Jr.; Ransom, Jonathan B.; Griffin, O. H., Jr.; Thompson, Danniella M.
1991-01-01
Methodologies for global/local stress analysis are described including both two- and three-dimensional analysis methods. These methods are being developed within a common structural analysis framework. Representative structural analysis problems are presented to demonstrate the global/local methodologies being developed.
Axisymmetric MHD equilibrium solver with bicubic Hermite elements
International Nuclear Information System (INIS)
Luetjens, H.; Bondeson, A.; Roy, A.
1990-05-01
A numerical code solving axisymmetric magnetohydrodynamic equilibria with rectangular bicubic Hermite elements has been developed. Two test cases are used for checking the convergence rate of the solution. The mapping of the equilibrium quantities into flux coordinates for magnetohydrodynamic stability calculation is performed by a method which preserves the convergence properties of the cubic Hermite elements. Convergence studies show the behaviour of the stability results when the equilibrium mesh is varied. (author) 13 refs., 3 tabs
MHD stability calculations of high-β quasi-axisymmetric stellarators
International Nuclear Information System (INIS)
Fu, G.Y.; Ku, L.P.; Pomphrey, N.; Redi, M.; Kessel, C.; Monticello, D.; Reiman, A.; Hughes, M.; Cooper, W.A.; Nuehrenberg, C.
2001-01-01
The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size. (author)
MHD stability calculations of high-β quasi-axisymmetric stellarators
International Nuclear Information System (INIS)
Fu, G.Y.; Ku, L.P.; Pomphrey, N.; Redi, M.H.; Kessel, C.; Monticello, D.A.; Reiman, A.; Hughes, M.; Cooper, W.A.; Nuehrenberg, C.
1999-01-01
The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size. (author)
MHD Stability Calculations of High-Beta Quasi-Axisymmetric Stellarators
International Nuclear Information System (INIS)
Kessel, C.; Fu, G.Y.; Ku, L.P.; Redi, M.H.; Pomphrey, N.
1999-01-01
The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size
Directory of Open Access Journals (Sweden)
Bogdanović-Jovanović Jasmina B.
2012-01-01
Full Text Available In the increasing need for energy saving worldwide, the designing process of turbomachinery, as an essential part of thermal and hydroenergy systems, goes in the direction of enlarging efficiency. Therefore, the optimization of turbomachinery designing strongly affects the energy efficiency of the entire system. In the designing process of turbomachinery blade profiling, the model of axisymmetric fluid flows is commonly used in technical practice, even though this model suits only the profile cascades with infinite number of infinitely thin blades. The actual flow in turbomachinery profile cascades is not axisymmetric, and it can be fictively derived into the axisymmetric flow by averaging flow parameters in the blade passages according to the circular coordinate. Using numerical simulations of flow in turbomachinery runners, its operating parameters can be preliminarily determined. Furthermore, using the numerically obtained flow parameters in the blade passages, averaged axisymmetric flow surfaces in blade profile cascades can also be determined. The method of determination of averaged flow parameters and averaged meridian streamlines is presented in this paper, using the integral continuity equation for averaged flow parameters. With thus obtained results, every designer can be able to compare the obtained averaged flow surfaces with axisymmetric flow surfaces, as well as the specific work of elementary stages, which are used in the procedure of blade designing. Numerical simulations of flow in an exemplary axial flow pump, used as a part of the thermal power plant cooling system, were performed using Ansys CFX. [Projekat Ministarstva nauke Republike Srbije, br. TR33040: Revitalization of existing and designing new micro and mini hydropower plants (from 100 kW to 1000 kW in the territory of South and Southeast Serbia
Application of the Least Squares Method in Axisymmetric Biharmonic Problems
Directory of Open Access Journals (Sweden)
Vasyl Chekurin
2016-01-01
Full Text Available An approach for solving of the axisymmetric biharmonic boundary value problems for semi-infinite cylindrical domain was developed in the paper. On the lateral surface of the domain homogeneous Neumann boundary conditions are prescribed. On the remaining part of the domain’s boundary four different biharmonic boundary pieces of data are considered. To solve the formulated biharmonic problems the method of least squares on the boundary combined with the method of homogeneous solutions was used. That enabled reducing the problems to infinite systems of linear algebraic equations which can be solved with the use of reduction method. Convergence of the solution obtained with developed approach was studied numerically on some characteristic examples. The developed approach can be used particularly to solve axisymmetric elasticity problems for cylindrical bodies, the heights of which are equal to or exceed their diameters, when on their lateral surface normal and tangential tractions are prescribed and on the cylinder’s end faces various types of boundary conditions in stresses in displacements or mixed ones are given.
Equilibrium and ballooning mode stability of an axisymmetric tensor pressure tokamak
International Nuclear Information System (INIS)
Cooper, W.A.; Bateman, G.; Nelson, D.B.; Kammash, T.
1980-08-01
A force balance relation, a representation for the poloidal beta (β/sub p/), and expressions for the current densities are derived from the MHD equilibrium relations for an axisymmetric tensor pressure tokamak. Perpendicular and parallel beam pressure components are evaluated from a distribution function that models high energy neutral particle injection. A double adiabatic energy principle is derived from that of Kruskal and Oberman, with correction terms added. The energy principle is then applied to an arbitrary cross-section axisymmetric tokamak to examine ballooning instabilities of large toroidal mode number. The resulting Euler equation is remarkably similar to that of ideal MHD. Although the field-bending term is virtually unaltered, the driving term is modified because the pressures are no longer constant on a flux surface. Either a necessary or a sufficient marginal stability criterion for a guiding center plasma can be derived from this equation whenever an additional stabilizing element unique to the double adiabatic theory is either kept or neglected, respectively
Marginal Stability Boundaries for Infinite-n Ballooning Modes in a Quasi-axisymmetric Stellarator
International Nuclear Information System (INIS)
Hudson, S.R.; Hegna, C.C.
2003-01-01
A method for computing the ideal-MHD stability boundaries in three-dimensional equilibria is employed. Following Hegna and Nakajima [Phys. Plasmas 5 (May 1998) 1336], a two-dimensional family of equilibria are constructed by perturbing the pressure and rotational-transform profiles in the vicinity of a flux surface for a given stellarator equilibrium. The perturbations are constrained to preserve the magnetohydrodynamic equilibrium condition. For each perturbed equilibrium, the infinite-n ballooning stability is calculated. Marginal stability diagrams are thus constructed that are analogous to (s; a) diagrams for axisymmetric configurations. A quasi-axisymmetric stellarator is considered. Calculations of stability boundaries generally show regions of instability can occur for either sign of the average magnetic shear. Additionally, regions of second-stability are present
Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer.
Peng, Jifeng; Alben, Silas
2012-03-01
In nature, there exists a special group of aquatic animals which have an axisymmetric body and whose primary swimming mechanism is to use periodic body contractions to generate vortex rings in the surrounding fluid. Using jellyfish medusae as an example, this study develops a mathematical model of body kinematics of an axisymmetric swimmer and uses a computational approach to investigate the induced vortex wakes. Wake characteristics are identified for swimmers using jet propulsion and rowing, two mechanisms identified in previous studies of medusan propulsion. The parameter space of body kinematics is explored through four quantities: a measure of body shape, stroke amplitude, the ratio between body contraction duration and extension duration, and the pulsing frequency. The effects of these parameters on thrust, input power requirement and circulation production are quantified. Two metrics, cruising speed and energy cost of locomotion, are used to evaluate the propulsion performance. The study finds that a more prolate-shaped swimmer with larger stroke amplitudes is able to swim faster, but its cost of locomotion is also higher. In contrast, a more oblate-shaped swimmer with smaller stroke amplitudes uses less energy for its locomotion, but swims more slowly. Compared with symmetric strokes with equal durations of contraction and extension, faster bell contractions increase the swimming speed whereas faster bell extensions decrease it, but both require a larger energy input. This study shows that besides the well-studied correlations between medusan body shape and locomotion, stroke variables also affect the propulsion performance. It provides a framework for comparing the propulsion performance of axisymmetric swimmers based on their body kinematics when it is difficult to measure and analyze their wakes empirically. The knowledge from this study is also useful for the design of robotic swimmers that use axisymmetric body contractions for propulsion.
Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer
International Nuclear Information System (INIS)
Peng Jifeng; Alben, Silas
2012-01-01
In nature, there exists a special group of aquatic animals which have an axisymmetric body and whose primary swimming mechanism is to use periodic body contractions to generate vortex rings in the surrounding fluid. Using jellyfish medusae as an example, this study develops a mathematical model of body kinematics of an axisymmetric swimmer and uses a computational approach to investigate the induced vortex wakes. Wake characteristics are identified for swimmers using jet propulsion and rowing, two mechanisms identified in previous studies of medusan propulsion. The parameter space of body kinematics is explored through four quantities: a measure of body shape, stroke amplitude, the ratio between body contraction duration and extension duration, and the pulsing frequency. The effects of these parameters on thrust, input power requirement and circulation production are quantified. Two metrics, cruising speed and energy cost of locomotion, are used to evaluate the propulsion performance. The study finds that a more prolate-shaped swimmer with larger stroke amplitudes is able to swim faster, but its cost of locomotion is also higher. In contrast, a more oblate-shaped swimmer with smaller stroke amplitudes uses less energy for its locomotion, but swims more slowly. Compared with symmetric strokes with equal durations of contraction and extension, faster bell contractions increase the swimming speed whereas faster bell extensions decrease it, but both require a larger energy input. This study shows that besides the well-studied correlations between medusan body shape and locomotion, stroke variables also affect the propulsion performance. It provides a framework for comparing the propulsion performance of axisymmetric swimmers based on their body kinematics when it is difficult to measure and analyze their wakes empirically. The knowledge from this study is also useful for the design of robotic swimmers that use axisymmetric body contractions for propulsion. (paper)
On solution of Maxwell's equations in axisymmetric domains with edges. Part II: Numerical aspects
International Nuclear Information System (INIS)
Nkemzi, Boniface
2003-10-01
In this paper we consider the Fourier-finite-element method for treating the Maxwell's equations in three-dimensional axisymmetric domains with reentrant edges. By means of partial Fourier analysis, the 3D BVP is decomposed into an infinite sequence of 2D variational equations in the plane meridian domain of the axisymmetric domain, a finite number of which is considered and treated using nodal H 1 -conforming finite elements. For domains with reentrant edges, the singular field method is employed to compensate the singular behavior of the solutions. Emphases are given to estimates of the Fourier-finite-element approximation error and convergence analysis in the H 1 -norm under different regularity assumptions. (author)
HEATMESH, Geometry Data Generator for Heat Transfer Calculation in Axisymmetric System
International Nuclear Information System (INIS)
Gabrielson, V.K.
1972-01-01
1 - Description of problem or function: HEATMESH is used to generate geometrical data required for studies of heat transfer in axisymmetric structures represented as surfaces of revolution. The program consists of two distinct phases. The first subdivides the given parts into a nodal network and evaluates the geometrical properties of the nodes. The second determines adjacent nodes and edits geometrical data for the thermal model. 2 - Method of solution: The structure to be studied, represented as a body of revolution, is divided into parts having common material properties and represented as bodies of revolution. Each part is then described as four surfaces of revolution subdivided into nodes which form a mesh. Data for each part are collected, i. e. volume, area, and part number of each node, and node surfaces on the part boundary and inside the part boundary. The distance between the center and the midpoint of each surface of the node is tabulated also. 3 - Restrictions on the complexity of the problem: Number of subdivisions between 1 and 50 for sides 1 and 3, Number of subdivisions between 1 and 12 for sides 2 and 4
GLOBAL LINEARIZATION OF DIFFERENTIAL EQUATIONS WITH SPECIAL STRUCTURES
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
This paper introduces the global linearization of the differential equations with special structures.The function in the differential equation is unbounded.We prove that the differential equation with unbounded function can be topologically linearlized if it has a special structure.
The global structure of knowledge network
Angelopoulos, Spyros; Lomi, Alessandro
2017-01-01
In this paper, we treat patent citations as knowledge networks connecting pieces of formalized knowledge and people, and focus on how ideas are connected, rather than how they are protected. We focus on the global structural properties of formalized knowledge network, and more specifically on the
Stationary axisymmetric four dimensional space-time endowed with Einstein metric
International Nuclear Information System (INIS)
Hasanuddin; Azwar, A.; Gunara, B. E.
2015-01-01
In this paper, we construct Ernst equation from vacuum Einstein field equation for both zero and non-zero cosmological constant. In particular, we consider the case where the space-time admits axisymmetric using Boyer-Lindquist coordinates. This is called Kerr-Einstein solution describing a spinning black hole. Finally, we give a short discussion about the dynamics of photons on Kerr-Einstein space-time
An analysis of bolted opening structure and development of analysis expert system using ANSYS
International Nuclear Information System (INIS)
Jun, S. M.; Suh, E. K.; Shim, H. B.; Kim, T. W.; Lee, B. Y.
1998-01-01
Bolted opening structures is widely applied for class 1 machinery of nuclear plant with strict design requirement. As the shape of the bolted opening structure is non-axisymmetric due to the existence of stud bolts although it is almost axi-symmetric, 3D analysis is required to satisfy such kind of design requirements. Because as much as possible trial computations are need to get an optimal design condition in the limited period of basic design, an easy and fast analysis tool is useful in the design stage. In the paper, a transformation technique of non-axisymmetric problem into quasi-axisymmetric has been proposed based on the general purpose commercial code ANSYS. Both the pre-processor which incorporates the technique and prepares data and post-processor which prepares arranged results from the huge output of commercial code have been developed to help the design engineers. (author)
Frerichs, H.; Schmitz, O.; Covele, B.; Feng, Y.; Guo, H. Y.; Hill, D.
2018-05-01
Numerical simulations of toroidal asymmetries in a tightly baffled small angle slot (SAS) divertor on the DIII-D tokamak show that toroidal asymmetries in divertor closure result in (non-axisymmetric) local onset of detachment within a density window of 10-15% on top of the nominal threshold separatrix density. The SAS divertor is explored at DIII-D for improving access to cold, dissipative/detached divertor conditions. The narrow width of the slot divertor coupled with a small magnetic field line-to-target angle facilitates the buildup of neutral density, thereby increasing radiative and neutrals-related (atoms and molecules) losses in the divertor. Small changes in the strike point location can be expected to have a large impact on divertor conditions. The combination of misaligned slot structure and non-axisymmetric perturbations to the magnetic field configuration causes the strike point to move along the divertor target plate, possibly leaving the divertor slot at some locations. The latter extreme case essentially introduces an opening in the divertor slot from where recycling neutrals can easily escape, and thereby degrade the performance of the slot divertor. Such a strike point dislocation is approximated by a finite gap in the divertor baffle for which 3D edge plasma and neutral gas simulations are performed with the EMC3-EIRENE code.
Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.
2017-11-01
This paper presents the second part of a study aiming to accurately characterise a Mach 10 scramjet test flow generated using a large free-piston-driven expansion tube. Part 1 described the experimental set-up, the quasi-one-dimensional simulation of the full facility, and the hybrid analysis technique used to compute the nozzle exit test flow properties. The second stage of the hybrid analysis applies the computed 1-D shock tube flow history as an inflow to a high-fidelity two-dimensional-axisymmetric analysis of the acceleration tube. The acceleration tube exit flow history is then applied as an inflow to a further refined axisymmetric nozzle model, providing the final nozzle exit test flow properties and thereby completing the analysis. This paper presents the results of the axisymmetric analyses. These simulations are shown to closely reproduce experimentally measured shock speeds and acceleration tube static pressure histories, as well as nozzle centreline static and impact pressure histories. The hybrid scheme less successfully predicts the diameter of the core test flow; however, this property is readily measured through experimental pitot surveys. In combination, the full test flow history can be accurately determined.
A Compact Quasi-axisymmetric Stellarator Reactor
International Nuclear Information System (INIS)
Ku, L.P.
2003-01-01
We report the progress made in assessing the potential of compact, quasi-axisymmetric stellarators as power-producing reactors. Using an aspect ratio A=4.5 configuration derived from NCSX and optimized with respect to the quasi-axisymmetry and MHD stability in the linear regime as an example, we show that a reactor of 1 GW(e) maybe realizable with a major radius *8 m. This is significantly smaller than the designs of stellarator reactors attempted before. We further show the design of modular coils and discuss the optimization of coil aspect ratios in order to accommodate the blanket for tritium breeding and radiation shielding for coil protection. In addition, we discuss the effects of coil aspect ratio on the peak magnetic field in the coils
Stress analysis in a non axisymmetric loaded reactor pressure vessel
International Nuclear Information System (INIS)
Albuquerque, Levi Barcelos; Assis, Gracia Menezes V. de; Miranda, Carlos Alexandre J.; Cruz, Julio Ricardo B.; Mattar Neto, Miguel
1995-01-01
In this work we intend to present the stress analysis of a PWR vessel under postulated concentrated loads. The vessel was modeled with Axisymmetric solid 4 nodes harmonic finite elements with the use of the ANSYS program, version 5.0. The bolts connecting the vessel flanges were modeled with beam elements. Some considerations were made to model the contact between the flanges. The perforated part of the vessel tori spherical head was modeled (with reduced properties due to its holes) to introduce its stiffness and loads but was not within the scope of this work. The loading consists of some usual ones, as pressure, dead weight, bolts preload, seismic load and some postulated ones as concentrated loads, over the vessel, modeled by Fourier Series. The results in the axisymmetric model are taken in terms of linearized stresses, obtained in some circumferential positions and for each position, in some sections along the vessel. Using the ASME Code (Section III, Division 1, Sub-section NB) the stresses are within the allowable limits. In order to draw some conclusions about stress linearization, the membrane plus bending stresses (Pl + Pb) are obtained and compared in some sections, using three different methods. (author)
Hot Wire Measurements in a Axisymmetric Shear Layer with Swirl
Ewing, D.; Pollard, A.
1996-11-01
It is well known that the introduction of swirl in an axisymmetric jet can influence the development of and mixing in the near field of the jet. Recent efforts to compute this flow have demonstrated that the development of the near field is dependent on parameters at the jet outlet other than distribution of the swirl component, such as the distribution the mean radial velocity (Xai, J.L., Smith, B.L., Benim, A. C., Schmidli, J., and Yadigaroglu, G. (1996) Influence of Boundary Conditions on Swirling Flow in Combustors, Proc. ASME Fluid. Eng. Div. Summer Meeting), San Diego, Ca., July 7-11.. An experimental rig has been designed to produce co-axial round and annular swirling jets with uniform outlet conditions in each flow. The flow rate and swirl component from each of these jets can be controlled independently and the rig can be configured to produce both co- and counter-swirling flows. Thus, the rig can be used to carry out an extensive investigation of the effect of swirl on the development of axisymmetric flows. The key design features of the rig and the first sets of hot-wire measurements in the shear layer will be reported here.
Theory and computation of general force balance in non-axisymmetric tokamak equilibria
Park, Jong-Kyu; Logan, Nikolas; Wang, Zhirui; Kim, Kimin; Boozer, Allen; Liu, Yueqiang; Menard, Jonathan
2014-10-01
Non-axisymmetric equilibria in tokamaks can be effectively described by linearized force balance. In addition to the conventional isotropic pressure force, there are three important components that can strongly contribute to the force balance; rotational, anisotropic tensor pressure, and externally given forces, i.e. ∇ --> p + ρv-> . ∇ --> v-> + ∇ --> . Π + f-> = j-> × B-> , especially in, but not limited to, high β and rotating plasmas. Within the assumption of nested flux surfaces, Maxwell equations and energy minimization lead to the modified-generalized Newcomb equation for radial displacements with simple algebraic relations for perpendicular and parallel displacements, including an inhomogeneous term if any of the forces are not explicitly dependent on displacements. The general perturbed equilibrium code (GPEC) solves this force balance consistent with energy and torque given by external perturbations. Local and global behaviors of solutions will be discussed when ∇ --> . Π is solved by the semi-analytic code PENT and will be compared with MARS-K. Any first-principle transport code calculating ∇ --> . Π or f-> , e.g. POCA, can also be incorporated without demanding iterations. This work was supported by DOE Contract DE-AC02-09CH11466.
Axisymmetric tandem mirror stabilized by a magnetic limiter
International Nuclear Information System (INIS)
Kesner, J.; Post, R.S.; Lane, B.
1985-06-01
In order to stabilize MHD-like, fast growing m = 1 fluctuations in the central cell of a tandem mirror we propose the introduction of a magnetic limiter. The magnetic limiter would create a ring null in the magnetic field. Electrons which enter the null can stream azimuthally and thereby ''short-circuit'' m = 1 fluctuations. Some pressure could be maintained on the separatrix flux surface by locating the null on a local magnetic maxima or by axial plugging. This scheme introduces the possibility of a fully axisymmetric tandem mirror
A high-precision algorithm for axisymmetric flow
Directory of Open Access Journals (Sweden)
A. Gokhman
1995-01-01
Full Text Available We present a new algorithm for highly accurate computation of axisymmetric potential flow. The principal feature of the algorithm is the use of orthogonal curvilinear coordinates. These coordinates are used to write down the equations and to specify quadrilateral elements following the boundary. In particular, boundary conditions for the Stokes' stream-function are satisfied exactly. The velocity field is determined by differentiating the stream-function. We avoid the use of quadratures in the evaluation of Galerkin integrals, and instead use splining of the boundaries of elements to take the double integrals of the shape functions in closed form. This is very accurate and not time consuming.
Numerical determination of axisymmetric toroidal magnetohydrodynamic equilibria
International Nuclear Information System (INIS)
Johnson, J.L.; Dalhed, H.E.; Greene, J.M.
1978-07-01
Numerical schemes for the determination of stationary axisymmetric toroidal equilibria appropriate for modeling real experimental devices are given. Iterative schemes are used to solve the elliptic nonlinear partial differential equation for the poloidal flux function psi. The principal emphasis is on solving the free boundary (plasma-vacuum interface) equilibrium problem where external current-carrying toroidal coils support the plasma column, but fixed boundary (e.g., conducting shell) cases are also included. The toroidal current distribution is given by specifying the pressure and either the poloidal current or the safety factor profiles as functions of psi. Examples of the application of the codes to tokamak design at PPPL are given
Axisymmetric force-free states and relaxation of a spheroidal spheromak
International Nuclear Information System (INIS)
Throumoulopoulos, G.N.; Pantis, G.
1990-01-01
Axisymmetric force-free equilibrium eigenstates for a prolate as well as an oblate spheroidal Spheromak with arbitrary elongation are obtained. In the framework of the Woltjer-Taylor relaxation theory the relaxed states are also identified. A simple hypothesis for the relaxation process is introduced, which implies that the plasma relaxes from multitoroidal formations to a singly toroidal configuration, in qualitative agreement with experimental results. (author)
Axisymmetric force-free states and relaxation of a spheroidal spheromak
International Nuclear Information System (INIS)
Throumoulopoulos, G.N.; Pantis, G.
1990-01-01
Axisymmetric force-free equilibrium eigenstates for a prolate as well as an oblate spheroidal spheromak with arbitrary elongation are obtained. In the framework of the Woltjer-Taylor relaxation theory the relaxed states are also identified. A simple hypothesis for the relaxation process is introduced which implies that the plasma relaxes from multitoroidal formations to a singly toroidal configuration in qualitative agreement with experimental results. (Author)
Numerical methods for axisymmetric and 3D nonlinear beams
Pinton, Gianmarco F.; Trahey, Gregg E.
2005-04-01
Time domain algorithms that solve the Khokhlov--Zabolotzskaya--Kuznetsov (KZK) equation are described and implemented. This equation represents the propagation of finite amplitude sound beams in a homogenous thermoviscous fluid for axisymmetric and fully three dimensional geometries. In the numerical solution each of the terms is considered separately and the numerical methods are compared with known solutions. First and second order operator splitting are used to combine the separate terms in the KZK equation and their convergence is examined.
Nonlinear to Linear Elastic Code Coupling in 2-D Axisymmetric Media.
Energy Technology Data Exchange (ETDEWEB)
Preston, Leiph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-08-01
Explosions within the earth nonlinearly deform the local media, but at typical seismological observation distances, the seismic waves can be considered linear. Although nonlinear algorithms can simulate explosions in the very near field well, these codes are computationally expensive and inaccurate at propagating these signals to great distances. A linearized wave propagation code, coupled to a nonlinear code, provides an efficient mechanism to both accurately simulate the explosion itself and to propagate these signals to distant receivers. To this end we have coupled Sandia's nonlinear simulation algorithm CTH to a linearized elastic wave propagation code for 2-D axisymmetric media (axiElasti) by passing information from the nonlinear to the linear code via time-varying boundary conditions. In this report, we first develop the 2-D axisymmetric elastic wave equations in cylindrical coordinates. Next we show how we design the time-varying boundary conditions passing information from CTH to axiElasti, and finally we demonstrate the coupling code via a simple study of the elastic radius.
Characterization of a medium-sized washer-gun for an axisymmetric mirror
Yi, Hongshen; Liu, Ming; Shi, Peiyun; Yang, Zhida; Zhu, Guanghui; Lu, Quanming; Sun, Xuan
2018-04-01
A new medium-sized washer gun is developed for a plasma start-up in a fully axisymmetric mirror. The gun is positioned at the east end of the Keda Mirror with AXisymmetricity facility and operated in the pulsed mode with an arc discharging time of 1.2 ms and a typical arc current of 8.5 kA with 1.5 kV discharge voltage. To optimize the operation, a systematic scan of the neutral pressure, the arc voltage, the bias voltage on a mesh grid 6 cm in front of the gun and an end electrode located on the west end of mirror, and the mirror ratio was performed. The streaming plasma was measured with triple probes in the three mirror cells and a diamagnetic loop in the central cell. Floating potential measurements suggest that the plasma could be divided into streaming and mirror-confined plasmas. The floating potential for the streaming plasma is negative, with an electric field pointing inwards. The mirror-confined plasma has a typical lifetime of 0.5 ms.
Globalization, financial capitalism, and corporate social responsibility: Structural tensions
David Barbosa Ramírez; Christian Medina López; Myriam Vargas López
2014-01-01
Globalization and financial capitalism keep a synergy in a global context whose problems such as environmental degradation, social inequity, economic crises and corruption are intensified. Corporate Social Responsibility emerges as a mechanism that seeks to mitigate some of these problems, although its effectiveness and impact today are challenged. The system which globalization, financial capitalism and social responsibility are a part of, is currently facing a number of structural tensions ...
International Nuclear Information System (INIS)
Todd, A.M.M.; Phillips, M.W.
1986-04-01
A numerical code called GARFIELD has been developed to calculate the structure of ICRF electric fields in axisymmetric mirrors. It is being used to investigate ICRF wave structure of central cells of tandem mirror experiments. Fields are solved on a 2-D grid in the axial and radial directions. This permits us to study the effect that axial as well as radial variations of the magnetic field and density have on ICRF wave propagation and absorption. Much of this time frame was spent writing the code and refining the numerics. Initial calculations have been completed for the Phaedrus tandem mirror. These show that there is an evanescent fast wave structure in the radial direction, a standing wave formation in the axial direction, and a small amount of propagating ion cyclotron wave towards a shallow magnetic beach in the center of the mirror. In general, the fields peak on the outside which would show that the resulting pondermotive force would tend to stabilize the plasma
Global Cities, Ownership Structures, and Location Choice
DEFF Research Database (Denmark)
Geisler Asmussen, Christian; Nielsen, Bo Bernhard; Goerzen, Anthony
2018-01-01
Purpose: In this paper, we develop a more nuanced view of subnational location choice with a particular focus on global cities. We argue that multinational firms may use global cities to establish bridgeheads—subsidiaries at intermediate levels of the ownership chain that enable further internati......Purpose: In this paper, we develop a more nuanced view of subnational location choice with a particular focus on global cities. We argue that multinational firms may use global cities to establish bridgeheads—subsidiaries at intermediate levels of the ownership chain that enable further...... of these investments are associated with micro-location choices in a host country. Findings: We find that there are substantial differences between the types, roles, activities, and geographic origins of the firms locating in different areas, and in the ownership structures spanning them. We propose that this has...... managerial and theoretical implications which may be understood based on an organizing framework describing a tradeoff between the pursuit of global connectivity and local density on the one hand, and cost control on the other. Research limitations/implications: Empirical work on foreign location choices...
Propagation of a hybrid inferior wave in axisymmetrical plasma
International Nuclear Information System (INIS)
Fivaz, M.; Appert, K.; Krlin, L.
1990-05-01
The linear propagation of hybrid inferior waves in an axisymmetrical plasma (magnetohydrodynamic equilibrium of the Soloviev type) has been numerically simulated. The evolution of k // (component of the wave vector k parallel to the magnetic field B), important for current drive modelling, has been studied as a function of the geometric parameters of the equilibrium: aspect ratio, ellipticity and triangularity. The results show that k // depends abruptly on the parameters; the engendered structures are very rich. Two mechanisms by which k // increases have been shown: the 'resonance' occurring in small bands of the space of the parameters and which is associated with trajectories in (R,Z) near stabilization; a stochastic evolution resembling diffusion in equlibriums of very high triangularity. However, a strong increase of k // of a part of the waves, susceptible of engendering a current in the plasma, has only been observed in a minority of cases. In literature current drive experiments have been reported which work and whose parameters are a priori such that our model cannot be expected to show the desired growth of k // . Consequently, our model, which is similar to normally used models, does not explain the current drive. 5 refs., 16 figs
Thin circular cylinder under axisymmetrical thermal and mechanical loading
International Nuclear Information System (INIS)
Arnaudeau, F.; Zarka, J.; Gerij, J.
1977-01-01
A special purpose computer code (Ratch) was developed to analyse a thin circular cylinder subjected to axisymmetrical mechanical and thermal loadings. The Mendelson's approach of this problem is followed. Classical Kirchoff-Love hypothesis of thin shells is used and a state of plane stress is assumed. Space integrations are performed by Gaussian quadrature in the axial direction and by Simpson's one third rule throughout the thickness. Thermoelastic-plastic constitutive equations are solved with an implicit scheme (Nguyen). Thermovisco-plastic constitutive equations are solved with an explicit time integration scheme (Treanor's algorithm especially fitted). A Bree type diagram is obtained for an axial step of temperature which varies cyclically and a sustained constant axial load. The material behavior is assumed perfectly plastic and creep effect is not considered. Results show that the domain where ratchetting occurs is reduced when compared with the domain predicted by the Bree diagram. To investigate the effect of material hardening the authors verify Halphen's Theorem which states that a structure made of material with kinematic hardening behavior and constant properties with temperature will always shake down to a periodic behavior. (Auth.)
EURDYN, Nonlinear Transient Analysis of Structure with Dynamic Loads
International Nuclear Information System (INIS)
Donea, J.; Giuliani, S.; Halleux, J.P.
1987-01-01
1 - Description of program or function: The EURDYN computer codes are under development at JRC-Ispra since 1973 for the simulation of non- linear dynamic response of fast-reactor components submitted to impulsive loading due to abnormal working conditions. They are thus mainly used in reactor safety analysis but can apply to other fields. Indeed the codes compute the elasto-plastic transient response of 2-D and thin 3-D structures submitted to fast dynamic loading generated by explosions, impacts... and represented by time dependent pressures, concentrated loads and prescribed displacements, or by initial speeds. Two releases of the structural computer codes EURDYN 01 (2-D beams and triangles and axisymmetric conical shells and triangular tori), 02 (axisymmetric and 2-D quadratic iso-parametric elements) and 03 (triangular plate elements) have already been produced in 1976(1) and 1980(2). They include material (elasto-plasticity using the classical flow theory approach) and geometrical (large displacements and rotations treated by a co-rotational technique) nonlinearities. The present version (Release 3) has been completed mid-1982 and is documented in EUR 8357 EN. The new features of Release 3, as compared to the former ones, roughly consist in: - full large strain capability for 9-node iso-parametric elements (EURDYN 02), - generalized array dimensions, - introduction of the radial return algorithm for elasto-plastic material modelling, - extension of the energy check facility to the case of prescribed displacements, - possible interface to a post-processing package including time plot facilities (TPLOT). The theoretical aspects can be found in refs. 2,4,5,6,7,8. 2 - Method of solution: - Finite element space discretization. - Explicit time integration. - Lumped masses. - EURDYN 01: 2-D co-rotational formulation including constant strain triangles (plane or axisymmetric), beams and conical shells, this last element being particularly useful for the study of thin
Global Scale Periodic Responses in Saturn’s Magnetosphere
Jia, Xianzhe; Kivelson, Margaret G.
2017-10-01
Despite having an axisymmetric internal magnetic field, Saturn’s magnetosphere exhibits periodic modulations in a variety of properties at periods close to the planetary rotation period. While the source of the periodicity remains unidentified, it is evident from Cassini observations that much of Saturn’s magnetospheric structure and dynamics is dominated by global-scale responses to the driving source of the periodicity. We have developed a global MHD model in which a rotating field-aligned current system is introduced by imposing vortical flows in the high-latitude ionosphere in order to simulate the magnetospheric periodicities. The model has been utilized to quantitatively characterize various periodic responses in the magnetosphere, such as the displacement of the magnetopause and bow shock and flapping of the tail plasma sheet, all of which show quantitative agreement with Cassini observations. One of our model predictions is periodic release of plasmoids in the tail that occurs preferentially in the midnight-to-dawn local time sector during each rotation cycle. Here we present detailed analysis of the periodic responses seen in our simulations focusing on the properties of plasmoids predicted by the model, including their spatial distribution, occurrence frequency, and mass loss rate. We will compare these modeled parameters with published Cassini observations, and discuss their implications for interpreting in-situ measurements.
Berloff, Natalia G.; Roberts, Paul H.
2004-01-01
The stability of the axisymmetric solitary waves of the Gross-Pitaevskii (GP) equation is investigated. The Implicitly Restarted Arnoldi Method for banded matrices with shift-invert was used to solve the linearised spectral stability problem. The rarefaction solitary waves on the upper branch of the Jones-Roberts dispersion curve are shown to be unstable to axisymmetric infinitesimal perturbations, whereas the solitary waves on the lower branch and all two-dimensional solitary waves are linea...
Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models
Rosenthal, C. S.
1992-01-01
Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.
On solution of Maxwell's equations in axisymmetric domains with edges. Part I: Theoretical aspects
International Nuclear Information System (INIS)
Nkemzi, Boniface
2003-10-01
In this paper we present the basic mathematical tools for treating boundary value problems for the Maxwell's equations in three-dimensional axisymmetric domains with reentrant edges by means of partial Fourier analysis. We consider the decomposition of the classical and regularized time-harmonic three-dimensional Maxwell's equations into variational equations in the plane meridian domain of the axisymmetric domain and define suitable weighted Sobolev spaces for their treatment. The trace properties of these spaces on the rotational axis and some properties of the solutions are proved, which are important for further numerical treatment, e.g. by the finite-element method. Particularly, a priori estimates of the solutions of the reduced system are given and the asymptotic behavior of these solutions near reentrant corners of the meridian domain is explicitly described by suitable singular functions. (author)
VANDERVEGT, W; VANDERMEI, HC; BUSSCHER, HJ
Axisymmetric drop shape analysis by profile (ADSA-P) is a technique developed in colloid and surface science to simultaneously determine the contact angle and liquid surface tension from the profile of a droplet resting on a solid surface. In this paper is described how ADSA-P can be employed to
An axisymmetric PFEM formulation for bottle forming simulation
Ryzhakov, Pavel B.
2017-01-01
A numerical model for bottle forming simulation is proposed. It is based upon the Particle Finite Element Method (PFEM) and is developed for the simulation of bottles characterized by rotational symmetry. The PFEM strategy is adapted to suit the problem of interest. Axisymmetric version of the formulation is developed and a modified contact algorithm is applied. This results in a method characterized by excellent computational efficiency and volume conservation characteristics. The model is validated. An example modelling the final blow process is solved. Bottle wall thickness is estimated and the mass conservation of the method is analysed.
Global Analysis of RNA Secondary Structure in Two Metazoans
Directory of Open Access Journals (Sweden)
Fan Li
2012-01-01
Full Text Available The secondary structure of RNA is necessary for its maturation, regulation, processing, and function. However, the global influence of RNA folding in eukaryotes is still unclear. Here, we use a high-throughput, sequencing-based, structure-mapping approach to identify the paired (double-stranded RNA [dsRNA] and unpaired (single-stranded RNA [ssRNA] components of the Drosophila melanogaster and Caenorhabditis elegans transcriptomes, which allows us to identify conserved features of RNA secondary structure in metazoans. From this analysis, we find that ssRNAs and dsRNAs are significantly correlated with specific epigenetic modifications. Additionally, we find key structural patterns across protein-coding transcripts that indicate that RNA folding demarcates regions of protein translation and likely affects microRNA-mediated regulation of mRNAs in animals. Finally, we identify and characterize 546 mRNAs whose folding pattern is significantly correlated between these metazoans, suggesting that their structure has some function. Overall, our findings provide a global assessment of RNA folding in animals.
Soil-structure interaction for transient loads due to safety relief valve discharges
International Nuclear Information System (INIS)
Tseng, W.S.; Tsai, N.C.
1978-01-01
Dynamic responses of BWR Mark II containment structures subjected to axisymmetric transient pressure loadings due to simultaneous safety relief valve discharges were investigated using finite element analysis, including the soil-structure interaction effect. To properly consider the soil-structure interaction effect, a simplified lumped parameter foundation model and axisymmetric finite element foundation model with viscous boundary impedance are used. Analytical results are presented to demonstrate the effectiveness of the simplified foundation model and to exhibit the dynamic response behavior of the structure as the transient loading frequency and the foundation rigidity vary. The impact of the dynamic structural response due to this type of loading on the equipment design is also discussed. (Auth.)
Preserving spherical symmetry in axisymmetric coordinates for diffusion problems
International Nuclear Information System (INIS)
Brunner, T. A.; Kolev, T. V.; Bailey, T. S.; Till, A. T.
2013-01-01
Persevering symmetric solutions, even in the under-converged limit, is important to the robustness of production simulation codes. We explore the symmetry preservation in both a continuous nodal and a mixed finite element method. In their standard formulation, neither method preserves spherical solution symmetry in axisymmetric (RZ) coordinates. We propose two methods, one for each family of finite elements, that recover spherical symmetry for low-order finite elements on linear or curvilinear meshes. This is a first step toward understanding achieving symmetry for higher-order elements. (authors)
WKB theory for high-n modes in axisymmetric toroidal plasmas
International Nuclear Information System (INIS)
Dewar, R.L.; Chance, M.S.; Glasser, A.H.; Greene, J.M.; Frieman, E.A.
1979-09-01
It is demonstrated that the low-frequency, k/sub parallel//k/sub perpendicular/ approx. = 0 normal modes of an axisymmetric plasma, at large but finite toroidal mode number n, can be obtained by solving a novel WKB problem involving an infinite number of branches. Formulae for the frequencies of periodic normal modes are derived. The analysis is performed in the context of an ideal MHD model, and comparison is made with numerical ballooning mode results
Structure and evolution of the global seafood trade network
Gephart, Jessica A.; Pace, Michael L.
2015-12-01
The food production system is increasingly global and seafood is among the most highly traded commodities. Global trade can improve food security by providing access to a greater variety of foods, increasing wealth, buffering against local supply shocks, and benefit the environment by increasing overall use efficiency for some resources. However, global trade can also expose countries to external supply shocks and degrade the environment by increasing resource demand and loosening feedbacks between consumers and the impacts of food production. As a result, changes in global food trade can have important implications for both food security and the environmental impacts of production. Measurements of globalization and the environmental impacts of food production require data on both total trade and the origin and destination of traded goods (the network structure). While the global trade network of agricultural and livestock products has previously been studied, seafood products have been excluded. This study describes the structure and evolution of the global seafood trade network, including metrics quantifying the globalization of seafood, shifts in bilateral trade flows, changes in centrality and comparisons of seafood to agricultural and industrial trade networks. From 1994 to 2012 the number of countries trading in the network remained relatively constant, while the number of trade partnerships increased by over 65%. Over this same period, the total quantity of seafood traded increased by 58% and the value increased 85% in real terms. These changes signify the increasing globalization of seafood products. Additionally, the trade patterns in the network indicate: increased influence of Thailand and China, strengthened intraregional trade, and increased exports from South America and Asia. In addition to characterizing these network changes, this study identifies data needs in order to connect seafood trade with environmental impacts and food security outcomes.
Association of structural global brain network properties with intelligence in normal aging.
Directory of Open Access Journals (Sweden)
Florian U Fischer
Full Text Available Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60-85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience.
Association of Structural Global Brain Network Properties with Intelligence in Normal Aging
Fischer, Florian U.; Wolf, Dominik; Scheurich, Armin; Fellgiebel, Andreas
2014-01-01
Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60–85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R) and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient) were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience. PMID:24465994
Elastic layer under axisymmetric indentation and surface energy effects
Intarit, Pong-in; Senjuntichai, Teerapong; Rungamornrat, Jaroon
2018-04-01
In this paper, a continuum-based approach is adopted to investigate the contact problem of an elastic layer with finite thickness and rigid base subjected to axisymmetric indentation with the consideration of surface energy effects. A complete Gurtin-Murdoch surface elasticity is employed to consider the influence of surface stresses. The indentation problem of a rigid frictionless punch with arbitrary axisymmetric profiles is formulated by employing the displacement Green's functions, derived with the aid of Hankel integral transform technique. The problem is solved by assuming the contact pressure distribution in terms of a linear combination of admissible functions and undetermined coefficients. Those coefficients are then obtained by employing a collocation technique and an efficient numerical quadrature scheme. The accuracy of proposed solution technique is verified by comparing with existing solutions for rigid indentation on an elastic half-space. Selected numerical results for the indenters with flat-ended cylindrical and paraboloidal punch profiles are presented to portray the influence of surface energy effects on elastic fields of the finite layer. It is found that the presence of surface stresses renders the layer stiffer, and the size-dependent behavior of elastic fields is observed in the present solutions. In addition, the surface energy effects become more pronounced with smaller contact area; thus, the influence of surface energy cannot be ignored in the analysis of indentation problem especially when the indenter size is very small such as in the case of nanoindentation.
Aerodynamics characteristic of axisymmetric surface protuberance in supersonic regime
Qamar, Adnan; Sanghi, Sanjeev
2012-01-01
The present work deals with the problem of an axi-symmetric surface protuberance mounted on a spherical nosed body of revolution. The numerical computations are carried out for laminar supersonic viscous flow for trapezoidal shape axi-symmetric protuberances. A free stream Mach number ranging from 3 to 8 in steps of 1 at a fixed free stream Reynolds number of 1.8x10(4) has been used in the present study. The steady solutions are obtained using a time marching approach. A newly developed Particle Velocity Upwinding (PVU) scheme has been used for the computation. The spatial flow pattern exhibits a strong bow shock in front of the hemispherical nose, which engulfs the entire base body. Near the protuberance, the fluid particle decelerates due to the adverse pressure created by the protuberance and thus the flow separates in front of the protuberance. This point of separation is found to be a function of Mach number and the protuberance shape. A low-pressure expansion region dominates the base region of the obstacle. The reattachment point for the base separation is also a function of Mach number. As the Mach number is increased the reattachment point shifts toward the protuberances base. A weak recompression shock is also seen in the base, which affects the separated zone behind the protuberance. The important design parameters such as skin friction, heat transfer, drag, and surface pressure coefficients are reported extensively.
On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders
Wu, Bin; Su, Yipin; Liu, Dongying; Chen, Weiqiu; Zhang, Chuanzeng
2018-05-01
Soft materials can be designed with a functionally graded (FG) property for specific applications. Such material inhomogeneity can also be found in many soft biological tissues whose functionality is only partly understood to date. In this paper, we analyze the axisymmetric guided wave propagation in a pressurized FG elastomeric hollow cylinder. The cylinder is subjected to a combined action of axial pre-stretch and pressure difference applied to the inner and outer cylindrical surfaces. We consider both torsional waves and longitudinal waves propagating in the FG cylinder made of incompressible isotropic elastomer, which is characterized by the Mooney-Rivlin strain energy function but with the material parameters varying with the radial coordinate in an affine way. The pressure difference generates an inhomogeneous deformation field in the FG cylinder, which dramatically complicates the superimposed wave problem described by the small-on-large theory. A particularly efficient approach is hence employed which combines the state-space formalism for the incremental wave motion with the approximate laminate or multi-layer technique. Dispersion relations for the two types of axisymmetric guided waves are then derived analytically. The accuracy and convergence of the proposed approach is validated numerically. The effects of the pressure difference, material gradient, and axial pre-stretch on both the torsional and the longitudinal wave propagation characteristics are discussed in detail through numerical examples. It is found that the frequency of axisymmetric waves depends nonlinearly on the pressure difference and the material gradient, and an increase in the material gradient enhances the capability of the pressure difference to adjust the wave behavior in the FG cylinder. This work provides a theoretical guidance for characterizing FG soft materials by in-situ ultrasonic nondestructive evaluation and for designing tunable waveguides via material tailoring along
Material density measurements from dynamic flash x-ray radiographs using axisymmetric tomography
International Nuclear Information System (INIS)
Fugelso, E.
1981-03-01
The axisymmetric version of the tomographic x-ray reconstruction procedures has been utilized to determine the material density for the impact of a cylinder on a steel plate. Derivations of the reconstruction algorithms relating x-ray radiographic intensities to the material densities are presented. Effects of noise, point spread functions, and motion blur are minimized
Axisymmetric modeling of ultrashort-pulse laser interactions with thin metal film
Directory of Open Access Journals (Sweden)
E. Majchrzak
2011-10-01
Full Text Available The hyperbolic two-temperature model is used in order to describe the heat propagation in metal film subjected to an ultrashort-pulse laser heating. An axisymmetric heat soureceewith Gaussian temporeal and spatial distributions has been taken into account. At the stage of numerical computations the finite difference method is used. In the final part of the paper the examples of computations are shown.
Foster, Richard W.
1992-01-01
Extensively axisymmetric and non-axisymmetric Single Stage To Orbit (SSTO) vehicles are considered. The information is presented in viewgraph form and the following topics are presented: payload comparisons; payload as a percent of dry weight - a system hardware cost indicator; life cycle cost estimations; operations and support costs estimation; selected engine type; and rocket engine specific impulse calculation.
Global plastic models for computerized structural analysis
International Nuclear Information System (INIS)
Roche, R.L.; Hoffmann, A.
1977-01-01
In many types of structures, it is possible to use generalized stresses (like membrane forces, bending moment, torsion moment...) to define a yield surface for a part of the structure. Analysis can be achieved by using the HILL's principle and a hardening rule. The whole formulation is said 'Global Plastic Model'. Two different global models are used in the CEASEMT system for structural analysis, one for shell analysis and the other for piping analysis (in plastic or creep field). In shell analysis the generalized stresses chosen are the membrane forces and bending (including torsion) moments. There is only one yield condition for a normal to the middle surface and no integration along the thickness is required. In piping analysis, the choice of generalized stresses is bending moments, torsional moment, hoop stress and tension stress. There is only a set of stresses for a cross section and no integration over the cross section area is needed. Connected strains are axis curvature, torsion, uniform strains. The definition of the yield surface is the most important item. A practical way is to use a diagonal quadratic function of the stress components. But the coefficients are depending of the shape of the pipe element, especially for curved segments. Indications will be given on the yield functions used. Some examples of applications in structural analysis are added to the text
Fusion-product transport in axisymmetric tokamaks: losses and thermalization
International Nuclear Information System (INIS)
Hively, L.M.
1980-01-01
High-energy fusion-product losses from an axisymmetric tokamak plasma are studied. Prompt-escape loss fluxes (i.e. prior to slowing down) are calculated including the non-separable dependence of flux as a function of poloidal angle and local angle-of-incidence at the first wall. Fusion-product (fp) thermalization and heating are calculated assuming classical slowing down. The present analytical model describes fast ion orbits and their distribution function in realistic, high-β, non-circular tokamak equilibria. First-orbit losses, trapping effects, and slowing-down drifts are also treated
Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides
DEFF Research Database (Denmark)
Bæk, David; Willatzen, Morten
2008-01-01
A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solved...... by expanding solutions in terms of cross-sectional eigenfunctions following Stevenson’s method. A transfer matrix can be easily constructed from simple model responses of a given waveguide and later used in computing the response to any complex wave input. Energy losses due to heat conduction and viscous...
Abbas, S. S.; Nasif, M. S.; Said, M. A. M.; Kadhim, S. K.
2017-10-01
Structural stresses developed in an artificial bileaflet mechanical heart valve (BMHV) due to pulsed blood flow may cause valve failure due to yielding. In this paper, von-Mises stresses are computed and compared for BMHV placed in two types of aortic root geometries that are aortic root with axisymmetric sinuses and with axisymmetric bulb, at different physiological blood flow rates. With BMHV placed in an aortic root with axisymmetric sinuses, the von-Mises stresses developed in the valve were found to be up to 47% higher than BMHV placed in aortic root with axisymmetric bulb under similar physiological conditions. High velocity vectors and therefore high von-Mises stresses have been observed for BMHV placed in aortic root with axisymmetric sinuses, that can lead to valve failure.
International Nuclear Information System (INIS)
Shibata, Masaru; Sekiguchi, Yu-ichirou
2004-01-01
Axisymmetric numerical simulations of rotating stellar core collapse to a neutron star are performed in the framework of full general relativity. The so-called Cartoon method, in which the Einstein field equations are solved in Cartesian coordinates and the axisymmetric condition is imposed around the y=0 plane, is adopted. The hydrodynamic equations are solved in cylindrical coordinates (on the y=0 plane in Cartesian coordinates) using a high-resolution shock-capturing scheme with maximum grid size (2500,2500). A parametric equation of state is adopted to model collapsing stellar cores and neutron stars following Dimmelmeier, Font, and Mueller. It is found that the evolution of the central density during the collapse, bounce, and formation of protoneutron stars agrees well with that in the work of Dimmelmeier, Font, and Mueller in which an approximate general relativistic formulation is adopted. This indicates that such an approximation is appropriate for following axisymmetric stellar core collapses and the subsequent formation of protoneutron stars. Gravitational waves are computed using a quadrupole formula. It is found that the waveforms are qualitatively in good agreement with those by Dimmelmeier, Font, and Mueller. However, quantitatively, two waveforms do not agree well. The possible reasons for the disagreement are discussed
International Nuclear Information System (INIS)
Parsa, Z.; Serafini, L.
1992-04-01
This note provides a sketch of the formalism used for the Integration of Transients in Axisymmetrical Cavities for Accelerators, (ITACA). Application to study the BNL Photocathode Gun via the code ITACA is also included
Axisymmetric Magnetic Mirror Fusion-Fission Hybrid
Energy Technology Data Exchange (ETDEWEB)
Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)
2011-05-13
The achieved performance of the gas dynamic trap version of magnetic mirrors and today’s technology we believe are sufficient with modest further efforts for a neutron source for material testing (Q=P_{fusion}/P_{input}~0.1). The performance needed for commercial power production requires considerable further advances to achieve the necessary high Q>>10. An early application of the mirror, requiring intermediate performance and intermediate values of Q~1 are the hybrid applications. The Axisymmetric Mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of the natural divertors in the form of end tanks. This level of physics performance has the virtue of low risk and only modest R&D needed and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~ 80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. Simple circular superconducting coils are based on today’s technology. The positive ion neutral beams are similar to existing units but designed for steady state. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, microstability of sloshing ions. Burning fission reactor wastes by fissioning actinides (transuranics: Pu, Np, Am, Cm, .. or just minor actinides: Np, Am, Cm, …) in the hybrid will multiply fusion’s energy by a factor of ~10 or more and diminish the Q needed to less than 1 to overcome the cost of recirculating power for good economics. The economic value of destroying actinides by fissioning is rather low based on either the cost of long-term storage or even deep geologic disposal so most of the revenues of hybrids will come from electrical power. Hybrids that obtain revenues from
Jet flow issuing from an axisymmetric pipe-cavity-orifice nozzle
Directory of Open Access Journals (Sweden)
Broučková Zuzana
2016-01-01
Full Text Available An axisymmetric air jet flow is experimentally investigated under passive flow control. The jet issues from a pipe of the inner diameter and length of 10 mm and 150 mm which is equipped with an axisymmetric cavity at the pipe end. The cavity operates as a resonator creating self-sustained acoustic excitations of the jet flow. A mechanism of excitations is rather complex – in comparison with a common Helmholtz resonator. The experiments were performed using flow visualization, microphone measurements and time-mean velocity measurements by the Pitot probe. The power spectral density (PSD and the sound pressure level (SPL were evaluated from microphone measurements. The jet Reynolds number ranged Re = 1600–18 000. Distinguishable peaks in PSD indicated a function of the resonator. Because the most effective acoustic response was found at higher Re, a majority of experiments focused on higher Re regime. The results demonstrate effects of the passive control on the jet behavior. Fluid mixing and velocity decay along the axis is intensified. It causes shortening of the jet transition region. On the other hand, an inverse proportionality of the velocity decay (u ~ 1/x in the fully developed region is not changed. The momentum and kinetic energy fluxes decrease more intensively in the controlled jets in comparison with common jets.
Axisymmetric magnetic mirrors for plasma confinement. Recent development and perspectives
International Nuclear Information System (INIS)
Kruglyakov, E.P.; Dimov, G.I.; Ivanov, A.A.; Koidan, V.S.
2003-01-01
Mirrors are the only one class of fusion systems which completely differs topologically from the systems with closed magnetic configurations. At present, three modern types of different mirror machines for plasma confinement and heating exist in Novosibirsk (Gas Dynamic Trap,- GDT, Multi-mirror,- GOL-3, and Tandem Mirror,- AMBAL-M). All these systems are attractive from the engineering point of view because of very simple axisymmetric geometry of magnetic configurations. In the present paper, the status of different confinement systems is presented. The experiments most crucial for the mirror concept are described such as a demonstration of different principles of suppression of electron heat conductivity (GDT, GOL-3), finding of MHD stable regimes of plasma confinement in axisymmetric geometry of magnetic field (GDT, AMBAL-M), an effective heating of a dense plasma by relativistic electron beam (GOL-3), observation of radial diffusion of quiescent plasma with practically classical diffusion coefficient (AMBAL-M), etc. It should be mentioned that on the basis of the GDT it is possible to make a very important intermediate step. Using 'warm' plasma and oblique injection of fast atoms of D and T one can create a powerful 14 MeV neutron source with a moderate irradiation area (about 1 square meter) and, accordingly, with low tritium consumption. The main plasma parameters achieved are presented and the future perspectives of different mirror machines are outlined. (author)
The computation of multiple MHD equilibria in axisymmetric and straight geometry
International Nuclear Information System (INIS)
Thomas, C.Ll.
1979-01-01
The details of the numerical methods used in codes for computing MHD equilibria in discrete conductor configurations are described with both code users and code writers in mind. Results produced by the codes have been successfully verified against analytic results and independent computations. The axisymmetric code has proved to be a valuable diagnostic aid for the TOSCA experiment. The user images of the codes are described in the appendices. (author)
An Axisymmetric View of Concentric Eyewall Evolution in Hurricane Rita (2005)
2012-08-01
of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 1237–1259. Martinez, Y., G. Brunet, and M. K. Yau, 2010: On the dynamics of two-dimensional hurricane ...An Axisymmetric View of Concentric Eyewall Evolution in Hurricane Rita (2005) MICHAEL M. BELL Naval Postgraduate School, Monterey, California, and... Hurricane Research Division, Miami, Florida WEN-CHAU LEE National Center for Atmospheric Research,* Boulder, Colorado (Manuscript received 23 June 2011, in
International Nuclear Information System (INIS)
Karabut, P.V.; Chugreev, Yu.V.
1989-01-01
The relativistic theory of gravitation (RTG), which is constructed on the basis of Minkowski spacetime, the geometrization principle, and the notion of the gravitational field var-phi mn as a physical field in the spirit of Faraday and Maxwell, explains all known gravitational experiments and gives a new prediction for the evolution of the universe, collapse, etc. The RTG determines the structure of the gravitational field as a field possessing spins 2 and 0 and all conservation laws for energy, momentum, and angular momentum. An exact solution of the complete simultaneous system of equations of the relativistic theory of gravitation and Maxwell's equations is found in the axisymmetric case for an electrically charged rotating body. The uniqueness of this solution is proved
Gill, Stephen; Benatar, Solomon R
2016-08-29
Ilona Kickbusch's thought provoking editorial is criticized in this commentary, partly because she fails to refer to previous critical work on the global conditions and policies that sustain inequality, poverty, poor health and damage to the biosphere and, as a result, she misreads global power and elides consideration of the fundamental historical structures of political and material power that shape agency in global health governance. We also doubt that global health can be improved through structures and processes of multilateralism that are premised on the continued reproduction of the ecologically myopic and socially unsustainable market civilization model of capitalist development that currently prevails in the world economy. This model drives net financial flows from poor to rich countries and from the poor to the affluent and super wealthy individuals. By contrast, we suggest that significant progress in global health requires a profound and socially just restructuring of global power, greater global solidarity and the "development of sustainability." © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
RAXBOD- INVISCID TRANSONIC FLOW OVER AXISYMMETRIC BODIES
Keller, J. D.
1994-01-01
The problem of axisymmetric transonic flow is of interest not only because of the practical application to missile and launch vehicle aerodynamics, but also because of its relation to fully three-dimensional flow in terms of the area rule. The RAXBOD computer program was developed for the analysis of steady, inviscid, irrotational, transonic flow over axisymmetric bodies in free air. RAXBOD uses a finite-difference relaxation method to numerically solve the exact formulation of the disturbance velocity potential with exact surface boundary conditions. Agreement with available experimental results has been good in cases where viscous effects and wind-tunnel wall interference are not important. The governing second-order partial differential equation describing the flow potential is replaced by a system of finite difference equations, including Jameson's "rotated" difference scheme at supersonic points. A stretching is applied to both the normal and tangential coordinates such that the infinite physical space is mapped onto a finite computational space. The boundary condition at infinity can be applied directly and there is no need for an asymptotic far-field solution. The system of finite difference equations is solved by a column relaxation method. In order to obtain both rapid convergence and any desired resolution, the relaxation is performed iteratively on successively refined grids. Input to RAXBOD consists of a description of the body geometry, the free stream conditions, and the desired resolution control parameters. Output from RAXBOD includes computed geometric parameters in the normal and tangential directions, iteration history information, drag coefficients, flow field data in the computational plane, and coordinates of the sonic line. This program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6600 computer with an overlayed central memory requirement of approximately 40K (octal) of 60 bit words. Optional plotted output
Concrete containment integrity software: Procedure manual and guidelines
International Nuclear Information System (INIS)
Dameron, R.A.; Dunham, R.S.; Rashid, Y.R.
1990-06-01
This report is an executive summary describing the concrete containment analysis methodology and software that was developed in the EPRI-sponsored research to predict the overpressure behavior and leakage of concrete containments. A set of guidelines has been developed for performing reliable 2D axisymmetric concrete containment analysis with a cracking concrete constitutive model developed by ANATECH. The software package developed during this research phase is designed for use in conjunction with ABAQUS-EPGEN; it provides the concrete model and automates axisymmetric grid preparation, and rebar generation for 2D and 3D grids. The software offers the option of generating pre-programmed axisymmetric grids that can be tailored to a specific containment by input of a few geometry parameters. The goal of simplified axisymmetric analysis within the framework of the containment leakage prediction methodology is to compute global liner strain histories at various locations within the containment. A simplified approach for generating peak liner strains at structural discontinuities as function of the global liner strains has been presented in a separate leakage criteria document; the curves for strain magnification factors and liner stress triaxiality factors found in that document are intended to be applied to the global liner strain histories developed through global 2D analysis. This report summarizes the procedures for global 2D analysis and gives an overview of the constitutive model and the special purpose concrete containment analysis software developed in this research phase. 8 refs., 10 figs
Comparative study of turbulence model performance for axisymmetric sudden expansion flow
International Nuclear Information System (INIS)
Bae, Youngmin; Kim, Young In; Kim, Keung Koo; Yoon, Juhyeon
2013-01-01
In this study, the performance of turbulence models in predicting the turbulent flow in an axisymmetric sudden expansion with an expansion ratio of 4 is assessed for a Reynolds number of 5.6 Χ 10 4 . The comparisons show that the standard k-ε and RSM models provide the best agreement with the experimental data, whereas the standard k-ω model gives poor predictions. Owing to its computational efficiency, the Reynolds Averaged Navier-Stokes (RANS) approach has been widely used for the prediction of turbulent flows and associated pressure losses in a variety of internal flow systems such as a diffuser, orifice, converging nozzle, and pipes with sudden expansion. However, the lack of a general turbulence model often leads to limited applications of a RANS approach, i. e., the accuracy and validity of solutions obtained from RANS equations vary with the turbulence model, flow regime, near-wall treatment, and configuration of the problem. In light of the foregoing, a large amount of turbulence research has been conducted to assess the performance of existing turbulence models for different flow fields. In this paper, the turbulent flow in an axisymmetric sudden expansion is numerically investigated for a Reynolds number of 5.6 Χ 10 4 , with the aim of examining the performance of several turbulence models
On the impact of a concave nosed axisymmetric body on a free surface
Mathai, Varghese; Govardhan, R.N.; Arakeri, V.H.
2015-01-01
We report on an experimental study of the vertical impact of a concave nosed axisymmetric body on a free surface. Previous studies have shown that bodies with a convex nose, like a sphere, produce a well defined splash with a relatively large cavity behind the model. In contrast, we find that with a
Global structure of a polynomial autonomous system on the plane
International Nuclear Information System (INIS)
Nguyen Van Chau.
1991-10-01
This note is to study the global behaviour of a polynomial autonomous system on the plane with divergence non-positive outside a bounded set. It is shown that in some certain conditions the global structure of such system can be simple. The main result here can be seen as an improvement of the result of Olech and Meister concerning with the global asymptotical stable conjecture of Markur and Yamable and the Jacobian Conjecture. (author). 13 refs
Whether diffusion in axisymmetric confinement systems is intrinsically ambipolar
International Nuclear Information System (INIS)
Kovrizhnykh, L.M.
1997-01-01
The problem of diffusion ambipolarity in axisymmetric magnetic systems is analyzed. The question is discussed of whether diffusion is intrinsically ambipolar (and if so, then in which particular cases) or the ambipolarity constraint is an additional independent condition, which does not follow from the equations of motion and, hence, contains new information. It is shown that the second assertion is correct: strictly speaking, diffusion can never be intrinsically ambipolar, and, in the presence of several different mechanisms causing electron and ion losses across the magnetic field, only the total fluxes, but not the partial ones, should satisfy the ambipolarity constraint. (UK)
Kim, Daejoong; Gil, Y. S.; Chung, TaeWon; Chung, Suk-Ho
2009-01-01
The stabilization characteristics of premixed flames in an axisymmetric curved-wall jet burner have been experimentally investigated. This burner utilized the Coanda effect on top of a burner tip. The initially spherical burner tip was modified to a
From x-ray telescopes to neutron scattering: Using axisymmetric mirrors to focus a neutron beam
International Nuclear Information System (INIS)
Khaykovich, B.; Gubarev, M.V.; Bagdasarova, Y.; Ramsey, B.D.; Moncton, D.E.
2011-01-01
We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in X-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We implemented a system containing four nested Ni mirror pairs, which was tested by the focusing of a polychromatic neutron beam at the MIT Reactor. In addition, we have carried out extensive ray-tracing simulations of the mirrors and their performance in different situations. The major advantages of the Wolter mirrors are nesting for large angular collection and aberration-free performance. We discuss how these advantages can be utilized to benefit various neutron scattering methods, such as imaging, SANS, and time-of-flight spectroscopy.
On Perturbation Solutions for Axisymmetric Bending Boundary Values of a Deep Thin Spherical Shell
Directory of Open Access Journals (Sweden)
Rong Xiao
2014-01-01
Full Text Available On the basis of the general theory of elastic thin shells and the Kirchhoff-Love hypothesis, a fundamental equation for a thin shell under the moment theory is established. In this study, the author derives Reissner’s equation with a transverse shear force Q1 and the displacement component w. These basic unknown quantities are derived considering the axisymmetry of the deep, thin spherical shell and manage to constitute a boundary value question of axisymmetric bending of the deep thin spherical shell under boundary conditions. The asymptotic solution is obtained by the composite expansion method. At the end of this paper, to prove the correctness and accuracy of the derivation, an example is given to compare the numerical solution by ANSYS and the perturbation solution. Meanwhile, the effects of material and geometric parameters on the nonlinear response of axisymmetric deep thin spherical shell under uniform external pressure are also analyzed in this paper.
MHD stability analysis of axisymmetric surface current model tokamaks close to the spheromak regime
International Nuclear Information System (INIS)
Honma, Toshihisa; Kaji, Ikuo; Fukai, Ichiro; Kito, Masafumi.
1984-01-01
In the toroidal coordinates, a stability analysis is presented for very low-aspect-ratio tokamaks with circular cross section which is described by a surface current model (SCM) of axisymmetric equilibria. The energy principle determining the stability of plasma is treated without any expansion of aspect ratio. Numerical results show that, owing to the occurrence of the non-axisymmetric (n=1) unstable modes, there exists no MHD-stable ideal SCM spheromak characterized by zero external toroidal vacuum field. Instead, a stable spheromak-type plasma which comes to the ideal SCM spheromak is provided by the configuration with a very weak external toroidal field. Close to the spheromak regime (1.0 1 aspect ratio< = 1.1), the minimum safety factor and the critical β-values increase mo notonically with aspect ratio decreasing from a large value, and curves of βsub(p) versus β in the marginal stability approach to an ideal SCM spheromak line βsub(p)=β. (author)
Directory of Open Access Journals (Sweden)
Stephen Gill
2017-04-01
Full Text Available Ilona Kickbusch’s thought provoking editorial is criticized in this commentary, partly because she fails to refer to previous critical work on the global conditions and policies that sustain inequality, poverty, poor health and damage to the biosphere and, as a result, she misreads global power and elides consideration of the fundamental historical structures of political and material power that shape agency in global health governance. We also doubt that global health can be improved through structures and processes of multilateralism that are premised on the continued reproduction of the ecologically myopic and socially unsustainable market civilization model of capitalist development that currently prevails in the world economy. This model drives net financial flows from poor to rich countries and from the poor to the affluent and super wealthy individuals. By contrast, we suggest that significant progress in global health requires a profound and socially just restructuring of global power, greater global solidarity and the “development of sustainability.”
Global search in photoelectron diffraction structure determination using genetic algorithms
Energy Technology Data Exchange (ETDEWEB)
Viana, M L [Departamento de Fisica, Icex, UFMG, Belo Horizonte, Minas Gerais (Brazil); Muino, R Diez [Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Soares, E A [Departamento de Fisica, Icex, UFMG, Belo Horizonte, Minas Gerais (Brazil); Hove, M A Van [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); Carvalho, V E de [Departamento de Fisica, Icex, UFMG, Belo Horizonte, Minas Gerais (Brazil)
2007-11-07
Photoelectron diffraction (PED) is an experimental technique widely used to perform structural determinations of solid surfaces. Similarly to low-energy electron diffraction (LEED), structural determination by PED requires a fitting procedure between the experimental intensities and theoretical results obtained through simulations. Multiple scattering has been shown to be an effective approach for making such simulations. The quality of the fit can be quantified through the so-called R-factor. Therefore, the fitting procedure is, indeed, an R-factor minimization problem. However, the topography of the R-factor as a function of the structural and non-structural surface parameters to be determined is complex, and the task of finding the global minimum becomes tough, particularly for complex structures in which many parameters have to be adjusted. In this work we investigate the applicability of the genetic algorithm (GA) global optimization method to this problem. The GA is based on the evolution of species, and makes use of concepts such as crossover, elitism and mutation to perform the search. We show results of its application in the structural determination of three different systems: the Cu(111) surface through the use of energy-scanned experimental curves; the Ag(110)-c(2 x 2)-Sb system, in which a theory-theory fit was performed; and the Ag(111) surface for which angle-scanned experimental curves were used. We conclude that the GA is a highly efficient method to search for global minima in the optimization of the parameters that best fit the experimental photoelectron diffraction intensities to the theoretical ones.
Numerical analysis of laser ablation using the axisymmetric two-temperature model
Dziatkiewicz, Jolanta; Majchrzak, Ewa
2018-01-01
Laser ablation of the axisymmetric micro-domain is analyzed. To describe the thermal processes occurring in the micro-domain the two-temperature hyperbolic model supplemented by the boundary and initial conditions is used. This model takes into account the phase changes of material (solid-liquid and liquid-vapour) and the ablation process. At the stage of numerical computations the finite difference method with staggered grid is used. In the final part the results of computations are shown.
International Nuclear Information System (INIS)
Takada, Shoji; Shintani, Atsuhiko; Ito, Tomohiro; Fujita, Katsuhisa
2011-01-01
Flow-induced vibration may occur in the structures such as elastic beams subjected to annular flow in the narrow passage. Once the flow-induced vibration occurs, vibration amplitude becomes larger, consequently it causes a lot of troubles such as fatigue or failure in mechanical structures. In this paper, for the purpose to avoid these troubles, the active control of vibration of an axisymmetric elastic beam subjected to annular flow is investigated. An air-pressured actuator is attached on the surface of the circular cylinder for the vibrational control. As the shape of the actuator changes by control, the gap width in narrow passage changes, which causes the change of the fluid pressure. Therefore, the vibration of the fluid-structure coupled system can be suppressed. The fluid-structure coupled equation based on the Euler-Bernoulli type of partial differential equation and the Navier-Stokes equations is analytically derived including control terms. By applying the optimal control law to the coupled system, the unstable behavior is stabilized. The stability of the coupled system is investigated by eigenvalue analyses of controlled coupled equations. Numerical simulations are performed to investigate the efficiency of the proposed control method. (author)
Evaluation of variability in high-resolution protein structures by global distance scoring
Directory of Open Access Journals (Sweden)
Risa Anzai
2018-01-01
Full Text Available Systematic analysis of the statistical and dynamical properties of proteins is critical to understanding cellular events. Extraction of biologically relevant information from a set of high-resolution structures is important because it can provide mechanistic details behind the functional properties of protein families, enabling rational comparison between families. Most of the current structural comparisons are pairwise-based, which hampers the global analysis of increasing contents in the Protein Data Bank. Additionally, pairing of protein structures introduces uncertainty with respect to reproducibility because it frequently accompanies other settings for superimposition. This study introduces intramolecular distance scoring for the global analysis of proteins, for each of which at least several high-resolution structures are available. As a pilot study, we have tested 300 human proteins and showed that the method is comprehensively used to overview advances in each protein and protein family at the atomic level. This method, together with the interpretation of the model calculations, provide new criteria for understanding specific structural variation in a protein, enabling global comparison of the variability in proteins from different species.
Evaluation of variability in high-resolution protein structures by global distance scoring.
Anzai, Risa; Asami, Yoshiki; Inoue, Waka; Ueno, Hina; Yamada, Koya; Okada, Tetsuji
2018-01-01
Systematic analysis of the statistical and dynamical properties of proteins is critical to understanding cellular events. Extraction of biologically relevant information from a set of high-resolution structures is important because it can provide mechanistic details behind the functional properties of protein families, enabling rational comparison between families. Most of the current structural comparisons are pairwise-based, which hampers the global analysis of increasing contents in the Protein Data Bank. Additionally, pairing of protein structures introduces uncertainty with respect to reproducibility because it frequently accompanies other settings for superimposition. This study introduces intramolecular distance scoring for the global analysis of proteins, for each of which at least several high-resolution structures are available. As a pilot study, we have tested 300 human proteins and showed that the method is comprehensively used to overview advances in each protein and protein family at the atomic level. This method, together with the interpretation of the model calculations, provide new criteria for understanding specific structural variation in a protein, enabling global comparison of the variability in proteins from different species.
Sridhar, S.; Touma, Jihad R.
2017-02-01
We study the resonant relaxation (RR) of an axisymmetric, low-mass (or Keplerian) stellar disc orbiting a more massive black hole (MBH). Our recent work on the general kinetic theory of RR is simplified in the standard manner by the neglect of 'gravitational polarization' and applied to a razor-thin axisymmetric disc. The wake of a stellar orbit is expressed in terms of the angular momenta exchanged with other orbits, and used to derive a kinetic equation for RR under the combined actions of self-gravity, 1 PN and 1.5 PN general relativistic effects of the MBH and an arbitrary external axisymmetric potential. This is a Fokker-Planck equation for the stellar distribution function (DF), wherein the diffusion coefficients are given self-consistently in terms of contributions from apsidal resonances between pairs of stellar orbits. The physical kinetics is studied for the two main cases of interest. (1) 'Lossless' discs in which the MBH is not a sink of stars, and disc mass, angular momentum and energy are conserved: we prove that general H-functions can increase or decrease during RR, but the Boltzmann entropy is (essentially) unique in being a non-decreasing function of time. Therefore, secular thermal equilibria are maximum entropy states, with DFs of the Boltzmann form; the two-ring correlation function at equilibrium is computed. (2) Discs that lose stars to the MBH through an 'empty loss cone': we derive expressions for the MBH feeding rates of mass, angular momentum and energy in terms of the diffusive fluxes at the loss-cone boundaries.
Plasma equilibria and stationary flows in axisymmetric systems. Pt. 1
International Nuclear Information System (INIS)
Zelazny, R.; Stankiewicz, R.; Potempski, S.
1988-05-01
During discharges within a tokamak device such as JET fluctuations are observed in the plasma, of plasma density, temperature, electric potential and of the magnetic field. These fluctuations have complicated structure and are linked with different kinds of instabilities. However, it is not clear which instabilities are most important in determining the behaviour of the plasma. A comprehensive numerical theory which can predict the effect of the instabilities on the transport of plasma in axisymmetric systems has been sought using the static Grad-Shafranov-Schlueter (SGSS) equation as a basis. However, the static equation was over simplified for the situation in JET with additional heating giving rise to large toroidal flows, and an extended equation (EGSS) was developed. The results of the study include the discovery of algebraic branches of solutions to the EGSS equation even for very small poloidal flows, solutions to the inverse problem for the SGSS and EGSS equations using Fourier decomposition, classification of the boundary condition at the magnetic axis, demonstration of a visible effect of the poloidal flow on the separation of the density surface and the magnetic surface an indication of the existence of multiple branches of solutions to the EGSS and SGSS equations and their relation to stability properties. (U.K.)
Comparative study of turbulence model performance for axisymmetric sudden expansion flow
Energy Technology Data Exchange (ETDEWEB)
Bae, Youngmin; Kim, Young In; Kim, Keung Koo; Yoon, Juhyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2013-10-15
In this study, the performance of turbulence models in predicting the turbulent flow in an axisymmetric sudden expansion with an expansion ratio of 4 is assessed for a Reynolds number of 5.6 Χ 10{sup 4}. The comparisons show that the standard k-ε and RSM models provide the best agreement with the experimental data, whereas the standard k-ω model gives poor predictions. Owing to its computational efficiency, the Reynolds Averaged Navier-Stokes (RANS) approach has been widely used for the prediction of turbulent flows and associated pressure losses in a variety of internal flow systems such as a diffuser, orifice, converging nozzle, and pipes with sudden expansion. However, the lack of a general turbulence model often leads to limited applications of a RANS approach, i. e., the accuracy and validity of solutions obtained from RANS equations vary with the turbulence model, flow regime, near-wall treatment, and configuration of the problem. In light of the foregoing, a large amount of turbulence research has been conducted to assess the performance of existing turbulence models for different flow fields. In this paper, the turbulent flow in an axisymmetric sudden expansion is numerically investigated for a Reynolds number of 5.6 Χ 10{sup 4}, with the aim of examining the performance of several turbulence models.
Axisymmetric Vibration of Piezo-Lemv Composite Hollow Multilayer Cylinder
Directory of Open Access Journals (Sweden)
E. S. Nehru
2012-01-01
Full Text Available Axisymmetric vibration of an infinite piezolaminated multilayer hollow cylinder made of piezoelectric layers of 6 mm class and an isotropic LEMV (Linear Elastic Materials with Voids layers is studied. The frequency equations are obtained for the traction free outer surface with continuity conditions at the interfaces. Numerical results are carried out for the inner, middle, and outer hollow piezoelectric layers bonded by LEMV (It is hypothetical material layers and the dispersion curves are compared with that of a similar 3-layer model and of 3 and 5 layer models with inner, middle, and outer hollow piezoelectric layers bonded by CFRP (Carbon fiber reinforced plastics.
Assessing the vertical structure of baroclinic tidal currents in a global model
Timko, Patrick; Arbic, Brian; Scott, Robert
2010-05-01
Tidal forcing plays an important role in many aspects of oceanography. Mixing, transport of particulates and internal wave generation are just three examples of local phenomena that may depend on the strength of local tidal currents. Advances in satellite altimetry have made an assessment of the global barotropic tide possible. However, the vertical structure of the tide may only be observed by deployment of instruments throughout the water column. Typically these observations are conducted at pre-determined depths based upon the interest of the observer. The high cost of such observations often limits both the number and the length of the observations resulting in a limit to our knowledge of the vertical structure of tidal currents. One way to expand our insight into the baroclinic structure of the ocean is through the use of numerical models. We compare the vertical structure of the global baroclinic tidal velocities in 1/12 degree HYCOM (HYbrid Coordinate Ocean Model) to a global database of current meter records. The model output is a subset of a 5 year global simulation that resolves the eddying general circulation, barotropic tides and baroclinic tides using 32 vertical layers. The density structure within the simulation is both vertically and horizontally non-uniform. In addition to buoyancy forcing the model is forced by astronomical tides and winds. We estimate the dominant semi-diurnal (M2), and diurnal (K1) tidal constituents of the model data using classical harmonic analysis. In regions where current meter record coverage is adequate, the model skill in replicating the vertical structure of the dominant diurnal and semi-diurnal tidal currents is assessed based upon the strength, orientation and phase of the tidal ellipses. We also present a global estimate of the baroclinic tidal energy at fixed depths estimated from the model output.
The surface effect on axisymmetric wave propagation in piezoelectric cylindrical shells
Directory of Open Access Journals (Sweden)
Yunying Zhou
2015-02-01
Full Text Available Based on the surface piezoelectricity theory and first-order shear deformation theory, the surface effect on the axisymmetric wave propagating in piezoelectric cylindrical shells is analyzed. The Gurtin–Murdoch theory is utilized to get the nontraditional boundary conditions and constitutive equations of the surface, in company with classical governing equations of the bulk, from which the basic formulations are obtained. Numerical results show that the surface layer has a profound effect on wave characteristics in nanostructure at a higher mode.
Theoretical analysis of the vibration of axisymmetric liquid bridges of arbitrary shape
Energy Technology Data Exchange (ETDEWEB)
Montanero, J.M. [Departamento de Electronica e Ingenieria Electromecanica, Universidad de Extremadura, 06071 Badajoz (Spain)
2003-01-01
A liquid bridge consists of a mass of liquid sustained by the action of capillary forces between two parallel disks. The dynamics of these liquid columns has been extensively analysed both theoretically and experimentally over the last decades. Many of the studies have focused on the dynamical response of cylindrical liquid bridges subjected to the action of an oscillatory microgravity field due to, for instance, an in-phase vibration of the supporting disks. There have been fewer studies dealing with the vibration of axisymmetric liquid bridges of arbitrary shape. In this paper the dynamics of rotating inviscid axisymmetric liquid bridges is analysed considering the combined effect of residual gravity, the inequality of the disks and the liquid bridge volume. The results are calculated numerically by using the one-dimensional Cosserat model and the full three-dimensional description. The excitation is assumed to be of small amplitude and harmonic, so that the theoretical models are linearized and the analysis is performed in the frequency domain. The details of the numerical methods proposed are discussed. Comparison between the values of the first resonance frequency obtained from both models shows an excellent agreement for long liquid bridges, the discrepancies increasing as the value of the slenderness decreases. (orig.)
Local-global alignment for finding 3D similarities in protein structures
Zemla, Adam T [Brentwood, CA
2011-09-20
A method of finding 3D similarities in protein structures of a first molecule and a second molecule. The method comprises providing preselected information regarding the first molecule and the second molecule. Comparing the first molecule and the second molecule using Longest Continuous Segments (LCS) analysis. Comparing the first molecule and the second molecule using Global Distance Test (GDT) analysis. Comparing the first molecule and the second molecule using Local Global Alignment Scoring function (LGA_S) analysis. Verifying constructed alignment and repeating the steps to find the regions of 3D similarities in protein structures.
Muggleton, J. M.; Rustighi, E.; Gao, Y.
2016-09-01
Waves that propagate at low frequencies in buried pipes are of considerable interest in a variety of practical scenarios, for example leak detection, remote pipe detection, and pipeline condition assessment and monitoring. Particularly useful are the n = 0, or axisymmetric, modes in which there is no displacement (or pressure) variation over the pipe cross section. Previous work has focused on two of the three axisymmetric wavetypes that can propagate: the s = 1, fluid- dominated wave; and the s = 2, shell-dominated wave. In this paper, the third axisymmetric wavetype, the s = 0 torsional wave, is studied. Whilst there is a large body of research devoted to the study of torsional waves and their use for defect detection in pipes at ultrasonic frequencies, little is known about their behaviour and possible exploitation at lower frequencies. Here, a low- frequency analytical dispersion relationship is derived for the torsional wavenumber for a buried pipe from which both the wavespeed and wave attenuation can be obtained. How the torsional waves subsequently radiate to the ground surface is then investigated, with analytical expressions being presented for the ground surface displacement above the pipe resulting from torsional wave motion within the pipe wall. Example results are presented and, finally, how such waves might be exploited in practice is discussed.
International Nuclear Information System (INIS)
Hsieh, B.J.
1977-01-01
The instability of axisymmetric shells has been used in engineering fields as a safety device such as the rupture discs used in the LMFBR (Liquid Metal Fast Breeder Reactor) design to relieve the excessive pressure caused by the water and sodium reaction when there is a leak in the piping system. Hence, the analysis of the instability of shells under time varying loading is becoming more and more important. However, notorious discrepancy has been observed between various analytical predications and experimental results for the buckling of shells. Various theories have been proposed to explain these discrepancies. Most of these theories are concerned with two aspects: initial imperfections and asymmetric responses. Both theories do narrow the gap between theoretical and experimental results; however, the remaining discrepancy is still not small. Other possible causes of this discrepancy have to be studied- among them, the boundary conditions. It has been pointed out that the slip at the boundary may have noticeable effect on the transient behavior of a plate. In this paper, the effect of various boundary conditions on the dynamic instability of axisymmetric shells is studied using the numerical discretization technique--convective finite element method
NOVA: a nonvariational code for solving MHD stability of axisymmetric toroidal plasmas
International Nuclear Information System (INIS)
Cheng, C.Z.; Chance, M.S.
1986-04-01
A nonvariational approach for determining the ideal MHD stability of axisymmetric toroidal confinement systems is presented. The code (NOVA) employs cubic B-spline finite elements and Fourier expansion in a general flux coordinate (psi, theta, zeta) system. Better accuracy and faster convergence were obtained in comparison with the variational PEST and ERATO codes. The nonvariational approach can be extended to problems having non-Hermitian eigenmode equations where variational energy principles cannot be obtained
Axisymmetric Eigenmodes of Spheroidal Pure Electron Plasmas
Kawai, Yosuke; Saitoh, Haruhiko; Yoshida, Zensho; Kiwamoto, Yasuhito
2010-11-01
The axisymmetric electrostatic eigenmodes of spheroidal pure electron plasmas have been studied experimentally. It is confirmed that the observed spheroidal plasma attains a theoretically expected equilibrium density distribution, with the exception of a low-density halo distribution surrounding the plasma. When the eigenmode frequency observed for the plasma is compared with the frequency predicted by the dispersion relation derived under ideal conditions wherein the temperature is zero and the boundary is located at an infinite distance from the plasma, it is observed that the absolute value of the observed frequency is systematically higher than the theoretical prediction. Experimental examinations and numerical calculations indicate that the upward shift of the eigenmode frequency cannot be accounted for solely by the finite temperature effect, but is significantly affected by image charges induced on the conducting boundary and the resulting distortion of the density profile from the theoretical expectation.
Multiscale global identification of porous structures
Hatłas, Marcin; Beluch, Witold
2018-01-01
The paper is devoted to the evolutionary identification of the material constants of porous structures based on measurements conducted on a macro scale. Numerical homogenization with the RVE concept is used to determine the equivalent properties of a macroscopically homogeneous material. Finite element method software is applied to solve the boundary-value problem in both scales. Global optimization methods in form of evolutionary algorithm are employed to solve the identification task. Modal analysis is performed to collect the data necessary for the identification. A numerical example presenting the effectiveness of proposed attitude is attached.
Global embedding of the Kerr black hole event horizon into hyperbolic 3-space
International Nuclear Information System (INIS)
Gibbons, G. W.; Herdeiro, C. A. R.; Rebelo, C.
2009-01-01
An explicit global and unique isometric embedding into hyperbolic 3-space, H 3 , of an axi-symmetric 2-surface with Gaussian curvature bounded below is given. In particular, this allows the embedding into H 3 of surfaces of revolution having negative, but finite, Gaussian curvature at smooth fixed points of the U(1) isometry. As an example, we exhibit the global embedding of the Kerr-Newman event horizon into H 3 , for arbitrary values of the angular momentum. For this example, considering a quotient of H 3 by the Picard group, we show that the hyperbolic embedding fits in a fundamental domain of the group up to a slightly larger value of the angular momentum than the limit for which a global embedding into Euclidean 3-space is possible. An embedding of the double-Kerr event horizon is also presented, as an example of an embedding that cannot be made global.
Li, Li; Li, YanYan; Yan, Xukai
2018-05-01
We classify all (- 1)-homogeneous axisymmetric no-swirl solutions of incompressible stationary Navier-Stokes equations in three dimension which are smooth on the unit sphere minus the south and north poles, parameterizing them as a four dimensional surface with boundary in appropriate function spaces. Then we establish smoothness properties of the solution surface in the four parameters. The smoothness properties will be used in a subsequent paper where we study the existence of (- 1)-homogeneous axisymmetric solutions with non-zero swirl on S2 ∖ { S , N }, emanating from the four dimensional solution surface.
Risk Assessment Method for Offshore Structure Based on Global Sensitivity Analysis
Directory of Open Access Journals (Sweden)
Zou Tao
2012-01-01
Full Text Available Based on global sensitivity analysis (GSA, this paper proposes a new risk assessment method for an offshore structure design. This method quantifies all the significances among random variables and their parameters at first. And by comparing the degree of importance, all minor factors would be negligible. Then, the global uncertainty analysis work would be simplified. Global uncertainty analysis (GUA is an effective way to study the complexity and randomness of natural events. Since field measured data and statistical results often have inevitable errors and uncertainties which lead to inaccurate prediction and analysis, the risk in the design stage of offshore structures caused by uncertainties in environmental loads, sea level, and marine corrosion must be taken into account. In this paper, the multivariate compound extreme value distribution model (MCEVD is applied to predict the extreme sea state of wave, current, and wind. The maximum structural stress and deformation of a Jacket platform are analyzed and compared with different design standards. The calculation result sufficiently demonstrates the new risk assessment method’s rationality and security.
Capital Structure and Firm Performance During Global Financial Crisis
Khodavandloo, Marzieh; Zakaria, Zukarnain; Nassir, Annuar Md.
2017-01-01
The relationship between capital structure and firm performance has been extensively investigated in the recent decades. However, only few studies investigate this relationship during financial crisis. Recent global financial crisis provides an opportunity to examine the effect of the crisis on the relationship between capital structure and firm performance. Therefore, this paper aims to investigate this relationship based on 45 listed companies involved in trading and services sector of the...
Effective Energy Methods for Global Optimization for Biopolymer Structure Prediction
National Research Council Canada - National Science Library
Shalloway, David
1998-01-01
.... Its main strength is that it uncovers and exploits the intrinsic "hidden structures" of biopolymer energy landscapes to efficiently perform global minimization using a hierarchical search procedure...
Flow of Polymer Melts in Plane- and Axi-symmetric Converging Dies
DEFF Research Database (Denmark)
Lauridsen, Carsten Linding; Kjær, Erik Michael; Haudrum, Jan
1997-01-01
The extensional flow has considerable influence on the pressure loss in converging flows, which are present in both extrusion and injection moulding. Both plane- and axi-symmetric converging flows have been studied with LDPE, HDPE and PS. The transient extensional viscosities are determined in al...... for the LDPE and the PS melts. Further more, the pressure losses are characterised with the Deborah number in which the characteristic time of the material is shear rate dependent and the characteristic rime of the now is Hencky strain rate dependent....
Axial turbomachine modelling with a 1D axisymmetric approach
International Nuclear Information System (INIS)
Tauveron, Nicolas; Saez, Manuel; Ferrand, Pascal; Leboeuf, Francis
2007-01-01
This work concerns the design and safety analysis of direct cycle gas cooled reactor. The estimation of compressor and turbine performances in transient operations is of high importance for the designer. The first goal of this study is to provide a description of compressor behaviour in unstable conditions with a better understanding than the models based on performance maps ('traditional' 0D approach). A supplementary objective is to provide a coherent description of the turbine behaviour. The turbomachine modelling approach consists in the solution of 1D axisymmetric Navier-Stokes equations on an axial grid inside the turbomachine: mass, axial momentum, circumferential momentum and total-enthalpy balances are written. Blade forces are taken into account by using compressor or turbine blade cascade steady correlations. A particular effort has been developed to generate or test correlations in low mass flow and negative mass flow regimes, based on experimental data. The model is tested on open literature cases of the gas turbine aircraft community. For compressor and turbine, steady situations are fairly described, especially for medium and high mass flow rate. The dynamic behaviour of compressor is also quite well described, even in unstable operation (surge): qualitative tendencies (role of plenum volume and role of throttle) and some quantitative characteristics (frequency) are in a good agreement with experimental data. The application to transient simulations of gas cooled nuclear reactors is concentrated on the hypothetical 10 in. break accident. The results point out the importance of the location of the pipe rupture in a hypothetical break event. In some detailed cases, compressor surge and back flow through the circuit can occur. In order to be used in a design phase, a simplified model of surge has also been developed. This simplified model is applied to the gas fast reactor (GFR) and compared quite favourably with 1D axisymmetric simulation results
Extracting 3D layout from a single image using global image structures.
Lou, Zhongyu; Gevers, Theo; Hu, Ninghang
2015-10-01
Extracting the pixel-level 3D layout from a single image is important for different applications, such as object localization, image, and video categorization. Traditionally, the 3D layout is derived by solving a pixel-level classification problem. However, the image-level 3D structure can be very beneficial for extracting pixel-level 3D layout since it implies the way how pixels in the image are organized. In this paper, we propose an approach that first predicts the global image structure, and then we use the global structure for fine-grained pixel-level 3D layout extraction. In particular, image features are extracted based on multiple layout templates. We then learn a discriminative model for classifying the global layout at the image-level. Using latent variables, we implicitly model the sublevel semantics of the image, which enrich the expressiveness of our model. After the image-level structure is obtained, it is used as the prior knowledge to infer pixel-wise 3D layout. Experiments show that the results of our model outperform the state-of-the-art methods by 11.7% for 3D structure classification. Moreover, we show that employing the 3D structure prior information yields accurate 3D scene layout segmentation.
Fast protein tertiary structure retrieval based on global surface shape similarity.
Sael, Lee; Li, Bin; La, David; Fang, Yi; Ramani, Karthik; Rustamov, Raif; Kihara, Daisuke
2008-09-01
Characterization and identification of similar tertiary structure of proteins provides rich information for investigating function and evolution. The importance of structure similarity searches is increasing as structure databases continue to expand, partly due to the structural genomics projects. A crucial drawback of conventional protein structure comparison methods, which compare structures by their main-chain orientation or the spatial arrangement of secondary structure, is that a database search is too slow to be done in real-time. Here we introduce a global surface shape representation by three-dimensional (3D) Zernike descriptors, which represent a protein structure compactly as a series expansion of 3D functions. With this simplified representation, the search speed against a few thousand structures takes less than a minute. To investigate the agreement between surface representation defined by 3D Zernike descriptor and conventional main-chain based representation, a benchmark was performed against a protein classification generated by the combinatorial extension algorithm. Despite the different representation, 3D Zernike descriptor retrieved proteins of the same conformation defined by combinatorial extension in 89.6% of the cases within the top five closest structures. The real-time protein structure search by 3D Zernike descriptor will open up new possibility of large-scale global and local protein surface shape comparison. 2008 Wiley-Liss, Inc.
Ideal, steady-state, axisymmetric magnetohydrodynamic equations with flow
International Nuclear Information System (INIS)
Baransky, Y.A.
1987-01-01
The motivation of this study is to gain additional understanding of the effect of rotation on the equilibrium of a plasma. The axisymmetric equilibria of ideal magnetohydrodynamics (MHD) with flow have been studied numerically and analytically. A general discussion is provided of previous work on plasmas with flow and comparisons are made to the static model. A variational principle has been derived for the two dimensional problem with comments as to appropriate boundary conditions. An inverse aspect ratio expansion has been used for a study of the toroidal flow equation for both low- and high-β. The inverse aspect ratio expansion has also been used for a study of equations with both poloidal and toroidal flow. An overview is provided of the adaptive finite-difference code which was developed to solve the full equations. (FI)
The scaling structure of the global road network.
Strano, Emanuele; Giometto, Andrea; Shai, Saray; Bertuzzo, Enrico; Mucha, Peter J; Rinaldo, Andrea
2017-10-01
Because of increasing global urbanization and its immediate consequences, including changes in patterns of food demand, circulation and land use, the next century will witness a major increase in the extent of paved roads built worldwide. To model the effects of this increase, it is crucial to understand whether possible self-organized patterns are inherent in the global road network structure. Here, we use the largest updated database comprising all major roads on the Earth, together with global urban and cropland inventories, to suggest that road length distributions within croplands are indistinguishable from urban ones, once rescaled to account for the difference in mean road length. Such similarity extends to road length distributions within urban or agricultural domains of a given area. We find two distinct regimes for the scaling of the mean road length with the associated area, holding in general at small and at large values of the latter. In suitably large urban and cropland domains, we find that mean and total road lengths increase linearly with their domain area, differently from earlier suggestions. Scaling regimes suggest that simple and universal mechanisms regulate urban and cropland road expansion at the global scale. As such, our findings bear implications for global road infrastructure growth based on land-use change and for planning policies sustaining urban expansions.
Flow of Polymer Melts in Plane- and Axi-Symmetric Converging Dies
DEFF Research Database (Denmark)
Lauridsen, Carsten Linding; Kjær, Erik Michael; Haudrum, Jan
1998-01-01
The extensional flow has considerable influence on the pressure loss in converging flows, which are present in both extrusion and injection moulding. Both plane- and axi-symmetric converging flows have been studied with LDPE, HDPE and PS. The transient extensional viscosities are determined in al...... are comparable for the LDPE and the PS melts. Furthermore, the pressure losses are characterized with the Deborah number in which the characteristic time of the material is shear rate dependent and the characteristic time of the flow is Hencky strain rate dependent....
Non-Newtonian fluid flow in an axisymmetric channel with porous wall
Directory of Open Access Journals (Sweden)
M. Hosseini
2013-12-01
Full Text Available In the present article Optimal Homotopy Asymptotic Method (OHAM is used to obtain the solutions of momentum and heat transfer equations of non-Newtonian fluid flow in an axisymmetric channel with porous wall for turbine cooling applications. Numerical method is used for validity of this analytical method and excellent agreement is observed between the solutions obtained from OHAM and numerical results. Trusting to this validity, effects of some other parameters are discussed. The results show that Nusselt number increases with increase of Reynolds number, Prandtl number and power law index.
Electrostatic axisymmetric mirror with removable spherical aberration
International Nuclear Information System (INIS)
Birmuzaev, S.B.; Serikbaeva, G.S.; Hizirova, M.A.
1999-01-01
The electrostatic axisymmetric mirror, assembled from three coaxial cylinders with an equal diameter d and under the potential v1, v2 and v3, was computed. The proportions of geometrical and electric parameters of the mirror, with which the spherical 3-order aberration may be eliminated, were determined. The computation outcomes of the case, when the focal power of the mirror is enough large and the object plane in the focus is out of its field, are presented (Fig. 1 - potentials proportion that makes elimination of the spherical aberration possible; Fig. 2 - the focus coordinates when the spherical aberration is eliminated). The geometrical values are presented by d, and the electric ones are presented by v1. The figures on the curves present a length of the second (middle) electrode. The zero point is located in the middle of the gap between the first and second electrodes The investigated mirror may be used as a lens for the transmission electron microscope
Cellular blebs: pressure-driven, axisymmetric, membrane protrusions
Woolley, Thomas E.
2013-07-16
Blebs are cellular protrusions that are used by cells for multiple purposes including locomotion. A mechanical model for the problem of pressure-driven blebs based on force and moment balances of an axisymmetric shell model is proposed. The formation of a bleb is initiated by weakening the shell over a small region, and the deformation of the cellular membrane from the cortex is obtained during inflation. However, simply weakening the shell leads to an area increase of more than 4 %, which is physically unrealistic. Thus, the model is extended to include a reconfiguration process that allows large blebs to form with small increases in area. It is observed that both geometric and biomechanical constraints are important in this process. In particular, it is shown that although blebs are driven by a pressure difference across the cellular membrane, it is not the limiting factor in determining bleb size. © 2013 Springer-Verlag Berlin Heidelberg.
Multispecies transport theory for axisymmetric rotating plasmas
International Nuclear Information System (INIS)
Tessarotto, M.; White, R.B.
1992-01-01
A reduced gyrokinetic equation is derived for a multi-species toroidal axisymmetric plasma with arbitrary toroidal differential rotation speeds and in the presence of a finite induced electric field. The kinetic equation obtained, extending previous results obtained by Hinton and Wong and by Catto, Bernstein and Tessarotto, has a form suited for transport applications, via variational techniques; in particular it exhibits the feature that all source terms, including the Spitzer source term, carrying the contribution due to the inductive electric field, appear to be acted upon by the collision operator. Moreover, the equation displays a new contribution due to ''explicit'' velocity perturbations, here proven to be consistent with transport ordering, whose evaluation appears relevant for transport calculations. In addition, general expressions are obtained for the neoclassical fluxes in terms of a variational principle, as well as for the classical ones, retaining, in both cases, the contributions due to the Spitzer's inductive terms
Direct Numerical Simulation of Hypersonic Turbulent Boundary Layer inside an Axisymmetric Nozzle
Huang, Junji; Zhang, Chao; Duan, Lian; Choudhari, Meelan M.
2017-01-01
As a first step toward a study of acoustic disturbance field within a conventional, hypersonic wind tunnel, direct numerical simulations (DNS) of a Mach 6 turbulent boundary layer on the inner wall of a straight axisymmetric nozzle are conducted and the results are compared with those for a flat plate. The DNS results for a nozzle radius to boundary-layer thickness ratio of 5:5 show that the turbulence statistics of the nozzle-wall boundary layer are nearly unaffected by the transverse curvature of the nozzle wall. Before the acoustic waves emanating from different parts of the nozzle surface can interfere with each other and undergo reflections from adjacent portions of the nozzle surface, the rms pressure fluctuation beyond the boundary layer edge increases toward the nozzle axis, apparently due to a focusing effect inside the axisymmetric configuration. Spectral analysis of pressure fluctuations at both the wall and the freestream indicates a similar distribution of energy content for both the nozzle and the flat plate, with the peak of the premultiplied frequency spectrum at a frequency of [(omega)(delta)]/U(sub infinity) approximately 6.0 inside the free stream and at [(omega)(delta)]/U(sub infinity) approximately 2.0 along the wall. The present results provide the basis for follow-on simulations involving reverberation effects inside the nozzle.
Assessing the drivers shaping global patterns of urban vegetation landscape structure.
Dobbs, C; Nitschke, C; Kendal, D
2017-08-15
Vegetation is one of the main resources involve in ecosystem functioning and providing ecosystem services in urban areas. Little is known on the landscape structure patterns of vegetation existing in urban areas at the global scale and the drivers of these patterns. We studied the landscape structure of one hundred cities around the globe, and their relation to demography (population), socioeconomic factors (GDP, Gini Index), climate factors (temperature and rain) and topographic characteristics (altitude, variation in altitude). The data revealed that the best descriptors of landscape structure were amount, fragmentation and spatial distribution of vegetation. Populated cities tend to have less, more fragmented, less connected vegetation with a centre of the city with low vegetation cover. Results also provided insights on the influence of socioeconomics at a global scale, as landscape structure was more fragmented in areas that are economically unequal and coming from emergent economies. This study shows the effects of the social system and climate on urban landscape patterns that gives useful insights for the distribution in the provision of ecosystem services in urban areas and therefore the maintenance of human well-being. This information can support local and global policy and planning which is committing our cities to provide accessible and inclusive green space for all urban inhabitants. Copyright © 2017 Elsevier B.V. All rights reserved.
DEFF Research Database (Denmark)
Brøns, Morten; Voigt, Lars Peter Køllgaard; Sørensen, Jens Nørkær
1998-01-01
Using a combination of bifurcation theory for two-dimensional dynamical systems and numerical simulations, we systematically determine the possible flow topologies of the steady vortex breakdown in axisymmetric flow in a cylindrical container with rotating end-covers. For fixed values...
Interpolation of magnetic surface functions for an axi-symmetric plasma
International Nuclear Information System (INIS)
Yamaguchi, Taiki; Maeyama, Mitsuaki
2000-01-01
Informations of the magnetic surface functions of magnetically confined plasma are indispensable for equilibrium, stability and transport analyses. In this paper, in order to identify a realistic surface functions and compare those with ones which are introduced from Taylor's relaxation theory, we propose a code to interpolate these surface functions for an axi-symmetric plasma from experimentally measured data. To confirm our code, we used the date which were analyzed from known functions given as a measured data. As a result, we have developed a code which can derive surface functions I and P. Effects of measurement error on those functions are also examined. (author)
Calculation of transport coefficients in an axisymmetric plasma
International Nuclear Information System (INIS)
Shumaker, D.E.
1977-01-01
A method of calculating the transport coefficient in an axisymmetric toroidal plasma is presented. This method is useful in calculating the transport coefficients in a Tokamak plasma confinement device. The particle density and temperature are shown to be a constant on a magnetic flux surface. Transport equations are given for the total particle flux and total energy flux crossing a closed toroidal surface. Also transport equations are given for the toroidal magnetic flux. A computer code was written to calculate the transport coefficients for a three species plasma, electrons and two species of ions. This is useful for calculating the transport coefficients of a plasma which contains impurities. It was found that the particle and energy transport coefficients are increased by a large amount, and the transport coefficients for the toroidal magnetic field are reduced by a small amount
International Nuclear Information System (INIS)
Azimi, A.; Hannani, S.K.; Farhanieh, B.
2005-01-01
In this article, a comparison between two iterative inverse techniques to solve simultaneously two unknown functions of axisymmetric transient inverse heat conduction problems in semi complex geometries is presented. The multi-block structured grid together with blocked-interface nodes is implemented for geometric decomposition of physical domain. Numerical scheme for solution of transient heat conduction equation is the finite element method with frontal technique to solve algebraic system of discrete equations. The inverse heat conduction problem involves simultaneous unknown time varying heat generation and time-space varying boundary condition estimation. Two parameter-estimation techniques are considered, Levenberg-Marquardt scheme and conjugate gradient method with adjoint problem. Numerically computed exact and noisy data are used for the measured transient temperature data needed in the inverse solution. The results of the present study for a configuration including two joined disks with different heights are compared to those of exact heat source and temperature boundary condition, and show good agreement. (author)
International Nuclear Information System (INIS)
Strait, E. J.; Park, J. K.; Marmar, E. S.; Ahn, J. W.; Berkery, J. W.; Burrell, K. H.; Canik, J. M.; Delgado-Aparicio, L.; Ferraro, N. M.; Garofalo, A. M.; Gates, D. A.; Greenwald, M.; Kim, K.; King, J. D.; Lanctot, M. J.; Lazerson, S. A.; Liu, Y. Q.; Lore, J. D.; Menard, J. E.; Nazikian, R.; Shafer, M. W.; Paz-Soldan, C.; Reiman, A. H.; Rice, J. E.; Sabbagh, S. A.; Sugiyama, L.; Turnbull, A. D.; Volpe, F.; Wang, Z. R.; Wolfe, S. M.
2014-01-01
The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10 -4 of the main axisymmetric field, such ''3D'' fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data
Energy Technology Data Exchange (ETDEWEB)
Strait, E. J. [General Atomics, San Diego, CA (United States); Park, J. -K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Marmar, E. S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ahn, J. -W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Berkery, J. W. [Columbia Univ., New York, NY (United States); Burrell, K. H. [General Atomics, San Diego, CA (United States); Canik, J. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delgado-Aparicio, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ferraro, N. M. [General Atomics, San Diego, CA (United States); Garofalo, A. M. [General Atomics, San Diego, CA (United States); Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Greenwald, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kim, K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); King, J. D. [General Atomics, San Diego, CA (United States); Lanctot, M. J. [General Atomics, San Diego, CA (United States); Lazerson, S. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Liu, Y. Q. [Culham Science Centre, Abingdon (United Kingdom). Euratom/CCFE Association; Logan, N. C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Lore, J. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menard, J. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Nazikian, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Shafer, M. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Paz-Soldan, C. [General Atomics, San Diego, CA (United States); Reiman, A. H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Rice, J. E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Sabbagh, S. A. [Columbia Univ., New York, NY (United States); Sugiyama, L. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Turnbull, A. D. [General Atomics, San Diego, CA (United States); Volpe, F. [Columbia Univ., New York, NY (United States); Wang, Z. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wolfe, S. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2014-09-30
The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10^{-4} of the main axisymmetric field, such “3D” fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data, in
Takeda, M; Hiratsuka, T; Ito, K; Finsterle, S
2011-04-25
Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an
Particle collector scoops for improved exhaust in ''axisymmetric'' devices
International Nuclear Information System (INIS)
Conn, R.W.; Wolf, G.H.
1987-11-01
Application of particle collector scoops in front of the pumping ducts of axisymmetric divertor/magnetic limiter configurations is proposed. These scoops should enclose a significant fraction of the recycling particles. The resulting increase in natural particle pressure in front of the pumping ducts leads to an improved exhaust efficiency. This can permit an extension of the operational margin for density control. Alternatively, aiming at a prescribed exhaust flow in reactor-type devices such as INTOR, the pumping ducts could be reduced in aperture, leaving valuable space for other components. The lay-out of the proposed scheme depends on the heat load on the leading edge in front of the scoop and on the deflector in front of the pumping ducts. 14 refs., 5 figs
Electron cyclotron current drive efficiency in an axisymmetric tokamak
Energy Technology Data Exchange (ETDEWEB)
Gutierrez-Tapia, C.; Beltran-Plata, M. [Instituto Nacional de Investigaciones Nucleares, Dept. de Fisica, Mexico D.F. (Mexico)
2004-07-01
The neoclassical transport theory is applied to calculate electron cyclotron current drive (ECCD) efficiency in an axisymmetric tokamak in the low-collisionality regime. The tokamak ordering is used to obtain a system of equations that describe the dynamics of the plasma where the nonlinear ponderomotive (PM) force due to high-power radio-frequency (RF) waves is included. The PM force is produced around an electron cyclotron resonant surface at a specific poloidal location. The ECCD efficiency is analyzed in the cases of first and second harmonics (for different impinging angles of the RF waves) and it is validated using experimental parameter values from TCV and T-10 tokamaks. The results are in agreement with those obtained by means of Green's function techniques. (authors)
DEFF Research Database (Denmark)
Brøns, Morten; Voigt, Lars Peter Kølgaard; Sørensen, Jens Nørkær
1999-01-01
Using a combination of bifurcation theory for two-dimensional dynamical systems and numerical simulations, we systematically determine the possible flow topologies of the steady vortex breakdown in axisymmetric flow in a cylindrical container with rotating end-covers. For fixed values of the ratio...
International Nuclear Information System (INIS)
Mueller, H.W.; Carralero, D.; Birkenmeier, G.; Conway, G.D.; Fischer, R.; Happel, T.; Manz, P.; Suttrop, W.; Wolfrum, E.
2014-01-01
In the tokamak ASDEX Upgrade the influence of a non-axisymmetric n = 2 error field on the turbulence in the far scrape-off layer of a low density L-mode discharge has been studied. There is no density pump-out with the non-axisymmetric perturbation but an increase of the scrape-off layer density at the outer midplane. While the relative ion saturation current fluctuation level in the far scrape-off layer is decreasing, the skewness rises and especially the excess kurtosis grows by a factor of 1.5-3. The frequency of intermittent events (blobs) is increasing by 50 %. Also the poloidal velocity grows with the magnetic perturbation while the typical turbulent structure size becomes smaller by a factor 5-10 about 20-25 mm outside the separatrix. The local spectral density has been calculated from a two-point measurement of the ion saturation current. It is used to derive a dispersion relation. Two poloidal propagation velocities depending on the wave number have been found. One is an upper limit for the bulk E x B velocity and the second one the lower limit of the phase velocity. There is a significant contribution of the phase velocity to the propagation speed in the far scrape-off layer. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
International Nuclear Information System (INIS)
Jardin, S.C.; Schmidt, J.A.
1998-01-01
The Tokamak Simulation Code (TSC) has been used to model a new method of feedback stabilization of the axisymmetric instability in tokamaks using driven halo (or scrape-off layer) currents. The method appears to be feasible for a wide range of plasma edge parameters. It may offer advantages over the more conventional method of controlling this instability when applied in a reactor environment. (author)
Hydrodynamic analysis and shape optimization for vertical axisymmetric wave energy converters
Zhang, Wan-chao; Liu, Heng-xu; Zhang, Liang; Zhang, Xue-wei
2016-12-01
The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber's hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisymmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion.
High spatial sampling global mode structure measurements via multichannel reflectometry in NSTX
Energy Technology Data Exchange (ETDEWEB)
Crocker, N A; Peebles, W A; Kubota, S; Zhang, J [Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, CA 90095-7099 (United States); Bell, R E; Fredrickson, E D; Gorelenkov, N N; LeBlanc, B P; Menard, J E; Podesta, M [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543-0451 (United States); Sabbagh, S A [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Tritz, K [Johns Hopkins University, Baltimore, MD 21218 (United States); Yuh, H [Nova Photonics, Princeton, NJ 08540 (United States)
2011-10-15
Global modes-including kinks and tearing modes (f <{approx} 50 kHz), toroidicity-induced Alfven eigenmodes (TAE; f {approx} 50-250 kHz) and global and compressional Alfven eigenmodes (GAE and CAE; f >{approx} 400 kHz)-play critical roles in many aspects of plasma performance. Their investigation on NSTX is aided by an array of fixed-frequency quadrature reflectometers used to determine their radial density perturbation structure. The array has been recently upgraded to 16 channels spanning 30-75 GHz (n{sub cutoff} = (1.1-6.9) x 10{sup 19} m{sup -3} in O-mode), improving spatial sampling and access to the core of H-mode plasmas. The upgrade has yielded significant new results that advance the understanding of global modes in NSTX. The GAE and CAE structures have been measured for the first time in the core of an NSTX high-power (6 MW) beam-heated H-mode plasma. The CAE structure is strongly core-localized, which has important implications for electron thermal transport. The TAE structure has been measured with greatly improved spatial sampling, and measurements of the TAE phase, the first in NSTX, show strong radial variation near the midplane, indicating radial propagation caused by non-ideal MHD effects. Finally, the tearing mode structure measurements provide unambiguous evidence of coupling to an external kink.
Global structure of Deffayet (Dvali-Gabadadze-Porrati) cosmologies
International Nuclear Information System (INIS)
Lue, Arthur
2003-01-01
We detail the global structure of the five-dimensional bulk for the cosmological evolution of Dvali-Gabadadze-Porrati brane worlds. The picture articulated here provides a framework and intuition for understanding how metric perturbations leave (and possibly reenter) the brane universe. A bulk observer sees the brane world as a relativistically expanding bubble, viewed either from the interior (in the case of the Friedmann-Lemaitre-Robertson-Walker phase) or the exterior (the self-accelerating phase). Shortcuts through the bulk in the first phase can lead to an apparent brane causality violation and provide an opportunity for the evasion of the horizon problem found in conventional four-dimensional cosmologies. Features of the global geometry in the latter phase anticipate a depletion of power for linear metric perturbations on large scales
Structural analysis of a ship on global aspect using ANSYS
Rahman, M. Muzibur; Kamol, Rajia Sultana; Islam, Reyana
2017-12-01
Ship is a complex geometry which undergoes a combination of loadings such as hydrostatic, hydrodynamic, wind, wave etc. at sea and thus adequate strength in a ship has always been one of the most challenging tasks for the ship designers. International Maritime Organization (IMO) and classification societies are providing the standards to ensure the adequacy of strength for the ship against all demands throughout its service life. Thus, structural analysis is needed to assess the overall strength of hull, and the means in this regard are based on finite element method which may be applied either local or global aspect of the ship. This paper is an attempt to carry out the structural analysis of a ship in global aspect using ANSYS software to locate the most stress concentration and deformed area, which will have ultimate effect on fatigue fracture.
On axisymmetric flow and heat transfer of Cross fluid over a radially stretching sheet
Khan, Masood; Manzur, Mehwish; ur Rahman, Masood
In this article, an analysis is made on the axisymmetric flow and heat transfer of the Cross fluid over a radially stretching sheet. The present study provides with the boundary layer equations of the Cross fluid in cylindrical polar co-ordinates. The modelled momentum and energy equations are further simplified into non-linear ordinary differential equations by applying suitable similarity transformations. The system of equation is then numerically solved by the help of well-known shooting technique. The velocity and temperature profiles are plotted for some values of the governing parameters such as power-law index, local Weissenberg number and the Prandtl number. It is found that growing values of the power-law index elevated the momentum boundary layer structures while the thermal boundary layer thickness lessened correspondingly. Further, the numerical values of the local skin friction coefficient and the local Nusselt number are tabulated for several set of physical parameters. An outstanding agreement is observed by comparing the present results with the previously reported results in the literature as a special case.
Global efficiency of structural networks mediates cognitive control in Mild Cognitive Impairment
Directory of Open Access Journals (Sweden)
Rok Berlot
2016-12-01
Full Text Available Background: Cognitive control has been linked to both the microstructure of individual tracts and the structure of whole-brain networks, but their relative contributions in health and disease remain unclear. Objective: To determine the contribution of both localised white matter tract damage and disruption of global network architecture to cognitive control, in older age and Mild Cognitive Impairment (MCI.Methods: 25 patients with MCI and 20 age, sex and intelligence-matched healthy volunteers were investigated with 3 Tesla structural magnetic resonance imaging (MRI. Cognitive control and episodic memory were evaluated with established tests. Structural network graphs were constructed from diffusion MRI-based whole-brain tractography. Their global measures were calculated using graph theory. Regression models utilized both global network metrics and microstructure of specific connections, known to be critical for each domain, to predict cognitive scores. Results: Global efficiency and the mean clustering coefficient of networks were reduced in MCI. Cognitive control was associated with global network topology. Episodic memory, in contrast, correlated with individual temporal tracts only. Relationships between cognitive control and network topology were attenuated by addition of single tract measures to regression models, consistent with a partial mediation effect. The mediation effect was stronger in MCI than healthy volunteers, explaining 23-36% of the effect of cingulum microstructure on cognitive control performance. Network clustering was a significant mediator in the relationship between tract microstructure and cognitive control in both groups. Conclusions: The status of critical connections and large-scale network topology are both important for maintenance of cognitive control in MCI. Mediation via large-scale networks is more important in patients with MCI than healthy volunteers. This effect is domain-specific, and true for cognitive
Nakiboglu, G.; Manders, H.B.M.; Hirschberg, Abraham
2012-01-01
Aeroacoustic power generation due to a self-sustained oscillation by an axisymmetric compact cavity exposed to a low-Mach-number grazing flow is studied both experimentally and numerically. The feedback effect is produced by the velocity fluctuations resulting from a coupling with acoustic standing
Secular instability of axisymmetric rotating stars to gravitational radiation reaction
International Nuclear Information System (INIS)
Managan, R.A.
1985-01-01
A generalization of the Eulerian variational principle derived by Ipser and Managan, for nonaxisymmetric neutral modes of axisymmetric fluid configurations, is developed. The principle provides a variational basis for calculating the frequencies of nonaxisymmetric normal modes proportional to e/sup i/(sigmat + mphi). A modified form of this principle, valid for sigma near 0, is also developed. The latter principle is used to locate the points where the frequency of a nonaxisymmetric normal mode of an axisymmetric rotating fluid configuration passes through zero. lt is at these points that the configuration becomes secularly unstable to gravitational radiation reaction (GRR). This is demonstrated directly by including the GRR potential and showing that the imaginary part of sigma passes through zero and becomes negative at these points. The imaginary part of the frequency is used to estimate the e-folding time of the mode. This variational principle is applied to sequences of rotating polytropes. The sequences are constructed using four rotation laws at each value of the polytropic index n = 0.5, 1.0, 1.5, 2.0, and 3.0. The values of (T/W)/sub m/, the ratio of the rotational kinetic energy to the magnitude of the gravitational potential energy at the onset of instability, and timescales for the modes with m = 2, 3, and 4 are estimated for each sequence. The value of (T/W) 2 is largely independent of the equation of state and rotation law. For m > 2, (T/W)/sub m/ decreases as the equation of state becomes softer, i.e., as the polytropic index n increases, and increases as the amount of differential rotation increases. The most striking result of this behavior occurs for uniform rotation
Development of Compact Quasi-Axisymmetric Stellarator Reactor Configurations
International Nuclear Information System (INIS)
Ku, L.P.; Zarnstorff, M.; White, R.B.; Cooper, W.A.; Sanchez, R.; Neilson, H.; Schmidt, J.A.
2003-01-01
We have started to examine the reactor potential of quasi-axisymmetric (QA) stellarators with an integrated approach that includes systems evaluation, engineering considerations, and plasma and coil optimizations. In this paper, we summarize the progress made so far in developing QA configurations with reduced alpha losses while retaining good MHD stability properties. The minimization of alpha losses is achieved by directly targeting the collisionless orbits to prolong the average resident times. Configurations with an overall energy loss rate of ∼10% or less, including collisional contributions, have been found. To allow remotely maintaining coils and machine components in a reactor environment, there is a desire to simplify to the extent possible the coil design. To this end, finding a configuration that is optimized not only for the alpha confinement and MHD stability but also for the good coil and reactor performance, remains to be a challenging task
Nonlinear electromagnetic gyrokinetic equations for rotating axisymmetric plasmas
International Nuclear Information System (INIS)
Artun, M.; Tang, W.M.
1994-03-01
The influence of sheared equilibrium flows on the confinement properties of tokamak plasmas is a topic of much current interest. A proper theoretical foundation for the systematic kinetic analysis of this important problem has been provided here by presented the derivation of a set of nonlinear electromagnetic gyrokinetic equations applicable to low frequency microinstabilities in a rotating axisymmetric plasma. The subsonic rotation velocity considered is in the direction of symmetry with the angular rotation frequency being a function of the equilibrium magnetic flux surface. In accordance with experimental observations, the rotation profile is chosen to scale with the ion temperature. The results obtained represent the shear flow generalization of the earlier analysis by Frieman and Chen where such flows were not taken into account. In order to make it readily applicable to gyrokinetic particle simulations, this set of equations is cast in a phase-space-conserving continuity equation form
Goals and organisational structure of the movement for global mental health.
Minas, Harry; Wright, Alexandra; Kakuma, Ritsuko
2014-01-01
The Movement for Global Mental Health (MGMH), established in 2008, is in a period of transition, as is the field of global mental health. The transfer of Secretariat functions from the Centre for International Mental Health to the Public Health Foundation of India was a suitable time to reflect on the goals of MGMH and on the form of organisational structure that would best serve the organisation in its efforts to achieve its goals. An online survey was sent to the 4,000 registered members of MGMH seeking the views of the membership on both the goals of MGMH and on the preferred form of organisational structure. There was near unanimous (95%) agreement with the MGMH goals as stated at the time of the survey. The current form of organisation of MGMH, a loose network of individuals and organisations registered through the MGMH website, was the least preferred (29.9%) form of organisation for the future of MGMH. More than two thirds (70.1%) of respondents would prefer a formal legal structure, with 60% of this group favouring a Charitable Organisation structure and 40% preferring an international Association structure. The response rate (7%) was too small and too skewed (predominantly academics and health professionals from high income countries) to allow any clear conclusions to be drawn from the survey. However, both the fact that responses were too few and skewed and the preferences expressed by respondents raise issues for careful consideration by the current MGMH Secretariat. The global mental health field and MGMH are in a time of transition. The move to the new secretariat is an opportunity for systematic consideration of the organisational structure and governance arrangements that will best serve the goals of MGMH.
Global structure of curves from generalized unitarity cut of three-loop diagrams
International Nuclear Information System (INIS)
Hauenstein, Jonathan D.; Huang, Rijun; Mehta, Dhagash; Zhang, Yang
2015-01-01
This paper studies the global structure of algebraic curves defined by generalized unitarity cut of four-dimensional three-loop diagrams with eleven propagators. The global structure is a topological invariant that is characterized by the geometric genus of the algebraic curve. We use the Riemann-Hurwitz formula to compute the geometric genus of algebraic curves with the help of techniques involving convex hull polytopes and numerical algebraic geometry. Some interesting properties of genus for arbitrary loop orders are also explored where computing the genus serves as an initial step for integral or integrand reduction of three-loop amplitudes via an algebraic geometric approach.
Computational method for an axisymmetric laser beam scattered by a body of revolution
International Nuclear Information System (INIS)
Combis, P.; Robiche, J.
2005-01-01
An original hybrid computational method to solve the 2-D problem of the scattering of an axisymmetric laser beam by an arbitrary-shaped inhomogeneous body of revolution is presented. This method relies on a domain decomposition of the scattering zone into concentric spherical radially homogeneous sub-domains and on an expansion of the angular dependence of the fields on the Legendre polynomials. Numerical results for the fields obtained for various scatterers geometries are presented and analyzed. (authors)
Magnetized jets driven by the Sun: The structure of the heliosphere revisited—Updates
Energy Technology Data Exchange (ETDEWEB)
Opher, M., E-mail: mopher@bu.edu [Astronomy Department, Boston University, Boston, Massachusetts 02215 (United States); Drake, J. F.; Swisdak, M. [University of Maryland, College Park, Maryland 20742 (United States); Zieger, B. [Center for Space Physics, Boston University, Massachusetts 02215 (United States); Toth, G. [Department of Climate and Space, University of Michigan, Ann Arbor, Michigan 48109 (United States)
2016-05-15
As the solar system moves through the interstellar medium, the solar wind is deflected forming the heliosphere. The standard picture of the heliosphere is a comet-shape like structure with the tail extending for 1000s of astronomical units. This standard picture stems from a view where magnetic forces are negligible and the solar magnetic field is convected passively down the tail. Recently, we showed that the magnetic tension of the solar magnetic field plays a crucial role on organizing the solar wind in the heliosheath into two jet-like structures. The two jets are separated by the interstellar medium that flows between them. The heliosphere then has a “croissant”-like shape where the distance to the heliopause downtail is almost the same as towards the nose. This new view of the heliosphere is in agreement with the energetic neutral atoms maps taken by the Interstellar Boundary Explorer and INCA/CASSINI. We developed as well an analytic model of the heliosheath in the axisymmetric limit that shows how the magnetic tension force is the driver for the north and south jets. We confirmed that the formation of these jets with magnetohydrodynamic (MHD) simulations. The main reason why previous global MHD simulations did not see these jets is due to spurious magnetic dissipation that was present at the heliospheric current sheet. We instead kept the same polarity for the interplanetary (solar) magnetic field in both the northern and southern hemispheres, eliminating spurious magnetic dissipation effects at the heliospheric current sheet. In this paper, we extend these previous results to include additional cases where we used: (a) weaker solar magnetic field; (b) solar magnetic field that reverses polarity at the solar equator in the axisymmetric limit; and (c) slower motion through the interstellar system. We discuss as well future challenges regarding the structure of the heliosphere.
Non-axisymmetric flexural vibrations of free-edge circular silicon wafers
Energy Technology Data Exchange (ETDEWEB)
Dmitriev, A.V., E-mail: dmitriev@hbar.phys.msu.ru; Gritsenko, D.S.; Mitrofanov, V.P., E-mail: mitr@hbar.phys.msu.ru
2014-02-07
Non-axisymmetric flexural vibrations of circular silicon (111) wafers are investigated. The modes with azimuthal index 2⩽k⩽30 are electrostatically excited and monitored by a capacitive sensor. The splitting of the mode frequencies associated with imperfection of the wafer is observed. The measured loss factors for the modes with 6≲k≲26 are close to those calculated according to the thermoelastic damping theory, while clamping losses likely dominate for k≲6, and surface losses at the level of inverse Q-factor Q{sup −1}≈4×10{sup −6} prevail for the modes with large k. The modes demonstrate nonlinear behavior of mainly geometrical origin at large amplitudes.
Impedance calculations of non-axisymmetric transitions using the optical approximation
Energy Technology Data Exchange (ETDEWEB)
Bane, K.L.F.; Stupakov, G. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Zagorodnov, I. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2007-02-15
In a companion report, we have derived a method for finding the impedance at high frequencies of vacuum chamber transitions that are short compared to the catch-up distance, in a frequency regime that---in analogy to geometric optics for light---we call the optical regime. In this report we apply the method to various non-axisymmetric geometries such as irises/short collimators in a beam pipe, step-in transitions, step-out transitions, and more complicated transitions of practical importance. Most of our results are analytical, with a few given in terms of a simple one dimensional integral. Our results are compared to wakefield simulations with the time-domain, finite-difference program ECHO, and excellent agreement is found. (orig.)
Impedance Calculations of Non-Axisymmetric Transitions Using the Optical Approximation
International Nuclear Information System (INIS)
Bane, K.L.F.; Stupakov, G.; Zagorodov, I.
2007-01-01
In a companion report, we have derived a method for finding the impedance at high frequencies of vacuum chamber transitions that are short compared to the catch-up distance, in a frequency regime that--in analogy to geometric optics for light--we call the optical regime. In this report we apply the method to various non-axisymmetric geometries such as irises/short collimators in a beam pipe, step-in transitions, step-out transitions, and more complicated transitions of practical importance. Most of our results are analytical, with a few given in terms of a simple one dimensional integral. Our results are compared to wakefield simulations with the time-domain, finite-difference program ECHO, and excellent agreement is found
Analysis of PKP scattering using mantle mixing simulations and axisymmetric 3D waveforms
Haugland, Samuel M.; Ritsema, Jeroen; van Keken, Peter E.; Nissen-Meyer, Tarje
2018-03-01
The scattering of PKP waves in the lower mantle produces isolated signals before the PKIKP phase. We explore whether these so-called PKIKP precursors can be related to wave scattering off mid ocean ridge basalt (MORB) fragments that have been advected in the deep mantle throughout geologic time. We construct seismic models of small-scale (>20 km) heterogeneity in the lower mantle informed by mantle mixing simulations from Brandenburg et al. (2008) and generate PKIKP precursors using 3D, axisymmetric waveform simulations up to 0.75 Hz. We consider two end-member geodynamic models with fundamentally different distributions of MORB in the lower mantle. Our results suggest that the accumulation of MORB at the base of the mantle is a viable hypothesis for the origin of PKP scattering. We find that the strength of the PKIKP precursor amplitudes is consistent with P wave speed heterogeneity of 0.1-0.2%, as reported previously. The radial distribution of MORB has a profound effect on the strength of PKIKP precursors. Simulation of PKIKP precursors for models with an increasing MORB concentration in the lowermost 500 km of the mantle appears to reproduce most accurately the strength of PKIKP precursors in Global Seismic Network waveforms. These models assume that MORB has an excess density of at least 7%. Additional simulations of more complex geodynamic models will better constrain the geodynamic conditions to explain the significant variability of PKP scattering strength.
Kalantarian, Ali; Ninomiya, Hiromasa; Saad, Sameh M.I.; David, Robert; Winklbauer, Rudolf; Neumann, A. Wilhelm
2009-01-01
Biological tissues behave in certain respects like liquids. Consequently, the surface tension concept can be used to explain aspects of the in vitro and in vivo behavior of multicellular aggregates. Unfortunately, conventional methods of surface tension measurement cannot be readily applied to small cell aggregates. This difficulty can be overcome by an experimentally straightforward method consisting of centrifugation followed by axisymmetric drop shape analysis (ADSA). Since the aggregates ...
Li, Xiaofan; Nie, Qing
2009-01-01
Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratu...
Structural Design Feasibility Study for the Global Climate Experiment
Energy Technology Data Exchange (ETDEWEB)
Lewin,K.F.; Nagy, J.
2008-12-01
Neon, Inc. is proposing to establish a Global Change Experiment (GCE) Facility to increase our understanding of how ecological systems differ in their vulnerability to changes in climate and other relevant global change drivers, as well as provide the mechanistic basis for forecasting ecological change in the future. The experimental design was initially envisioned to consist of two complementary components; (A) a multi-factor experiment manipulating CO{sub 2}, temperature and water availability and (B) a water balance experiment. As the design analysis and cost estimates progressed, it became clear that (1) the technical difficulties of obtaining tight temperature control and maintaining elevated atmospheric carbon dioxide levels within an enclosure were greater than had been expected and (2) the envisioned study would not fit into the expected budget envelope if this was done in a partially or completely enclosed structure. After discussions between NEON management, the GCE science team, and Keith Lewin, NEON, Inc. requested Keith Lewin to expand the scope of this design study to include open-field exposure systems. In order to develop the GCE design to the point where it can be presented within a proposal for funding, a feasibility study of climate manipulation structures must be conducted to determine design approaches and rough cost estimates, and to identify advantages and disadvantages of these approaches including the associated experimental artifacts. NEON, Inc requested this design study in order to develop concepts for the climate manipulation structures to support the NEON Global Climate Experiment. This study summarizes the design concepts considered for constructing and operating the GCE Facility and their associated construction, maintenance and operations costs. Comparisons and comments about experimental artifacts, construction challenges and operational uncertainties are provided to assist in selecting the final facility design. The overall goal
How axi-symmetric is the inner HI disc of the Milky Way?
Directory of Open Access Journals (Sweden)
Marasco A.
2012-02-01
Full Text Available We modelled the distribution and the kinematics of HI in the inner Milky Way (R < R☉ at latitude b = 0∘ assuming axi-symmetry. We fitted the line profiles of the LAB 21-cm survey using an iterative approach based on the tangent-point method. The resulting model reproduces the H I data remarkably well, with significant differences arising only for R ≲ 2 kpc. This suggests that, despite the presence of a barred potential, the neutral gas in the inner Milky Way is distributed in a fairly axi-symmetric disc.
Discontinuities in an axisymmetric generalized thermoelastic problem
Directory of Open Access Journals (Sweden)
Moncef Aouadi
2005-06-01
Full Text Available This paper deals with discontinuities analysis in the temperature, displacement, and stress fields of a thick plate whose lower and upper surfaces are traction-free and subjected to a given axisymmetric temperature distribution. The analysis is carried out under three thermoelastic theories. Potential functions together with Laplace and Hankel transform techniques are used to derive the solution in the transformed domain. Exact expressions for the magnitude of discontinuities are computed by using an exact method developed by Boley (1962. It is found that there exist two coupled waves, one of which is elastic and the other is thermal, both propagating with finite speeds with exponential attenuation, and a third which is called shear wave, propagating with constant speed but with no exponential attenuation. The Hankel transforms are inverted analytically. The inversion of the Laplace transforms is carried out using the inversion formula of the transform together with Fourier expansion techniques. Numerical results are presented graphically along with a comparison of the three theories of thermoelasticity.
Structure and needs of global loss databases about natural disaster
Steuer, Markus
2010-05-01
Global loss databases are used for trend analyses and statistics in scientific projects, studies for governmental and nongovernmental organizations and for the insurance and finance industry as well. At the moment three global data sets are established: EM-DAT (CRED), Sigma (Swiss Re) and NatCatSERVICE (Munich Re). Together with the Asian Disaster Reduction Center (ADRC) and United Nations Development Program (UNDP) started a collaborative initiative in 2007 with the aim to agreed on and implemented a common "Disaster Category Classification and Peril Terminology for Operational Databases". This common classification has been established through several technical meetings and working groups and represents a first and important step in the development of a standardized international classification of disasters and terminology of perils. This means concrete to set up a common hierarchy and terminology for all global and regional databases on natural disasters and establish a common and agreed definition of disaster groups, main types and sub-types of events. Also the theme of georeferencing, temporal aspects, methodology and sourcing were other issues that have been identified and will be discussed. The implementation of the new and defined structure for global loss databases is already set up for Munich Re NatCatSERVICE. In the following oral session we will show the structure of the global databases as defined and in addition to give more transparency of the data sets behind published statistics and analyses. The special focus will be on the catastrophe classification from a moderate loss event up to a great natural catastrophe, also to show the quality of sources and give inside information about the assessment of overall and insured losses. Keywords: disaster category classification, peril terminology, overall and insured losses, definition
Sensitivity of ITER MHD global stability to edge pressure gradients
International Nuclear Information System (INIS)
Hogan, J.T.; Martynov, A.
1994-01-01
In view of the preliminary nature of boundary models for reactor tokamaks, the sensitivity to edge gradients of the global mode MHD stability of the ITER EDA configuration has been examined. The POLAR-2D equilibrium and TORUS stability codes developed by the Keldysh Institute have been used. Transport-related profiles from the PRETOR transport code (developed by the ITER Joint Central Team) and axisymmetric equilibria for these profiles from the TEQ code (L.D. Pearlstein, LLNL) were taken as a starting point for the study. These baseline profiles are found to have quite high global stability limits, in the range g(Troyon) = 4-5. The major focus of this study is to examine global mode stability assuming small variations about the baseline profiles, changing the pressure gradients near the boundary. Such changes can be expected with an improved boundary model. Reduced stability limits are found in such cases, and unstable cases with g = 2-3 are found. Thus, the assumption of ITER stability limits higher than g = 2 must be treated with caution
Konoplya, R. A.; Stuchlík, Z.; Zhidenko, A.
2018-04-01
We determine the class of axisymmetric and asymptotically flat black-hole spacetimes for which the test Klein-Gordon and Hamilton-Jacobi equations allow for the separation of variables. The known Kerr, Kerr-Newman, Kerr-Sen and some other black-hole metrics in various theories of gravity are within the class of spacetimes described here. It is shown that although the black-hole metric in the Einstein-dilaton-Gauss-Bonnet theory does not allow for the separation of variables (at least in the considered coordinates), for a number of applications it can be effectively approximated by a metric within the above class. This gives us some hope that the class of spacetimes described here may be not only generic for the known solutions allowing for the separation of variables, but also a good approximation for a broader class of metrics, which does not admit such separation. Finally, the generic form of the axisymmetric metric is expanded in the radial direction in terms of the continued fractions and the connection with other black-hole parametrizations is discussed.
Axisymmetric flow and heat transfer to modified second grade fluid over a radially stretching sheet
Directory of Open Access Journals (Sweden)
Masood Khan
Full Text Available In the present work, an analysis is made to the two-dimensional axisymmetric flow and heat transfer of a modified second grade fluid over an isothermal non-linear radially stretching sheet. The momentum and energy equations are modelled and the boundary layer equations are derived. The governing equations for velocity and temperature are turned down into a system of ordinary differential equations by invoking appropriate transformations which are then solved numerically via fourth and fifth order Runge-Kutta Fehlberg method. Moreover, the influence of the pertinent parameters namely the generalized second grade parameter, stretching parameter, the power-law index and the generalized Prandtl number is graphically portrayed. It is inferred that the generalized second grade parameter uplifted the momentum boundary layer while lessened the thermal boundary layer. Furthermore, the impact of stretching parameter is more pronounced for the second grade fluid (m = 0 in contrast with the power-law fluid (k = 0. For some special cases, comparisons are made with previously reported results and an excellent agreement is established. Keywords: Modified second grade fluid, Axisymmetric flow, Heat transfer, Non-linear stretching sheet
A steady-state axisymmetric toroidal system
International Nuclear Information System (INIS)
Hirano, K.
1984-01-01
Conditions for achieving a steady state in an axisymmetric toroidal system are studied with emphasis on a very-high-beta field-reversed configuration. The analysis is carried out for the electromotive force produced by the Ohkawa current that is induced by neutral-beam injection. It turns out that, since the perpendicular component of the current j-vectorsub(perpendicular) to the magnetic field can be generated automatically by the diamagnetic effect, only the parallel component j-vectorsub(parallel) must be driven by the electromotive force. The drive of j-vectorsub(parallel) generates shear in the field line so that the pure toroidal field on the magnetic axis is rotated towards the plasma boundary and matched to the external field lines. This matching condition determines the necessary amount of injection beam current and power. It is demonstrated that a very-high-beta field-reversed configuration requires only a small amount of current-driving beam power because almost all the toroidal current except that close to the magnetic axis is carried by the diamagnetic current due to high beta. A low-beta tokamak, on the other hand, needs very high current-driving power since most of the toroidal current is composed of j-vectorsub(parallel) which must be driven by the beam. (author)
International Nuclear Information System (INIS)
Zhong, Z.
1985-01-01
A new approach to the solution of certain differential equations, the double complex function method, is developed, combining ordinary complex numbers and hyperbolic complex numbers. This method is applied to the theory of stationary axisymmetric Einstein equations in general relativity. A family of exact double solutions, double transformation groups, and n-soliton double solutions are obtained
CFD Validation Experiment of a Mach 2.5 Axisymmetric Shock-Wave Boundary-Layer Interaction
Davis, David O.
2015-01-01
Preliminary results of an experimental investigation of a Mach 2.5 two-dimensional axisymmetric shock-wave/boundary-layer interaction (SWBLI) are presented. The purpose of the investigation is to create a SWBLI dataset specifically for CFD validation purposes. Presented herein are the details of the facility and preliminary measurements characterizing the facility and interaction region. The results will serve to define the region of interest where more detailed mean and turbulence measurements will be made.
CFD Validation Experiment of a Mach 2.5 Axisymmetric Shock-Wave/Boundary-Layer Interaction
Davis, David Owen
2015-01-01
Preliminary results of an experimental investigation of a Mach 2.5 two-dimensional axisymmetric shock-wave/ boundary-layer interaction (SWBLI) are presented. The purpose of the investigation is to create a SWBLI dataset specifically for CFD validation purposes. Presented herein are the details of the facility and preliminary measurements characterizing the facility and interaction region. These results will serve to define the region of interest where more detailed mean and turbulence measurements will be made.
An axisymmetric evolution code for the Einstein equations on hyperboloidal slices
International Nuclear Information System (INIS)
Rinne, Oliver
2010-01-01
We present the first stable dynamical numerical evolutions of the Einstein equations in terms of a conformally rescaled metric on hyperboloidal hypersurfaces extending to future null infinity. Axisymmetry is imposed in order to reduce the computational cost. The formulation is based on an earlier axisymmetric evolution scheme, adapted to time slices of constant mean curvature. Ideas from a previous study by Moncrief and the author are applied in order to regularize the formally singular evolution equations at future null infinity. Long-term stable and convergent evolutions of Schwarzschild spacetime are obtained, including a gravitational perturbation. The Bondi news function is evaluated at future null infinity.
Nonlinear full two-fluid study of m=0 sausage instabilities in an axisymmetric Z pinch
International Nuclear Information System (INIS)
Loverich, J.; Shumlak, U.
2006-01-01
A nonlinear full five-moment two-fluid model is used to study axisymmetric instabilities in a Z pinch. When the electron velocity due to the current J is greater than the ion acoustic speed, high wave-number sausage instabilities develop that initiate shock waves in the ion fluid. This condition corresponds to a pinch radius on the order of a few ion Larmor radii
International Nuclear Information System (INIS)
Berloff, Natalia G; Roberts, Paul H
2004-01-01
The stability of the axisymmetric solitary waves of the Gross-Pitaevskii (GP) equation is investigated. The implicitly restarted Arnoldi method for banded matrices with shift-invert is used to solve the linearized spectral stability problem. The rarefaction solitary waves on the upper branch of the Jones-Roberts dispersion curve are shown to be unstable to axisymmetric infinitesimal perturbations, whereas the solitary waves on the lower branch and all two-dimensional solitary waves are linearly stable. The growth rates of the instabilities on the upper branch are so small that an arbitrarily specified initial perturbation of a rarefaction wave at first usually evolves towards the upper branch as it acoustically radiates away its excess energy. This is demonstrated through numerical integrations of the GP equation starting from an initial state consisting of an unstable rarefaction wave and random non-axisymmetric noise. The resulting solution evolves towards, and remains for a significant time in the vicinity of, an unperturbed unstable rarefaction wave. It is shown however that, ultimately (or for an initial state extremely close to the upper branch), the solution evolves onto the lower branch or is completely dissipated as sound. It is shown how density depletions in uniform and trapped condensates can generate rarefaction waves, and a simple method is suggested by which such waves can be created in the laboratory
Energy Technology Data Exchange (ETDEWEB)
Berloff, Natalia G [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Roberts, Paul H [Department of Mathematics, University of California, Los Angeles, CA, 90095 (United States)
2004-11-26
The stability of the axisymmetric solitary waves of the Gross-Pitaevskii (GP) equation is investigated. The implicitly restarted Arnoldi method for banded matrices with shift-invert is used to solve the linearized spectral stability problem. The rarefaction solitary waves on the upper branch of the Jones-Roberts dispersion curve are shown to be unstable to axisymmetric infinitesimal perturbations, whereas the solitary waves on the lower branch and all two-dimensional solitary waves are linearly stable. The growth rates of the instabilities on the upper branch are so small that an arbitrarily specified initial perturbation of a rarefaction wave at first usually evolves towards the upper branch as it acoustically radiates away its excess energy. This is demonstrated through numerical integrations of the GP equation starting from an initial state consisting of an unstable rarefaction wave and random non-axisymmetric noise. The resulting solution evolves towards, and remains for a significant time in the vicinity of, an unperturbed unstable rarefaction wave. It is shown however that, ultimately (or for an initial state extremely close to the upper branch), the solution evolves onto the lower branch or is completely dissipated as sound. It is shown how density depletions in uniform and trapped condensates can generate rarefaction waves, and a simple method is suggested by which such waves can be created in the laboratory.
Analytic modeling of axisymmetric disruption halo currents
International Nuclear Information System (INIS)
Humphreys, D.A.; Kellman, A.G.
1999-01-01
Currents which can flow in plasma facing components during disruptions pose a challenge to the design of next generation tokamaks. Induced toroidal eddy currents and both induced and conducted poloidal ''halo'' currents can produce design-limiting electromagnetic loads. While induction of toroidal and poloidal currents in passive structures is a well-understood phenomenon, the driving terms and scalings for poloidal currents flowing on open field lines during disruptions are less well established. A model of halo current evolution is presented in which the current is induced in the halo by decay of the plasma current and change in enclosed toroidal flux while being convected into the halo from the core by plasma motion. Fundamental physical processes and scalings are described in a simplified analytic version of the model. The peak axisymmetric halo current is found to depend on halo and core plasma characteristics during the current quench, including machine and plasma dimensions, resistivities, safety factor, and vertical stability growth rate. Two extreme regimes in poloidal halo current amplitude are identified depending on the minimum halo safety factor reached during the disruption. A 'type I' disruption is characterized by a minimum safety factor that remains relatively high (typically 2 - 3, comparable to the predisruption safety factor), and a relatively low poloidal halo current. A 'type II' disruption is characterized by a minimum safety factor comparable to unity and a relatively high poloidal halo current. Model predictions for these two regimes are found to agree well with halo current measurements from vertical displacement event disruptions in DIII-D [T. S. Taylor, K. H. Burrell, D. R. Baker, G. L. Jackson, R. J. La Haye, M. A. Mahdavi, R. Prater, T. C. Simonen, and A. D. Turnbull, open-quotes Results from the DIII-D Scientific Research Program,close quotes in Proceedings of the 17th IAEA Fusion Energy Conference, Yokohama, 1998, to be published in
GOSSIP: a method for fast and accurate global alignment of protein structures.
Kifer, I; Nussinov, R; Wolfson, H J
2011-04-01
The database of known protein structures (PDB) is increasing rapidly. This results in a growing need for methods that can cope with the vast amount of structural data. To analyze the accumulating data, it is important to have a fast tool for identifying similar structures and clustering them by structural resemblance. Several excellent tools have been developed for the comparison of protein structures. These usually address the task of local structure alignment, an important yet computationally intensive problem due to its complexity. It is difficult to use such tools for comparing a large number of structures to each other at a reasonable time. Here we present GOSSIP, a novel method for a global all-against-all alignment of any set of protein structures. The method detects similarities between structures down to a certain cutoff (a parameter of the program), hence allowing it to detect similar structures at a much higher speed than local structure alignment methods. GOSSIP compares many structures in times which are several orders of magnitude faster than well-known available structure alignment servers, and it is also faster than a database scanning method. We evaluate GOSSIP both on a dataset of short structural fragments and on two large sequence-diverse structural benchmarks. Our conclusions are that for a threshold of 0.6 and above, the speed of GOSSIP is obtained with no compromise of the accuracy of the alignments or of the number of detected global similarities. A server, as well as an executable for download, are available at http://bioinfo3d.cs.tau.ac.il/gossip/.
Directory of Open Access Journals (Sweden)
Hana Stverkova
2018-06-01
Full Text Available In today’s turbulently expanding business environment, during the fourth industrial revolution, it is necessary to respond to market trends and to adapt strategy and organisational structure appropriately. The article is focused on the reorganisation and optimisation of the business organisation structure of global companies. The purpose of this paper is to analyse and evaluate the use of the territorial business structure, within the framework of a global company, based on experimental research. Experiences with the introduction of a territorial organisational structure in a corporate enterprise have proven to be highly effective long-term, with productivity and sales volumes increasing. This territorial setting can be considered as a competitive advantage, which matches predicted market trends and is suitable for global businesses.
Structural strength during severe reactor accidents of the VVER- 91 nuclear power plant
International Nuclear Information System (INIS)
Varpasuo, P.
1999-12-01
The report summarises the studies carried out in Fortum Engineering (formerly IVO Power Engineering) between the years of 1992 and 1997 concerning ultimate strength of structures designed to mitigate and contain the consequences of various core melt accident scenarios. The report begins with the description of containment loading situations arising from core melt accidents. These situations are divided to fast and slow loads. Fast loads include ex-vessel steam explosions, steam spikes, hydrogen burns, direct containment heating and missiles. Slow loads are connected with pressure rise inside the containment in case when the containment heat removal system is not functioning. First part of report describes the analyses of reactor cavity based on axi-symmetric load assumptions. These studies are performed with various models like one degree of freedom idealisation, axi-symmetric modelling of geometry and full three-dimensional modelling of geometry. Second part of report describes the analyses of cavity based on non-axi-symmetric load assumptions. Here full 3D- geometry model is used combined with various physical models for the behaviour of reinforced concrete. Third part of report gives short account of the analysis of containment ultimate pressure capacity. The containment model in this case includes pre-stressing tendons and mild steel reinforcing bars. The load is assumed to axi-symmetric internal static pressure. The capacity of the reactor cavity against the ex-vessel steam explosion scenarios for VVER-91 plant concept is established for both axi-symmetric and non-axi-symmetric load models using ANACAP structural analysis code. The validation of the cavity response to ex-vessel steam explosion load using different commercially available codes gave mixed results for both axisymmetric and non-axi-symmetric load presentations.The ultimate static overpressure capacity of the VVER-91 reactor cavity structure was established to be of the order of 10 MPa. This result
Field simulation of axisymmetric plasma screw pinches by alternating-direction-implicit methods
International Nuclear Information System (INIS)
Lambert, M.A.
1996-06-01
An axisymmetric plasma screw pinch is an axisymmetric column of ionized gaseous plasma radially confined by forces from axial and azimuthal currents driven in the plasma and its surroundings. This dissertation is a contribution to detailed, high resolution computer simulation of dynamic plasma screw pinches in 2-d rz-coordinates. The simulation algorithm combines electron fluid and particle-in-cell (PIC) ion models to represent the plasma in a hybrid fashion. The plasma is assumed to be quasineutral; along with the Darwin approximation to the Maxwell equations, this implies application of Ampere's law without displacement current. Electron inertia is assumed negligible so that advective terms in the electron momentum equation are ignored. Electrons and ions have separate scalar temperatures, and a scalar plasma electrical resistivity is assumed. Altemating-direction-implicit (ADI) methods are used to advance the electron fluid drift velocity and the magnetic fields in the simulation. The ADI methods allow time steps larger than allowed by explicit methods. Spatial regions where vacuum field equations have validity are determined by a cutoff density that invokes the quasineutral vacuum Maxwell equations (Darwin approximation). In this dissertation, the algorithm was first checked against ideal MM stability theory, and agreement was nicely demonstrated. However, such agreement is not a new contribution to the research field. Contributions to the research field include new treatments of the fields in vacuum regions of the pinch simulation. The new treatments predict a level of magnetohydrodynamic turbulence near the bulk plasma surface that is higher than predicted by other methods
Global structure of the inflationary Universe
International Nuclear Information System (INIS)
Goncharov, A.S.; Linde, A.D.
1987-01-01
The global structure of the Universe is analyzed within the framework of the haotic inflation scenario. It is shown that under certain conditions inflation of the Universe in accordance with this scenario has no the end and may not have the beginning. Consequently, a large part of the physical volume of the Universe should always be in a state of inflation at a density of the order of the Planck density. During inflation the Universe separates into regions of exponentially large sizes. Within these regions all possible types of metastable vacuum states and all possible types of compactification, consistent with the presence of inflation are realized. The investigation is performed by employing the diffusion equation for a fluctuating scalar field in the inflationary Universe
Axisymmetric annular curtain stability
International Nuclear Information System (INIS)
Ahmed, Zahir U; Khayat, Roger E; Maissa, Philippe; Mathis, Christian
2012-01-01
A temporal stability analysis was carried out to investigate the stability of an axially moving viscous annular liquid jet subject to axisymmetric disturbances in surrounding co-flowing viscous gas media. We investigated in this study the effects of inertia, surface tension, the gas-to-liquid density ratio, the inner-to-outer radius ratio and the gas-to-liquid viscosity ratio on the stability of the jet. With an increase in inertia, the growth rate of the unstable disturbances is found to increase. The dominant (or most unstable) wavenumber decreases with increasing Reynolds number for larger values of the gas-to-liquid viscosity ratio. However, an opposite tendency for the most unstable wavenumber is predicted for small viscosity ratio in the same inertia range. The surrounding gas density, in the presence of viscosity, always reduces the growth rate, hence stabilizing the flow. There exists a critical value of the density ratio above which the flow becomes stable for very small viscosity ratio, whereas for large viscosity ratio, no stable flow appears in the same range of the density ratio. The curvature has a significant destabilizing effect on the thin annular jet, whereas for a relatively thick jet, the maximum growth rate decreases as the inner radius increases, irrespective of the surrounding gas viscosity. The degree of instability increases with Weber number for a relatively large viscosity ratio. In contrast, for small viscosity ratio, the growth rate exhibits a dramatic dependence on the surface tension. There is a small Weber number range, which depends on the viscosity ratio, where the flow is stable. The viscosity ratio always stabilizes the flow. However, the dominant wavenumber increases with increasing viscosity ratio. The range of unstable wavenumbers is affected only by the curvature effect. (paper)
Characterization and global analysis of a family of Poisson structures
International Nuclear Information System (INIS)
Hernandez-Bermejo, Benito
2006-01-01
A three-dimensional family of solutions of the Jacobi equations for Poisson systems is characterized. In spite of its general form it is possible the explicit and global determination of its main features, such as the symplectic structure and the construction of the Darboux canonical form. Examples are given
Characterization and global analysis of a family of Poisson structures
Energy Technology Data Exchange (ETDEWEB)
Hernandez-Bermejo, Benito [Escuela Superior de Ciencias Experimentales y Tecnologia, Edificio Departamental II, Universidad Rey Juan Carlos, Calle Tulipan S/N, 28933 (Mostoles), Madrid (Spain)]. E-mail: benito.hernandez@urjc.es
2006-06-26
A three-dimensional family of solutions of the Jacobi equations for Poisson systems is characterized. In spite of its general form it is possible the explicit and global determination of its main features, such as the symplectic structure and the construction of the Darboux canonical form. Examples are given.
Three-Dimensional Design of a Non-Axisymmetric Periodic Permanent Magnet Focusing System
Chen Chi Ping; Radovinsky, Alexey; Zhou, Jing
2005-01-01
A three-dimensional (3D) design is presented of a non-axisymmetric periodic permanent magnet focusing system which will be used to focus a large-aspect-ratio, ellipse-shaped, space-charge-dominated electron beam. In this design, an analytic theory is used to specify the magnetic profile for beam transport. The OPERA3D code is used to compute and optimize a realizable magnet system. Results of the magnetic design are verified by two-dimensional particle-in-cell and three-dimensional trajectory simulations of beam propagation using PFB2D and OMNITRAK, respectively. Results of fabrication tolerance studies are discussed.
Vortex breakdown simulation - A circumspect study of the steady, laminar, axisymmetric model
Salas, M. D.; Kuruvila, G.
1989-01-01
The incompressible axisymmetric steady Navier-Stokes equations are written using the streamfunction-vorticity formulation. The resulting equations are discretized using a second-order central-difference scheme. The discretized equations are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers (based on vortex core radius) 100-1800 and swirl parameter 0.9-1.1. The effects of inflow boundary conditions, the location of farfield and outflow boundaries, and mesh refinement are examined. Finally, the stability of the steady solutions is investigated by solving the time-dependent equations.
Global structural optimizations of surface systems with a genetic algorithm
International Nuclear Information System (INIS)
Chuang, Feng-Chuan
2005-01-01
Global structural optimizations with a genetic algorithm were performed for atomic cluster and surface systems including aluminum atomic clusters, Si magic clusters on the Si(111) 7 x 7 surface, silicon high-index surfaces, and Ag-induced Si(111) reconstructions. First, the global structural optimizations of neutral aluminum clusters Al n (n up to 23) were performed using a genetic algorithm coupled with a tight-binding potential. Second, a genetic algorithm in combination with tight-binding and first-principles calculations were performed to study the structures of magic clusters on the Si(111) 7 x 7 surface. Extensive calculations show that the magic cluster observed in scanning tunneling microscopy (STM) experiments consist of eight Si atoms. Simulated STM images of the Si magic cluster exhibit a ring-like feature similar to STM experiments. Third, a genetic algorithm coupled with a highly optimized empirical potential were used to determine the lowest energy structure of high-index semiconductor surfaces. The lowest energy structures of Si(105) and Si(114) were determined successfully. The results of Si(105) and Si(114) are reported within the framework of highly optimized empirical potential and first-principles calculations. Finally, a genetic algorithm coupled with Si and Ag tight-binding potentials were used to search for Ag-induced Si(111) reconstructions at various Ag and Si coverages. The optimized structural models of √3 x √3, 3 x 1, and 5 x 2 phases were reported using first-principles calculations. A novel model is found to have lower surface energy than the proposed double-honeycomb chained (DHC) model both for Au/Si(111) 5 x 2 and Ag/Si(111) 5 x 2 systems
Coordination Analysis Using Global Structural Constraints and Alignment-based Local Features
Hara, Kazuo; Shimbo, Masashi; Matsumoto, Yuji
We propose a hybrid approach to coordinate structure analysis that combines a simple grammar to ensure consistent global structure of coordinations in a sentence, and features based on sequence alignment to capture local symmetry of conjuncts. The weight of the alignment-based features, which in turn determines the score of coordinate structures, is optimized by perceptron training on a given corpus. A bottom-up chart parsing algorithm efficiently finds the best scoring structure, taking both nested or non-overlapping flat coordinations into account. We demonstrate that our approach outperforms existing parsers in coordination scope detection on the Genia corpus.
Cold-induced alteration in the global structure of the male sex ...
Indian Academy of Sciences (India)
Cold-induced alteration in the global structure of the male sex ... dar et al. 1978). Chromosome preparated from a single pair of salivary glands show extremely puffy and diffuse ..... Akhtar A. 2003 Dosage compensation: an intertwined world of.
Ono, Toshiaki; Ishihara, Asahi; Asada, Hideki
2017-11-01
By using the Gauss-Bonnet theorem, the bending angle of light in a static, spherically symmetric and asymptotically flat spacetime has been recently discussed, especially by taking account of the finite distance from a lens object to a light source and a receiver [Ishihara, Suzuki, Ono, Asada, Phys. Rev. D 95, 044017 (2017), 10.1103/PhysRevD.95.044017]. We discuss a possible extension of the method of calculating the bending angle of light to stationary, axisymmetric and asymptotically flat spacetimes. For this purpose, we consider the light rays on the equatorial plane in the axisymmetric spacetime. We introduce a spatial metric to define the bending angle of light in the finite-distance situation. We show that the proposed bending angle of light is coordinate-invariant by using the Gauss-Bonnet theorem. The nonvanishing geodesic curvature of the photon orbit with the spatial metric is caused in gravitomagnetism, even though the light ray in the four-dimensional spacetime follows the null geodesic. Finally, we consider Kerr spacetime as an example in order to examine how the bending angle of light is computed by the present method. The finite-distance correction to the gravitomagnetic deflection angle due to the Sun's spin is around a pico-arcsecond level. The finite-distance corrections for Sgr A* also are estimated to be very small. Therefore, the gravitomagnetic finite-distance corrections for these objects are unlikely to be observed with present technology.
Directory of Open Access Journals (Sweden)
L. Fita
2007-01-01
Full Text Available Tropical-like storms on the Mediterranean Sea are occasionally observed on satellite images, often with a clear eye surrounded by an axysimmetric cloud structure. These storms sometimes attain hurricane intensity and can severely affect coastal lands. A deep, cut-off, cold-core low is usually observed at mid-upper tropospheric levels in association with the development of these tropical-like systems. In this study we attempt to apply some tools previously used in studies of tropical hurricanes to characterise the environments in which seven known Mediterranean events developed. In particular, an axisymmetric, nonhydrostatic, cloud resolving model is applied to simulate the tropical-like storm genesis and evolution. Results are compared to surface observations when landfall occurred and with satellite microwave derived wind speed measurements over the sea. Finally, sensitivities of the numerical simulations to different factors (e.g. sea surface temperature, vertical humidity profile and size of the initial precursor of the storm are examined.
Pressure anisotropy stabilization of axisymmetric mirror machines
International Nuclear Information System (INIS)
Weitzner, H.
1978-01-01
The stability of a two species, anisotropic pressure, axisymmetric plasma is studied using the guiding center plasma model. Successively, asymptotic expansions are applied appropriate to a long, thin plasma, and to a plasma with flux surfaces close to cylinders. The resultant stability problem may be cast as an ordinary differential equation eigenvalue problem or as a problem in the calculus of variations. It is shown that low beta plasmas cannot be confined and be stable although plasmas may be stable in which the pressure gradients are nonzero where the pressure tends to zero. Stable profiles are given; these profiles include the possibility of field reversed regions. These stable profiles require the anisotropic species to be cold near the axis. Rather than absolute stability, a weaker condition is also considered which for fixed azimuthal mode number vertical-barmvertical-bar puts the point of accumulation of the spectrum of modes on the stable side. It is hoped that such a condition may yield systems stable to vertical-barmvertical-bar small modes although not all values of vertical-barmvertical-bar. This condition is more readily satisfied and allows more reasonable profiles near the axis
International Nuclear Information System (INIS)
Rahimi, A. B.
2003-01-01
Although there are many papers on the subject of heat transfer in an axisymmetric stagnation flow on a cylinder, the available knowledge is mainly for low Reynolds numbers and not much information exists for the same problem at large Reynolds numbers. In this work, the problem of heat transfer in an axisymmetric stagnation flow on a cylinder is solved at large Reynolds numbers using perturbation techniques. Starting from Navier-Stokes equations within a boundary layer approximation and using similarity transformations, the governing equations are obtained in the form of differential equations. The inverse of the Reynolds number is introduced as the perturbation parameter. This parameter appears in front of the highest-order terms and, as it tends to zero, reduces the order of the governing equations and produces singularities. In this paper, the flow field is divided into two regions; rapid changes in the region near wall and slow changes away from the wall. Thus, the flow is found to have dual-layer characteristics. Using inner and outer expansion produces uniform values of the relevant quantities
A numerical study of a turbulent axisymmetric jet emerging in a co-flowing stream
Energy Technology Data Exchange (ETDEWEB)
Mahmoud, Houda, E-mail: mahhouda2003@yahoo.f [Unite de thermique et thermodynamique des procedes industriels, Ecole Nationale d' Ingenieurs de Monastir, route de Ouardanine, 5020 Monastir (Tunisia); Kriaa, Wassim; Mhiri, Hatem [Unite de thermique et thermodynamique des procedes industriels, Ecole Nationale d' Ingenieurs de Monastir, route de Ouardanine, 5020 Monastir (Tunisia); Palec, Georges Le; Bournot, Philippe [IUSTI, UMR CNRS 6595, 5 Rue Enrico Fermi, Technopole de Chateau-Gombert, 13013 Marseille (France)
2010-11-15
In this work, we propose a numerical study of an axisymmetric turbulent jet discharging into co-flowing stream with different velocities ratios ranging between 0 and {infinity}. The standard k-{epsilon} model and the RSM model were applied in this study. The numerical resolution of the governing equations was carried out using two computed codes: the first is a personal code and the second is a commercial CFD code FLUENT 6.2. These two codes are based on a finite volume method. The present predictions are compared with the experimental data. The results show that the two turbulence models are valid to predict the average and turbulent flow sizes. Also, the effect of the velocities ratios on the flow structure was examined. For R{sub u} > 1, it is noted the appearance of the fall velocity zone due to the presence of a trough low pressure. This fall velocity becomes increasingly intense according to R{sub u} and changes into a recirculation zone for R{sub u} {>=} 4.5. This zone is larger and approaches more the nozzle injection when R{sub u} increases.
Two-point boundary value and Cauchy formulations in an axisymmetrical MHD equilibrium problem
International Nuclear Information System (INIS)
Atanasiu, C.V.; Subbotin, A.A.
1999-01-01
In this paper we present two equilibrium solvers for axisymmetrical toroidal configurations, both based on the expansion in poloidal angle method. The first one has been conceived as a two-point boundary value solver in a system of coordinates with straight field lines, while the second one uses a well-conditioned Cauchy formulation of the problem in a general curvilinear coordinate system. In order to check the capability of our moment methods to describe equilibrium accurately, a comparison of the moment solutions with analytical solutions obtained for a Solov'ev equilibrium has been performed. (author)
On the impact of a concave nosed axisymmetric body on a free surface
Mathai, Varghese; Govardhan, Raghuraman N.; Arakeri, Vijay H.
2017-01-01
We report on an experimental study of the vertical impact of a concave nosed axisymmetric body on a free surface. Previous studies have shown that bodies with a convex nose, like a sphere, produce a well defined splash with a relatively large cavity behind the model. In contrast, we find that with a concave nose, there is hardly a splash and the cavity extent is greatly reduced. This may be explained by the fact that in the concave nosed case, the initial impact is between a confined air pock...
International Nuclear Information System (INIS)
Burger, M. J.
1981-01-01
1 - Description of problem or function: The ZONE program is a finite element mesh generator which produces the nodes and element description of any two-dimensional geometry. The geometry is divided into a mesh of quadrilateral and triangular zones defined by node points taken in a counter-clockwise sequence. The zones are arranged sequentially in an ordered march through the geometry. The order can be chosen so that the minimum bandwidth is obtained. The mesh that is generated can be used as input to any two-dimensional as well as any axisymmetrical structure program. 2 - Method of solution: The basic concept used is the definition of a two-dimensional structure by the intersection of two sets of lines which describe the geometric and material boundaries. A set of lines called meridians define the geometric and material boundaries and generally run in the same direction. Another set of linear line segments called rays which intersect the meridians are also defined at the material and geometric boundaries. The section of the structure between successive rays is called a region. The ray segment between any two consecutive ray-meridian intersections or void area in the structure is called a layer and is described as passing through, or bounding a material. The boundaries can be directly defined as a sequence of straight line segments or can be computed in terms of elliptic segments or circular arcs. A meridian or ray can also be made to follow a previously-defined meridian or ray at a fixed distance by invoking an offset option. 3 - Restrictions on the complexity of the problem: The following are limited only by a DIMENSION statement. The code currently has a maxima of: 100 coordinate points defining a meridian or ray, 40 meridians, 40 layers. There are no limits on the number of zones or nodes for any problems
GATO: an MHD stability code for axisymmetric plasmas with internal separatrices
International Nuclear Information System (INIS)
Bernard, L.C.; Helton, F.J.; Moore, R.W.
1981-07-01
The GATO code computes the growth rate of ideal magnetohydrodynamic instabilities in axisymmetric geometries with internal separatrices such as doublet and expanded spheromak. The basic method, which uses a variational principle and a Galerkin procedure to obtain a matrix eigenvalue problem, is common to the ERATO and PEST codes. A new coordinate system has been developed to handle the internal separatrix. Efficient algorithms have been developed to solve the matrix eigenvalue problem for matrices of rank as large as 40,000. Further improvement is expected using graph theoretical techniques to reorder the matrices. Using judicious mesh repartition, the marginal point can be determined with great precision. The code has been extensively used to optimize doublet and general tokamak plasmas
Axisymmetric vibrations of thick shells of revolution having meridionally varying curvature
International Nuclear Information System (INIS)
Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin; Takahashi, Fumiaki.
1987-01-01
An exact method using power series expansions is presented for solving axisymmetric free vibration problems for thick shells of revolution having meridionally varying curvature. Based on the improved thick shell theory, the Lagrangian of the shells of revolution are obtained, and the equations of motion and the boundary conditions are derived from the stationary condition of the Lagrangian. The method is applied to thick shells of revolution having their generating curves of ellipse, cycloid, parabola, catenary and hyperbola. The results by the present method are compared with those by the thin shell theory and the effects of rotatory inertia and shear deformation upon the natural frequencies and the mode shapes are clarified. (author)
Experimental and numerical studies on super-cavitating flow of axisymmetric cavitators
Directory of Open Access Journals (Sweden)
Byoung-Kwon Ahn
2010-03-01
Full Text Available Recently underwater systems moving at high speed such as a super-cavitating torpedo have been studied for their practical advantage of the dramatic drag reduction. In this study we are focusing our attention on super-cavitating flows around axisymmetric cavitators. A numerical method based on inviscid flow is developed and the results for several shapes of the cavitator are presented. First using a potential based boundary element method, we find the shape of the cavitator yielding a sufficiently large enough cavity to surround the body. Second, numerical predictions of supercavity are validated by comparing with experimental observations carried out in a high speed cavitation tunnel at Chungnam National University (CNU CT.
Numerical simulation of axisymmetric valve operation for different outer cone angle
Smyk, Emil
One of the method of flow separation control is application of axisymmetric valve. It is composed of nozzle with core. Normally the main flow is attached to inner cone and flow by preferential collector to primary flow pipe. If through control nozzle starts flow jet (control jet) the main flow is switched to annular secondary collector. In both situation the main flow is deflected to inner or outer cone (placed at the outlet of the valve's nozzle) by Coanda effect. The paper deals with the numerical simulation of this axisymetric annular nozzle with integrated synthetic jet actuator. The aim of the work is influence examination of outer cone angle on deflection on main stream.
Structural Changes of International Trade Flows under the Impact of Globalization
Directory of Open Access Journals (Sweden)
Anca Dachin
2006-08-01
Full Text Available Structural changes of international trade flows indicate modifications in competitiveness of countries, in terms of production, technological upgrading and exports under the pressure of globalization. The paper aims to point out sources of competitive advantages especially in manufacturing exports of different groups of countries. The focus is on the shifts in the structure of manufacturing in the European Union and their effects on international rankings in export performances. An important issue refers to the opportunities given by the enlargement of the European Union and their impact on EU trade structures.
Understanding Structures and Affordances of Extended Teams in Global Software Development
DEFF Research Database (Denmark)
Ali Babar, Muhammad; Zahedi, Mansooreh
2013-01-01
Growing popularity of Global Software Development (GSD) has resulted in an increasing number of cross-organizational teams that are formed according to Extended Team Model (ETM). There is little known about the structures (work, social, and communication) that may exist in ETM and what affordances...... in the studied team help deal with different GSD challenges, these structures appear to have certain challenges inherent in them and the affordances they provide. We make a few recommendations for improving the current structures to deal with the observed challenges. Our findings are expected to provide insights...
Non Radial Oscillations in an Axisymmetric MHD Incompressible Fluid
Indian Academy of Sciences (India)
tribpo
Abstract. It is well known from Helioseismology that the Sun exhibits oscillations on a global scale, most of which are non radial in nature. These oscillations help us to get a clear picture of the internal structure of the Sun as has been demonstrated by the theoretical and observational. (such as GONG) studies. In this study ...
Theory of plasma confinement in non-axisymmetric magnetic fields.
Helander, Per
2014-08-01
The theory of plasma confinement by non-axisymmetric magnetic fields is reviewed. Such fields are used to confine fusion plasmas in stellarators, where in contrast to tokamaks and reversed-field pinches the magnetic field generally does not possess any continuous symmetry. The discussion is focussed on magnetohydrodynamic equilibrium conditions, collisionless particle orbits, and the kinetic theory of equilbrium and transport. Each of these topics is fundamentally affected by the absence of symmetry in the magnetic field: the field lines need not trace out nested flux surfaces, the particle orbits may not be confined, and the cross-field transport can be very large. Nevertheless, by tailoring the magnetic field appropriately, well-behaved equilibria with good confinement can be constructed, potentially offering an attractive route to magnetic fusion. In this article, the mathematical apparatus to describe stellarator plasmas is developed from first principles and basic elements underlying confinement optimization are introduced.
Measuring capital market efficiency: Global and local correlations structure
Czech Academy of Sciences Publication Activity Database
Krištoufek, Ladislav; Vošvrda, Miloslav
2013-01-01
Roč. 392, č. 1 (2013), s. 184-193 ISSN 0378-4371 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : Capital market efficiency * Fractal dimension * Long-range dependence * Short-range dependence Subject RIV: AH - Economics Impact factor: 1.722, year: 2013 http://library.utia.cas.cz/separaty/2012/E/kristoufek-measuring capital market efficiency global and local correlations structure.pdf
Global mode decomposition of supersonic impinging jet noise
Hildebrand, Nathaniel; Nichols, Joseph W.
2015-11-01
We apply global stability analysis to an ideally expanded, Mach 1.5, turbulent jet that impinges on a flat surface. The analysis extracts axisymmetric and helical instability modes, involving coherent vortices, shocks, and acoustic feedback, which we use to help explain and predict the effectiveness of microjet control. High-fidelity large eddy simulations (LES) were performed at nozzle-to-wall distances of 4 and 4.5 throat diameters with and without sixteen microjets positioned uniformly around the nozzle lip. These flow configurations conform exactly to experiments performed at Florida State University. Stability analysis about LES mean fields predicted the least stable global mode with a frequency that matched the impingement tone observed in experiments at a nozzle-to-wall distance of 4 throat diameters. The Reynolds-averaged Navier-Stokes (RANS) equations were solved at five nozzle-to-wall distances to create base flows that were used to investigate the influence of this parameter. A comparison of the eigenvalue spectra computed from the stability analysis about LES and RANS base flows resulted in good agreement. We also investigate the effect of the boundary layer state as it emerges from the nozzle using a multi-block global mode solver. Computational resources were provided by the Argonne Leadership Computing Facility.
Global control of colored moiré pattern in layered optical structures
Li, Kunyang; Zhou, Yangui; Pan, Di; Ma, Xueyan; Ma, Hongqin; Liang, Haowen; Zhou, Jianying
2018-05-01
Accurate description of visual effect of colored moiré pattern caused by layered optical structures consisting of gratings and Fresnel lens is proposed in this work. The colored moiré arising from the periodic and quasi-periodic structures is numerically simulated and experimentally verified. It is found that the visibility of moiré pattern generated by refractive optical elements is related to not only the spatial structures of gratings but also the viewing angles. To effectively control the moiré visibility, two constituting gratings are slightly separated. Such scheme is proved to be effective to globally eliminate moiré pattern for displays containing refractive optical films with quasi-periodic structures.
SGO: A fast engine for ab initio atomic structure global optimization by differential evolution
Chen, Zhanghui; Jia, Weile; Jiang, Xiangwei; Li, Shu-Shen; Wang, Lin-Wang
2017-10-01
As the high throughout calculations and material genome approaches become more and more popular in material science, the search for optimal ways to predict atomic global minimum structure is a high research priority. This paper presents a fast method for global search of atomic structures at ab initio level. The structures global optimization (SGO) engine consists of a high-efficiency differential evolution algorithm, accelerated local relaxation methods and a plane-wave density functional theory code running on GPU machines. The purpose is to show what can be achieved by combining the superior algorithms at the different levels of the searching scheme. SGO can search the global-minimum configurations of crystals, two-dimensional materials and quantum clusters without prior symmetry restriction in a relatively short time (half or several hours for systems with less than 25 atoms), thus making such a task a routine calculation. Comparisons with other existing methods such as minima hopping and genetic algorithm are provided. One motivation of our study is to investigate the properties of magnetic systems in different phases. The SGO engine is capable of surveying the local minima surrounding the global minimum, which provides the information for the overall energy landscape of a given system. Using this capability we have found several new configurations for testing systems, explored their energy landscape, and demonstrated that the magnetic moment of metal clusters fluctuates strongly in different local minima.
Directory of Open Access Journals (Sweden)
Edgar Lammertse
2017-01-01
Full Text Available This article is intended to share a few thoughts, notions and questions about regulatory and governmental structures, both national and international, with regard to the development of global justice. It will highlight the issue whether or not local wisdom can contribute to global justice. In addition, this writing will discover legal problems that arise from the idea of global society and global justice by analyzing jurisdictional aspects and by explaining a little bit about dematerialization of crime, as it has been affected by the changing of communities’ behavior in global contexts after the era of computer and information and communication technology (ICT. Progressive development in Europe, especially regarding the European Union Law, will also be explored in order to describe the respect for fundamental rights in this region.
Axisymmetric instability of a self-pinched beam with rounded radial density profile
International Nuclear Information System (INIS)
Chen, H.C.; Uhm, H.S.
1983-01-01
The axisymmetric perturbations (sausage and hollowing modes) of an intense relativistic self-pinched electron beam propagating in a resistive plasma background are studied, especially for a beam with rounded radial density profile. The Bennett profiles are assumed for both the equilibrium beam current J/sub b/(r) = J/sub b/(0) (1+r 2 /R 2 /sub b/) -2 and plasma return current J/sub p/(r) = -fJ/sub b/(0) (1+r 2 /R 2 /sub p/) -2 , where R/sub b/ and R/sub p/ are the characteristic radii of the beam and plasma return currents, respectively. It is further assumed that the electric conductivity sigma(r) of the plasma channel is proportional to the return current. For a paraxial electron beam with complete space-charge neutralization by the ambient plasma, the axisymmetric modes can be destabilized by the phase lag between the magnetic field and beam current, even without the plasma return current. The plasma return current significantly modifies the growth rate of the instability such that the ratio of plasma current to beam current (-I/sub p//I/sub b/ = fR 2 /sub p// iR 2 /sub b/) largely determines the stability character of the beam. Furthermore, for the same fractional current neutralization f, the modes are highly unstable for a smaller ratio of plasma to beam radius R/sub p//R/sub b/. As compared to the resistive hose instability, the growth rates for the hollowing mode can be larger than those of the hose mode, while the sausage mode is much stabler than the hose mode. Stability properties are illustrated in detail for various system parameters
Comparisons of linear and nonlinear plasma response models for non-axisymmetric perturbations
Energy Technology Data Exchange (ETDEWEB)
Turnbull, A. D.; Ferraro, N. M.; Lao, L. L.; Lanctot, M. J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Izzo, V. A. [University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Lazarus, E. A.; Hirshman, S. P. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Park, J.-K.; Lazerson, S.; Reiman, A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Cooper, W. A. [Association Euratom-Confederation Suisse, Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Liu, Y. Q. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Turco, F. [Columbia University, 116th St and Broadway, New York, New York 10027 (United States)
2013-05-15
With the installation of non-axisymmetric coil systems on major tokamaks for the purpose of studying the prospects of ELM-free operation, understanding the plasma response to the applied fields is a crucial issue. Application of different response models, using standard tools, to DIII-D discharges with applied non-axisymmetric fields from internal coils, is shown to yield qualitatively different results. The plasma response can be treated as an initial value problem, following the system dynamically from an initial unperturbed state, or from a nearby perturbed equilibrium approach, and using both linear and nonlinear models [A. D. Turnbull, Nucl. Fusion 52, 054016 (2012)]. Criteria are discussed under which each of the approaches can yield a valid response. In the DIII-D cases studied, these criteria show a breakdown in the linear theory despite the small 10{sup −3} relative magnitude of the applied magnetic field perturbations in this case. For nonlinear dynamical evolution simulations to reach a saturated nonlinear steady state, appropriate damping mechanisms need to be provided for each normal mode comprising the response. Other issues arise in the technical construction of perturbed flux surfaces from a displacement and from the presence of near nullspace normal modes. For the nearby equilibrium approach, in the absence of a full 3D equilibrium reconstruction with a controlled comparison, constraints relating the 2D system profiles to the final profiles in the 3D system also need to be imposed to assure accessibility. The magnetic helicity profile has been proposed as an appropriate input to a 3D equilibrium calculation and tests of this show the anticipated qualitative behavior.
Yeung, Chung-Hei (Simon)
The study of compressor instabilities in gas turbine engines has received much attention in recent years. In particular, rotating stall and surge are major causes of problems ranging from component stress and lifespan reduction to engine explosion. In this thesis, modeling and control of rotating stall and surge using bleed valve and air injection is studied and validated on a low speed, single stage, axial compressor at Caltech. Bleed valve control of stall is achieved only when the compressor characteristic is actuated, due to the fast growth rate of the stall cell compared to the rate limit of the valve. Furthermore, experimental results show that the actuator rate requirement for stall control is reduced by a factor of fourteen via compressor characteristic actuation. Analytical expressions based on low order models (2--3 states) and a high fidelity simulation (37 states) tool are developed to estimate the minimum rate requirement of a bleed valve for control of stall. A comparison of the tools to experiments show a good qualitative agreement, with increasing quantitative accuracy as the complexity of the underlying model increases. Air injection control of stall and surge is also investigated. Simultaneous control of stall and surge is achieved using axisymmetric air injection. Three cases with different injector back pressure are studied. Surge control via binary air injection is achieved in all three cases. Simultaneous stall and surge control is achieved for two of the cases, but is not achieved for the lowest authority case. This is consistent with previous results for control of stall with axisymmetric air injection without a plenum attached. Non-axisymmetric air injection control of stall and surge is also studied. Three existing control algorithms found in literature are modeled and analyzed. A three-state model is obtained for each algorithm. For two cases, conditions for linear stability and bifurcation criticality on control of rotating stall are
Prediction of welding residual distortions of large structures using a local/global approach
International Nuclear Information System (INIS)
Duan, Y. G.; Bergheau, J. M.; Vincent, Y.; Boitour, F.; Leblond, J. B.
2007-01-01
Prediction of welding residual distortions is more difficult than that of the microstructure and residual stresses. On the one hand, a fine mesh (often 3D) has to be used in the heat affected zone for the sake of the sharp variations of thermal, metallurgical and mechanical fields in this region. On the other hand, the whole structure is required to be meshed for the calculation of residual distortions. But for large structures, a 3D mesh is inconceivable caused by the costs of the calculation. Numerous methods have been developed to reduce the size of models. A local/global approach has been proposed to determine the welding residual distortions of large structures. The plastic strains and the microstructure due to welding are supposed can be determined from a local 3D model which concerns only the weld and its vicinity. They are projected as initial strains into a global 3D model which consists of the whole structure and obviously much less fine in the welded zone than the local model. The residual distortions are then calculated using a simple elastic analysis, which makes this method particularly effective in an industrial context. The aim of this article is to present the principle of the local/global approach then show the capacity of this method in an industrial context and finally study the definition of the local model
The Role of Teams as Organizational Structures in a Global Organizational Context
Zoltan Raluca
2012-01-01
The flexibility that modern companies must show in regard to global market entails the recourse to work teams which are multicultural adapted and aware of their role and place in the overall structure of the organization. The technological changes along with the customer needs diversification require the awareness of the influence of organizational structure on team members as well as the influence of teams on organizational structures and organizational context. The present paper aims to poi...
Axisymmetric toroidal equilibrium with flow and anisotropic pressure
International Nuclear Information System (INIS)
Iacono, R.; Bondeson, A.; Troyon, F.; Gruber, R.
1989-10-01
Axisymmetric toroidal plasma equilibria with mass flows and anisotropic pressure are investigated. The equilibrium system is derived for a general functional form of the pressures, which includes both fluid models, such as the magnetohydrodynamic (MHD) and the double-adiabatic models, and Grad's guiding centre model. This allows for detailed comparisons between the models and clarifies how the 'first hyperbolic region', occurring in the fluid theory when the poloidal flow is of the order of the poloidal sound speed, can be eliminated in guiding centre theory. In the case of a pure toroidal rotation, macroscopic equations of state are derived from the guiding centre model, characterized by a parallel temperature that is constant on each magnetic surface and a perpendicular temperature that varies with the magnetic field. The outward centrifugal shifts of the magnetic axis and of the mass density profile, due to toroidal rotation, are increased by anisotropy. The guiding centre model shows that poloidal flow produces an inward shift of the density profile, in contrast with the MHD result. (author) 1 fig., 1 tab., 17 refs
Fine structure of sprites and proposed global observations
DEFF Research Database (Denmark)
Mende, S.B; Frey, H.U.; Rairden, R.l.
2002-01-01
structures of columniform sprites (C sprites) consisted of slant directed, nearly vertically aligned columns of intense pinpoint like beads. The distance of the sprites from the observer was measured and the altitude and vertical spacing of the beads were estimated. The distribution of beads showed...... bore-sighted photometers. The imager will locate the sprites near the earth limb and make global synoptic measurements while the photometers will measure the spectral and temporal properties of sprites and other upper atmospheric luminous phenomena in a number of different wavelength regions...
Izotov, I V; Razin, S V; Sidorov, A V; Skalyga, V A; Zorin, V G; Bagryansky, P A; Beklemishev, A D; Prikhodko, V V
2012-02-01
Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap ("vortex" confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of "vortex" confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.
International Nuclear Information System (INIS)
Izotov, I. V.; Razin, S. V.; Sidorov, A. V.; Skalyga, V. A.; Zorin, V. G.; Bagryansky, P. A.; Beklemishev, A. D.; Prikhodko, V. V.
2012-01-01
Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap (''vortex'' confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of ''vortex'' confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.
The Weakly Nonlinear Magnetorotational Instability in a Global, Cylindrical Taylor–Couette Flow
Energy Technology Data Exchange (ETDEWEB)
Clark, S. E. [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Oishi, Jeffrey S., E-mail: seclark@astro.columbia.edu [Department of Physics and Astronomy, Bates College, Lewiston, ME 04240 (United States)
2017-05-20
We conduct a global, weakly nonlinear analysis of the magnetorotational instability (MRI) in a Taylor–Couette flow. This is a multiscale, perturbative treatment of the nonideal, axisymmetric MRI near threshold, subject to realistic radial boundary conditions and cylindrical geometry. We analyze both the standard MRI, initialized by a constant vertical background magnetic field, and the helical MRI, with an azimuthal background field component. This is the first weakly nonlinear analysis of the MRI in a global Taylor–Couette geometry, as well as the first weakly nonlinear analysis of the helical MRI. We find that the evolution of the amplitude of the standard MRI is described by a real Ginzburg–Landau equation (GLE), whereas the amplitude of the helical MRI takes the form of a complex GLE. This suggests that the saturated state of the helical MRI may itself be unstable on long spatial and temporal scales.
Suttrop, W.; Kirk, A.; Nazikian, R.; Leuthold, N.; Strumberger, E.; Willensdorfer, M.; Cavedon, M.; Dunne, M.; Fischer, R.; Fietz, S.; Fuchs, J. C.; Liu, Y. Q.; McDermott, R. M.; Orain, F.; Ryan, D. A.; Viezzer, E.; The ASDEX Upgrade Team; The DIII-D Team; The Eurofusion MST1 Team
2017-01-01
The interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m = qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality, ν \\text{ped}\\ast≤slant 0.4 : (a) a reduction of the global plasma density by up to 61 % and (b) a reduction of the energy loss associated with edge localised modes (ELMs) by a factor of up to 9. A comprehensive database of ELM mitigation pulses at low {ν\\ast} in ASDEX Upgrade shows that the degree of ELM mitigation correlates with the reduction of pedestal pressure which in turn is limited and defined by the onset of ELMs, i. e. a modification of the ELM stability limit by the magnetic perturbation.
International Nuclear Information System (INIS)
Bae, Youngmin; Kim, Young In
2014-01-01
Highlights: • Turbulent flow in axisymmetric sudden expansion with a chamfer is studied numerically. • Reynolds number dependency of the local loss coefficient is investigated. • Extended correlation is proposed for estimation of the local loss coefficient. - Abstract: This paper reports the pressure losses in turbulent flows through axisymmetric sudden expansions having a slight chamfer on the edge. A parametric study is performed for dimensionless chamfer lengths of 0–0.5, expansion ratios of 2–6, and chamfer angles of 0–45° in a Reynolds number range of 1 × 10 5 –8 × 10 5 . The chamfer effect on the expansion losses and its dependence on the Reynolds number are analyzed in detail along with a discussion of the relevant flow features. On the basis of numerical results, an existing correlation of the local loss coefficient is also extended to take into account the effect of the Reynolds number additionally
Peter Ince; Albert Schuler; Henry Spelter; William Luppold
2007-01-01
This report examines economic implications for sustainable forest management of globalization and related structural changes in the forest sector of the United States. Globalization has accelerated structural change in the U.S. forest sector, favored survival of larger and more capital-intensive enterprises, and altered historical patterns of resource use.
CSIR Research Space (South Africa)
Every, AG
2010-01-01
Full Text Available Non-axisymmetric waves in a free homogeneous piezoelectric cylinder of transversely isotropic material with axial polarization are investigated on the basis of the linear theory of elasticity and linear electromechanical coupling. The solution...
Vortex core structure and global properties of rapidly rotating Bose-Einstein condensates
International Nuclear Information System (INIS)
Baym, Gordon; Pethick, C.J.
2004-01-01
We develop an approach for calculating stationary states of rotating Bose-Einstein condensates in harmonic traps which is applicable for arbitrary ratios of the rotation frequency to the transverse frequency of the trap ω perpendicular . Assuming the number of vortices to be large, we write the condensate wave function as the product of a function that describes the structure of individual vortices times an envelope function varying slowly on the scale of the vortex spacing. By minimizing the energy, we derive Gross-Pitaevskii equations that determine the properties of individual vortices and the global structure of the cloud. For low rotation rates, the structure of a vortex is that of an isolated vortex in a uniform medium, while for rotation rates approaching the frequency of the trap (the mean-field lowest-Landau-level regime), the structure is that of the lowest p-wave state of a particle in a harmonic trap with frequency ω perpendicular . The global structure of the cloud is determined by minimizing the energy with respect to variations of the envelope function; for conditions appropriate to most experimental investigations to date, we predict that the transverse density profile of the cloud will be of the Thomas-Fermi form, rather than the Gaussian structure predicted on the assumption that the wave function consists only of components in the lowest Landau level for a regular array of vortices
Annual Variation and Global Structures of The DE3 Tide
International Nuclear Information System (INIS)
Ze-Yu, Chen; Da-Ren, Lu
2008-01-01
The SABER/TIMED temperatures taken in 2002–2006 are used to delineate the tidal signals in the middle and upper atmosphere. Then the Hough mode decomposition is applied with the DE3 tide, and the overall features of the seasonal variations and the complete global structures of the tide are observed. Investigation results show that the tide is most prominent at 110 km with the maximal amplitude of > 9K, and exhibits significant seasonal variation with its maximum amplitude always occurring in July every year. Results from the Hough mode decomposition reveal that the tide is composed primarily of two leading propagating Hough modes, i.e., the (−3,3) and the (−3,4) modes, thus is equatorially trapped. Estimation of the mean amplitude of the Hough modes show that the (−3,3) mode and (−3,4) mode exhibit maxima at 110km and 90 km, respectively. The (−3,3) mode plays a predominant role in shaping the global latitude-height structure of the tide, e.g., the vertical scale of > 50km at the equator, and the annual course. Significant influence of the (−3,4) mode is found below 90km, where the tide exhibits anti-symmetric structure about the equator; meanwhile the tide at northern tropical latitudes exhibits smaller vertical wavelength of about 30 km. (geophysics, astronomy, and astrophysics)
Studies on scaling of flow noise received at the stagnation point of an axisymmetric body
Arakeri, V. H.; Satyanarayana, S. G.; Mani, K.; Sharma, S. D.
1991-05-01
A description of the studies related to the problem of scaling of flow noise received at the stagnation point of axisymmetric bodies is provided. The source of flow noise under consideration is the transitional/turbulent regions of the boundary layer flow on the axisymmetric body. Lauchle has recently shown that the noise measured in the laminar region (including the stagnation point) corresponds closely to the noise measured in the transition region, provided that the acoustic losses due to diffraction are accounted for. The present study includes experimental measurement of flow noise at the stagnation point of three different shaped axisymmetric headforms. One of the body shapes chosen is that used by Lauchle in similar studies. This was done to establish the effect of body size on flow noise. The results of the experimental investigations clearly show that the flow noise received at the stagnation point is a strong function of free stream velocity, a moderately strong function of body scale but a weak function of boundary layer thickness. In addition, there is evidence that when body scale change is involved, flow noise amplitude scales but no frequency shift is involved. A scaling procedure is proposed based on the present observations along with those of Lauchle. At a given frequency, the amplitude of noise level obtained under model testing conditions is first scaled to account for differences in the velocity and size corresponding to the prototype conditions; then a correction to this is applied to account for losses due to diffraction, which are estimated on the basis of the geometric theory of diffraction (GTD) with the source being located at the predicted position of turbulent transition. Use of the proposed scaling law to extrapolate presently obtained noise levels to two other conditions involving larger-scale bodies show good agreement with actually measured levels, in particular at higher frequencies. Since model scale results have been used
Kostoglou, M.; Karapantsios, T. D.; Buffone, C.; Glushchuk, A.; Iorio, C.
2016-10-01
The present work attempts to model the case of combined gravitational and capillary motion of condensate for an axisymmetric fin under steady and transient fin operation conditions. The focus here is to examine the structure of the mathematical problem and to develop suitable numerical techniques rather than yield information on the macroscopic condensate flow rate and fin efficiency. The problem is formulated starting from general conditions and is simplified step by step by introducing corresponding assumptions. The particular fin shape of a paraboloid from revolution is chosen and the equations are properly non-dimensionalized. A vast reduction of the number of problem parameters is achieved in this way. The cases of isothermal fin, steady state operation and dynamic operation are treated separately using specialized numerical solution techniques developed for each case in order to improve computational efficiency and accuracy. Typical results of fin temperature and condensate film thickness are presented and discussed.
Stability of axisymmetric plasmas in closed line magnetic fields
International Nuclear Information System (INIS)
Simakov, A.N.; Vernon Wong, H.; Berk, H.L.
2003-01-01
The stability of axisymmetric plasmas confined by closed poloidal magnetic field lines is considered. The results are relevant to plasmas in the dipolar fields of stars and planets, as well as the Levitated Dipole Experiment, multipoles, Z pinches and field reversed configurations. The ideal MHD energy principle is employed to study the stability of pressure driven shear Alfven modes. A point dipole is considered in detail to demonstrate that equilibria exist which are MHD stable for arbitrary beta. Effects of sound waves and plasma resistivity are investigated for Z pinch and point dipole equilibria by means of resistive MHD theory. Kinetic theory is used to study drift frequency modes and their interaction with MHD modes near the ideal stability boundary for different collisionality regimes. Effects of collisional dissipation on drift mode stability are explicitly evaluated and applied to a Z pinch. The role of finite Larmor radius effects and drift reversed particles in modifying ideal stability thresholds is examined. (author)
Modeling and simulation of axisymmetric coating growth on nanofibers
International Nuclear Information System (INIS)
Moore, K.; Clemons, C. B.; Kreider, K. L.; Young, G. W.
2007-01-01
This work is a modeling and simulation extension of an integrated experimental/modeling investigation of a procedure to coat nanofibers and core-clad nanostructures with thin film materials using plasma enhanced physical vapor deposition. In the experimental effort, electrospun polymer nanofibers are coated with metallic materials under different operating conditions to observe changes in the coating morphology. The modeling effort focuses on linking simple models at the reactor level, nanofiber level, and atomic level to form a comprehensive model. The comprehensive model leads to the definition of an evolution equation for the coating free surface. This equation was previously derived and solved under a single-valued assumption in a polar geometry to determine the coating morphology as a function of operating conditions. The present work considers the axisymmetric geometry and solves the evolution equation without the single-valued assumption and under less restrictive assumptions on the concentration field than the previous work
Mansour , Salwa; Muhieddine , Mohamad; Canot , Édouard; March , Ramiro J.
2014-01-01
International audience; This paper is motivated by the studies of agricultural and archaeological soils. We introduce a numerical strategy in 3D axisymmetric coordinate system to estimate the thermophysical properties of a saturated porous medium (volumetric heat capacity, thermal conductivity and porosity) where a phase change problem (liquid/vapor) appears due to strong heating. The estimation of these thermophysical properties is done by inverse problem knowing the heating curves at select...
Feedback stabilization of the axisymmetric instability of a deformable tokamak plasma
International Nuclear Information System (INIS)
Pomphrey, N.; Jardin, S.C.
1987-09-01
We analyze the magnetohydrodynamic (MHD) stability of the axisymmetric system consisting of a free boundary, non-circular cross-section tokamak plasma, finite resistivity passive conductors, and an active feedback system with magnetic flux pickup loops, a proportional amplifier with gain G, and current carrying poloidal field coils. Numerical simulation of a system that is unstable with G = 0 shows that for some placements of the pickup loops, the system will remain unstable for all values of G, while for other placements of the loops, the system will be stable for G > G/sub crit/. This behavior is explained by analysis using an extended energy principle, and it is shown to result from the deformability of the plasma cross section. 9 refs., 5 figs
GATO: An MHD stability code for axisymmetric plasmas with internal separatrices
International Nuclear Information System (INIS)
Bernard, L.C.; Helton, F.J.; Moore, R.W.
1981-01-01
The GATO code computes the growth rate of ideal magnetohydrodynamic instabilities in axisymmetric geometries with internal separatrices such as doublet and expanded spheromak. The basic method, which uses a variational principle and a Galerkin procedure to obtain a matrix eigenvalue problem, is common to the ERATO and PEST codes. A new coordinate system has been developed to handle the internal separatrix. Efficient algorithms have been developed to solve the matrix eigenvalue problem for matrices of rank as large as 40 000. Further improvement is expected using graph theoretical techniques to reorder the matrices. Using judicious mesh repartition, the marginal point can be determined with great precision. The code has been extensively used to optimize doublet and general tokamak plasmas. (orig.)
Global plastic models for computerized structural analysis
International Nuclear Information System (INIS)
Roche, R.; Hoffmann, A.
1977-01-01
Two different global models are used in the CEASEMT system for structural analysis, one for the shells analysis and the other for piping analysis (in plastic or creep field). In shell analysis the generalized stresses choosed are the membrane forces Nsub(ij) and bending (including torsion) moments Msub(ij). There is only one yield condition for a normal (to the middle surface) and no integration along the thickness is required. In piping analysis, the choice of generalized stresses is: bending moments, torsional moments, Hoop stress and tension stress. There is only a set of stresses for a cross section and non integration over the cross section area is needed. Connected strains are axis curvature, torsion, uniform strains. The definition of the yield surface is the most important item. A practical way is to use a diagonal quadratic fonction of the stress components. But the coefficients are depending of the shape of the pipe element, especially for curved segments. Indications will be given on the yield fonctions used. Some examples of applications in structural analysis are added to the text [fr
Axisymmetric wave propagation in gas shear flow confined by a rigid-walled pipeline
International Nuclear Information System (INIS)
Chen Yong; Huang Yi-Yong; Chen Xiao-Qian; Bai Yu-Zhu; Tan Xiao-Dong
2015-01-01
The axisymmetric acoustic wave propagating in a perfect gas with a shear pipeline flow confined by a circular rigid wall is investigated. The governing equations of non-isentropic and isentropic acoustic assumptions are mathematically deduced while the constraint of Zwikker and Kosten is relaxed. An iterative method based on the Fourier–Bessel theory is proposed to semi-analytically solve the proposed models. A comparison of numerical results with literature contributions validates the present contribution. Meanwhile, the features of some high-order transverse modes, which cannot be analyzed based on the Zwikker and Kosten theory, are analyzed (paper)
International Nuclear Information System (INIS)
Smith, G.V.; Counce, R.M.
1984-01-01
This paper presents experimental and model-predicted pressure-flow characteristics of axisymmetric venturi-like reverse-flow diverters (RFDs), the key component of fluid pumping systems utilized for the transport of hazardous fluids. The effects of several key geometric parameters, operating conditions, and fluid properties on the performance of the RFD are presented and compared to model predictions. The results indicate good agreement between data and theory over a large portion of the range of variables studied. Cavitation is observed to be the primary factor in limiting the performance of the RFD at small values of load impedances
Input-output analysis of high-speed axisymmetric isothermal jet noise
Jeun, Jinah; Nichols, Joseph W.; Jovanović, Mihailo R.
2016-04-01
We use input-output analysis to predict and understand the aeroacoustics of high-speed isothermal turbulent jets. We consider axisymmetric linear perturbations about Reynolds-averaged Navier-Stokes solutions of ideally expanded turbulent jets with jet Mach numbers 0.6 parabolized stability equations (PSE), and this mode dominates the response. For subsonic jets, however, the singular values indicate that the contributions of sub-optimal modes to noise generation are nearly equal to that of the optimal mode, explaining why the PSE do not fully capture the far-field sound in this case. Furthermore, high-fidelity large eddy simulation (LES) is used to assess the prevalence of sub-optimal modes in the unsteady data. By projecting LES source term data onto input modes and the LES acoustic far-field onto output modes, we demonstrate that sub-optimal modes of both types are physically relevant.
Li, Xiaofan; Nie, Qing
2009-07-01
Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratures along with an extrapolation technique, leading to an arbitrarily high-order quadrature; in addition, a high-order (temporal) integration factor method, based on explicit representation of the mean curvature, is used to reduce the stability constraint on time-step. To apply this method to a periodic (in axial direction) and axi-symmetric elastically stressed cylinder, we also present a fast and accurate summation method for the periodic Green's functions of isotropic elasticity. Using the high-order boundary integral method, we demonstrate that in absence of elasticity the cylinder surface pinches in finite time at the axis of the symmetry and the universal cone angle of the pinching is found to be consistent with the previous studies based on a self-similar assumption. In the presence of elastic stress, we show that a finite time, geometrical singularity occurs well before the cylindrical solid collapses onto the axis of symmetry, and the angle of the corner singularity on the cylinder surface is also estimated.
Axisymmetric, Ventilated Supercavitation in Unsteady, Horizontal Flow
Kawakami, Ellison; Lee, Seung-Jae; Arndt, Roger
2012-11-01
Drag reduction and/or speed augmentation of marine vehicles by means of supercavitation is a topic of great interest. During the initial launch of a supercavitating vehicle, an artificial supercavity is required until the vehicle can reach conditions at which a natural supercavity can be sustained. Previous studies at Saint Anthony Falls Laboratory (SAFL) focused on the behavior of ventilated supercavities in steady horizontal flows. In open waters, vehicles can encounter unsteady flows, especially when traveling under waves. A study has been carried out at SAFL to investigate the effects of unsteady flow on axisymmetric supercavities. An attempt is made to duplicate sea states seen in open waters. In an effort to track cavity dimensions throughout a wave cycle, an automated cavity tracking script has been developed. Using a high speed camera and the proper software, it is possible to synchronize cavity dimensions with pressure measurements taken inside the cavity. Results regarding supercavity shape, ventilation demand, cavitation parameters and closure methods are presented. It was found that flow unsteadiness caused a decrease in the overall length of the supercavity while having only a minimal effect on the maximum diameter. The supercavity volume varied with cavitation number and a possible relationship between the two is being explored. (Supported by ONR)
Directory of Open Access Journals (Sweden)
Ap Kuiroukidis
2018-01-01
Full Text Available We consider a generalized Grad–Shafranov equation (GGSE in a triangularity-deformed axisymmetric toroidal coordinate system and solve it numerically for the generic case of ITER-like and JET-like equilibria with non-parallel flow. It turns out that increase of the triangularity improves confinement by leading to larger values of the toroidal beta and the safety factor. This result is supported by the application of a criterion for linear stability valid for equilibria with flow parallel to the magnetic field. Also, the parallel flow has a weaker stabilizing effect.
Directory of Open Access Journals (Sweden)
Sarmiza Pencea
2010-07-01
Full Text Available Due to trade liberalisation and ITC revolution, companies could imagine new and better ways of creating and delivering value. In search of higher efficiency, competitiveness and profits, they reorganise, choosing to focus on their core competencies and to globally outsource, or offshore non-core activities and functions. As a result, reorganisation and relocation became the new forces of change across economies, leading to the rise of new, more diverse and more efficient global organisational structures for investment, production and trade. A number of developing countries with adequate comparative advantages could better benefit from these processes, accelerating their own industralization and modernization, increasing their access to new technologies and managerial know-how and turning themselves into successful, high-rate growing, „ emerging” economies. The paper concludes that under such a global backdrop, taking part in global value chains (GVC and in international production networks (IPNs could be the best strategic option for both company strategies and governmental catch-up policies, provided that, or especially if companies enjoy high competences and tacit skills which make them capable of assuming complex tasks and of climbing further the technological ladder.
The structure and infrastructure of the global nanotechnology literature
International Nuclear Information System (INIS)
Kostoff, Ronald N.; Stump, Jesse A.; Johnson, Dustin; Murday, James S.; Lau, Clifford G.Y.; Tolles, William M.
2006-01-01
Text mining is the extraction of useful information from large volumes of text. A text mining analysis of the global open nanotechnology literature was performed. Records from the Science Citation Index (SCI)/Social SCI were analyzed to provide the infrastructure of the global nanotechnology literature (prolific authors/journals/institutions/countries, most cited authors/papers/journals) and the thematic structure (taxonomy) of the global nanotechnology literature, from a science perspective. Records from the Engineering Compendex (EC) were analyzed to provide a taxonomy from a technology perspective.The Far Eastern countries have expanded nanotechnology publication output dramatically in the past decade.The Peoples Republic of China ranks second to the USA (2004 results) in nanotechnology papers published in the SCI, and has increased its nanotechnology publication output by a factor of 21 in a decade.Of the six most prolific (publications) nanotechnology countries, the three from the Western group (USA, Germany, France) have about eight percent more nanotechnology publications (for 2004) than the three from the Far Eastern group (China, Japan, South Korea).While most of the high nanotechnology publication-producing countries are also high nanotechnology patent producers in the US Patent Office (as of 2003), China is a major exception. China ranks 20th as a nanotechnology patent-producing country in the US Patent Office
The structure and infrastructure of the global nanotechnology literature
Energy Technology Data Exchange (ETDEWEB)
Kostoff, Ronald N., E-mail: kostofr@onr.navy.mil; Stump, Jesse A. [Office of Naval Research (United States); Johnson, Dustin [Northrop Grumman TASC (United States); Murday, James S. [Naval Research Laboratory, Chemistry Division, Code 6100 (United States); Lau, Clifford G.Y. [Institute for Defense Analyses (United States); Tolles, William M
2006-08-15
Text mining is the extraction of useful information from large volumes of text. A text mining analysis of the global open nanotechnology literature was performed. Records from the Science Citation Index (SCI)/Social SCI were analyzed to provide the infrastructure of the global nanotechnology literature (prolific authors/journals/institutions/countries, most cited authors/papers/journals) and the thematic structure (taxonomy) of the global nanotechnology literature, from a science perspective. Records from the Engineering Compendex (EC) were analyzed to provide a taxonomy from a technology perspective.The Far Eastern countries have expanded nanotechnology publication output dramatically in the past decade.The Peoples Republic of China ranks second to the USA (2004 results) in nanotechnology papers published in the SCI, and has increased its nanotechnology publication output by a factor of 21 in a decade.Of the six most prolific (publications) nanotechnology countries, the three from the Western group (USA, Germany, France) have about eight percent more nanotechnology publications (for 2004) than the three from the Far Eastern group (China, Japan, South Korea).While most of the high nanotechnology publication-producing countries are also high nanotechnology patent producers in the US Patent Office (as of 2003), China is a major exception. China ranks 20th as a nanotechnology patent-producing country in the US Patent Office.
Quasi-Eulerian formulation for fluid-structure interaction
International Nuclear Information System (INIS)
Kennedy, J.M.; Belytschko, T.B.
1979-01-01
In this paper, recent developments of a quasi-Eulerian finite element formulation for the treatment of the fluid in fluid-structure interaction problems are described. The present formulation is applicable both to plane two-dimensional and axisymmetric three-dimensional problems. In order to reduce the noise associated with the convection terms, an amplification factor is used to implement an up-winding type scheme. The application of the method is illustrated in two problems which are of importance in nuclear reactor safety: 1. A two-dimensional model of a cross section of a subassembly configuration, where the quasi-Eulerian formulation is used to model the fluid adjacent to the structures and in the channel between the subassemblies. 2. Pressure transients in a straight pipe, where the axisymmetric formulation is used to model the fluid in the pipe. These results are compared to experimental results for these problems and compare quite well. The major problem in the application of these methods appears to be the automation of the scheme for moving the fluid nodes. Several alternative schemes are used in the problems described here, and a more general scheme which appears to offer a reasonable (orig.)
Bank Funding Structures and Risk; Evidence From the Global Financial Crisis
Pablo Federico; Francisco F. Vazquez
2012-01-01
This paper analyzes the evolution of bank funding structures in the run up to the global financial crisis and studies the implications for financial stability, exploiting a bank-level dataset that covers about 11,000 banks in the U.S. and Europe during 2001?09. The results show that banks with weaker structural liquidity and higher leverage in the pre-crisis period were more likely to fail afterward. The likelihood of bank failure also increases with bank risk-taking. In the cross-section, th...
Hartung, Lin C.; Hassan, H. A.
1992-01-01
A moment method for computing 3-D radiative transport is applied to axisymmetric flows in thermochemical nonequilibrium. Such flows are representative of proposed aerobrake missions. The method uses the P-1 approximation to reduce the governing system of integro-di erential equations to a coupled set of partial di erential equations. A numerical solution method for these equations given actual variations of the radiation properties in thermochemical nonequilibrium blunt body flows is developed. Initial results from the method are shown and compared to tangent slab calculations. The agreement between the transport methods is found to be about 10 percent in the stagnation region, with the difference increasing along the flank of the vehicle.
Axisymmetrical impulsive responses of an infinite circular cylindrical shell filled with liquid
International Nuclear Information System (INIS)
Ujihashi, Sadayuki; Matsumoto, Hiroyuki; Nakahara, Ichiro; Shigeta, Masayuki.
1986-01-01
In this paper, dynamic interaction phenomena on solid and liquid interfaces are discussed. Axisymmetrical responses of an infinite circular cylindrical shell perfectly filled with liquid are analyzed, based on Fluegge's theory for a circular cylindrical shell and the potential theory for the ideal fluid under conditions of the impulsive external band pressure given on the outer surface of the shell. The deflection and the moment of the shell and the pressure in the fluid are evaluated by using the numerical inversion of the Laplace transformation method. The approximate solution for the shell with an equivalent mass on it is analyzed and is evaluated, based on the solution for the solid and liquid interaction. (author)
Experimental investigation on cavitating flow shedding over an axisymmetric blunt body
Hu, Changli; Wang, Guoyu; Huang, Biao
2015-03-01
Nowadays, most researchers focus on the cavity shedding mechanisms of unsteady cavitating flows over different objects, such as 2D/3D hydrofoils, venturi-type section, axisymmetric bodies with different headforms, and so on. But few of them pay attention to the differences of cavity shedding modality under different cavitation numbers in unsteady cavitating flows over the same object. In the present study, two kinds of shedding patterns are investigated experimentally. A high speed camera system is used to observe the cavitating flows over an axisymmetric blunt body and the velocity fields are measured by a particle image velocimetry (PIV) technique in a water tunnel for different cavitation conditions. The U-type cavitating vortex shedding is observed in unsteady cavitating flows. When the cavitation number is 0.7, there is a large scale cavity rolling up and shedding, which cause the instability and dramatic fluctuation of the flows, while at cavitation number of 0.6, the detached cavities can be conjunct with the attached part to induce the break-off behavior again at the tail of the attached cavity, as a result, the final shedding is in the form of small scale cavity and keeps a relatively steady flow field. It is also found that the interaction between the re-entrant flow and the attached cavity plays an important role in the unsteady cavity shedding modality. When the attached cavity scale is insufficient to overcome the re-entrant flow, it deserves the large cavity rolling up and shedding just as that at cavitation number of 0.7. Otherwise, the re-entrant flow is defeated by large enough cavity to induce the cavity-combined process and small scale cavity vortexes shedding just as that of the cavitation number of 0.6. This research shows the details of two different cavity shedding modalities which is worthful and meaningful for the further study of unsteady cavitation.
Plank, Barbara; Eisenmenger, Nina; Schaffartzik, Anke; Wiedenhofer, Dominik
2018-04-03
Globalization led to an immense increase of international trade and the emergence of complex global value chains. At the same time, global resource use and pressures on the environment are increasing steadily. With these two processes in parallel, the question arises whether trade contributes positively to resource efficiency, or to the contrary is further driving resource use? In this article, the socioeconomic driving forces of increasing global raw material consumption (RMC) are investigated to assess the role of changing trade relations, extended supply chains and increasing consumption. We apply a structural decomposition analysis of changes in RMC from 1990 to 2010, utilizing the Eora multi-regional input-output (MRIO) model. We find that changes in international trade patterns significantly contributed to an increase of global RMC. Wealthy developed countries play a major role in driving global RMC growth through changes in their trade structures, as they shifted production processes increasingly to less material-efficient input suppliers. Even the dramatic increase in material consumption in the emerging economies has not diminished the role of industrialized countries as drivers of global RMC growth.
Filament winding technique, experiment and simulation analysis on tubular structure
Quanjin, Ma; Rejab, M. R. M.; Kaige, Jiang; Idris, M. S.; Harith, M. N.
2018-04-01
Filament winding process has emerged as one of the potential composite fabrication processes with lower costs. Filament wound products involve classic axisymmetric parts (pipes, rings, driveshafts, high-pressure vessels and storage tanks), non-axisymmetric parts (prismatic nonround sections and pipe fittings). Based on the 3-axis filament winding machine has been designed with the inexpensive control system, it is completely necessary to make a relative comparison between experiment and simulation on tubular structure. In this technical paper, the aim of this paper is to perform a dry winding experiment using the 3-axis filament winding machine and simulate winding process on the tubular structure using CADWIND software with 30°, 45°, 60° winding angle. The main result indicates that the 3-axis filament winding machine can produce tubular structure with high winding pattern performance with different winding angle. This developed 3-axis winding machine still has weakness compared to CAWIND software simulation results with high axes winding machine about winding pattern, turnaround impact, process error, thickness, friction impact etc. In conclusion, the 3-axis filament winding machine improvements and recommendations come up with its comparison results, which can intuitively understand its limitations and characteristics.
International Nuclear Information System (INIS)
Hoffmann, A.; Livolant, M.; Roche, R.
1978-01-01
The nuclear research center at Saclay has developed the system of computer program CASTEM for the analysis of mechanical structures of reactors. This finite element system is designed specially to deal with nonlinear problems concerning both the material (plasticity, thermoplasticity, creep) and the geometry (nonlinear relationships between displacement and strain, buckling). Furthermore, a special effort has been devoted to the processing of dynamic problems (vibrations, natural modes, earthquakes, shock phenomena, etc..). The CASTEM system includes a large number of elementary modules corresponding to a total of over 80,000 Fortran instructions. Allowing the calculation of various structural geometries, including: axisymmetrical shells and liquids (with non axisymmetrical loading); pipes and frames; two-dimensional massive structures; three-dimensional shells; three-dimensional massive structures. Complex dynamic analysis can be made by combination of substructures natural mode shapes. Pre and post processors: automatic meshing, plotting of results, direct comparison of stresses to ASME limits make the use of the system easy and time saving
Ooms, Gorik; Hammonds, Rachel
2016-12-03
Global constitutionalism is a way of looking at the world, at global rules and how they are made, as if there was a global constitution, empowering global institutions to act as a global government, setting rules which bind all states and people. This essay employs global constitutionalism to examine how and why global health governance, as currently structured, has struggled to advance the right to health, a fundamental human rights obligation enshrined in the International Covenant on Economic, Social and Cultural Rights. It first examines the core structure of the global health governance architecture, and its evolution since the Second World War. Second, it identifies the main constitutionalist principles that are relevant for a global constitutionalism assessment of the core structure of the global health governance architecture. Finally, it applies these constitutionalist principles to assess the core structure of the global health governance architecture. Leading global health institutions are structurally skewed to preserve high incomes countries' disproportionate influence on transnational rule-making authority, and tend to prioritise infectious disease control over the comprehensive realisation of the right to health. A Framework Convention on Global Health could create a classic division of powers in global health governance, with WHO as the law-making power in global health governance, a global fund for health as the executive power, and the International Court of Justice as the judiciary power.
Stability and instability of axisymmetric droplets in thermocapillary-driven thin films
Nicolaou, Zachary G.
2018-03-01
The stability of compactly supported, axisymmetric droplet states is considered for driven thin viscous films evolving on two-dimensional surfaces. Stability is assessed using Lyapunov energy methods afforded by the Cahn-Hilliard variational form of the governing equation. For general driving forces, a criterion on the gradient of profiles at the boundary of their support (their contact slope) is shown to be a necessary condition for stability. Additional necessary and sufficient conditions for stability are established for a specific driving force corresponding to a thermocapillary-driven film. It is found that only droplets of sufficiently short height that satisfy the contact slope criterion are stable. This destabilization of droplets with increasing height is characterized as a saddle-node bifurcation between a branch of tall, unstable droplets and a branch of short, stable droplets.
Motion of the relativistic charged particle in an axisymmetric toroidal system
Energy Technology Data Exchange (ETDEWEB)
Chiyoda, K; Sugimoto, H [Electrotechnical Labs., Sakura, Ibaraki (Japan)
1980-01-01
The relativistic theory of motion of one particle by Morozov and Solov'ev is summarized for convenience of the present study. Then, a drift equation is given and four constants of motion, E/sub 0/, J perpendicular, J and J parallel, are obtained. These constants of motion are used in analyzing the particle motion in an axisymmetric toroidal system. The displacement of the particle from the magnetic surface, ..delta..r, and the period of the banana motion, tau, are obtained. The relativistic expressions of the displacement, ..delta..r, and the period, tau, are obtained by multiplying the corresponding nonrelativistic expressions by (1 - v parallel/sup 2//c/sup 2/) - 1/2, where the relativistic expression of ..delta..r includes the relativistic mass in terms of Larmor radius r/sub L/.
A Family of Vortices to Study Axisymmetric Vortex Breakdown and Reconnection
Young, Larry A.
2007-01-01
A new analytic model describing a family of vortices has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. The family of vortices incorporates a wide range of prescribed initial vorticity distributions -- including single or dual-core vorticity distributions. The result is analytical solutions for the vorticity and velocities for each member of the family of vortices. This model is of sufficient generality to further illustrate the dependence of vortex reconnection and breakdown on initial vorticity distribution as was suggested by earlier analytical work. This family of vortices, though laminar in nature, is anticipated to provide valuable insight into the vortical evolution of large-scale rotor and propeller wakes.
Feedback stabilization of the axisymmetric instability of a deformable tokamak plasma
International Nuclear Information System (INIS)
Pomphrey, N.; Jardin, S.C.; Ward, D.J.
1989-01-01
The paper presents an analysis of the magnetohydrodynamic stability of the axisymmetric system consisting of a free boundary tokamak plasma with non-circular cross-section, finite resistivity passive conductors, and an active feedback system with magnetic flux pickup loops, a proportional amplifier with gain G and current carrying poloidal field coils. A numerical simulation of the system when G is set to zero identifies flux loop locations which correctly sense the plasma motion. However, when certain of these locations are incorporated into an active feedback scheme, the plasma fails to be stabilized, no matter what value of the gain is chosen. Analysis on the basis of an extended energy principle indicates that this failure is due to the deformability of the plasma cross-section. (author). 14 refs, 7 figs
Transverse kick in misaligned traveling wave structures driven at the fundamental mode
International Nuclear Information System (INIS)
Whittum, D.H.
1998-04-01
Fabrication errors in traveling wave structures result in non-axisymmetric RF fields that couple to the rf drive at the fundamental mode frequency. The authors calculate the excitation of the dipole mode and the integrated effect on the beam, using the thin iris and small hole approximation
Pressure drop coefficient of laminar Newtonian flow in axisymmetric diffusers
International Nuclear Information System (INIS)
Rosa, S.; Pinho, F.T.
2006-01-01
The laminar flow of Newtonian fluids in axisymmetric diffusers has been numerically investigated to evaluate the pressure-loss coefficient as a function of Reynolds number, diffusion angle and expansion ratio. The numerical simulations were carried out with a finite-volume based code using non-orthogonal collocated grids and second order accurate differencing schemes to discretize all terms of the transport equations. The calculations were carried out for Reynolds numbers between 2 and 200, diffusion angles from 0 deg. to 90 deg. and expansion ratios of 1.5 and 2 and the data are presented in tabular form and as correlations. A simplified 1D theoretical analysis helped explain the various contributions to the loss coefficient and its difference relative to the reversible pressure variation due to differences between the actual and fully developed friction losses, distortions of the velocity profiles and pressure non-uniformity upstream and downstream of the expansion section
Pressure drop coefficient of laminar Newtonian flow in axisymmetric diffusers
Energy Technology Data Exchange (ETDEWEB)
Rosa, S. [Escola Superior de Tecnologia e Gestao, Instituto Politecnico, Campus de Santa Apolonia, 5301-857 Braganca (Portugal)]. E-mail: srosa@ipb.pt; Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEM, Universidade do Minho, Campus de Azurem, 4800-058 Guimaraes (Portugal)]. E-mail: fpinho@fe.up.pt
2006-04-15
The laminar flow of Newtonian fluids in axisymmetric diffusers has been numerically investigated to evaluate the pressure-loss coefficient as a function of Reynolds number, diffusion angle and expansion ratio. The numerical simulations were carried out with a finite-volume based code using non-orthogonal collocated grids and second order accurate differencing schemes to discretize all terms of the transport equations. The calculations were carried out for Reynolds numbers between 2 and 200, diffusion angles from 0 deg. to 90 deg. and expansion ratios of 1.5 and 2 and the data are presented in tabular form and as correlations. A simplified 1D theoretical analysis helped explain the various contributions to the loss coefficient and its difference relative to the reversible pressure variation due to differences between the actual and fully developed friction losses, distortions of the velocity profiles and pressure non-uniformity upstream and downstream of the expansion section.
Numerical study of the axisymmetric ideal MHD stability of Extrap
International Nuclear Information System (INIS)
Benda, M.
1993-04-01
A numerical study of the free-boundary axisymmetric (n=0) ideal magnetohydrodynamical (MHD) motions of the Extrap device is presented. The dependence of stability on current profiles in the plasma and currents in the external conductors is investigated. Results are shown for linear growth-rates and nonlinear saturation amplitudes and their dependence on plasma radius as well as on the conducting shell radius. A method combined of two different algorithms has been developed and tested. The interior region of the plasma is simulated by means of a Lagrangian Finite Element Method (FEM) for ideal magnetohydrodynamics, The method is based on a nonlinear radiation principle for the Lagrangian description of ideal MHD. The Boundary Element Method (BEM) is used together with the Lagrangian FEM to simulate nonlinear motion of an ideal MHD plasma behaviour in a vacuum region under the influence of external magnetic fields. 31 refs
Structuring Successful Global Virtual Teams
2015-01-01
e.g., email) to a lot (e.g., video conferencing ). Finally, global teams can vary in their level of synchronicity, or the degree to which a team’s... electronic communication. Thus, we view these types of teams as analogous enough that they can be discussed together under the overarching term of “global...emergence. Balthazard, Waldman, and Warren (2009) found that communication media that mim- ics face-to-face interactions (e.g., video conferencing
Energy Technology Data Exchange (ETDEWEB)
Kochukhov, Oleg; Lavail, Alexis [Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-75120 (Sweden)
2017-01-20
The nearby M dwarf binary GJ65 AB, also known as BL Cet and UV Cet, is a unique benchmark for investigation of dynamo-driven activity of low-mass stars. Magnetic activity of GJ65 was repeatedly assessed by indirect means, such as studies of flares, photometric variability, X-ray, and radio emission. Here, we present a direct analysis of large-scale and local surface magnetic fields in both components. Interpreting high-resolution circular polarization spectra (sensitive to a large-scale field geometry) we uncovered a remarkable difference of the global stellar field topologies. Despite nearly identical masses and rotation rates, the secondary exhibits an axisymmetric, dipolar-like global field with an average strength of 1.3 kG while the primary has a much weaker, more complex, and non-axisymmetric 0.3 kG field. On the other hand, an analysis of the differential Zeeman intensification (sensitive to the total magnetic flux) shows the two stars having similar magnetic fluxes of 5.2 and 6.7 kG for GJ65 A and B, respectively, although there is evidence that the field strength distribution in GJ65 B is shifted toward a higher field strength compared to GJ65 A. Based on these complementary magnetic field diagnostic results, we suggest that the dissimilar radio and X-ray variability of GJ65 A and B is linked to their different global magnetic field topologies. However, this difference appears to be restricted to the upper atmospheric layers but does not encompass the bulk of the stars and has no influence on the fundamental stellar properties.
Edwards, D. Brent, Jr.; Brehm, William C.
2015-01-01
This paper uses Margaret Archer's morphogenetic approach to analyze the emergence of civil society within global educational governance. The purpose is to understand the intersection of historical structures with global actors and spaces that have accompanied the globalization of education. Based on findings from a study on the impact in Cambodia…
Impacts of Global Warming and Sea Level Rise on Service Life of Chloride-Exposed Concrete Structures
Directory of Open Access Journals (Sweden)
Xiao-Jian Gao
2017-03-01
Full Text Available Global warming will increase the rate of chloride ingress and the rate of steel corrosion of concrete structures. Furthermore, in coastal (atmospheric marine zones, sea level rise will reduce the distance of concrete structures from the coast and increase the surface chloride content. This study proposes a probabilistic model for analyzing the effects of global warming and sea level rise on the service life of coastal concrete structures. First, in the corrosion initiation stage, an improved chloride diffusion model is proposed to determine chloride concentration. The Monte Carlo method is employed to calculate the service life in the corrosion initiation stage; Second, in the corrosion propagation stage, a numerical model is proposed to calculate the rate of corrosion, probability of corrosion cracking, and service life. Third, overall service life is determined as the sum of service life in the corrosion initiation and corrosion propagation stages. After considering the impacts of global warming and sea level rise, the analysis results show that for concrete structures having a service life of 50 years, the service life decreases by about 5%.
Reedy, Todd Mitchell
An experimental investigation evaluating the effects of flow control on the near-wake downstream of a blunt-based axisymmetric body in supersonic flow has been conducted. To better understand and control the physical phenomena that govern these massively separated high-speed flows, this research examined both passive and active flow-control methodologies designed to alter the stability characteristics and structure of the near-wake. The passive control investigation consisted of inserting splitter plates into the recirculation region. The active control technique utilized energy deposition from multiple electric-arc plasma discharges placed around the base. The flow-control authority of both methodologies was evaluated with experimental diagnostics including particle image velocimetry, schlieren photography, surface flow visualization, pressure-sensitive paint, and discrete surface pressure measurements. Using a blowdown-type wind tunnel reconstructed specifically for these studies, baseline axisymmetric experiments without control were conducted for a nominal approach Mach number of 2.5. In addition to traditional base pressure measurements, mean velocity and turbulence quantities were acquired using two-component, planar particle image velocimetry. As a result, substantial insight was gained regarding the time-averaged and instantaneous near-wake flow fields. This dataset will supplement the previous benchmark point-wise laser Doppler velocimetry data of Herrin and Dutton (1994) for comparison with new computational predictive techniques. Next, experiments were conducted to study the effects of passive triangular splitter plates placed in the recirculation region behind a blunt-based axisymmetric body. By dividing the near-wake into 1/2, 1/3, and 1/4 cylindrical regions, the time-averaged base pressure distribution, time-series pressure fluctuations, and presumably the stability characteristics were altered. While the spatial base pressure distribution was
International Nuclear Information System (INIS)
Shapiro, S.L.; Teukolsky, S.A.
1987-01-01
The dynamical behavior of nonspherical systems in general relativity is analyzed, allowing for rotation and the emission of gravitational waves. An axisymmetric code for solving the Vlasov equation in the Newtonian limit based on a mean-field particle simulation scheme is constructed and tested by reproducing the known evolution of homogeneous spheroids with and without rotation, including the Lin-Kestel-Shu instability. Results for the collapse of homogeneous, nonequilbrium spheroids are described, and stability studies of homogeneous, equilibrium spheroids are summarized. Finally, the code is used to follow the evolution of inhomogeneous, centrally condensed spheroids, and the results are compared with those for homogeneous collapse. 22 references
Freely floating structures trapping time-harmonic water waves (revisited)
Kuznetsov, Nikolay; Motygin, Oleg
2014-01-01
We study the coupled small-amplitude motion of the mechanical system consisting of infinitely deep water and a structure immersed in it. The former is bounded above by a free surface, whereas the latter is formed by an arbitrary finite number of surface-piercing bodies floating freely. The mathematical model of time-harmonic motion is a spectral problem in which the frequency of oscillations serves as the spectral parameter. It is proved that there exist axisymmetric structures consisting of ...
Global nuclear-structure calculations
International Nuclear Information System (INIS)
Moeller, P.; Nix, J.R.
1990-01-01
The revival of interest in nuclear ground-state octupole deformations that occurred in the 1980's was stimulated by observations in 1980 of particularly large deviations between calculated and experimental masses in the Ra region, in a global calculation of nuclear ground-state masses. By minimizing the total potential energy with respect to octupole shape degrees of freedom in addition to ε 2 and ε 4 used originally, a vastly improved agreement between calculated and experimental masses was obtained. To study the global behavior and interrelationships between other nuclear properties, we calculate nuclear ground-state masses, spins, pairing gaps and Β-decay and half-lives and compare the results to experimental qualities. The calculations are based on the macroscopic-microscopic approach, with the microscopic contributions calculated in a folded-Yukawa single-particle potential
Formation of global energy minimim structures in the growth process of Lennard-Jones clusters
DEFF Research Database (Denmark)
Solov'yov, Ilia; Koshelev, Andrey; Shutovich, Andrey
2003-01-01
that in this way all known global minimum structures of the Lennard-Jones (LJ) clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic numbers sequence for the clusters of noble gases atoms and compare...
Energy Technology Data Exchange (ETDEWEB)
Lakhin, V. P.; Sorokina, E. A., E-mail: sorokina.ekaterina@gmail.com, E-mail: vilkiae@gmail.com; Ilgisonis, V. I. [National Research Centre Kurchatov Institute (Russian Federation); Konovaltseva, L. V. [Peoples’ Friendship University of Russia (Russian Federation)
2015-12-15
A set of reduced linear equations for the description of low-frequency perturbations in toroidally rotating plasma in axisymmetric tokamak is derived in the framework of ideal magnetohydrodynamics. The model suitable for the study of global geodesic acoustic modes (GGAMs) is designed. An example of the use of the developed model for derivation of the integral conditions for GGAM existence and of the corresponding dispersion relation is presented. The paper is dedicated to the memory of academician V.D. Shafranov.
Global and local targeted immunization in networks with community structure
International Nuclear Information System (INIS)
Yan, Shu; Tang, Shaoting; Pei, Sen; Zheng, Zhiming; Fang, Wenyi
2015-01-01
Immunization plays an important role in the field of epidemic spreading in complex networks. In previous studies, targeted immunization has been proved to be an effective strategy. However, when extended to networks with community structure, it is unknown whether the superior strategy is to vaccinate the nodes who have the most connections in the entire network (global strategy), or those in the original community where epidemic starts to spread (local strategy). In this work, by using both analytic approaches and simulations, we observe that the answer depends on the closeness between communities. If communities are tied closely, the global strategy is superior to the local strategy. Otherwise, the local targeted immunization is advantageous. The existence of a transitional value of closeness implies that we should adopt different strategies. Furthermore, we extend our investigation from two-community networks to multi-community networks. We consider the mode of community connection and the location of community where epidemic starts to spread. Both simulation results and theoretical predictions show that local strategy is a better option for immunization in most cases. But if the epidemic begins from a core community, global strategy is superior in some cases. (paper)
Moniz, António Brandão; V. Silva, Ana; Woll, Tobias; J. Sampaio, José
2007-01-01
International audience; Some of the phenomena where the “globalization” concept is applied include the internationalization of markets, globalization of culture, polítical hegemony of world by some states, or groups of states, the increasing power of supranational institutions, and the development of a global division of labour. A starting point to understand the global division of work is the study of how companies are re-structuring, once they are the key-actors in the decision on which wor...
A numerical study of two-phase Stokes flow in an axisymmetric flow-focusing device
DEFF Research Database (Denmark)
Jensen, Mads Jakob; Stone, H.A.; Bruus, Henrik
2006-01-01
We present a numerical investigation of the time-dependent dynamics of the creation of gas bubbles in an axisymmetric flow-focusing device. The liquid motion is treated as a Stokes flow, and using a generic framework we implement a second-order time-integration scheme and a free-surface model...... in MATLAB, which interfaces with the finite-element software FEMLAB. We derive scaling laws for the volume of a created bubble and for the gas flow rate, and confirm them numerically. Our results are consistent with existing experimental results by Garstecki et al. [Phys. Rev. Lett. 94, 164501 (2005...
Non-axisymmetric SOL-transport study for tokamaks and stellarators
International Nuclear Information System (INIS)
Sardei, F.; Feng, Y.; Kisslinger, J.; Grigull, P.; Kobayashi, M.; Harting, D.; Reiter, D.; Federici, G.; Loarte, A.
2007-01-01
The paper addresses basic features of non-axisymmetric edge transport induced in tokamaks by local limiters or external magnetic perturbations and in low-shear stellarators by the presence of edge magnetic islands. 3D simulations and, if available for comparison, experimental results are presented and discussed for three devices, ITER during start-up operation, TEXTOR-DED and W7-AS, having edge topologies totally different from each other. The modeling is performed with the EMC3/EIRENE code, which treats self-consistently plasma, neutral and impurity transport in a general 3D scrape-off layer (SOL) with arbitrarily complex geometry of magnetic configuration and plasma-facing components. Shown are code predictions of the power load on the ITER start-up limiters as well as modeling results on the transport in the TEXTOR-DED stochastic edge and on the physics of stable detachment in W7-AS. Experimental observations confirming the code simulations are referenced for both TEXTOR-DED and W7-AS, a direct comparison between modeling and experimental results is shown for W7-AS
DEFF Research Database (Denmark)
Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.
1997-01-01
the arrival of the first earthquake from non-destructive vibration tests or via structural analysis. The previous excitation and displacement response time series is employed for the identification of the instantaneous softening using an ARMA model. The hysteresis parameters are updated after each earthquake....... The proposed model is next generalized for the MDOF system. Using the adapted models for the structure and the global damage state, the global damage in a future earthquake can then be estimated when a suitable earthquake model is applied. The performance of the model is illustrated on RC frames which were...
DEFF Research Database (Denmark)
Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.
1994-01-01
the arrival of the first earthquake from non-destructive vibration tests or via structural analysis. The previous excitation and displacement response time series is employed for the identification of the instantaneous softening using an ARMA model. The hysteresis parameters are updated after each earthquake....... The proposed model is next generalized for the MDOF system. Using the adapted models for the structure and the global damage state, the global damage in a future earthquake can then be estimated when a suitable earthquake model is applied. The performance of the model is illustrated on RC frames which were...
Energy Technology Data Exchange (ETDEWEB)
Apai, Dániel; Schneider, Glenn [Department of Astronomy and Steward Observatory, The University of Arizona, Tucson, AZ 85721 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland CA 96002 (United States); Wyatt, Mark C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Lagrange, Anne-Marie [Université Grenoble Alpes, IPAG, F-38000, Grenoble (France); Kuchner, Marc J.; Stark, Christopher J. [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Lubow, Stephen H., E-mail: apai@arizona.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)
2015-02-20
We present deep Hubble Space Telescope/Space Telescope Imaging Spectrograph coronagraphic images of the β Pic debris disk obtained at two epochs separated by 15 yr. The new images and the re-reduction of the 1997 data provide the most sensitive and detailed views of the disk at optical wavelengths as well as the yet smallest inner working angle optical coronagraphic image of the disk. Our observations characterize the large-scale and inner-disk asymmetries and we identify multiple breaks in the disk radial surface brightness profile. We study in detail the radial and vertical disk structure and show that the disk is warped. We explore the disk at the location of the β Pic b super-Jupiter and find that the disk surface brightness slope is continuous between 0.''5 and 2.''0, arguing for no change at the separations where β Pic b orbits. The two epoch images constrain the disk's surface brightness evolution on orbital and radiation pressure blow-out timescales. We place an upper limit of 3% on the disk surface brightness change between 3'' and 5'', including the locations of the disk warp, and the CO and dust clumps. We discuss the new observations in the context of high-resolution multi-wavelength images and divide the disk asymmetries in two groups: axisymmetric and non-axisymmetric. The axisymmetric structures (warp, large-scale butterfly, etc.) are consistent with disk structure models that include interactions of a planetesimal belt and a non-coplanar giant planet. The non-axisymmetric features, however, require a different explanation.
Directory of Open Access Journals (Sweden)
S.M. Moawad
Full Text Available In this paper, the equilibrium properties of some ideal and resistive magnetohydrodynamics (MHD are investigated. The governing equations are taken in the steady state for parallel and non-parallel flow to magnetic filed. The governing equations are reduced to Bernoulli-Grad-Shafranov system. The problem of finding exact equilibria to the governing equations in the presence of incompressible mass flows is studied. Several nonlinear equilibria of the governing equations are obtained with aid of constructed constraints. The obtained results cover several previously configurations and include new considerations about the nonlinearity of magnetic flux stream variables. The possibility of applying the obtained results to magnetic confinement devices are discussed. Keywords: Magnetohydrodynamics, Axisymmetric plasma, Resistivity, Incompressible flows, Exact equilibria, Magnetic confinement devices
Protein structure modeling for CASP10 by multiple layers of global optimization.
Joo, Keehyoung; Lee, Juyong; Sim, Sangjin; Lee, Sun Young; Lee, Kiho; Heo, Seungryong; Lee, In-Ho; Lee, Sung Jong; Lee, Jooyoung
2014-02-01
In the template-based modeling (TBM) category of CASP10 experiment, we introduced a new protocol called protein modeling system (PMS) to generate accurate protein structures in terms of side-chains as well as backbone trace. In the new protocol, a global optimization algorithm, called conformational space annealing (CSA), is applied to the three layers of TBM procedure: multiple sequence-structure alignment, 3D chain building, and side-chain re-modeling. For 3D chain building, we developed a new energy function which includes new distance restraint terms of Lorentzian type (derived from multiple templates), and new energy terms that combine (physical) energy terms such as dynamic fragment assembly (DFA) energy, DFIRE statistical potential energy, hydrogen bonding term, etc. These physical energy terms are expected to guide the structure modeling especially for loop regions where no template structures are available. In addition, we developed a new quality assessment method based on random forest machine learning algorithm to screen templates, multiple alignments, and final models. For TBM targets of CASP10, we find that, due to the combination of three stages of CSA global optimizations and quality assessment, the modeling accuracy of PMS improves at each additional stage of the protocol. It is especially noteworthy that the side-chains of the final PMS models are far more accurate than the models in the intermediate steps. Copyright © 2013 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Mohammed Almakki
2017-07-01
Full Text Available The entropy generation in unsteady three-dimensional axisymmetric magnetohydrodynamics (MHD nanofluid flow over a non-linearly stretching sheet is investigated. The flow is subject to thermal radiation and a chemical reaction. The conservation equations are solved using the spectral quasi-linearization method. The novelty of the work is in the study of entropy generation in three-dimensional axisymmetric MHD nanofluid and the choice of the spectral quasi-linearization method as the solution method. The effects of Brownian motion and thermophoresis are also taken into account. The nanofluid particle volume fraction on the boundary is passively controlled. The results show that as the Hartmann number increases, both the Nusselt number and the Sherwood number decrease, whereas the skin friction increases. It is further shown that an increase in the thermal radiation parameter corresponds to a decrease in the Nusselt number. Moreover, entropy generation increases with respect to some physical parameters.
DEFF Research Database (Denmark)
Meyer, Knud Erik; Sørensen, Jens Nørkær; Naumov, Igor
2009-01-01
variations. The flow in a cylindrical cavity with a rotating lid of a height of three radii and a Reynolds number of about 3500 is used as example. The reconstruction identifies a series of flow structures including axisymmetric vortex breakdown and distinct vortex structures along the cylinder wall....
Characterization of axisymmetric disruption dynamics toward VDE avoidance in tokamaks
International Nuclear Information System (INIS)
Nakamura, Y.; Yoshino, R.; Granetz, R.S.; Pautasso, G.; Gruber, O.; Jardin, S.C.
2003-01-01
Experiments and axisymmetric MHD simulations on tokamak disruptions have explicated the underlying mechanisms of Vertical Displacement Events (VDEs) and a diversity of disruption dynamics. First, the neutral point, which is known as an advantageous vertical plasma position to avoiding VDEs during the plasma current quench, is shown to be fairly insensitive to plasma shape and current profile parameters. Secondly, a rapid flattening of the plasma current profile frequently seen at thermal quench is newly clarified to play a substantial role in dragging a single null-diverted plasma vertically towards the divertor. As a consequence, the occurrence of downward-going VDEs predominates over the upward-going ones in bottom diverted discharges. This dragging effect is absent in up-down symmetric limiter discharges. These simulation results are consistent with experiments. Together with the attractive force that arises from passive shell currents and essentially vanishes at the neutral point, the dragging effect explains many details of the VDE dynamics over the whole period of the disruptive termination. (author)
Versatile controllability of non-axisymmetric magnetic perturbations in KSTAR experiments
Han, Hyunsun; Jeon, Y. M.; in, Y.; Kim, J.; Yoon, S. W.; Hahn, S. H.; Ahn, H. S.; Woo, M. H.; Park, B. H.; Bak, J. G.; Kstar Team
2015-11-01
A newly upgraded IVCC (In-Vessel Control Coil) system equipped with four broadband power supplies, along with current connection patch panel, will be presented and discussed in terms of its capability on various KSTAR experiments. Until the last run-campaign, there were impressive experimental results on ELM(Edge Localized Mode) control experiments using the 3D magnetic field, but the non-axisymmetric field configuration could not be changed in a shot, let alone the limited number of accessible configurations. Introducing the new power supplies, such restrictions have been greatly reduced. Based on the preliminary commissioning results for 2015 KSTAR run-campaign, this new system has been confirmed to easily cope with various dynamic demands for toroidal and poloidal phases of 3D magnetic field in a shot. This enables us to diagnose the plasma response in more detail and to address the 3-D field impacts on the ELM behaviors better than ever.
Thermal-hydraulic analysis techniques for axisymmetric pebble bed nuclear reactor cores
International Nuclear Information System (INIS)
Stroh, K.R.
1979-03-01
The pebble bed reactor's cylindrical core volume contains a random bed of small, spherical fuel-moderator elements. These graphite spheres, containing a central region of dispersed coated-particle fissile and fertile material, are cooled by high pressure helium flowing through the connected interstitial voids. A mathematical model and numerical solution technique have been developed which allow calculation of macroscopic values of thermal-hydraulic variables in an axisymmetric pebble bed nuclear reactor core. The computer program PEBBLE is based on a mathematical model which treats the bed macroscopically as a generating, conducting porous medium. The steady-state model uses a nonlinear Forchheimer-type relation between the coolant pressure gradient and mass flux, with newly derived coefficients for the linear and quadratic resistance terms. The remaining equations in the model make use of mass continuity, and thermal energy balances for the solid and fluid phases
An axisymmetric method of creep analysis for primary and secondary creep
International Nuclear Information System (INIS)
Jahed, Hamid; Bidabadi, Jalal
2003-01-01
A general axisymmetric method for elastic-plastic analysis was previously proposed by Jahed and Dubey [ASME J Pressure Vessels Technol 119 (1997) 264]. In the present work the method is extended to the time domain. General rate type governing equations are derived and solved in terms of rate of change of displacement as a function of rate of change in loading. Different types of loading, such as internal and external pressure, centrifugal loading and temperature gradient, are considered. To derive specific equations and employ the proposed formulation, the problem of an inhomogeneous non-uniform rotating disc is worked out. Primary and secondary creep behaviour is predicted using the proposed method and results are compared to FEM results. The problem of creep in pressurized vessels is also solved. Several numerical examples show the effectiveness and robustness of the proposed method
International Nuclear Information System (INIS)
Simonen, T.; Cohen, R.; Correll, D.; Fowler, K.; Post, D.; Berk, H.; Horton, W.; Hooper, E.B.; Fisch, N.; Hassam, A.; Baldwin, D.; Pearlstein, D.; Logan, G.; Turner, B.; Moir, R.; Molvik, A.; Ryutov, D.; Ivanov, A.A; Kesner, J.; Cohen, B.; McLean, H.; Tamano, T.; Tang, X.Z.; Imai, T.
2008-01-01
Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT
Energy Technology Data Exchange (ETDEWEB)
Simonen, T; Cohen, R; Correll, D; Fowler, K; Post, D; Berk, H; Horton, W; Hooper, E B; Fisch, N; Hassam, A; Baldwin, D; Pearlstein, D; Logan, G; Turner, B; Moir, R; Molvik, A; Ryutov, D; Ivanov, A A; Kesner, J; Cohen, B; McLean, H; Tamano, T; Tang, X Z; Imai, T
2008-10-24
Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT
External versus internal triggers of bar formation in cosmological zoom-in simulations
Zana, Tommaso; Dotti, Massimo; Capelo, Pedro R.; Bonoli, Silvia; Haardt, Francesco; Mayer, Lucio; Spinoso, Daniele
2018-01-01
The emergence of a large-scale stellar bar is one of the most striking features in disc galaxies. By means of state-of-the-art cosmological zoom-in simulations, we study the formation and evolution of bars in Milky Way-like galaxies in a fully cosmological context, including the physics of gas dissipation, star formation and supernova feedback. Our goal is to characterize the actual trigger of the non-axisymmetric perturbation that leads to the strong bar observable in the simulations at z = 0, discriminating between an internal/secular and an external/tidal origin. To this aim, we run a suite of cosmological zoom-in simulations altering the original history of galaxy-satellite interactions at a time when the main galaxy, though already bar-unstable, does not feature any non-axisymmetric structure yet. We find that the main effect of a late minor merger and of a close fly-by is to delay the time of bar formation and those two dynamical events are not directly responsible for the development of the bar and do not alter significantly its global properties (e.g. its final extension). We conclude that, once the disc has grown to a mass large enough to sustain global non-axisymmetric modes, then bar formation is inevitable.
Kucharik, Christopher J.; Foley, Jonathan A.; Delire, Christine; Fisher, Veronica A.; Coe, Michael T.; Lenters, John D.; Young-Molling, Christine; Ramankutty, Navin; Norman, John M.; Gower, Stith T.
2000-09-01
While a new class of Dynamic Global Ecosystem Models (DGEMs) has emerged in the past few years as an important tool for describing global biogeochemical cycles and atmosphere-biosphere interactions, these models are still largely untested. Here we analyze the behavior of a new DGEM and compare the results to global-scale observations of water balance, carbon balance, and vegetation structure. In this study, we use version 2 of the Integrated Biosphere Simulator (IBIS), which includes several major improvements and additions to the prototype model developed by Foley et al. [1996]. IBIS is designed to be a comprehensive model of the terrestrial biosphere; the model represents a wide range of processes, including land surface physics, canopy physiology, plant phenology, vegetation dynamics and competition, and carbon and nutrient cycling. The model generates global simulations of the surface water balance (e.g., runoff), the terrestrial carbon balance (e.g., net primary production, net ecosystem exchange, soil carbon, aboveground and belowground litter, and soil CO2 fluxes), and vegetation structure (e.g., biomass, leaf area index, and vegetation composition). In order to test the performance of the model, we have assembled a wide range of continental and global-scale data, including measurements of river discharge, net primary production, vegetation structure, root biomass, soil carbon, litter carbon, and soil CO2 flux. Using these field data and model results for the contemporary biosphere (1965-1994), our evaluation shows that simulated patterns of runoff, NPP, biomass, leaf area index, soil carbon, and total soil CO2 flux agree reasonably well with measurements that have been compiled from numerous ecosystems. These results also compare favorably to other global model results.
On the causal structure between CO2 and global temperature
Stips, Adolf; Macias, Diego; Coughlan, Clare; Garcia-Gorriz, Elisa; Liang, X. San
2016-01-01
We use a newly developed technique that is based on the information flow concept to investigate the causal structure between the global radiative forcing and the annual global mean surface temperature anomalies (GMTA) since 1850. Our study unambiguously shows one-way causality between the total Greenhouse Gases and GMTA. Specifically, it is confirmed that the former, especially CO2, are the main causal drivers of the recent warming. A significant but smaller information flow comes from aerosol direct and indirect forcing, and on short time periods, volcanic forcings. In contrast the causality contribution from natural forcings (solar irradiance and volcanic forcing) to the long term trend is not significant. The spatial explicit analysis reveals that the anthropogenic forcing fingerprint is significantly regionally varying in both hemispheres. On paleoclimate time scales, however, the cause-effect direction is reversed: temperature changes cause subsequent CO2/CH4 changes. PMID:26900086
Reddy, B. Siva Kumar; Rao, K. V. Surya Narayana; Vijaya, R. Bhuvana
2017-07-01
In this paper, we have considered the unsteady magnetohydrodynamic squeezing axi-symmetric flow of water-nanofluid through saturated porous medium between two parallel disks. The equations for the governing flow are solved by Galerkin optimal Homotopy asymptotic method. The effects of non-dimensional parameters on velocity, temperature and concentration have been discussed with the help of graphs. Also we obtained local Nusselt number and computationally discussed with reference to flow parameters.
New chemical-DSMC method in numerical simulation of axisymmetric rarefied reactive flow
Zakeri, Ramin; Kamali Moghadam, Ramin; Mani, Mahmoud
2017-04-01
The modified quantum kinetic (MQK) chemical reaction model introduced by Zakeri et al. is developed for applicable cases in axisymmetric reactive rarefied gas flows using the direct simulation Monte Carlo (DSMC) method. Although, the MQK chemical model uses some modifications in the quantum kinetic (QK) method, it also employs the general soft sphere collision model and Stockmayer potential function to properly select the collision pairs in the DSMC algorithm and capture both the attraction and repulsion intermolecular forces in rarefied gas flows. For assessment of the presented model in the simulation of more complex and applicable reacting flows, first, the air dissociation is studied in a single cell for equilibrium and non-equilibrium conditions. The MQK results agree well with the analytical and experimental data and they accurately predict the characteristics of the rarefied flowfield with chemical reaction. To investigate accuracy of the MQK chemical model in the simulation of the axisymmetric flow, air dissociation is also assessed in an axial hypersonic flow around two geometries, the sphere as a benchmark case and the blunt body (STS-2) as an applicable test case. The computed results including the transient, rotational and vibrational temperatures, species concentration in the stagnation line, and also the heat flux and pressure coefficient on the surface are compared with those of the other chemical methods like the QK and total collision energy (TCE) models and available analytical and experimental data. Generally, the MQK chemical model properly simulates the chemical reactions and predicts flowfield characteristics more accurate rather than the typical QK model. Although in some cases, results of the MQK approaches match with those of the TCE method, the main point is that the MQK does not need any experimental data or unrealistic assumption of specular boundary condition as used in the TCE method. Another advantage of the MQK model is the
Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive.
Burley, Stephen K; Berman, Helen M; Kleywegt, Gerard J; Markley, John L; Nakamura, Haruki; Velankar, Sameer
2017-01-01
The Protein Data Bank (PDB)--the single global repository of experimentally determined 3D structures of biological macromolecules and their complexes--was established in 1971, becoming the first open-access digital resource in the biological sciences. The PDB archive currently houses ~130,000 entries (May 2017). It is managed by the Worldwide Protein Data Bank organization (wwPDB; wwpdb.org), which includes the RCSB Protein Data Bank (RCSB PDB; rcsb.org), the Protein Data Bank Japan (PDBj; pdbj.org), the Protein Data Bank in Europe (PDBe; pdbe.org), and BioMagResBank (BMRB; www.bmrb.wisc.edu). The four wwPDB partners operate a unified global software system that enforces community-agreed data standards and supports data Deposition, Biocuration, and Validation of ~11,000 new PDB entries annually (deposit.wwpdb.org). The RCSB PDB currently acts as the archive keeper, ensuring disaster recovery of PDB data and coordinating weekly updates. wwPDB partners disseminate the same archival data from multiple FTP sites, while operating complementary websites that provide their own views of PDB data with selected value-added information and links to related data resources. At present, the PDB archives experimental data, associated metadata, and 3D-atomic level structural models derived from three well-established methods: crystallography, nuclear magnetic resonance spectroscopy (NMR), and electron microscopy (3DEM). wwPDB partners are working closely with experts in related experimental areas (small-angle scattering, chemical cross-linking/mass spectrometry, Forster energy resonance transfer or FRET, etc.) to establish a federation of data resources that will support sustainable archiving and validation of 3D structural models and experimental data derived from integrative or hybrid methods.
Oscillating water column structural model
Energy Technology Data Exchange (ETDEWEB)
Copeland, Guild [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jepsen, Richard Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-09-01
An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.
Kopsaftopoulos, Fotis; Nardari, Raphael; Li, Yu-Hung; Chang, Fu-Kuo
2018-01-01
In this work, a novel data-based stochastic "global" identification framework is introduced for aerospace structures operating under varying flight states and uncertainty. In this context, the term "global" refers to the identification of a model that is capable of representing the structure under any admissible flight state based on data recorded from a sample of these states. The proposed framework is based on stochastic time-series models for representing the structural dynamics and aeroelastic response under multiple flight states, with each state characterized by several variables, such as the airspeed, angle of attack, altitude and temperature, forming a flight state vector. The method's cornerstone lies in the new class of Vector-dependent Functionally Pooled (VFP) models which allow the explicit analytical inclusion of the flight state vector into the model parameters and, hence, system dynamics. This is achieved via the use of functional data pooling techniques for optimally treating - as a single entity - the data records corresponding to the various flight states. In this proof-of-concept study the flight state vector is defined by two variables, namely the airspeed and angle of attack of the vehicle. The experimental evaluation and assessment is based on a prototype bio-inspired self-sensing composite wing that is subjected to a series of wind tunnel experiments under multiple flight states. Distributed micro-sensors in the form of stretchable sensor networks are embedded in the composite layup of the wing in order to provide the sensing capabilities. Experimental data collected from piezoelectric sensors are employed for the identification of a stochastic global VFP model via appropriate parameter estimation and model structure selection methods. The estimated VFP model parameters constitute two-dimensional functions of the flight state vector defined by the airspeed and angle of attack. The identified model is able to successfully represent the wing
Applications of a global nuclear-structure model to studies of the heaviest elements
International Nuclear Information System (INIS)
Moeller, P.; Nix, J.R.
1993-01-01
We present some new results on heavy-element nuclear-structure properties calculated on the basis of the finite-range droplet model and folded-Yukawa single-particle potential. Specifically, we discuss calculations of nuclear ground-state masses and microscopic corrections, α-decay properties, β-decay properties, fission potential-energy surfaces, and spontaneous-fission half-lives. These results, obtained in a global nuclear-structure approach, are particularly reliable for describing the stability properties of the heaviest elements
CASINO, a code for simulation of charged particles in an axisymmetric Tokamak
International Nuclear Information System (INIS)
Dillner, Oe.
1992-01-01
The present report comprises a documentation of CASINO, a simulation code developed as a means for the study of high energy charged particles in an axisymmetric Tokamak. The background of the need for such a numerical tool is presented. In the description of the numerical model used for the orbit integration, the method using constants of motion, the Lao-Hirsman geometry for the flux surfaces and a method for reducing the necessary number of particles is elucidated. A brief outline of the calculational sequence is given as a flow chart. The essential routines and functions as well as the common blocks are briefly described. The input and output routines are shown. Finally the documentation is completed by a short discussion of possible extensions of the code and a test case. (au)
Axisymmetric disruption dynamics including current profile changes in the ASDEX-Upgrade tokamak
International Nuclear Information System (INIS)
Nakamura, Y.; Pautasso, G.; Gruber, O.; Jardin, S.C.
2002-01-01
Axisymmetric MHD simulations have revealed a new driving mechanism that governs the vertical displacement event (VDE) dynamics in tokamak disruptions. A rapid flattening of the plasma current profile during the disruption plays a substantial role in dragging a single null-diverted plasma vertically towards the divertor. As a consequence, the occurrence of downward-going VDEs predominates over the upward-going ones in bottom-diverted discharges. This dragging effect, due to an abrupt change in the current profile, is absent in up-down symmetric limiter discharges. These simulation results are consistent with experiments in ASDEX-Upgrade. Together with the attractive force that arises from passive shell currents induced by the plasma current quench, the dragging effect explains many details of the VDE dynamics over the whole period of the disruptive termination. (author)
The interior of axisymmetric and stationary black holes: Numerical and analytical studies
International Nuclear Information System (INIS)
Ansorg, Marcus; Hennig, Joerg
2011-01-01
We investigate the interior hyperbolic region of axisymmetric and stationary black holes surrounded by a matter distribution. First, we treat the corresponding initial value problem of the hyperbolic Einstein equations numerically in terms of a single-domain fully pseudo-spectral scheme. Thereafter, a rigorous mathematical approach is given, in which soliton methods are utilized to derive an explicit relation between the event horizon and an inner Cauchy horizon. This horizon arises as the boundary of the future domain of dependence of the event horizon. Our numerical studies provide strong evidence for the validity of the universal relation A + A - (8πJ) 2 where A + and A - are the areas of event and inner Cauchy horizon respectively, and J denotes the angular momentum. With our analytical considerations we are able to prove this relation rigorously.
Energy Technology Data Exchange (ETDEWEB)
Weening, R. H. [Department of Radiologic Sciences, Thomas Jefferson University, 901 Walnut Street, Philadelphia, Pennsylvania 19107-5233 (United States)
2012-06-15
In order to model the effects of small-scale current-driven magnetic fluctuations in a mean-field theoretical description of a large-scale plasma magnetic field B(x,t), a space and time dependent hyper-resistivity {Lambda}(x,t) can be incorporated into the Ohm's law for the parallel electric field E Dot-Operator B. Using Boozer coordinates, a theoretical method is presented that allows for a determination of the hyper-resistivity {Lambda}({psi}) functional dependence on the toroidal magnetic flux {psi} for arbitrary experimental steady-state Grad-Shafranov axisymmetric plasma equilibria, if values are given for the parallel plasma resistivity {eta}({psi}) and the local distribution of any auxiliary plasma current. Heat transport in regions of plasma magnetic surfaces destroyed by resistive tearing modes can then be modeled by an electron thermal conductivity k{sub e}({psi})=({epsilon}{sub 0}{sup 2}m{sub e}/e{sup 2}){Lambda}({psi}), where e and m{sub e} are the electron charge and mass, respectively, while {epsilon}{sub 0} is the permittivity of free space. An important result obtained for axisymmetric plasma equilibria is that the {psi}{psi}-component of the metric tensor of Boozer coordinates is given by the relation g{sup {psi}{psi}}({psi}){identical_to}{nabla}{psi} Dot-Operator {nabla}{psi}=[{mu}{sub 0}G({psi})][{mu}{sub 0}I({psi})]/{iota}({psi}), with {mu}{sub 0} the permeability of free space, G({psi}) the poloidal current outside a magnetic surface, I({psi}) the toroidal current inside a magnetic surface, and {iota}({psi}) the rotational transform.
The population genomics of begomoviruses: global scale population structure and gene flow
Directory of Open Access Journals (Sweden)
Prasanna HC
2010-09-01
Full Text Available Abstract Background The rapidly growing availability of diverse full genome sequences from across the world is increasing the feasibility of studying the large-scale population processes that underly observable pattern of virus diversity. In particular, characterizing the genetic structure of virus populations could potentially reveal much about how factors such as geographical distributions, host ranges and gene flow between populations combine to produce the discontinuous patterns of genetic diversity that we perceive as distinct virus species. Among the richest and most diverse full genome datasets that are available is that for the dicotyledonous plant infecting genus, Begomovirus, in the Family Geminiviridae. The begomoviruses all share the same whitefly vector, are highly recombinogenic and are distributed throughout tropical and subtropical regions where they seriously threaten the food security of the world's poorest people. Results We focus here on using a model-based population genetic approach to identify the genetically distinct sub-populations within the global begomovirus meta-population. We demonstrate the existence of at least seven major sub-populations that can further be sub-divided into as many as thirty four significantly differentiated and genetically cohesive minor sub-populations. Using the population structure framework revealed in the present study, we further explored the extent of gene flow and recombination between genetic populations. Conclusions Although geographical barriers are apparently the most significant underlying cause of the seven major population sub-divisions, within the framework of these sub-divisions, we explore patterns of gene flow to reveal that both host range differences and genetic barriers to recombination have probably been major contributors to the minor population sub-divisions that we have identified. We believe that the global Begomovirus population structure revealed here could
Axisymmetric particle-in-cell simulations of diamagnetic-cavity formation in vacuum
International Nuclear Information System (INIS)
Gisler, G.
1989-01-01
Axisymmetric simulations of the expansion of a hot plasma suddenly introduced into a vacuum containing a weak magnetic field were performed using an electromagnetic particle-in-cell code. Both uniform and gradient fields have been used, with the simulation axis along the principle field direction. The formation of a diamagnetic cavity requires an initial plasma β > 1; as the expansion proceeds, β diminishes, and the field eventually recovers. The maximum spatial extent of the cavity and its duration can be obtained from simple dynamical considerations. Field-aligned ion acceleration behind the electron front is observed in all field geometries and strengths. In the case of expansion into a divergent field, the plasma is found to move down the field gradient by ambipolar diffusion. These simulations are relevant to active release experiments in the Earth's magnetosphere, to pellet ablation experiments, and to the naturally occurring diamagnetic bubbles observed at the Earth's foreshock
Axisymmetric accretion flows very near black holes and Rosen-collapsed objects
International Nuclear Information System (INIS)
Stoeger, W.R.
1979-01-01
Motivated by the need for stronger observational leverage on the black hole hypothesis and for a more detailed characterization of axisymmetric accretion flows across the marginally stable circular orbit rsub(ms), a general approach for describing the non-Keplerian accretion in the region rsub(H) 0 , where rsub(H) = radius of the event horizon and r 0 > = rsub(ms) is developed. The procedure possesses many advantages, including easily imposed consistency with the Keplerian for r > rsub(o), the avoidance of ad hoc boundary conditions at rsub(ms) and/or at rsub(H) and its application also to accretion in Rosen's bimetric theory, whose spherically symmetric solution has the same qualitative orbital topography as that of general relativity. It becomes apparent, furthermore, that the particular viscosity law chosen in this procedure will have a crucial bearing on the flow in the region rsub(ms) 0 . (author)
Influence of Initial Vorticity Distribution on Axisymmetric Vortex Breakdown and Reconnection
Young, Larry A.
2007-01-01
An analytical treatment has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. In particular, the presence of negative vorticity in the inner core of a vortex filament (one example of which is examined in this paper) subsequent to "cutting" by a solid body has a profound influence on the vortex reconnection, leading to analog flow behavior similar to vortex breakdown phenomena described in the literature. Initial vorticity distributions (three specific examples which are examined) without an inner core of negative vorticity do not exhibit vortex breakdown and instead manifest diffusion-like properties while undergoing vortex reconnection. Though this work focuses on laminar vortical flow, this work is anticipated to provide valuable insight into rotary-wing aerodynamics as well as other types of vortical flow phenomena.
Application of structured flowsheets to global evaluation of tank waste processing alternatives
International Nuclear Information System (INIS)
Jansen, G.; Knutson, B.J.; Niccoli, L.G.; Frank, D.D.
1994-01-01
Remediation of the Hanford waste tanks requires integration of chemical technologies and evaluation of alternatives from the perspective of the overall Hanford cleanup purpose. The use of Design/IDEF (R) logic to connect chemical process functions to the overall cleanup mission in the Hanford Strategic Analysis (HSA) and to Aspen Plus (R) process models can show the effect of each process step on global performance measures such as safety, cost, and public perception. This hybrid of chemical process analysis and systems engineering produces structured material balance flowsheets at any level of process aggregation within the HSA. Connectivity and consistent process and stream nomenclature are automatically transferred between detailed process models, the HSA top purpose, and the global material balance flowsheet evaluation. Applications to separation processes is demonstrated for a generic Truex-Sludge Wash flowsheet with many process options and for the aggregation of a Clean Option flowsheet from a detailed chemical process level to a global evaluation level
International Nuclear Information System (INIS)
Zheng, Jinxing; Song, Yuntao; Breslau, Joshua; Neilson, George Hutch
2014-01-01
Highlights: • Systematic studies of modular coils characteristics for quasi-axisymmetric stellarator were carried out for the key design parameters. • We systematically analyzed the relationships between design parameters of modular coils and electromagnetic properties such as the maximum field. • The approximate formulae relating modular coil parameters to the maximum magnetic field were derived by the use of simple two coil systems. - Abstract: Modular coil characteristics of a 2-field periods quasi-axisymmetric stellarator QAS-LA configuration with an aspect ratio A p = 3, magnetic pressure ∼4% and rotational transform ι ∼ 0.15 per field period supplied by its own shaping have been detailed studied. In addition, the characteristics of modular coils for QAS-LA were compared with those of an intermediate QA configuration QAS-LAx and a tokamak based on the same center magnet field B 0 , aspect ratio and number of coils. As expected, the B max /B 0 , force F and overturning moment M, increase with the increased complexity of the coil shape. The relationships between the modular coils’ parameters (such as radius curvature ρ, distance from coil to coil Δ c–c and the cross-section of coils) and the electromagnetic characteristics have been systematically summarized. The approximate formula for the maximum magnetic field in the coil body as functions of modular coil parameters (Δ c–c , ρ) was derived for a simple two wire system which will be useful when optimizations of coil properties are called for
Veerapaneni, Shravan K.; Gueyffier, Denis; Biros, George; Zorin, Denis
2009-10-01
We extend [Shravan K. Veerapaneni, Denis Gueyffier, Denis Zorin, George Biros, A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D, Journal of Computational Physics 228(7) (2009) 2334-2353] to the case of three-dimensional axisymmetric vesicles of spherical or toroidal topology immersed in viscous flows. Although the main components of the algorithm are similar in spirit to the 2D case—spectral approximation in space, semi-implicit time-stepping scheme—the main differences are that the bending and viscous force require new analysis, the linearization for the semi-implicit schemes must be rederived, a fully implicit scheme must be used for the toroidal topology to eliminate a CFL-type restriction and a novel numerical scheme for the evaluation of the 3D Stokes single layer potential on an axisymmetric surface is necessary to speed up the calculations. By introducing these novel components, we obtain a time-scheme that experimentally is unconditionally stable, has low cost per time step, and is third-order accurate in time. We present numerical results to analyze the cost and convergence rates of the scheme. To verify the solver, we compare it to a constrained variational approach to compute equilibrium shapes that does not involve interactions with a viscous fluid. To illustrate the applicability of method, we consider a few vesicle-flow interaction problems: the sedimentation of a vesicle, interactions of one and three vesicles with a background Poiseuille flow.
The Poisson equation in axisymmetric domains with conical points
International Nuclear Information System (INIS)
Nkemzi, B.
2003-01-01
This paper analyzes the application of the Fourier-finite-element method (FFEM) for the resolution of the Derichlet problem for the Poisson equation -Δu-circumflex = f-circumflex in axisymmetric domains Ω-circumflex subset of R 3 with conical points on the rotation axis. The FFEM combines the approximate Fourier method with respect to one space direction with the finite element method for the approximate calculation of the Fourier coefficients of the solution. Here, the influence of the conical points on the regularity of the Fourier coefficients of the solution is analyzed and the asymptotic behaviour of the coefficients near the conical points is described by some singularity functions and treated numerically by mesh grading in the two-dimensional meridian of Ω-circumflex. It is proved that for f-circumflex in L 2 (Ω-circumflex), the rate of convergence of the combined approximations in the Sobolev space W 2 1 (Ω-circumflex) is of the order O(h + N -1 ), where h and N represent, respectively, the parameters of the finite-element- and the Fourier-approximation, with h → 0 and n → ∞. (author)
International Nuclear Information System (INIS)
Frater, J.; Lestingi, J.; Padovan, J.
1977-01-01
This paper describes the development of an improved semi-analytical finite element for the stress analysis of anisotropic axisymmetric solids subjected to nonsymmetric loads. Orthogonal functions in the form of finite Fourier exponential transforms, which satisfy the equations of equilibrium of the theory of elasticity for an anisotropic solid of revolution, are used to expand the imposed loadings and displacement field. It is found that the orthogonality conditions for the assumed solution reduce the theta-dependency, thus reducing the three dimensional problem to an infinite series of two dimensional problems. (Auth.)
Su, Y. H.; Chen, K. S.; Roberts, D. C.; Spearing, S. M.
2001-11-01
The large deflection analysis of a pre-stressed annular plate with a central rigid boss subjected to axisymmetric loading is presented. The factors affecting the transition from plate behaviour to membrane behaviour (e.g. thickness, in-plane tension and material properties) are studied. The effect of boss size and pre-tension on the effective stiffness of the plate are investigated. The extent of the bending boundary layers at the edges of the plate are quantified. All results are presented in non-dimensional form. The design implications for microelectromechanical system components are assessed.
CSIR Research Space (South Africa)
Shatalov, MY
2009-01-01
Full Text Available ). The main disadvantage of this approach is that the roots of characteristic arguments ( ( )0, 1, , 4k kξ = = … ) are also displayed on the surface plots as obvious artefacts. An elaborate discussion of these artefacts is given in Yenwong-Fai (2008...-matrix interface by guided waves: Axisymmetric case. J. Acoust. Soc. Am 89 (6), 2573-2583. Yenwong-Fai, A., 2008. Wave propagation in a piezoelectric solid cylinder of transversely isotropic material. Master’s thesis, University of Witwatersrand, Johannesburg...
CSIR Research Space (South Africa)
Bergh, J
2012-06-01
Full Text Available 2-dimensional, linear cascades, and therefore do not include a number of features which are present in the flow field of a real turbine. Recent work by Snedden et al involved the introduction of “generic”, non-axisymmetric end wall contours...
Modified k-l model and its ability to simulate supersonic axisymmetric turbulent flows
International Nuclear Information System (INIS)
Ahmadikia, H.; Shirani, E.
2001-05-01
The k-l turbulence model is a promising two-equation model. In this paper, the k and l model equations were derived from k-kl incompressible and one-equation turbulent models. Then the model was modified for compressible and transitional flows, and was applied to simulate supersonic axisymmetric flows over Hollow cylinder flare an hyperboloid flare bodies. The results were compared with the results obtained for the same flows experimentally as well as k-ε, k-ω and Baldwin-Lomax models. It was shown that the k-l model produces good results compared with experimental data and numerical data obtained when other turbulence models were used. It gives better results than k-ω and k-ε models in some cases. (author)
Calculation of an axisymmetric current coil field with the bounding contour integration method
Energy Technology Data Exchange (ETDEWEB)
Telegin, Alexander P.; Klevets, Nickolay I. E-mail: pmsolution@mail.ru
2004-06-01
Method for the economic and stable (in the sense of calculation errors) analysis of an induction of a magnetic field created with axisymmetric coils in arbitrary points of space, including points located inside a coil or on its border, is obtained. The basic idea of the method is to replace a current coil with continuous distribution of current density by magnetization distributed in the volume of the coil and creating the equivalent magnetic field. This allows to use field surface sources at calculation of the fields. Consequently, the range of integration is reduced resulting in reduction of calculation volume by an order in most cases. Besides, the calculation of improper integrals in internal points and on the border is completely excluded.
Calculation of an axisymmetric current coil field with the bounding contour integration method
International Nuclear Information System (INIS)
Telegin, Alexander P.; Klevets, Nickolay I.
2004-01-01
Method for the economic and stable (in the sense of calculation errors) analysis of an induction of a magnetic field created with axisymmetric coils in arbitrary points of space, including points located inside a coil or on its border, is obtained. The basic idea of the method is to replace a current coil with continuous distribution of current density by magnetization distributed in the volume of the coil and creating the equivalent magnetic field. This allows to use field surface sources at calculation of the fields. Consequently, the range of integration is reduced resulting in reduction of calculation volume by an order in most cases. Besides, the calculation of improper integrals in internal points and on the border is completely excluded
Directory of Open Access Journals (Sweden)
Hernik Szymon
2016-09-01
Full Text Available The aim of this paper is the numerical analysis of the one of main part of car engine – piston sleeve. The first example is for piston sleeve made of metal matrix composite (MMC A356R. The second improved material structure is layered. Both of them are comparison to the classical structure of piston sleeve made of Cr-Ni stainless steel. The layered material structure contains the anti-abrasion layer at the inner surface of piston sleeve, where the contact and friction is highest, FGM (functionally graded material interface and the layer of virgin material on the outer surface made of A356R. The complex thermo-elastic model with Archard's condition as a wear law is proposed. The piston sleeve is modelling as a thin walled cylindrical axisymmetric shell. The coupled between the formulation of thermo-elasticity of cylindrical axisymmetric shell and the Archard’s law with functionally changes of local hardness is proposed.
First integrals of the axisymmetric shape equation of lipid membranes
Zhang, Yi-Heng; McDargh, Zachary; Tu, Zhan-Chun
2018-03-01
The shape equation of lipid membranes is a fourth-order partial differential equation. Under the axisymmetric condition, this equation was transformed into a second-order ordinary differential equation (ODE) by Zheng and Liu (Phys. Rev. E 48 2856 (1993)). Here we try to further reduce this second-order ODE to a first-order ODE. First, we invert the usual process of variational calculus, that is, we construct a Lagrangian for which the ODE is the corresponding Euler–Lagrange equation. Then, we seek symmetries of this Lagrangian according to the Noether theorem. Under a certain restriction on Lie groups of the shape equation, we find that the first integral only exists when the shape equation is identical to the Willmore equation, in which case the symmetry leading to the first integral is scale invariance. We also obtain the mechanical interpretation of the first integral by using the membrane stress tensor. Project supported by the National Natural Science Foundation of China (Grant No. 11274046) and the National Science Foundation of the United States (Grant No. 1515007).
Characterization of axisymmetric disruption dynamics toward VDE avoidance in tokamaks
International Nuclear Information System (INIS)
Nakamura, Y.
2002-01-01
Disruption experiments on Alcator C-Mod and ASDEX-Upgrade tokamaks and axisymmetric MHD simulations using the TSC have explicated the underlying mechanisms of Vertical Displacement Events (VDEs) and a diversity of disruption dynamics. First, the neutral point, which is known as an initial vertical plasma position advantageous to VDE avoidance, is shown to be fairly insensitive to plasma shape and current profile parameters, while the VDE rate significantly depends on those parameters. Secondly, it is clarified that a rapid flattening of the plasma current profile frequently seen at the thermal quench drags a single null-diverted, up-down asymmetric plasma vertically toward divertor, whereas the dragging effect is absent in up-down symmetric limiter discharges. As a consequence, the occurrence of downward-going VDEs predominates over the upward-going ones in bottom-diverted discharges, being consistent with experiments in ASDEX-Upgrade. Together with the attractive force that arises from passive shell currents induced by the current quench and vanishes at the neutral point, the dragging effect explains many details of the VDE dynamics over the whole period of disruptive termination. (author)
Linear theory of the tearing instability in axisymmetric toroidal devices
International Nuclear Information System (INIS)
Rogister, A.; Singh, R.
1988-08-01
We derive a very general kinetic equation describing the linear evolution of low m/l modes in axisymmetric toroidal plasmas with arbitrary cross sections. Included are: Ion sound, inertia, diamagnetic drifts, finite poloidal beta, and finite ion Larmor radius effects. Assuming the magnetic surfaces to form a set of nested tori with circular cross sections of shifted centers, and introducing adequate simplifications justified by our knowledge of experimental tokamak plasmas, we then obtain explicitely the sets of equations describing the coupling of the quasimodes 0/1, 1/1, 2/1, and, for m≥2, m/1, (m+1)/1. By keeping finite aspect ratio effects into account when calculating the jump of the derivative of the eigenfunction, it is shown that the theory can explain the rapid evolution, within one sawtooth period, of the growth rate of the sawteeth precursors from resistive values to magnetohydrodynamic ones. The characteristics thus theoretically required from current profiles in sawtoothing discharges have clearly been observed. Other aspects of the full theory could be relevant to the phenomenon of major disruptions. (orig.)
Axisymmetric bifurcations of thick spherical shells under inflation and compression
deBotton, G.; Bustamante, R.; Dorfmann, A.
2013-01-01
Incremental equilibrium equations and corresponding boundary conditions for an isotropic, hyperelastic and incompressible material are summarized and then specialized to a form suitable for the analysis of a spherical shell subject to an internal or an external pressure. A thick-walled spherical shell during inflation is analyzed using four different material models. Specifically, one and two terms in the Ogden energy formulation, the Gent model and an I1 formulation recently proposed by Lopez-Pamies. We investigate the existence of local pressure maxima and minima and the dependence of the corresponding stretches on the material model and on shell thickness. These results are then used to investigate axisymmetric bifurcations of the inflated shell. The analysis is extended to determine the behavior of a thick-walled spherical shell subject to an external pressure. We find that the results of the two terms Ogden formulation, the Gent and the Lopez-Pamies models are very similar, for the one term Ogden material we identify additional critical stretches, which have not been reported in the literature before.© 2012 Published by Elsevier Ltd.
Wave scattering by an axisymmetric ice floe of varying thickness
Bennetts, Luke G.; Biggs, Nicholas R. T.; Porter, David
2009-04-01
The problem of water wave scattering by a circular ice floe, floating in fluid of finite depth, is formulated and solved numerically. Unlike previous investigations of such situations, here we allow the thickness of the floe (and the fluid depth) to vary axisymmetrically and also incorporate a realistic non-zero draught. A numerical approximation to the solution of this problem is obtained to an arbitrary degree of accuracy by combining a Rayleigh-Ritz approximation of the vertical motion with an appropriate variational principle. This numerical solution procedure builds upon the work of Bennets et al. (2007, J. Fluid Mech., 579, 413-443). As part of the numerical formulation, we utilize a Fourier cosine expansion of the azimuthal motion, resulting in a system of ordinary differential equations to solve in the radial coordinate for each azimuthal mode. The displayed results concentrate on the response of the floe rather than the scattered wave field and show that the effects of introducing the new features of varying floe thickness and a realistic draught are significant.
Significance of shock structure on supersonic jet mixing noise of axisymmetric nozzles
Kim, Chan M.; Krejsa, Eugene A.; Khavaran, Abbas
1994-09-01
One of the key technical elements in NASA's high speed research program is reducing the noise level to meet the federal noise regulation. The dominant noise source is associated with the supersonic jet discharged from the engine exhaust system. Whereas the turbulence mixing is largely responsible for the generation of the jet noise, a broadband shock-associated noise is also generated when the nozzle operates at conditions other than its design. For both mixing and shock noise components, because the source of the noise is embedded in the jet plume, one can expect that jet noise can be predicted from the jet flowfield computation. Mani et al. developed a unified aerodynamic/acoustic prediction scheme by applying an extension of Reichardt's aerodynamic model to compute turbulent shear stresses which are utilized in estimating the strength of the noise source. Although this method produces a fast and practical estimate of the jet noise, a modification by Khavaran et al. has led to an improvement in aerodynamic solution. The most notable feature in this work is that Reichardt's model is replaced with the computational fluid dynamics (CFD) solution of Reynolds-averaged Navier-Stokes equations. The major advantage of this work is that the essential, noise-related flow quantities such as turbulence intensity and shock strength can be better predicted. The predictions were limited to a shock-free design condition and the effect of shock structure on the jet mixing noise was not addressed. The present work is aimed at investigating this issue. Under imperfectly expanded conditions the existence of the shock cell structure and its interaction with the convecting turbulence structure may not only generate a broadband shock-associated noise but also change the turbulence structure, and thus the strength of the mixing noise source. Failure in capturing shock structures properly could lead to incorrect aeroacoustic predictions.
Eddy currents in a nonperiodic vacuum vessel induced by axisymmetric plasma motion
International Nuclear Information System (INIS)
DeLucia, J.
1985-12-01
A method is described for calculating the two-dimensional trajectory of a vertically or horizontally unstable axisymmetric tokamak plasma in the presence of a resistive vacuum vessel. The vessel is not assumed to have toroidal symmetry. The plasma is represented by a current-filament loop that is free to move vertically and to change its major radius. Its position is evolved in time self-consistently with the vacuum vessel eddy currents. The plasma current, internal inductance, and poloidal beta can be specified functions of time so that eddy currents resulting from a disruption can be modeled. The vacuum vessel is represented by a set of current-filaments whose positions and orientations are chosen to model the dominant eddy current paths. Although the specific application is to TFTR, the present model is of general applicability. 7 refs., 4 figs., 2 tabs
Global population structure and demographic history of the grey seal
DEFF Research Database (Denmark)
Klimova, A.; Phillips, C. D.; Fietz, Katharina
2014-01-01
Although the grey seal Halichoerus grypus is one of the most familiar and intensively studied of all pinniped species, its global population structure remains to be elucidated. Little is also known about how the species as a whole may have historically responded to climate-driven changes in habitat...... a little over 10 000 years ago, consistent with the last proposed isolation of the Baltic Sea. Approximate Bayesian computation also identified genetic signals consistent with postglacial population expansion across much of the species range, suggesting that grey seals are highly responsive to changes...
Towards the results of global analysis of data on nucleon electromagnetic structure
International Nuclear Information System (INIS)
Bilen'kaya, S.I.; Dubnicka, S.; Dubnickova, A.Z.; Strizenec, P.
1991-01-01
Peculiar features of the recent global analysis of data on the nucleon electromagnetic structure are discussed on the detail in order to reconsider reliability of the predicted result that the electron-positron annihilation into a neutron-antineutron cross-section is considerably larger that the cross-section of the electron-positron annihilation into a proton-antiproton pair. 14 refs.; 3 figs.; 3 tabs
Neoclassical and anomalous transport in axisymmetric toroidal plasmas with electrostatic turbulence
International Nuclear Information System (INIS)
Sugama, H.; Horton, W.
1995-01-01
Neoclassical and anomalous transport fluxes are determined for axisymmetric toroidal plasmas with weak electrostatic fluctuations. The neoclassical and anomalous fluxes are defined based on the ensemble-averaged kinetic equation with the statistically averaged nonlinear term. The anomalous forces derived from that quasilinear term induce the anomalous particle and heat fluxes. The neoclassical banana-plateau particle and heat fluxes and the bootstrap current are also affected by the fluctuations through the parallel anomalous forces and the modified parallel viscosities. The quasilinear term, the anomalous forces, and the anomalous particle and heat fluxes are evaluated from the fluctuating part of the drift kinetic equation. The averaged drift kinetic equation with the quasilinear term is solved for the plateau regime to derive the parallel viscosities modified by the fluctuations. The entropy production rate due to the anomalous transport processes is formulated and used to identify conjugate pairs of the anomalous fluxes and forces, which are connected by the matrix with the Onsager symmetry. copyright 1995 American Institute of Physics
Neoclassical and anomalous transport in axisymmetric toroidal plasmas with electrostatic turbulence
International Nuclear Information System (INIS)
Sugama, H.; Horton, W.
1995-05-01
Neoclassical and anomalous transport fluxes are determined for axisymmetric toroidal plasmas with weak electrostatic fluctuations. The neoclassical and anomalous fluxes are defined based on the ensemble-averaged kinetic equation with the statistically averaged nonlinear term. The anomalous forces derived from that quasilinear term induce the anomalous particle and heat fluxes. The neoclassical banana-plateau particle and heat fluxes and the bootstrap current are also affected by the fluctuations through the parallel anomalous forces and the modified parallel viscosities. The quasilinear term, the anomalous forces, and the anomalous particle and heat fluxes are evaluated from the fluctuating part of the drift kinetic equation. The averaged drift kinetic equation with the quasilinear term is solved for the plateau regime to derive the parallel viscosities modified by the fluctuations. The entropy production rate due to the anomalous transport processes is formulated and used to identify conjugate pairs of the anomalous fluxes and forces, which are connected by the matrix with the Onsager symmetry. (author)
International Nuclear Information System (INIS)
Cook, G.O. Jr.
1982-12-01
The Topolotron is an axisymmetric, toroidal magnetic fusion concept in which two-dimensional effects are important, as well as all three magnetic field components. The particular MHD model employed is basically the one-fluid, two-temperature model using classical Braginskii transport with viscous effects ignored. The model is augmented by Saha-Boltzmann dissociation and partial ionization physics, a simple radiation loss mechanism, and an additional resistivity due to electron-neutral collisions. While retaining all velocity and magnetic field components, the assumption of axisymmetry is made, and the resulting equations are expanded in cylindrical coordinates. The major approximation technique is then applied: spline collocation, which reduces these equations to a set of ordinary differential equations
Calculation of transport coefficients in an axisymmetric plasma
International Nuclear Information System (INIS)
Shumaker, D.E.
1976-01-01
A method of calculating the transport coefficient in an axisymmetric toroidal plasma is presented. This method is useful in calculating the transport coefficients in a Tokamak plasma confinement device. The particle density and temperature are shown to be a constant on a magnetic flux surface. Transport equations are given for the total particle flux and total energy flux crossing a closed toroidal surface. Also transport equations are given for the toroidal magnetic flux. A computer code was written to calculate the transport coefficients for a three species plasma, electrons and two species of ions. This is useful for calculating the transport coefficients of a plasma which contains impurities. It was found that the particle and energy transport coefficients are increased by a large amount, and the transport coefficients for the toroidal magnetic field are reduced by a small amount. For example, a deuterium plasma with 1.3 percent oxygen, one of the particle transport coefficients is increased by a factor of about four. The transport coefficients for the toroidal magnetic flux are reduced by about 20 percent. The increase in the particle transport coefficient is due to the collisional scattering of the deuterons by the heavy oxygen ions which is larger than the deuteron electron scattering, the normal process for particle transport in a two species plasma. The reduction in the toroidal magnetic flux transport coefficients are left unexplained
ali shokrgozar abbasi; Asghar Baradaran Rahimi; Hamidreza Mozayeni
2016-01-01
General formulation and solution of Navier-Stokes and energy equations are sought in the study of threedimensional axisymmetric unsteady stagnation-point flow and heat transfer impinging on a flat plate when the plate is moving with variable velocity and acceleration towards the main stream or away from it. As an application, among others, this accelerated plate can be assumed as a solidification front which is being formed with variable velocity. An external fluid, along z - directi...
Towards Global Jihadism: Al-Qaeda's Strategic, Ideological and Structural Adaptations since 9/11
Directory of Open Access Journals (Sweden)
Bill Braniff
2011-05-01
Full Text Available In recent years, Al-Qaeda has suffered a number of setbacks, but has also successfully spawned an expansionist global jihadist movement that will survive the death of Osama bin Laden. This article describes how the multifaceted threat posed by global jihadism has evolved over the last decade. It first recounts some of the more salient examples of Al-Qaeda’s post-9/11 strategic, ideological, and structural adaptations, and then offers a balance sheet of Al-Qaeda’s contemporary strengths and weaknesses. Al-Qaeda continues to enable the violence of others, orient that violence towards the United States and its allies in a distributed game of attrition warfare, and foster a dichotomous “us versus them” narrative between the Muslim world and the rest of the international community. Despite this overarching consistency, Al-Qaeda shepherds a different phenomenon than it did ten years ago. The aggregation of the movement’s strategic, ideological, and structural adaptations has fundamentally changed the nature of the jihadist threat to the West. This evolved threat is not inherently more dangerous, as counterterrorism efforts today focus on and disrupt capability earlier and more consistently than prior to September 2001. This multifaceted global jihad will, however, continue to produce greater numbers of attacks in more locations, from a more diverse cadre of individuals spanning a wider ideological spectrum.
Disorder structure of free-flow and global jams in the extended BML model
International Nuclear Information System (INIS)
Zhao Xiaomei; Xie Dongfan; Jia Bin; Jiang Rui; Gao Ziyou
2011-01-01
The original BML model is extended by introducing extended sites, which can hold several vehicles at each time-step. Unexpectedly, the flow in the extended model sharply transits from free-flow to global jams, but the transition is not one-order in original BML model. And congestion in the extended model appears more easily. This can ascribe to the mixture of vehicles from different directions in one site, leading to the drop-off of the capacity of the site. Furthermore, the typical configuration of free flowing and global jams in the extended models is disorder, different from the regular structure in the original model.
Energy Technology Data Exchange (ETDEWEB)
Browning, R.V.; Anderson, C.A.
1982-02-01
The finite element method is used to determine the temperatures, displacements, stresses, and strains in axisymmetric solids with orthotropic, temperature-dependent material properties under axisymmetric thermal and mechanical loads. The mechanical loads can be surface pressures, surface shears, and nodal point forces as well as an axial or centripetal acceleration. The continuous solid is replaced by a system of ring elements with triangular or quadrilateral cross sections. Accordingly, the method is valid for solids that are composed of many different materials and that have complex geometry. Nonlinear mechanical behavior as typified by plastic, locking, or creeping materials can be approximated. Two dimensional mesh generation, plotting, and editing features allow the computer program to be readily used. In addition to a stress analysis program that is based on a modified version of the SAAS code, TSAAS can carry out a transient thermal analysis with the finite element mesh used in stress analysis. An implicit time differencing scheme allows the use of arbitrary time steps with consequent fast running times. At specified times, the program will return to SAAS for thermal stress analysis. Nonlinear thermal properties and Arrhenius reaction kinetics are also incorporated into TSAAS. Several versions of TSAAS are in use at Los Alamos, running on CDC-7600, CRAY-1 and VAX 11/780 computers. This report describes the nominal TSAAS; other versions may have some unique features.
Blanchini, Franco; Giordano, G.
2017-01-01
For a vast class of dynamical networks, including chemical reaction networks (CRNs) with monotonic reaction rates, the existence of a polyhedral Lyapunov function (PLF) implies structural (i.e., parameter-free) local stability. Global structural stability is ensured under the additional
Hamilton, H. H., II; Spall, J. R.
1986-01-01
A time-asymptotic method has been used to obtain steady-flow solutions for axisymmetric inviscid flow over several blunt bodies including spheres, paraboloids, ellipsoids, and spherically blunted cones. Comparisons with experimental data and results of other computational methods have demonstrated that accurate solutions can be obtained using this approach. The method should prove useful as an analysis tool for comparing with experimental data and for making engineering calculations for blunt reentry vehicles.
Ansorg, Marcus; Hennig, Jörg
2009-06-05
We study the interior electrovacuum region of axisymmetric and stationary black holes with surrounding matter and find that there exists always a regular inner Cauchy horizon inside the black hole, provided the angular momentum J and charge Q of the black hole do not vanish simultaneously. In particular, we derive an explicit relation for the metric on the Cauchy horizon in terms of that on the event horizon. Moreover, our analysis reveals the remarkable universal relation (8piJ);{2}+(4piQ;{2});{2}=A;{+}A;{-}, where A+ and A- denote the areas of event and Cauchy horizon, respectively.
DEFF Research Database (Denmark)
Li, Peter Ping
2013-01-01
Global strategy differs from domestic strategy in terms of content and process as well as context and structure. The content of global strategy can contain five key elements, while the process of global strategy can have six major stages. These are expounded below. Global strategy is influenced...... by rich and complementary local contexts with diverse resource pools and game rules at the national level to form a broad ecosystem at the global level. Further, global strategy dictates the interaction or balance between different entry strategies at the levels of internal and external networks....
A global fingerprint of macro-scale changes in urban structure from 1999 to 2009
International Nuclear Information System (INIS)
Frolking, Steve; Milliman, Tom; Seto, Karen C; Friedl, Mark A
2013-01-01
Urban population now exceeds rural population globally, and 60–80% of global energy consumption by households, businesses, transportation, and industry occurs in urban areas. There is growing evidence that built-up infrastructure contributes to carbon emissions inertia, and that investments in infrastructure today have delayed climate cost in the future. Although the United Nations statistics include data on urban population by country and select urban agglomerations, there are no empirical data on built-up infrastructure for a large sample of cities. Here we present the first study to examine changes in the structure of the world’s largest cities from 1999 to 2009. Combining data from two space-borne sensors—backscatter power (PR) from NASA’s SeaWinds microwave scatterometer, and nighttime lights (NL) from NOAA’s defense meteorological satellite program/operational linescan system (DMSP/OLS)—we report large increases in built-up infrastructure stock worldwide and show that cities are expanding both outward and upward. Our results reveal previously undocumented recent and rapid changes in urban areas worldwide that reflect pronounced shifts in the form and structure of cities. Increases in built-up infrastructure are highest in East Asian cities, with Chinese cities rapidly expanding their material infrastructure stock in both height and extent. In contrast, Indian cities are primarily building out and not increasing in verticality. This new dataset will help characterize the structure and form of cities, and ultimately improve our understanding of how cities affect regional-to-global energy use and greenhouse gas emissions. (letter)
The global stability of a delayed predator-prey system with two stage-structure
International Nuclear Information System (INIS)
Wang Fengyan; Pang Guoping
2009-01-01
Based on the classical delayed stage-structured model and Lotka-Volterra predator-prey model, we introduce and study a delayed predator-prey system, where prey and predator have two stages, an immature stage and a mature stage. The time delays are the time lengths between the immature's birth and maturity of prey and predator species. Results on global asymptotic stability of nonnegative equilibria of the delay system are given, which generalize and suggest that good continuity exists between the predator-prey system and its corresponding stage-structured system.
International Nuclear Information System (INIS)
Han, Wenhu; Gao, Yang; Wang, Cheng; Law, Chung K.
2015-01-01
The globally planar detonation in free space is numerically simulated, with particular interest to understand and quantify the emergence and evolution of the one-dimensional pulsating instability and the two-dimensional cellular structure which is inherently also affected by pulsating instability. It is found that the pulsation includes three stages: rapid decay of the overdrive, approach to the Chapman-Jouguet state and emergence of weak pulsations, and the formation of strong pulsations; while evolution of the cellular structure also exhibits distinct behavior at these three stages: no cell formation, formation of small-scale, irregular cells, and formation of regular cells of a larger scale. Furthermore, the average shock pressure in the detonation front consists of fine-scale oscillations reflecting the collision dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation. The common stages of evolution between the cellular structure and the pulsating behavior, as well as the existence of shock-front pressure oscillation, suggest highly correlated mechanisms between them. Detonations with period doubling, period quadrupling, and chaotic amplitudes were also observed and studied for progressively increasing activation energies
Directory of Open Access Journals (Sweden)
Satoshi Nakagawa
2004-12-01
Full Text Available This study investigated recent changes in migration and population structure of the Greater Bangkok considering the impact of economic globalization. The spatial policy of the Thai government has lead newer investments for manufacturing to locate away from Bangkok Metropolis and thereby the industrial structure of Bangkok Metropolis has gradually turned into service-dominated, while the region surrounding Bangkok Metropolis has attracted factories mainly owned by foreign capital. Light industry and electronics industry are con-centrated in the adjacent provinces to Bangkok Metropolis and the heavy and petrochemical industry tends to be located in the outer zone of the surrounding region. The service sector and light industry as well as electronics industry prefer female workers and Bangkok met-ropolis and the adjoining provinces have become female-dominated population structure while male workers tend to gather in the outer zone attracted by heavy and petrochemical industry. It is possible to mention accordingly that the unbalanced spatial distribution of sex structure of population which might cause changes in the norm to the family formation in future is one of the consequences of economic globalization of Thailand, which the inves-tment promotion policy of the government did not assume.
Minimal inductance for axisymmetric transmission lines with radially dependent anode-cathode gap
Directory of Open Access Journals (Sweden)
Eduardo M. Waisman
2009-09-01
Full Text Available We extend the variational calculus technique for inductance minimization of constant gap axisymmetric transmission lines (TL, introduced by Hurricane [J. Appl. Phys. 95, 4503 (2004JAPIAU0021-897910.1063/1.1687986], to the case in which the anode-cathode gap is a linear function of the midgap radius. The full analytic optimal midgap solution curve z(r yielding minimum inductance is obtained in terms of a single parameter ρ_{0}, determined numerically by imposing that z(r goes through prescribed end points. The radius of curvature ρ(r of the optimal curve is obtained everywhere the function is defined, even outside of the end point range, and it is shown that a convenient choice is ρ_{0}=ρ(0. The value of the transmission line inductance is calculated by 1D numerical quadrature. A simple numerical technique is introduced for TL with nonlinear radial gap dependence.
Physical modeling of flow over an axisymmetric knoll under neutral atmospheric conditions
International Nuclear Information System (INIS)
Cliff, W.C.; Smith, J.D.
1980-02-01
A glass-walled hydraulic (water) flume was used to model physically air flow near an axisymmetric knoll in a neutral atmospheric boundary layer. The knoll was a 1:250 scale model. An upstream velocity profile (1/7 power law), characteristic of a neutral atmospheric boundary layer, was produced by locating a 10-cm-high (4-in.) trip near the flume entrance and by appropriately roughening the flume floor. Mean velocity, rms velocity, and turbulence intensity profiles were measured at locations near the knoll using an existing laser Doppler anemometer system. The flow accelerated over the knoll and produced a relatively uniform velocity profile at the crest. The measured velocity profile was in close agreement with a theoretical velocity profile developed using potential flow theory and an upstream power law velocity profile. The turbulence intensity decreased at the crest of the knoll as a result of the flow acceleration
Magnetohydrodynamic equilibria and local stability of axisymmetric tokamak plasmas
International Nuclear Information System (INIS)
Peng, Y.K.M.; Dory, R.A.; Nelson, D.B.; Sayer, R.O.
1976-07-01
Axisymmetric magnetohydrodynamic equilibria are evaluated in terms of the Mercier Stability Criterion. The parameters of interest include poloidal beta (β/sub p/), current and pressure profile widths, D-shaped and doublet plasmas with elongation (sigma) and triangularity (delta), and the aspect ratio (A). For marginal local stability, the critical values of β, plasma current, and the safety factor q with fixed toroidal field at the geometric center of the plasma are obtained. It is shown that for a wide range of profiles in a D-shaped plasma with A = 3, the highest critical β occurs at β/sub p/ = 2.4, sigma = 1.65, and delta = 0.5. If the toroidal field at the coil surface is fixed, the highest critical pressure occurs near A approximately 3 to 4, given reasonable distance between the coils and the plasma edge. Calculations for a Doublet II-A plasma with sigma = 3 show that with similar pressure profile the highest critical β occurs at β/sub p/ = 1 and is 84 percent of the highest critical β for the D-shaped plasmas. Critical values of ohmic heating power density are also found to be comparable for the two plasma shapes. A D-shaped plasma with the above parameters is suggested for use in future high-β tokamak devices
International Nuclear Information System (INIS)
Miranda Morales, Paola Maria
2011-01-01
This work presents a theoretical study of a global environmental management structure. This structure can be made possible after a new Global Environmental Order (CID) is established. The new order should be supported by the international development politics. It also has to be funded in the understanding of the interaction dynamics: ecosystem- culture. The theoretical studies of this work on global environmental Management allowed identifying the main difficulties to be overcome by the CID in order to fulfill its role as a leading actor in the global environmental transformation. The first issue to be considered by the CID is related to the fact that the actual regulation and follow up politics are insufficient. A second difficulty has to do with the very few results obtained on guaranteeing fair exchange of information and technology between Northern and Southern countries.
Directory of Open Access Journals (Sweden)
Payam Hooshmand
2017-03-01
Full Text Available Numerical investigation of the effects of magnetic field strength, thermal radiation, Joule heating, and viscous heating on a forced convective flow of a non-Newtonian, incompressible power law fluid in an axisymmetric stretching sheet with variable temperature wall is accomplished. The power law shear thinning viscosity-shear rate model for the anisotropic solutions and the Rosseland approximation for the thermal radiation through a highly absorbing medium are considered. The temperature dependent heat sources, Joule heating, and viscous heating are considered as the source terms in the energy balance. The non-dimensional boundary layer equations are solved numerically in terms of similarity variable. A parameter study on the Nusselt number, viscous components of entropy generation, and thermal components of entropy generation in fluid is performed as a function of thermal radiation parameter (0 to 2, Brinkman number (0 to 10, Prandtl number (0 to 10, Hartmann number (0 to 1, power law index (0 to 1, and heat source coefficient (0 to 0.1.
Prolongation structure and linear eigenvalue equations for Einstein-Maxwell fields
International Nuclear Information System (INIS)
Kramer, D.; Neugebauer, G.
1981-01-01
The Einstein-Maxwell equations for stationary axisymmetric exterior fields are shown to be the integrability conditions of a set of linear eigenvalue equations for pseudopotentials. Using the method of Wahlquist and Estabrook (J. Math Phys.; 16:1 (1975)) it is shown that the prolongation structure of the Einstein-Maxwell equations contains the SU(2,1) Lie algebra. A new mapping of known solutions to other solutions has been found. (author)
Peng, Y; Chew, Y T; Qiu, J
2003-01-01
An alternative new method called lattice Boltzmann method (LBM) is applied in this work to simulate the flows in Czochralski crystal growth, which is one of the widely used prototypical systems for melt-crystal growth. The standard LBM can only be used in Cartesian coordinate system and we extend it to be applicable to this axisymmetric thermal flow problem, avoiding the use of three-dimensional LBM on Cartesian coordinate system. The extension is based on the following idea. By inserting position and time dependent source terms into the evolution equation of standard LBM, the continuity and NS equations on the cylindrical coordinate system can be recovered. Our extension is validated by its application to the benchmark problem suggested by Wheeler .
Peng, Y.; Shu, C.; Chew, Y. T.; Qiu, J.
2003-03-01
An alternative new method called lattice Boltzmann method (LBM) is applied in this work to simulate the flows in Czochralski crystal growth, which is one of the widely used prototypical systems for melt-crystal growth. The standard LBM can only be used in Cartesian coordinate system and we extend it to be applicable to this axisymmetric thermal flow problem, avoiding the use of three-dimensional LBM on Cartesian coordinate system. The extension is based on the following idea. By inserting position and time dependent source terms into the evolution equation of standard LBM, the continuity and NS equations on the cylindrical coordinate system [1] can be recovered. Our extension is validated by its application to the benchmark problem suggested by Wheeler [2].
International Nuclear Information System (INIS)
Peng, Y.; Shu, C.; Chew, Y.T.; Qiu, J.
2003-01-01
An alternative new method called lattice Boltzmann method (LBM) is applied in this work to simulate the flows in Czochralski crystal growth, which is one of the widely used prototypical systems for melt-crystal growth. The standard LBM can only be used in Cartesian coordinate system and we extend it to be applicable to this axisymmetric thermal flow problem, avoiding the use of three-dimensional LBM on Cartesian coordinate system. The extension is based on the following idea. By inserting position and time dependent source terms into the evolution equation of standard LBM, the continuity and NS equations on the cylindrical coordinate system can be recovered. Our extension is validated by its application to the benchmark problem suggested by Wheeler
International Nuclear Information System (INIS)
Méchi, Rachid; Farhat, Habib; Said, Rachid
2016-01-01
Nongray radiation calculations are carried out for a case problem available in the literature. The problem is a non-isothermal and inhomogeneous CO 2 -H 2 O- N 2 gas mixture confined within an axisymmetric cylindrical furnace. The numerical procedure is based on the zonal method associated with the weighted sum of gray gases (WSGG) model. The effect of the wall emissivity on the heat flux losses is discussed. It is shown that this property affects strongly the furnace efficiency and that the most important heat fluxes are those leaving through the circumferential boundary. The numerical procedure adopted in this work is found to be effective and may be relied on to simulate coupled turbulent combustion-radiation in fired furnaces. (paper)
Regimes of Axisymmetric Flow and Scaling Laws in a Rotating Annulus with Local Convective Forcing
Directory of Open Access Journals (Sweden)
Susie Wright
2017-07-01
Full Text Available We present a numerical study of axisymmetric flow in a rotating annulus in which local thermal forcing, via a heated annular ring on the outside of the base and a cooled circular disk in the centre of the top surface, drives convection. This new configuration is a variant of the classical thermally-driven annulus, where uniform heating and cooling are applied through the outer and inner sidewalls respectively. The annulus provides an analogue to a planetary circulation and the new configuration, with its more relaxed vertical thermal boundary conditions, is expected to better emulate vigorous convection in the tropics and polar regions as well as baroclinic instability in the mid-latitude baroclinic zone. Using the Met Office/Oxford Rotating Annulus Laboratory (MORALS code, we have investigated a series of equilibrated, two dimensional axisymmetric flows across a large region of parameter space. These are characterized in terms of their velocity and temperature fields. When rotation is applied several distinct flow regimes may be identified for different rotation rates and strengths of differential heating. These regimes are defined as a function of the ratio of the horizontal Ekman layer thickness to the non-rotating thermal boundary layer thickness and are found to be similar to those identified in previous annulus experiments. Convection without rotation is also considered and the scaling of the heat transport with Rayleigh number is calculated. This is then compared with existing work on the classical annulus as well as horizontal and Rayleigh-Bénard convection. As with previous studies on both rotating and non-rotating convection the system’s behaviour is found to be aspect ratio dependent. This dependence is seen in the scaling of the non-rotating Nusselt number and in transitions between regimes in the rotating case although further investigation is required to fully explain these observations.
Interior structure of rotating black holes. I. Concise derivation
International Nuclear Information System (INIS)
Hamilton, Andrew J. S.; Polhemus, Gavin
2011-01-01
This paper presents a concise derivation of a new set of solutions for the interior structure of accreting, rotating black holes. The solutions are conformally stationary, axisymmetric, and conformally separable. Hyper-relativistic counter-streaming between freely-falling collisionless ingoing and outgoing streams leads to mass inflation at the inner horizon, followed by collapse. The solutions fail at an exponentially tiny radius, where the rotational motion of the streams becomes comparable to their radial motion. The papers provide a fully nonlinear, dynamical solution for the interior structure of a rotating black hole from just above the inner horizon inward, down to a tiny scale.
Foster, Richard W.; Escher, William J. D.; Robinson, John W.
1989-01-01
The present comparative performance study has established that rocket-based combined cycle (RBCC) propulsion systems, when incorporated by essentially axisymmetric SSTO launch vehicle configurations whose conical forebody maximizes both capture-area ratio and total capture area, are capable of furnishing payload-delivery capabilities superior to those of most multistage, all-rocket launchers. Airbreathing thrust augmentation in the rocket-ejector mode of an RBCC powerplant is noted to make a major contribution to final payload capability, by comparison to nonair-augmented rocket engine propulsion systems.