WorldWideScience

Sample records for axis wind turbine

  1. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  2. Turbulence in vertical axis wind turbine canopies

    OpenAIRE

    Kinzel, Matthias; Araya, Daniel B.; Dabiri, John O.

    2015-01-01

    Experimental results from three different full scale arrays of vertical-axis wind turbines (VAWTs) under natural wind conditions are presented. The wind velocities throughout the turbine arrays are measured using a portable meteorological tower with seven, vertically staggered, three-component ultrasonic anemometers. The power output of each turbine is recorded simultaneously. The comparison between the horizontal and vertical energy transport for the different turbine array sizes shows the i...

  3. New Urban Vertical Axis Wind Turbine Design

    OpenAIRE

    Alexandru-Mihai CISMILIANU; Alexandru BOROS; Ionut-Cosmin ONCESCU; Florin FRUNZULICA

    2015-01-01

    This paper develops a different approach for enhancing the performance of Vertical Axis Wind Turbines for the use in the urban or rural environment and remote isolated residential areas. Recently the vertical axis wind turbines (VAWT) have become more attractive due to the major advantages of this type of turbines in comparison to the horizontal axis wind turbines. We aim to enhance the overall performance of the VAWT by adding a second set of blades (3 x 2=6 blades) following the rules of bi...

  4. Generator design for vertical axis wind turbine

    OpenAIRE

    Schüller, Espen Samuelsen

    2010-01-01

    The optimization process for generators are often done for rated speeds and torques. This thesis will discuss and show optimization of a vertical axis wind turbine generator that has a given wind profile. Although the rated power of the turbine is at winds of about 10 m/s, the wind is mostly at 4-6 m/s, thus needing a generator that has high efficiencies also at lower speeds and torques.Vertical axis wind turbine does not use blade pitching as the horizontal ones do and the torque and speed c...

  5. Vertical axis wind turbine acoustics

    OpenAIRE

    Pearson, Charlie

    2014-01-01

    Increasing awareness of the issues of climate change and sustainable energy use has led to growing levels of interest in small-scale, decentralised power generation. Small-scale wind power has seen significant growth in the last ten years, partly due to the political support for renewable energy and the introduction of Feed In Tariffs, which pay home owners for generating their own electricity. Due to their ability to respond quickly to changing wind conditions, small-scale vertical axis...

  6. Lift Augmentation for Vertical Axis Wind Turbines

    OpenAIRE

    Gerald M Angle II; Mary Ann Clarke

    2010-01-01

    The concept of harnessing wind power has been around for centuries, and is first recorded by the Persians in 900 AD. These early uses of wind power were for the processing of food, particularly grinding grains, and consisted of stationary blades around a horizontal axis, the precursor to today’s horizontal axis wind turbines (HAWT). Technology for these wind mills was essentially the same until the 1930’s when advances in aircraft propeller theories were applied to the blades of the turbine. ...

  7. New Urban Vertical Axis Wind Turbine Design

    Directory of Open Access Journals (Sweden)

    Alexandru-Mihai CISMILIANU

    2015-12-01

    Full Text Available This paper develops a different approach for enhancing the performance of Vertical Axis Wind Turbines for the use in the urban or rural environment and remote isolated residential areas. Recently the vertical axis wind turbines (VAWT have become more attractive due to the major advantages of this type of turbines in comparison to the horizontal axis wind turbines. We aim to enhance the overall performance of the VAWT by adding a second set of blades (3 x 2=6 blades following the rules of biplane airplanes. The model has been made to operate at a maximum power in the range of the TSR between 2 to 2.5. The performances of the VAWT were investigated numerically and experimentally and justify the new proposed design.

  8. Analysis and design of a vertical axis wind turbine

    OpenAIRE

    Goyena Iriso, Joseba

    2011-01-01

    The main objective of this project is to design a new vertical axis wind turbine, specifically one Giromill wind turbine. The project development requires performing a previous study of the vertical axis wind turbines currently development. This study has to be performed before starting to design the wind turbine. Other very important aim is the development of a new vertical axis wind turbine. The after analyses that will result in the final design of the wind turbine will b...

  9. Turbulence in vertical axis wind turbine canopies

    Science.gov (United States)

    Kinzel, Matthias; Araya, Daniel B.; Dabiri, John O.

    2015-11-01

    Experimental results from three different full scale arrays of vertical-axis wind turbines (VAWTs) under natural wind conditions are presented. The wind velocities throughout the turbine arrays are measured using a portable meteorological tower with seven, vertically staggered, three-component ultrasonic anemometers. The power output of each turbine is recorded simultaneously. The comparison between the horizontal and vertical energy transport for the different turbine array sizes shows the importance of vertical transport for large array configurations. Quadrant-hole analysis is employed to gain a better understanding of the vertical energy transport at the top of the VAWT arrays. The results show a striking similarity between the flows in the VAWT arrays and the adjustment region of canopies. Namely, an increase in ejections and sweeps and decrease in inward and outward interactions occur inside the turbine array. Ejections are the strongest contributor, which is in agreement with the literature on evolving and sparse canopy flows. The influence of the turbine array size on the power output of the downstream turbines is examined by comparing a streamwise row of four single turbines with square arrays of nine turbine pairs. The results suggest that a new boundary layer forms on top of the larger turbine arrays as the flow adjusts to the new roughness length. This increases the turbulent energy transport over the whole planform area of the turbine array. By contrast, for the four single turbines, the vertical energy transport due to turbulent fluctuations is only increased in the near wake of the turbines. These findings add to the knowledge of energy transport in turbine arrays and therefore the optimization of the turbine spacing in wind farms.

  10. Parking Strategies for Vertical Axis Wind Turbines

    OpenAIRE

    2012-01-01

    Strategies for parking a vertical axis wind turbine at storm load are considered. It is proposed that if a directly driven permanent magnet synchronous generator is used, an elegant choice is to short-circuit the generator at storm, since this makes the turbine efficiently damped. Nondamped braking is found to be especially problematic for the case of two blades where torsional oscillations may imply thrust force oscillations within a range of frequencies.

  11. Optimisation of vertical axis wind turbines

    OpenAIRE

    Roynarin, Wirachai

    2004-01-01

    A practical Vertical Axis Wind Turbine (VAWTs) based on a Darrieus rotor has been designed and tested and found to be capable of self-starting at wind speeds above 4m/s. The self-start feature has been achieved by replacing the usual symmetrical aerofoil blade in the VAWT rotor and by using a concentric Savonius rotor or semi-cylinder turbine. A computer program was produced to compute the power coefficient versus tip speed ratio characteristics of a selected aerofoil profile employed in a VA...

  12. Lift Augmentation for Vertical Axis Wind Turbines

    Directory of Open Access Journals (Sweden)

    Gerald M Angle II

    2010-12-01

    Full Text Available The concept of harnessing wind power has been around for centuries, and is first recorded by the Persians in 900 AD. These early uses of wind power were for the processing of food, particularly grinding grains, and consisted of stationary blades around a horizontal axis, the precursor to today’s horizontal axis wind turbines (HAWT. Technology for these wind mills was essentially the same until the 1930’s when advances in aircraft propeller theories were applied to the blades of the turbine. During this development period, which has since remained basically unchanged, the design push was for increasingly larger propellers requiring heavy and costly transmissions, generators, and support towers to be installed. An alternative concept to the HAWT was developed by Georges Darrieus [5], which utilized a vertical shaft and is known as a vertical axis wind turbine (VAWT. The scientific development of the concept did not gain strong attention until the 1970’s due to the perceived low efficiency of this style. This perception was due in part to the portion of the blade’s rotary path that is adverse to the generation of power. This efficiency loss can be minimized by the mechanical movement of the blade, relative to the airflow during the upwind portion of the blades’ rotational path. Since, circulation control can alter the forces generated by an airfoil, it could be used to increase the efficiency of a VAWT by increasing the torque produced on the downwind portion of the path, while removing the need for a physical change in angle of attack. With the recent upturn in petroleum costs and global warming concerns, interest in renewable energy technologies have been reinvigorated, in particular the desire for advanced wind energy technologies, including the application of lift augmentation techniques. One of these techniques is to utilize circulation control to enhance the lifting capacity of the blades based on the location of the blade in the

  13. Vertical Axis Wind Turbines : Electrical System and Experimental Results

    OpenAIRE

    Kjellin, Jon

    2012-01-01

    The wind power research at the division of Electricity at Uppsala University is aimed towards increased understanding of vertical axis wind turbines. The considered type of wind turbine is an H-rotor with a directly driven synchronous generator operating at variable speed. The experimental work presented in this thesis comprises investigation of three vertical axis wind turbines of different design and size. The electrical, control and measurement systems for the first 12 kW wind turbine have...

  14. Vertical axis wind turbine in a falling soap film

    OpenAIRE

    Araya, Daniel B.; Dabiri, John O.

    2015-01-01

    Vertical axis wind turbines (VAWTs) have demonstrated a potential to significantly enhance the efficiency of energy harvesting within a wind farm. One mechanism that contributes to this enhancement is a VAWT’s inherent insensitivity to wind direction coupled with blockage within an array of turbines. Much like the flow around a bluff body, turbine blockage can locally accelerate the flow near one turbine, providing faster inflow conditions for a well-placed neighboring turbine. Since the powe...

  15. On the Turbulent Mixing in Horizontal Axis Wind Turbine Wakes

    NARCIS (Netherlands)

    Lignarolo, L.E.M.

    2016-01-01

    The wake flow of a horizontal axis wind turbine is characterised by lower wind speed and higher turbulence than the free-stream conditions. When clustered in large wind farms, wind turbines regularly operate inside the wake of one or more upstream machines. This is a major cause of energy production

  16. A Method for Modeling of Floating Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Wang, Kai; Hansen, Martin Otto Laver; Moan, Torgeir

    2013-01-01

    It is of interest to investigate the potential advantages of floating vertical axis wind turbine (FVAWT) due to its economical installation and maintenance. A novel 5MW vertical axis wind turbine concept with a Darrieus rotor mounted on a semi-submersible support structure is proposed in this paper...

  17. Vortex capturing vertical axis wind turbine

    International Nuclear Information System (INIS)

    An analytical-numerical study is presented for an innovative lift vertical axis turbine whose blades are designed with vortex trapping cavities that act as passive flow control devices. The unsteady flow field past one-bladed and two-bladed turbines is described by a combined analytical and numerical method based on conformal mapping and on a blob vortex method

  18. Computational studies of horizontal axis wind turbines

    Science.gov (United States)

    Xu, Guanpeng

    A numerical technique has been developed for efficiently simulating fully three-dimensional viscous fluid flow around horizontal axis wind turbines (HAWT) using a zonal approach. The flow field is viewed as a combination of viscous regions, inviscid regions and vortices. The method solves the costly unsteady Reynolds averaged Navier-Stokes (RANS) equations only in the viscous region around the turbine blades. It solves the full potential equation in the inviscid region where flow is irrotational and isentropic. The tip vortices are simulated using a Lagrangean approach, thus removing the need to accurately resolve them on a fine grid. The hybrid method is shown to provide good results with modest CPU resources. A full Navier-Stokes based methodology has also been developed for modeling wind turbines at high wind conditions where extensive stall may occur. An overset grid based version that can model rotor-tower interactions has been developed. Finally, a blade element theory based methodology has been developed for the purpose of developing improved tip loss models and stall delay models. The effects of turbulence are simulated using a zero equation eddy viscosity model, or a one equation Spalart-Allmaras model. Two transition models, one based on the Eppler's criterion, and the other based on Michel's criterion, have been developed and tested. The hybrid method has been extensively validated for axial wind conditions for three rotors---NREL Phase II, Phase III, and Phase VI configurations. A limited set of calculations has been done for rotors operating under yaw conditions. Preliminary simulations have also been carried out to assess the effects of the tower wake on the rotor. In most of these cases, satisfactory agreement has been obtained with measurements. Using the numerical results from present methodologies as a guide, Prandtl's tip loss model and Corrigan's stall delay model were correlated with present calculations. An improved tip loss model has been

  19. Yaw dynamics of horizontal axis wind turbines

    Science.gov (United States)

    Hansen, A. C.

    1992-05-01

    Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw-controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they know they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

  20. Yaw dynamics of horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.C. (Utah Univ., Salt Lake City, UT (United States))

    1992-05-01

    Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

  1. Small Vertical Axis Wind Turbines: aerodynamics and starting behavior

    OpenAIRE

    Dumitrescu, Horia; Vladimir CARDOS; Radu BOGATEANU

    2013-01-01

    In urban areas the wind is very turbulent and unstable with fast changes in direction andvelocity. In these environments, the use of small vertical axis wind turbines (VAWT) becomesincreasingly attractive due to several advantages over horizontal axis wind turbines (HAWT).However, such designs have received much less attention than the more common propeller-typedesigns and the understanding of same aspects of their operation remains, to this day, incomplete.This is particularly true of their ...

  2. Large Horizontal-Axis Wind Turbines

    Science.gov (United States)

    Thresher, R. W. (Editor)

    1982-01-01

    The proceedings of a workshop held in Cleveland, July 28-30, 1981 are described. The workshop emphasized recent experience in building and testing large propeller-type wind turbines, expanding upon the proceedings of three previous DOE/NASA workshops at which design and analysis topics were considered. A total of 41 papers were presented on the following subjects: current and advanced large wind turbine systems, rotor blade design and manufacture, electric utility activities, research and supporting technology, meteorological characteristics for design and operation, and wind resources assessments for siting.

  3. Aeroelastically coupled blades for vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, Joshua; Barone, Matthew F.

    2016-02-23

    Various technologies described herein pertain to a vertical axis wind turbine blade configured to rotate about a rotation axis. The vertical axis wind turbine blade includes at least an attachment segment, a rear swept segment, and optionally, a forward swept segment. The attachment segment is contiguous with the forward swept segment, and the forward swept segment is contiguous with the rear swept segment. The attachment segment includes a first portion of a centroid axis, the forward swept segment includes a second portion of the centroid axis, and the rear swept segment includes a third portion of the centroid axis. The second portion of the centroid axis is angularly displaced ahead of the first portion of the centroid axis and the third portion of the centroid axis is angularly displaced behind the first portion of the centroid axis in the direction of rotation about the rotation axis.

  4. Application of circulation controlled blades for vertical axis wind turbines

    OpenAIRE

    Velissarios Kourkoulis; Andrew Shires

    2013-01-01

    The blades of a vertical axis wind turbine (VAWT) rotor see an inconsistent angle of attack through its rotation. Consequently, VAWT blades generally use symmetrical aerofoils with a lower lift-to-drag ratio than cambered aerofoils tailored to maximise horizontal axis wind turbine rotor performance. This paper considers the feasibility of circulation controlled (CC) VAWT blades, using a tangential air jet to provide lift and therefore power augmentation. However CC blade sections require a hi...

  5. Vertical Axis Wind Turbines : Tower Dynamics and Noise

    OpenAIRE

    Möllerström, Erik

    2015-01-01

    Vertical axis wind turbines (VAWTs) have with time been outrivaled by the today common and economically feasible horizontal axis wind turbines (HAWTs). However, VAWTs have several advantages such as the possibility to put the drive train at ground level, lower noise emissions and better scaling behavior which still make them interesting for research. The work within this thesis is made in collaboration between the Department of Construction and Energy Engineering at Halmstad University and th...

  6. Reliability of floating foundation concepts for vertical axis wind turbines

    OpenAIRE

    Athanasios J. Kolios; Collu, Maurizio; Brennan, Feargal P.

    2010-01-01

    Offshore wind turbines are developing at a rapid pace. By far the most common turbine configuration is the HAWT (Horizontal Axis Wind Turbine) and development of these machines is largely centered about drive train and blade issues with some work concerning foundations/ supporting structures. Several teams around the world are developing floating supporting structures for HAWT, mainly for deep water deployment. This paper describes the development of a floating support structure for Vertical ...

  7. The Parameters Affect on Power Coefficient Vertical Axis Wind Turbine

    OpenAIRE

    2012-01-01

    ABSTRACT: This study describes the design of a special type of vertical axis rotor wind turbine with moveable vertically positioned vanes. The novel design increases the torque in the left side of the wind turbine by increasing the drag coefficient. It also reduces the negative torque of the frame which rotates contrary to the wind in the other side. Two different types of models, having different vane shapes (flat vane and cavity shaped vane), were fabricated. Each type consisted of two mode...

  8. Design optimization and analysis of vertical axis wind turbine blade

    International Nuclear Information System (INIS)

    Wind energy is clean and renwable source of energy and is also the world's fastest growing energy resource. Keeping in view power shortages and growing cost of energy, the low cost wind energy has become a primary solution. It is imperative that economies and individuals begin to conserve energy and focus on the production of energy from renewable sources. Present study describes a wind turbine blade designed with enhanced aerodynamic properties. Vertical axis turbine is chosen because of its easy installment, less noisy and having environmental friendly characteristics. Vertical axis wind turbines are thought to be ideal for installations where wind conditions are not consistent. The presented turbine blade is best suitable for roadsides where the rated speed due to vehicles is most /sup -1/ often 8 ms .To get an optimal shape design symmetrical profile NACA0025 has been considered which is then analyzed for stability and aerodynamic characteristics at optimal conditions using analysis tools ANSYS and CFD tools. (author)

  9. Velocity measurement of model vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A.; McWilliam, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2006-07-01

    An increasingly popular solution to future energy demand is wind energy. Wind turbine designs can be grouped according to their axis of rotation, either horizontal or vertical. Horizontal axis wind turbines have higher power output in a good wind regime than vertical axis turbines and are used in most commercial class designs. Vertical axis Savonius-based wind turbine designs are still widely used in some applications because of their simplistic design and low wind speed performance. There are many design variables that must be considered in order to optimize the power output in a given wind regime in a typical wind turbine design. Using particle image velocimetry, a study of the air flow around five different model vertical axis wind turbines was conducted in a closed loop wind tunnel. A standard Savonius design with two semi-circular blades overlapping, and two variations of this design, a deep blade and a shallow blade design were among the turbine models included in this study. It also evaluated alternate designs that attempt to increase the performance of the standard design by allowing compound blade curvature. Measurements were collected at a constant phase angle and also at random rotor orientations. It was found that evaluation of the flow patterns and measured velocities revealed consistent and stable flow patterns at any given phase angle. Large scale flow structures are evident in all designs such as vortices shed from blade surfaces. An important performance parameter was considered to be the ability of the flow to remain attached to the forward blade and redirect and reorient the flow to the following blade. 6 refs., 18 figs.

  10. Small Vertical Axis Wind Turbines: aerodynamics and starting behavior

    Directory of Open Access Journals (Sweden)

    Horia DUMITRESCU

    2013-12-01

    Full Text Available In urban areas the wind is very turbulent and unstable with fast changes in direction andvelocity. In these environments, the use of small vertical axis wind turbines (VAWT becomesincreasingly attractive due to several advantages over horizontal axis wind turbines (HAWT.However, such designs have received much less attention than the more common propeller-typedesigns and the understanding of same aspects of their operation remains, to this day, incomplete.This is particularly true of their starting characteristics. Indeed, same authors heuristically maintainthat they cannot start without external assistance. This paper reviews the cause of the inability of thelow solidity fixed pitch vertical axis wind turbines to self-start, and investigates the way ofovercoming this draw back.

  11. Design, Operation and Diagnostics of a Vertical Axis Wind Turbine

    OpenAIRE

    Colley, Gareth

    2012-01-01

    The need for sustainable energy sources becomes greater each year due to the continued depletion of fossil fuels and the resulting energy crisis. Solutions to this problem are potentially in the form of wind turbines which have been receiving increased support at a micro level. At present a number of wind turbines are being developed that are of cross-flow vertical axis operation which have shown significant increases in performance compared to existing technologies. From an extensive literat...

  12. Orthogonal Analysis Based Performance Optimization for Vertical Axis Wind Turbine

    OpenAIRE

    Lei Song; Hong-Zhao Liu; Zong-Xiao Yang

    2016-01-01

    Geometrical shape of a vertical axis wind turbine (VAWT) is composed of multiple structural parameters. Since there are interactions among the structural parameters, traditional research approaches, which usually focus on one parameter at a time, cannot obtain performance of the wind turbine accurately. In order to exploit overall effect of a novel VAWT, we firstly use a single parameter optimization method to obtain optimal values of the structural parameters, respectively, by Computational ...

  13. Aerodynamic Analysis Models for Vertical-Axis Wind Turbines

    OpenAIRE

    Brahimi, M. T.; A. Allet; I. Paraschivoiu

    1995-01-01

    This work details the progress made in the development of aerodynamic models for studying Vertical-Axis Wind Turbines (VAWT's) with particular emphasis on the prediction of aerodynamic loads and rotor performance as well as dynamic stall simulations. The paper describes current effort and some important findings using streamtube models, 3-D viscous model, stochastic wind model and numerical simulation of the flow around the turbine blades. Comparison of the analytical results with available e...

  14. Effects of structure flexibility on horizontal axis wind turbine performances

    Science.gov (United States)

    Coiro, D. P.; Daniele, E.; Scherillo, F.

    2013-10-01

    This work illustrates the effects of flexibility of rotor blades and turbine tower on the performances of an horizontal axis wind turbine (HAWT) designed by our ADAG research group, by means of several example applied on a recent project for a active pitch controlled upwind 60 kW HAWT. The influence of structural flexibility for blade only, tower only and blade coupled with tower configuration is investigated using an aero-elastic computer-aided engineering (CAE) tool for horizontal axis wind turbines named FAST developed at National Renewable Energy Laboratory (NREL) of USA. For unsteady inflow conditions in front of the isolated HAWT the performances in rigid and flexible operation mode are computed and compared in order to illustrate the limitation included within a classical rigid body approach to wind turbine simulation.

  15. Towards the Evolution of Novel Vertical-Axis Wind Turbines

    OpenAIRE

    Preen, Richard J.; Bull, Larry

    2012-01-01

    Renewable and sustainable energy is one of the most important challenges currently facing mankind. Wind has made an increasing contribution to the world's energy supply mix, but still remains a long way from reaching its full potential. In this paper, we investigate the use of artificial evolution to design vertical-axis wind turbine prototypes that are physically instantiated and evaluated under approximated wind tunnel conditions. An artificial neural network is used as a surrogate model to...

  16. Resonances and Aerodynamic Damping of a Vertical Axis Wind Turbine

    OpenAIRE

    Ottermo, Fredric; Bernhoff, Hans

    2012-01-01

    The dynamics of a straight-bladed vertical axis wind turbine is investigated with respect to oscillations due to the elasticity of struts and shaft connecting to the hub. In particular, for the three-bladed turbine, a concept is proposed for dimensioning the turbine to maximize the size of the resonance free rpm range for operation. The effect of aerodynamic damping on the struts is also considered. The damping of these types of oscillations for a typical turbine is found to be good.

  17. Wind response characteristics of horizontal axis wind turbines

    Science.gov (United States)

    Thresher, R. W.; Holley, W. E.; Jafarey, N.

    1981-01-01

    It was the objective of the work reported here, and in the companion paper 1 . A broader examination of wind turbine dynamic response to turbulence, and attempts to ascertain the features of turbulence that wind turbines are most sensitive to were made. A statistical description of the wind input including all three wind components and allowing linear wind gradients across the rotor disk, was used together with quasi-static aerodynamic theory and an elementary structural model involving only a few degrees of freedom. The idea was to keep the turbine model simple and show the benefits of this type of statistical wind representation before attempting to use a more complex turbine model. As far as possible, the analysis was kept in the simplest form, while still preserving key physical responses.

  18. The Wake of a Single Vertical Axis Wind Turbine

    Science.gov (United States)

    Barsky, Danielle

    Vertical axis wind turbines (VAWTs) pose various advantages over traditional horizontal axis wind turbines (HAWTs), including their smaller size and footprint, quiet operation, and ability to produce power under a greater variety of wind directions and wind speeds. To determine the optimal spacing of an array of VAWTs for maximum power output, an understanding of the fundamental wake structure of a single VAWT is needed. This study is among the first attempts to experimentally visualize the wake of a VAWT using stereo particle image velocimetry (PIV). A scale VAWT is placed inside a wind tunnel and a motor rotates the scale model at a constant rotational speed. Wake data at several Reynolds numbers and tip speed ratios indicate that vortices are shed by each blade of the spinning VAWT, demonstrating significant differences between the wake of a VAWT and a spinning cylinder.

  19. Electric power from vertical-axis wind turbines

    Science.gov (United States)

    Touryan, K. J.; Strickland, J. H.; Berg, D. E.

    1987-12-01

    Significant advancements have occurred in vertical axis wind turbine (VAWT) technology for electrical power generation over the last decade; in particular, well-proven aerodynamic and structural analysis codes have been developed for Darrieus-principle wind turbines. Machines of this type have been built by at least three companies, and about 550 units of various designs are currently in service in California wind farms. Attention is presently given to the aerodynamic characteristics, structural dynamics, systems engineering, and energy market-penetration aspects of VAWTs.

  20. Estimation of power in low velocity vertical axis wind turbine

    Science.gov (United States)

    Sampath, S. S.; Shetty, Sawan; Chithirai Pon Selvan, M.

    2015-06-01

    The present work involves in the construction of a vertical axis wind turbine and the determination of power. Various different types of turbine blades are considered and the optimum blade is selected. Mechanical components of the entire setup are built to obtain maximum rotation per minute. The mechanical energy is converted into the electrical energy by coupling coaxially between the shaft and the generator. This setup produces sufficient power for consumption of household purposes which is economic and easily available.

  1. A new vertical axis wind turbine design for urban areas

    Science.gov (United States)

    Frunzulica, Florin; Cismilianu, Alexandru; Boros, Alexandru; Dumitrache, Alexandru; Suatean, Bogdan

    2016-06-01

    In this paper we aim at developing the model of a Vertical Axis Wind Turbine (VAWT) with the short-term goal of physically realising this turbine to operate at a maximmum power of 5 kW. The turbine is designed for household users in the urban or rural areas and remote or isolated residential areas (hardly accsessible). The proposed model has a biplane configuration on each arm of the VAWT (3 × 2 = 6 blades), allowing for increased performance of the turbine at TSR between 2 and 2.5 (urban area operation) compared to the classic vertical axis turbines. Results that validate the proposed configuration as well as passive control methods to increase the performance of the classic VAWTs are presented.

  2. The Parameters Affect on Power Coefficient Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Ahmed Y. Qasim

    2012-04-01

    Full Text Available ABSTRACT: This study describes the design of a special type of vertical axis rotor wind turbine with moveable vertically positioned vanes. The novel design increases the torque in the left side of the wind turbine by increasing the drag coefficient. It also reduces the negative torque of the frame which rotates contrary to the wind in the other side. Two different types of models, having different vane shapes (flat vane and cavity shaped vane, were fabricated. Each type consisted of two models with varying number of frames (three and four frames. The models were tested in a wind tunnel with variable wind speed in order to understand the effect of shape, weight, and number of frames on the power coefficient of the wind turbine. ABSTRAK: Di dalam kajian ini, rotor turbin angin berpaksi vertikel sebagai rangka khusus telah direkabentuk dengan lokasi vertikel mudahalih oleh bilah kipas. Rekabentuk ini meningkatkan tork di bahagian kiri turbin angin dengan meningkatkan pekali seretan dan mengurangkan tork negatif rangka yang berputar berlawanan dengan angin pada bahagian lain. Dua jenis model berbentuk berlainan telah difabrikasi (bilah kipas rata dan bilah kipas berbentuk kaviti, dengan setiap jenis mempunyai dua model dengan bilangan rangka yang berlainan (berangka tiga dan berangka empat. Model-model telah diuji di dalam terowong angin dengan kelajuan angin yang berbeza bagi mendapatkan kesan rekabentuk, berat dan bilangan rangka ke atas pekali kuasa.KEYWORDS: design; wind turbine; drag coefficient; vane

  3. Survey of Unsteady Computational Aerodynamics for Horizontal Axis Wind Turbines

    Science.gov (United States)

    Frunzulicǎ, F.; Dumitrescu, H.; Cardoş, V.

    2010-09-01

    We present a short review of aerodynamic computational models for horizontal axis wind turbines (HAWT). Models presented have a various level of complexity to calculate aerodynamic loads on rotor of HAWT, starting with the simplest blade element momentum (BEM) and ending with the complex model of Navier-Stokes equations. Also, we present some computational aspects of these models.

  4. Stereo PIV Experiments on Horizontal Axis Wind Turbine Rotor Model

    NARCIS (Netherlands)

    Akay, B.; Micallef, D.; Ferreira, C.S.; Van Bussel, G.J.W.

    2011-01-01

    This paper sets out to describe the measurements and computations to construct three components of velocity field around the blade. The primary aim of the measurements was to gain insight into the physics of the flow field produced by a horizontal axis wind turbine-HAWT blade. Stereo Particle Image

  5. New airfoils for small horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Giguere, P.; Selig, M.S. [Univ. of Illinois, Urbana, IL (United States)

    1997-12-31

    In a continuing effort to enhance the performance of small energy systems, one root airfoil and three primary airfoils were specifically designed for small horizontal axis wind turbines. These airfoils are intended primarily for 1-10 kW variable-speed wind turbines for both conventional (tapered/twisted) or pultruded blades. The four airfoils were wind-tunnel tested at Reynolds numbers between 100,000 and 500,000. Tests with simulated leading-edge roughness were also conducted. The results indicate that small variable-speed wind turbines should benefit from the use of the new airfoils which provide enhanced lift-to-drag ratio performance as compared with previously existing airfoils.

  6. Computer simulation for horizontal axis wind turbine rotor optimization

    International Nuclear Information System (INIS)

    Wind turbine design is a complex process that includes multiple and conflicting criteria like maximizing energy production and minimizing the cost incurred. Often, such problems are solved using optimization techniques. A computer simulation is essential in analyzing the performance of a wind turbine rotor and determining suitable values of various design variables. The simulation will work with a design optimizer to optimize the design. In this paper, the problem of optimal rotor design is formulated and a computer simulation presented to analyze the performance of a horizontal axis wind turbine rotor of a given airfoil over a range of rotor tip speed ratios. The MATLAB simulation takes inputs of blade twist angle and chord solidity along the rotor radius as well as wind speed distribution; it provides output in the form of plots of coefficient of performance against tip speed ratio, variation of induction factors, angle of attack and coefficients of lift and drag with blade radial positions. (author)

  7. Large Eddy Simulation of Vertical Axis Wind Turbine Wakes

    OpenAIRE

    Sina Shamsoddin; Fernando Porté-Agel

    2014-01-01

    In this study, large eddy simulation (LES) is combined with a turbine model to investigate the wake behind a vertical-axis wind turbine (VAWT) in a three-dimensional turbulent flow. Two methods are used to model the subgrid-scale (SGS) stresses: (a) the Smagorinsky model; and (b) the modulated gradient model. To parameterize the effects of the VAWT on the flow, two VAWT models are developed: (a) the actuator swept-surface model (ASSM), in which the time-averaged turbine-induced forces are dis...

  8. A Generator Perspective on Vertical Axis Wind Turbines

    OpenAIRE

    Bülow, Fredrik

    2013-01-01

    The wind energy conversion system considered in this thesis is based on a vertical axis wind turbine with a cable wound direct drive PM generator. Diode rectifiers are used to connect several such units to a single DC-bus and a single inverter controls the power flow from the DC-bus to a utility grid. This work considers the described system from a generator perspective i.e. the turbine is primarily seen as a torque and the inverter is seen as a controlled load. A 12 kW VAWT prototype with a ...

  9. Analytical Aerodynamic Simulation Tools for Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    Wind power is a renewable energy source that is today the fastest growing solution to reduce CO2 emissions in the electric energy mix. Upwind horizontal axis wind turbine with three blades has been the preferred technical choice for more than two decades. This horizontal axis concept is today widely leading the market. The current PhD thesis will cover an alternative type of wind turbine with straight blades and rotating along the vertical axis. A brief overview of the main differences between the horizontal and vertical axis concept has been made. However the main focus of this thesis is the aerodynamics of the wind turbine blades. Making aerodynamically efficient turbines starts with efficient blades. Making efficient blades requires a good understanding of the physical phenomena and effective simulations tools to model them. The specific aerodynamics for straight bladed vertical axis turbine flow are reviewed together with the standard aerodynamic simulations tools that have been used in the past by blade and rotor designer. A reasonably fast (regarding computer power) and accurate (regarding comparison with experimental results) simulation method was still lacking in the field prior to the current work. This thesis aims at designing such a method. Analytical methods can be used to model complex flow if the geometry is simple. Therefore, a conformal mapping method is derived to transform any set of section into a set of standard circles. Then analytical procedures are generalized to simulate moving multibody sections in the complex vertical flows and forces experienced by the blades. Finally the fast semi analytical aerodynamic algorithm boosted by fast multipole methods to handle high number of vortices is coupled with a simple structural model of the rotor to investigate potential aeroelastic instabilities. Together with these advanced simulation tools, a standard double multiple streamtube model has been developed and used to design several straight bladed

  10. Performance testing of a small vertical-axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, R.; Tullis, S.; Ziada, S. [McMaster Univ., Hamilton, ON (Canada). Dept. of Mechanical Engineering

    2007-07-01

    Full-scale wind tunnel testing of a prototype 3.5 kW vertical-axis wind turbine (VAWT) was conducted in a low speed wind tunnel in Ottawa. The tests were conducted to determine nominal power curves as well as the system's structural integrity, safety and operational characteristics. Dimensionless power curves were used to assess the relation between the wind turbine's rotary speed and the produced power for various wind speeds. Tests began at the lowest wind speed and revolutions per minute (RPM) and were gradually increased. A proximity sensor was used to determine the passing frequency of spaced bolts. The aerodynamic performance of the turbine was evaluated using a servo-controlled mechanical variable load with a disc brake calliper and electro-hydraulic servo-actuator. A load cell was used to measure torque produced by the turbine. An active closed loop speed control system was used to regulate the rotary speed of the turbine. The system used a high gain proportional control law to guarantee stability. Calculated power was based on the average rotary speed measurement. Results of the study suggested that the dimensional power performance of the turbine could be predicted from the curve for all rotary speeds and for wind speeds between 8 and 16 m/s. The maximum power coefficient of 0.3 occurred at a tip speed ratio of 1.6. Test results demonstrated that the turbine reached its rated power at 14 m/s. However, the range of tip speed ratios for power production were lower than the range for most other small VAWT. 2 refs., 3 figs.

  11. Experimental characterization of vertical-axis wind turbine noise.

    Science.gov (United States)

    Pearson, C E; Graham, W R

    2015-01-01

    Vertical-axis wind turbines are wind-energy generators suitable for use in urban environments. Their associated noise thus needs to be characterized and understood. As a first step, this work investigates the relative importance of harmonic and broadband contributions via model-scale wind-tunnel experiments. Cross-spectra from a pair of flush-mounted wall microphones exhibit both components, but further analysis shows that the broadband dominates at frequencies corresponding to the audible range in full-scale operation. This observation has detrimental implications for noise-prediction reliability and hence also for acoustic design optimization. PMID:25618090

  12. Software tool for horizontal-axis wind turbine simulation

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, A.J. [Instituto Argentino de Oceanografia, Camino La Carrindanga Km. 7, 5 CC 804, B8000FWB Bahia Blanca (Argentina); Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Dpto. de Ing. Electrica y de Computadoras, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Rossi, A.P. [Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Dpto. de Ing. Electrica y de Computadoras, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2008-07-15

    The main problem of a wind turbine generator design project is the design of the right blades capable of satisfying the specific energy requirement of an electric system with optimum performance. Once the blade has been designed for optimum operation at a particular rotor angular speed, it is necessary to determine the overall performance of the rotor under the range of wind speed that it will encounter. A software tool that simulates low-power, horizontal-axis wind turbines was developed for this purpose. With this program, the user can calculate the rotor power output for any combination of wind and rotor speeds, with definite blade shape and airfoil characteristics. The software also provides information about distribution of forces along the blade span, for different operational conditions. (author)

  13. Optimization model for rotor blades of horizontal axis wind turbines

    Institute of Scientific and Technical Information of China (English)

    LIU Xiong; CHEN Yan; YE Zhiquan

    2007-01-01

    This paper presents an optimization model for rotor blades of horizontal axis wind turbines. The model refers to the wind speed distribution function on the specific wind site, with an objective to satisfy the maximum annual energy output. To speed up the search process and guarantee a global optimal result, the extended compact genetic algorithm (ECGA) is used to carry out the search process.Compared with the simple genetic algorithm, ECGA runs much faster and can get more accurate results with a much smaller population size and fewer function evaluations. Using the developed optimization program, blades of a 1.3 MW stall-regulated wind turbine are designed. Compared with the existing blades, the designed blades have obviously better aerodynamic performance.

  14. Three-Dimensional Velocity Measurements Around and Downstream of a Rotating Vertical Axis Wind Turbine

    OpenAIRE

    Ryan, Kevin J.; Coletti, Filippo; Dabiri, John O.; Eaton, John K.

    2014-01-01

    Modern designs for straight-bladed vertical axis wind turbines (VAWTs) feature smaller individual footprints than conventional horizontal axis wind turbines (HAWTs), allowing closer spacing of turbines and potentially greater power extraction for the same wind farm footprint. However, the wakes of upstream turbines could persist far enough to affect the performance of closely-spaced downstream turbines. In order to optimize the inter-turbine spacing and to investigate the potential for constr...

  15. 3D CFD Analysis of a Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Andrea Alaimo

    2015-04-01

    Full Text Available To analyze the complex and unsteady aerodynamic flow associated with wind turbine functioning, computational fluid dynamics (CFD is an attractive and powerful method. In this work, the influence of different numerical aspects on the accuracy of simulating a rotating wind turbine is studied. In particular, the effects of mesh size and structure, time step and rotational velocity have been taken into account for simulation of different wind turbine geometries. The applicative goal of this study is the comparison of the performance between a straight blade vertical axis wind turbine and a helical blade one. Analyses are carried out through the use of computational fluid dynamic ANSYS® Fluent® software, solving the Reynolds averaged Navier–Stokes (RANS equations. At first, two-dimensional simulations are used in a preliminary setup of the numerical procedure and to compute approximated performance parameters, namely the torque, power, lift and drag coefficients. Then, three-dimensional simulations are carried out with the aim of an accurate determination of the differences in the complex aerodynamic flow associated with the straight and the helical blade turbines. Static and dynamic results are then reported for different values of rotational speed.

  16. Summary of tower designs for large horizontal axis wind turbines

    Science.gov (United States)

    Frederick, G. R.; Savino, J. M.

    1986-01-01

    Towers for large horizontal axis wind turbines, machines with a rotor axis height above 30 meters and rated at more than 500 kW, have varied in configuration, materials of construction, type of construction, height, and stiffness. For example, the U.S. large HAWTs have utilized steel truss type towers and free-standing steel cylindrical towers. In Europe, the trend has been to use only free-standing and guyed cylindrical towers, but both steel and reinforced concrete have been used as materials of construction. These variations in materials of construction and type of construction reflect different engineering approaches to the design of cost effective towers for large HAWTs. Tower designs are the NASA/DOE Mod-5B presently being fabricated. Design goals and requirements that influence tower configuration, height and materials are discussed. In particular, experiences with United States large wind turbine towers are elucidated. Finally, current trends in tower designs for large HAWTs are highlighted.

  17. Modelling and dynamic analysis of a semi-submersible floating vertical axis wind turbine

    OpenAIRE

    Wang, Kai

    2015-01-01

    Wind turbines are mainly classified into horizontal axis wind turbines (HAWTs) and vertical axis wind turbines (VAWTs) based on different orientation of their axis of rotation. Ever-increasing demand for energy boosts the application of the wind turbines in the deep water. The applications of HAWTs in deep water using different floating support structures have led to an increasing and versatile research due to their commercial success. However, the application of the VAWTs in t...

  18. Miniature horizontal axis wind turbine system for multipurpose application

    International Nuclear Information System (INIS)

    A MWT (miniature wind turbine) has received great attention recently for powering WISP (Wireless Intelligent Sensor Platform). In this study, two MHAWTs (miniature horizontal axis wind turbines) with and without gear transmission were designed and fabricated. A physics-based model was proposed and the optimal load resistances of the MHAWTs were predicted. The open circuit voltages, output powers and net efficiencies were measured under various ambient winds and load resistances. The experimental results showed the optimal load resistances matched well with the predicted results; the MHAWT without gear obtained higher output power at the wind speed of 2 m/s to 6 m/s, while the geared MHAWT exhibited better performance at the wind speed higher than 6 m/s. In addition, a DCM (discontinuous conduction mode) buck-boost converter was adopted as an interface circuit to maximize the charging power from MHAWTs to rechargeable batteries, exhibiting maximum efficiencies above 85%. The charging power reached about 8 mW and 36 mW at the wind speeds of 4 m/s and 6 m/s respectively, which indicated that the MHAWTs were capable for sufficient energy harvesting for powering low-power electronics continuously. - Highlights: • Performance of the miniature wind turbines with and without gears was compared. • The physics-based model was established and proved successfully. • The interface circuit with efficiency of more than 85% was designed

  19. Design and Analysis of Horizontal Axis Wind Turbine Rotor

    Directory of Open Access Journals (Sweden)

    Arvind Singh Rathore

    2011-11-01

    Full Text Available This paper presents an optimization model for rotor design of 750 kW horizontal axis wind turbine. The wind turbine blade is a very important part of the rotor. In this work a blade of length 21.0 m is taken and airfoil for the blade is S809. The airfoil taken is same from root to tip. The model refers to a design method based on TypeApproval Provision Scheme TAPS-2000. All the loads caused by wind and inertia on the blades are transferred to the hub. The stress and deflection were calculated on blades and hub by Finite element analysis method. Result obtained from ANSYS is compared with the existing design.

  20. Low Reynolds number airfoils for small horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Giguere, Philippe; Selig, Michael S. [University of Illinois at Urbana-Chanpaign (United States). Dept. of Aeronautical and Astronautical Engineering

    1997-12-31

    To facilitate the airfoil selection process for small horizontal-axis wind turbines, an extensive database of low Reynolds number airfoils has been generated. The database, which consists of lift and drag data, was obtained from experiments conducted in the same wind tunnel testing facility. Experiments with simulated leading-edge roughness were also performed to model the effect of blade erosion and the accumulation of roughness elements, such as insect debris, on airfoil performance. Based on the lift curves and drag polars, guidelines that should be useful in selecting appropriate airfoils for particular blade designs are given. Some of these guidelines are also applicable to larger HAWTs. (author)

  1. Wake Development of a Model Vertical Axis Wind Turbine

    Science.gov (United States)

    Kadum, Hawwa; Friedman, Sasha; Camp, Elizabeth; Cal, Rau'l.

    2015-11-01

    At the Portland State University wind tunnel facility, an experiment is conducted to observe the downstream development of the wake past a model vertical axis wind turbine (VAWT). The flow domain is composed of streamwise-spanwise planes at mid-height of the VAWT rotor and data is obtained via particle image velocimetry (PIV). The flow field is assessed by analyzing contours of mean velocities and the full Reynolds stress tensor. Furthermore, profiles of the aforementioned quantities and flow parameters are discussed in the context of downstream evolution/flow development.

  2. A 34-meter VAWT (Vertical Axis Wind Turbine) point design

    Science.gov (United States)

    Ashwill, T. D.; Berg, D. E.; Dodd, H. M.; Rumsey, M. A.; Sutherland, H. J.; Veers, P. S.

    The Wind Energy Division at Sandia National Laboratories recently completed a point design based on the 34-m Vertical Axis Wind Turbine (VAWT) Test Bed. The 34-m Test Bed research machine incorporates several innovations that improve Darrieus technology, including increased energy production, over previous machines. The point design differs minimally from the Test Bed; but by removing research-related items, its estimated cost is substantially reduced. The point design is a first step towards a Test-Bed-based commercial machine that would be competitive with conventional sources of power in the mid-1990s.

  3. Flow-blade interaction in a Vertical Axis Wind Turbine

    Science.gov (United States)

    Dominguez, Roberto; Piedra, Saul; Ramos, Eduardo

    2014-11-01

    We present an analysis of the interaction between an incoming wind and three airfoils symmetrically located, and free to rotate around a common axis. The geometrical configuration considered is a two dimensional model of Vertical Axis Wind Turbine. The model is based in the conservation equations of the fluid coupled with the Newton-Lagrange equations for the interaction with the airfoils. The presence of the rigid body in the fluid is simulated using immersed boundary conditions. The interaction of the wind with the airfoil located further upstream generates a force on the airfoil and vortices that are swept downstream and collide with the other airfoils. This effect generates a complex interplay of dynamical forces whose resultant is a torque that sets the system in motion. We describe the flow around the airfoils and examine the efficiency of the system as a function of geometric variables. Our conclusions are potentially useful for the design of VAWT's.

  4. Computational analysis of vertical axis wind turbine arrays

    Science.gov (United States)

    Bremseth, J.; Duraisamy, K.

    2016-03-01

    Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.

  5. Fish schooling as a basis for vertical axis wind turbine farm design

    OpenAIRE

    Whittlesey, Robert W.; Liska, Sebastian; Dabiri, John O.

    2010-01-01

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighboring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely spaced VAWTs may experience only small decreases (or even increases...

  6. Numerical study on small scale vertical axis wind turbine

    Science.gov (United States)

    Parra-Santos, Teresa; Gallegos, Armando; Uzarraga, Cristóbal N.; Rodriguez, Miguel A.

    2016-03-01

    The performance of a Vertical Axis Wind Turbine (VAWT) is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.

  7. Numerical study on small scale vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Parra-Santos Teresa

    2016-01-01

    Full Text Available The performance of a Vertical Axis Wind Turbine (VAWT is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.

  8. Application of Circulation Controlled Blades for Vertical Axis Wind Turbines

    Directory of Open Access Journals (Sweden)

    Velissarios Kourkoulis

    2013-07-01

    Full Text Available The blades of a vertical axis wind turbine (VAWT rotor see an inconsistent angle of attack through its rotation. Consequently, VAWT blades generally use symmetrical aerofoils with a lower lift-to-drag ratio than cambered aerofoils tailored to maximise horizontal axis wind turbine rotor performance. This paper considers the feasibility of circulation controlled (CC VAWT blades, using a tangential air jet to provide lift and therefore power augmentation. However CC blade sections require a higher trailing-edge thickness than conventional sections giving rise to additional base drag. The choice of design parameters is a compromise between lift augmentation, additional base drag as well as the power required to pump the air jet. Although CC technology has been investigated for many years, particularly for aerospace applications, few researchers have considered VAWT applications. This paper considers the feasibility of the technology, using Computational Fluid Dynamics to evaluate a baseline CC aerofoil with different trailing-edge ellipse shapes. Lift and drag increments due to CC are considered within a momentum based turbine model to determine net power production. The study found that for modest momentum coefficients significant net power augmentation can be achieved with a relatively simple aerofoil geometry if blowing is controlled through the blades rotation.

  9. Large Eddy Simulation of Vertical Axis Wind Turbine Wakes

    Science.gov (United States)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2014-05-01

    In this study, large-eddy simulation (LES) is combined with a turbine model to investigate the wake behind a vertical-axis wind turbine (VAWT) in a three dimensional turbulent flow. Two methods are used to model the subgrid-scale (SGS) stresses: (a) the Smagorinsky model, and (b) the modulated gradient model. To parameterize the effects of the VAWT on the flow, two VAWT models are developed: (a) the actuator surface model (ASM), in which the time-averaged turbine-induced forces are distributed on a surface swept by the turbine blades, i.e. the actuator surface, and (b) the actuator line model (ALM), in which the instantaneous blade forces are only spatially distributed on lines representing the blades, i.e. the actuator lines. This is the first time that LES is applied and validated for simulation of VAWT wakes by using either the ASM or the ALM techniques. In both models, blade-element theory is used to calculate the lift and drag forces on the blades. The results are compared with flow measurements in the wake of a model straight-bladed VAWT, carried out in the Institute de Méchanique et Statistique de la Turbulence (IMST) water channel. Different combinations of SGS models with VAWT models are studied and a fairly good overall agreement between simulation results and measurement data is observed. In general, the ALM is found to better capture the unsteady-periodic nature of the wake and shows a better agreement with the experimental data compared with the ASM. The modulated gradient model is also found to be a more reliable SGS stress modeling technique, compared with the Smagorinsky model, and it yields reasonable predictions of the mean flow and turbulence characteristics of a VAWT wake using its theoretically-determined model coefficient. Keywords: Vertical-axis wind turbines (VAWTs); VAWT wake; Large-eddy simulation; Actuator surface model; Actuator line model; Smagorinsky model; Modulated gradient model

  10. Experimental Study of Aerodynamic Characteristics for Horizontal Axis Wind Turbine and Performance Evaluation

    OpenAIRE

    Dai Yuanjun; Wen Caifeng

    2012-01-01

    This study using two different airfoil of horizontal axis wind turbine in order to evaluate the performance good or bad with unit area of power generation. First, under the low speed wind tunnel, two different airfoil of horizontal axis wind turbine on experimental study of the aerodynamic characteristics, got the power curve of wind turbine; Then, based on the wind resource date in 2008 from four areas in Inner Mongolia, which was provided by the China meteorological date sharing service sys...

  11. Design of h-Darrieus vertical axis wind turbine

    OpenAIRE

    Parra Teresa; Vega Carmen; Gallegos A.; Uzarraga N. C.; Castro F.

    2015-01-01

    Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT) H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characte...

  12. Vertical axis wind turbine performance prediction: a new approach to the double multiple streamtube model

    OpenAIRE

    Melício, Rui; Batista, N.C.; Matias, J. C. O.; Catalão, J.P.S.

    2012-01-01

    The vertical axis wind turbines (VAWT) have been suffering an increased acceptance for urban wind turbines integration in the future smart grid for decentralized generation (DG). The VAWT have several advantages over the more conventional horizontal axis wind turbines (HAWT): the smaller number of components; low sound emissions; their insensitivity to fast changes in wind flow direction; a lower architectural visual impact; the ability to operate closer to the ground;...

  13. Modal Parameter Identification of New Design of Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2013-01-01

    Vertical axis wind turbines have lower power efficiency than the horizontal axis wind turbines. However vertical axis wind turbines are proven to be economical and noise free on smaller scale. A new design of three bladed vertical axis wind turbine by using two airfoils in construction of each...... blade has been proposed to improve power efficiency. The purpose of two airfoils in blade design of vertical axis wind turbine is to create high lift which in turns gives higher power output. In such case the structural parameter identification is important to understand the system behavior due to its...... Abaqus cae software. The study is limited to evaluate lowest fundamental modal frequencies and mode shapes of proposed wind turbine....

  14. Aerodynamic performance of vertical and horizontal axis wind turbines

    Science.gov (United States)

    Maydew, R. C.; Klimas, P. C.

    1981-06-01

    The aerodynamic performance of vertical and horizontal axis wind turbines is investigated, and comparison of data of the 17-m Darrieus VAWT with the 60.7-m Mod-1 HAWT and 37.8-m Mod-0A HAWT is discussed. It is concluded that the maximum average measured power coefficients of the VAWT are about 0%-15% higher than those of the HAWTs. It is suggested that vertical wind shear may have lowered the Mod-1 HAWT aerodynamic performance, but, the magnitude of this effect could not be evaluated. It is included that generalizations which refer to the Darrieus VAWT as aerodynamically less efficient than the HAWT should be used carefully.

  15. Active Circulation Control for Horizontal Axis Wind Turbine

    Science.gov (United States)

    Dumitrache, Alexandru; Dumitrescu, Horia; Preotu, Octavian

    2011-09-01

    A based method for modeling the aerodynamics of horizontal axis wind turbine has been developed. Circulation control is implemented by tangentially blowing a small high-velocity jet over a highly curved surface, such as a rounded trailing edge. This causes the boundary layer and the jet sheet to remain attached along the curved surface due to the Coanda effect and causing the jet to turn without separation. This analysis has been validated for the experimental data of a rotor tested at NASA Ames Research Center. Comparisons have been done against measurements for surface pressure distribution, force coefficients normal and tangential to the chord line, torque and root bending moments. This approach for enhancing the circulation around the airfoil sections (and hence L/D and power production) has been examined and found to produce useful increases in power at low wind speeds.

  16. On the theory of the horizontal-axis wind turbine

    Science.gov (United States)

    de Vries, O.

    The fluid mechanical theory of horizontal axis wind turbines (HAWT) in homogeneous, steady flows is presented. HAWT aerodynamic performance is governed by rotor torque and drag, the angular velocity, and power output, with governing equations for momentum, mass, and energy. The lift force and profile drag acting on the airfoil blades depend on the flow velocity, the chord length, the angle of attack, and the lift and drag coefficients. Single streamtube and multiple-stream tube and angular momentum analyses are employed to quantify the maximum wind turbine performance. Optimization studies for HAWT blades have indicated that a considerable amount of blade twist and taper enhances HAWT performance. Blade-element and vortex theory combined with panel methods are used to study optimum blade shapes. Techniques for assuring that wind tunnel studies of scale models are valid for full scale machines are defined. Sample runs have shown the accuracy of the blade element theory and the inaccuracies of two-dimensional analyses when stall is reached. The acquisition of more aerodynamic data on HAWT performance is indicated.

  17. Integrated simulation challenges with the DeepWind floating vertical axis wind turbine concept

    DEFF Research Database (Denmark)

    Verelst, David; Aagaard Madsen, Helge; Borg, Michael; Schmidt Paulsen, Uwe; Svendsen, Harald G.; Berthelsen, Petter Andreas

    2015-01-01

    This paper presents the experiences and challenges with concurrently carrying out numerical model development, integrated simulations and design of a novel floating vertical axis wind turbine, the DeepWind concept. The floating VAWT modelling capabilities of the aero-hydro-elastic HAWC2 simulation...

  18. Morping blade design for vertical axis wind turbines

    Science.gov (United States)

    Macphee, David; Beyene, Asfaw

    2015-11-01

    Wind turbines operate at peak efficiency at a certain set of operational conditions. Away from these conditions, conversion efficiency drops significantly, requiring pitch and yaw control schemes to mitigate these losses. These efforts are an example of geometric variability, allowing for increased power production but with an unfortunate increase in investment cost to the energy conversion system. In Vertical-Axis Wind Turbines (VAWTs), the concept of pitch control is especially complicated due to a dependence of attack angle on armature azimuth. As a result, VAWT pitch control schemes, both active and passive, are as of yet unfeasible. This study investigates a low-cost, passive pitch control system, in which VAWT blades are constructed of a flexible material, allowing for continuous shape-morphing in response to local aerodynamic loading. This design is analyzed computationally using a finite-volume fluid-structure interaction routine and compared to a geometrically identical rigid rotor. The results indicate that the flexible blade increases conversion efficiency by reducing the severity of vortex shedding, allowing for greater average torque over a complete revolution.

  19. Control of dynamic stall phenomenon for vertical axis wind turbine

    Science.gov (United States)

    Frunzulicǎ, Florin; Dumitrescu, Horia; Dumitrache, Alexandru; Suatean, Bogdan

    2013-10-01

    In the last years the wind turbine with vertical axis (VAWT) began to be more attractive due benefits in exploitation, the power range covering usually the domain 2 kW-20 kW. But, VAWTs suffer from many complicated aerodynamically problems, of which dynamic stall is an inherent phenomenon when they are operating at low values of tip speed ratio (TSR VAWTs. For this reason, in the present work we perform a computational investigation of a two-dimensional dynamic stall phenomenon around a NACA0012 airfoil in oscillating motion at relative low Reynolds number (˜105). The unsteady flow is investigated numerically using RANS approach with two turbulence models (k-ω SST and transition SST). The same analysis was performed to evaluate three flow control methods: two passive and one active.

  20. Large Eddy Simulation of Vertical Axis Wind Turbine Wakes

    Directory of Open Access Journals (Sweden)

    Sina Shamsoddin

    2014-02-01

    Full Text Available In this study, large eddy simulation (LES is combined with a turbine model to investigate the wake behind a vertical-axis wind turbine (VAWT in a three-dimensional turbulent flow. Two methods are used to model the subgrid-scale (SGS stresses: (a the Smagorinsky model; and (b the modulated gradient model. To parameterize the effects of the VAWT on the flow, two VAWT models are developed: (a the actuator swept-surface model (ASSM, in which the time-averaged turbine-induced forces are distributed on a surface swept by the turbine blades, i.e., the actuator swept surface; and (b the actuator line model (ALM, in which the instantaneous blade forces are only spatially distributed on lines representing the blades, i.e., the actuator lines. This is the first time that LES has been applied and validated for the simulation of VAWT wakes by using either the ASSM or the ALM techniques. In both models, blade-element theory is used to calculate the lift and drag forces on the blades. The results are compared with flow measurements in the wake of a model straight-bladed VAWT, carried out in the Institute de Méchanique et Statistique de la Turbulence (IMST water channel. Different combinations of SGS models with VAWT models are studied, and a fairly good overall agreement between simulation results and measurement data is observed. In general, the ALM is found to better capture the unsteady-periodic nature of the wake and shows a better agreement with the experimental data compared with the ASSM. The modulated gradient model is also found to be a more reliable SGS stress modeling technique, compared with the Smagorinsky model, and it yields reasonable predictions of the mean flow and turbulence characteristics of a VAWT wake using its theoretically-determined model coefficient.

  1. Downstream wind flow path diversion and its effects on the performance of vertical axis wind turbine

    International Nuclear Information System (INIS)

    In the present experimental study efforts have been made to analysis path diversion effect of downstream wind flow on performance of vertical axis wind turbine (VAWT). For the blockage of downstream wind flow path at various linear displaced positions, a normal erected flat wall, semi-circular and cylindrical shapes were tested for path diverting geometries. Performance of VAWT in terms of improved rotor speed up to 45% was achieved. (author)

  2. An Aerodynamic Method for the Analysis of Isolated Horizontal-Axis Wind Turbines

    OpenAIRE

    Christian Masson; Idriss Ammara; Ion Paraschivoiu

    1997-01-01

    The aerodynamic analysis of a wind turbine represents a very complex task since it involves an unsteady three-dimensional viscous flow. In most existing performance-analysis methods, wind turbines are considered isolated so that interference effects caused by other rotors or by the site topology are neglected. Studying these effects in order to optimize the arrangement and the positioning of Horizontal-Axis Wind Turbines (HAWTs) on a wind farm is one of the research activities of the Bombardi...

  3. Design and Aero-elastic Simulation of a 5MW Floating Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Vita, Luca; Schmidt Paulsen, Uwe; Aagaard Madsen, Helge; Nielsen, Per Hørlyk; Berthelsen, Petter A.; Cartsensen, Stefan

    This paper deals with the design of a 5MW floating offshore Vertical Axis Wind Turbine (VAWT). The design is based on a new offshore wind turbine concept (DeepWind concept), consisting of a Darrieus rotor mounted on a spar buoy support structure, which is anchored to the sea bed with mooring lines...

  4. Simplified aeroelastic modeling of horizontal axis wind turbines

    Science.gov (United States)

    Wendell, J. H.

    1982-09-01

    Certain aspects of the aeroelastic modeling and behavior of the horizontal axis wind turbine (HAWT) are examined. Two simple three degree of freedom models are described in this report, and tools are developed which allow other simple models to be derived. The first simple model developed is an equivalent hinge model to study the flap-lag-torsion aeroelastic stability of an isolated rotor blade. The model includes nonlinear effects, preconing, and noncoincident elastic axis, center of gravity, and aerodynamic center. A stability study is presented which examines the influence of key parameters on aeroelastic stability. Next, two general tools are developed to study the aeroelastic stability and response of a teetering rotor coupled to a flexible tower. The first of these tools is an aeroelastic model of a two-bladed rotor on a general flexible support. The second general tool is a harmonic balance solution method for the resulting second order system with periodic coefficients. The second simple model developed is a rotor-tower model which serves to demonstrate the general tools. This model includes nacelle yawing, nacelle pitching, and rotor teetering. Transient response time histories are calculated and compared to a similar model in the literature. Agreement between the two is very good, especially considering how few harmonics are used. Finally, a stability study is presented which examines the effects of support stiffness and damping, inflow angle, and preconing.

  5. Investigation of implementation of stators on vertical axis wind turbines

    Science.gov (United States)

    Alexander, Aaron; Santhanakrishnan, Arvind

    2014-11-01

    Vertical Axis Wind Turbines (VAWT) have historically suffered from an inability to self-start and, especially on Savonius rotors, low efficiencies due to drag on the returning blade. A few VAWT studies have examined the use of stators to direct the flow onto the power producing side of the rotor thus preventing drag on the returning side, yet all of the designs studied allow the air to exit on the downstream side of the entering flow. This study investigates an alternative stator design for extracting more wind energy by trapping the incoming flow into a rising vortex within the stator enclosure. The flow is then allowed to exit above the stator. The current study compared the performance of a generic Savonius rotor in a 7 m/s free stream flow with the same rotor in two different stator designs. The first stator design allows the flow to escape in the downstream direction. The second stator design utilizes the same stator shape, but forces the air to remain trapped until it can exit above the stators. The initial evaluation of the results was conducted using Computational Fluid Dynamics (CFD) package Star-CCM + set up with an unsteady k- ɛ model at a Reynolds number of about 1,400,000. Experimental comparisons with scale models will be presented.

  6. Experimental Study of Aerodynamic Characteristics for Horizontal Axis Wind Turbine and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Dai Yuanjun

    2012-07-01

    Full Text Available This study using two different airfoil of horizontal axis wind turbine in order to evaluate the performance good or bad with unit area of power generation. First, under the low speed wind tunnel, two different airfoil of horizontal axis wind turbine on experimental study of the aerodynamic characteristics, got the power curve of wind turbine; Then, based on the wind resource date in 2008 from four areas in Inner Mongolia, which was provided by the China meteorological date sharing service system, the local wind resources were estimated by using Wasp software and the wind atlas could be obtained by analysis and calculation. On the digital map of a given area, the simulated wind turbine station was established. Finally, the annual energy production per unit area of two different airfoil of horizontal axis wind turbine in order to evaluate the performance. The results showed that: in the actual wind farm wind turbine of the new airfoil than wind turbine of the NACA4412 airfoil on wind turbine generating capacity per unit area evenly increased by 28.4%.

  7. Study of large-scale vertical axis wind turbine wake through numerical modelling and fullscale experiments

    DEFF Research Database (Denmark)

    Immas, Alexandre; Kluczewska-Bordier, Joanna; Beneditti, Pascal;

    Offshore wind capacity is increasing exponentially over the years in Europe, taking advantage of the strong winds available over the ocean and of the political incentives to reduce greenhouse gases. The technology is however not yet competitive when compared to fossil fuels or onshore wind. One k...... horizontal axis wind turbine wind farm....

  8. The development and testing of a novel cross axis wind turbine

    Science.gov (United States)

    Chong, W. T.; Muzammil, W. K.; Gwani, M.; Wong, K. H.; Fazlizan, A.; Wang, C. T.; Poh, S. C.

    2016-06-01

    A novel cross axis wind turbine (CAWT) which comprises of a cross axis blades arrangement was presented and investigated experimentally. The CAWT is a new type of wind turbine that extracts wind energy from airflow coming from the horizontal and vertical directions. The wind turbine consists of three vertical blades and six horizontal blades arranged in a cross axis orientation. Hubs in the middle of the CAWT link the horizontal and vertical blades through connectors to form the CAWT. The study used a 45° deflector to guide the oncoming airflow upward (vertical wind direction). The results from the study showed that the CAWT produced significant improvements in power output and rotational speed performance compared to a conventional straight-bladed vertical axis wind turbine (VAWT).

  9. The UTRC wind energy conversion system performance analysis for horizontal axis wind turbines (WECSPER)

    Science.gov (United States)

    Egolf, T. A.; Landgrebe, A. J.

    1981-01-01

    The theory for the UTRC Energy Conversion System Performance Analysis (WECSPER) for the prediction of horizontal axis wind turbine performance is presented. Major features of the analysis are the ability to: (1) treat the wind turbine blades as lifting lines with a prescribed wake model; (2) solve for the wake-induced inflow and blade circulation using real nonlinear airfoil data; and (3) iterate internally to obtain a compatible wake transport velocity and blade loading solution. This analysis also provides an approximate treatment of wake distortions due to tower shadow or wind shear profiles. Finally, selected results of internal UTRC application of the analysis to existing wind turbines and correlation with limited test data are described.

  10. Applying micro scales of horizontal axis wind turbines for operation in low wind speed regions

    International Nuclear Information System (INIS)

    Highlights: • Three micro-turbines with output power less than 1 kW were designed for operation in low wind speed regions. • In addition to the output power, starting time was considered as a key parameter during the design. • The effects of generator resistive torque and number of blades on the performance of the turbines were investigated. - Abstract: Utilizing the micro scales of wind turbines could noticeably supply the demand for the electricity in low wind speed regions. Aerodynamic design and optimization of the blade, as a main part of a wind turbine, were addressed in the study. Three micro scales of horizontal axis wind turbines with output power of 0.5, 0.75 and 1 kW were considered and the geometric optimization of the blades in terms of the two involved parameters, chord and twist, was undertaken. In order to improve the performance of the turbines at low wind speeds, starting time was included in an objective function in addition to the output power – the main and desirable goal of the wind turbine blade design. A purpose-built genetic algorithm was employed to maximize both the output power and the starting performance which were calculated by the blade-element momentum theory. The results emphasize that the larger values of the chord and twist at the root part of the blades are indispensable for the better performance when the wind speed is low. However, the noticeable value of the generator resistive torque could largely delay the starting of the micro-turbines especially for the considered smaller size, 0.5 kW, where the starting aerodynamic torque could not overcome the generator resistive torque. For that size, an increase in the number of blades improved both the starting performance and also output power

  11. Integrated simulation challenges with the DeepWind floating vertical axis wind turbine concept

    OpenAIRE

    Verelst, David; Madsen, Helge Aa.; Borg, Michael; Paulsen, Uwe S.; Svendsen, Harald Georg; Berthelsen, Petter Andreas

    2015-01-01

    This paper presents the experiences and challenges with concurrently carrying out numerical model development, integrated simulations and design of a novel floating vertical axis wind turbine, the DeepWind concept. The floating VAWT modelling capabilities of the aero-hydro-elastic HAWC2 simulation tool are briefly described and the design approach adopted for such a challenging project was to independently design subsystems in parallel, apart from essential design specifications. Instability ...

  12. Numerical simulation in vertical wind axis turbine with pitch controlled blades

    OpenAIRE

    BAYEUL-LAINE, Annie-Claude; DOCKTER, Aurore; Bois, Gérard; Simonet, Sophie

    2012-01-01

    Wind energy is more and more used as a renewable energy source character. The present wind turbine is a small one which allows to be used on roofs or in gardens to light small areas like publicity boards, parking, roads or for water pumping, heating... The present turbine has a vertical axis. Each turbine blade combines a rotating movement around its own axis and around the main rotor axis. Due to this combination of movements, flow around this turbine is highly unsteady and needs to be model...

  13. NUMERICAL SIMULATION IN VERTICAL WIND AXIS TURBINE WITH PITCH CONTROLLED BLADES

    OpenAIRE

    BAYEUL-LAINE, Annie-Claude; DOCKTER, Aurore; Bois, Gérard; Simonet, Sophie

    2011-01-01

    Wind energy is more and more used as a renewable energy source character. The present wind turbine is a small one which allows to be used on roofs or in gardens to light small areas like publicity boards, parking, roads or for water pumping, heating... The present turbine has a vertical axis. Each turbine blade combines a rotating movement around its own axis and around the main rotor axis. Due to this combination of movements, flow around this turbine is highly unsteady and needs to be model...

  14. Studi Eksperimental Vertical Axis Wind Turbine Tipe Savonius dengan Variasi Jumlah Fin pada Sudu

    OpenAIRE

    Ola Dwi Sandra Hasan; Ridho Hantoro; Gunawan Nugroho

    2013-01-01

    Salah satu  teknologi sistem konversi energi angin  yang ada adalah turbin Savonius yang merupakan salah satu jenis Vertical Axis Wind Turbine ( VAWT ). Turbin Savonius  memiliki  karakteristik strating torsi yang baik, mudah dalam pembutannya dan dapat menerima angin dari segala arah namun kekurangan yang dimiliki adalah coefficient of power (Cp) turbin yang rendah. Untuk itu banyak dilakukan penelitian untuk meningkatkan efisiensi dari turbin Savonius. Salah satunya adalah penambahan end pl...

  15. Fish schooling as a basis for vertical axis wind turbine farm design

    CERN Document Server

    Whittlesey, Robert W; Dabiri, John O

    2010-01-01

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighbouring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely-spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbours, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially-isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooli...

  16. Aeroelastic stability and response of horizontal axis wind turbine blades

    Science.gov (United States)

    Kottapalli, S. B. R.; Friedmann, P. P.; Rosen, A.

    1979-01-01

    Coupled flap-lag-torsion equations of motion of an isolated horizontal axis wind turbine (HAWT) blade have been formulated. The analysis neglects blade-tower coupling. The final nonlinear equations have periodic coefficients. A new and convenient method of generating an appropriate time-dependent equilibrium position, required for the stability analysis, has been implemented and found to be computationally efficient. Steady-state response and stability boundaries for an existing (typical) HAWT blade are presented. Such stability boundaries have never been published in the literature. The results show that the isolated blade under study is basically stable. The tower shadow (wake) has a considerable effect on the out-of-plane response but leaves blade stability unchanged. Nonlinear terms can significantly affect linearized stability boundaries; however, they have a negligible effect on response, thus implying that a time-dependent equilibrium position (or steady-state response), based completely on the linear system, is appropriate for the type of HAWT blades under study.

  17. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple streamtube model, a double-multiple streamtube model, the actuator cylinder model, a 2D potential flow panel model, a 3D unsteady lifting line model, and a 2D conformal mapping unsteady vortex model. The comparison covers rotor configurations with two NACA0015 blades, for several tip speed ratios, rotor solidity and fixed pitch angle, included heavily loaded rotors, in inviscid flow. The results show that the streamtube models are inaccurate, and that correct predictions of rotor power and rotor thrust are an effect of error cancellation which only occurs at specific configurations. The other four models, which explicitly model the wake as a system of vorticity, show mostly differences due to the instantaneous or time averaged formulation of the loading and flow, for which further research is needed

  18. Design of h-Darrieus vertical axis wind turbine

    Science.gov (United States)

    Parra, Teresa; Vega, Carmen; Gallegos, A.; Uzarraga, N. C.; Castro, F.

    2015-05-01

    Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT) H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.

  19. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    Science.gov (United States)

    Simão Ferreira, C.; Aagaard Madsen, H.; Barone, M.; Roscher, B.; Deglaire, P.; Arduin, I.

    2014-06-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple streamtube model, a double-multiple streamtube model, the actuator cylinder model, a 2D potential flow panel model, a 3D unsteady lifting line model, and a 2D conformal mapping unsteady vortex model. The comparison covers rotor configurations with two NACA0015 blades, for several tip speed ratios, rotor solidity and fixed pitch angle, included heavily loaded rotors, in inviscid flow. The results show that the streamtube models are inaccurate, and that correct predictions of rotor power and rotor thrust are an effect of error cancellation which only occurs at specific configurations. The other four models, which explicitly model the wake as a system of vorticity, show mostly differences due to the instantaneous or time averaged formulation of the loading and flow, for which further research is needed.

  20. Design of h-Darrieus vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Parra Teresa

    2015-01-01

    Full Text Available Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.

  1. Design and wind tunnel experimentation of a variable blade drag type vertical axis wind turbine

    Science.gov (United States)

    Mays, Samuel; Bahr, Behnam

    2012-04-01

    The primary purpose of this research effort is to propose a novel efficiency boosting design feature in a drag type vertical axis wind turbine (VAWT), explore practicality through design and fabrication, and test the viability of the design through wind tunnel experiments. Using adaptive control surface design and an improved blade shape can be very useful in harnessing the wind's energy in low wind speed areas. The new design is based on a series of smaller blade elements to make any shape, which changes to reduce a negative resistance as it rotates and thus maximizing the useful torque. As such, these blades were designed into a modified Savonius wind turbine with the goal of improving upon the power coefficient produced by a more conventional design. The experiment yielded some positive observations with regard to starting characteristics. Torque and angular velocity data was recorded for both the conventional configuration and the newly built configuration and the torque and power coefficient results were compared.

  2. Numerical Simulations of the Aeroelastic Behavior of Large Horizontal-Axis Wind Turbines: The Drivetrain Case

    DEFF Research Database (Denmark)

    Gebhardt, Cristian; Veluri, Badrinath; Preidikman, Sergio;

    2010-01-01

    In this work an aeroelastic model that describes the interaction between aerodynamics and drivetrain dynamics of a large horizontal–axis wind turbine is presented. Traditional designs for wind turbines are based on the output of specific aeroelastic simulation codes. The output of these codes giv...

  3. Small vertical axis-wind turbines. Also adaptable for owner-occupied homes; Kleine vertikalachsige Windturbinen. Auch fuer Eigenheime geeignet

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Sigmund

    2013-02-01

    So-called vertical axis-wind turbines are becoming more and more accepted because these wind turbines operate independently from the wind direction, have a low noise level, require a lower mast height in comparison to horizontal axis-wind turbines and are perceived by birds as a complete object. Vertical axis-wind turbines can be utilized in built-up areas. The author of the contribution under consideration considers the differences of the various technologies and levels of development of vertical axis wind turbines.

  4. Flow Analysis of Straight Wing Vertical Axis Type Wind Turbine for Power Generation

    Science.gov (United States)

    Horiuchi, Kenji; Seki, Kazuichi

    Researches about the aerodynamics of wind turbine with straight wing vertical axis(SW-VAWT)are very limited, in spite of a number of advantages such as low dependence on wind direction variation and easy constructible straight blades. For these reasons, we are researching the lift type SW-VAWT for many years. The elucidation of the behavior of the flow inside and neighborhood of the wind turbine during the rotation is very important because of the performance improvement of the vertical axis wind turbine. This research examined to the aerofoil characters by using the numerical simulation technique and the precision of the prediction technique was confirmed as this result. Furthermore, we estimated flow behavior during the wind turbine rotation by using this numerical simulation technique, and evaluated the flow around the wind turbine. This paper presents outline and results of these calculations and evaluations.

  5. Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing

    Energy Technology Data Exchange (ETDEWEB)

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  6. Large HAWT (Horizontal-Axis Wind Turbine) wake measurement and analysis

    Science.gov (United States)

    Miller, A. H.; Wegley, H. L.; Buck, J. W.

    1984-05-01

    From the theoretical fluid dynamics point of view, the wake region of a large horizontal-axis wind turbine was defined and described, and numerical models of wake behavior were developed. Wind tunnel studies of single turbine wakes and turbine array wakes were used to verify the theory and further refine the numerical models. The effects of scaling, rotor solidity, and topography on wake behavior are questions that remain unanswered. In the wind tunnel studies, turbines were represented by anything from scaled models to tea strainers or wire mesh disks whose solidity was equivalent to that of a typical wind turbine. The scale factor compensation for the difference in Reynolds number between the scale model and an actual turbine is complex, and not typically accounted for. Though it is wise to study the simpler case of wakes in flat topography, current indications are that wind turbine farm development is actually occurring in somewhat more complex terrain.

  7. Observation of the Starting and Low Speed Behavior of Small Horizontal Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Sikandar Khan

    2014-01-01

    Full Text Available This paper describes the starting behavior of small horizontal axis wind turbines at high angles of attack and low Reynolds number. The unfavorable relative wind direction during the starting time leads to low starting torque and more idling time. Wind turbine models of sizes less than 5 meters were simulated at wind speed range of 2 m/s to 5 m/s. Wind turbines were modeled in Pro/E and based on the optimized designs given by MATLAB codes. Wind turbine models were simulated in ADAMS for improving the starting behavior. The models with high starting torques and less idling times were selected. The starting behavior was successfully improved and the optimized wind turbine models were able to produce more starting torque even at wind speeds less than 5 m/s.

  8. Aerodynamic study of a small horizontal-axis wind turbine

    Directory of Open Access Journals (Sweden)

    Cornelia NITA

    2012-06-01

    Full Text Available The wind energy is deemed as one of the most durable energetic variants of the future because the wind resources are immense. Furthermore, one predicts that the small wind turbine will play a vital role in the urban environment. Unfortunately, nowadays, the noise emissions from wind turbines represent one of the main obstacles to widespread the use in populated zones. Moreover, the energetic efficiency of these wind turbines has to be high even at low and medium wind velocities because, usually the cities are not windy places. The numerical results clearly show that the wakes after the trailing edge are the main noise sources. In order to decrease the power of these noise sources, we should try to decrease the intensity of wakes after the trailing edge, i.e. the aerodynamic fields from pressure and suction sides would have to be almost the same near trailing edge. Furthermore, one observes a strong link between transport (circumferential velocity and acoustic power level, i.e. if the transport velocity increases, the acoustic power level also augments.

  9. A comparison on the dynamics of a floating vertical axis wind turbine on three different floating support structures

    OpenAIRE

    Collu, Maurizio; Borg, Michael

    2014-01-01

    To increase the competitiveness of offshore wind energy in the global energy market, it is necessary to identify optimal offshore wind turbine configurations to deliver the lowest cost of energy. For deep waters where floating wind turbines are the feasible support structure option, the vertical axis wind turbine concept might prove to be one of these optimal configurations. This paper carries out a preliminary investigation into the dynamics of a vertical axis wind turbine coupled with three...

  10. Floating axis wind turbines for offshore power generation—a conceptual study

    International Nuclear Information System (INIS)

    The cost of energy produced by offshore wind turbines is considered to be higher than land based ones because of the difficulties in construction, operation and maintenance on offshore sites. To solve the problem, we propose a concept of a wind turbine that is specially designed for an offshore environment. In the proposed concept, a floater of revolutionary shape supports the load of the wind turbine axis. The floater rotates with the turbine and the turbine axis tilts to balance the turbine thrust, buoyancy and gravity. The tilt angle is passively adjustable to wind force. The angle is 30° at rated power. The simplicity of the system leads to further cost reduction of offshore power generation.

  11. Model improvements for evaluating the effect of tower tilting on the aerodynamics of a vertical axis wind turbine

    DEFF Research Database (Denmark)

    Wang, K.; Hansen, Martin Otto Laver; Moan, T.

    2015-01-01

    If a vertical axis wind turbine is mounted offshore on a semi-submersible, the pitch motion of the platform will dominate the static pitch and dynamic motion of the platform and wind turbine such that the effect of tower tilting on the aerodynamics of the vertical axis wind turbine should be...

  12. Automated electric control of a vertical axis wind turbine in island operation

    OpenAIRE

    Högberg, Lars

    2009-01-01

    At the Division of Electricity at Uppsala University, a wind power concept has been developed. The concept uses a vertical axis wind turbine with a direct driven generator. The turbine has fixed blades, making speed control the only way to regulate power absorption. The speed is controlled with the electric load. The turbine is not self-starting, but can be started using the generator as a motor. In this project, an unsupervised electric system with automatic control is designed and construct...

  13. A Study on the Matching between the Straight Wing Non-articulated Vertical Axis Wind Turbine and the New Wind Turbine Generator

    Science.gov (United States)

    Siota, Takasi; Isaka, Tsutomu; Sano, Takashi; Seki, Kazuichi

    In the current wind turbine generation system, there are substantial problems such as the maximum power of the wind turbine cannot be obtained under the fluctuating wind speed, high in cost and low in annual net electricity production (due to mismatch between a generator and a wind turbine). A new wind turbine generator optimized for the wind turbine output is presented in order to solve such problems. This wind turbine generator consists of a permanent magnet generator, a reactor and a rectifier, and uses neither a control circuit which requires standby electricity nor a PWM converter having a switching element. By selecting most appropriate combination of the permanent magnet generator having multiple windings and the reactor connected in series with each winding, the maximum output of the wind turbine can be obtained without using a control circuit. The new wind turbine generator was directly coupled with the straight wing non-articulated vertical axis wind turbine (SW-VAWT), and matching of the generator with the wind turbine was examined through field tests. From the test result and review, it has been confirmed that the new wind turbine generator is highly matched with the wind turbine under the fluctuating wind speed.

  14. Numerical Investigations on the Performance Degradation of a Vertical Axis Wind Turbine Operating in Dusty Environment

    OpenAIRE

    Asim, Taimoor; Mishra, Rakesh

    2015-01-01

    Rapid increase in global energy requirements has resulted in considerable attention towards energy generation from the renewable energy sources. In order to meet renewable energy targets, harnessing energy from all available resources including those from urban environment is required. Vertical Axis Wind Turbines (VAWTs) are seen as a potential way of utilising distributed wind energy sources. Most of the research on the wind turbines constitutes performance analysis and optimisation of VAWTs...

  15. Overview and Design of self-acting pitch control mechanism for vertical axis wind turbine using multi body simulation approach

    Science.gov (United States)

    Chougule, Prasad; Nielsen, Søren

    2014-06-01

    Awareness about wind energy is constantly growing in the world. Especially a demand for small scale wind turbine is increasing and various products are available in market. There are mainly two types of wind turbines, horizontal axis wind turbine and vertical axis wind turbines. Horizontal axis wind turbines are suitable for high wind speed whereas vertical axis wind turbines operate relatively low wind speed area. Vertical axis wind turbines are cost effective and simple in construction as compared to the horizontal axis wind turbine. However, vertical axis wind turbines have inherent problem of self-start inability and has low power coefficient as compare to the horizontal axis wind turbine. These two problems can be eliminated by incorporating the blade pitching mechanism. So, in this paper overview of various pitch control systems is discussed and design of self-acting pitch mechanism is given. A pitch control linkage mechanism for vertical axis wind turbine is modeled by multi-body approach using MSC Software. Aerodynamic loads are predicted from a mathematical model based on double multiple stream tube method. An appropriate airfoil which works at low Reynolds number is selected for blade design. It is also focused on commercialization of the vertical axis wind turbine which incorporates the self-acting pitch control system. These aerodynamic load model will be coupled with the multi-body model in future work for optimization of the pitch control linkage mechanism. A 500 Watt vertical axis wind turbine is designed and it is planned to implement the self-acting pitch control mechanism in real model.

  16. Overview and Design of self-acting pitch control mechanism for vertical axis wind turbine using multi body simulation approach

    International Nuclear Information System (INIS)

    Awareness about wind energy is constantly growing in the world. Especially a demand for small scale wind turbine is increasing and various products are available in market. There are mainly two types of wind turbines, horizontal axis wind turbine and vertical axis wind turbines. Horizontal axis wind turbines are suitable for high wind speed whereas vertical axis wind turbines operate relatively low wind speed area. Vertical axis wind turbines are cost effective and simple in construction as compared to the horizontal axis wind turbine. However, vertical axis wind turbines have inherent problem of self-start inability and has low power coefficient as compare to the horizontal axis wind turbine. These two problems can be eliminated by incorporating the blade pitching mechanism. So, in this paper overview of various pitch control systems is discussed and design of self-acting pitch mechanism is given. A pitch control linkage mechanism for vertical axis wind turbine is modeled by multi-body approach using MSC Software. Aerodynamic loads are predicted from a mathematical model based on double multiple stream tube method. An appropriate airfoil which works at low Reynolds number is selected for blade design. It is also focused on commercialization of the vertical axis wind turbine which incorporates the self-acting pitch control system. These aerodynamic load model will be coupled with the multi-body model in future work for optimization of the pitch control linkage mechanism. A 500 Watt vertical axis wind turbine is designed and it is planned to implement the self-acting pitch control mechanism in real model

  17. A novel vertical-axis wind turbine for distributed and utility deployment

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.Y. [Inha Univ., Incheon (Korea, Republic of); Lee, S. [Inha Univ., Incheon (Korea, Republic of)]|[KR Wind Energy Research Inst., Incheon (Korea, Republic of); Sabourin, T.; Park, K. [KR Windpower Inc., (United States)

    2008-07-01

    The rapid growth in the wind power industry can be attributed to energy cost saving, power reliability, grid support, and environmental concerns. Wind turbines should also comply with community noise and aesthetic requirements as well as meet a strong need for high capacity. Wind Turbine Generator Systems are classified as either horizontal axis wind turbine (HAWT) or vertical axis wind turbine (VAWT) depending on whether their axis of rotation is parallel or perpendicular to the ground. The average electric power produced by the wind turbine is proportional to the efficiency of the rotor, air density, projected area of the turbine, and cube of wind speed. The capacity factor should be increased to guarantee the economics of the turbine via increase in the rotor size or the turbine efficiency. The low rotational speed of VAWT rotors suggests that the machine will be quieter than the high-rotational speed of HAWTs, thereby being potentially suitable for applications closer to population centres. The slow rotating machine may also be considered to be visually more aesthetic. This paper presented the measured performance of a small-scale VAWT rated as 1 kW which has a tail consisting of a stabilizer and a rudder. It was tested for its electric power produced at specified wind conditions in an open-type wind tunnel. In order to eliminate the inevitable blockage effect by the size of turbine, the flow deceleration effect of the incoming air to the turbine was analyzed through model testing and numerical simulation and implemented to the proto-type testing. The turbine and its furling tail was shown to be safe. 9 refs., 1 tab., 10 figs.

  18. Noise Emission of a 200 kW Vertical Axis Wind Turbine

    OpenAIRE

    Erik Möllerström; Fredric Ottermo; Jonny Hylander; Hans Bernhoff

    2016-01-01

    The noise emission from a vertical axis wind turbine (VAWT) has been investigated. A noise measurement campaign on a 200 kW straight-bladed VAWT has been conducted, and the result has been compared to a semi-empirical model for turbulent-boundary-layer trailing edge (TBL-TE) noise. The noise emission from the wind turbine was measured, at wind speed 8 m/s, 10 m above ground, to 96.2 dBA. At this wind speed, the turbine was stalling as it was run at a tip speed lower than optimal due to constr...

  19. Computational Fluid Dynamics based Fault Simulations of a Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    Due to depleting fossil fuels and a rapid increase in the fuel prices globally, the search for alternative energy sources is becoming more and more significant. One of such energy source is the wind energy which can be harnessed with the use of wind turbines. The fundamental principle of wind turbines is to convert the wind energy into first mechanical and then into electrical form. The relatively simple operation of such turbines has stirred the researchers to come up with innovative designs for global acceptance and to make these turbines commercially viable. Furthermore, the maintenance of wind turbines has long been a topic of interest. Condition based monitoring of wind turbines is essential to maintain continuous operation of wind turbines. The present work focuses on the difference in the outputs of a vertical axis wind turbine (VAWT) under different operational conditions. A Computational Fluid Dynamics (CFD) technique has been used for various blade configurations of a VAWT. The results indicate that there is significant degradation in the performance output of wind turbines as the number of blades broken or missing from the VAWT increases. The study predicts the faults in the blades of VAWTs by monitoring its output.

  20. Computational Fluid Dynamics based Fault Simulations of a Vertical Axis Wind Turbines

    Science.gov (United States)

    Park, Kyoo-seon; Asim, Taimoor; Mishra, Rakesh

    2012-05-01

    Due to depleting fossil fuels and a rapid increase in the fuel prices globally, the search for alternative energy sources is becoming more and more significant. One of such energy source is the wind energy which can be harnessed with the use of wind turbines. The fundamental principle of wind turbines is to convert the wind energy into first mechanical and then into electrical form. The relatively simple operation of such turbines has stirred the researchers to come up with innovative designs for global acceptance and to make these turbines commercially viable. Furthermore, the maintenance of wind turbines has long been a topic of interest. Condition based monitoring of wind turbines is essential to maintain continuous operation of wind turbines. The present work focuses on the difference in the outputs of a vertical axis wind turbine (VAWT) under different operational conditions. A Computational Fluid Dynamics (CFD) technique has been used for various blade configurations of a VAWT. The results indicate that there is significant degradation in the performance output of wind turbines as the number of blades broken or missing from the VAWT increases. The study predicts the faults in the blades of VAWTs by monitoring its output.

  1. Forced vibration analysis of rotating structures with application to vertical axis wind turbines

    Science.gov (United States)

    Lobitz, D. W.

    Predictive methods for the dynamic analysis of wind turbine systems are important for assessing overall structural integrity and fatigue life. For the former, the identification of resonance points (spectral analysis) is of primary concern. For the latter forced vibration analysis is necessary. These analyses are complicated by the fact that, for a spinning turbine, the stress-producing deformations take place in both fixed and rotating reference systems simultaneously. As an example, the tower of a horizontal axis wind turbine (HAWT) must be analyzed in a fixed frame, and the rotor in a rotating one. Forced vibration analysis is further complicated in that accurate models need to be developed for aeroload prediction. Methods which are available for forced vibration analysis of both horizontal and vertical axis machines are identified and the method which was developed for vertical axis wind turbines is emphasized, with some comparisons of the predictions to experimental data.

  2. Wind tunnel and numerical study of a small vertical axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Robert; Qin, Ning; Edwards, Jonathan; Durrani, Naveed [Department of Mechanical Engineering, University of Sheffield, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2010-02-15

    This paper presents a combined experimental and computational study into the aerodynamics and performance of a small scale vertical axis wind turbine (VAWT). Wind tunnel tests were carried out to ascertain overall performance of the turbine and two- and three-dimensional unsteady computational fluid dynamics (CFD) models were generated to help understand the aerodynamics of this performance. Wind tunnel performance results are presented for cases of different wind velocity, tip-speed ratio and solidity as well as rotor blade surface finish. It is shown experimentally that the surface roughness on the turbine rotor blades has a significant effect on performance. Below a critical wind speed (Reynolds number of 30,000) the performance of the turbine is degraded by a smooth rotor surface finish but above it, the turbine performance is enhanced by a smooth surface finish. Both two bladed and three bladed rotors were tested and a significant increase in performance coefficient is observed for the higher solidity rotors (three bladed rotors) over most of the operating range. Dynamic stalling behaviour and the resulting large and rapid changes in force coefficients and the rotor torque are shown to be the likely cause of changes to rotor pitch angle that occurred during early testing. This small change in pitch angle caused significant decreases in performance. The performance coefficient predicted by the two dimensional computational model is significantly higher than that of the experimental and the three-dimensional CFD model. The predictions show that the presence of the over tip vortices in the 3D simulations is responsible for producing the large difference in efficiency compared to the 2D predictions. The dynamic behaviour of the over tip vortex as a rotor blade rotates through each revolution is also explored in the paper. (author)

  3. Evaluation of a Blade Force Measurement System for a Vertical Axis Wind Turbine Using Load Cells

    OpenAIRE

    Morgan Rossander; Eduard Dyachuk; Senad Apelfröjd; Kristian Trolin; Anders Goude; Hans Bernhoff; Sandra Eriksson

    2015-01-01

    Unique blade force measurements on an open site straight-bladed vertical axis wind turbine have been performed. This paper presents a method for measuring the tangential and normal forces on a 12-kW vertical axis wind turbine prototype with a three-bladed H-rotor. Four single-axis load cells were installed in-between the hub and the support arms on one of the blades. The experimental setup, the measurement principle, together with the necessary control and measurement system are described. Th...

  4. Optimal placement of horizontal - and vertical - axis wind turbines in a wind farm for maximum power generation using a genetic algorithm

    OpenAIRE

    Xiaomin Chen, Ramesh Agarwal

    2012-01-01

    In this paper, we consider the Wind Farm layout optimization problem using a genetic algorithm. Both the Horizontal –Axis Wind Turbines (HAWT) and Vertical-Axis Wind Turbines (VAWT) are considered. The goal of the optimization problem is to optimally position the turbines within the wind farm such that the wake effects are minimized and the power production is maximized. The reasonably accurate modeling of the turbine wake is critical in determination of the optimal layout of the turbines and...

  5. Dynamic Analysis of a Floating Vertical Axis Wind Turbine Under Emergency Shutdown Using Hydrodynamic Brake

    DEFF Research Database (Denmark)

    Wang, K.; Hansen, Martin Otto Laver; Moan, T.

    2014-01-01

    Emergency shutdown is always a challenge for an operating vertical axis wind turbine. A 5-MW vertical axis wind turbine with a Darrieus rotor mounted on a semi-submersible support structure was examined in this study. Coupled non-linear aero-hydro-servo-elastic simulations of the floating vertical...... axis wind turbine were carried out for emergency shutdown cases over a range of environmental conditions based on correlated wind and wave data. When generator failure happens, a brake should be applied to stop the acceleration of the rotor to prevent the rotor from overspeeding and subsequent disaster....... In addition to the traditional mechanical brake, a novel hydrodynamic brake was presented to apply to the shutdown case. The effects of the hydrodynamic brake on the platform motions and structural loads under normal operating conditions and during the emergency shutdown events were evaluated. The...

  6. Overview and Design of self-acting pitch control mechanism for vertical axis wind turbine using multi body simulation approach

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2014-01-01

    Awareness about wind energy is constantly growing in the world. Especially a demand for small scale wind turbine is increasing and various products are available in market. There are mainly two types of wind turbines, horizontal axis wind turbine and vertical axis wind turbines. Horizontal axis...... problem of self-start inability and has low power coefficient as compare to the horizontal axis wind turbine. These two problems can be eliminated by incorporating the blade pitching mechanism. So, in this paper overview of various pitch control systems is discussed and design of self-acting pitch...... selected for blade design. It is also focused on commercialization of the vertical axis wind turbine which incorporates the self-acting pitch control system. These aerodynamic load model will be coupled with the multi-body model in future work for optimization of the pitch control linkage mechanism. A 500...

  7. Field investigation of a wake structure downwind of a VANT (Vertical-Axis Wind Turbine) in a wind farm array

    Science.gov (United States)

    Liu, H. T.; Buck, J. W.; Germain, A. C.; Hinchee, M. E.; Solt, T. S.; Leroy, G. M.; Srnsky, R. A.

    1988-09-01

    The effects of upwind turbine wakes on the performance of a FloWind 17-m vertical-axis wind turbine (VAWT) were investigated through a series of field experiments conducted at the FloWind wind farm on Cameron Ridge, Tehachapi, California. From the field measurements, we derived the velocity and power/energy deficits under various turbine on/off configurations. Much information was provided to characterize the structure of VAWT wakes and to assess their effects on the performance of downwind turbines. A method to estimate the energy deficit was developed based on the measured power deficit and the wind speed distributions. This method may be adopted for other turbine types and sites. Recommendations are made for optimizing wind farm design and operations, as well as for wind energy management.

  8. Design of rotor blade for vertical axis wind turbine using double aerofoil

    Energy Technology Data Exchange (ETDEWEB)

    Chougule, P.D.; Ratkovich, N.; Kirkegaard, P.H.; Nielsen, Soeren R.K. [Aalborg Univ.. Dept. of Civil Engineering, Aalborg (Denmark)

    2012-07-01

    Nowadays, small vertical axis wind turbines are receiving more attention compared to horizontal wind turbines due to their suitability in urban use,because they generate less noise, have bird free turbines and lower cost. There are few vertical axis wind turbines design with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology in practice for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double aerofoil elements mainly used in aeroplane wing design. In this current work, two aerofoils are used to design a rotor blade for a vertical axis wind turbine to improve the power efficiency on the rotor. Double aerofoil blade design consists of a main aerofoil and a slat aerofoil. The parameters related to position and orientation of the slat aerofoil with respect to the main aerofoil defines the high lift. Orientation of slat aerofoil is a parameter of investigation in this paper. Computational fluid dynamics (CFD) have been used to obtain the aerodynamic characteristics of double aerofoil. The CFD simulations were carried out using Star CCM+ v7.04 (CD-adapco, UK) software. Aerofoils used in this work are selected from standard aerofoil shapes. (Author)

  9. Modal analysis of a small vertical axis wind turbine (Type DARRIEUS

    Directory of Open Access Journals (Sweden)

    Ion NILA

    2012-06-01

    Full Text Available This paper reports a brief study on free vibration analysis for determining parameters such as natural frequencies and mode shapes for vertical axis wind turbines (VAWT for an urban application. This study is focused on numerical work using available finite element software. For further understanding of the wind turbine dynamic analysis, two vibration parameters of dynamic response have been studied, namely natural frequencies and mode shapes.Block Lanczos method has been used to analyze the natural frequency while wind turbine mode shapes have been utilized because of their accuracy and faster solution. In this problem 12 modes of structure have been extracted.

  10. The Modelling, Simulation and Control of a 50 kW Vertical Axis Wind Turbine

    OpenAIRE

    Bati, Akram F.; Brennan, Feargal P.

    2012-01-01

    This paper presents the modelling, Simulation and control of the APP 50 kW vertical axis wind turbine generating unit which is designed and built by Cranfield University, Department of Offshore, Process & Energy Engineering. Because of the increasing interest of Power Distribution companies to connect medium sized wind turbines to reinforce the Low Carbon future 11 kV networks, unit exploration and investigation will add valuable insight into operation scenarios and their effects on the local...

  11. Modal analysis of a small vertical axis wind turbine (Type DARRIEUS)

    OpenAIRE

    Ion NILA; Radu BOGATEANU; Marcel STERE; Daniela BARAN

    2012-01-01

    This paper reports a brief study on free vibration analysis for determining parameters such as natural frequencies and mode shapes for vertical axis wind turbines (VAWT) for an urban application. This study is focused on numerical work using available finite element software. For further understanding of the wind turbine dynamic analysis, two vibration parameters of dynamic response have been studied, namely natural frequencies and mode shapes.Block Lanczos method has been used to analyze the...

  12. Active stall control for large offshore horizontal axis wind turbines: a conceptual study considering different actuation methods

    NARCIS (Netherlands)

    Pereira, R.; Van Bussel, G.J.W.; Timmer, W.A.

    2014-01-01

    The increasing size of Horizontal Axis Wind Turbines and the trend to install wind farms further offshore demand more robust design options. If the pitch system could be eliminated, the availability of Horizontal Axis Wind Turbines should increase. This research investigates the use of active stall

  13. Fish schooling as a basis for vertical axis wind turbine farm design.

    Science.gov (United States)

    Whittlesey, Robert W; Liska, Sebastian; Dabiri, John O

    2010-09-01

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighboring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbors, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16 x 16 wind turbines. The results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs. PMID:20729568

  14. Fish schooling as a basis for vertical axis wind turbine farm design

    International Nuclear Information System (INIS)

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighboring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbors, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16 x 16 wind turbines. The results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs.

  15. Fish schooling as a basis for vertical axis wind turbine farm design

    Energy Technology Data Exchange (ETDEWEB)

    Whittlesey, Robert W; Liska, Sebastian; Dabiri, John O, E-mail: robertw@caltech.ed, E-mail: jodabiri@caltech.ed [Graduate Aeronautical Laboratories, California Institute of Technology, 1200 E California Blvd, MC 205-45, Pasadena, CA 91125 (United States)

    2010-09-15

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighboring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbors, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16 x 16 wind turbines. The results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs.

  16. Order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays

    CERN Document Server

    Dabiri, John O

    2010-01-01

    Modern wind farms require significant land resources to separate each wind turbine from the adjacent turbine wakes. These aerodynamic constraints limit the amount of power that can be extracted from a given wind farm footprint. We conducted full-scale field tests of vertical-axis wind turbines in counter-rotating configurations under natural wind conditions. Whereas wind farms consisting of propeller-style turbines produce 2 to 3 watts of power per square meter of land area, these field tests indicate that power densities approaching 100 W m^-2 can be achieved by arranging vertical-axis wind turbines in layouts that enable them to extract energy from adjacent wakes. In addition, we calculated that the global wind resource available to 10-m tall turbines based on the present approach is approximately 225 trillion watts (TW), which significantly exceeds the global wind resource available to 80-m tall, propeller-style wind turbines, approximately 75 TW. This improvement is due to the closer spacing that can be a...

  17. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  18. Active Blade Pitch Control for Straight Bladed Darrieus Vertical Axis Wind Turbine of New Design

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.; Basu, Biswajit

    As Development of small vertical axis wind turbines (VAWT) for urban use is becoming an interesting topic both within industry and academia. However, there are few new designs of vertical axis turbines which are customized for building integration. These are getting importance because they operate...... at low rotational speed producing very less noise during operation, although these are less efficient than Horizontal Axis Wind Turbines (HAWT). The efficiency of a VAWT has been significantly improved by H-Darrieus VAWT design based on double airfoil technology as demonstrated by the authors in a...... multiple stream tube method is used to determine the performance of the H-Darrieus VAWT. The power coefficient is compared with that of a fixed pitch and a variable pitch double airfoil blade VAWT. It is demonstrated that an improvement in power coefficient by 20% is achieved and the turbine could start at...

  19. Energy and exergy efficiency comparison of horizontal and vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Pope, K.; Dincer, I.; Naterer, G.F. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)

    2010-09-15

    In this paper, an energy and exergy analysis is performed on four different wind power systems, including both horizontal and vertical axis wind turbines. Significant variability in turbine designs and operating parameters are encompassed through the selection of systems. In particular, two airfoils (NACA 63(2)-215 and FX 63-137) commonly used in horizontal axis wind turbines are compared with two vertical axis wind turbines (VAWTs). A Savonius design and Zephyr VAWT benefit from operational attributes in wind conditions that are unsuitable for airfoil type designs. This paper analyzes each system with respect to both the first and second laws of thermodynamics. The aerodynamic performance of each system is numerically analyzed by computational fluid dynamics software, FLUENT. A difference in first and second law efficiencies of between 50 and 53% is predicted for the airfoil systems, whereas 44-55% differences are predicted for the VAWT systems. Key design variables are analyzed and the predicted results are discussed. The exergetic efficiency of each wind turbine is studied for different geometries, design parameters and operating conditions. It is shown that the second law provides unique insight beyond a first law analysis, thereby providing a useful design tool for wind power development. (author)

  20. An Experimental Investigation into the Influence of Unsteady Wind on the Performance of a Vertical Axis Wind Turbine

    OpenAIRE

    Danao, L.A.; Eboibi, O.; Howell, R.J.

    2013-01-01

    An experimental investigation was carried out on a wind tunnel scale vertical axis wind turbine with unsteady wind conditions. The wind speed at which testing was conducted was 7m/s (giving a Reynolds number of around 50,000) with both 7% and 12% fluctuations in wind velocity at a frequency of 0.5Hz. Rotational speed fluctuations in the VAWT were induced by the unsteady wind and these were used to derive instantaneous turbine rotor power. The results show the unsteady power coefficient (CP) f...

  1. Innovative Design of Vertical Axis Wind Turbine:a poster presented at DAMAS 2013 conference

    OpenAIRE

    Chougule, Prasad

    2013-01-01

    The wind turbines can be classified as: i) Horizontal axis windturbines (HAWT), and ii) Vertical axis wind turbines (VAWT). TheHAWT is fully developed and the size is growing higher. Whereas,the VAWT is not developed because of the less efficiency andvibration issues of big structure. However, it is well known that theVAWT is advantages over a HAWT in terms of a cost and thesimplicity (Paraschivoiu 2002). In this PhD project a simple bladedesign is incorporated by using the two-element airofo...

  2. A Simplified Model for Fatigue Load Calculations of Small Wind- Turbines with Vertical Axis of Rotation

    OpenAIRE

    Schaffarczyk, A. P.; Kemena, Tronje

    2008-01-01

    Wind Turbines with a vertical axis of rotation (VAWT) recently regained new interest. In this paper we summarize results from [2] in which our new aerodynamic model [1] was applied to an existing 50 kW machine. The presentation is organized as follows: First we present our simplified model which was formulated in closest analogy along the rules from IEC 61400-2 used for horizontal axis wind-turbines including some rigid-body extensions. Second we shortly discuss the only to us known aeroelast...

  3. Hardware-in-the-loop simulations and control design for a small vertical axis wind turbine

    OpenAIRE

    Sancar, Ugur; Önol, Aykut Özgün; Onol, Aykut Ozgun; Onat, Ahmet; Yeşilyurt, Serhat; Yesilyurt, Serhat

    2015-01-01

    Control design plays an important role in wind energy conversion systems in achieving high efficiency and performance. In this study, hardware-in-the-loop (HIL) simulations are carried out to design a maximum power point tracking (MPPT) algorithm for small vertical axis wind turbines (VAWTs). Wind torque is calculated and applied to an electrical motor that drives the generator in the HIL simulator, which mimics the dynamics of the rotor. To deal with disturbance torques in the HIL system, a ...

  4. Free yaw performance of the Mod-0 large horizontal axis 100 kW wind turbine

    Science.gov (United States)

    Corrigan, R. D.; Viterna, L. A.

    1982-01-01

    The NASA Mod-0 Large Horizontal Axis 100 kW Wind Turbine was operated in free yaw with an unconed teetered, downwind rotor mounted on a nacelle having 8-1/2 deg tilt. Two series of tests were run, the first series with 19 meter twisted aluminum blades and the second series with 19 meter untwisted steel spar blades with tip control. Rotor speed were nominally 20, 26 and 31 rpm. It was found the nacelle stabilized in free yaw at a yaw angle of between -55 deg to -45 deg was relatively independent of wind speed and was well damped to short term variations in wind direction. Power output of the wind turbine in free yaw, aligned at a large yaw angle, was considerably less than that if the wind turbine were aligned with the wind. For the Mod-0 wind turbine at 26 rpm, the MOSTAB computer code calculations of the free yaw alignment angle and power output compare reasonably well with experimental data. MOSTAB calculations indicate that elimination of tilt and adding coning will improve wind turbine alignment with the wind and that wind shear has a slight detrimental effect on the free yaw alignment angle.

  5. Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays

    OpenAIRE

    Dabiri, John O.

    2011-01-01

    Modern wind farms comprised of horizontal-axis wind turbines (HAWTs) require significant land resources to separate each wind turbine from the adjacent turbine wakes. This aerodynamic constraint limits the amount of power that can be extracted from a given wind farm footprint. The resulting inefficiency of HAWT farms is currently compensated by using taller wind turbines to access greater wind resources at high altitudes, but this solution comes at the expense of higher engineering costs and ...

  6. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2014-01-01

    increase in the lift coefficient by 26% for single-element airfoil at analysed conditions. The CFD simulation results were validated with wind tunnel tests. It is also observe that by selecting proper airfoil configuration and blade sizes an increase in lift coefficient can further be achieved.......Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has...... been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade...

  7. Development and Evaluation of an Aerodynamic Model for a Novel Vertical Axis Wind Turbine Concept

    Directory of Open Access Journals (Sweden)

    Andrew Shires

    2013-05-01

    Full Text Available There has been a resurgence of interest in the development of vertical axis wind turbines which have several inherent attributes that offer some advantages for offshore operations, particularly their scalability and low over-turning moments with better accessibility to drivetrain components. This paper describes an aerodynamic performance model for vertical axis wind turbines specifically developed for the design of a novel offshore V-shaped rotor with multiple aerodynamic surfaces. The model is based on the Double-Multiple Streamtube method and includes a number of developments for alternative complex rotor shapes. The paper compares predicted results with measured field data for five different turbines with both curved and straight blades and rated powers in the range 100–500 kW. Based on these comparisons, the paper proposes modifications to the Gormont dynamic stall model that gives improved predictions of rotor power for the turbines considered.

  8. Multi-Body Unsteady Aerodynamics in 2D Applied to aVertical-Axis Wind Turbine Using a Vortex Method

    OpenAIRE

    Österberg, David

    2010-01-01

    Vertical axis wind turbines (VAWT) have many advantages over traditional Horizontalaxis wind turbines (HAWT).One of the more severe problem of VAWTs are the complicated aerodynamicbehavior inherent in the concept. Incontrast to HAWTs the blades experience varying angle of attack during its orbitalmotion. The unsteady flowleads to unsteady loads, and hence, to increased risk for problems with fatigue.A tool for aerodynamic analysis of vertical axis wind turbines has been developed.The model, a...

  9. A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines.

    Science.gov (United States)

    Borg, M; Collu, M

    2015-02-28

    The need to further exploit offshore wind resources in deeper waters has led to a re-emerging interest in vertical axis wind turbines (VAWTs) for floating foundation applications. However, there has been little effort to systematically compare VAWTs to the more conventional horizontal axis wind turbine (HAWT). This article initiates this comparison based on prime principles, focusing on the turbine aerodynamic forces and their impact on the floating wind turbine static and dynamic responses. VAWTs generate substantially different aerodynamic forces on the support structure, in particular, a potentially lower inclining moment and a substantially higher torque than HAWTs. Considering the static stability requirements, the advantages of a lower inclining moment, a lower wind turbine mass and a lower centre of gravity are illustrated, all of which are exploitable to have a less costly support structure. Floating VAWTs experience increased motion in the frequency range surrounding the turbine [number of blades]×[rotational speed] frequency. For very large VAWTs with slower rotational speeds, this frequency range may significantly overlap with the range of wave excitation forces. Quantitative considerations are undertaken comparing the reference NREL 5 MW HAWT with the NOVA 5 MW VAWT. PMID:25583856

  10. Velocity spectrum and blade’s deformation of horizontal axis wind turbines

    OpenAIRE

    Budea, Sanda; Mircea Dimitrie CAZACU

    2014-01-01

    The paper presents the velocity distribution calculated by numerical method in axial relative motion of a viscous and incompressible fluid into the impeller of a horizontal axis wind turbine. Simulations are made for different airflow speeds: 0.5,1, 3, 4, 5 m/s. The relative vortex on the backside of the blade to the trailing edge, and the vortices increase with the wind speed can be observed from the numerical analysis. Also the translational deformation-the deflection of the wind turbine bl...

  11. Numerical modeling and preliminary validation of drag-based vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Krysiński Tomasz

    2015-03-01

    Full Text Available The main purpose of this article is to verify and validate the mathematical description of the airflow around a wind turbine with vertical axis of rotation, which could be considered as representative for this type of devices. Mathematical modeling of the airflow around wind turbines in particular those with the vertical axis is a problematic matter due to the complex nature of this highly swirled flow. Moreover, it is turbulent flow accompanied by a rotation of the rotor and the dynamic boundary layer separation. In such conditions, the key aspects of the mathematical model are accurate turbulence description, definition of circular motion as well as accompanying effects like centrifugal force or the Coriolis force and parameters of spatial and temporal discretization. The paper presents the impact of the different simulation parameters on the obtained results of the wind turbine simulation. Analysed models have been validated against experimental data published in the literature.

  12. Numerical modeling and preliminary validation of drag-based vertical axis wind turbine

    Science.gov (United States)

    Krysiński, Tomasz; Buliński, Zbigniew; Nowak, Andrzej J.

    2015-03-01

    The main purpose of this article is to verify and validate the mathematical description of the airflow around a wind turbine with vertical axis of rotation, which could be considered as representative for this type of devices. Mathematical modeling of the airflow around wind turbines in particular those with the vertical axis is a problematic matter due to the complex nature of this highly swirled flow. Moreover, it is turbulent flow accompanied by a rotation of the rotor and the dynamic boundary layer separation. In such conditions, the key aspects of the mathematical model are accurate turbulence description, definition of circular motion as well as accompanying effects like centrifugal force or the Coriolis force and parameters of spatial and temporal discretization. The paper presents the impact of the different simulation parameters on the obtained results of the wind turbine simulation. Analysed models have been validated against experimental data published in the literature.

  13. Characterization of blade throw from a 2.3MW horizontal axis wind turbine upon failure

    DEFF Research Database (Denmark)

    Sarlak, Hamid; Sørensen, Jens Nørkær

    2015-01-01

    The present work concerns aerodynamics of thrown objects from a 2.3 MW Horizontal Axis Wind Turbine (HAWT), as a consequence of blade failure. The governing set of ordinary differential equations for the flying objects are derived and numerically solved using a 4th order Runge-Kutta time advancing...

  14. Early development of modern vertical and horizontal axis wind turbines: A review

    Energy Technology Data Exchange (ETDEWEB)

    Shikha; Bhatti, T.S.; Kothari, D.P.

    2005-05-15

    This paper reviews the initial development of the design and operation of modern vertical and horizontal axis wind turbines, with the aim of comparing the development of the two types. Application in developing countries concentrates on the Savonius rotor. The review aims to record important early developments, including the years following the first oil crisis of 1973. (Author)

  15. Design Of Rotor Blade For Vertical Axis Wind Turbine Using Double Aerofoil

    DEFF Research Database (Denmark)

    Chougule, Prasad; Ratkovich, Nicolas Rios; Kirkegaard, Poul Henning;

    . However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology in practice for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double aerofoil elements mainly used in aeroplane wing design...

  16. Increasing power generation in horizontal axis wind turbines using optimized flow control

    Science.gov (United States)

    Cooney, John A., Jr.

    In order to effectively realize future goals for wind energy, the efficiency of wind turbines must increase beyond existing technology. One direct method for achieving increased efficiency is by improving the individual power generation characteristics of horizontal axis wind turbines. The potential for additional improvement by traditional approaches is diminishing rapidly however. As a result, a research program was undertaken to assess the potential of using distributed flow control to increase power generation. The overall objective was the development of validated aerodynamic simulations and flow control approaches to improve wind turbine power generation characteristics. BEM analysis was conducted for a general set of wind turbine models encompassing last, current, and next generation designs. This analysis indicated that rotor lift control applied in Region II of the turbine power curve would produce a notable increase in annual power generated. This was achieved by optimizing induction factors along the rotor blade for maximum power generation. In order to demonstrate this approach and other advanced concepts, the University of Notre Dame established the Laboratory for Enhanced Wind Energy Design (eWiND). This initiative includes a fully instrumented meteorological tower and two pitch-controlled wind turbines. The wind turbines are representative in their design and operation to larger multi-megawatt turbines, but of a scale that allows rotors to be easily instrumented and replaced to explore new design concepts. Baseline data detailing typical site conditions and turbine operation is presented. To realize optimized performance, lift control systems were designed and evaluated in CFD simulations coupled with shape optimization tools. These were integrated into a systematic design methodology involving BEM simulations, CFD simulations and shape optimization, and selected experimental validation. To refine and illustrate the proposed design methodology, a

  17. Conceptual Design of a Floating Support Structure and Mooring System for a Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Berthelsen, Petter Andreas; Fylling, Ivar; Vita, Luca;

    2012-01-01

    This paper deals with the conceptual design of a floating support structure and mooring system for a 5MW vertical axis offshore wind turbine. The work is carried out as part of the DeepWind project, where the main objective is to investigate the feasibility of a floating vertical axis offshore wind...... turbine. The DeepWind concept consists of a Darrieus rotor mounted on a spar buoy support structure. The conceptual design is carried out in an iterative process, involving the different subcomponents. The present work is part of the first design iteration and the objective is to find a feasible floating...... response analysis programs for mooring system forces and vessel motions, and combines this with a gradient search method for solution of nonlinear optimization problems with arbitrary constraints. Two different mooring system configurations are considered: Chain systems with 3 and 6 lines, respectively....

  18. Wind Tunnel Investigation of the Near-wake Flow Dynamics of a Horizontal Axis Wind Turbine

    International Nuclear Information System (INIS)

    Experiments conducted in a large wind tunnel set-up investigate the 3D flow dynamics within the near-wake region of a horizontal axis wind turbine. Particle Image Velocimetry (PIV) measurements quantify the mean and turbulent components of the flow field. Measurements are performed in multiple adjacent horizontal planes in order to cover the area behind the rotor in a large radial interval, at several locations downstream of the rotor. The measurements were phase-locked in order to facilitate the re-construction of the threedimensional flow field. The mean velocity and turbulence characteristics clearly correlate with the near-wake vortex dynamics and in particular with the helical structure of the flow, formed immediately behind the turbine rotor. Due to the tip and root vortices, the mean and turbulent characteristics of the flow are highly dependent on the azimuth angle in regions close to the rotor and close to the blade tip and root. Further from the rotor, the characteristics of the flow become phase independent. This can be attributed to the breakdown of the vortical structure of the flow, resulting from the turbulent diffusion. In general, the highest levels of turbulence are observed in shear layer around the tip of the blades, which decrease rapidly downstream. The shear zone grows in the radial direction as the wake moves axially, resulting in velocity recovery toward the centre of the rotor due to momentum transport

  19. Aerofoil profile modification effects for improved performance of a vertical axis wind turbine blade

    OpenAIRE

    Ismail, Md. Farhad

    2014-01-01

    Due to the growing need of sustainable energy technologies, wind energy is gaining more popularity day by day. For micro power generation vertical axis wind turbine (VAWT) is preferred due to its simplicity and easy to install characteristics. This study investigates the effects of profile-modification on a NACA0015 aerofoil used in VAWTs. The profile-modifications being investigated consist of a combination of inward semi-circular dimple and Gurney flap at the lower surface of the aerofoil. ...

  20. Design of a Permanent Magnet Synchronous Generator for a Vertical Axis Wind Turbine

    OpenAIRE

    Madani, Nima

    2011-01-01

    Different types of permanent magnet generators for wind power application have been subject of research during last two decades. In this thesis different topologies of electrical generators have been investigated for small scale vertical axis wind turbine application. A two stage induction generator is proposed as a alternative solution with respect to the cost of such a system. However, a biggest emphasis in the report has been put on the design of Permanent Magnet Synchronous Generator (PMS...

  1. Towards the Evolution of Vertical-Axis Wind Turbines using Supershapes

    OpenAIRE

    Preen, Richard J.; Bull, Larry

    2012-01-01

    We have recently presented an initial study of evolutionary algorithms used to design vertical-axis wind turbines (VAWTs) wherein candidate prototypes are evaluated under approximated wind tunnel conditions after being physically instantiated by a 3D printer. That is, unlike other approaches such as computational fluid dynamics simulations, no mathematical formulations are used and no model assumptions are made. However, the representation used significantly restricted the range of morphologi...

  2. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    International Nuclear Information System (INIS)

    Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel test an orientation parameter for the slat airfoil is initially obtained. Further a computational fluid dynamics (CFD) has been used to obtain the aerodynamic characteristics of double-element airfoil. The CFD simulations were carried out using ANSYS CFX software. It is observed that there is an increase in the lift coefficient by 26% for single-element airfoil at analysed conditions. The CFD simulation results were validated with wind tunnel tests. It is also observe that by selecting proper airfoil configuration and blade sizes an increase in lift coefficient can further be achieved

  3. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    Science.gov (United States)

    Chougule, Prasad; Nielsen, Søren R. K.

    2014-06-01

    Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel test an orientation parameter for the slat airfoil is initially obtained. Further a computational fluid dynamics (CFD) has been used to obtain the aerodynamic characteristics of double-element airfoil. The CFD simulations were carried out using ANSYS CFX software. It is observed that there is an increase in the lift coefficient by 26% for single-element airfoil at analysed conditions. The CFD simulation results were validated with wind tunnel tests. It is also observe that by selecting proper airfoil configuration and blade sizes an increase in lift coefficient can further be achieved.

  4. Noise Emission of a 200 kW Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Erik Möllerström

    2015-12-01

    Full Text Available The noise emission from a vertical axis wind turbine (VAWT has been investigated. A noise measurement campaign on a 200 kW straight-bladed VAWT has been conducted, and the result has been compared to a semi-empirical model for turbulent-boundary-layer trailing edge (TBL-TE noise. The noise emission from the wind turbine was measured, at wind speed 8 m/s, 10 m above ground, to 96.2 dBA. At this wind speed, the turbine was stalling as it was run at a tip speed lower than optimal due to constructional constraints. The noise emission at a wind speed of 6 m/s, 10 m above ground was measured while operating at optimum tip speed and was found to be 94.1 dBA. A comparison with similar size horizontal axis wind turbines (HAWTs indicates a noise emission at the absolute bottom of the range. Furthermore, it is clear from the analysis that the turbulent-boundary-layer trailing-edge noise, as modeled here, is much lower than the measured levels, which suggests that other mechanisms are likely to be important, such as inflow turbulence.

  5. Comparison between Vertical-Axis Wind Turbine Arrays and Plant Canopies

    Science.gov (United States)

    Kinzel, Matthias; Araya, Daniel; Dabiri, John

    2014-11-01

    We present experimental results from three different full scale arrays of vertical-axis wind turbines (VAWTs) under natural wind conditions. One array consists of a row of four single turbines while the other two are made up of nine counter rotating turbine pairs. The wind velocities throughout the turbine arrays are measured using a portable meteorological tower with seven, vertically-staggered, three-component ultrasonic anemometers. Furthermore, the power output of each turbine is measured simultaneously with the free stream wind velocity and direction. These measurements yield detailed understanding of the aerodynamics inside the VAWT arrays and the resulting power productions. Quadrant hole analysis is employed to gain a better understanding of the vertical energy transport at the top of the VAWT array. Results comparing the energy transport and the responsible mechanisms between the larger turbine arrays and the four single turbines configuration will be presented. Furthermore, results are compared to the flow in urban and plant canopies. Emphasis is given to the flow physics in the adjustment region of the canopy, i.e. the region where the flow transitions from an atmospheric surface layer to a canopy flow. This project is funded by the Gordon and Betty Moore Foundation through Grant 2645.

  6. A comparison of wind turbulence simulation models for stochastic loads analysis for horizontal-axis wind turbines

    Science.gov (United States)

    Walker, S. N.; Weber, T. L.; Wilson, R. E.

    1989-06-01

    Four wind turbine turbulence codes, the Pacific Northwest Laboratory (PNL) Rotational Code, the PNL Simulation Code, the Holley Code, and the Sandia National Laboratories Code, were examined. Hub-height simulations were made with each code and were compared to hub-height wind data from the vertical plane array of anemometers at the Howden 330-kW horizontal-axis wind turbine (HAWT). Blade tip simulations were made with each code and were compared to rotational wind data taken from the Howden-330 kW HAWT. The PNL Rotational Code was given an overall rating of satisfactory for large wind turbine applications and an overall rating of good for small wind turbine applications. The PNL Simulation Code was given a rating of good when used with large turbines and a rating of very good when used with small turbines. The Holley Code and the Sandia Code were given ratings of good and satisfactory, respectively, for both large and small wind turbine applications. The Sandia Code could be upgraded if documentation were made available. Further upgrades for any of the codes would require major revision.

  7. Medium-solidity vertical axis wind turbines for use in urban environments

    Energy Technology Data Exchange (ETDEWEB)

    Tullis, S.; Fiedler, A.; McLaren, K.; Ziada, S. [McMaster Univ., Hamilton, ON (Canada). Dept. of Mechanical Engineering

    2008-07-01

    Wind power turbines in community projects are subject to both stringent noise limits and unsteady turbulent winds experienced in urban environments. The most significant operational problem with VAWTs is vibration due to their highly variable blade loadings as the turbine rotates. Although vibration due to unbalance can be dealt with during manufacture and installation, the excitation generated by the cyclic aerodynamic blade loading is more difficult to reduce or eliminate. There is a renewed interest in smaller-scale (less than 10 kW) vertical axis wind turbines (VAWTs) to deal with these issues. One technique to reduce vibration is to reduce the turbine rotational speed by increasing the solidity of the turbine. Higher solidities lead to complex aerodynamics involving vortex shedding and continuing interaction between shed vortices and their originating blades. A prototype of a commercially available 2.5 kW VAWT was tested in a wind tunnel to study its power performance. The aerodynamics of the medium solidity turbine was also investigated experimentally using tufts on the inner blade surface and numerically using a Navier-Stokes CFD simulation. Preliminary results indicate that thicker blades may offer an alternative blade profile that improves the power performance and distribution of the radial force over a wider rotational sector. Asymmetric profiles also appear to hold promise. The omni-directional characteristic of such VAWTs can handle the large and rapid fluctuations in wind speed and direction, while the lack of high blade tip speeds significantly reduces noise production. 10 refs., 4 figs.

  8. Kalman filter based data fusion for neutral axis tracking in wind turbine towers

    DEFF Research Database (Denmark)

    Soman, Rohan; Malinowski, Pawel; Ostachowicz, Wieslaw;

    2015-01-01

    downtime, hence increasing the availability of the system. The present work is based on the use of neutral axis (NA) for SHM of the structure. The NA is tracked by data fusion of measured yaw angle and strain through the use of Extended Kalman Filter (EKF). The EKF allows accurate tracking even...... in the NA position may be used for detecting and locating the damage. The wind turbine tower has been modelled with FE software ABAQUS and validated on data from load measurements carried out on the 34m high tower of the Nordtank, NTK 500/41 wind turbine....

  9. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis

    Science.gov (United States)

    Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina

    2015-01-01

    Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed. PMID:26167524

  10. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis

    Directory of Open Access Journals (Sweden)

    Adela-Eliza Dumitrascu

    2015-01-01

    Full Text Available Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram, which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed.

  11. Parametric Study on a Horizontal Axis Wind Turbine Proposed for Water Pumping

    Directory of Open Access Journals (Sweden)

    Dr. Abdullateef A. Jadallah

    2014-01-01

    Full Text Available Water pumping is considered an economically competitive sustainable process of providing water to communities, rural areas and livestock's. A parametric analysis on HAWT is carried out to explore the influence of the performance parameters on the power generated and withdrawal quantity of water. Effect of wind speed, radius of rotor, ambient condition, well depth, and efficiencies of turbine, generator and the pump were studied and reflected in important generalized performance maps. These performance graphs are valuable in best understanding of on‐design and off‐ design constraints of the horizontal axis wind turbine in water pumping. The blade geometry was also studied. Results showed the reasonable range of wind turbine performance and the corresponding water discharge within the abovementioned constraints. Rating and the effect of pitch angle on discharged water are also presented. Methodology necessary to achieve the abovementioned results is processed by a computer program written in Matlab

  12. Determination of Elastic Twist in Horizontal Axis Wind Turbines (HAWTs)

    Energy Technology Data Exchange (ETDEWEB)

    Stoddard, F.; Nelson, V.; Starcher, K.; Andrews, B.

    2006-06-01

    This report presents the results of a project at the Alternative Energy Institute (AEI) which measured and calculated the elastic twist of three representative composite horizontal-axis blades: Carter 300, Gougeon ESI 54, and UTRC 8 kW.

  13. Large-eddy simulations of a single vertical axis wind turbine

    Science.gov (United States)

    Rahromostaqim, Mahsa; Posa, Antonio; Balaras, Elias; Leftwich, Megan

    2013-11-01

    Recently vertical axis wind turbines (VAWTs) have been receiving increased attention due to various potential advantages over the more common horizontal axis wind turbines. They can be placed for example in urban areas where space is limited, since they are moderately sized and virtually silent. In this study we will report large-eddy simulations (LES) of a Windspire VAWT. Computations will be conducted using an immersed boundary formulation, where the equations of motion are solved on a fixed Cartesian grid and the turbine blades rotate with a fixed tip speed ratio. The primary objective of this first series of LES is to understand the interaction between the wakes generated by the individual airfoils. To keep the computational cost low and increase the parametric regime we can examine, we will consider only part of the turbine hight and utilize periodic boundary conditions along the turbine axis. The computations will exactly mimic the conditions of closely coordinated experiments of a scaled down VAWT, which will enable us to access the impact of features that will not be captured, such as the tip vortices for example, on the results. Preliminary results reveal a complex interaction of the wakes created by the rotating airfoils and the boundary layer on the airfoils.

  14. Velocity spectrum and blade’s deformation of horizontal axis wind turbines

    Directory of Open Access Journals (Sweden)

    Sanda BUDEA

    2014-04-01

    Full Text Available The paper presents the velocity distribution calculated by numerical method in axial relative motion of a viscous and incompressible fluid into the impeller of a horizontal axis wind turbine. Simulations are made for different airflow speeds: 0.5,1, 3, 4, 5 m/s. The relative vortex on the backside of the blade to the trailing edge, and the vortices increase with the wind speed can be observed from the numerical analysis. Also the translational deformation-the deflection of the wind turbine blades for different values of the wind velocities has been established in this paper. The numerical simulations are made for the following speed values:5 m/s, 10m/s and 20 m/s. ANSYS CFD – Fluent was used both to calculate the velocities spectrum and to establish the translational blades deformations. The analyzed wind impeller has small dimensions, a diameter of 2 m and four profiled blades. For this small impeller the translational deformation increases with the wind velocity from 83 to 142 mm. For high wind velocities and large–scale wind turbine impellers, these translational deformations are about several meters, reason to /shut-down the impellers to wind velocities exceeding 25 m/s.

  15. Meandering patterns in the wake of horizontal-axis wind and river turbines

    Science.gov (United States)

    Guala, Michele; Howard, Kevin; Singh, Arvind; Hill, Craig; Musa, Mirko; Feist, Christopher; Sotiropoulos, Fotis

    2014-11-01

    Energy harvesting devices with rotor axis oriented with the flow generate a wake which is unstable due to the complex interactions among turbulent structures from the incoming flow, root, hub and tip vortices (see Foti et al. APS/DFD 2014). Experiments in wind tunnel and open-channel flow with erodible surface show similar meandering patterns in the velocity field, which are responsible for the far wake expansion and the incoming turbulence experienced by down-wind/stream units. Wake meandering statistics were observed to depend on the operating turbine conditions (tip speed ratio), upstream device siting (turbine - turbine interaction) or specific turbine kinematics (floating turbine under waves). In addition, for wall boundary conditions defined by an erodible surface, where sand grains respond to local shear stress by moving (erosion) or settling (deposition), turbines were observed to induce dynamic topographic perturbations also exhibiting meandering patterns. This occurred in limited mobility conditions and under migrating bedforms, with large scale topographic features amplified under specific asymmetric turbine configurations. The work opens up the possibility to place turbines in complex flows optimizing their performance while maintaining, or reshaping, the surrounding topography by specific control or siting strategies. Resarch supported by NSF CAREER: CBET-1351303, IREE early career UMN, DOE Grant DE-EE0005482, NSF PFI Grant IIP-1318201.

  16. Passive cyclic pitch control for horizontal axis wind turbines

    Science.gov (United States)

    Bottrell, G. W.

    1981-01-01

    A flexible rotor concept, called the balanced pitch rotor, is described. The system provides passive adjustment of cyclic pitch in response to unbalanced pitching moments across the rotor disk. Various applications are described and performance predictions are made for wind shear and cross wind operating conditions. Comparisons with the teetered hub are made and significant cost savings are predicted.

  17. A numerical investigation of the wake structure of vertical axis wind turbines

    Science.gov (United States)

    Balaras, Elias; Posa, Antonio; Leftwich, Megan

    2014-11-01

    Recent field-testing has shown that vertical axis wind turbines (VAWT) in wind farm configurations have the potential to reach higher power densities, when compared to the more widespread horizontal axis turbines. A critical component in achieving this goal is a good understanding of the wake structure and how it is influenced by operating conditions. In the present study the Large-Eddy Simulation technique is adopted to characterize the wake of a small vertical axis wind turbine and to explore its dependence on the value of its Tip Speed Ratio (TSR). It will be shown that its wake significantly differs from that of a spinning cylinder, often adopted to model this typology of machines: the displacement of the momentum deficit towards the windward side follows the same behavior, but turbulence is higher on the leeward side. An initial increase of the momentum deficit is observed moving downstream, with central peaks in the core of the near wake for both momentum and turbulent kinetic energy, especially at lower TSRs. No back-flow is produced downstream of the turbine. The interaction between blades is stronger at higher values of the TSR, while the production of coherent structures is enhanced at lower TSRs, with large rollers populating the leeward side of the wake.

  18. Three-dimensional velocity measurements around a rotating vertical axis wind turbine

    Science.gov (United States)

    Coletti, Filippo; Ryan, Kevin; Dabiri, John; Eaton, John

    2013-11-01

    Vertical axis wind turbines (VAWT) can be more closely spaced than conventional horizontal axis wind turbines (HAWT), which points to a potentially greater power that can be extracted from a given wind farm footprint. In order to optimize the inter-turbine spacing and to investigate the potential for constructive aerodynamic interactions, the complex dynamics of VAWT wakes need to be analyzed. To date, only single-point or at best two-dimensional measurements of such wakes have been documented. We have measured the full three-component mean velocity field around and downstream the scaled-down model of a rotating VAWT by Magnetic Resonance Velocimetry (MRV). The high spatial resolution allows to quantitatively explore the structure of the wake, its interaction with the floor, and its development. The flow is shown to be highly three-dimensional and asymmetric for the whole investigated region (up to 7 diameters downstream of the turbine). These results can inform low-order models to predict the performance of turbine arrays.

  19. Effects of stator vanes on power coefficients of a zephyr vertical axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Pope, K.; Rodrigues, V.; Tsopelas, A.; Gravelsins, R.; Naterer, G.F. [University of Ontario Institute of Technology, Faculty of Engineering and Applied Science, 2000 Simcoe Street, Oshawa, Ontario, L1H 7K4 (Canada); Doyle, R. [University of Ontario Institute of Technology, Faculty of Engineering and Applied Science, 2000 Simcoe Street, Oshawa, Ontario, L1H 7K4 (Canada); Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia, B3J 1Z1 (Canada); Tsang, E. [Zephyr Alternate Power Inc., 80 East Humber Drive, King City, Ontario, L7B 1B6 (Canada)

    2010-05-15

    In this paper, numerical and experimental studies are presented to determine the operating performance and power output from a vertical axis wind turbine (VAWT). A k-{epsilon} turbulence model is used to perform the transient simulations. The 3-D numerical predictions are based on the time averaged Spalart-Allmaras equations. A case study is performed for varying VAWT stator vane (tab) geometries of a Zephyr vertical axis wind turbine. The mean velocity is used to predict the time averaged variations of the power coefficient and power output. Power coefficients predicted by the numerical models are compared for different turbine geometries. The predictive capabilities of the numerical model are verified by past experimental data, as well as wind tunnel experiments in the current paper, to compare two particular geometric designs. The numerical results examine the turbine's performance at constant and variable rotor velocities. The effects of stator vanes on the turbine's power output are presented and discussed. (author)

  20. Analisa Bentuk Profile Dan Jumlah Blade Vertical Axis Wind Turbine Terhadap Putaran Rotor Untuk Menghasilkan Energi Listrik

    OpenAIRE

    Saiful Saiful Huda; Irfan Syarif Arief

    2014-01-01

    Turbin angin adalah suatu alat untuk mengkonversi energi angin menjadi energi mekanik yang kemudian dikonversi lagi menjadi energi listrik. Putaran pada poros turbin angin dihubungkan pada generator untuk menghasilkan energi listrik. Berdasarkan penelitian yang dilakukan sebelumnya, banyak jenis turbin angin yang ditemukan untuk meningkatkan effisiensi dan torsi yang dihasilkan salah satu contohnya adalah vertical axis wind turbine (VAWT). VAWT merupakan turbin angin dengan sumbu vertical ata...

  1. Dynamics of Vertical Axis Wind Turbines (Darrieus Type)

    OpenAIRE

    A. F. Abdel Azim El-Sayed; Hirsch, C.; R. Derdelinckx

    1995-01-01

    A computing package that combines finite element methods for evaluating the resonance frequencies and modes of turbine subcomponents (blade, tower and shaft) together with the aerodynamic calculations for forces and moments taking into consideration the dynamic stall as well as the dynamic response is developed. This method was applied to a realistic VAWT; namely; the PIONEER I built in the Netherlands by Fokker company. A reasonable agreement between the calculated and field results was pred...

  2. Influence of Solidity on Vertical Axis Wind Turbines

    OpenAIRE

    Uzarraga, Cristobal N.; Gallegos, Armando; Castro, Francisco; Parra-Santos, M. Teresa

    2015-01-01

    This paper aims to predict the performance of a VAWT. The H-type Darrieus turbine consists of three straight blades with shape of aerofoil attached to a rotating vertical shaft. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple continuity and momentum equations. A parametric study has...

  3. Kinetic Energy Transport in a Vertical-Axis Wind Turbine Array

    Science.gov (United States)

    Kinzel, Matthias; Araya, Daniel; Dabiri, John

    2013-11-01

    We present experimental results from a full scale array of vertical-axis wind turbines (VAWTs) under natural wind conditions. The wind velocities throughout the turbine array are measured using a portable meteorological tower with seven, vertically-staggered, three-component ultrasonic anemometers. These measurements yield detailed insight into the turbine wakes and the recovery of the flow velocity behind the turbines. Quadrant hole analysis is employed to gain a better understanding of the energy transport at the top and the bottom of the VAWT array. The results are compared to the flow in horizontal-axis wind farms as well as urban and plant canopies. Emphasis is given to the flow physics in the adjustment region of the canopy, i.e. the region where the flow transitions from an atmospheric boundary layer to a canopy flow. The authors gratefully acknowledge funding from the Gordon and Betty Moore Foundation through Grant 2645, the National Science Foundation Energy for Sustainability program (Grant No. CBET-0725164) and the Office of Naval Research (Grant No. N000141211047).

  4. Large eddy simulations of vertical axis wind turbines to optimize farm design

    Science.gov (United States)

    Hezaveh, Seyed Hossein; Bou-Zeid, Elie

    2013-11-01

    Wind energy production, and research have expanded considerably in the past decade. These efforts aim to reduce dependence on fossil fuels and the greenhouse gas emissions associated with current modes of energy production. However, with expanding wind farms, the land areas occupied by such farms become a limitation. Recently, interest in vertical axis wind turbines (VAWTs) has increased due to key advantages of this technology: compared to horizontal axis turbines, VAWTs can be built with larger scales, their performance is not sensitive to wind direction, and the ability to place their generators at the bottom of the mast can make them more stable offshore. In this study, we focus on how the Aspheric Boundary Layer (ABL) will react to the presence of large VAWT farms. We present a state-of-art representation of VAWTs using an actuator line model in a Large Eddy Simulations code for the ABL. Validations are made against several experimental datasets, which include flow details and power coefficient curves, the wake of an individual turbine is visualized and analyzed, and the interaction of adjacent turbines is investigated in view of optimizing their interactions and the configuration of VAWT farms.

  5. Individual blade pitch and camber control for vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bhatta, P.; Paluszek, M.A.; Mueller, J.B. [Princeton Satellite Systems, Inc., Princeton, NJ (United States)

    2008-07-01

    This paper presented advanced technology concepts that can enhance the efficiency of a vertical axis wind turbine (VAWT) designed for the domestic market, including regions without favourable wind conditions. Improvements in efficiency can be achieved in many ways, including individual blade actuation; power electronics control for maximum power point tracking; model-based control algorithms; state and parameters estimation; and high efficiency power converters. This paper focused on power extraction improvements by using simple pitch control. It also presented a dynamical systems model and control algorithms for a small, vertical axis wind turbine (VAWT). Good performance at low wind speeds is an important requirement for developing an economically viable, suburban VAWT. The performance of a VAWT can be improved significantly by incorporating estimation and control capabilities. Individual blade pitch and camber controls were considered in the author's VAWT design. Pitch control was achieved by rotating each individual blade about its vertical axis, while camber control was realized using a trailing edge flap on each blade. Using camber and pitch controls helped create a greater force differential across the turbine than using pitch control alone. 8 refs., 9 figs.

  6. Design of PVC Bladed Horizontal Axis Wind Turbine for Low Wind Speed Region

    Directory of Open Access Journals (Sweden)

    Vicky K Rathod

    2014-07-01

    Full Text Available The Project is aimed at designing a wind turbine that can be able to build by Laypersons, using readily available material which is feasible & affordable to provide much needed electricity. Since most of the high wind power density regions in the zone of high wind speed are already being tapped by large scale wind turbine and so it required creating a large scope for the development of low wind speed turbines. Our study focuses primarily on designing the blade for tapping power in the regions of low wind power density. The aerodynamic profiles of wind turbine blades have major influence on aerodynamic efficiency of wind turbine. This can be achieved by comparing the effectiveness of a crude blade fashioned from a different Size, Material & standard of PVC drainage pipe which are easily available in market. It can be evaluated by performing experimental analysis, data collection & its evaluation on different type & size of PVC Pipe & preparing an analytical tool for best Design.

  7. EVALUATION OF PERFORMANCE OF HORIZONTAL AXIS WIND TURBINE BLADES BASED ON OPTIMAL ROTOR THEORY

    Directory of Open Access Journals (Sweden)

    Nitin Tenguria

    2011-06-01

    Full Text Available Wind energy is a very popular renewable energy resource. In order to increase the use of wind energy, it is important to develop wind turbine rotor with high rotations rates and power coefficient. In this paper, a method for the determination of the aerodynamic performance characteristics using NACA airfoils is given for three bladed horizontal axis wind turbine. Blade geometry is obtained from the best approximation of the calculated theoretical optimum chord and twist distribution of the rotating blade. Optimal rotor theory is used, which is simple enough and accurate enough for rotor design. In this work, eight different airfoils are used to investigate the changes in performance of the blade. Rotor diameter taken is 82 m which is the diameter of VESTAS V82-1.65MW. The airfoils taken are same from root to tip in every blade. The design lift coefficient taken is 1.1. A computer program is generated to automate the complete procedure.

  8. EVALUATION OF PERFORMANCE OF HORIZONTAL AXIS WIND TURBINE BLADES BASED ON OPTIMAL ROTOR THEORY

    Directory of Open Access Journals (Sweden)

    Nitin Tenguria

    2011-01-01

    Full Text Available Wind energy is a very popular renewable energy resource. In order to increase the use of wind energy, it is important to develop wind turbine rotor with high rotations rates and power coefficient. In this paper, a method for the determination of the aerodynamic performance characteristics using NACA airfoils is given for three bladed horizontal axis wind turbine. Blade geometry is obtained from the best approximation of the calculated theoretical optimum chord and twist distribution of the rotating blade. Optimal rotor theory is used, which is simple enough and accurate enough for rotor design. In this work, eight different airfoils are used to investigate the changes in performance of the blade. Rotor diameter taken is 82 m which is the diameter of VESTAS V82-1.65MW. The airfoils taken are same from root to tip in every blade. The design lift coefficient taken is 1.1. A computer program is generated to automate the complete procedure.

  9. Studi Eksperimental Vertical Axis Wind Turbine Tipe Savonius dengan Variasi Jumlah Fin pada Sudu

    Directory of Open Access Journals (Sweden)

    Ola Dwi Sandra Hasan

    2013-09-01

    Full Text Available Salah satu  teknologi sistem konversi energi angin  yang ada adalah turbin Savonius yang merupakan salah satu jenis Vertical Axis Wind Turbine ( VAWT . Turbin Savonius  memiliki  karakteristik strating torsi yang baik, mudah dalam pembutannya dan dapat menerima angin dari segala arah namun kekurangan yang dimiliki adalah coefficient of power (Cp turbin yang rendah. Untuk itu banyak dilakukan penelitian untuk meningkatkan efisiensi dari turbin Savonius. Salah satunya adalah penambahan end plate yang mampu meningkatkan perbedaan tekanan dari kedua sisi sudu sehingga memperbesar drag positif turbin. Untuk itu pada penelitian ini dilakukan variasi jumlah penambahan fin pada sudu. Variasi jumlah fin yang dilakukan adalah 1,2,4 dan 7 fin serta pengujian dengan menggunakan generator dan tanpa generator. Dari hasil pengujian, variasi fin yang dapat meningkatkan Cp turbin Savonius adalah variasi 1 fin jika dibandingkan  turbin standarnya dengan nilai Cp sebesar 0,11.  SKEA turbin Savonius menggunakan generator 12 V;400W dapat  menghasilkan daya maksimal 5,71 Watt pada putaran 134 rpm

  10. Optimal placement of horizontal - and vertical - axis wind turbines in a wind farm for maximum power generation using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Xiaomin Chen, Ramesh Agarwal

    2012-01-01

    Full Text Available In this paper, we consider the Wind Farm layout optimization problem using a genetic algorithm. Both the Horizontal –Axis Wind Turbines (HAWT and Vertical-Axis Wind Turbines (VAWT are considered. The goal of the optimization problem is to optimally position the turbines within the wind farm such that the wake effects are minimized and the power production is maximized. The reasonably accurate modeling of the turbine wake is critical in determination of the optimal layout of the turbines and the power generated. For HAWT, two wake models are considered; both are found to give similar answers. For VAWT, a very simple wake model is employed.

  11. Optimal placement of horizontal - and vertical - axis wind turbines in a wind farm for maximum power generation using a genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaomin; Agarwal, Ramesh [Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2012-07-01

    In this paper, we consider the Wind Farm layout optimization problem using a genetic algorithm. Both the Horizontal –Axis Wind Turbines (HAWT) and Vertical-Axis Wind Turbines (VAWT) are considered. The goal of the optimization problem is to optimally position the turbines within the wind farm such that the wake effects are minimized and the power production is maximized. The reasonably accurate modeling of the turbine wake is critical in determination of the optimal layout of the turbines and the power generated. For HAWT, two wake models are considered; both are found to give similar answers. For VAWT, a very simple wake model is employed.

  12. Evaluation of drag forcing models for vertical axis wind turbine farms

    Science.gov (United States)

    Pierce, Brian; Moin, Parviz; Dabiri, John

    2013-11-01

    Vertical axis wind turbines (VAWTs) have the potential to produce more power per unit area than horizontal axis wind turbines (HAWTs) in a wind farm setting (Kinzel et al. J. Turb. [2012]), but further understanding of the flow physics is required to design such farms. In this study we will model a large wind farm of VAWTs as an array of 100 circular cylinders which will allow a comparison with a laboratory experiment (Craig et al. DFD 2013). The geometric complexity and high Reynolds numbers necessitate phenomenological modeling of the interaction of the turbine with the fluid, which is done through point drag models similar to those found in canopy flow simulations (e.g. Dupont et al. J. Fluid Mech. [2010]). We will present a detailed study of the point drag model performance for flow over one cylinder, providing an evaluation of the model's fidelity as it relates to quantities of interest for the VAWT farm. Next we will present results for flow through the cylinder array, emphasizing validation of the model and insight into VAWT wind farm dynamics. We will also discuss the effect of wall modeling on the calculations, as the Reynolds number of the problem requires the application of wall modeling of the turbulent boundary layer above the ground to keep the cost manageable. Brian Pierce acknowledges support from the Stanford Graduate Fellowship.

  13. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    OpenAIRE

    Altab Md. Hossain; Ataur Rahman; Mozasser Rahman; SK. Hasan; Jakir Hossen

    2009-01-01

    Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The mo...

  14. Numerical simulations of the aerodynamic behavior of large horizontal-axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, C.G. [Departamento de Estructuras, Facultad de Ciencias Exactas Fisicas y Naturales, Universidad Nacional de Cordoba, Av. Velez Sarsfield N 1611, CP 5000, Cordoba (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Avenida Rivadavia 1917, CP C1033AAJ, Ciudad de Buenos Aires (Argentina); Preidikman, S. [Departamento de Estructuras, Facultad de Ciencias Exactas Fisicas y Naturales, Universidad Nacional de Cordoba, Av. Velez Sarsfield N 1611, CP 5000, Cordoba (Argentina); Departamento de Mecanica, Facultad de Ingenieria, Universidad Nacional de Rio, Cuarto, Ruta Nacional 36, Km 601, CP 5800, Rio Cuarto (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Avenida Rivadavia 1917, CP C1033AAJ, Ciudad de Buenos Aires (Argentina); Massa, J.C. [Departamento de Estructuras, Facultad de Ciencias Exactas Fisicas y Naturales, Universidad Nacional de Cordoba, Av. Velez Sarsfield N 1611, CP 5000, Cordoba (Argentina); Departamento de Mecanica, Facultad de Ingenieria, Universidad Nacional de Rio, Cuarto, Ruta Nacional 36, Km 601, CP 5800, Rio Cuarto (Argentina)

    2010-06-15

    In the present work, the non-linear and unsteady aerodynamic behavior of large horizontal-axis wind turbines is analyzed. The flowfield around the wind turbine is simulated with the general non-linear unsteady vortex-lattice method, widely used in aerodynamics. By using this technique, it is possible to compute the aerodynamic loads and their evolution in the time domain. The results presented in this paper help to understand how the existence of the land-surface boundary layer and the presence of the turbine support tower, affect its aerodynamic efficiency. The capability to capture these phenomena is a novel aspect of the computational tool developed in the present effort. (author)

  15. Evaluation of a Blade Force Measurement System for a Vertical Axis Wind Turbine Using Load Cells

    Directory of Open Access Journals (Sweden)

    Morgan Rossander

    2015-06-01

    Full Text Available Unique blade force measurements on an open site straight-bladed vertical axis wind turbine have been performed. This paper presents a method for measuring the tangential and normal forces on a 12-kW vertical axis wind turbine prototype with a three-bladed H-rotor. Four single-axis load cells were installed in-between the hub and the support arms on one of the blades. The experimental setup, the measurement principle, together with the necessary control and measurement system are described. The maximum errors of the forces and accompanying weather data that can be obtained with the system are carefully estimated. Measured forces from the four load cells are presented, as well as the normal and tangential forces derived from them and a comparison with theoretical data. The measured torque and bending moment are also provided. The influence of the load cells on the turbine dynamics has also been evaluated. For the aerodynamic normal force, the system provides periodic data in agreement with simulations. Unexpected mechanical oscillations are present in the tangential force, introduced by the turbine dynamics. The measurement errors are of an acceptable size and often depend on the measured variable. Equations are presented for the calculation of measurement errors.

  16. Double-multiple streamtube model for studying vertical-axis wind turbines

    Science.gov (United States)

    Paraschivoiu, Ion

    1988-08-01

    This work describes the present state-of-the-art in double-multiple streamtube method for modeling the Darrieus-type vertical-axis wind turbine (VAWT). Comparisons of the analytical results with the other predictions and available experimental data show a good agreement. This method, which incorporates dynamic-stall and secondary effects, can be used for generating a suitable aerodynamic-load model for structural design analysis of the Darrieus rotor.

  17. Aerodynamics of Vertical Axis Wind Turbines : Development of Simulation Tools and Experiments

    OpenAIRE

    Dyachuk, Eduard

    2015-01-01

    This thesis combines measurements with the development of simulation tools for vertical axis wind turbines (VAWT). Numerical models of aerodynamic blade forces are developed and validated against experiments. The studies were made on VAWTs which were operated at open sites. Significant progress within the modeling of aerodynamics of VAWTs has been achieved by the development of new simulation tools and by conducting experimental studies.         An existing dynamic stall model was investigate...

  18. Model predictive control for energy maximization of small vertical axis wind turbines

    OpenAIRE

    Önol, Aykut Özgün; Onol, Aykut Ozgun; Sancar, Uğur; Sancar, Ugur; Onat, Ahmet; Yeşilyurt, Serhat; Yesilyurt, Serhat

    2015-01-01

    In this paper, a model predictive control (MPC) approach is presented to maximize the energy generated by a small vertical axis wind turbine (VAWT) subject to current and voltage constraints of electrical and power electronic components. Our method manipulates a load coefficient and optimizes the control trajectory over a prediction horizon such that a cost function that measures the deviation from the maximum available energy and the violation of current and voltage constraints is mini...

  19. Comparative analysis of turbulence models for flow simulation around a vertical axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S.; Saha, U.K. [Indian Institute of Technology Guwahati, Dept. of Mechanical Engineering, Guwahati (India)

    2012-07-01

    An unsteady computational investigation of the static torque characteristics of a drag based vertical axis wind turbine (VAWT) has been carried out using the finite volume based computational fluid dynamics (CFD) software package Fluent 6.3. A comparative study among the various turbulence models was conducted in order to predict the flow over the turbine at static condition and the results are validated with the available experimental results. CFD simulations were carried out at different turbine angular positions between 0 deg.-360 deg. in steps of 15 deg.. Results have shown that due to high static pressure on the returning blade of the turbine, the net static torque is negative at angular positions of 105 deg.-150 deg.. The realizable k-{epsilon} turbulent model has shown a better simulation capability over the other turbulent models for the analysis of static torque characteristics of the drag based VAWT. (Author)

  20. Creating a benchmark of vertical axis wind turbines in dynamic stall for validating numerical models

    DEFF Research Database (Denmark)

    Castelein, D.; Ragni, D.; Tescione, G.; Ferreira, C. J. Simão; Gaunaa, Mac

    2015-01-01

    An experimental campaign using Particle Image Velocimetry (2C-PIV) technique has been conducted on a H-type Vertical Axis Wind Turbine (VAWT) to create a benchmark for validating and comparing numerical models. The turbine is operated at tip speed ratios (TSR) of 4.5 and 2, at an average chord...... phenomenon is numerically very hard to model, so a solid benchmark for a VAWT in DS is of great interest. The aim of the paper is to present the experimental flow fields, and the validated loads on the blades for both TSR....

  1. A numerical investigation of the stall-delay phenomenon for horizontal axis wind turbine

    Science.gov (United States)

    Frunzulica, Florin; Mahu, Razvan; Dumitrescu, Horia

    2012-11-01

    The flow characteristics and stall delay phenomenon of a stall regulated wind turbine rotor due to blade rotation in steady state non-yawed conditions are investigated. An incompressible Reynolds-averaged Navier-Stokes solver is applied to carry out the separate flow cases at high wind speeds from 11 m/s to 25 m/s with an interval of 2 m/s. The objective of the present research effort is to validate a first-principles based approach for modeling horizontal axis wind turbines (HAWT) under stalled flow conditions using NREL/ Phase VI rotor data. The computational results are compared with the experimental data and predicted values derived by a new stall-delay model.

  2. Proceedings of the Vertical-Axis Wind Turbine Technology Workshop, Albuquerque, New Mexico, May 18--20, 1976

    Energy Technology Data Exchange (ETDEWEB)

    1976-07-01

    Separate abstracts are included for twenty-nine of the thirty papers presented concerning vertical axis wind turbines. One paper has previously been abstracted and included in the ERDA Energy Data Base and Energy Research Abstracts journal.

  3. Simulations of Vertical Axis Wind Turbine Farms in the Atmospheric Boundary Layer

    Science.gov (United States)

    Hezaveh, Seyed Hossein; Bou-Zeid, Elie; Lohry, Mark; Martinelli, Luigi

    2014-11-01

    Wind power is an abundant and clean source of energy that is increasingly being tapped to reduce the environmental footprint of anthropogenic activities. The vertical axis wind turbine (VAWT) technology is now being revisited due to some important advantages over horizontal axis wind turbines (HAWTS) that are particularly important for farms deployed offshore or in complex terrain. In this talk, we will present the implementation and testing of an actuator line model (ALM) for VAWTs in a large eddy simulation (LES) code for the atmospheric boundary layer, with the aim of optimizing large VAWT wind farm configurations. The force coefficients needed for the ALM are here obtained from blade resolving RANS simulations of individual turbines for each configuration. Comparison to various experimental results show that the model can very successfully reproduce observed wake characteristic. The influence of VAWT design parameters such as solidity, height to radius ratio, and tip speed ratio (TSR) on these wake characteristics, particularly the velocity deficit profile, is then investigated.

  4. Development of passive-controlled HUB (teetered brake & damper mechanism) of horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yukimaru; Kamada, Yasunari; Maeda, Takao [Mie Univ. (Japan)

    1997-12-31

    For the purpose of the improvement of reliability of the Mega-Watt wind turbine, this paper indicates the development of an original mechanism for the passive-controlled hub, which has the effects of braking and damping on aerodynamic forces. This mechanism is useful for variable speed control of the large wind turbine. The passive-controlled hub is the combination of two mechanisms. One is the passive-teetered and damping mechanism, and the other is the passive-variable-pitch mechanism. These mechanism are carried out by the combination of the teetering and feathering motions. When the wind speed exceeds the rated wind speed, the blade is passively teetered in a downwind direction and, simultaneously, a feathering mechanism, which is linked to the teetering mechanism through a connecting rods, is activated. Testing of the model horizontal axis wind turbine in a wind tunnel showed that the passive-controlled hub mechanism can suppress the over-rotational speed of the rotor. By the application of the passive-controlled hub mechanism, the maximum rotor speed is reduced to about 60%.

  5. Analysis of wind turbine blade behavior under static dual axis loads

    Energy Technology Data Exchange (ETDEWEB)

    Son, Byung Jik [Korea Univ., Seoul (Korea, Republic of); Huh, Yong Hak; Kim, Dong Jin; Kim, Jong Il [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2012-03-15

    For the assessment of the performance of a wind turbine blade, a simulated loading test may be required. In this study, the blade behavior was investigated through numerical analysis using a dual axis loading test, closely simulating the real operation conditions. The blade structure for the 100 kw class wind turbine system was modeled using the finite element (FE) program ANSYS. The failure criteria and buckling analysis under dual axis loading were examined. The failure analysis, including fiber failure and inter fiber failure, was performed with Puck's failure criterion. As the dual axis load ratio increases, the relatively increased stress occurs at the trailing edge and skin surface 3300-3600mm away from the root. Furthermore, it is revealed that increasing the dual axis load ratio makes the location that is weakest against buckling move toward the root part. Thus, it is seen that the dual axis load test may be an essential requirement for the verification of blade performance.

  6. Torsional Stiffness Effects on the Dynamic Stability of a Horizontal Axis Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Min-Soo Jeong

    2013-04-01

    Full Text Available Aeroelastic instability problems have become an increasingly important issue due to the increased use of larger horizontal axis wind turbines. To maintain these large structures in a stable manner, the blade design process should include studies on the dynamic stability of the wind turbine blade. Therefore, fluid-structure interaction analyses of the large-scaled wind turbine blade were performed with a focus on dynamic stability in this study. A finite element method based on the large deflection beam theory is used for structural analysis considering the geometric nonlinearities. For the stability analysis, a proposed aerodynamic approach based on Greenberg’s extension of Theodorsen’s strip theory and blade element momentum method were employed in conjunction with a structural model. The present methods proved to be valid for estimations of the aerodynamic responses and blade behavior compared with numerical results obtained in the previous studies. Additionally, torsional stiffness effects on the dynamic stability of the wind turbine blade were investigated. It is demonstrated that the damping is considerably influenced by variations of the torsional stiffness. Also, in normal operating conditions, the destabilizing phenomena were observed to occur with low torsional stiffness.

  7. A 3-D aerodynamic method for the analysis of isolated horizontal-axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Ammara, I.; Masson, C.; Paraschivoiu, I. [Ecole Polytechnique, Montreal (Canada)

    1997-12-31

    In most existing performance-analysis methods, wind turbines are considered isolated so that interference effects caused by other rotors or by the site topography are neglected. The main objective of this paper is to propose a practical 3-D method suitable for the study of these effects, in order to optimize the arrangement and the positioning of Horizontal-Axis Wind Turbines (HAWTs) in a wind farm. In the proposed methodology, the flow field around isolated HAWTs is predicted by solving the 3-D, time-averaged, steady-state, incompressible, Navier-Stokes equations in which the turbines are represented by distributions of momentum sources. The resulting governing equations are solved using a Control-Volume Finite Element Method (CVFEM). The fundamental aspects related to the development of a practical 3-D method are discussed in this paper, with an emphasis on some of the challenges that arose during its implementation. The current implementation is limited to the analysis of isolated HAWTs. Preliminary results have indicated that, the proposed 3-D method reaches the same level of accuracy, in terms of performance predictions, that the previously developed 2-D axisymmetric model and the well-known momentum-strip theory, while still using reasonable computers resources. It can be considered as a useful tool for the design of HAWTs. Its main advantages, however, are its intrinsic capacity to predict the details of the flow in the wake, and its capabilities of modelling arbitrary wind-turbine arrangements and including ground effects.

  8. The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers

    Science.gov (United States)

    Parker, Colin M.; Leftwich, Megan C.

    2016-05-01

    This work visualizes the flow surrounding a scaled model vertical axis wind turbine at realistic operating conditions. The model closely matches geometric and dynamic properties—tip speed ratio and Reynolds number—of a full-size turbine. The flow is visualized using particle imaging velocimetry (PIV) in the midplane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Time-averaged results show an asymmetric wake behind the turbine, regardless of tip speed ratio, with a larger velocity deficit for a higher tip speed ratio. For the higher tip speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04U_∞. Phase-averaged vorticity fields—achieved by syncing the PIV system with the rotation of the turbine—show distinct structures form from each turbine blade. There were distinct differences in results by tip speed ratios of 0.9, 1.3, and 2.2 of when in the cycle structures are shed into the wake—switching from two pairs to a single pair of vortices being shed—and how they convect into the wake—the middle tip speed ratio vortices convect downstream inside the wake, while the high tip speed ratio pair is shed into the shear layer of the wake. Finally, results show that the wake structure is much more sensitive to changes in tip speed ratio than to changes in Reynolds number.

  9. Structural effects of unsteady aerodynamic forces on horizontal-axis wind turbines

    Science.gov (United States)

    Miller, M. S.; Shipley, D. E.

    1994-08-01

    Due to its renewable nature and abundant resources, wind energy has the potential to fulfill a large portion of this nation's energy needs. The simplest means of utilizing wind energy is through the use of downwind, horizontal-axis wind turbines (HAWT) with fixed-pitch rotors. This configuration regulates the peak power by allowing the rotor blade to aerodynamically stall. The stall point, the point of maximum coefficient of lift, is currently predicted using data obtained from wind tunnel tests. Unfortunately, these tests do not accurately simulate conditions encountered in the field. Flow around the tower and nacelle coupled with inflow turbulence and rotation of the turbine blades create unpredicted aerodynamic forces. Dynamic stall is hypothesized to occur. Such aerodynamic loads are transmitted into the rotor and tower causing structural resonance that drastically reduces the design lifetime of the wind turbine. The current method of alleviating this problem is to structurally reinforce the tower and blades. However, this adds unneeded mass and, therefore, cost to the turbines. A better understanding of the aerodynamic forces and the manner in which they affect the structure would allow for the design of more cost effective and durable wind turbines. Data compiled by the National Renewable Energy Laboratory (NREL) for a downwind HAWT with constant chord, untwisted, fixed-pitch rotors is analyzed. From these data, the actual aerodynamic characteristics of the rotor are being portrayed and the potential effects upon the structure can for the first time be fully analyzed. Based upon their understanding, solutions to the problem of structural resonance are emerging.

  10. Structure design and experimental appraisal of the drag force type vertical axis wind turbine

    International Nuclear Information System (INIS)

    Experiments were conducted to estimate the performance of drag force type vertical axis wind turbine with an opening-shutting rotor. It was operated by the difference in drag force generated on both sides of the blades. The rotational speed was measured by a tachometer in a wind tunnel and the tunnel wind speed was measured by using a pitot-static tube and a micro manometer. The performance test for a prototype was accomplished by calculating power, power coefficient, torque coefficient from the measurement of torque and rpm by a dynamometer controller. Various design parameters, such as the number of blades(B), blade aspect ratio(W/R), angle of blades(α) and drag coefficient acting on a blade, were considered for optimal conditions. At the experiment of miniature model, maximum efficiency was found at N=15, α=60 .deg. and W/R=0.32. The measured test variables were power, torque, rotational speed, and wind speeds. The data presented are in the form of power and torque coefficients as a function of tip-speed ratio V/U. Maximum power was found in case of Ω=0.33, when the power and torque coefficient were 0.14 and 0.37 respectively. Comparing model test with prototype test, similarity law by advance ratio for vertical axis wind turbine was confirmed

  11. The impact of inertial forces on morphing wind turbine blade in vertical axis configuration

    International Nuclear Information System (INIS)

    Highlights: • A novel flexible VAWT has been experimentally tested alongside numerically simulations. • Using FEA and CFD, direction of blade bending was predicted from inertial and aerodynamic forces. • High-speed camera footage has been used to validate the model. • The flexible VAWT was found to self-start in the majority of tests, while the rigid one did not. • It is suggested that flexible VAWTs can have improved performance in part-load applications. - Abstract: A novel flexible blade concept with the ability to morph and geometrically adapt to changing flow conditions has been proposed to improve part-load performance of horizontal-axis wind turbines. The extension of these benefits to a vertical axis wind turbine would make wind technology a more competitive player in the energy market. Both flexible and rigid wind turbine rotor blades for vertical axis application were modeled, designed, manufactured and tested. Their performances were tested in a low speed wind tunnel. The predicted magnitude and direction of blade morph was validated using a high speed camera as well as finite element analysis. The comparative results of straight rigid and straight morphing blades show that the coefficient of performance greatly depends on the tip speed ratio. Overall, the morphing blade has better performance at low RPMs, but the rigid blade performed better at high RPMs. It was observed that the flexible blade self-started in the majority of the experiments. At high RPM, the centrifugal force overwhelmed the lift force, bending the flexible blade out of phase in an undesired direction increasing drag and therefore reducing the coefficient of performance

  12. Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine

    Science.gov (United States)

    Kamada, Yasunari; Maeda, Takao; Naito, Keita; Ouchi, Yuu; Kozawa, Masayoshi

    This paper describes an experimental field study of the rotor aerodynamics of wind turbines. The test wind turbine is a horizontal axis wind turbine, or: HAWT with a diameter of 10m. The pressure distributions on the rotating blade are measured with multi point pressure transducers. Sectional aerodynamic forces are analyzed from pressure distribution. Blade root moments are measured simultaneously by a pair of strain gauges. The inflow wind is measured by a three component sonic anemometer, the local inflow of the blade section are measured by a pair of 7 hole Pitot tubes. The relation between the aerodynamic moments on the blade root from pressure distribution and the mechanical moment from strain gauges is discussed. The aerodynamic moments are estimated from the sectional aerodynamic forces and show oscillation caused by local wind speed and direction change. The mechanical moment shows similar oscillation to the aerodynamic excepting the short period oscillation of the blade first mode frequency. The fluctuation of the sectional aerodynamic force triggers resonant blade oscillations. Where stall is present along the blade section, the blade's first mode frequency is dominant. Without stall, the rotating frequency is dominant in the blade root moment.

  13. A direct method for evaluating performance of horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Maalawi, K.Y.; Badawy, M.T.S. [National Research Center, Dokki, Cairo (Egypt). Mechanical Engineering Dept.

    2001-06-01

    This paper presents a direct approach for the determination of aerodynamic performance characteristics of horizontal axis wind turbines. Based on Glauert's solution of an ideal windmill along with an exact trigonometric function method, analytical closed form equations are derived and given for preliminary determination of the optimum chord and twist distributions. The variation of the angle of attack of the relative wind along blade span is then obtained directly from a unique equation for a known rotor size and refined blade geometry. A case study including the analysis of an existing turbine model is given and results are discussed and compared with those obtained by other investigators. It is shown that the approach used in this study is efficient and saves much of the computational time as compared with the commonly used iterative procedures. (Author)

  14. Development and testing of vortex generators for small horizontal axis wind turbines

    Science.gov (United States)

    Gyatt, G. W.

    1986-01-01

    Vortex generators (VGs) for a small (32 ft diameter) horizontal axis wind turbine, the Carter Model 25, have been developed and tested. Arrays of VGs in a counterrotating arrangement were tested on the inbound half-span, outboard half-span, and on the entire blade. VG pairs had their centerlines spaced at a distance of 15% of blade chord, with a spanwise width of 10% of blade chord. Each VG had a length/height ratio of 4, with a height of between 0.5% and 1.0% of the blade chord. Tests were made with roughness strips to determine whether VGs alleviated the sensitivity of some turbines to an accumulation of bugs and dirt on the leading edge. Field test data showed that VGs increased power output up to 20% at wind speeds above 10 m/s with only a small (less than 4%) performance penalty at lower speeds. The VGs on the outboard span of the blade were more effective than those on inner sections. For the case of full span coverage, the energy yearly output increased almost 6% at a site with a mean wind speed of 16 mph. The VGs did reduce the performance loss caused by leading edge roughness. An increase in blade pitch angle has an effect on the power curve similar to the addition of VGs. VGs alleviate the sensitivity of wind turbine rotors to leading edge roughness caused by bugs and drift.

  15. Analysis of aerodynamic load on straight-bladed vertical axis wind turbine

    Science.gov (United States)

    Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Kawabata, Toshiaki; Furukawa, Kazuma

    2014-08-01

    This paper presents a wind tunnel experiment for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed vertical axis wind turbine (VAWT) depending on several values of tip speed ratio. In the present study, the wind turbine is a four-bladed VAWT. The test airfoil of blade is symmetry airfoil (NACA0021) with 32 pressure ports used for the pressure measurements on blade surface. Based on the pressure distributions which are acted on the surface of rotor blade measured during rotation by multiport pressure-scanner mounted on a hub, the power, tangential force, lift and drag coefficients which are obtained by pressure distribution are discussed as a function of azimuthally position. And then, the loads which are applied to the entire wind turbine are compared with the experiment data of pressure distribution. As a result, it is clarified that aerodynamic forces take maximum value when the blade is moving to upstream side, and become small and smooth at downstream side. The power and torque coefficients which are based on the pressure distribution are larger than that by torque meter.

  16. Analysis and Improvement of Aerodynamic Performance of Straight Bladed Vertical Axis Wind Turbines

    Science.gov (United States)

    Ahmadi-Baloutaki, Mojtaba

    Vertical axis wind turbines (VAWTs) with straight blades are attractive for their relatively simple structure and aerodynamic performance. Their commercialization, however, still encounters many challenges. A series of studies were conducted in the current research to improve the VAWTs design and enhance their aerodynamic performance. First, an efficient design methodology built on an existing analytical approach is presented to formulate the design parameters influencing a straight bladed-VAWT (SB-VAWT) aerodynamic performance and determine the optimal range of these parameters for prototype construction. This work was followed by a series of studies to collectively investigate the role of external turbulence on the SB-VAWTs operation. The external free-stream turbulence is known as one of the most important factors influencing VAWTs since this type of turbines is mainly considered for urban applications where the wind turbulence is of great significance. Initially, two sets of wind tunnel testing were conducted to study the variation of aerodynamic performance of a SB-VAWT's blade under turbulent flows, in two major stationary configurations, namely two- and three-dimensional flows. Turbulent flows generated in the wind tunnel were quasi-isotropic having uniform mean flow profiles, free of any wind shear effects. Aerodynamic force measurements demonstrated that the free-stream turbulence improves the blade aerodynamic performance in stall and post-stall regions by delaying the stall and increasing the lift-to-drag ratio. After these studies, a SB-VAWT model was tested in the wind tunnel under the same type of turbulent flows. The turbine power output was substantially increased in the presence of the grid turbulence at the same wind speeds, while the increase in turbine power coefficient due to the effect of grid turbulence was small at the same tip speed ratios. The final section presents an experimental study on the aerodynamic interaction of VAWTs in arrays

  17. Aerodynamic design of a 300 kW horizontal axis wind turbine for province of Semnan

    International Nuclear Information System (INIS)

    Highlights: ► We model a 300 kW HAWT for Haddadeh in Semnan. ► BEM method employed RISØ-A1-18 aerofoil. ► Rotor design is based on a cubic wind speed. ► Cubic wind speed is calculated from Weibull distribution. ► Weibull distribution uses 1 year wind data in Haddadeh. - Abstract: In this research, Blade Element Momentum theory (BEM) is used to design a HAWT blade for a 300 kW horizontal axis wind turbine. The airfoil is RISØ-A1-18, produced by RISØ National Laboratory, Denmark. Desirable properties of this airfoil are related to enhancement of aerodynamic and structure interactions. Design parameters considered here are wind tip speed ratio, nominal wind speed and diameter of rotor. The nominal wind speed was obtained from statistical analysis of wind speed data from province of Semnan in Iran. BEM is used for obtaining maximum lift to drag ratio for each elemental constitution of the blade. Obtaining chord and twist distribution at assumed tip speed ratio of blade, the aerodynamic shape of the blade in every part is specified which correspond to maximum accessible power coefficient. The design parameters are trust coefficients, power coefficient, angle of attack, angle of relative wind, drag and lift coefficients, axial and angular induction factors. The blade design distributions are presented versus rotor radius for BEM results. The blade shape then can be modified for ease of manufacturing, structural concerns, and to reduce costs.

  18. The horizontal planar structure of kinetic energy in a model vertical-axis wind turbine array

    Science.gov (United States)

    Craig, Anna; Zeller, Robert; Zarama, Francisco; Weitzman, Joel; Dabiri, John; Koseff, Jeffrey

    2013-11-01

    Recent studies have indicated that arrays of vertical axis wind turbines (VAWTs) could potentially harvest significantly more power per unit land area than arrays composed of conventional horizontal axis wind turbines. However, to design VAWT arrays for optimal power conversion, a more comprehensive understanding of inter-turbine energy transfer is needed. In the presented study, a geometrically scaled array of rotating circular cylinders is used to model a VAWT array. The horizontal inter-cylinder mean fluid velocities and Reynolds stresses are measured on several cross-sections using 2D particle image velocimetry in a flume. Two orientations of the array relative to the incoming flow are tested. The results indicate that cylinder rotation drives asymmetric mean flow patterns within and above the array, resulting in non-uniform distributions of turbulent kinetic energy. The variability is observed to be directly related to the ratio of the cylinder rotation speed to the streamwise water velocity. Emphasis is placed on the implications of the asymmetries for power production. Work supported by a Stanford Graduate Fellowship to A.E.C, by funding to J.O.D. from ONR N000141211047 and the Gordon and Betty Moore Foundation through Grant GBMF2645, and by funding from the Environmental Fluid Mechanics Laboratory, Stanford University.

  19. Potential of carbon mitigation by vertical axis wind turbines in urban regions

    Energy Technology Data Exchange (ETDEWEB)

    Popel, K.; Naterer, G.F. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada)

    2009-07-01

    The environmental impact of climate change is quickly gaining momentum and its alleviation is of significant importance. Reducing pollutants such as carbon dioxide (CO{sub 2}) emissions is crucial to sustainability. Because of its emission-free operation, the capacity of wind power has expanded rapidly to make a significant contribution to global electricity generation. Specifically, a significant potential for vertical axis wind turbines (VAWTs) to provide small localized power generation in urban areas has not been fully utilized. This paper presented an investigation of the potential of carbon mitigation from urban residential wind power systems. Four different wind turbine designs were compared, in terms of greenhouse gas reduction and specific energy distribution of the wind resource. A case study was performed, investigating the CO{sub 2} mitigation that could be achieved through urban residential installations in Toronto. Results were presented to demonstrate that a VAWT covering one square metre, installed in half of Toronto residential dwellings, could mitigate between 29,193 and 138,741 tonnes of carbon dioxide per year. 36 refs., 1 tab., 3 figs.

  20. Effect of moment of inertia to H type vertical axis wind turbine aerodynamic performance

    Science.gov (United States)

    Yang, C. X.; Li, S. T.

    2013-12-01

    The main aerodynamic performances (out power out power coefficient torque torque coefficient and so on) of H type Vertical Axis wind Turbine (H-VAWT) which is rotating machinery will be impacted by moment of inertia. This article will use NACA0018 airfoil profile to analyze that moment of inertia through impact performance of H type VAWT by utilizing program of Matlab and theory of Double-Multiple Streamtube. The results showed that the max out power coefficient was barely impacted when moment of inertia is changed in a small area,but the lesser moment of inertia's VAWT needs a stronger wind velocity to obtain the max out power. The lesser moment of inertia's VAWT has a big out power coefficient, torque coefficient and out power before it gets to the point of max out power coefficient. Out power coefficient, torque and torque coefficient will obviously change with wind velocity increased for VAWT of the lesser moment of inertia.

  1. Performance evaluation of three cross flow vertical axis wind turbine configurations.

    OpenAIRE

    Colley, Gareth; Mishra, Rakesh; Rao, H.V.; Woolhead, R.

    2009-01-01

    The performance output of three Vertical Axis Wind Turbine (VAWT) configurations has been evaluated using a two-dimensional Computational Fluid Dynamic (CFD) model. Data has been obtained using a quasi-steady Multi Reference Frame (MRF) approach in which the three variants were subjected to an inlet velocity of 4m/s and rotor blade tip speed ratios (λ) in the range of 0 to 0.6. The results obtained show a clear reduction in torque output as both the number of stator and rotor blades decrease....

  2. Rotor instrumentation circuits for the Sandia 34-meter vertical axis wind turbine

    Science.gov (United States)

    Sutherland, Herbert J.; Stephenson, William A.

    1988-07-01

    Sandia National Laboratories has erected a research oriented, 34-meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas, which has been designated the Sandia 34-m VAWT Test Bed. To meet present and future research needs, the machine was equipped with a large array of sensors. This manuscript details the sensors initially placed on the rotor, their respective instrumentation circuits, and the provisions incorporated into the design of the rotor instrumentation circuits for future research. This manuscript was written as a reference manual for the rotor instrumentation of the Test Bed.

  3. Numerical investigation of the aerodynamic performance for the newly designed cavity vane type vertical axis wind turbine

    Science.gov (United States)

    Suffer, K. H.; Usubamatov, R.; Quadir, G. A.; Ismail, K. A.

    2015-05-01

    Research and development activities in the field of renewable energy, especially wind and solar, have been considerably increased, due to the worldwide energy crisis and high global emission. However, the available technical designs are not yet adequate to develop a reliable distributed wind energy converter for low wind speed conditions. The last few years have proved that Vertical Axis Wind Turbines (VAWTs) are more suitable for urban areas than Horizontal Axis Wind Turbines (HAWTs). To date, very little has been published in this area to assess good performance and lifetime of VAWTs either in open or urban areas. The power generated by vertical axis wind turbines is strongly dependent on the aerodynamic performance of the turbines. The main goal of this current research is to investigate numerically the aerodynamic performance of a newly designed cavity type vertical axis wind turbine. In the current new design the power generated depends on the drag force generated by the individual blades and interactions between them in a rotating configuration. For numerical investigation, commercially available computational fluid dynamic (CFD) software GAMBIT and FLUENT were used. In this numerical analysis the Shear Stress Transport (SST) k-ω turbulence model is used which is better than the other turbulence models available as suggested by some researchers. The computed results show good agreement with published experimental results.

  4. Wind turbine

    International Nuclear Information System (INIS)

    The title invention concerns a wind turbine with a rotor, consisting of a number of blades, each with a front edge and an irregular shaped (sawtooth) back edge. This wind turbine aims at reducing the noise pollution of wind turbines. 1 fig

  5. Wind Turbine Blade Design

    OpenAIRE

    Richard J. Crossley; Peter J. Schubel

    2012-01-01

    A detailed review of the current state-of-art for wind turbine blade design is presented, including theoretical maximum efficiency, propulsion, practical efficiency, HAWT blade design, and blade loads. The review provides a complete picture of wind turbine blade design and shows the dominance of modern turbines almost exclusive use of horizontal axis rotors. The aerodynamic design principles for a modern wind turbine blade are detailed, including blade plan shape/quantity, aerofoil selection ...

  6. A New Method for Horizontal Axis Wind Turbine (HAWT Blade Optimization

    Directory of Open Access Journals (Sweden)

    Mohammadreza Mohammadi

    2016-02-01

    Full Text Available Iran has a great potential for wind energy. This paper introduces optimization of 7 wind turbine blades for small and medium scales in a determined wind condition of Zabol site, Iran, where the average wind speed is considered 7 m /s. Considered wind turbines are 3 bladed and radius of 7 case study turbine blades are 4.5 m, 6.5 m, 8 m, 9 m, 10 m, 15.5 m and 20 m. As the first step, an initial design is performed using one airfoil (NACA 63-215 across the blade. In the next step, every blade is divided into three sections, while the 20 % of first part of the blade is considered as root, the 5% of last the part is considered as tip and the rest of the blade as mid part. Providing necessary input data, suitable airfoils for wind turbines including 43 airfoils are extracted and their experimental data are entered in optimization process. Three variables in this optimization problem would be airfoil type, attack angle and chord, where the objective function is maximum output torque. A MATLAB code was written for design and optimization of the blade, which was validated with a previous experimental work. In addition, a comparison was made to show the effect of optimization with two variables (airfoil type and attack angle versus optimization with three variables (airfoil type, attack angle and chord on output torque increase. Results of this research shows a dramatic increase in comparison to initial designed blade with one airfoil where two variable optimization causes 7.7% to 22.27 % enhancement and three variable optimization causes 17.91% up to 24.48% rise in output torque .Article History: Received Oct 15, 2015; Received in revised form January 2, 2016; Accepted January 14, 2016; Available online How to Cite This Article: Mohammadi, M., Mohammadi, A. and Farahat, S. (2016 A New Method for Horizontal Axis Wind Turbine (HAWT Blade Optimization. Int. Journal of Renewable Energy Development, 5(1,1-8. http://dx.doi.org/10.14710/ijred.5.1.1-8

  7. Simulating Dynamic Stall Effects for Vertical Axis Wind Turbines Applying a Double Multiple Streamtube Model

    Directory of Open Access Journals (Sweden)

    Eduard Dyachuk

    2015-02-01

    Full Text Available The complex unsteady aerodynamics of vertical axis wind turbines (VAWT poses significant challenges to the simulation tools. Dynamic stall is one of the phenomena associated with the unsteady conditions for VAWTs, and it is in the focus of the study. Two dynamic stall models are compared: the widely-used Gormont model and a Leishman–Beddoes-type model. The models are included in a double multiple streamtube model. The effects of flow curvature and flow expansion are also considered. The model results are assessed against the measured data on a Darrieus turbine with curved blades. To study the dynamic stall effects, the comparison of force coefficients between the simulations and experiments is done at low tip speed ratios. Simulations show that the Leishman–Beddoes model outperforms the Gormont model for all tested conditions.

  8. Computational Fluid Dynamics based Fault Simulations of a Vertical Axis Wind Turbines

    OpenAIRE

    Park, Kyoo-seon; Asim, Taimoor; Mishra, Rakesh

    2012-01-01

    Due to depleting fossil fuels and a rapid increase in the fuel prices globally, the search for alternative energy sources is becoming more and more significant. One of such energy source is the wind energy which can be harnessed with the use of wind turbines. The fundamental principle of wind turbines is to convert the wind energy into first mechanical and then into electrical form. The relatively simple operation of such turbines has stirred the researchers to come up with innovative designs...

  9. Optical vortex tracking studies of a horizontal axis wind turbine in yaw using laser-sheet, flow visualisation

    Science.gov (United States)

    Grant, I.; Parkin, P.; Wang, X.

    Experimental studies have been conducted on a 0.9 m diameter, horizontal axis wind turbine (HAWT) placed in the open jet of a closed return wind tunnel. The turbine was tested in a three blade and a two blade configuration. The power coefficient of the turbine was measured and wake flow studies conducted for a range of yawed flows by tilting the rotor plane at various angles up to 30° to the incident wind direction. The motion of the shed vorticity was followed using laser-sheet flow visualisation with the overall wake deflection being measured. The results were compared with theoretical predictions and with studies conducted elsewhere.

  10. The Influence of Rotor Configurations on the Energy Production in an Array of Vertical-Axis Wind Turbines

    Science.gov (United States)

    Kinzel, Matthias; Araya, Daniel; Dabiri, John

    2012-11-01

    We analyze the flow field within an array of 18 vertical-axis wind turbines (VAWTs) at full-scale and under natural wind conditions. The emphasis is on the energy flux into the turbine array and the energy extraction by the turbines. The wind velocities throughout the turbine array are measured using a portable meteorological tower with seven, vertically-staggered, three-component ultrasonic anemometers. These measurements yield a detailed insight into the turbine wakes and the recovery of the flow. A high planform kinetic energy flux is detected, which enables the flow velocities to return to 95% of the upwind value within six rotor diameters downwind from a turbine row. This is significantly faster than the recovery behind a typical horizontal-axis wind turbine (HAWT). The Presentation will compare the results for different rotor configurations. Conclusions will be drawn about the influence of these configurations on the power production of the individual turbines as well as the turbine array as a whole. The authors gratefully acknowledge funding from the National Science Foundation Energy for Sustainability program (Grant No. CBET-0725164) and the Gordon and Betty Moore Foundation.

  11. Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines

    Science.gov (United States)

    Owens, B. C.; Griffith, D. T.

    2014-06-01

    The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs.

  12. Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs

  13. Performance Optimization and Analysis of Variable-Pitch Vertical-Axis Wind Turbines

    Science.gov (United States)

    Rempfer, Dietmar; Kozak, Peter

    2013-11-01

    The blades of conventional vertical-axis wind turbines (VAWT) operate in a complex unsteady environment, characterized by periodically changing relative flow velocity and angle of attack, accentuated by passage through the wake of preceding blades. For many operating regimes, in particular for operation at low tip-speed ratio which is of interest in order to reduce mechanical loads, the blades experience dynamic stall, reducing overall efficiency and leading to significant torque fluctuations. Periodic pitch variation of the turbine blades may therefore be considered in order to avoid stall and increase efficiency. In this presentation we will discuss gains in operating characteristics and efficiency that can be obtained by such a strategy. We will describe a full optimization of turbine efficiency based on double-multiple streamtube models. In addition, we will compare these results, and discuss the physics of the associated flows using data obtained from two-dimensional Navier-Stokes simulations of such turbines. It will be shown that, while peak efficiency of a variable-pitch VAWT is only moderately higher than the one of a conventional fixed-pitch VAWT, we can achieve a much broader maximum, leading to significantly improved performance in practical use.

  14. Torque Characteristics Simulation on Small Scale Combined Type Vertical Axis Wind Turbine

    Science.gov (United States)

    Feng, Fang; Li, Shengmao; Li, Yan; Xu, Dan

    The straight-bladed vertical axis wind turbine (SB-VAWT) receives more attentions recently for its goodness of simple design, low cost and good maintenance. However, its starting performance is poor. To increase its starting torque, Savonius rotor was combined on the SB-VAWT in this study because Savonius rotor has good starting torque coefficient. Based on the wind tunnel tests data, a small scaled combined type SB-VAWT (CSB-VAWT) which has 50W rated power output was designed. The starting torque coefficient, dynamic torque and power performance were analyzed. Both the starting and dynamic torque performance of the CSB-VAWT have been greatly improved according to the simulation results.

  15. VAWT (Vertical-Axis Wind Turbines) stochastic loads using a 3-D turbulence simulation

    Science.gov (United States)

    Homicz, Gregory F.

    The stochastic (i.e., random) aerodynamic loads created by atmospheric turbulence are thought to be a primary cause of premature blade fatigue in Vertical-Axis Wind Turbines (VAWTs). This paper describes a computer program for the prediction of these stochastic loads, based on a full 3-D simulation of the turbulence field. Computed results using this model are compared with the deterministic (periodic) loads which occur in the absence of turbulence, and with the predictions of an earlier model which employed a 1-D simulation of the turbulence. The results show that not only are instantaneous loads significantly influenced by turbulence, but that load distributions averaged over numerous revolutions are affected as well. A particularly interesting finding is that, for the same mean wind speed, the average output power is altered by turbulence.

  16. Adjoint Airfoil Optimization of Darrieus-Type Vertical Axis Wind Turbine

    Science.gov (United States)

    Fuchs, Roman; Nordborg, Henrik

    2012-11-01

    We present the feasibility of using an adjoint solver to optimize the torque of a Darrieus-type vertical axis wind turbine (VAWT). We start with a 2D cross section of a symmetrical airfoil and restrict us to low solidity ratios to minimize blade vortex interactions. The adjoint solver of the ANSYS FLUENT software package computes the sensitivities of airfoil surface forces based on a steady flow field. Hence, we find the torque of a full revolution using a weighted average of the sensitivities at different wind speeds and angles of attack. The weights are computed analytically, and the range of angles of attack is given by the tip speed ratio. Then the airfoil geometry is evolved, and the proposed methodology is evaluated by transient simulations.

  17. Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Mazharul; Ting, David S.-K.; Fartaj, Amir [Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, Ont. (Canada)

    2008-05-15

    Since ancient past humans have attempted to harness the wind energy through diversified means and vertical axis wind turbines (VAWTs) were one of the major equipment to achieve that. In this modern time, there is resurgence of interests regarding VAWTs as numerous universities and research institutions have carried out extensive research activities and developed numerous designs based on several aerodynamic computational models. These models are crucial for deducing optimum design parameters and also for predicting the performance before fabricating the VAWT. In this review, the authors have attempted to compile the main aerodynamic models that have been used for performance prediction and design of straight-bladed Darrieus-type VAWT. It has been found out that at present the most widely used models are the double-multiple streamtube model, Vortex model and the Cascade model. Each of these three models has its strengths and weaknesses which are discussed in this paper. (author)

  18. Development and testing of tip devices for horizontal axis wind turbines

    Science.gov (United States)

    Gyatt, G. W.; Lissaman, P. B. S.

    1985-01-01

    A theoretical and field experimental program has been carried out to investigate the use of tip devices on horizontal axis wind turbine rotors. The objective was to improve performance by the reduction of tip losses. While power output can always be increased by a simple radial tip extension, such a modification also results in an increased gale load both because of the extra projected area and longer moment arm. Tip devices have the potential to increase power output without such a structural penalty. A vortex lattice computer model was used to optimize three basic tip configuration types for a 25 kW stall limited commercial wind turbine. The types were a change in tip planform, and a single-element and double-element nonplanar tip extension (winglets). A complete data acquisition system was developed which recorded three wind speed components, ambient pressure, temperature, and turbine output. The system operated unattended and could perform real-time processing of the data, displaying the measured power curve as data accumulated in either a bin sort mode or polynomial curve fit. Approximately 270 hr of perormance data were collected over a three-month period. The sampling interval was 2.4 sec; thrus over 400,000 raw data points were logged. Results for each of the three new tip devices, compared with the original tip, showed a small decrease (of the order of 1 kW) in power output over the measured range of wind speeds from cut-in at about 4 m/s to over 20 m/s, well into the stall limiting region. Changes in orientation and angle-of-attack of the winglets were not made. For aircraft wing tip devices, favorable tip shapes have been reported and it is likely that the tip devices tested in this program did not improve rotor performance because they were not optimally adjusted.

  19. Wind energy conversion. Volume II. Aerodynamics of horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.H.; Dugundji, J.; Martinez-Sanchez, M.; Gohard, J.; Chung, S.; Humes, T.

    1978-09-01

    The basic aerodynamic theory of the wind turbine is presented, starting with the simple momentum theory based on uniform inflow and an infinite number of blades. The basic vortex theory is then developed. Following these basics, the more complete momentum theory, including swirl, non-uniform inflow, the effect of a finite number of blades, and empirical correction for the vortex ring condition is presented. The more complete vortex theory is presented which includes unsteady aerodynamic effects but based on a semi-rigid wake. Methods of applying this theory for performance estimation are discussed as well as for the purpose of computing time varying airloads due to windshear and tower interference.

  20. Aerodynamic Analysis of a Vertical Axis Wind Turbine in a Diffuser

    NARCIS (Netherlands)

    Geurts, B.M.; Simao Ferreira, C.; Van Bussel, G.J.W.

    Wind energy in the urban environment faces complex and often unfavorable wind conditions. High turbulence, lower average wind velocities and rapid changes in the wind direction are common phenomena in the complex built environments. A possible way to improve the cost-efficiency of urban wind turbine

  1. The Performance Evaluation of Horizontal Axis Wind Turbine Torque and Mechanical Power Generation Affected by the Number of Blade

    Directory of Open Access Journals (Sweden)

    Tan Rodney H. G.

    2016-01-01

    Full Text Available This paper presents the evaluation of horizontal axis wind turbine torque and mechanical power generation and its relation to the number of blades at a given wind speed. The relationship of wind turbine rotational frequency, tip speed, minimum wind speed, mechanical power and torque related to the number of blades are derived. The purpose of this study is to determine the wind energy extraction efficiency achieved for every increment of blade number. Effective factor is introduced to interpret the effectiveness of the wind turbine extracting wind energy below and above the minimum wind speed for a given number of blades. Improve factor is introduced to indicate the improvement achieved for every increment of blades. The evaluation was performance with wind turbine from 1 to 6 blades. The evaluation results shows that the higher the number of blades the lower the minimum wind speed to achieve unity effective factor. High improve factors are achieved between 1 to 2 and 2 to 3 blades increment. It contributes to better understanding and determination for the choice of the number of blades for wind turbine design.

  2. Development and Performance Test of a Micro Horizontal Axis Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Engr. Muhammad Shuwa,

    2016-02-01

    Full Text Available This study describes the development and experimental studies performed to investigate the performance of a 1.5 m long Horizontal Axis Wind Turbine blade on a 4meter tower using 8o as an angle of attack. The blade was design using the Blade Element Momentum Theory (BEM, blade parameters such as the chord length, angle of attack, Tip Speed Ratio, Rotor diameter, Lift and Drag force were determined. The designed blade profile was developed and tested on an open field at Maiduguri where the average wind speed is 3.89m/s, the result shows that the maximum extractable power is 142.66 W at a wind relative velocity of 4.8m/s when the blade is at 8o angle of attack and 3 x 106 Reynolds Number. However, measured power increase consistently with increased in wind speed. Therefore the developed HAWT blade profile has shown the ability to perform thus, the blade is expected to be a means of extracting and generating energy from wind which is a renewable, clean and locally available source of energy in Maiduguri and its environs. The use of this energy source will reduce the large dependence on non-renewable, expensive and environmentally unfriendly means of energy generation.

  3. Wind Turbine Blade Design

    Directory of Open Access Journals (Sweden)

    Richard J. Crossley

    2012-09-01

    Full Text Available A detailed review of the current state-of-art for wind turbine blade design is presented, including theoretical maximum efficiency, propulsion, practical efficiency, HAWT blade design, and blade loads. The review provides a complete picture of wind turbine blade design and shows the dominance of modern turbines almost exclusive use of horizontal axis rotors. The aerodynamic design principles for a modern wind turbine blade are detailed, including blade plan shape/quantity, aerofoil selection and optimal attack angles. A detailed review of design loads on wind turbine blades is offered, describing aerodynamic, gravitational, centrifugal, gyroscopic and operational conditions.

  4. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  5. Wind turbine wake aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Vermeer, L.J. [Delft University of Technology (Netherlands). Section Wind Energy; Sorensen, J.N. [Technical University of Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering; Crespo, A. [Universidad Politecnica de Madrid (Spain). Dpto. de Ingenieria Energetica y Fluidomecanica

    2003-10-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions. For the far wake, the survey focuses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines. The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines. (author)

  6. Dynamics modeling and periodic control of horizontal-axis wind turbines

    Science.gov (United States)

    Stol, Karl Alexander

    2001-07-01

    The development of large multi-megawatt wind turbines has increased the need for active feedback control to meet multiple performance objectives. Power regulation is still of prime concern but there is an increasing interest in mitigating loads for these very large, dynamically soft and highly integrated power systems. This work explores the opportunities for utilizing state space modeling, modal analysis, and multi-objective controllers in advanced horizontal-axis wind turbines. A linear state-space representation of a generic, multiple degree-of-freedom wind turbine is developed to test various control methods and paradigms. The structural model, SymDyn, provides for limited flexibility in the tower, drive train and blades assuming a rigid component architecture with joint springs and dampers. Equations of motion are derived symbolically, verified by numerical simulation, and implemented in the Matlab with Simulink computational environment. AeroDyn, an industry-standard aerodynamics package for wind turbines, provides the aerodynamic load data through interfaced subroutines. Linearization of the structural model produces state equations with periodic coefficients due to the interaction of rotating and non-rotating components. Floquet theory is used to extract the necessary modal properties and several parametric studies identify the damping levels and dominant dynamic coupling influences. Two separate issues of control design are investigated: full-state feedback and state estimation. Periodic gains are developed using time-varying LQR techniques and many different time-invariant control designs are constructed, including a classical PID controller. Disturbance accommodating control (DAC) allows the estimation of wind speed for minimization of the disturbance effects on the system. Controllers are tested in simulation for multiple objectives using measurement of rotor position and rotor speed only and actuation of independent blade pitch. It is found that

  7. Studies on Horizontal Axis Wind Turbine with Passive Teetered Brake & Damper Mechanism

    OpenAIRE

    Shimizu, Yukimaru; KAMADA, Yasunari; MAEDA, Takao

    1998-01-01

    In order to improve the reliability of megawatt wind turbines, the passive teetered brake & damper mechanism is applied. Its two unique effects, as its name implies, are braking and damping. The passive brake & damper mechanism is useful for variable speed control of the large wind turbine. It is comprised of teetering and feathering mechanisms. When the wind speed exceeds the rated wind speed, the blade is passively teetered in a downwind direction and, at the same time, a feathering mechani...

  8. Two-way Fluid-Structure Interaction Simulation of a Micro Horizontal Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Yi-Bao Chen

    2015-01-01

    Full Text Available A two-way Fluid-Structure Interaction (FSI analyses performed on a micro horizontal axis wind turbine (HAWT which coupled the CFX solver with Structural solver in ANSYS Workbench was conducted in this paper. The partitioned approach-based non-conforming mesh methods and the k-ε turbulence model were adopted to perform the study. Both the results of one-way and two-way FSI analyses were presented and compared with each other, and discrepancy of the results, especially the mechanical properties, were analysed. Grid convergence which is crucial to the results was performed, and the relationship between the inner flow field domain (rotational domain and the number of grids (number of cells, elements was verified for the first time. Dynamical analyses of the wind turbine were conducted using the torque as a reference value, to verify the rationality of the model which dominates the accuracy of results. The optimal case was verified and used to conduct the study, thus, the results derived from the simulation of the FSI are accurate and credible.

  9. Vortex shedding from vertical axis wind turbine blades under linear motion

    Science.gov (United States)

    Dunne, Reeve; McKeon, Beverley

    2014-11-01

    A NACA 0018 airfoil was pitched and surged sinusoidally in in a mean free stream flow at Rec = 100 , 000 to simulate the flow over vertical axis wind turbine (VAWT) blades. Angle of attack variations between α = +/-30° and velocity variation of Umax/-Umin Umean = . 80 at a reduced frequency k =Ωc/2U∞ = . 12 result in strong dynamic stall on the blade. Multiple flow regimes occur during the airfoil motion resulting in vortex shedding over a large range of frequencies. A model of the phase averaged (based on airfoil angle of attack and velocity) flow developed using dynamic mode decomposition highlights the evolution of the leading edge or dynamic stall vortex at the airfoil frequency. Instantaneous results show vortex shedding at frequencies up to 100 times higher than the frequency of the pitch/surge motion and smeared out by the phase averaging process. The implications for forcing on the blade (and associated wind turbine) are described. This research is funded by the Gordon and Betty Moore Foundation through Grant GBMF #2645 to the California Institute of Technology.

  10. Visualization by PIV of dynamic stall on a vertical axis wind turbine

    Science.gov (United States)

    Simão Ferreira, Carlos; van Kuik, Gijs; van Bussel, Gerard; Scarano, Fulvio

    2009-01-01

    The aerodynamic behavior of a vertical axis wind turbine (VAWT) is analyzed by means of 2D particle image velocimetry (PIV), focusing on the development of dynamic stall at different tip speed ratios. The VAWT has an unsteady aerodynamic behavior due to the variation with the azimuth angle θ of the blade’s sections’ angle of attack, perceived velocity and Reynolds number. The phenomenon of dynamic stall is then an inherent effect of the operation of a VAWT at low tip speed ratios, impacting both loads and power. The present work is driven by the need to understand this phenomenon, by visualizing and quantifying it, and to create a database for model validation. The experimental method uses PIV to visualize the development of the flow over the suction side of the airfoil for two different reference Reynolds numbers and three tip speed ratios in the operational regime of a small urban wind turbine. The field-of-view of the experiment covers the entire rotation of the blade and almost the entire rotor area. The analysis describes the evolution of the flow around the airfoil and in the rotor area, with special focus on the leading edge separation vortex and trailing edge shed vorticity development. The method also allows the quantification of the flow, both the velocity field and the vorticity/circulation (only the results of the vorticity/circulation distribution are presented), in terms of the phase locked average and the random component.

  11. Visualization by PIV of dynamic stall on a vertical axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Simao Ferreira, Carlos; Kuik, Gijs van; Bussel, Gerard van [Delft University of Technology, DUWIND, Wind Energy Section, HS Delft (Netherlands); Scarano, Fulvio [Delft University of Technology, Faculty of Aerospace, Aerodynamics, HS Delft (Netherlands)

    2009-01-15

    The aerodynamic behavior of a vertical axis wind turbine (VAWT) is analyzed by means of 2D particle image velocimetry (PIV), focusing on the development of dynamic stall at different tip speed ratios. The VAWT has an unsteady aerodynamic behavior due to the variation with the azimuth angle {theta} of the blade's sections' angle of attack, perceived velocity and Reynolds number. The phenomenon of dynamic stall is then an inherent effect of the operation of a VAWT at low tip speed ratios, impacting both loads and power. The present work is driven by the need to understand this phenomenon, by visualizing and quantifying it, and to create a database for model validation. The experimental method uses PIV to visualize the development of the flow over the suction side of the airfoil for two different reference Reynolds numbers and three tip speed ratios in the operational regime of a small urban wind turbine. The field-of-view of the experiment covers the entire rotation of the blade and almost the entire rotor area. The analysis describes the evolution of the flow around the airfoil and in the rotor area, with special focus on the leading edge separation vortex and trailing edge shed vorticity development. The method also allows the quantification of the flow, both the velocity field and the vorticity/circulation (only the results of the vorticity/circulation distribution are presented), in terms of the phase locked average and the random component. (orig.)

  12. A NASTRAN-based computer program for structural dynamic analysis of Horizontal Axis Wind Turbines

    Science.gov (United States)

    Lobitz, Don W.

    1995-05-01

    This paper describes a computer program developed for structural dynamic analysis of horizontal axis wind turbines (HAWT's). It is based on the finite element method through its reliance on NASTRAN for the development of mass, stiffness, and damping matrices of the tower end rotor, which are treated in NASTRAN as separate structures. The tower is modeled in a stationary frame and the rotor in one rotating at a constant angular velocity. The two structures are subsequently joined together (external to NASTRAN) using a time-dependent transformation consistent with the hub configuration. Aerodynamic loads are computed with an established flow model based on strip theory. Aeroelastic effects are included by incorporating the local velocity and twisting deformation of the blade in the load computation. The turbulent nature of the wind, both in space and time, is modeled by adding in stochastic wind increments. The resulting equations of motion are solved in the time domain using the implicit Newmark-Beta integrator. Preliminary comparisons with data from the Boeing/NASA MOD2 HAWT indicate that the code is capable of accurately and efficiently predicting the response of HAWT's driven by turbulent winds.

  13. Wind Turbine Structural Dynamics

    Science.gov (United States)

    Miller, D. R. (Editor)

    1978-01-01

    A workshop on wind turbine structural dynamics was held to review and document current United States work on the dynamic behavior of large wind turbines, primarily of the horizontal-axis type, and to identify and discuss other wind turbine configurations that may have lower cost and weight. Information was exchanged on the following topics: (1) Methods for calculating dynamic loads; (2) Aeroelasticity stability (3) Wind loads, both steady and transient; (4) Critical design conditions; (5) Drive train dynamics; and (6) Behavior of operating wind turbines.

  14. Kalman Filter Based Data Fusion for Bi-Axial Neutral Axis Tracking in Wind Turbine Towers

    DEFF Research Database (Denmark)

    Soman, Rohan; Malinowski, Pawel; Schmidt Paulsen, Uwe;

    2015-01-01

    Structural Health Monitoring (SHM) systems allow early detection of damage which allows maintenance planning and reduces the maintenance cost. So there is a lot of active research in the area for SHM of civil and mechanical structures. The SHM system uses a damage sensitive feature, and any change...... in the structure is reflected by a change in this feature. If this change is above a threshold the structure is said to be damaged. In most applications the determination of this threshold is based on engineering judgment and the previous experience of the operator. These practices are highly subjective...... demonstrates a methodology for the selection of threshold for damage detection based on qualitative data acquired from several damage scenarios of a 10 MW wind turbine. The damage indicator is the change of neutral axis (NA) which is tracked using Kalman Filter (KF). Based on the level of damage to be detected...

  15. Investigation of the two-element airfoil with flap structure for the vertical axis wind turbine

    International Nuclear Information System (INIS)

    The aerodynamic performance of Vertical axis wind turbine (VAWT) is not as simple as its structure because of the large changing range of angle of attack. We have designed a new kind of two-element airfoil for VAWT on the basis of NACA0012. CFD calculation has been confirmed to have high accuracy by comparison with the experiment data and Xfoil result. The aerodynamic parameter of two-element airfoil has been acquired by CFD calculation in using the Spalart-Allmaras (S-A) turbulence model and the Simple scheme. The relationship between changings of angle of attack and flap's tilt angle has been found and quantified. The analysis will lay the foundation for further research on the control method for VAWT

  16. Aerodynamic Optimization of Vertical Axis Wind Turbine with Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Ertem, Sercan; Ferreira, Carlos; Gaunaa, Mac;

    2016-01-01

    Vertical Axis Wind Turbines (VAWT) are competitive concepts for very large scale (1020 MW) floating offshore applications. Rotor circulation control (loading control) opens a wide design space to enhance the aerodynamic and operational features of VAWT. The modified linear derivation of the...... Actuator Cylinder Model (Mod-Lin ACM) is used as the aerodynamic model to assess VAWT performance throughout the work. As the first step, optimum aerodynamic loadings of a VAWT with infinite number of blades are studied. Next, for the case of finite number of blades, direct and inverse optimization...... approaches are used. The direct method is coupled with a hybrid numerical optimizer to serve as a global method for designing flap sequences. The effectiveness of trailing edge flap on VAWT is investigated for three aerodynamic objectives which lead to improved power efficiency, rated power control and peak...

  17. Aerodynamic Optimization of Vertical Axis Wind Turbine with Trailing Edge Flap

    DEFF Research Database (Denmark)

    Ertem, Sercan; Ferreira, Carlos Simao; Gaunaa, Mac;

    2016-01-01

    Vertical Axis Wind Turbines (VAWT) are competitive concepts for very large scale (10-20 MW)floating ofshore applications. Rotor circulation control (loading control) opens a wide design space to enhance the aerodynamic and operational features of VAWT. The modied linear derivation of the Actuator....... The direct method is coupled with a hybrid numerical optimizer to serve as a global method for designingap sequences. The efectiveness of trailing edgeap on VAWT is investigated for three aerodynamic objectives which lead to improved power effciency, rated power control and peak load control. The...... Cylinder Model (Mod-Lin ACM) is used as the aerodynamic model to assess VAWT performance throughout the work. As the rst step, optimum aerodynamic loadings of a VAWT with innite number of blades are studied. Next, for the case of nite number of blades, direct and inverse optimization approaches are used...

  18. Strain gauge validation experiments for the Sandia 34-meter VAWT (Vertical Axis Wind Turbine) test bed

    Science.gov (United States)

    Sutherland, Herbert J.

    1988-08-01

    Sandia National Laboratories has erected a research oriented, 34- meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas. This machine, designated the Sandia 34-m VAWT Test Bed, is equipped with a large array of strain gauges that have been placed at critical positions about the blades. This manuscript details a series of four-point bend experiments that were conducted to validate the output of the blade strain gauge circuits. The output of a particular gauge circuit is validated by comparing its output to equivalent gauge circuits (in this stress state) and to theoretical predictions. With only a few exceptions, the difference between measured and predicted strain values for a gauge circuit was found to be of the order of the estimated repeatability for the measurement system.

  19. Investigation of the two-element airfoil with flap structure for the vertical axis wind turbine

    Science.gov (United States)

    Wei, Y.; Li, C.

    2013-12-01

    The aerodynamic performance of Vertical axis wind turbine (VAWT) is not as simple as its structure because of the large changing range of angle of attack. We have designed a new kind of two-element airfoil for VAWT on the basis of NACA0012. CFD calculation has been confirmed to have high accuracy by comparison with the experiment data and Xfoil result. The aerodynamic parameter of two-element airfoil has been acquired by CFD calculation in using the Spalart-Allmaras (S-A) turbulence model and the Simple scheme. The relationship between changings of angle of attack and flap's tilt angle has been found and quantified. The analysis will lay the foundation for further research on the control method for VAWT.

  20. Visualization study on the static flow field around a straight-bladed vertical axis wind turbine

    Science.gov (United States)

    Li, Yan; Tagawa, Kotaro

    2010-03-01

    Visual experiments based on the smoke wire way were carried out on a small model of Straight-blade Vertical Axis Wind Turbine (SB-VAWT) to invest the relationship between the static flow field characteristics and the rotor azimuth angle. The test rotor had 3 blades with NACA0018 aerofoil. The rotor diameter and blade chord were 0.3m and 0.07m, respectively. Visual photos of the static flow path lines in and around the rotor were obtained at every 5 degrees of the azimuth angle. Further, numerical computations of the static flow filed were also carried out for comparison with the same situation as the visual tests and the static torques at different azimuth angles were calculated. According to the results of visual tests and computations, the dependence of the starting performance on the azimuth angle was discussed. The solidity is an important factor affecting the starting performance of the SB-VAWT.

  1. Dynamic separation on a pitching and surging airfoil as a model for flow over vertical axis wind turbine blades

    OpenAIRE

    Dunne, R; McKeon, B. J.

    2014-01-01

    Vertical axis wind turbine (VAWT) blades undergo dynamic separation due to the large angle of attack variation they experience during a turbine rotation. The flow over a single blade was modeled using a sinusoidally pitching and surging airfoil in a constant free stream flow at a mean chord Reynolds number of 10^5. Two-dimensional, time resolved velocity fields were acquired using particle image velocimetry (PIV). Vorticity contours were used to visualize shear layer and vortex activity. A...

  2. Condition Based Monitoring of Vertical Axis Wind Turbines using Computational Fluid Dynamics

    OpenAIRE

    Park, Kyooseon; Asim, Taimoor; Mishra, Rakesh; Pradhan, Suman

    2012-01-01

    Scarcity of fossil fuels and a rapid escalation in the fuel prices around the world recently has lead the search for alternative energy sources. Out of the available energy sources, wind is being considered as the prime next generation energy source. The fundamental principle of wind turbines is to convert the wind energy into first mechanical and then into electrical form. The relatively simple operation of such turbines has stirred the researchers to come up with innovative designs for glob...

  3. Validation of the Beddoes-Leishman Dynamic Stall Model for Horizontal Axis Wind Turbines using MEXICO data

    NARCIS (Netherlands)

    Pereira, R.; Schepers, G.; Pavel, M.D.

    2011-01-01

    The aim of this study is to assess the load predicting capability of a classical Beddoes-Leishman dynamic stall model in a horizontal axis wind turbine (HAWT) environment, in the presence of yaw-misalignment. The dynamic stall model was tailored to the HAWT environment, and validated against unstead

  4. Effect of moment of inertia to H type vertical axis wind turbine aerodynamic performance

    International Nuclear Information System (INIS)

    The main aerodynamic performances (out power out power coefficient torque torque coefficient and so on) of H type Vertical Axis wind Turbine (H-VAWT) which is rotating machinery will be impacted by moment of inertia. This article will use NACA0018 airfoil profile to analyze that moment of inertia through impact performance of H type VAWT by utilizing program of Matlab and theory of Double-Multiple Streamtube. The results showed that the max out power coefficient was barely impacted when moment of inertia is changed in a small area,but the lesser moment of inertia's VAWT needs a stronger wind velocity to obtain the max out power. The lesser moment of inertia's VAWT has a big out power coefficient, torque coefficient and out power before it gets to the point of max out power coefficient. Out power coefficient, torque and torque coefficient will obviously change with wind velocity increased for VAWT of the lesser moment of inertia

  5. Concept Testing of a Simple Floating Offshore Vertical Axis Wind Turbine

    OpenAIRE

    Friis Pedersen, Troels; Schmidt Paulsen, Uwe; Aagaard Madsen , Helge; Nielsen, Per Hørlyk; Enevoldsen, Karen; Tesauro, Angelo; Kragh, Knud Abildgaard; Vita, Luca; Ritchie, Ewen; Leban, Krisztina; Wedell-Heinen, Jacob; Helbo Larsen, Karsten

    2013-01-01

    The wind energy community is researching new concepts for deeper sea offshore wind turbines. One such concept is the DeepWind concept. The concept is being assessed in a EU-FP7 project, called DeepWind. Objectives of this project are to assess large size wind turbines (5-20MW) based on the concept. One task in the project is to test a 1kW concept rotor (not a scaled down MW size rotor) partly under field conditions in a fjord in Denmark, partly in a water tank under controlled conditions in N...

  6. Wind tunnel test on a straight wing vertical-axis wind turbine with attachment on blade surface

    Energy Technology Data Exchange (ETDEWEB)

    Yan, L. [Northeast Agricultural Univ., Harbin (China). Faculty of Engineering; Kotaro, T. [Tottori Univ., Tottori (Japan). Faculty of Regional Sciences; Wei, L. [Chinese Wind Energy Assoc., Beijing (China)

    2008-07-01

    There is a renewed interest in straight wing vertical axis wind turbines (SW-VAWT) which are usually installed on the roofs of high buildings in cities, urban areas and high mountain areas for independent electric power supply. SW-VAWTs have the advantages of simple design and low cost, as well as wind direction independence compared to the horizontal system. However, when SW-VAWTs are installed in cold regions, ice, snow and other attachments can affect its performance. In this study, clay was attached to the leading edge of the blade surface to determine how the performance of SW-VAWTs are affected by the mechanism of icing. Wind tunnel tests were used to study the rotational performance and power performance of the turbine blades. Icing prevention was also investigated. The attachment of clay on the leading edge of blade surface made the rotational performance of the SW-VAWT worse. The attachment of clay on the leading edge of blade surface also made the output power performance of the SW-VAWT worse. 8 refs., 2 tabs., 8 figs.

  7. Numerical Investigation of Synthetic-jet based Flow Control on Vertical-axis Wind Turbine Blades

    Science.gov (United States)

    Menon, Ashwin; Tran, Steven; Sahni, Onkar

    2013-11-01

    Vertical-axis wind turbines encounter large unsteady aerodynamic loads in a sustained fashion due to the continuously varying angle of attack that is experienced by turbine blades during each revolution. Moreover, the detachment of the leading edge vortex at high angles of attack leads to sudden change in aerodynamic loads that result in structural vibrations and fatigue, and possibly failure. This numerical study focuses on using synthetic-jet based fluidic actuation to reduce the unsteady loading on VAWT blades. In the simulations, the jets are placed at the dominant separation location that is observed in the baseline case. We consider different tip-speed ratios, O(2-5), and we also study the effect of blowing ratio (to be in O(0.5-1.5)) and reduced frequency, i.e., ratio of jet frequency to flow frequency (to be in O(5-15)). For all cases, unsteady Reynolds-averaged Navier-Stokes simulations are carried out by using the Spallart-Allamaras turbulence model, where stabilized finite element method is employed for spatial discretization along with an implicit time-integration scheme.

  8. Experimental investigation of the leading edge vortex on vertical axis wind turbine blades

    Science.gov (United States)

    Dunne, Reeve; McKeon, Beverley

    2012-11-01

    A NACA 0018 airfoil is pitched about the leading edge over a large angle of attack range (+/- ~40°) at a chord Reynolds number of 110,000 to simulate the flow over a single blade in a vertical axis wind turbine (VAWT). Particle image velocimetry (PIV) measurements are made to investigate the effects of pitching on leading edge vortex (LEV) development and separation. Time resolved experiments are performed to track vortex formation and convection over the airfoil for sinusoidal pitching motions corresponding to a VAWT trajectory as well as impulsive pitch up and pitch down motions. These results are compared to the wake of steady, post stall, high angle of attack airfoils (α =20° -30°). The characteristics of the leading edge vortex development and subsequent separation from the airfoil are discussed, with a view to characterizing its effect on power generation with VAWTs and future flow control strategies for turbine performance improvement. Funding from the Gordon and Betty Moore Foundation is gratefully acknowledged.

  9. The small wind turbine field lab

    OpenAIRE

    Laveyne, Joannes; Van Wyngene, Karel; Kooning, Jeroen De; Van Ackere, Samuel; Van Eetvelde, Greet; Vandevelde, Lieven

    2013-01-01

    The emerging market of small wind turbines (SWT) is characterised by a large variety of turbine types as well as turbine performance. The abundance of more ‘exotic’ types of vertical axis wind turbines (VAWT) next to the more traditional horizontal axis wind turbines (HAWT) shows that this market is still developing. However, some technologies have proven to possess the same potential typically only found in larger wind turbines. To study the (lack of) performance of current small wind turbin...

  10. An investigation on the aerodynamic performance of a vertical axis wind turbine

    Science.gov (United States)

    Vaishnav, Etesh

    Scope and Method of Study. The two dimensional unsteady flow around a vertical axis wind turbine (VAWT) comprising three rotating symmetric airfoils (NACA0018) was studied numerically with the consideration of the near wake. The flow around the wind turbine was simulated using ANSYS FLUENT 12.0.16 at Reynolds number of 106. ICEM CFD was used as a pre-processor to generate hexahedral grid and arbitrary sliding mesh technique was implemented to create a moving mesh. SST k-o turbulence model was employed for the analysis and simulation was set to run at several tip speed ratios ranging from 1 to 5. The variation of the performance coefficient (Cp) as a function of tip speed ratio (lambda) was investigated by plotting a graph between them. A validation was made by comparing CFD results with experimental results. Maximum Cp of 0.34 was obtained at lambda of 3.8. In addition, the effect of the rotor diameter on the VAWT's performance was investigated. In this regard, rotor diameter was halved and the angular velocity was doubled to keep the tip speed ratio constant. Furthermore, the effect of laminar boundary layer separation on Cp of a VAWT was studied by comparing the results of Laminar viscous model and RANS turbulence model. Apart from that, the effect of solidity on Cp was investigated by comparing the Cp obtained from six bladed turbine with the three bladed turbine. Findings and Conclusions. Influence of rotor diameter on the aerodynamic performance of a VAWT was investigated and found that Cp remained almost constant at the same value of lambda ranging from 1 to 5. This was due to the fact that the ratio of the chord length and the rotor radius were kept the same in both cases. For Laminar flow at low Reynolds number, Cp was found to be low due to the presence of leading edge separation bubble and reduced lift-to-drag ratio. Therefore, in order to increase Cp of a VAWT at low Reynolds numbers (e.g. small VAWT), different blade geometry (e.g. cambered) and

  11. Evaluation of techniques for computer modeling and real time control of a horizontal axis wind turbine blade

    Science.gov (United States)

    Wesenberg, Alan

    1995-05-01

    Wind power generating turbines operate under constant as well as rapidly changing conditions. With fixed pitch blades, many wind turbines are allowed to operate regardless of wind conditions as long as they are able to produce more electricity than it takes to get them started. However, the lifecycle of the turbine blades is often much shorter than expected because of the unsteady aerodynamic environment under which they rotate. Therefore, the National Renewable Energy Laboratory (NREL) has implemented a testing program to determine the aerodynamic conditions, and the frequency with which they occur, which cause the largest amount of fatigue on their variable pitch, three bladed downwind horizontal axis wind turbine (HAWT). Different techniques will be examined for analytically modeling the flow conditions with separation over a rotating turbine blade. Then, some different techniques for implementing a feedback control loop will be investigated to optimize the movement of the variable pitch blades on the NREL HAWT. The different methods analyzed will fall in the two-dimensional, incompressible area with most also being for steady state conditions. The final objective is to provide the reader with a background in dealing with the aerodynamic conditions surrounding a rotating wind turbine in an unsteady aerodynamic environment.

  12. Measurements of the Aerodynamic Normal Forces on a 12-kW Straight-Bladed Vertical Axis Wind Turbine

    OpenAIRE

    Eduard Dyachuk; Morgan Rossander; Anders Goude; Hans Bernhoff

    2015-01-01

    The knowledge of unsteady forces is necessary when designing vertical axis wind turbines (VAWTs). Measurement data for turbines operating at an open site are still very limited. The data obtained from wind tunnels or towing tanks can be used, but have limited applicability when designing large-scale VAWTs. This study presents experimental data on the normal forces of a 12-kW straight-bladed VAWT operated at an open site north of Uppsala, Sweden. The normal forces are measured with four single...

  13. The design, simulation and testing of an urban vertical axis wind turbine with the omni-direction-guide-vane

    International Nuclear Information System (INIS)

    Graphical abstract: Solar energy, renewable energy, urban wind energy, environment, augmented wind turbine. Highlights: ► A system for on-site wind–solar hybrid power generation and rain water collection. ► The omni-direction-guide-vane (ODGV) overcomes the weak wind and turbulence conditions in urban areas. ► The ODGV improves the wind turbine performance by speeding-up and guiding the wind. ► The ODGV is designed to blend into the building architecture with safety enhancement. ► The wind tunnel test and CFD simulation results are presented. - Abstract: A novel omni-direction-guide-vane (ODGV) that surrounds a vertical axis wind turbine (VAWT) is designed to improve the wind turbine performance. Wind tunnel testing was performed to evaluate the performance of a 5-bladed (Wortmann FX63-137 airfoil) H-rotor wind turbine, with and without the integration of the ODGV. The test was conducted using a scaled model turbine which was constructed to simulate the VAWT enclosed by the ODGV placed on a building. The VAWT shows an improvement on its self-starting behavior where the cut-in speed was reduced with the integration of the ODGV. Since the VAWT is able to self-start at a lower wind speed, the working hour of the wind turbine would increase. At a wind speed of 6 m/s and under free-running condition (only rotor inertia and bearing friction were applied), the ODGV helps to increase the rotor rotational speed by 182%. With extra load application at the same wind speed (6 m/s), the wind turbine power output was increased by 3.48 times at its peak torque with the aid of the ODGV. The working concept of the ODGV is to minimize the negative torque zone of a lift-type VAWT and to reduce turbulence and rotational speed fluctuation. It was verified by re-simulating the torque coefficient data of a single bladed (NACA 0015 airfoil) VAWT published by the Sandia National Laboratories. From the simulation results, with the presence of the ODGV, it was shown that the

  14. Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Yeoman, J.C. Jr.

    1978-12-01

    This evaluation of wind turbines is part of a series of Technology Evaluations of possible components and subsystems of community energy systems. Wind turbines, ranging in size from 200 W to 10 MW, are discussed as candidates for prime movers in community systems. Estimates of performance characteristics and cost as a function of rated capacity and rated wind speed are presented. Data concerning material requirements, environmental effects, and operating procedures also are given and are represented empirically to aid computer simulation.

  15. Active stall control for large offshore horizontal axis wind turbines; a conceptual study considering different actuation methods

    International Nuclear Information System (INIS)

    The increasing size of Horizontal Axis Wind Turbines and the trend to install wind farms further offshore demand more robust design options. If the pitch system could be eliminated, the availability of Horizontal Axis Wind Turbines should increase. This research investigates the use of active stall control to regulate power production in replacement of the pitch system. A feasibility study is conducted using a blade element momentum code and taking the National Renewable Energy Laboratory 5 MW turbine as baseline case. Considering half of the blade span is equipped with actuators, the required change in the lift coefficient to regulate power was estimated in ΔCl = 0.7. Three actuation technologies are investigated, namely Boundary Layer Transpiration, Trailing Edge Jets and Dielectric Barrier Discharge actuators. Results indicate the authority of the actuators considered is not sufficient to regulate power, since the change in the lift coefficient is not large enough. Active stall control of Horizontal Axis Wind Turbines appears feasible only if the rotor is re-designed from the start to incorporate active-stall devices

  16. Optimal Design of a Micro Vertical Axis Wind Turbine for Sustainable Urban Environment

    OpenAIRE

    Park, Kyooseon

    2013-01-01

    The need for sustainable energy sources becomes greater each year due to the continued depletion of fossil fuels and the resulting energy crisis. Solutions to this problem are potentially in the form of wind turbines, for sustainable urban environment, that have been receiving increased support. At present, a number of wind turbines have been developed that show significant increase in performance compared to existing technologies. From an extensive literature review, a number of key issues h...

  17. RANS study of unsteady flow around a profile blade : application to stall of horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Belkheir, N. [Khemis Miliana Univ., Ain Defla (Algeria); Dizene, R. [Univ. des Sciences et de la Technologie Houari Boumediene, Algiers (Algeria). Laboratoire de Mecanique Avancee; Khelladi, S.; Massouh, F.; Dobrev, I. [Arts et Metiers Paris Tech., Paris (France)

    2010-07-01

    The shape of an airfoil is designed to achieve the best aerodynamic performance. An aerofoil section undergoes dynamic stall when subjected to any form of unsteady angle of pitch. The study of a horizontal-axis wind turbine (HAWT) under wind operating conditions is complex because it is subject to instantaneous speed and wind direction variation. When turbine blades are driven into a dynamic stall, the lift coefficient drops suddenly resulting in a degradation in aerodynamic performance. This study presented steady and unsteady wind load predictions over an oscillating S809 airfoil tested in a subsonic wind tunnel. A model of sinusoidal pitch oscillations was used. The values for the angles of attack in steady state ranged from -20 to +40 degrees. The model considered 3 frequencies and 2 amplitudes. The two-dimensional numerical model simulated the instantaneous change of wind direction with respect to the turbine blade. Results were compared with data measurements of S809 aerofoil. Reasonable deviations were obtained between the predicted and experimental results for pitch oscillations. The URANS approach was used to predict the stall while the software FLUENT was used for the numerical solution. It was concluded that the behaviour of the unsteady flow in the wind farm must be considered in order to obtain an accurate estimate of the wind turbine aerodynamic load. 12 refs., 5 figs.

  18. System Integration of the Horizontal-Axis Wind Turbine: The Design of Turbine Blades with an Axial-Flux Permanent Magnet Generator

    OpenAIRE

    Chi-Jeng Bai; Wei-Cheng Wang; Po-Wei Chen; Wen-Tong Chong

    2014-01-01

    In designing a horizontal-axis wind turbine (HAWT) blade, system integration between the blade design and the performance test of the generator is important. This study shows the aerodynamic design of a HAWT blade operating with an axial-flux permanent magnet (AFPM) generator. An experimental platform was built to measure the performance curves of the AFPM generator for the purpose of designing the turbine blade. An in-house simulation code was developed based on the blade element momentum (B...

  19. A Large-eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer

    Science.gov (United States)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2016-04-01

    Vertical axis wind turbines (VAWTs) offer some advantages over their horizontal axis counterparts, and are being considered as a viable alternative to conventional horizontal axis wind turbines (HAWTs). Nevertheless, a relative shortage of scientific, academic and technical investigations of VAWTs is observed in the wind energy community with respect to HAWTs. Having this in mind, in this work, we aim to study the wake of a single VAWT, placed in the atmospheric boundary layer, using large-eddy simulation (LES) coupled with actuator line model (ALM). It is noteworthy that this is the first time that such a study is being performed. To do this, for a typical 1 MW VAWT design, first, the variation of power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed using LES-ALM, and an optimum combination of chord length and tip-speed ratio is obtained. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulent wake flow statistics. Keywords: vertical axis wind turbine (VAWT); VAWT wake; Atmospheric Boundary Layer (ABL); large eddy simulation (LES); actuator line model (ALM); turbulence.

  20. Aerodynamic Response of a Pitching Airfoil with Pulsed Circulation Control for Vertical Axis Wind Turbine Applications

    Science.gov (United States)

    Panther, Chad C.

    Vertical Axis Wind Turbines (VAWTs) have experienced a renewed interest in development for urban, remote, and offshore applications. Past research has shown that VAWTs cannot compete with Horizontals Axis Wind Turbines (HAWTs) in terms of energy capture efficiency. VAWT performance is plagued by dynamic stall (DS) effects at low tip-speed ratios (lambda), where each blade pitches beyond static stall multiple times per revolution. Furthermore, for lambdagenerator, lower sound emission, and non-cantilevered blades with longer life. Thus, mitigating dynamic stall and improving VAWT blade aerodynamics for competitive power efficiency has been a popular research topic in recent years and the directive of this study. Past research at WVU focused on the addition of circulation control (CC) technology to improve VAWT aerodynamics and expand the operational envelope. A novel blade design was generated from the augmentation of a NACA0018 airfoil to include CC capabilities. Static wind tunnel data was collected for a range of steady jet momentum coefficients (0.01≤ Cmu≤0.10) for analytical vortex model performance projections. Control strategies were developed to optimize CC jet conditions throughout rotation, resulting in improved power output for 2≤lambda≤5. However, the pumping power required to produce steady CC jets reduced net power gains of the augmented turbine by approximately 15%. The goal of this work was to investigate pulsed CC jet actuation to match steady jet performance with reduced mass flow requirements. To date, no experimental studies have been completed to analyze pulsed CC performance on a pitching airfoil. The research described herein details the first study on the impact of steady and pulsed jet CC on pitching VAWT blade aerodynamics. Both numerical and experimental studies were implemented, varying Re, k, and +/-alpha to match a typical VAWT operating environment. A range of reduced jet frequencies (0.25≤St≤4) were analyzed with varying

  1. Aerodynamic Response of a Pitching Airfoil with Pulsed Circulation Control for Vertical Axis Wind Turbine Applications

    Science.gov (United States)

    Panther, Chad C.

    Vertical Axis Wind Turbines (VAWTs) have experienced a renewed interest in development for urban, remote, and offshore applications. Past research has shown that VAWTs cannot compete with Horizontals Axis Wind Turbines (HAWTs) in terms of energy capture efficiency. VAWT performance is plagued by dynamic stall (DS) effects at low tip-speed ratios (lambda), where each blade pitches beyond static stall multiple times per revolution. Furthermore, for lambdaadvantages such as omnidirectional operation, ground proximity of generator, lower sound emission, and non-cantilevered blades with longer life. Thus, mitigating dynamic stall and improving VAWT blade aerodynamics for competitive power efficiency has been a popular research topic in recent years and the directive of this study. Past research at WVU focused on the addition of circulation control (CC) technology to improve VAWT aerodynamics and expand the operational envelope. A novel blade design was generated from the augmentation of a NACA0018 airfoil to include CC capabilities. Static wind tunnel data was collected for a range of steady jet momentum coefficients (0.01≤ Cmu≤0.10) for analytical vortex model performance projections. Control strategies were developed to optimize CC jet conditions throughout rotation, resulting in improved power output for 2≤lambda≤5. However, the pumping power required to produce steady CC jets reduced net power gains of the augmented turbine by approximately 15%. The goal of this work was to investigate pulsed CC jet actuation to match steady jet performance with reduced mass flow requirements. To date, no experimental studies have been completed to analyze pulsed CC performance on a pitching airfoil. The research described herein details the first study on the impact of steady and pulsed jet CC on pitching VAWT blade aerodynamics. Both numerical and experimental studies were implemented, varying Re, k, and +/-alpha to match a typical VAWT operating environment. A range of

  2. CFD analysis of horizontal axis wind turbine blade for optimum value of power

    Energy Technology Data Exchange (ETDEWEB)

    Chandrala, Monir; Choubey, Abhishek; Gupta, Bharat [Department of Mechanical Engineering, Oriental Institute of Science and Technology, Bhopal (India)

    2013-07-01

    With the shortage of fossil fuels, alternative energy has been thrust into the national spotlight as a major necessity in order to keep up with the increasing energy demands of the world. Wind energy has been proven one of the most viable sources of renewable energy. A wind turbine is a rotary device that extracts energy from the wind. Rotor blade is a key element in a wind turbine generator system to convert wind energy into mechanical energy. In this paper rotor blade is made up of single airfoil NACA 0018. The CFD analysis of NACA 0018 airfoil is carried out at various blade angles at 32 m/s wind speed. The analysis showed that blade angle of 10 gives optimum power. The pressure and velocity distributions are plotted. These results are compared with wind tunnel experiment values.

  3. CFD analysis of horizontal axis wind turbine blade for optimum value of power

    Directory of Open Access Journals (Sweden)

    Monir Chandrala, Abhishek Choubey, Bharat Gupta

    2013-01-01

    Full Text Available With the shortage of fossil fuels, alternative energy has been thrust into the national spotlight as a major necessity in order to keep up with the increasing energy demands of the world. Wind energy has been proven one of the most viable sources of renewable energy. A wind turbine is a rotary device that extracts energy from the wind. Rotor blade is a key element in a wind turbine generator system to convert wind energy into mechanical energy. In this paper rotor blade is made up of single airfoil NACA 0018. The CFD analysis of NACA 0018 airfoil is carried out at various blade angles at 32 m/s wind speed. The analysis showed that blade angle 10º gives optimum power. The pressure and velocity distributions are plotted. These results are compared with wind tunnel experiment values.

  4. Design and analysis of a small-scale vertical-axis wind turbine for rooftop power generation

    International Nuclear Information System (INIS)

    This paper described a fluid flow model of a 2-blade vertical axis wind turbine designed for use in crowded urban and rooftop environments. The turbine featured a contoured blade developed to maximize rotational velocity and minimize drag forces. The model was used to determine the turbine's rotational velocities in a range of wind speeds. The analysis included a numerical simulation of air flow across the cup faces at all circumferential locations in order to determine pressure and drag forces. A rigid body dynamic analysis was then conducted to determine the rotational velocity of the turbine. Mass, momentum and turbulence closure equations were presented. Results of the study demonstrated that a turbine rotation rate of 137 rpm was achieved at wind velocities of 30 miles per hour. Wind speeds of 20 and 10 miles per hour resulted in rotational velocities of 91 and 43 rpm. It was concluded that the model can be used to predict the angular velocity of the vertical turbine system. 13 refs., 11 figs

  5. High-efficiency wind turbine

    Science.gov (United States)

    Hein, L. A.; Myers, W. N.

    1980-01-01

    Vertical axis wind turbine incorporates several unique features to extract more energy from wind increasing efficiency 20% over conventional propeller driven units. System also features devices that utilize solar energy or chimney effluents during periods of no wind.

  6. Pole-mounted horizontal axis micro-wind turbines: UK field trial findings and market size assessment

    International Nuclear Information System (INIS)

    This paper discusses the key findings of the pole-mounted turbine (2.5-6 kWp) component of the UK micro-wind trial. The real world performance of horizontal axis turbines is compared with yield estimates based on site wind speed prediction. The distribution of UK agricultural farms is overlaid with wind resource mapping to estimate the number of potential agricultural farm sites for micro-wind. The yield performance of turbines during the monitoring period was observed to be very close to that predicted by NOABL-MCS wind speed estimates. Based on an installation criterion of a maximum 12 year payback time, with a 6% discount rate and micro-generation feed in tariffs available, there are ∼87,000 farm sites for micro-wind in the UK. If 10% of these farms were to install micro-wind turbines (to a capacity of 48 kWp per farm) this would correspond to a capacity of 418 MWp, with an annual generation yield of 1025 GWh, comparable to that of a large, on shore wind farm in the UK. It should be noted that the feed in tariff considered in this paper is that available in the UK in 2011, which, at 26.7 p/kWh (∼30 Euro cents/kWh) represents a significant subsidy. - Highlights: → Estimated 87,000 agricultural farm sites which are economic for pole mounted micro-wind in the UK. → Good agreement between NOABL-MCS yield prediction and site measurements for UK pole mounted turbines. → Pole mounted micro-wind has favourable economics under current UK feed in tariffs.

  7. Modeling, Simulation, Hardware Implementation of a Novel Variable Pitch Control for H-Type Vertical Axis Wind Turbine

    Science.gov (United States)

    Liu, Liqun; Liu, Chunxia; Zheng, Xuyang

    2015-09-01

    It is well known that the fixed pitch vertical axis wind turbine (FP-VAWT) has some disadvantages such as the low start-up torque and inefficient output efficiency. In this paper, the variable pitch vertical axis wind turbine (VP-VAWT) is analyzed to improve the output characteristics of FP-VAWT by discussing the force of the six blade H type vertical axis wind turbine (VAWT) under the stationary and rotating conditions using built the H-type VAWT model. First, the force of single blade at variable pitch and fixed pitch is analyzed, respectively. Then, the resultant force of six blades at different pitch is gained. Finally, a variable pitch control method based on a six blade H type VP-VAWT is proposed, moreover, the technical analysis and simulation results validate that the variable pitch method can improve the start-up torque of VAWT, and increase the utilization efficiency of wind energy, and reduce the blade oscillation, as comparable with that of FP-VAWT.

  8. Experiments on the Performance of Small Horizontal Axis Wind Turbine with Passive Pitch Control by Disk Pulley

    OpenAIRE

    Yu-Jen Chen; Y. C. Shiah

    2016-01-01

    The present work is to design a passive pitch-control mechanism for small horizontal axis wind turbine (HAWT) to generate stable power at high wind speeds. The mechanism uses a disk pulley as an actuator to passively adjust the pitch angle of blades by centrifugal force. For this design, aerodynamic braking is caused by the adjustment of pitch angles at high wind speeds. As a marked advantage, this does not require mechanical brakes that would incur electrical burn-out and structural failure ...

  9. Multi-flexible-body Dynamic Analysis of Horizontal Axis Wind Turbines

    Science.gov (United States)

    Lee, Donghoon; Hodges, Dewey H.; Patil, Mayuresh J.

    2002-10-01

    This article presents a structural dynamic analysis of horizontal axis wind turbines (HAWTs) using a new methodology. The methodology is based on representing a HAWT as a multi-flexible-body system with both rigid- and flexible-body subsystems. The rigid-body subsystems (nacelle, hub) are modelled as interconnected sets of rigid bodies using Kane's method. Kane's method leads to compact equations of motion for rigid-body mechanisms. The flexible-body subsystems (blades, tower) are modelled using geometrically exact, non-linear beam finite elements derived from a mixed variational formulation for the dynamics of moving beams. The use of the mixed formulation allows for the direct determination of constraint forces and moments within the beam finite element and at the boundaries, thus allowing simple connectivity between the finite elements and rigid bodies. The equations for the rigid and flexible subsystems are coupled to obtain a unified framework that models the dynamic behaviour of the complete system. Linearization of the dynamic equations about the steady state solution yields system equations with periodic coefficients that must be solved by Floquet theory to extract the dynamic characteristics. Numerical studies are presented to investigate the natural frequencies and mode shapes for a HAWT with flexible blades and tower.

  10. Aerodynamic and Structural Integrated Optimization Design of Horizontal-Axis Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    2016-01-01

    Full Text Available A procedure based on MATLAB combined with ANSYS is presented and utilized for the aerodynamic and structural integrated optimization design of Horizontal-Axis Wind Turbine (HAWT blades. Three modules are used for this purpose: an aerodynamic analysis module using the Blade Element Momentum (BEM theory, a structural analysis module employing the Finite Element Method (FEM and a multi-objective optimization module utilizing the non-dominated sorting genetic algorithm. The former two provide a sufficiently accurate solution of the aerodynamic and structural performances of the blade; the latter handles the design variables of the optimization problem, namely, the main geometrical shape and structural parameters of the blade, and promotes function optimization. The scope of the procedure is to achieve the best trade-off performances between the maximum Annual Energy Production (AEP and the minimum blade mass under various design requirements. To prove the efficiency and reliability of the procedure, a commercial 1.5 megawatt (MW HAWT blade is used as a case study. Compared with the original scheme, the optimization results show great improvements for the overall performance of the blade.

  11. Numerical investigation of the self-starting of a vertical axis wind turbine

    Science.gov (United States)

    Tsai, Hsieh-Chen; Colonius, Tim

    2014-11-01

    The immersed boundary method is used to simulate the incompressible flow around two-dimensional airfoils at sub-scale Reynolds number in order to investigate the self-starting capability of a vertical-axis wind turbine (VAWT). By investigating a single blade fixed at various angle of attacks, the leading edge vortex (LEV) is shown to play an important role in the starting mechanism for both flat-plate and NACA 0018 blades. Depending on the angle of attack of the blade, as the LEV grows, the corresponding low pressure region results in a thrust in the tangential direction, which produces a positive torque to VAWT. Due to the characteristics of the blades, a NACA 0018 blade produces a larger thrust over a wider range of angle of attacks than a flat-plate blade. Therefore, a VAWT with NACA 0018 blades can self-start more easily than one with flat-plate blades. Moreover, by investigating the starting torque of three-bladed VAWTs fixed at various orientations, the optimal orientation that produces the largest torque to start both VAWTs is with a blade parallel to the flow and facing downstream. The simulations are also compared to results from companion water-tunnel experiments at Caltech. This project is supported by Caltech FLOWE center/Gordon and Betty Moore Foundation.

  12. Fatigue behavior of vertical axis wind turbine airfoils with two weld configurations

    Science.gov (United States)

    Mitchell, M. R.; Murphy, A. R.

    1989-10-01

    A series of narrowband, pseudo-random cyclic fatigue tests on sections of 6063-T651 aluminum, Darrius-type, vertical axis wind turbine (VAWT) airfoils were performed. A load member was designed and constructed that was mounted within the frame of a rigid 200-kip servohydraulic, closed-loop test system to hold the VAWT section and permit cantilever bending along the shear centerline of the beam. A computer program was developed to synthesize a narrow band, pseudo-random load history with fixed root mean square (RMS) stress levels at a given bandwidth and central frequency. Six specimens each of two different weld configurations at the flange mounting plate were tested at several RMS stress levels with failure defined as visual observation of a 3 inch long crack in the VAWT. In order to test at as great a frequency as possible, a 20-kip hydraulic ram with a 10 GPM servovalve was employed with a 20 GPM pump. Tests were performed from 2 to 1.3 ksi RMS on the two-weld configurations. The conclusions are obvious that the fillet weld design is far superior to the butt weld design in the range of variables used in this program.

  13. Coriolis effect on dynamic stall in a vertical axis wind turbine

    Science.gov (United States)

    Tsai, Hsieh-Chen; Colonius, Tim

    2013-11-01

    The immersed boundary method is used to simulate the flow around a two-dimensional rotating NACA 0018 airfoil at moderate (sub-scale) Reynolds number in order to investigate separated flow occurring on a vertical-axis wind turbine (VAWT). The influence of dynamic stall on the forces is characterized as a function of tip-speed ratio. The influence of the Coriolis effect is also investigated by comparing the rotating airfoil to one undergoing a surging and pitching motion that produces an equivalent speed and angle-of-attack variation over the cycle. While the Coriolis force produces only small differences in the averaged forces, it plays an important role during dynamic stall. Due to the fact that the Coriolis force deflects the fluid and propagates the vortices differently, the wake-capturing phenomenon of the trailing edge vortex is observed in the flow around the rotating airfoil during a certain range of azimuthal angle. This wake-capturing of the trailing edge vortex leads to a large decrease in lift. However, because of the phase difference between each wake-capturing, there are only small differences in the average forces. The simulations are also compared to results from companion water-tunnel experiments at Caltech. This project is supported by the Gordon and Betty Moore Foundation.

  14. Three-dimensional flow field around and downstream of a subscale model rotating vertical axis wind turbine

    Science.gov (United States)

    Ryan, Kevin J.; Coletti, Filippo; Elkins, Christopher J.; Dabiri, John O.; Eaton, John K.

    2016-03-01

    Three-dimensional, three-component mean velocity fields have been measured around and downstream of a scale model vertical axis wind turbine (VAWT) operated at tip speed ratios (TSRs) of 1.25 and 2.5, in addition to a non-rotating case. The five-bladed turbine model has an aspect ratio (height/diameter) of 1 and is operated in a water tunnel at a Reynolds number based on turbine diameter of 11,600. Velocity fields are acquired using magnetic resonance velocimetry (MRV) at an isotropic resolution of 1/50 of the turbine diameter. Mean flow reversal is observed immediately behind the turbine for cases with rotation. The turbine wake is highly three-dimensional and asymmetric throughout the investigated region, which extends up to 7 diameters downstream. A vortex pair, generated at the upwind-turning side of the turbine, plays a dominant role in wake dynamics by entraining faster fluid from the freestream and aiding in wake recovery. The higher TSR case shows a larger region of reverse flow and greater asymmetry in the near wake of the turbine, but faster wake recovery due to the increase in vortex pair strength with increasing TSR. The present measurement technique also provides detailed information about flow in the vicinity of the turbine blades and within the turbine rotor. The details of the flow field around VAWTs and in their wakes can inform the design of high-density VAWT wind farms, where wake interaction between turbines is a principal consideration.

  15. Measurements of the Aerodynamic Normal Forces on a 12-kW Straight-Bladed Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Eduard Dyachuk

    2015-08-01

    Full Text Available The knowledge of unsteady forces is necessary when designing vertical axis wind turbines (VAWTs. Measurement data for turbines operating at an open site are still very limited. The data obtained from wind tunnels or towing tanks can be used, but have limited applicability when designing large-scale VAWTs. This study presents experimental data on the normal forces of a 12-kW straight-bladed VAWT operated at an open site north of Uppsala, Sweden. The normal forces are measured with four single-axis load cells. The data are obtained for a wide range of tip speed ratios: from 1.7 to 4.6. The behavior of the normal forces is analyzed. The presented data can be used in validations of aerodynamic models and the mechanical design for VAWTs.

  16. The Performance Test of Three Different Horizontal Axis Wind Turbine (HAWT) Blade Shapes Using Experimental and Numerical Methods

    OpenAIRE

    Wen-Tong Chong; Chi-Jeng Bai; Fei-Bin Hsiao

    2013-01-01

    Three different horizontal axis wind turbine (HAWT) blade geometries with the same diameter of 0.72 m using the same NACA4418 airfoil profile have been investigated both experimentally and numerically. The first is an optimum (OPT) blade shape, obtained using improved blade element momentum (BEM) theory. A detailed description of the blade geometry is also given. The second is an untapered and optimum twist (UOT) blade with the same twist distributions as the OPT blade. The third blade is unt...

  17. Structural Optimization Design of Horizontal-Axis Wind Turbine Blades Using a Particle Swarm Optimization Algorithm and Finite Element Method

    OpenAIRE

    Pan Pan; Rongrong Gu; Jie Zhu; Xin Cai

    2012-01-01

    This paper presents an optimization method for the structural design of horizontal-axis wind turbine (HAWT) blades based on the particle swarm optimization algorithm (PSO) combined with the finite element method (FEM). The main goal is to create an optimization tool and to demonstrate the potential improvements that could be brought to the structural design of HAWT blades. A multi-criteria constrained optimization design model pursued with respect to minimum mass of the blade is developed. Th...

  18. Aerodynamic design and initial performance measurements for the SANDIA 34-metre diameter vertical-axis wind turbine

    Science.gov (United States)

    Berg, Dale E.; Klimas, Paul C.; Stephenson, William A.

    The DOE/Sandia 34-m diameter Vertical-Axis Wind turbine (VAWT) utilizes a step-tapered, multiple-airfoil section blade. One of the airfoil sections is a natural laminar flow profile, the SAND 0018/50, designed specifically for use on VAWTs. The turbine has now been fully operational for more than a year, and extensive turbine aerodynamic performance data have been obtained. This paper reviews the design and fabrication of the rotor blade, with emphasis on the SAND 0018/50 airfoil, and compares the performance measurements to date with the performance predictions. Possible sources of the discrepancies between measured and predicted performance are identified, and plans for additional aerodynamic testing on the turbine are briefly discussed.

  19. Concept Testing of a Simple Floating Offshore Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Schmidt Paulsen, Uwe; Aagaard Madsen, Helge;

    2013-01-01

    varying wind and wave conditions, and to compare such behaviour with computer code calculations. The concept turbine was designed and constructed by the project task partners, and all parts were assembled and installed at sea in the Roskilde fjord right next to DTU Risø campus. The turbine is under a...... testing program of which the initial tests have been completed, and a testing program with various wind and wave conditions are being carried out. The design ideas and the offshore implementation will be demonstrated, and some of the initial testing results of the testing program will be shown....

  20. The influence of noise on the design of horizontal axis wind turbines

    International Nuclear Information System (INIS)

    This wind turbine noise study was initiated and funded by ETSU to help to eliminate noise as an obstacle to the harnessing of wind energy for the clean generation of electrical power. There is an abundance of theoretical papers on aerodynamic noise, but very few contain meaningful, practical verification of the complex analysis by tests on wind turbines where mechanical noise has been eliminated. This serious shortcoming initiated comprehensive tests on the 1MW, three bladed wind turbine at Richborough Power Station. This investigation is an integral part of this project. A study of the available literature on blade induced noise is also part of this project. A report on gearbox noise which is normally the main source of mechanical and discrete noise is also given. Four reports have been written to fulfil the objectives listed by ETSU. This final report summarises and comments on some of the work in the other three reports and also includes an appraisal of the effect and cost of basic design strategy to create acceptably quiet wind turbines. (author)

  1. Real-time simulation of aeroelastic rotor loads for horizontal axis wind turbines

    International Nuclear Information System (INIS)

    Wind turbine drivetrain research and test facilities with hardware-in-the-loop capabilities require a robust and accurate aeroelastic real-time rotor simulation environment. Recent simulation environments do not guarantee a computational response at real-time. Which is why a novel simulation tool has been developed. It resolves the physical time domain of the turbulent wind spectra and the operational response of the turbine at real-time conditions. Therefore, there is a trade-off between accuracy of the physical models and the computational costs. However, the study shows the possibility to preserve the necessary computational accuracy while simultaneously granting dynamic interaction with the aeroelastic rotor simulation environment. The achieved computational costs allow a complete aeroelastic rotor simulation at a resolution frequency of 100 Hz on standard computer platforms. Results obtained for the 5-MW reference wind turbine by the National Renewable Energy Laboratory (NREL) are discussed and compared to NREL's fatigue, aerodynamics, structures, and turbulence (FAST)- Code. The rotor loads show a convincing match. The novel simulation tool is applied to the wind turbine drivetrain test facility at the Center for Wind Power Drives (CWD), RWTH Aachen University to show the real-time hardware-in-the-loop capabilities

  2. Simulation and Wind Tunnel Test on a Straight-Bladed Vertical Axis Wind Turbine

    OpenAIRE

    Yan Li; Fang Feng; Wenqiang Tian; Qingbin He

    2013-01-01

    In this study, we research and develop a program by using single stream-tube theory combined with vortex model which can simulate the torque and power characteristics in this study. To check the efficiency of this program, a model of SB-VAWT was designed and made which had 2 KW capacities at wind speed 12 m/s. Wind tunnel tests were carried out on this model and the test data were analyzed and compared with the simulation results.

  3. GPU Based Fast Free-Wake Calculations For Multiple Horizontal Axis Wind Turbine Rotors

    International Nuclear Information System (INIS)

    Unsteady free-wake solutions of wind turbine flow fields involve computationally intensive interaction calculations, which generally limit the total amount of simulation time or the number of turbines that can be simulated by the method. This problem, however, can be addressed easily using high-level of parallelization. Especially when exploited with a GPU, a Graphics Processing Unit, this property can provide a significant computational speed-up, rendering the most intensive engineering problems realizable in hours of computation time. This paper presents the results of the simulation of the flow field for the NREL Phase VI turbine using a GPU-based in-house free-wake panel method code. Computational parallelism involved in the free-wake methodology is exploited using a GPU, allowing thousands of similar operations to be performed simultaneously. The results are compared to experimental data as well as to those obtained by running a corresponding CPU-based code. Results show that the GPU based code is capable of producing wake and load predictions similar to the CPU- based code and in a substantially reduced amount of time. This capability could allow free- wake based analysis to be used in the possible design and optimization studies of wind farms as well as prediction of multiple turbine flow fields and the investigation of the effects of using different vortex core models, core expansion and stretching models on the turbine rotor interaction problems in multiple turbine wake flow fields

  4. Parametric study on off-design aerodynamic performance of a horizontal axis wind turbine blade and proposed pitch control

    International Nuclear Information System (INIS)

    Highlights: • A pitch controlled 200 kW HAWT blade is designed with BEM for off-design conditions. • Parametric study conducted on power coefficient, axial and angular induction factors. • The optimal pitch angles were determined at off-design operating conditions. - Abstract: In this paper, a 200 kW horizontal axis wind turbine (HAWT) blade is designed using an efficient iterative algorithm based on the blade element momentum theory (BEM) on aerodynamic of wind turbines. The effects of off-design variations of wind speed are investigated on the blade performance parameters according to constant rotational speed of the rotor. The performance parameters considered are power coefficient, axial and angular induction factors, lift and drag coefficients on the blade, angle of attack and angle of relative wind. At higher or lower wind speeds than the designed rated speed, the power coefficient is reduced due to considerable changes in the angle of attacks. Therefore, proper pitch control angles were calculated to extract maximum possible power at various off-design speeds. The results showed a considerable improvement in power coefficient for the pitch controlled blade as compared with the baseline design in whole operating range. The present approach can be equally employed for determining pitch angles to design pitch control system of medium and large-scale wind turbines

  5. Wind Turbine Radar Cross Section

    OpenAIRE

    David Jenn; Cuong Ton

    2012-01-01

    The radar cross section (RCS) of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axi...

  6. Stochastic dynamic response analysis of a floating vertical-axis wind turbine with a semi-submersible floater

    DEFF Research Database (Denmark)

    Wang, Kai; Moan, Torgeir; Hansen, Martin Otto Laver

    2016-01-01

    the FVAWT are calculated using time domain simulations and studied based on statistical analysis and frequency-domain analysis. The response of the FVAWT is compared under steady and turbulent wind conditions to investigate the effects of turbulent wind. The advantage of the FVAWT in reducing the 2P......Floating vertical-axis wind turbines (FVAWTs) provide the potential for utilizing offshore wind resources in moderate and deep water because of their economical installation and maintenance. Therefore, it is important to assess the performance of the FVAWT concept. This paper presents a stochastic...... dynamic response analysis of a 5MW FVAWT based on fully coupled nonlinear time domain simulations. The studied FVAWT, which is composed of a Darrieus rotor and a semi-submersible floater, is subjected to various wind and wave conditions. The global motion, structural response and mooring line tension of...

  7. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  8. Simulation and Wind Tunnel Test on a Straight-Bladed Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Yan Li

    2013-03-01

    Full Text Available In this study, we research and develop a program by using single stream-tube theory combined with vortex model which can simulate the torque and power characteristics in this study. To check the efficiency of this program, a model of SB-VAWT was designed and made which had 2 KW capacities at wind speed 12 m/s. Wind tunnel tests were carried out on this model and the test data were analyzed and compared with the simulation results.

  9. Implications of the UK field trial of building mounted horizontal axis micro-wind turbines

    International Nuclear Information System (INIS)

    Building mounted micro-wind turbines and photovoltaics have the potential to provide widely applicable carbon free electricity generation at the building level. Photovoltaic systems are well understood and it is easy to predict performance using software tools or widely accepted yield estimates. Micro-wind, however, is far more complex and in comparison poorly understood. This paper presents the key findings of the building mounted (2 swept area, the majority of which were less than 25 kWh/m2. Good rural sites had an annual generation of between 100 and 280 kWh/m2, far less than the nominal 360 kWh/m2 (10% load factor for a typical turbine) that is often assumed. In the light of these findings, the potential impact of the UK's latest policy instrument, the 2010 micro-generation tariffs, is considered for both micro-wind and photovoltaics.

  10. Control of the variable speed generator on the Sandia 34-metre vertical axis wind turbine

    Science.gov (United States)

    Ralph, Mark E.

    The DOE/Sandia 34-meter VAWT Test Bed is a 500kW variable-speed wind turbine. The turbine is operated between 25 and 38 rpm and has been characterized from a structural and aerodynamic standpoint. A preliminary variable speed control algorithm has been implemented on the Test Bed. This paper describes the initial variable-speed control algorithm developed for the Test Bed and the performance of that algorithm to date. Initial performance comparisons between variable-speed and fixed-speed operation are made as well as some thoughts on the expansion of the operating envelope of the Test Bed.

  11. Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Maniaci, D. C.; Li, Y.

    2012-04-01

    This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. It summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30 degrees of yaw.

  12. Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code

    Energy Technology Data Exchange (ETDEWEB)

    Maniaci, D. C.; Li, Y.

    2011-10-01

    This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. This paper summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30{sup o} of yaw.

  13. A 225 kW Direct Driven PM Generator Adapted to a Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    S. Eriksson

    2011-01-01

    Full Text Available A unique direct driven permanent magnet synchronous generator has been designed and constructed. Results from simulations as well as from the first experimental tests are presented. The generator has been specifically designed to be directly driven by a vertical axis wind turbine and has an unusually low reactance. Generators for wind turbines with full variable speed should maintain a high efficiency for the whole operational regime. Furthermore, for this application, requirements are placed on high generator torque capability for the whole operational regime. These issues are elaborated in the paper and studied through simulations. It is shown that the generator fulfils the expectations. An electrical control can effectively substitute a mechanical pitch control. Furthermore, results from measurements of magnetic flux density in the airgap and no load voltage coincide with simulations. The electromagnetic simulations of the generator are performed by using an electromagnetic model solved in a finite element environment.

  14. Whirl flutter analysis of a horizontal-axis wind turbine with a two-bladed teetering rotor

    Science.gov (United States)

    Janetzke, D. C.; Kaza, K. R. V.

    1981-01-01

    Whirl flutter and the effect of pitch-flap coupling on teetering motion of a wind turbine were investigated. The equations of motion are derived for an idealized five-degree-of-freedom mathematical model of a horizontal-axis wind turbine with a two-bladed teetering rotor. The model accounts for the out-of-plane bending motion of each blade, the teetering motion of the rotor, and both the pitching and yawing motions of the rotor support. Results show that the design is free from whirl flutter. Selected results are presented indicating the effect of variations in rotor support damping, rotor support stiffness, and pitch-flap coupling on pitching, yawing, teetering, and blade bending motions.

  15. Effect of Selection of Design Parameters on the Optimization of a Horizontal Axis Wind Turbine via Genetic Algorithm

    International Nuclear Information System (INIS)

    The effect of selecting the twist angle and chord length distributions on the wind turbine blade design was investigated by performing aerodynamic optimization of a two-bladed stall regulated horizontal axis wind turbine. Twist angle and chord length distributions were defined using Bezier curve using 3, 5, 7 and 9 control points uniformly distributed along the span. Optimizations performed using a micro-genetic algorithm with populations composed of 5, 10, 15, 20 individuals showed that, the number of control points clearly affected the outcome of the process; however the effects were different for different population sizes. The results also showed the superiority of micro-genetic algorithm over a standard genetic algorithm, for the selected population sizes. Optimizations were also performed using a macroevolutionary algorithm and the resulting best blade design was compared with that yielded by micro-genetic algorithm

  16. Prediction and analysis of infra and low-frequency noise of upwind horizontal axis wind turbine using statistical wind speed model

    International Nuclear Information System (INIS)

    Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs), few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF) wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF) noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade of the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson’s acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson’s analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine

  17. Prediction and analysis of infra and low-frequency noise of upwind horizontal axis wind turbine using statistical wind speed model

    Directory of Open Access Journals (Sweden)

    Gwang-Se Lee

    2014-12-01

    Full Text Available Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs, few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade of the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson’s acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson’s analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.

  18. Analysis of throw distances of detached objects from horizontal-axis wind turbines

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær

    2016-01-01

    obtained using blade element approach. We have extended an earlier work by taking into account dynamic stall and wind variations due to shear, and investigated different scenarios of throw including throw of the entire or a part of blade, as well as throw of accumulated ice on the blade. Trajectories are...... simulated for modern wind turbines ranging in size from 2 to 20 MW using upscaling laws. Extensive parametric analyses are performed against initial release angle, tip speed ratio, detachment geometry, and blade pitch setting. It is found that, while at tip speeds of about 70 m/s (normal operating...

  19. Wind turbine pitch optimization

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Juelsgaard, Morten; Stoustrup, Jakob;

    2011-01-01

    We consider a static wind model for a three-bladed, horizontal-axis, pitch-controlled wind turbine. When placed in a wind field, the turbine experiences several mechanical loads, which generate power but also create structural fatigue. We address the problem of finding blade pitch profiles for......% compared to any constant pitch profile while sacrificing at most 7% of the maximum attainable output power. Using iterative learning, we show that very similar performance can be achieved by using only load measurements, with no knowledge of the wind field or wind turbine model....... maximizing power production while simultaneously minimizing fatigue loads. In this paper, we show how this problem can be approximately solved using convex optimization. When there is full knowledge of the wind field, numerical simulations show that force and torque RMS variation can be reduced by over 96...

  20. Aerodynamics of wind turbines emerging topics

    CERN Document Server

    Amano, R S

    2014-01-01

    Focusing on Aerodynamics of Wind Turbines with topics ranging from Fundamental to Application of horizontal axis wind turbines, this book presents advanced topics including: Basic Theory for Wind turbine Blade Aerodynamics, Computational Methods, and Special Structural Reinforcement Technique for Wind Turbine Blades.

  1. PIV and Hotwire Measurement and Analysis of Tip Vortices and Turbulent Wake Generated by a Model Horizontal Axis Wind Turbine

    Science.gov (United States)

    Green, D.; Tan, Y. M.; Chamorro, L. P.; Arndt, R.; Sotiropoulos, F.; Sheng, J.

    2011-12-01

    Understanding vortical flow structures and turbulence in the wake flow behind a Horizontal Axis Wind Turbine (HAWT) has widespread applications in efficient blade design. Moreover, the knowledge of wake-turbine interactions allows us to devise optimal operational parameters, such as the spatial allocation and control algorithms of wind turbines, for a densely populated wind farm. To understand the influence of tip vortices on energy containing mean flow and turbulence, characteristics of vortical structures and turbulence must be quantified thoroughly. In this study, we conduct phase-locked Particle Image Velocimetry (PIV) measurements of the flow before and after a model HAWT, which is located in a zero-pressure gradient wind tunnel with a cross section of 1.7 × 1.7 m and a test section of 16 m in length. A three-blade model HAWT with a diameter of 605 mm and tip-speed ratio of 5 is used. PIV images are recorded by a 2048 × 2048 CCD camera and streamed at 6 Hz continuously; and phased locked with the passage of the blade at its vertical position. Each PIV measurement covers a 0.13 × 0.13 m2 sample area with the spatial resolution of 63 μm and a vector spacing of 0.5 mm. All experiments are conducted at the free-stream wind speed of 10 m/s. Flow fields at thirty consecutive downstream locations up to six rotor diameters and 144 mid chord lengths are measured. At each location, we obtain at least 10,000 instantaneous PIV realizations or 20,000 images. Three different configurations: single, dual, and trio turbines located at 5 rotor diameter upstream to each other, are examined experimentally. The flow statistics include mean wake velocity distributions, characteristics of tip vortices evolving downstream, fluctuation velocity, turbulent kinetic energy, stresses, and energy spectra. We find that tip vortices decay much faster in the wake of the upstream turbines (multiple-turbine configurations), whereas they maintain the coherence and strength behind a single

  2. A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer

    Directory of Open Access Journals (Sweden)

    Sina Shamsoddin

    2016-05-01

    Full Text Available In a future sustainable energy vision, in which diversified conversion of renewable energies is essential, vertical axis wind turbines (VAWTs exhibit some potential as a reliable means of wind energy extraction alongside conventional horizontal axis wind turbines (HAWTs. Nevertheless, there is currently a relative shortage of scientific, academic and technical investigations of VAWTs as compared to HAWTs. Having this in mind, in this work, we aim to, for the first time, study the wake of a single VAWT placed in the atmospheric boundary layer using large-eddy simulation (LES. To do this, we use a previously-validated LES framework in which an actuator line model (ALM is incorporated. First, for a typical three- and straight-bladed 1-MW VAWT design, the variation of the power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed by performing 117 simulations using LES-ALM. The optimum combination of solidity (defined as N c / R , where N is the number of blades, c is the chord length and R is the rotor radius and tip-speed ratio is found to be 0.18 and 4.5, respectively. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulence wake flow statistics. It is found that for this case, the maximum velocity deficit at the equator height of the turbine occurs 2.7 rotor diameters downstream of the center of the turbine, and only after that point, the wake starts to recover. Moreover, it is observed that the maximum turbulence intensity (TI at the equator height of the turbine occurs at a distance of about 3.8 rotor diameters downstream of the turbine. As we move towards the upper and lower edges of the turbine, the maximum TI (at a certain height increases, and its location moves relatively closer to the turbine. Furthermore, whereas both TI and turbulent momentum flux fields show clear vertical asymmetries (with larger magnitudes at the

  3. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  4. Numerical Validation of a Vortex Model against ExperimentalData on a Straight-Bladed Vertical Axis Wind Turbine

    OpenAIRE

    Eduard Dyachuk; Anders Goude

    2015-01-01

    Cyclic blade motion during operation of vertical axis wind turbines (VAWTs) imposes challenges on the simulations models of the aerodynamics of VAWTs. A two-dimensional vortex model is validated against the new experimental data on a 12-kW straight-bladed VAWT, which is operated at an open site. The results on the normal force on one blade are analyzed. The model is assessed against the measured data in the wide range of tip speed ratios: from 1.8 to 4.6. The predicted results within one revo...

  5. Analisa Bentuk Profile Dan Jumlah Blade Vertical Axis Wind Turbine Terhadap Putaran Rotor Untuk Menghasilkan Energi Listrik

    Directory of Open Access Journals (Sweden)

    Saiful Saiful Huda

    2014-03-01

    Full Text Available Turbin angin adalah suatu alat untuk mengkonversi energi angin menjadi energi mekanik yang kemudian dikonversi lagi menjadi energi listrik. Putaran pada poros turbin angin dihubungkan pada generator untuk menghasilkan energi listrik. Berdasarkan penelitian yang dilakukan sebelumnya, banyak jenis turbin angin yang ditemukan untuk meningkatkan effisiensi dan torsi yang dihasilkan salah satu contohnya adalah vertical axis wind turbine (VAWT. VAWT merupakan turbin angin dengan sumbu vertical atau tegak lurus terhadap tanah. Tujuan dari tugas akhir ini adalah mengetahui seberapa besar pengaruh peningkatan panjang chord, jumlah blade, sudut pitch dari blade terhadap torsi dan effisiensi yang dihasilkan oleh VAWT dengan pendekatan CFD (Computational Fluid Dynamic. Analisa yang dilakukan untuk melihat efek peningkatan panjang chord, jumlah blade dan sudt pitch dari blade. Setelah analisa berakhir kita membandingkan hasil analisa dalam grafik. Hasil dari analisa tersebut adalah torsi terbesar terdapat pada variasi panjang chord 1.5 m dengan sudut pitch 10o dan jumlah blade 4 buah dengan nilai 134.9452198   Nm.

  6. An Aerodynamic Method for the Preliminary Design of Horizontal Axis Wind Turbines

    Directory of Open Access Journals (Sweden)

    X. Munduate

    2000-01-01

    Full Text Available The present paper describes a method developed to assist in the preliminary aerodynamic design of wind turbines by identifying regions of the rotor disk which are dominated by unsteady and/or three-dimensional effects. The technique is based on a blade element/momentum predictor that has been extended to consider yawed flow and tower shadow effects. In addition, the method tracks temporal changes in blade incidence to identify regions of the rotor disk which are susceptible to dynamic stall. It also monitors and assesses the severity of three-dimensional stall delay and the extent to which this interacts with the regions of unsteadiness. In the paper the capability of the method will be demonstrated by application to the specific test case of the U. S. National Renewable Energy Laboratories (NREL Combined Experiment turbine.

  7. Inverse design-momentum, a method for the preliminary design of horizontal axis wind turbines

    International Nuclear Information System (INIS)

    Wind turbine rotor prediction methods based on generalized momentum theory BEM routinely used in industry and vortex wake methods demand the use of airfoil tabulated data and geometrical specifications such as the blade spanwise chord distribution. They belong to the category of 'direct design' methods. When, on the other hand, the geometry is deduced from some design objective, we refer to 'inverse design' methods. This paper presents a method for the preliminary design of wind turbine rotors based on an inverse design approach. For this purpose, a generalized theory was developed without using classical tools such as BEM. Instead, it uses a simplified meridional flow analysis of axial turbomachines and is based on the assumption that knowing the vortex distribution and appropriate boundary conditions is tantamount to knowing the velocity distribution. The simple conservation properties of the vortex components consistently cope with the forces and specific work exchange expressions through the rotor. The method allows for rotor arbitrarily radial load distribution and includes the wake rotation and expansion. Radial pressure gradient is considered in the wake. The capability of the model is demonstrated first by a comparison with the classical actuator disk theory in investigating the consistency of the flow field, then the model is used to predict the blade planform of a commercial wind turbine. Based on these validations, the authors postulate the use of a different vortex distribution (i.e. not-uniform loading) for blade design and discuss the effect of such choices on blade chord and twist, force distribution and power coefficient. In addition to the method's straightforward application to the pre-design phase, the model clearly shows the link between blade geometry and performance allowing quick preliminary evaluation of non uniform loading on blade structural characteristics

  8. Analysis of the Drivetrain Performance of a Large Horizontal-Axis Wind Turbine: An Aeroelastic Approach

    DEFF Research Database (Denmark)

    Gebhardt, Cristian; Preidikman, Sergio; Massa, Julio C;

    2010-01-01

    considering multiple interactions among blades, wakes, hub, nacelle, supporting tower, ground and land–surface boundary layer. All these in combination affect substantially the total efficiency of the wind turbine. In addition a model for the drivetrain is developed, considering the flexibility of the high...... speed shaft which connects the gear box and the generator. For the inter–model combination, a strong interaction scheme was used. A numerical method based on the fourth order Hamming predictor–corrector method was developed to calculate the solution in the time domain. The models and the interaction...

  9. Design and Aero-elastic Simulation of a 5MW Floating Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Vita, Luca; Schmidt Paulsen, Uwe; Aagaard Madsen, Helge;

    2013-01-01

    -DTU. The numerical simulations take into account the fully coupled aerodynamic and hydrodynamic loads on the structure, due to wind, waves and currents. The turbine is tested in operative conditions, at different sea states, selected according to the international offshore standards. The research is part...... with the rotor, whose stability is achieved by adding ballast at the bottom. The platform is connected to the mooring lines with some rigid arms, which are necessary to absorb the torque transmitted by the rotor. The aero-elastic simulations are carried out with Hawc2, a numerical solver developed at Risø...

  10. Investigation of the aerodynamics of an innovative vertical-axis wind turbine

    Science.gov (United States)

    Kludzinska, K.; Tesch, K.; Doerffer, P.

    2014-08-01

    This paper presents a preliminary three dimensional analysis of the transient aerodynamic phenomena occurring in the innovative modification of classic Savonius wind turbine. An attempt to explain the increased efficiency of the innovative design in comparison with the traditional solution is undertaken. Several vorticity measures such as enstrophy, absolute helicity and the integral of the velocity gradient tensor second invariant are proposed in order to evaluate and compare designs. Discussed criteria are related to the vortex structures and energy dissipation. These structures are generated by the rotor and may affect the efficiency. There are also different vorticity measure taking advantage of eigenvalues of the velocity gradient tensor.

  11. Aero-acoustics prediction of a vertical axis wind turbine using Large Eddy Simulation and acoustic analogy

    International Nuclear Information System (INIS)

    Operating wind turbines generate tonal and broadband noises affecting the living environment adversely; especially small wind turbines located in the vicinity of human living places. Therefore, it is important to determine the level of noise pollution of such type of wind turbine installation. The current study carries out numerical prediction for aerodynamic noise radiated from an H-Darrieus Vertical Axis Wind Turbine. Incompressible LES (Large Eddy Simulation) is conducted to obtain the instantaneous turbulent flow field. The noise predictions are performed by the Ffowcs Williams and Hawkings (FW–H) acoustic analogy formulation. Simulations are performed for five different tip-speed ratios. First, the mean torque coefficient is compared with the experimental data, and good agreement is observed. Then, the research focuses on the broadband noises of the turbulent boundary layers and the tonal noises due to blade passing frequency. The contribution of the thickness, loading and quadrupole noises are investigated, separately. The results indicate a direct relation between the strength of the radiated noise and the rotational speed. Furthermore, the effect of receiver distance on the OASPL (Overall Sound Pressure Level) is investigated. It is concluded that the OASPL varies with a logarithmic trend with the receiver distance as it was expected. - Highlights: • Large Eddy Simulation has been used to predict the turbulent flow field. • The Ffowcs Williams and Hawkings method was employed to predict radiated noise. • There is a direct relation between the radiated noise and the tip speed ratio. • The quadrupole noises have negligible effect on the tonal noises

  12. Power augmentation of cheap, sail-type, horizontal-axis wind-turbines

    Science.gov (United States)

    Fleming, P. D.; Probert, S. D.

    1982-09-01

    A history of the development of windpowered machinery is presented, and the installation of tipvanes and centerbodies to enhance the performance of low cost WECS for developing countries are examined experimentally. Particular attention is given to sail wing rotors equipped with tip fins, peristaltic pumps reparable by semiskilled labor, and various configurations of tip fins and center bodies, which deflect the wind outward from the hub to the sails. Cheap, flat-plate tip fins were found to effective in augmenting rotor performance by as much as 1.6 when facing only downwind. Best results were obtained with one tip vane per sail, with the fins downwind a distance at least equal to the pitch of a wind-filled sail. Further experimentation with stationary deflectors which redirect wind into the buckets of a Savonius rotor or the sails of a horizontal axis WECS are suggested.

  13. Numerical Validation of a Vortex Model against ExperimentalData on a Straight-Bladed Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Eduard Dyachuk

    2015-10-01

    Full Text Available Cyclic blade motion during operation of vertical axis wind turbines (VAWTs imposes challenges on the simulations models of the aerodynamics of VAWTs. A two-dimensional vortex model is validated against the new experimental data on a 12-kW straight-bladed VAWT, which is operated at an open site. The results on the normal force on one blade are analyzed. The model is assessed against the measured data in the wide range of tip speed ratios: from 1.8 to 4.6. The predicted results within one revolution have a similar shape and magnitude as the measured data, though the model does not reproduce every detail of the experimental data. The present model can be used when dimensioning the turbine for maximum loads.

  14. Airfoil Selection for a Lift Type Vertical Axis Wind Turbine%升力型垂直轴风力机翼型的选择

    Institute of Scientific and Technical Information of China (English)

    孙晓晶; 陆启迪; 黄典贵; 吴国庆

    2012-01-01

    At present,there are many different types of airfoils that have been used in lift-type vertical axis wind turbines.In order to study the influence of different airfoils on the lift-type vertical axis wind turbine performance,two-dimensional numerical simulation of flow around a Darrieus-type straight-bladed vertical axis wind turbine was conducted in this paper with the aid of computational fluid dynamics software and sliding mesh method.Numerical results suggest that NACA0018 airfoil is the most suitable airfoil section used by a lift-type vertical axis wind turbine rotors as it can allow the wind turbine to achieve the highest wind energy utilization efficiency.%目前升力型垂直轴风力机采用的翼型多种多样,为了研究不同翼型对升力型垂直轴风力机风能利用率的影响,本文采用计算流体力学软件和滑移网格技术对升力型直叶片垂直轴风力机进行二维流场的数值模拟。结果表明,对于升力型垂直轴风力机,当选择NACA0018翼型可以达到最高的风能利用率。

  15. An unsteady vortex lattice method model of a horizontal axis wind turbine operating in an upstream rotor wake

    International Nuclear Information System (INIS)

    An unsteady formulation of the vortex lattice method, VLM, is presented that uses a force- free representation of the wake behind a horizontal axis wind turbine, HAWT, to calculate the aerodynamic loading on a turbine operating in the wake of an upstream rotor. A Cartesian velocity grid is superimposed over the computational domain to facilitate the representation of the atmospheric turbulence surrounding the turbine and wind shear. The wake of an upstream rotor is modelled using two methods: a mean velocity deficit with superimposed turbulence, based on experimental observations, and a purely numeric periodic boundary condition. Both methods are treated as frozen and propagated with the velocity grid. Measurements of the mean thrust and blade root bending moment on a three bladed horizontal axis rotor modelling a 5 MW HAWT at 1:250 scale were carried out in a wind tunnel. Comparisons are made between operation in uniform flow and in the wake of a similarly loaded rotor approximately 6.5 diameters upstream. The measurements were used to validate the output from the VLM simulations, assuming a completely rigid rotor. The trends in the simulation thrust predictions are found to compare well with the uniform flow case, except at low tip speed ratios where there are losses due to stall which are yet to be included in the model. The simple wake model predicts the mean deficit, whilst the periodic boundary condition captures more of the frequency content of the loading in an upstream wake. However, all the thrust loads are over-predicted. The simulation results severely overestimate the bending moment, which needs addressing. However, the reduction in bending due to the simple wake model is found to reflect the experimental data reasonably well

  16. An unsteady vortex lattice method model of a horizontal axis wind turbine operating in an upstream rotor wake

    Science.gov (United States)

    Hankin, D.; Graham, J. M. R.

    2014-12-01

    An unsteady formulation of the vortex lattice method, VLM, is presented that uses a force- free representation of the wake behind a horizontal axis wind turbine, HAWT, to calculate the aerodynamic loading on a turbine operating in the wake of an upstream rotor. A Cartesian velocity grid is superimposed over the computational domain to facilitate the representation of the atmospheric turbulence surrounding the turbine and wind shear. The wake of an upstream rotor is modelled using two methods: a mean velocity deficit with superimposed turbulence, based on experimental observations, and a purely numeric periodic boundary condition. Both methods are treated as frozen and propagated with the velocity grid. Measurements of the mean thrust and blade root bending moment on a three bladed horizontal axis rotor modelling a 5 MW HAWT at 1:250 scale were carried out in a wind tunnel. Comparisons are made between operation in uniform flow and in the wake of a similarly loaded rotor approximately 6.5 diameters upstream. The measurements were used to validate the output from the VLM simulations, assuming a completely rigid rotor. The trends in the simulation thrust predictions are found to compare well with the uniform flow case, except at low tip speed ratios where there are losses due to stall which are yet to be included in the model. The simple wake model predicts the mean deficit, whilst the periodic boundary condition captures more of the frequency content of the loading in an upstream wake. However, all the thrust loads are over-predicted. The simulation results severely overestimate the bending moment, which needs addressing. However, the reduction in bending due to the simple wake model is found to reflect the experimental data reasonably well.

  17. Experiments on the Performance of Small Horizontal Axis Wind Turbine with Passive Pitch Control by Disk Pulley

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    2016-05-01

    Full Text Available The present work is to design a passive pitch-control mechanism for small horizontal axis wind turbine (HAWT to generate stable power at high wind speeds. The mechanism uses a disk pulley as an actuator to passively adjust the pitch angle of blades by centrifugal force. For this design, aerodynamic braking is caused by the adjustment of pitch angles at high wind speeds. As a marked advantage, this does not require mechanical brakes that would incur electrical burn-out and structural failure under high speed rotation. This can ensure the survival of blades and generator in sever operation environments. In this paper, the analysis uses blade element momentum theory (BEMT to develop graphical user interface software to facilitate the performance assessment of the small-scale HAWT using passive pitch control (PPC. For verification, the HAWT system was tested in a full-scale wind tunnel for its aerodynamic performance. At low wind speeds, this system performed the same as usual, yet at high wind speeds, the equipped PPC system can effectively reduce the rotational speed to generate stable power.

  18. Aerodynamics of wind turbines

    CERN Document Server

    Hansen, Martin O L

    2015-01-01

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis W

  19. Design analysis of fixed-pitch straight-bladed vertical axis wind turbines with an alternative material

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.; Ting, D.S.K.; Fartaj, A. [Windsor Univ., ON (Canada). Dept. of Mechanical, Automotive and Materials Engineering; Ahmed, F.U. [Lambton College of Applied Arts and Technology, Sarnia, ON (Canada)

    2008-07-01

    Most blades in fixed-pitch straight-bladed vertical axis wind turbine (SB-VAWT) are made of aluminium. However, in order for wind energy to be cost competitive, the blades must be produced at moderate cost. The blades should also last between 20 and 30 years, which is the predicted service life of these mechanically uncomplicated turbomachines. The primary disadvantage of using aluminium alloy for wind turbine application is its poor fatigue properties. Its allowable stress levels in dynamic application also decrease significantly at increasing numbers of cyclic stress applications. For that reason, this study investigated alternative materials for SB-VAWT blades. The properties of the SB-VAWT blade materials were identified in this paper along with prospective materials. Comparisons were then made between the available materials based on their mechanical properties and costs. The most attractive alternative material was then chosen for a detailed design analysis using an analytical tool. The design features of an SB-VAWT with aluminium and pultruded fiberglass reinforced plastic (FRP) blades were then compared using one of the prospective airfoils. The alternative blade material was found to be superior to the conventionally used aluminum. It was concluded that pultruded FRP is a prospective alternative blade material for SB-VAWTs. 9 refs., 2 tabs., 1 fig.

  20. System Integration of the Horizontal-Axis Wind Turbine: The Design of Turbine Blades with an Axial-Flux Permanent Magnet Generator

    Directory of Open Access Journals (Sweden)

    Chi-Jeng Bai

    2014-11-01

    Full Text Available In designing a horizontal-axis wind turbine (HAWT blade, system integration between the blade design and the performance test of the generator is important. This study shows the aerodynamic design of a HAWT blade operating with an axial-flux permanent magnet (AFPM generator. An experimental platform was built to measure the performance curves of the AFPM generator for the purpose of designing the turbine blade. An in-house simulation code was developed based on the blade element momentum (BEM theory and was used to lay out the geometric shape of the turbine blade, including the pitch angle and chord length at each section. This simulation code was combined with the two-dimensional (2D airfoil data for predicting the aerodynamic performance of the designed blades. In addition, wind tunnel experiments were performed to verify the simulation results for the various operating conditions. By varying the rotational speeds at four wind speeds, the experimental and simulation results for the mechanical torques and powers presented good agreement. The mechanical power of the system, which maximizes at the best operating region, provided significant information for designing the HAWT blade.

  1. Development of a 5.5 m diameter vertical axis wind turbine, phase 3

    Science.gov (United States)

    Dekitsch, A.; Etzler, C. C.; Fritzsche, A.; Lorch, G.; Mueller, W.; Rogalla, K.; Schmelzle, J.; Schuhwerk, W.; Vollan, A.; Welte, D.

    1982-06-01

    In continuation of development of a 5.5 m diameter vertical axis windmill that consists in conception, building, and wind tunnel testing, a Darrieus rotor windpowered generator feeding an isolated network under different wind velocity conditions and with optimal energy conversion efficiency was designed built, and field tested. The three-bladed Darrieus rotor tested in the wind tunnel was equiped with two variable pitch Savonius rotors 2 m in diameter. By means of separate measures of the aerodynamic factors and the energy consumption, effect of revisions and optimizations on different elements was assessed. Pitch adjustement of the Savonius blades, lubrication of speed reducer, rotor speed at cut-in of generator field excitation, time constant of field excitation, stability conditions, switch points of ohmic resistors which combined with a small electric battery simulated a larger isolated network connected with a large storage battery, were investigated. Fundamentals for the economic series production of windpowered generators with Darrieus rotors for the control and the electric conversion system are presented.

  2. Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis Wind-Turbine Blades

    Science.gov (United States)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Sellappan, V.; Vallejo, A.; Ozen, M.

    2010-11-01

    A multi-disciplinary design-optimization procedure has been introduced and used for the development of cost-effective glass-fiber reinforced epoxy-matrix composite 5 MW horizontal-axis wind-turbine (HAWT) blades. The turbine-blade cost-effectiveness has been defined using the cost of energy (CoE), i.e., a ratio of the three-blade HAWT rotor development/fabrication cost and the associated annual energy production. To assess the annual energy production as a function of the blade design and operating conditions, an aerodynamics-based computational analysis had to be employed. As far as the turbine blade cost is concerned, it is assessed for a given aerodynamic design by separately computing the blade mass and the associated blade-mass/size-dependent production cost. For each aerodynamic design analyzed, a structural finite element-based and a post-processing life-cycle assessment analyses were employed in order to determine a minimal blade mass which ensures that the functional requirements pertaining to the quasi-static strength of the blade, fatigue-controlled blade durability and blade stiffness are satisfied. To determine the turbine-blade production cost (for the currently prevailing fabrication process, the wet lay-up) available data regarding the industry manufacturing experience were combined with the attendant blade mass, surface area, and the duration of the assumed production run. The work clearly revealed the challenges associated with simultaneously satisfying the strength, durability and stiffness requirements while maintaining a high level of wind-energy capture efficiency and a lower production cost.

  3. Design And Analysis Of Savonius Wind Turbine Blades

    OpenAIRE

    Kshitija. M. Deshmukh,; Deepak .V. Mishra

    2015-01-01

    There are two kinds of wind turbines according to the axis of rotation to the ground, horizontal axis wind turbines (HAWT) and vertical axis wind turbines (VAWT). VAWTs include both a drag type configuration like Savonius wind turbine and a lift-type configuration like Darrieus wind turbine. Savonius wind rotor has many advantages such as low starting speeds and no need for external torque for its starting. Moreover it is cheaper in construction and has low maintenance. It is inde...

  4. An interactive version of PropID for the aerodynamic design of horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Ninham, C.P.; Selig, M.S. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1997-12-31

    The original PROP code developed by AeroVironment, Inc. and its various versions have been in use for wind turbine performance predictions for over ten years. Due to its simplicity, rapid execution times and relatively accurate predictions, it has become an industry standard in the US. The Europeans have similar blade-element/momentum methods in use for design. Over the years, PROP has continued to be improved (in its accuracy and capability), e.g., PROPSH, PROPPC, PROP93, and PropID. The latter version incorporates a unique inverse design capability that allows the user to specify the desired aerodynamic characteristics from which the corresponding blade geometry is determined. Through this approach, tedious efforts related to manually adjusting the chord, twist, pitch and rpm to achieve desired aerodynamic/performance characteristics can be avoided, thereby making it possible to perform more extensive trade studies in an effort to optimize performance. Past versions of PropID did not have supporting graphics software. The more current version to be discussed includes a Matlab-based graphical user interface (GUI) and additional features that will be discussed in this paper.

  5. Radial forces analysis and rotational speed test of radial permanent magnetic bearing for horizontal axis wind turbine applications

    Science.gov (United States)

    Kriswanto, Jamari

    2016-04-01

    Permanent magnet bearings (PMB) are contact free bearings which utilize the forces generated by the magnets. PMB in this work is a type of radial PMB, which functions as the radial bearings of the Horizontal Axis Wind Turbine (HAWT) rotor shaft. Radial PMB should have a greater radial force than the radial force HAWT rotor shaft (bearing load). This paper presents a modeling and experiments to calculate the radial force of the radial PMB. This paper also presents rotational speed test of the radial PMB compared to conventional bearings for HAWT applications. Modeling using COMSOL Multiphysics 4.3b with the magnetic fields physics models. Experiments were conducted by measuring the displacement of the rotor to the stator for a given load variation. Results of the two methods showed that the large displacement then the radial force would be greater. Radial forces of radial PMB is greater than radial forces of HAWT rotor shaft. The rotational speed test results of HAWT that used radial PMB produced higher rotary than conventional bearings with an average increase of 87.4%. Increasing rotational speed occured because radial PMB had no friction. HAWT that used radial PMB rotated at very low wind speeds are 1.4 m/s with a torque of 0.043 Nm, while the HAWT which uses conventional bearing started rotating at a wind speed of 4.4 m/s and required higher torque of 0.104 N.

  6. The near wake structure and the development of vorticity behind a model horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, P.; Wood, D. [The Univ. of Newcastle, Dept. of Mechanical Engineering, Callaghan (Australia)

    1997-08-01

    The wake of a two bladed model HAWT operating at zero yaw angle and in a steady flow in a wind tunnel was measured using hot wire probes. By phase locked averaging and moving the probe axially and radially the full three dimensional mean flow file was determined. All measurements were within two chord lengths of the blades and at tip speed ratios giving high turbine power output, a condition approaching runaway, and a stalled condition. For all tip speed ratios the wakes were significantly three dimensional. Large velocity variations were associated with vortex structures in the wakes, and irrotational fluctuations caused by the blade bound circulation. The vorticity clearly defined the hub and tip vortices that traced helical paths downstream, with the constant tip vortex pitch inversely proportional to tip speed ratio. Close to the blades the flow was complicated, though vortex roll-up was completed within one chord length. Considerable changes in wake structure occurred with tip speed ratio. At high power output the wake showed tip and hub vortices connected by a diffuse vortex sheet of mostly radial vorticity from the blade boundary layers; blade bound circulation was almost constant. The structure approaching runaway was similar though the hub vortex was not well defined and formed a vortex sheet around the hub which lifted away and diffused. The stalled condition was more complicated, with evidence of incomplete tip and hub vortex formation. The stream-wise velocity of the tip vortex core decreased with increasing tip speed ratio, but this was never aligned with local streamlines. The core of the tip vortex was not circular but more elliptical. A phase locked averaged angular momentum analysis was undertaken, the extra terms introduced through phase locked averaging were small. (Abstract Truncated)

  7. Sandia Vertical-Axis Wind Turbine Program. Technical quarterly report, October--December 1975

    Energy Technology Data Exchange (ETDEWEB)

    Banas, J.F.; Sullivan, W.N. (eds.)

    1976-04-01

    Information is presented concerning: review of the status of general design efforts in the areas of aerodynamics, structures, systems analysis, and testing; summary of preliminary design details of the proposed 17-m turbine/60-kW generator system for power grid application; and structural analysis and operational test results for the existing 5-m turbine.

  8. User's manual for the vertical axis wind turbine performance computer code darter

    Energy Technology Data Exchange (ETDEWEB)

    Klimas, P. C.; French, R. E.

    1980-05-01

    The computer code DARTER (DARrieus, Turbine, Elemental Reynolds number) is an aerodynamic performance/loads prediction scheme based upon the conservation of momentum principle. It is the latest evolution in a sequence which began with a model developed by Templin of NRC, Canada and progressed through the Sandia National Laboratories-developed SIMOSS (SSImple MOmentum, Single Streamtube) and DART (SARrieus Turbine) to DARTER.

  9. Small power wind turbine (Type DARRIEUS)

    OpenAIRE

    Marcel STERE; Radu BOGATEANU; Ion NILA

    2012-01-01

    This presentation focuses on the calculation for small vertical axis wind turbines (VAWT) for an urban application. The fixed-pitch straight – bladed vertical axis wind turbine (SB-VAWT) is one of the simplest types of wind turbine and accepts wind from any angle (no yaw system). This turbine is useful for moderate wind speeds (3 - 6 m/s). A case study is presented based upon the use of well documented symmetrical NACA 0012 turbine blade profile. We describe a solution for VAWT. To perform a ...

  10. A Straight-bladed Vertical Axis Wind Turbine with a Directed Guide Vane Row-Effect of Guide Vane Geometry on the Performance-

    Institute of Scientific and Technical Information of China (English)

    Manabu TAKAO; Hideki KUMA; Takao MAEDA; Yasunari KAMADA; Michiaki OKI; Atsushi MINODA

    2009-01-01

    The objective of this study is to show the effect of guide vane geometry on the performance. In order to over-come the disadvantages of vertical axis wind turbine, a straight-bladed vertical axis wind turbine (S-VAWT) with a directed guide vane row has been proposed and tested by the authors. According to previous studies, it was clarified that the performance of the turbine can be improved by means of the directed guide vane row. However, the guide vane geometry of S-VAWT has not been optimized so far. In order to clarify the effect of guide vane geometry, the effects of setting angle and gap between rotor blade and guide vane on power coefficient and start-ing characteristic were investigated in the experiments. The experimental study of the proposed wind turbine was carded out by a wind tunnel. The wind tunnel with a diameter of 1.8m is open jet type. The wind velocity is 8 m/s in the experiments. The rotor has three straight blades with a profile of NACA0018 and a chord length of 100 mm, a diameter of 0.6 m and a blade height of 0.7 m. The guide vane row consists of 3 arc plates.

  11. A straight-bladed vertical axis wind turbine with a directed guide vane row — Effect of guide vane geometry on the performance —

    Science.gov (United States)

    Takao, Manabu; Kuma, Hideki; Maeda, Takao; Kamada, Yasunari; Oki, Michiaki; Minoda, Atsushi

    2009-03-01

    The objective of this study is to show the effect of guide vane geometry on the performance. In order to overcome the disadvantages of vertical axis wind turbine, a straight-bladed vertical axis wind turbine (S-VAWT) with a directed guide vane row has been proposed and tested by the authors. According to previous studies, it was clarified that the performance of the turbine can be improved by means of the directed guide vane row. However, the guide vane geometry of S-VAWT has not been optimized so far. In order to clarify the effect of guide vane geometry, the effects of setting angle and gap between rotor blade and guide vane on power coefficient and starting characteristic were investigated in the experiments. The experimental study of the proposed wind turbine was carried out by a wind tunnel. The wind tunnel with a diameter of 1.8m is open jet type. The wind velocity is 8 m/s in the experiments. The rotor has three straight blades with a profile of NACA0018 and a chord length of 100 mm, a diameter of 0.6 m and a blade height of 0.7 m. The guide vane row consists of 3 arc plates.

  12. Structural optimisation of vertical-axis wind turbine composite blades based on finite element analysis and genetic algorithm

    OpenAIRE

    Wang, Lin; Kolios, Athanasios; Nishino, Takafumi; DELAFIN, Pierre-Luc; Bird, Theodore

    2016-01-01

    A wind turbine blade generally has complex structures including several layers of composite materials with shear webs, making its structure design very challenging. In this paper, a structural optimisation model for wind turbine composite blades has been developed based on a parametric FEA (finite element analysis) model and a GA (genetic algorithm) model. The optimisation model minimises the mass of composite blades with multi-criteria constraints. The number of unidirectional plies, the loc...

  13. Vertical Axis Wind Turbine flows using a Vortex Particle-Mesh method: from near to very far wakes

    Science.gov (United States)

    Backaert, Stephane; Chatelain, Philippe; Winckelmans, Gregoire; Kern, Stefan; Maeder, Thierry; von Terzi, Dominic; van Rees, Wim; Koumoutsakos, Petros

    2012-11-01

    A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. The vorticity-velocity formulation of the NS equations is treated in a hybrid way: particles handle advection while the mesh is used to evaluate the differential operators and for the fast Poisson solvers (here a Fourier-based solver which simultaneously allows for unbounded directions and inlet/outlet boundaries). Both discretizations communicate through high order interpolation. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed, with a relatively fine resolution (128 and 160 grid points per blade) and for computational domains extending up to 6 D and 14 D downstream of the rotor. The wake complex development is captured in details, from the blades to the near wake coherent vortices, to the transitional ones, to the fully developed turbulent far wake. Mean flow statistics in planes (horizontal, vertical and cross) are also presented. A case with a realistic turbulent wind inflow is also considered. The physics are more complex than for HAWT flows. Computational resources provided by a PRACE award.

  14. The Performance Test of Three Different Horizontal Axis Wind Turbine (HAWT Blade Shapes Using Experimental and Numerical Methods

    Directory of Open Access Journals (Sweden)

    Wen-Tong Chong

    2013-06-01

    Full Text Available Three different horizontal axis wind turbine (HAWT blade geometries with the same diameter of 0.72 m using the same NACA4418 airfoil profile have been investigated both experimentally and numerically. The first is an optimum (OPT blade shape, obtained using improved blade element momentum (BEM theory. A detailed description of the blade geometry is also given. The second is an untapered and optimum twist (UOT blade with the same twist distributions as the OPT blade. The third blade is untapered and untwisted (UUT. Wind tunnel experiments were used to measure the power coefficients of these blades, and the results indicate that both the OPT and UOT blades perform with the same maximum power coefficient, Cp = 0.428, but it is located at different tip speed ratio, λ = 4.92 for the OPT blade and λ = 4.32 for the UOT blade. The UUT blade has a maximum power coefficient of Cp = 0.210 at λ = 3.86. After the tests, numerical simulations were performed using a full three-dimensional computational fluid dynamics (CFD method using the k-ω SST turbulence model. It has been found that CFD predictions reproduce the most accurate model power coefficients. The good agreement between the measured and computed power coefficients of the three models strongly suggest that accurate predictions of HAWT blade performance at full-scale conditions are also possible using the CFD method.

  15. Unsteady Hybrid Navier-Stokes/Vortex Model for Numerical Study of Horizontal Axis Wind Turbine Aerodynamics under Yaw Conditions

    Science.gov (United States)

    Suzuki, Kensuke

    A new analysis tool, an unsteady Hybrid Navier-Stokes/Vortex Model, for a horizontal axis wind turbine (HAWT) in yawed flow is presented, and its convergence and low cost computational performance are demonstrated. In earlier work, a steady Hybrid Navier-Stokes/Vortex Model was developed with a view to improving simulation results obtained by participants of the NASA Ames blind comparison workshop, following the NREL Unsteady Aerodynamics Experiment. The hybrid method was shown to better predict rotor torque and power over the range of wind speeds, from fully attached to separated flows. A decade has passed since the workshop was held and three dimensional unsteady Navier-Stokes analyses have become available using super computers. In the first chapter, recent results of unsteady Euler and Navier-Stokes computations are reviewed as standard references of what is currently possible and are contrasted with results of the Hybrid Navier-Stokes/Vortex Model in steady flow. In Chapter 2, the computational method for the unsteady Hybrid model is detailed. The grid generation procedure, using ICEM CFD, is presented in Chapter 3. Steady and unsteady analysis results for the NREL Phase IV rotor and for a modified "swept NREL rotor" are presented in Chapter 4-Chapter 7.

  16. Aerodynamic Electrical Energy: Wind Turbine Engineering

    OpenAIRE

    Nielson, Andrew; Marchant, Scott; Baker, Doran; Engh, Michael; Kang, Alvin; Estrada, Gustavo; Graham, Brandon; Johnson, Jason; Nieveen, Jacob

    2012-01-01

    Renewable resources such as wind, solar, and water, are important in energy production. This project was to design a wind turbine electricity generation system and gain an understanding of the engineering involved in producing electricity from the wind. Having observed the wind patterns on the campus of Utah State University, it was decided to obtain both a horizontal axis (HAWT) and a vertical axis wind turbine (VAWT) and mount them on the roof of the USU Dean F. Peterson, Jr. Engineering La...

  17. Methodological proposal for the design of the turbine blades of wind of horizontal axis

    International Nuclear Information System (INIS)

    A methodology is developed to estimate the chord distribution airfoil and blade twist along the radius of the blade by using axial and angular moment conservation equations, blade element theory and optimization processes. This methodology takes into account the concept related with getting wind power for different chord blade values and selecting one that facilitates to get the maximum value for wind power. This work is based on project wind energy market in Colombia: operation, risk and expansion possibilities

  18. Long-term global response analysis of a vertical axis wind turbine supported on a semi-submersible floating platform: Comparison between operating and non-operating wind turbine load cases

    OpenAIRE

    Collu, Maurizio; Manuel, Lance; Borg, Michael; Llu, Jinsong

    2015-01-01

    This study continues [1] the examination of the long-term global response of a floating vertical axis wind turbine (VAWT) situated off the Portuguese coast in the Atlantic Ocean. The VAWT, which consists of a 5-MW 3-bladed H-type rotor developed as part of the EU-FP7 H2OCEAN project, is assumed to be mounted on the OC4 semi-submersible floating platform. Adding a non-operational load case (wind speed 35m/s), the sea states identified are used to carry out coupled dynamics simulations using th...

  19. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  20. 一种新型聚能-遮蔽型立轴风力机%A NEW-STYLE VERTICAL AXIS WIND TURBINE WITH WIND COLLECTION-SHIELD PATTERN

    Institute of Scientific and Technical Information of China (English)

    周万里; 黄典贵

    2009-01-01

    提出了一种适合任意风向的新型聚能-遮蔽型立轴风力机,并应用计算流体力学方法,对这种风力机的气动性能进行了数值模拟.研究表明:这种新型立轴风力机比传统的立轴风力机的风能利用率有显著提高.此外,该文还采用了正交优化设计方法,对这种立轴风力机的结构参数进行了优化设计,得到了一组最优的设计参数,该最优设计参数下风力机的风能利用率达37%.%A New-style vertical axis wind turbine with wind collection-shield pattern suitable to arbitrary wind directions was studied using commercial CFD software, the characteristic of this wind turbine was analyzed by numerical simula-tions . The flow field simulations indicate that the wind energy utilization of this new type wind turbine is much higher than that of the traditional vertical axis wind turbine. Furthermore, the orthogonal optimization of the new-style wind tur-bine is also conducted for its structure parameters. The wind energy utilization of the best design comes up to 37% .

  1. A novel floating offshore wind turbine concept

    OpenAIRE

    Vita, Luca; Schmidt Paulsen, Uwe; Friis Pedersen, Troels; Aagaard Madsen , Helge; Rasmussen, Flemming

    2009-01-01

    This paper will present a novel concept of afloating offshore wind turbine. The new concept isintended for vertical-axis wind turbine technology.The main purpose is to increase simplicity and toreduce total costs of an installed offshore windfarm. The concept is intended for deep water andlarge size turbines.

  2. SERI advanced wind turbine blades

    Science.gov (United States)

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01

    The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10 percent to 30 percent more energy than conventional blades.

  3. Numerical Investigation of Capability of Self-Starting and Self-Rotating of a Vertical Axis Wind Turbine

    Science.gov (United States)

    Tsai, Hsieh-Chen; Colonius, Tim

    2015-11-01

    The immersed boundary method is used to simulate the incompressible flow around two-dimensional airfoils at low Reynolds numbers in order to investigate the self-starting and self-rotating capability of a vertical axis wind turbine (VAWT) with NACA 0018 blades. By examining the torque generated by a three-bladed VAWT fixed at various orientations, a stable equilibrium and the optimal starting orientation that produces the largest torque have been observed. When Reynolds number is below a critical value, the VAWT oscillates around a stable equilibrium. However, the VAWT goes into continuous rotation from the optimal orientation when Reynolds number is above this critical value. It is also shown that VAWT with more blades is easier to self-start due to a wilder range of positive starting torques. Moreover, with a proper choice of load model, a VAWT is able to self-rotate and generate a designed averaged power. This project is supported by Caltech FLOWE center/Gordon and Betty Moore Foundation.

  4. Structural Optimization Design of Horizontal-Axis Wind Turbine Blades Using a Particle Swarm Optimization Algorithm and Finite Element Method

    Directory of Open Access Journals (Sweden)

    Pan Pan

    2012-11-01

    Full Text Available This paper presents an optimization method for the structural design of horizontal-axis wind turbine (HAWT blades based on the particle swarm optimization algorithm (PSO combined with the finite element method (FEM. The main goal is to create an optimization tool and to demonstrate the potential improvements that could be brought to the structural design of HAWT blades. A multi-criteria constrained optimization design model pursued with respect to minimum mass of the blade is developed. The number and the location of layers in the spar cap and the positions of the shear webs are employed as the design variables, while the strain limit, blade/tower clearance limit and vibration limit are taken into account as the constraint conditions. The optimization of the design of a commercial 1.5 MW HAWT blade is carried out by combining the above method and design model under ultimate (extreme flap-wise load conditions. The optimization results are described and compared with the original design. It shows that the method used in this study is efficient and produces improved designs.

  5. Dynamic Separation on a Pitching and Surging Airfoil as a Model for Flow over Vertical Axis Wind Turbine Blades

    Science.gov (United States)

    Dunne, Reeve; McKeon, Beverley

    2013-11-01

    The flow over a pitching and surging NACA 0018 airfoil at a chord Reynolds number of 100,000 is investigated using 2D time resolved particle image velocimetry. Sinusoidal pitch experiments between +/-30° at a reduced frequency k =Ωc/2U∞ = . 12 closely simulate the unsteady angle of attack experienced by the blade of a representative commercial vertical axis wind turbine (VAWT). The unsteady separation process is analyzed in detail with a focus on development of vorticity at the leading edge. Reduced order modeling techniques are used to deconstruct the flow and identify the evolution of dominant flow structures over the pitching cycle. Surging at the same reduced frequency and Umax/-Umin Umean = . 80 is added to investigate the effect of the Reynolds number variation associated with the rotation of a VAWT blade in a non-rotating, laboratory frame. This research is funded by the Gordon and Betty Moore Foundation through Grant GBMF #2645 to the California Institute of Technology.

  6. Effect of control activity on blade fatigue damage rate for a small horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, A.F.; Freris, L.L.; Graham, J.M.R. [Imperial College, London (United Kingdom)

    1996-09-01

    An experiment into the effect of control activity on blade fatigue damage rate for a 5 kW, two bladed, teetered HAWT has been performed. It has been shown that control activity influences the distribution of strain in the blade but that in a high rotor speed, high cycle fatigue regime this has little influence on damage rate. The experiment was conducted on a small test turbine by implementing variable speed stall, pitch and yaw control strategies and measuring blade flapwise strain response at root and midspan locations. A full description of the investigation is provided. (au)

  7. Operating experience, control and measurements made on a 25 m horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Dekker, J.W.M.; Lekkerkerk, F.; Looijesteijn, G.J.; Valter, G.P.

    1982-09-01

    In this paper a survey is given of the 25 m HAWT installation at Petten. The installation itself is described, especially the electrical system, consisting of a DC-generator and a line commutated DC-AC converter. The turbine is not meant as a prototype, but as an instrument for data collection and measurements. Attention is given to computer controlled control strategies. As a consequence of the set-up of the electrical system also strategies with constant tip-speed ratio are possible. The paper ends with a survey of possible measurements that partly are performed already.

  8. Small wind turbines

    CERN Document Server

    Wood, David

    2011-01-01

    Small Wind Turbines provides a thorough grounding in analysing, designing, building, and installing a small wind turbine. Small turbines are introduced by emphasising their differences from large ones and nearly all the analysis and design examples refer to small turbines.The accompanying software includes MATLAB(R) programs for power production and starting performance, as well as programs for detailed multi-objective optimisation of blade design. A spreadsheet is also given to help readers apply the simple load model of the IEC standard for small wind turbine safety. Small Wind Turbines repr

  9. Design Optimization of a 5 MW Floating Offshore Vertical-axis Wind Turbine

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Aagaard Madsen, Helge; Hattel, Jesper Henri;

    2013-01-01

    calculations in ANSYS software. The selected profiles are used in the aero dynamic simulation. Furthermore the simulation code will be demonstrated to show the fully development model, integrating the simulation of turbulent wind inflow, actuator cylinder flow model, power controls, hydraulic floater - and...

  10. Characteristics of future Vertical Axis Wind Turbines (VAWTs). [to generate utility grid electric power

    Science.gov (United States)

    Kadlec, E. G.

    1979-01-01

    The developing Darrieus VAWT technology whose ultimate objective is economically feasible, industry-produced, commercially marketed wind energy systems is reviewed. First-level aerodynamic, structural, and system analyses capabilities which support and evaluate the system designs are discussed. The characteristics of current technology designs are presented and their cost effectiveness is assessed. Potential improvements identified are also presented along with their cost benefits.

  11. Experimental studies for the vertical-axis hybrid wind turbine; Suichiyokuziku haiburiddo hoshiki fusya ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, M.; Ushiyama, I. [Ashikaga Institute Of Technology, Tochigi (Japan); Inoh, M.; Hiroki, T. [NihondenkiSeiki Corp., Tokyo (Japan)

    1997-06-01

    Advantages and disadvantages of Darrieus type and Savonius type turbines as the wind energy generation system are described and the above-titled wind turbine is proposed to improve the drawback of poorer output performance in case of hybrid of these 2 types than that of independent Darrieus type. The layout of wind channel equipment and the hybrid system of conventional direct type and that of the clutch type prototype are explained with consideration on the test results. When compared 2 blades of 136mm chord length to 3 blades of 90mm chord length in terms of torque and power properties, the prototype showed a performance for the both properties 20% better than those of conventional type, particularly in the case of 3 blades, both the maximum power and the torque coefficients became about half of those of 2 blades. Further, a prototype wind turbine was designed and fabricated according to the theory of single tube of flow with regard to the straight Darrieus type and tested in association with Savonius type turbine as well as the latter alone and the results for each case were compared and examined. As for the conclusion, the usefulness of clutch connection and its effect of improvement became more remarkable along with the increase of wind speed and so forth are indicated. 7 refs., 14 figs., 2 tabs.

  12. Wind turbine state estimation

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2014-01-01

    which was successful. Then the estimation of a wind turbine state including dynamic inflow was tested on a simulated NREL 5MW turbine was performed. This worked perfectly with wind speeds from low to nominal wind speed as the output prediction errors where white. In high wind where the pitch actuator...

  13. A novel floating offshore wind turbine concept

    DEFF Research Database (Denmark)

    Vita, Luca; Schmidt Paulsen, Uwe; Friis Pedersen, Troels;

    2009-01-01

    This paper will present a novel concept of a floating offshore wind turbine. The new concept is intended for vertical-axis wind turbine technology. The main purpose is to increase simplicity and to reduce total costs of an installed offshore wind farm. The concept is intended for deep water and...

  14. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Wind Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum...... method is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate the...

  15. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further, the...

  16. Validation of Simplified Load Equations through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Dana, S.; Damiani, R.; vanDam, J.

    2015-05-18

    As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, NREL tested a small horizontal axis wind turbine in the field at the National Wind Technology Center (NWTC). The test turbine was a 2.1-kW downwind machine mounted on an 18-meter multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the output of an aeroelastic model of the turbine. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads. In this project, we compared fatigue loads as measured in the field, as predicted by the aeroelastic model, and as calculated using the simplified design equations.

  17. Influence of Rigid Body Motions on Rotor Induced Velocities and Aerodynamic Loads of a Floating Horizontal Axis Wind Turbine

    DEFF Research Database (Denmark)

    de Vaal, Jacobus B.; Hansen, Martin Otto Laver; Moan, Torgeir

    2014-01-01

    experienced by a floating wind turbine. After discussing the simplified model in detail, comparisons are made to a state of the art free wake vortex code, using test cases with prescribed platform motion. It is found that the simplified model compares favourably with a more advanced numerical model, and...

  18. Active pitch control in larger scale fixed speed horizontal axis wind turbine systems. Part 1: Linear controller design

    Energy Technology Data Exchange (ETDEWEB)

    Nengsheng Bao; Zhiquan Ye [Shantou Univ., Inst. of the Energy and Environmental Science, Gongdong Province (China)

    2001-07-01

    This paper reviews and addresses the principles of linear controller design of the fixed speed wind turbine system in above rated wind speed, using pitch angle control of the blades and applying modern control theory. First, the non-linear equations of the system are built in under some reasonable suppositions. Then, the non-linear equations are linearized at set operating point and digital simulation results are shown in this paper. Finally, a linear quadratic optimal feedback controller is designed and the dynamics of the closed circle system are simulated with digital calculation. The advantages and disadvantages of the assumptions and design method are also discussed. Because of the inherent characteristics of the linear system control theory, the performance of the linear controller is not sufficient for operating wind turbines, as is discussed. (Author)

  19. Airship-floated wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Watson, W. K.

    1985-01-01

    A wind turbine, by use of a tethered airship for support, may be designed for the economical recovery of power at heights of 2,000 feet or more above ground, at which height power density in the wind is typically three times the power density available to a conventionally supported wind turbine. Means can be added to such an airship-floated wind turbine which will permit its generators to be used to meet load demand even during periods of little or no wind. Described to this end is a wind turbine system which combines, among other novel features: a novel tether line system which provides access for men and materials to the supporting airship while in active service, a novel system for providing additional buoyant lift at the nose of the turbine-supporting airship to offset the vertical component of tension induced in the tether line by the downwind force exerted by the turbine blades, a novel bearing assembly at the nose of the supporting airship which permits the airship to rotate as a unit with the turbine it supports without causing a similar rotation of the tether line, a novel turbine airship structure which handles concentrated loads from the turbine efficiently and also permits the safe use of hydrogen for buoyancy, a novel ''space frame'' structure which supports the turbine blades and greatly reduces blade weight, a novel system for controlling turbine blade angle of incidence and for varying blade incidene in synchrony with blade angular position abut the turbine axis to provide greater control over airship movement, a novel system for locating propellor-driven generators out at the wind turbine perimeter and for using lightweight, high-RPM generators to produce electrical energy at a power line frequency, which greatly reduces the weight required to convert turbine blade torque into useful power, and a novel system for incorporating compressed air storage and combustion turbine components into the wind turbine's generator drive

  20. Wind turbine aerodynamics research needs assessment

    Science.gov (United States)

    Stoddard, F. S.; Porter, B. K.

    1986-01-01

    A prioritized list is developed for wind turbine aerodynamic research needs and opportunities which could be used by the Department of Energy program management team in detailing the DOE Five-Year Wind Turbine Research Plan. The focus of the Assessment was the basic science of aerodynamics as applied to wind turbines, including all relevant phenomena, such as turbulence, dynamic stall, three-dimensional effects, viscosity, wake geometry, and others which influence aerodynamic understanding and design. The study was restricted to wind turbines that provide electrical energy compatible with the utility grid, and included both horizontal axis wind turbines (HAWT) and vertical axis wind turbines (VAWT). Also, no economic constraints were imposed on the design concepts or recommendations since the focus of the investigation was purely scientific.

  1. CFD methods for wind turbines

    Science.gov (United States)

    Suatean, Bogdan; Colidiuc, Alexandra; Galetuse, Slelian

    2012-11-01

    The purpose of this paper is to present different CFD models used to determine the aerodynamic performance of horizontal axis wind turbine (HAWT). The models presented have various levels of complexity to calculate the aerodynamic performances of HAWT, starting with a simple model, the actuator line method, and ending with a CFD approach.

  2. A new method for dual-axis fatigue testing of large wind turbine blades using resonance excitation and spectral loading

    Science.gov (United States)

    White, Darris L.

    The demand for cost effective renewable energy sources has resulted in the continual refinement of modern wind turbine designs. These refinements generally result in larger wind turbines and wind turbine blades. In order to reduce maintenance expenses, and improve quality and reliability, each new blade design must be subjected to a high cycle fatigue test. With blades expected to soon reach 70 meters in length, traditional fatigue test systems and methods are becoming less practical. Additionally, the relationship between the flap and lead-lag bending moments has not been well understood. This work explores the accuracy of current test methods compared to service loads, presents a new method for fatigue testing larger blades and experimentally validates the analysis. A dynamic model of a generic wind turbine blade and test system has been developed to evaluate the strain profiles during testing, evaluate control strategies and optimize the test accuracy. The relationship between the flap and lead-lag strains resulting from service bending moments has been analyzed. A load spectrum based on the relationship between the flap and lead-lag loads has been developed and compared to traditional test conditions. The effect of using the load spectrum on the test system stability has been analyzed and a new state-space controller has been designed. A 3-D finite element model of a generic wind turbine blade has been used to evaluate the damage accumulation for current test load conditions and the proposed load spectrum. A nonlinear damage accumulation model has been derived to evaluate the effects of load sequencing. Additionally, a new method for applying the fatigue loads to the blades has been developed and implemented. A system that applies a harmonic force at the resonance frequency of the blade in the flap direction has been designed. The new system will reduce the costs and time associated with performing a fatigue test on wind turbine blades. The new system is also

  3. Wind Turbine Clutter

    OpenAIRE

    Gallardo-Hernando, Beatriz; Pérez-Martínez, Félix; Aguado-Encabo, Fernando

    2010-01-01

    In this chapter the main effects of wind turbines on the performance of radar systems have been explained. The radar signature of wind turbine clutter is unique and then, it requires a special treatment when developing mitigation techniques. WTC clutter remains spatially static, but it fluctuates continuously in time. In surveillance radars the return from wind turbines can be completely different from one scan to the following. In addition, apart from the powerful tower return, the movement ...

  4. Wind turbine technology principles and design

    CERN Document Server

    Adaramola, Muyiwa

    2014-01-01

    IntroductionPart I: AerodynamicsWind Turbine Blade Design; Peter J. Schubel and Richard J. CrossleyA Shrouded Wind Turbine Generating High Output Power with Wind-Lens Technology; Yuji Ohya and Takashi KarasudaniEcomoulding of Composite Wind Turbine Blades Using Green Manufacturing RTM Process; Brahim AttafAerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution; Travis J. Carrigan, Brian H. Dennis, Zhen X. Han, and Bo P. WangPart II: Generators and Gear Systems

  5. A computational platform for considering the effects of aerodynamic and seismic load combination for utility scale horizontal axis wind turbines

    Science.gov (United States)

    Asareh, Mohammad-Amin; Prowell, Ian; Volz, Jeffery; Schonberg, William

    2016-03-01

    The wide deployment of wind turbines in locations with high seismic hazard has led engineers to take into account a more comprehensive seismic design of such structures. Turbine specific guidelines usually use simplified methods and consider many assumptions to combine seismic demand with the other operational loads effecting the design of these structures. As the turbines increase in size and capacity, the interaction between seismic loads and aerodynamic loads becomes even more important. In response to the need for a computational tool that can perform coupled simulations of wind and seismic loads, a seismic module is developed for the FAST code and described in this research. This platform allows engineers working in this industry to directly consider interaction between seismic and other environmental loads for turbines. This paper details the practical application and theory of this platform and provides examples for the use of different capabilities. The platform is then used to show the suitable earthquake and operational load combination with the implicit consideration of aerodynamic damping by estimating appropriate load factors.

  6. 垂直轴风力发电机结构研究进展%Structural research of vertical axis wind turbine

    Institute of Scientific and Technical Information of China (English)

    陈兴华; 吴国庆; 曹阳; 茅靖峰; 张旭东; 张玉梅; 迟晓妮

    2011-01-01

    与水平轴风力发电机相比,垂直轴风力发电机具有结构对称、风能利用率高、噪音低等优点,有着较为广阔的市场前景.首先对垂直轴与水平轴风力机作了比较,分析了垂直轴风力发电机的特点,简要地概述了垂直轴风力机的先后发展,分别介绍了常见的萨渥纽斯阻力型、达里厄型及其变形结构等垂直轴风力机的结构,阐述了国内外学者对垂直轴风力机结构的研究现状,最后简要地分析了设计垂直轴风力机所面临的主要问题.%Compared with the horizontal axis wind turbines (HAWT),vertical axis wind turbine (VAWT)is characterized with its symmetrical structure,high wind energy utilization and low noise,therefore more broad market prospect is forseen.First,through comparing between the VAWT and HAWT,the characteristics of vertical axis wind turbine are analyzed,the development of VAWT is expounded briefly. Then the common Savonius resistance type and lift type such as Darrieus type as well as its deformation structures are introduced, the current research on VAWT of domestic and foreign scholars are expounded in brief.At last,some major problems of the structural design of VAWT are summarized briefly.

  7. Effects of Mie tip-vane on pressure distribution of rotor blade and power augmentation of horizontal axis wind turbine; Yokutan shoyoku Mie ben ni yoru suiheijiku fusha yokumenjo no atsuryoku bunpu no kaizen to seino kojo tono kankei

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Y.; Maeda, T.; Kamada, Y. [Mie Univ., Mie (Japan); Seto, H. [Mitsubishi Motors Corp., Tokyo (Japan)

    2000-04-01

    By recent developments of exclusive rotor blade, the efficiency of wind turbine is improved substantially. By measuring pressure on rotor blades of horizontal axis wind turbines rotating in wind tunnels, this report clarified relation between improvement of pressure distribution on main rotor blades by Mie vane and upgrade of wind turbine performance. The results under mentioned have been got by measuring pressure distribution on rotor blades, visualization by tuft, and measuring resistance of Mie vane. (1) The difference of pressure between suction surface and pressure surface on the end of rotor blade increase, and output power of wind turbine improves. (2) Vortex of blade end is inhibited by Mie vane. (3) The reason of reduction on wind turbine performance with Mie vane in aria of high rotating speed ratio is the increase of Mie vane flow resistance.(NEDO)

  8. 1.5kW H型垂直轴试验风机数据采集系统%Data Acquisition System of 1.5 kW H-Type Vertical Axis Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    幺开宇

    2011-01-01

    Wind power gradually becomes the important part of new energy. With the development of wind power,the advantages of vertical axis wind turbine are known by the people. For examples,the vertical axis wind turbine needs to be adjusted without changing the wind direction. There are no the yaw device and pitch controlled device in the vertical axis wind turbine. So its structure is simple. This paper develops a data acquisition system to test the vertical axis wind turbine,which is used for wind tunnel test of 1.5 kW vertical axis wind turbine in our company and has a good effect. The system gives the good support to the optimization of the design of the MW vertical axis wind turbine.%风能这种可再生能源正在成为新能源的重要力量.随着风力发电技术的快速发展,垂直轴风机无需对风,无变浆偏航装置,结构简单的优点逐渐被人们所认知.现介绍一种在垂直轴试验风机测试中采用的数据采集系统方案,该方案已成功应用到1.5kW H型垂直轴试验风机的风洞试验中,取得了良好的效果,为H型垂直轴风机的研发提供了有力的试验数据支持.

  9. Small wind turbine

    OpenAIRE

    Vélez Castellano, Didier

    2010-01-01

    The main objective is to develop a project on installing a small wind turbine at the University of Glyndwr in Wrexham Wales. Today are immersed in a world seeking clean energy for reduce greenhouse gases because this problem is becoming a global reality. So installing a small wind turbine at the university would provide large quantity of clean energy to supply a workshop and also reduce the expulsion of CO2 into the atmosphere. The main characteristic of the turbine under...

  10. Development of the flow model to determine the placement of the vertical axis wind turbine (VAWT) in the Padjadjaran University area

    Science.gov (United States)

    Suryaningsih, Sri; Saad, Aswad Hi.; Kartawidjaja, Mariah

    2016-02-01

    The wind in urban areas is turbulent and fast changes in direction and velocity. The recent studies indicate that Vertical Axis Wind Turbine (VAWT) is suitable to install in urban areas, especially for small scale VAWT application. The main purpose of this study is to predict the best possible placement of VAWT in the built environment, in case of Padjadjaran University area which is located in an urban area. This study was utilized with Computational Fluid Dynamics to create flow model in wind resource assessment. The geometry model was combined between the natural land form of terrain and man-made environment. Wind direction was predominantly from east and west almost the year at average wind speed 3.9 m/s. This works presented two main possible locations in the placement of the VAWT, in the near ground surface where obstacles created the wind strengthening effect and in the rooftop where an array of obstacles that closely and co-linier with wind direction which was the first obstacle basically blocked the wind.

  11. Analysis of Tip Vortices Identified in the Instantaneous Wake of a Horizontal-Axis Model Wind Turbine Placed in a Turbulent Boundary Layer

    Science.gov (United States)

    Jain, Akash; Mehdi, Faraz; Sheng, Jian

    2014-11-01

    The near-wake field, a short region characterized by the physical specifications of a turbine, is of particular interest for flow-structure interactions responsible for asymmetric loadings, premature structural breakdown, noise generation etc. Helical tip vortices constitute a distinctive feature of this region and are dependent not only on the turbine geometry but also on the incoming flow profile. High-spatial resolution PIV measurements are made in the wake of a horizontal-axis model wind turbine embedded in a neutrally stratified turbulent boundary layer. The data is acquired over consecutive locations up to 10 diameters downstream of the turbine but the focus here is on the tip vortices identified in the instantaneous fields. Contrary to previous studies, both top and bottom tip vortices are clearly distinguishable in either ensemble fields or instantaneous realizations. The streamwise extent of these vortices stretches from the turbine till they merge into the expanding mid-span wake. The similarities and differences in the top and bottom tip vortices are explored through the evolution of their statistics. In particular, the distributions of the loci of vortex cores and their circulations are compared. The information will improve our understanding of near wake vortical dynamics, provide data for model validation, and aid in the devise of flow control strategies.

  12. Noise from wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fegeant, Olivier [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Building Sciences

    2002-02-01

    A rapid growth of installed wind power capacity is expected in the next few years. However, the siting of wind turbines on a large scale raises concerns about their environmental impact, notably with respect to noise. To this end, variable speed wind turbines offer a promising solution for applications in densely populated areas like the European countries, as this design would enable an efficient utilisation of the masking effect due to ambient noise. In rural and recreational areas where wind turbines are sited, the ambient noise originates from the action of wind on the vegetation and about the listener's ear (pseudo-noise). It shows a wind speed dependence similar to that of the noise from a variable speed wind turbine and can therefore mask the latter for a wide range of conditions. However, a problem inherent to the design of these machines is their proclivity to pure tone generation, because of the enhanced difficulty of avoiding structural resonances in the mechanical parts. Pure tones are deemed highly annoying and are severely regulated by most noise policies. In relation to this problem, the vibration transmission of structure-borne sound to the tower of the turbine is investigated, in particular when the tower is stiffened at its upper end. Furthermore, since noise annoyance due to wind turbine is mostly a masking issue, the wind-related sources of ambient noise are studied and their masking potentials assessed. With this aim, prediction models for wind-induced vegetation noise and pseudo-noise have been developed. Finally, closely related to the effect of masking, is the difficulty, regularly encountered by local authorities and wind farm developers, to measure noise immission from wind turbines. A new measurement technique has thus been developed in the course of this work. Through improving the signal-to-noise ratio between wind turbine noise and ambient noise, the new technique yields more accurate measurement results.

  13. Optimization Design of a 5kW Lift Type Vertical Axis Wind Turbine With Wind Shield-Growth Patterns%5kW遮蔽-增速升力型垂直轴风力机优化设计

    Institute of Scientific and Technical Information of China (English)

    姬俊峰; 邓召义; 蒋磊; 黄典贵

    2012-01-01

    本文详细介绍了5 kW遮蔽-增速垂直轴风力机的结构特点及主要参数。利用正交优化设计方法,采用计算流体力学软件,针对5 kW风力机,在叶片个数和遮蔽板安装位置半径一定的情况下,对翼型弦长、叶片转动扫掠面的半径、风轮旋转速度、遮蔽-增速板个数、遮蔽-增速板与叶片间的气动间隙以及遮蔽-增速板的安装角六个参数进行优化计算,找出一组最佳设计参数,进而设计出5 kW遮蔽-增速升力型垂直轴风力机,并对设计出的有遮蔽板与无遮蔽板两类型风力机的变工况特性进行比较分析。%This paper is devoted to a detailed study of the characteristics of the structure and most important aerodynamic design parameters of a 5 kW lift type vertical axis wind turbine with wind shield-growth patterns.As the number of turbine blades and the installation location of wind shield-growth patterns have been previously set,the computational fluid dynamics code was adopted in this study to obtain the numerical results and then six parameters,including blade airfoil chord length,radius of turbine rotor,rotational speed of the wind turbine,number of wind shield-growth patterns,clearance between the turbine blades and surrounding wind shield-growth patterns and installation angle of wind shield-growth patterns,were all optimized by using an orthogonal optimization algorithm.Based on the optimized parameters obtained,a 5 kW lift type vertical axis wind turbine can be designed.In addition,the performance characteristics of the designed wind turbine with and without wind shield-growth patterns were analyzed and compared under variable wind conditions.

  14. Small power wind turbine (Type DARRIEUS

    Directory of Open Access Journals (Sweden)

    Marcel STERE

    2012-03-01

    Full Text Available This presentation focuses on the calculation for small vertical axis wind turbines (VAWT for an urban application. The fixed-pitch straight – bladed vertical axis wind turbine (SB-VAWT is one of the simplest types of wind turbine and accepts wind from any angle (no yaw system. This turbine is useful for moderate wind speeds (3 - 6 m/s. A case study is presented based upon the use of well documented symmetrical NACA 0012 turbine blade profile. We describe a solution for VAWT. To perform a linear static analysis in the structure, the commercial finite element analysis code ANSYS is used because of its flexibility for handling information in files written in a more or less free format.

  15. Noise from wind turbines

    International Nuclear Information System (INIS)

    Denmark has 3200 wind turbines with an installed maximum capacity of 418MW. The most important Danish research projects into wind turbine noise and the main results are listed. These date from 1983. Two comprehensive studies are currently in progress. The first is an analytical and empirical investigation of aerodynamic noise from wind turbine rotors and has so far dealt mainly with tip noise. The measurement method, using a hard board mounted microphone on the ground near the turbine, is described. Four different tip designs have been tested. Some examples of reference sound power level spectra for three of the designs are presented. During the past two years a computerbased data acquisition system has been used for real-time determination of sound power levels. The second study, which has just commenced, is on annoyance from wind turbine noise. It will include noise measurements, masking calculations and a social survey on the perceived nuisance. (UK)

  16. Vertical axis wind turbine turbulent response model. Part 2: Response of Sandia National laboratories' 34-meter VAWT with aeroelastic effects

    Science.gov (United States)

    1990-01-01

    The dynamic response of Sandia National Laboratories' 34-m Darrieus rotor wind turbine at Bushland, Texas, is presented. The formulation used a double-multiple streamtube aerodynamic model with a turbulent airflow and included the effects of linear aeroelastic forces. The structural analysis used established procedures with the program MSC/NASTRAN. The effects of aeroelastic forces on the damping of natural modes agree well with previous results at operating rotor speeds, but show some discrepancies at very high rotor speeds. A number of alternative expressions for the spectrum of turbulent wind were investigated. The model loading represented by each does not differ significantly; a more significant difference is caused by imposing a full lateral coherence of the turbulent flow. Spectra of the predicted stresses at various locations show that without aeroelastic forces, very severe resonance is likely to occur at certain natural frequencies. Inclusion of aeroelastic effects greatly attenuates this stochastic response, especially in modes involving in-plane blade bending.

  17. Aeroservoelasticity of Wind Turbines

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand...... many similarities to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations...... % under ideal conditions. So, a new aeroelastic blade model has been derived, which includes important features of large wind turbines, yet simple enough to be suitable for analytical analysis and control design....

  18. Wind turbines and infrasound

    Energy Technology Data Exchange (ETDEWEB)

    Howe, B. [HGC Engineering, Mississauga, ON (Canada)

    2006-11-29

    This paper provided the results of a study conducted to assess the impacts of wind farm-induced infrasound on nearby residences and human populations. Infrasound occurs at frequencies below those considered as detectable by human hearing. Infrasonic levels caused by wind turbines are often similar to ambient levels of 85 dBG or lower that are caused by wind in the natural environment. This study examined the levels at which infrasound poses a threat to human health or can be considered as an annoyance. The study examined levels of infrasound caused by various types of wind turbines, and evaluated acoustic phenomena and characteristics associated with wind turbines. Results of the study suggested that infrasound near modern wind turbines is typically not perceptible to humans through either auditory or non-auditory mechanisms. However, wind turbines often create an audible broadband noise whose amplitude can be modulated at low frequencies. A review of both Canadian and international studies concluded that infrasound generated by wind turbines should not significantly impact nearby residences or human populations. 17 refs., 2 tabs., 4 figs.

  19. Wind Turbine Box - energy fluxes around a characteristic wind turbine

    Science.gov (United States)

    Calaf, Marc; Cortina, Gerard; Sharma, Varun

    2015-11-01

    This research project presents a new tool, so called ``Wind Turbine Box'', that allows for the direct comparison between the flow around a single wind turbine and the flow around a characteristic wind turbine immersed within a large wind farm. The Wind Turbine Box consists of a limited control volume defined around each wind turbine that is timely co-aligned with each corresponding turbine's yaw-angle. Hence it is possible to extract flow statistics around each wind turbine, regardless of whether the turbine is fully isolated or it is plunged within a large wind farm. The Wind Turbine Box tool has been used to compute the energy fluxes around a characteristic wind turbine of a large wind farm to better understand the wake replenishment processes throughout a complete diurnal cycle. The effective loading of the wind farm has been gradually increased, ranging from quasi-isolated wind turbines to a highly packed wind farm. For this purpose, several Large Eddy Simulations have been run, forced with a constant geostrophic wind and a time varying surface temperature extracted from a selected period of the CASES-99 field experiment. Results illustrate the differences in the flow dynamics as it evolves around a characteristic wind turbine within a large wind farm and its asymptotic transition to the fully developed wind turbine array boundary layer.

  20. Positioning and tail rotor of a small horizontal axis wind turbine of due to the influence of drag coefficient and lift affecting vane cola

    International Nuclear Information System (INIS)

    In the present investigation was carried out an assessment on the state of technology on guidance systems and tail protection when used in small horizontal axis wind turbines, work was improved methodological approach for the development of guidance systems queue by time of these machines, to incorporate the use of coefficients of lift and drag behavior varies according to the aspect ratio, using the principles of continuum mechanics and CFD methods. Two versions are analyzed , original and updated, the wind turbine CEET-01, on which the author would have been granted a Certificate of Patent of Invention and one of Industrial Model, the updated version was derived from the procedure proposed by the author, this presents a holder for the longest vane and a larger area in the vane. In addition to analyzing the amount and cost of power generated and the capacity factor at three locations in the province of Villa Clara it was concluded that the updated variant of the turbine CEET-01 is superior to the original

  1. A conformal mapping technique to correlate the rotating flow around a wing section of vertical axis wind turbine and an equivalent linear flow around a static wing

    Science.gov (United States)

    Akimoto, Hiromichi; Hara, Yutaka; Kawamura, Takafumi; Nakamura, Takuju; Lee, Yeon-Seung

    2013-12-01

    In a vertical axis wind turbine (VAWT), turbine blades are subjected to the curved flow field caused by the revolution of turbine. However, performance prediction of VAWT is usually based on the fluid dynamic coefficients obtained in wind tunnel measurements of the two-dimensional static wing. The difference of fluid dynamic coefficients in the curved flow and straight flow deteriorates the accuracy of performance prediction. To find the correlation between the two conditions of curved and straight flow, the authors propose a conformal mapping method on complex plane. It provides bidirectional mapping between the two flow fields. For example, the flow around a symmetric wing in the curved flow is mapped to that around a curved (cambered) wing in the straight flow. Although the shape of mapped wing section is different from the original one, its aerodynamic coefficients show a good correlation to those of the original in the rotating condition. With the proposed method, we can reproduce the local flow field around a rotating blade from the flow data around the mapped static wing in the straight flow condition.

  2. Coalescing Wind Turbine Wakes

    Science.gov (United States)

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-01

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the global meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a “triplet” structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. The turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions.

  3. Piezoelectric wind turbine

    Science.gov (United States)

    Kishore, Ravi Anant; Priya, Shashank

    2013-03-01

    In past few years, there has been significant focus towards developing small scale renewable energy based power sources for powering wireless sensor nodes in remote locations such as highways and bridges to conduct continuous health monitoring. These prior efforts have led to the development of micro-scale solar modules, hydrogen fuel cells and various vibration based energy harvesters. However, the cost effectiveness, reliability, and practicality of these solutions remain a concern. Harvesting the wind energy using micro-to-small scale wind turbines can be an excellent solution in variety of outdoor scenarios provided they can operate at few miles per hour of wind speed. The conventional electromagnetic generator used in the wind mills always has some cogging torque which restricts their operation above certain cut-in wind speed. This study aims to develop a novel piezoelectric wind turbine that utilizes bimorph actuators for electro-mechanical energy conversion. This device utilizes a Savonius rotor that is connected to a disk having magnets at the periphery. The piezoelectric actuators arranged circumferentially around the disk also have magnets at the tip which interacts with the magnetic field of the rotating disk and produces cyclical deflection. The wind tunnel experiments were conducted between 2-12 mph of wind speeds to characterize and optimize the power output of the wind turbine. Further, testing was conducted in the open environment to quantify the response to random wind gusts. An attempt was made towards integration of the piezoelectric wind turbine with the wireless sensor node.

  4. Aerodynamic noise prediction of a Horizontal Axis Wind Turbine using Improved Delayed Detached Eddy Simulation and acoustic analogy

    International Nuclear Information System (INIS)

    Highlights: • The noise predictions are performed by Ffowcs Williams and Hawkings method. • There is a direct relation between the radiated noise and the wind speed. • The tonal peaks in the sound spectra match with the blade passing frequency. • The quadrupole noises have negligible effect on the low frequency noises. - Abstract: This paper presents the results of the aerodynamic and aero-acoustic prediction of the flow field around the National Renewable Energy Laboratory Phase VI wind turbine. The Improved Delayed Detached Eddy Simulation turbulence model is applied to obtain the instantaneous turbulent flow field. The noise prediction is carried out using the Ffowcs Williams and Hawkings acoustic analogy. Simulations are performed for three different inflow conditions, U = 7, 10, 15 m/s. The capability of the Improved Delayed Detached Eddy Simulation turbulence model in massive separation is verified with available experimental data for pressure coefficient. The broadband noises of the turbulent boundary layers and the tonal noises due to the blade passing frequency are predicted via flow field noise simulation. The contribution of the thickness, loading and quadrupole noises are investigated, separately. The results indicated that there is a direct relation between the strength of the radiated noise and the wind speed. Furthermore, the effect of the receiver location on the Overall Sound Pressure Level is investigated

  5. Direct drive wind turbine

    Science.gov (United States)

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  6. Comparison of the near-wake between actuator-line simulations and a simplified vortex model of a horizontal-axis wind turbine

    DEFF Research Database (Denmark)

    Sarmast, Sasan; Segalini, Antonio; Mikkelsen, Robert Flemming;

    2016-01-01

    different wind turbines have been simulated: one with constant circulation along the blades, to replicate the vortex method approximations, and the other with a realistic circulation distribution, to compare the outcomes of the vortex model with real operative wind-turbine conditions (Tjæreborg wind turbine......). The vortex model matched the numerical simulation of the turbine with constant blade circulation in terms of the near-wake structure and local forces along the blade. The results from the Tjæreborg turbine case showed some discrepancies between the two approaches, but overall, the agreement is...

  7. The Dutch wind turbine industry

    International Nuclear Information System (INIS)

    An overview is given of the manufacturers of wind turbines and wind turbine blades in the Netherlands. Special attention is paid to the impact of the Dutch Integral Program Wind energy (IPW) on the developments and activities of the Dutch wind turbine industry. Implementation of wind energy is less than expected. The activities to reduce the prices for wind turbines have not yet resulted in cheaper wind turbines. The efficiency of wind energy however does not only depend on the costs for wind turbines but also on the value adjudged to the electric power from wind energy. Implementation of wind turbines must be better planned based on the condition that the developments in the wind turbine industry should be continued. Problems regarding the selection of sites and licensing procedures have to be solved. 4 tabs

  8. A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study.

    Energy Technology Data Exchange (ETDEWEB)

    Bull, Diana L; Fowler, Matthew; Goupee, Andrew

    2014-08-01

    This analysis utilizes a 5 - MW VAWT topside design envelope created by Sandia National Laborator ies to compare floating platform options fo r each turbine in the design space. The platform designs are based on two existing designs, the OC3 Hywind spar - buoy and Principal Power's WindFloat semi - submersible. These designs are scaled using Froude - scaling relationships to determine an appropriately sized spar - buoy and semi - submersible design for each topside. Both the physical size of the required platform as well as mooring configurations are considered. Results are compared with a comparable 5 - MW HAWT in order to identify potential differences in the platform and mooring sizing between the VAWT and HAWT . The study shows that there is potential for cost savings due to reduced platform size requirements for the VAWT.

  9. European wind turbine catalogue

    International Nuclear Information System (INIS)

    The THERMIE European Community programme is designed to promote the greater use of European technology and this catalogue contributes to the fulfillment of this aim by dissemination of information on 50 wind turbines from 30 manufacturers. These turbines are produced in Europe and are commercially available. The manufacturers presented produce and sell grid-connected turbines which have been officially approved in countries where this approval is acquired, however some of the wind turbines included in the catalogue have not been regarded as fully commercially available at the time of going to print. The entries, which are illustrated by colour photographs, give company profiles, concept descriptions, measured power curves, prices, and information on design and dimension, safety systems, stage of development, special characteristics, annual energy production, and noise pollution. Lists are given of wind turbine manufacturers and agents and of consultants and developers in the wind energy sector. Exchange rates used in the conversion of the prices of wind turbines are also given. Information can be found on the OPET network (organizations recognised by the European Commission as an Organization for the Promotion of Energy Technologies (OPET)). An article describes the development of the wind power industry during the last 10-15 years and another article on certification aims to give an overview of the most well-known and acknowledged type approvals currently issued in Europe. (AB)

  10. Wind turbines and health

    International Nuclear Information System (INIS)

    This document summarized the potential health hazards associated with wind turbines, such as noise and low frequency sound, vibration and infrasound; electromagnetic fields (EMF); shadow flicker; and ice throw and structural failure. Various symptoms can be attributed to wind turbines, including dizziness, sleep disruption, and headaches. A review of available research regarding potential health affects to residents living in close proximity to wind turbines showed that the sound level associated with wind turbines at common residential setbacks is not sufficient to damage hearing, but may lead to annoyance and sleep disturbance. Research has shown that wind turbines are not a significant source of EMF exposure, and although shadows caused by the blades may be annoying, they are not likely to cause epileptic seizures at normal operational speeds. The risk of injury from ice throw can be minimized with setbacks of 200 to 400 m. Examples of Canadian wind turbine setback guidelines and regulations were also offered. It was concluded that setbacks and operational guidelines can be utilized in combination to address safety hazards, sound levels, land use issues, and impacts on people. 46 refs., 2 tabs., 2 figs.

  11. Wind turbines and health

    Energy Technology Data Exchange (ETDEWEB)

    Rideout, K.; Copes, R.; Bos, C. [National Colaborating Centre for Environmental Health, Vancouver, BC (Canada)

    2010-01-15

    This document summarized the potential health hazards associated with wind turbines, such as noise and low frequency sound, vibration and infrasound; electromagnetic fields (EMF); shadow flicker; and ice throw and structural failure. Various symptoms can be attributed to wind turbines, including dizziness, sleep disruption, and headaches. A review of available research regarding potential health affects to residents living in close proximity to wind turbines showed that the sound level associated with wind turbines at common residential setbacks is not sufficient to damage hearing, but may lead to annoyance and sleep disturbance. Research has shown that wind turbines are not a significant source of EMF exposure, and although shadows caused by the blades may be annoying, they are not likely to cause epileptic seizures at normal operational speeds. The risk of injury from ice throw can be minimized with setbacks of 200 to 400 m. Examples of Canadian wind turbine setback guidelines and regulations were also offered. It was concluded that setbacks and operational guidelines can be utilized in combination to address safety hazards, sound levels, land use issues, and impacts on people. 46 refs., 2 tabs., 2 figs.

  12. The design of wind turbine for electrical power generation in Malaysian wind characteristics

    International Nuclear Information System (INIS)

    The paper describes the study of a wind turbine for electrical power generation in Malaysia wind characteristics. In this research, the wind turbine is designs based on the local wind characteristics and tries to avoid the problems faced in the past (turbine design, access, manpower and technical). The new wind turbine rotor design for a medium speed wind speed turbine utilises the concept of open-close type of horizontal axis (up-wind) wind turbine is intended to widen the optimum performance range for electrical generation in Malaysia wind characteristics. The wind turbine has been designed to cut-in at a lower speed, and to provide the rotation speed that high enough to run a generator. The analysis and design of new low speed wind turbine blades and open-close turbine rotor and prediction of turbine performance are being detailed in this paper. (Author)

  13. Flexible wind turbines. Flexibele molens

    Energy Technology Data Exchange (ETDEWEB)

    van der Veld, P.J.

    1983-01-01

    Wind turbines are subject to strong and suddenly fluctuating forces, on special parts of the construction (blade root, axis, hub, mast). This requires sophisticated concepts and special, preferable fibrous, materials. Flexible materials and hingeing constructions and vibration-breaking systems are used widely. Some remarkable concepts are to be mentioned. In some cases the mast as a whole is movable and even turnable around a vertical axis, thus absorbing dangerous forces and also permitting the nacelle to be fixed to the mast. Rotors are designed where the blades are hingeing not at or very near the hub, but at a certain distance from it.

  14. Floating wind turbine system

    Science.gov (United States)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  15. Wind Turbine Acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    2009-01-01

    Wind turbine generators, ranging in size from a few kilowatts to several megawatts, are producing electricity both singly and in wind power stations that encompass hundreds of machines. Many installations are in uninhabited areas far from established residences, and therefore there are no apparent environmental impacts in terms of noise. There is, however, the potential for situations in which the radiated noise can be heard by residents of adjacent neighborhoods, particularly those neighborhoods with low ambient noise levels. A widely publicized incident of this nature occurred with the operation of the experimental Mod-1 2-MW wind turbine, which is described in detail elsewhere. Pioneering studies which were conducted at the Mod-1 site on the causes and remedies of noise from wind turbines form the foundation of much of the technology described in this chapter.

  16. Damage mitigating control for wind turbines

    Science.gov (United States)

    Santos, Richard A.

    2007-12-01

    In the last few decades the wind industry has made great strides in reducing the cost of energy of utility scale wind turbines. In an attempt to reduce infrastructure costs and improve efficiency, the trend has been to develop larger variations of existing designs. In the past, the wind turbine controller was used primarily for rotor speed control and prevention of catastrophic damage from extreme wind conditions or component failures. The recent trend of wind turbine growing in size has resulted in wind turbines becoming much more flexible, and now the emphasis of wind turbine controls research focuses on how to damp resonances and avoid dangerous excitations that may lead to structural failure. Control of the fatigue loads on the wind turbine structure addresses neglects the fatigue mechanism of the material. The conversion of loads into stresses and those stresses into fatigue damage is a highly nonlinear process and is based on the so-called "cycle-counting" methods. Since the cycle counting methodology is difficult to convert into the time or frequency domains, these components have been generally avoided in controls research. Without modeling the damage dynamics, the wind turbine controller cannot efficiently reduce the fatigue of the structural components. The result is that only small decreases of fatigue damage are realized by current load reduction strategies at the expense of excessive control actuation. This dissertation introduces the concept of Damage Mitigating Control (DMC) as it applies to utility scale Horizontal Axis Wind Turbines (HAWTs). The work presented extends earlier work in damage mitigating and life extending control in several ways and then applies then applies this control strategy to reduce the fatigue damage suffered by wind turbines during operation. By modeling fatigue damage dynamics within the wind turbine controller, the life of the turbine can be extended significantly without sacrificing performance.

  17. Wind turbine control and monitoring

    CERN Document Server

    Luo, Ningsu; Acho, Leonardo

    2014-01-01

    Maximizing reader insights into the latest technical developments and trends involving wind turbine control and monitoring, fault diagnosis, and wind power systems, 'Wind Turbine Control and Monitoring' presents an accessible and straightforward introduction to wind turbines, but also includes an in-depth analysis incorporating illustrations, tables and examples on how to use wind turbine modeling and simulation software.   Featuring analysis from leading experts and researchers in the field, the book provides new understanding, methodologies and algorithms of control and monitoring, comput

  18. A New Approach for Modeling Darrieus-Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of Theoretical Formulations and Model Development

    Directory of Open Access Journals (Sweden)

    Pierre Tchakoua

    2015-09-01

    Full Text Available Models are crucial in the engineering design process because they can be used for both the optimization of design parameters and the prediction of performance. Thus, models can significantly reduce design, development and optimization costs. This paper proposes a novel equivalent electrical model for Darrieus-type vertical axis wind turbines (DTVAWTs. The proposed model was built from the mechanical description given by the Paraschivoiu double-multiple streamtube model and is based on the analogy between mechanical and electrical circuits. This work addresses the physical concepts and theoretical formulations underpinning the development of the model. After highlighting the working principle of the DTVAWT, the step-by-step development of the model is presented. For assessment purposes, simulations of aerodynamic characteristics and those of corresponding electrical components are performed and compared.

  19. Air Resistance Test of 1.5 kW H-type Vertical Axis Wind Turbine%1.5kW H型垂直轴试验风机空气阻力试验

    Institute of Scientific and Technical Information of China (English)

    幺开宇

    2012-01-01

    Wind power gradually becomes new important energy source. With the development of the wind power, it is well known that the vertical axis wind turbine has many advantages;for examples, it does not need to adjust the turbine with the direction of wind changing; so there need no the yaw device and pitch controlled device. As compared with the wind turbine, H-type vertical axis wind turbine has the advantages of more wind swept area, light weight, small inertia and simple structure. We test the torque of 1.5 kW H-type vertical axis wind turbines with different solidity and different structure under the condition of no wind by motor drive. We un derstand the effect of the different structure on vertical axis wind turbine by comparison with the test data. This paper gives a refer ence to the optimum design of the MW vertical axis wind turbine.%风能这种可再生能源正在成为新能源的重要力量.随着风电技术的快速发展,垂直轴风机无需对风,无变浆偏航装置,结构简单的优点逐渐被人们所认知.H型垂直轴风机具有扫风面积更大、质量轻、惯量小、结构简单等特点.实验对不同实度和支撑结构的1.5kWH型垂直轴风轮进行了无风条件下的电动拖动试验.通过对不同试验风轮空气阻力扭矩的测量和比较,初步了解了不同结构对H型垂直轴风机性能的影响,为今后兆瓦级垂直轴风机的设计提供了优化方向和参考依据.

  20. Flow Characteristics Study of Wind Turbine Blade with Vortex Generators

    OpenAIRE

    Hao Hu; Xin-kai Li; Bo Gu

    2016-01-01

    The blade root flow control is of particular importance to the aerodynamic characteristic of large wind turbines. The paper studies the feasibility of improving blade pneumatic power by applying vortex generators (VGs) to large variable propeller shaft horizontal axis wind turbines, with 2 MW variable propeller shaft horizontal axis wind turbine blades as research object. In the paper, three cases of VGs installation are designed; they are scattered in different chordwise position at the blad...

  1. Diffuser Augmented Horizontal Axis Tidal Current Turbines

    Directory of Open Access Journals (Sweden)

    Nasir Mehmood

    2012-09-01

    Full Text Available The renewal energy technologies are increasingly popular to ensure future energy sustenance and address environmental issues. The tides are enormous and consistent untapped resource of renewable energy. The growing interest in exploring tidal energy has compelling reasons such as security and diversity of supply, intermittent but predictable and limited social and environmental impacts. The tidal energy industry is undergoing an increasing shift towards diffuser augmented turbines. The reason is the higher power output of diffuser augmented turbines compared to conventional open turbines. The purpose of this study is to present a comprehensive review of diffuser augmented horizontal axis tidal current turbines. The components, relative advantages, limitations and design parameters of diffuser augmented horizontal axis tidal current turbines are presented in detail. CFD simulation of NACA 0016 airfoil is carried out to explore its potential for designing a diffuser. The core issues associated with diffuser augmented horizontal axis tidal current turbines are also discussed.

  2. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen;

    2010-01-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future...... main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...

  3. Wind Turbine Providing Grid Support

    OpenAIRE

    Tarnowski, Germán Claudio

    2011-01-01

    A variable speed wind turbine is arranged to provide additional electrical power to counteract non-periodic disturbances in an electrical grid. A controller monitors events indicating a need to increase the electrical output power from the wind turbine to the electrical grid. The controller is arranged to control the wind turbine as follows: after an indicating event has been detected, the wind turbine enters an overproduction period in which the electrical output power is increased, wherein ...

  4. Online wind turbine measurement laboratory

    DEFF Research Database (Denmark)

    Hansen, K.S.; Helgesen Pedersen, K.O.; Schmidt Paulsen, U.

    2006-01-01

    As part of the International Master of Science Program in Wind Energy at DTU, a complete interactive wind turbine measurement laboratory has been developed. A 500 kW stall regulated wind turbine has been instrumented with sensors for recording 1) turbine operational parameters, 2) meteorological...... quantities. Measurements are acquired by a PC placed at the wind turbine site near Risø National Laboratory. The PC can be remotely controlled from DTU, which gives the students the opportunity to work on an operating wind turbine. Furthermore, measurements are published on WindData.com, which facilitates...

  5. Numerical investigation of wind turbine and wind farm aerodynamics

    Science.gov (United States)

    Selvaraj, Suganthi

    A numerical method based on the solution of Reynolds Averaged Navier Stokes equations and actuator disk representation of turbine rotor is developed and implemented in the OpenFOAM software suite for aerodynamic analysis of horizontal axis wind turbines (HAWT). The method and the implementation are validated against the 1-D momentum theory, the blade element momentum theory and against experimental data. The model is used for analyzing aerodynamics of a novel dual rotor wind turbine concept and wind farms. Horizontal axis wind turbines suffer from aerodynamic inefficiencies in the blade root region (near the hub) due to several non-aerodynamic constraints (e.g., manufacturing, transportation, cost, etc.). A new dual-rotor wind turbine (DRWT) concept is proposed that aims at mitigating these losses. A DRWT is designed using an existing turbine rotor for the main rotor (Risoe turbine and NREL 5 MW turbine), while the secondary rotor is designed using a high lift to drag ratio airfoil (the DU 96 airfoil from TU Delft). The numerical aerodynamic analysis method developed as a part of this thesis is used to optimize the design. The new DRWT design gives an improvement of about 7% in aerodynamic efficiency over the single rotor turbine. Wind turbines are typically deployed in clusters called wind farms. HAWTs also suffer from aerodynamic losses in a wind farm due to interactions with wind turbine wakes. An interesting mesoscale meteorological phenomenon called "surface flow convergence" believed to be caused by wind turbine arrays is investigated using the numerical method developed here. This phenomenon is believed to be caused by the pressure gradient set up by wind turbines operating in close proximity in a farm. A conceptual/hypothetical wind farm simulation validates the hypothesis that a pressure gradient is setup in wind farms due to turbines and that it can cause flow veering of the order of 10 degrees. Simulations of a real wind farm (Story County) are also

  6. Wind turbine design

    International Nuclear Information System (INIS)

    Using wind energy to generate power has become an attractive and feasible possibility as a complement to the traditional power generation methods. This is mainly due to advances in aerodynamic analysis, development of new composite materials and the experience gained through innovative and pioneering designs. Wind energy is abundant and inexhaustible. Its use to generate power in remote areas of developing countries with less developed infrastructure could accelerate the modernisation of such regions. This paper attempts to give an overview of the technical aspects of wind turbine design and is meant for an audience new to the subject. It is not the purpose of this presentation to deal in detail with the technical aspects, but rather to highlight the salient aspects of the design. After a brief introduction, the topics covered are aerodynamics and aeroacoustics of wind turbines with a discussion of the structural dynamics and vibration engineering aspects. (author)

  7. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  8. Data report: the wake of a horizontal-axis wind turbine model, measurements in uniform approach flow and in a simulated atmospheric boundary layer

    NARCIS (Netherlands)

    Talmon, A.M.

    1985-01-01

    Wake effects will cause power loss when wínd turbínes are grouped in so called wind turbine parks. Wind tunnel measurements of the wake of a wind turbíne model are conducted in order to refine calculatíons of wake effects. Wake effects caused by tower and nacelle are studied in uniform flow. Wake de

  9. Type IV Wind Turbine Model

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Margaris, Ioannis D.

    project to be incorporated in the wind power plant level. This document describes the Type 4 wind turbine simulation model, implemented in the EaseWind project. The implemented wind turbine model is one of the initial necessary steps toward integrating new control services in the wind power plant level....... In the project, this wind turbine model will be further incorporated in a wind power plant model together with the implementation in the wind power control level of the new control functionalities (inertial response, synchronising power and power system damping). For this purpose an aggregate wind...... power plant (WPP) will be considered. The aggregate WPP model, which will be based on the upscaling of the individual wind turbine model on the electrical part, will make use of an equivalent wind speed. The implemented model follows the basic structure of the generic standard Type 4 wind turbine model...

  10. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  11. Wind turbine airfoil catalogue

    DEFF Research Database (Denmark)

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, Jeppe;

    2001-01-01

    The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind turbine applications) are collected and compared with computational results from the 2D Navier-Stokes solverEllipSys2D, as well as results from the panel...

  12. Performance Evaluation of the Multi-stage Tower-type Vertical-axis Wind Turbine%多层塔式H型立轴风机的性能分析

    Institute of Scientific and Technical Information of China (English)

    高振勋; 蒋崇文; 唐金龙; 王德宝

    2011-01-01

    The main ideal of the multi-stage tower type vertical-axis wind turbine is to utilize the superposition of multi group H-type vertical-axis wind turbines to generate power, and fully use the wind energy in different altitude, which is beneficial for the large-scale development of modern wind turbine. The performance compari sons between the multi-stage tower-type vertical-axis wind turbine and traditional wind turbine were performed on many aspects. It was pointed out that the multi-stage tower-type vertical-axis wind turbine can have many advantages, such as easy-machining blades, high power efficiency, avoidance of the yawing system, reasonable structure loading, and low manufacture/maintenance cost. However, some disadvantages exist, such as the aerodynamic drag brought in by the blade supporting structure, complicated tower construction, and incremental requirement for gearbox and shaft joint. Overall considering, the multi stage tower-type vertical-axis wind turbine has extensive prospect of market applications.%多层塔式立轴风机的核心思想是将多组H型立轴风机分层叠加组合发电,结构简单性能优异,非常适合大容量的风电机组,符合现代风机向大型化发展的方向。对多层塔式立轴风机与传统风机的多方面性能进行了对比,指出多层塔式立轴风机具有风能利用率高、叶片制造简单、无需偏航系统、结构载荷合理、制造维护成本低等诸多优点,但也存在一些缺点,如叶片支撑结构会引入气动阻力、塔架设计较复杂、需要多组齿轮箱及联轴器等。总体分析表明,多层塔式立轴风机的方案在技术上和经济上是可行的。

  13. Design And Analysis Of Savonius Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Kshitija. M. Deshmukh,

    2015-11-01

    Full Text Available There are two kinds of wind turbines according to the axis of rotation to the ground, horizontal axis wind turbines (HAWT and vertical axis wind turbines (VAWT. VAWTs include both a drag type configuration like Savonius wind turbine and a lift-type configuration like Darrieus wind turbine. Savonius wind rotor has many advantages such as low starting speeds and no need for external torque for its starting. Moreover it is cheaper in construction and has low maintenance. It is independent of the wind direction and has a good starting torque at lower wind speeds. The experimental study conducted in this paper aims to investigate the effect of number of blades and other criteria that can affect the performance of the model of Savonius type wind turbine. The experiments used to compare 2, 3, and 4 blades wind turbines to show tip speed ratio, torque and power coefficient related with wind speed. A simulation using ANSYS 13.0 software will show pressure distribution of wind turbine. The results of study showed that number of blades influence the performance of wind turbine. Savonius model with three blades has the best performance at high tip speed ratio.

  14. Investigation of the Optimal Omni-Direction-Guide-Vane Design for Vertical Axis Wind Turbines Based on Unsteady Flow CFD Simulation

    Directory of Open Access Journals (Sweden)

    Behzad Shahizare

    2016-03-01

    Full Text Available With soaring energy demands, the desire to explore alternate and renewable energy resources has become the focal point of various active research fronts. Therefore, the scientific community is revisiting the notion to tap wind resources in more rigorous and novel ways. In this study, a two-dimensional computational investigation of the vertical axis wind turbine (VAWT with omni-direction-guide-vane (ODGV is proposed to determine the effects of this guide vane. In addition, the mesh and time step (dt size dependency test, as well as the effect of the different turbulence models on results accuracy are investigated. Eight different shape ratios (R of the omni-direction-guide-vane were also examined in this study. Further, the CFD model is validated by comparing the numerical results with the experimental data. Validation results show a good agreement in terms of shape and trend in CFD simulation. Based on these results, all the shape ratios, except two ratios including 0.3 and 0.4 at TSR of 1.3 to 3, have a positive effect on the power and torque coefficient improvement. Moreover, results show that the best case has a shape ratio of 0.55, which improves the power coefficient by 48% and the torque coefficient up to 58%.

  15. Large-scale wind turbine structures

    Science.gov (United States)

    Spera, David A.

    1988-05-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  16. Wind Turbines Adaptation to the Variability of the Wind Field

    Science.gov (United States)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar

  17. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states...... consideres are in the ultimate limit state (ULS) extreme conditions in the standstill position and extreme conditions during operating. For wind turbines, where the magnitude of the loads is influenced by the control system, the ultimate limit state can occur in both cases. In the fatigue limit state (FLS......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined...

  18. 垂直轴风力发电机技术综述及研究进展%An Overview and Recent Research Progresses of Vertical Axis Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    杨益飞; 潘伟; 朱熀秋

    2013-01-01

    This paper formulated several main types of vertical axis wind turbine and their characteristics, operation principles and applications were discussed. The improvement on performance in improving wind power coefficient and the latest development of the main key part were presented. The viewpoints are that vertical axis wind turbine will be the development tendency of wind power. Finally, the conclusion gives a simple view of problems that need further study on the basis of the shortage of the vertical axis wind turbine.%系统阐述了垂直轴风力发电机几种主要类型的结构、原理及应用情况,简要介绍了在提高风能利用率方面所作的性能改进以及垂直轴风力发电机几个关键的组成部分取得的最新研究进展,指出垂直轴风力发电机是今后风力发电发展的主要方向.最后,针对目前垂直轴风力发电机研究现状的不足之处,提出了需要进—步研究的问题.

  19. Great expectations: large wind turbines

    International Nuclear Information System (INIS)

    This article focuses on wind turbine product development, and traces the background to wind turbines from the first generation 1.5 MW machines in 1995-6, plans for the second generation 3-5 MW class turbines to meet the expected boom in offshore wind projects, to the anticipated installation of a 4.5 MW turbine, and offshore wind projects planned for 2000-2002. The switch by the market leader Vestas to variable speed operation in 2000, the new product development and marketing strategy taken by the German Pro + Pro consultancy in their design of a 1.5 MW variable speed pitch control concept, the possible limiting of the size of turbines due to logistical difficulties, opportunities offered by air ships for large turbines, and the commissioning of offshore wind farms are discussed. Details of some 2-5 MW offshore wind turbine design specifications are tabulated

  20. Aeroservoelasticity of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Skovmose Kallesoee, B.

    2007-12-14

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand and address. The main contribution of this thesis is the development of an aeroelastic blade model which on the one hand includes the important effects of steady state blade deformation, gravity and pitch action, and on the other it is transparent, suitable for analytical analysis and parameter studies, and furthermore linear and therefore suitable for control design. The development of the primary aeroelastic blade model is divided into four steps: 1) Nonlinear partial differential equations (PDEs) of structural blade motion are derived together with equations of pitch action and rotor speed; the individual terms in these equations are discussed and given physical interpretations; 2) Steady state blade deformation and induced velocities are computed by combining the PDEs with a steady state aerodynamic model; 3) Aeroelastic modes of motion are computed by combining the linearized PDEs with a linear unsteady aerodynamic model; this model is used to analyze how blade deformation effects the modes of motion; and 4) the linear aeroelastic blade model is derived by a modal expansion of the linearized PDEs combined with a linear unsteady aerodynamic model. The aeroelastic blade model has many similarities to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model is used to develop a state estimator for estimating the wind speed and wind shear, and to suggest a load reducing controller. The state estimator estimates the wind shear very

  1. Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Mijatovic, Nenad

    setup which is made to serve as precursor, leading towards an optimized HTS machine concept proposed for wind turbines. In part, the work presented in this thesis will focus on the description of the experimental setup and reasoning behind the choices made during the design. The setup comprises from a......A HTS machine could be a way to address some of the technical barriers offshore wind energy is about to face. Due to the superior power density of HTS machines, this technology could become a milestone on which many, including the wind industry, will rely in the future. The work presented in this...... thesis is a part of a larger endeavor, the Superwind project that focused on identifying the potentials that HTS machines could offer to the wind industry and addressing some of the challenges in the process. In order to identify these challenges, I have design and constructed a HTS machine experimental...

  2. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Mijatovic, Nenad

    experimental setup which is made to serve as precursor, leading towards an optimized HTS machine concept proposed for wind turbines. In part, the work presented in this thesis will focus on the description of the experimental setup and reasoning behind the choices made during the design. The setup comprises an......A HTS machine could be a way to address some of the technical barriers offshore wind energy is about to face. Due to the superior power density of HTS machines, this technology could become a milestone on which many, including the wind industry, will rely on in the future. The work presented in...... this thesis is a part of a larger endeavor, the Superwind project that focused on identifying the potentials that HTS machines could offer to the wind industry and addressing some of the challenges in the process. In order to identify these challenges, I have designed and constructed an HTS machine...

  3. Small Wind Turbine Technology Assessment

    International Nuclear Information System (INIS)

    The result of the study carried out under the scope of the ATYCA project Test Plant of Wind Systems for Isolated Applications, about the state of art of the small wind turbine technology (wind turbines with swept area smaller than 40 m2) is presented. The study analyzes the collected information on 60 models of wind turbines from 23 manufacturers in the worldwide market. Data from Chinese manufacturers, that have a large participation in the total number of small wind turbines in operation, are not included, due to the unavailability of the technical information. (Author) 15 refs

  4. Offshore Wind Turbine Design

    DEFF Research Database (Denmark)

    Frandsen, Sten; Hansen, Erik Asp; Ibsen, Lars Bo;

    2006-01-01

    important uncertainty drivers specific for offshore wind turbine design loads is required. Describing the initial efforts in a Danish research project, the paper points to focal points for research and development. These are mainly: soil-structure interaction, improved modelling of wave loads from deep...... to shallow waters, integrated re-sponse modelling, wake effects, response extrapola-tion and clarification of the relevance of deterministic load cases in the operational regime....

  5. On a method for simulation-based wind turbine blade design

    NARCIS (Netherlands)

    Jongsma, Sietse Harmen

    2014-01-01

    Wind turbines are an important means for the production of renewable energy. Wind conditions vary from one site to another and the design of a horizontal axis wind turbine depends on these local wind conditions. One of the important aspects of the design of a wind turbine concerns the aerodynamic sh

  6. Design Mining Interacting Wind Turbines.

    Science.gov (United States)

    Preen, Richard J; Bull, Larry

    2016-01-01

    An initial study has recently been presented of surrogate-assisted evolutionary algorithms used to design vertical-axis wind turbines wherein candidate prototypes are evaluated under fan-generated wind conditions after being physically instantiated by a 3D printer. Unlike other approaches, such as computational fluid dynamics simulations, no mathematical formulations were used and no model assumptions were made. This paper extends that work by exploring alternative surrogate modelling and evolutionary techniques. The accuracy of various modelling algorithms used to estimate the fitness of evaluated individuals from the initial experiments is compared. The effect of temporally windowing surrogate model training samples is explored. A surrogate-assisted approach based on an enhanced local search is introduced; and alternative coevolution collaboration schemes are examined. PMID:25635699

  7. Wind Turbine Providing Grid Support

    DEFF Research Database (Denmark)

    2011-01-01

    A variable speed wind turbine is arranged to provide additional electrical power to counteract non-periodic disturbances in an electrical grid. A controller monitors events indicating a need to increase the electrical output power from the wind turbine to the electrical grid. The controller is...... arranged to control the wind turbine as follows: after an indicating event has been detected, the wind turbine enters an overproduction period in which the electrical output power is increased, wherein the additional electrical output power is taken from kinetic energy stored in the rotor and without...... changing the operation of the wind turbine to a more efficient working point.; When the rotational speed of the rotor reaches a minimum value, the wind turbine enters a recovery period to re-accelerate the rotor to the nominal rotational speed while further contributing to the stability of the electrical...

  8. Multi-Objective Structural Optimization Design of Horizontal-Axis Wind Turbine Blades Using the Non-Dominated Sorting Genetic Algorithm II and Finite Element Method

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    2014-02-01

    Full Text Available A multi-objective optimization method for the structural design of horizontal-axis wind turbine (HAWT blades is presented. The main goal is to minimize the weight and cost of the blade which uses glass fiber reinforced plastic (GFRP coupled with carbon fiber reinforced plastic (CFRP materials. The number and the location of layers in the spar cap, the width of the spar cap and the position of the shear webs are employed as the design variables, while the strain limit, blade/tower clearance limit and vibration limit are taken into account as the constraint conditions. The optimization of the design of a commercial 1.5 MW HAWT blade is carried out by combining FEM analysis and a multi-objective evolutionary algorithm under ultimate (extreme flap-wise load and edge-wise load conditions. The best solutions are described and the comparison of the obtained results with the original design is performed to prove the efficiency and applicability of the method.

  9. Structural-Response Analysis, Fatigue-Life Prediction, and Material Selection for 1 MW Horizontal-Axis Wind-Turbine Blades

    Science.gov (United States)

    Grujicic, M.; Arakere, G.; Subramanian, E.; Sellappan, V.; Vallejo, A.; Ozen, M.

    2010-08-01

    The problem of mechanical design, performance prediction (e.g., flap-wise/ edge-wise bending stiffness, fatigue-controlled life, the extent of bending-to-torsion coupling), and material selection for a prototypical 1 MW horizontal-axis wind turbine (HAWT) blade is investigated using various computer-aided engineering tools. For example, a computer program was developed which can automatically generate both a geometrical model and a full finite-element input deck for a given single HAWT-blade with a given airfoil shape, size, and the type and position of the interior load-bearing longitudinal beam/shear-webs. In addition, composite-material laminate lay-up can be specified and varied in order to obtain a best combination of the blade aerodynamic efficiency and longevity. A simple procedure for HAWT-blade material selection is also developed which attempts to identify the optimal material candidates for a given set of functional requirements, longevity and low weight.

  10. Wake Study Methods of Wind Turbines

    Science.gov (United States)

    Suatean, Bogdan; Colidiuc, Alexandra; Galetuse, Stelian; Frunzulica, Florin

    2011-09-01

    Two different methods for determination of the aerodynamic performance of horizontal axis wind turbines (HAWT) are proposed in this paper. The methods presented have various levels of complexity to calculate the aerodynamic performances of HAWT, starting with a simple method, the lifting line method, and ending with a CFD approach.

  11. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter

    2014-01-01

    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  12. Wind Turbines on CO2 Neutral Luminaries in Urban Areas

    DEFF Research Database (Denmark)

    In the present work, an overview of three different wind turbines used in hybrid luminaries is presented. The turbines are: vertical-axis twisted Savonius, three-blade horizontal-axis, and vertical-axis three-blade helical H-rotor. The considered luminaries are also equipped with photovoltaic...... buildings. A new vertical-axis twisted Savonius rotor is proposed for a luminary being designed for such a district within the “Development of CO2 neutral urban luminary” project....

  13. 导叶对涡轮型垂直轴风力机气动性能的影响%Effects of guiding vanes on aerodynamic performance of vortex vertical axis wind turbine

    Institute of Scientific and Technical Information of China (English)

    原红红; 赵振宙; 郑源; 黄娟

    2013-01-01

    To overcome the problem of low efficiency of the traditional vertical axis wind turbine, the structural advantages of the wind turbine with guiding vanes are introduced and the effects of guiding vanes on the vortex vertical axis wind turbine are analyzed in detail. Based on computational fluid dynamics theory, the slippage mesh technique and the k-ε model were used to compare the aerodynamic performance of the vortex vertical axis wind turbine with and without guiding vanes at a design velocity of 12 m/s. Studies have shown that the guiding vanes can effectively prevent the direct impact of the coming flow from acting on the suction section of the blade in the upwind area so as to decrease the drag torque, while the guiding vanes also negatively affect the performance of blades in the downwind area, but the positive effect of the former is more significant, so the performance of a wind turbine with guiding vanes greatly improves. The vortex vertical axis wind turbine with arc-type guiding vanes has a wider operating range, higher optimum tip speed ratio, and higher aerodynamic efficiency. The maximum wind power coefficient can reach 0.24 .%针对传统垂直轴风力机效率低的缺陷,阐述带导叶垂直轴风力机的结构优势,并分析导叶对涡轮型垂直轴风力机的作用。应用计算流体力学理论,在设计风速12 m/s下,采用滑移网格技术及k-着模型对有、无导叶两种涡轮型垂直轴风力机的气动性能进行比较。研究表明,导叶可以有效降低由于来流对逆风区叶片吸力面的直接冲击而造成的阻力扭矩,也会负面影响顺风区叶片的性能,但其负作用效果远不及在逆风区挡流降阻的正作用效果,故加导叶后风轮的性能会有很大提高。带弧线形导叶涡轮型垂直轴风力机最大风能利用系数可达0.24,具有工作范围广、最佳尖速比大的特点。

  14. Identification of variations of angle of attack and lift coefficient for a large horizontal-axis wind turbine

    DEFF Research Database (Denmark)

    Rezaeiha, Abdolrahim; Arjomandi, Maziar; Kotsonis, Marios; Hansen, Martin Otto Laver

    2015-01-01

    the aggregate effect of elements on variations of mean value and standard deviation of the angle of attack and lift coefficient in order to distinguish the major contributing factors. The results of the current study is of paramount importance in the design of active load control systems for wind...

  15. Controls of Hydraulic Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhang Yin

    2016-01-01

    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  16. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard

    During the last decades, wind turbines have been continuously developed with the aim of maximizing the life cycle benefits (production of electricity) minus the costs of planning, materials, installation, operation & maintenance as well as possible failure. In order to continue this development...... turbines and the central topics considered are statistical load extrapolation of extreme loads during operation and reliability assessment of wind turbine blades. Wind turbines differ from most civil engineering structures by having a control system which highly influences the loading. In the literature......, methods for estimating the extreme load-effects on a wind turbine during operation, where the control system is active, have been proposed. But these methods and thereby the estimated loads are often subjected to a significant uncertainty which influences the reliability of the wind turbine. The...

  17. Flexible systems in wind turbines. Flexibele systemen van wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Geerdink, G.B.

    1983-01-01

    Flexible systems in wind turbines are those systems in design and construction flattening the rapidly fluctuating forces and torques, e.g., elastic suspension of rotor blades, the utilization of flexible materials and the dynamic decoupling of the electrical grid. Best materials for rotor blades are fibre reinforced plastics and (even for very large turbines) wood laminates. Flexible systems are already classic in the construction of smaller wind turbines. Wind turbines with flexible systems give less power, due to the necessary limitation of rotation speed, but construction is much cheaper.

  18. Experimental Investigation of the Wind Turbine Blade Root Flow

    NARCIS (Netherlands)

    Akay, B.; Ferreira, C.S.; Van Bussel, G.J.W.

    2010-01-01

    Several methods from experimental to analytical are used to investigate the aerodynamics of a horizontal axis wind turbine. To understand 3D and rotational effects at the root region of a wind turbine blade, correct modeling of the flow field is essential. Aerodynamic models need to be validated by

  19. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter to...... actions should be made and the type of actions requires knowledge on the accumulated damage or degradation state of the wind turbine components. For offshore wind turbines, the action times could be extended due to weather restrictions and result in damage or degradation increase of the remaining...... Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied and...

  20. Reliability Assessment of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines can be considered as structures that are in between civil engineering structures and machines since they consist of structural components and many electrical and machine components together with a control system. Further, a wind turbine is not a one-of-a-kind structure but...... manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  1. Pultrusion of a vertical axis wind turbine blade part-I: 3D thermo-chemical process simulation

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri;

    2015-01-01

    novel three dimensional thermo-chemical simulation of the pultrusion process is presented. A simulation is performed for the pultrusion of a NACA0018 blade profile having a curved geometry, as a part of the DeepWind project. The finite element/nodal control volume (FE/NCV) technique is used. First......, a pultrusion simulation of a Ushaped composite profile is performed to validate the model and it is found that the obtained cure degree profiles match with those given in the literature. Subsequently, the pultrusion process simulation of the NACA0018 profile is performed. The evolutions of the...... temperature and cure degree distributions are predicted inside the heating die and in the post-die region where convective cooling prevails. The effects of varying process conditions on the part quality are investigated for two different heater configurations and with three different pulling speeds. Larger...

  2. Wind tunnel investigation on wind turbine wakes and wind farms

    Science.gov (United States)

    Iungo, G. V.; Coëffé, J.; Porté-Agel, F.

    2012-04-01

    The interaction between atmospheric boundary layer and wind farms leads to flow modifications, which need to be deeply characterized in order to relate them to wind farm performance. The wake flow produced from a wind farm is the result of a strong interaction between multiple turbine wakes, so that the wind farm configuration turns out to be one of the dominant features to enhance power production. For the present work a wind tunnel investigation was carried out with hot-wire anemometry and velocity measurements performed with multi-hole pressure probes. The tested wind farms consist of miniature three-bladed wind turbine models. Preliminarily, the wake flow generated from a single wind turbine is surveyed, which is characterized by a strong velocity defect lying in proximity of the wind turbine hub height. The wake gradually recovers by moving downstream; the characteristics of the incoming boundary layer and wind turbulence intensity can strongly affect the wake recovery, and thus performance of following wind turbines. An increased turbulence level is typically detected downstream of each wind turbine for heights comparable to the wind turbine blade top-tip. These wake flow fluctuations produce increased fatigue loads on the following wind turbines within a wind farm, which could represent a significant hazard for real wind turbines. Dynamics of vorticity structures present in wind turbine wakes are also investigated; particular attention is paid to the downstream evolution of the tip helicoidal vortices and to oscillations of the hub vortex. The effect of wind farm layout on power production is deeply investigated. Particular emphasis is placed on studying how the flow adjusts as it moves inside the wind farm and can affect the power production. Aligned and staggered wind farm configurations are analysed, also with varying separation distances in the streamwise and spanwise directions. The present experimental results are being used to test and guide the

  3. Wind Turbine Providing Grid Support

    DEFF Research Database (Denmark)

    A variable speed wind turbine is arranged to provide additional electrical power to counteract non-periodic disturbances in an electrical grid. A controller monitors events indicating a need to increase the electrical output power from the wind turbine to the electrical grid. The controller is...... grid by outputting at least a predetermined minimum electrical power....

  4. Wind turbines and human health

    OpenAIRE

    Loren eKnopper; Ollson, Christopher A; Lindsay eMcCallum; Melissa eWhitfield Aslund; Robert eBerger; Kathleen eSouweine; Mary eMcDaniel

    2014-01-01

    The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation (electromagnetic fields (EMF), shadow flicker, audible noise, low frequency noise, infrasound). Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review we provide a bibliographic-like summary and analysis of the sc...

  5. Wind Turbines and Human Health

    OpenAIRE

    Knopper, Loren D.; Ollson, Christopher A; McCallum, Lindsay C.; Whitfield Aslund, Melissa L.; Berger, Robert G.; Souweine, Kathleen; McDaniel, Mary

    2014-01-01

    The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation [electromagnetic fields (EMF), shadow flicker, audible noise, low-frequency noise, infrasound]. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review, we provide a bibliographic-like summary and analysis of the s...

  6. A call for conservation scientists to evaluate opportunities and risks from operation of vertical axis wind turbines

    Science.gov (United States)

    Santangeli, Andrea; Katzner, Todd Eli

    2015-01-01

    A new conservation paradigm (Kareiva and Marvier, 2012) emphasizes the need for scientists to embrace a holistic approach taking into account the social and natural dimensions of conservation in human-dominated landscapes. While there is heavy debate over the new approach (Tallis and Lubchenco, 2014), most conservation scientists seem to agree on to the need to cooperate with corporations when such interaction can benefit people and the environment (Miller et al., 2014;Tallis and Lubchenco, 2014). Cooperation can be most productive when established in the early phases of development, but this requires a high capacity for forward looking pre-emptive action (i.e., anticipating potential forthcoming issues before they arise; Sutherland and Woodroof, 2009). This framework is particularly salient for rapidly developing and expanding technologies such as those for harvesting renewable energy sources. Here the stakes are very high, as they concern mitigating negative consequences to global climate while generating energy without impacting wildlife. In this vein, past experience is instructional. The environmental impacts of biofuels and wind, among others, have been identified and evaluated rather late (Sutherland and Woodroof, 2009), so that implementation of best management practices on existing facilities is now often prohibitively expensive.

  7. Large Wind Turbine Design Characteristics and R and D Requirements

    Science.gov (United States)

    Lieblein, S. (Editor)

    1979-01-01

    Detailed technical presentations on large wind turbine research and development activities sponsored by public and private organizations are presented. Both horizontal and vertical axis machines are considered with emphasis on their structural design.

  8. WIND TURBINE OPERATION PARAMETER CHARACTERISTICS AT A GIVEN WIND SPEED

    Directory of Open Access Journals (Sweden)

    Zdzisław Kamiński

    2014-06-01

    Full Text Available This paper discusses the results of the CFD simulation of the flow around Vertical Axis Wind Turbine rotor. The examined rotor was designed following patent application no. 402214. The turbine operation is characterised by parameters, such as opening angle of blades, power, torque, rotational velocity at a given wind velocity. Those parameters have an impact on the performance of entire assembly. The distribution of forces acting on the working surfaces in the turbine can change, depending on the angle of rotor rotation. Moreover, the resultant force derived from the force acting on the oncoming and leaving blades should be as high as possible. Accordingly, those parameters were individually simulated over time for each blade in three complete rotations. The attempts to improve the performance of the entire system resulted in a new research trend to improve the performance of working turbine rotor blades.

  9. Charting wind turbine performance

    International Nuclear Information System (INIS)

    Long term operating data from wind turbines up and running in various parts of the world offer a treasure chest of information. WindStats Newsletter's Danish database provides just such a source of information in the form of accumulated data form Denmark. It is useful to examine the data to see how machine performance has steadily improved over the years. The WindStats database currently includes nearly 1,800 machines of 150 kW rating and above. The performance of these were analyzed in some detail since these are the sizes that are of most interest today. However, due to the slowdown in the domestic market the majority of these machines were installed before 1990. Consequently the size distribution shows that most machines are in the range 23-31 m diameter. This analysis is restricted to power outputs of 150 kW and above, so the size distribution does not include all machines at the smaller sizes. (AB)

  10. 水平轴风力发电机组模型综述%Overview of Horizontal Axis Wind Turbine Model

    Institute of Scientific and Technical Information of China (English)

    李林; 张延迟; 杨宏坤; 刘吉辉

    2014-01-01

    从风力发电机组的类型及模型结构出发,介绍了风力发电机组的空气动力学模型、发电机模型、变流器模型、控制器模型。以双馈异步发电机为例,分析了其变速和变桨控制器原理及其控制过程,并建立了一个较为完整的风力发电机组模型,为风力发电机组的设计和控制提供了依据。%Starting from wind turbine model types and structures, this paper introduced wind turbine’s aerodynamic model, generator mod-el, converter model and controller model. With the double-fed induction generator as an example, analysis was made to its speed controller and pitch controller principle and its control process. This paper established a more complete wind turbine model to provide basis for design and control of wind turbines.

  11. Wind Turbines on CO2 Neutral Luminaries in Urban Areas

    OpenAIRE

    Skrzypinski, Witold Robert; Bak, Christian; Beller, Christina; Thorseth, Anders; Bühler, Fabian; Poulsen, Peter Behrensdorff; Andresen, Christian

    2013-01-01

    In the present work, an overview of three different wind turbines used in hybrid luminaries is presented. The turbines are: vertical-axis twisted Savonius, three-blade horizontal-axis, and vertical-axis three-blade helical H-rotor. The considered luminaries are also equipped with photovoltaic panels and batteries, detailed investigation of which is outside the scope of the present manuscript. Analysis of the turbines’ performance based on producer-supplied power curves is presented together w...

  12. Potential health impact of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    In response to public health concerns about wind turbines, a study was conducted to review the scientific evidence on the potential health effects of wind turbines. Several research questions were examined, including scientific evidence on the potential health impacts of wind turbines; the relationship between wind turbine noise and health; the relationship between low frequency sound, infrasound and health; assessment of exposure to wind turbines; wind turbine health and safety hazards and Ontario wind turbine setbacks; community consultation prior to wind farm construction and data gaps and research needs. The study showed that although some people living near wind turbines reported symptoms such as dizziness, headaches, and sleep disturbance, the scientific evidence available to date does not demonstrate a direct causal link between wind turbine noise and adverse health effects. The sound level from wind turbines at common residential setbacks is not sufficient to cause hearing impairment or other direct health effects, although some people may find it annoying. 41 refs., 1 appendix.

  13. Optimizing wind turbine control system parameters

    Science.gov (United States)

    Schluter, Larry L.; Vachon, William A.

    1993-05-01

    The impending expiration of the levelized period in the Interim Standard Offer Number 4 (ISO4) utility contracts for purchasing wind-generated power in California mandates, more than ever, that windplants be operated in a cost-effective manner. Operating plans and approaches are needed that maximize the net revenue from wind parks--after accounting for operation and maintenance costs. This paper describes a design tool that makes it possible to tailor a control system of a wind turbine (WT) to maximize energy production while minimizing the financial consequences of fatigue damage to key structural components. Plans for code enhancements to include expert systems and fuzzy logic are discussed, and typical results are presented in which the code is applied to study the controls of a generic Danish 15-m horizontal axis wind turbine (HAWT).

  14. Diffuser augmented wind turbine analysis code

    Science.gov (United States)

    Carroll, Jonathan

    Wind Energy is becoming a significant source of energy throughout the world. This ever increasing field will potentially reach the limit of availability and practicality with the wind farm sites and size of the turbine itself. Therefore, it is necessary to develop innovative wind capturing devices that can produce energy in the locations where large conventional horizontal axis wind turbines (HAWTs) are too impractical to install and operate. A diffuser augmented wind turbine (DAWT) is one such innovation. DAWTs increase the power output of the rotor by increasing the wind speed into the rotor using a duct. Currently, developing these turbines is an involved process using time consuming Computational Fluid Dynamics codes. A simple and quick design tool is necessary for designers to develop efficient energy capturing devices. This work lays out the theory for a quick analysis tool for DAWTs using an axisymmetric surface vorticity method. This method allows for quick analysis of duct, hubs and rotors giving designers a general idea of the power output of the proposed hub, blade and duct geometry. The method would be similar to the way blade element momentum theory is used to design conventional HAWTs. It is determined that the presented method is viable for preliminary design of DAWTs.

  15. Innovation in wind turbine design

    CERN Document Server

    Jamieson, Peter

    2011-01-01

    Innovation in Wind Turbine Design addresses the fundamentals of design, the reasons behind design choices, and describes the methodology for evaluating innovative systems and components. Always referencing a state of the art system for comparison, Jamieson discusses the basics of wind turbine theory and design, as well as how to apply existing engineering knowledge to further advance the technology, enabling the reader to gain a thorough understanding of current technology before assessing where it can go in the future. Innovation in Wind Turbine Design is divided into four mai

  16. Characterization of a New Open Jet Wind Tunnel to Optimize and Test Vertical Axis Wind Turbines Using Flow Visualization and Measurement

    DEFF Research Database (Denmark)

    Tourn, S.; Gilabert, R.; Sánchez, V.; Pallares, J.; Vernet, A.; Cuesta, I.; Schmidt Paulsen, Uwe

    Characterize a new open jet wind tunnel and define the uniform test section where performance studies of small VAWTs will be carried out.......Characterize a new open jet wind tunnel and define the uniform test section where performance studies of small VAWTs will be carried out....

  17. Modeling and Control of Wind Turbine

    OpenAIRE

    Luis Arturo Soriano; Wen Yu; Jose de Jesus Rubio

    2013-01-01

    In recent years, the energy production by wind turbines has been increasing, because its production is environmentally friendly; therefore, the technology developed for the production of energy through wind turbines brings great challenges in the investigation. This paper studies the characteristics of the wind turbine in the market and lab; it is focused on the recent advances of the wind turbine modeling with the aerodynamic power and the wind turbine control with the nonlinear, fu...

  18. Analysis and Research on Design Parameters of H-type Vertical Axis Wind Turbine%H型垂直轴风力机设计参数分析研究

    Institute of Scientific and Technical Information of China (English)

    马元威; 刘莉娜; 李练兵

    2012-01-01

    采用多流管理论模型对风光能源复合发电装置项目中H型垂直轴风机参数进行优化设计,在多流管理论基础上建立模型并用Matlab软件进行计算、仿真.分析了H型垂直轴风力机叶片在旋转过程中不同叶尖速比时攻角的变化情况,以及叶尖速比、密实度对风力机风能利用系数的影响.通过各个参数大小的变化对功率系数的影响进行比较,得出最大功率时所对应的风机最佳参数.%The multi-stream-tube theoretical model is used to optimize the parameters of H-type vertical axis wind turbine in wind-solar composed power generation project. Based on the multi-stream-tube theory, a model is established, and calculated and simulated by using Matlab software. The changes of the attack angle of the vane of the rotating H-type vertical axis wind turbine under different tip speed ratio is analyzed. The influence of tip speed ratio and density on wind energy utilization coefficient is analyzed emphatically. Through comparing the influence of the changes of various parameters on the power coefficient, the optimal parameters of wind turbine at ultimate power output are obtained.

  19. Operation Design of Wind Turbines in Strong Wind Conditions

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Montes, Melissa Barroso; Odgaard, Peter Fogh;

    2012-01-01

    variable speed pitch regulated wind turbines. The variable speed design is more suitable for wind turbines to run at very high wind speeds which can help the turbine braking system to stop the turbine at the new "cut-out" wind speed. Reference power, rotational speed and pitch angle have been designed...

  20. 基于 CFD 技术的垂直轴风力机动态尾流特性研究%Analysis of vertical axis wind turbine dynamic wake with CFD technology

    Institute of Scientific and Technical Information of China (English)

    蔡新; 潘盼; 朱杰; 顾荣蓉; 张建新

    2014-01-01

    The simulation of the vertical axis wind turbine which was designed by McMaster University is conducted under various tip speed ratio with the CFD software ,and the results agree well with the wind tunnel experiments .In the near wake ,comparing with the turbine with only one blade ,the dragged blade tip eddies of the upwind blade in normal running wind turbine influences the downwind blade’s aerody-namic characters:not only declines its peak value of the torsion torque ,but also delays its occurrence time .The modified wind turbine has equal peak torsion torque value output with normal turbine ,but less valley value ,and the modified one produces less pushing force parallel to the wind ;in the far wake ,the wind profile theory was added into the simulation of the 200kW vertical axis wind turbines in the wind farm of Falkenberg ,Sweden .The results reveal the upwind wind turbine produced intensive far wake flow in the upper and lower ends of the blades ,and the downwind turbine’ aerodynamic character was affected in the lower half parts of the blades .Influenced by the far wake in the wind farm ,the downwind turbine produces less energy .%利用C FD软件对麦克马斯特大学垂直轴风力机进行不同叶尖速比下的数值模拟,计算结果与风洞试验数据吻合良好。近场尾流中,与单叶片的风力机模拟结果比较,上游叶片产生并向下游延伸的旋涡影响下游运行轨道上叶片的升阻力特性,不仅使叶片扭矩输出峰值降低,而且峰值产生的时间延迟。对垂直轴风力机叶片叶梢进行修改,模拟结果显示,叶片扭矩输出峰值不变,但是谷值有所降低,修改后风力机沿风向推力幅值降低明显;远场尾流中,采用风速轮廓线原理,以瑞典的法尔肯贝里市200 kW垂直轴风力机为原型,按照真实的空间排布进行数值模拟。模拟结果显示,上游风力机上下两端处产生较为集中的远场尾流,影响下游

  1. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Toft, H.S.

    2010-01-01

    Probabilistic design of wind turbines requires definition of the structural elements to be included in the probabilistic basis: e.g., blades, tower, foundation; identification of important failure modes; careful stochastic modeling of the uncertain parameters; recommendations for target reliability...... is described how uncertainties in wind turbine design related to computational models, statistical data from test specimens, results from a few full-scale tests and from prototype wind turbines can be accounted for using the Maximum Likelihood Method and a Bayesian approach. Assessment of the optimal...... reliability level by cost-benefit optimization is illustrated by an offshore wind turbine example. Uncertainty modeling is illustrated by an example where physical, statistical and model uncertainties are estimated....

  2. Reliability Assessment Of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2014-01-01

    Reduction of cost of energy for wind turbines are very important in order to make wind energy competitive compared to other energy sources. Therefore the turbine components should be designed to have sufficient reliability but also not be too costly (and safe). This paper presents models for...... uncertainty modeling and reliability assessment of especially the structural components such as tower, blades, substructure and foundation. But since the function of a wind turbine is highly dependent on many electrical and mechanical components as well as a control system also reliability aspects of these...... components are discussed and it is described how there reliability influences the reliability of the structural components. Two illustrative examples are presented considering uncertainty modeling, reliability assessment and calibration of partial safety factors for structural wind turbine components exposed...

  3. Meteorological Controls on Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca J.; Hansen, Kurt Schaldemose; Pryor, S.C.

    2013-01-01

    The primary control on the magnitude of the power losses induced by wind turbine wakes in large wind farms is the hub-height wind speed via its link to the turbine thrust coefficient. Hence, at low to moderate wind speeds (between cut-in and rated turbine wind speeds) when the thrust coefficient ...

  4. The aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Troldborg, Niels;

    2013-01-01

    In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical...... Engineering at DTU. In particular, we show some new results on the classical problem of the ideal rotor and present a series of new results from an on-going research project dealing with the modelling and simulation of turbulent flow structures in the wake behind wind turbines....

  5. Lightning protection of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, T.; Brask, M.H. [DEFU (Denmark); Jensen, F.V.; Raben, N. [SEAS (Denmark); Saxov, J. [Nordjyllandsvaerket (Denmark); Nielsen, L. [Vestkraft (Denmark); Soerensen, P.E. [Risoe National Lab. (Denmark)

    1999-03-01

    Lightning damage to wind turbines is a serious problem for Danish power companies, who have experienced some cases with very costly lightning damage and a large number of cases with minor damage. The most costly cases include one catastrophic damage to an entire wind turbine, and several cases of destruction of blades, main bearings, generators and control systems. Over the years there have been several hundreds of cases with minor damage - typically damage and interruptions of the control and communication systems, or the power systems. The Danish power companies anticipate that the lightning threat will be even bigger for the large off-shore wind turbine installations that are currently being planned in Denmark. Furthermore, it is known from the off-shore wind turbines at Vindeby in Denmark that the costs of inspection and particularly repair work must be expected to be much higher off-shore as compared to wind turbines on land. These considerations was the background for a two year project concerned with investigation of lighting damages and with the formulation of a DEFU Recommendation for lightning protection of wind turbines, which was published in January 1999. The project was funded by the Danish power companies Elsam, Eltra, Elkraft and by DEFU. (au)

  6. Wind turbine wakes for wind energy

    OpenAIRE

    Gunner C. Larsen; Crespo Martínez, Antonio

    2011-01-01

    During recent years, wind energy has moved from an emerging technology to a nearly competitive technology. This fact, coupled with an increasing global focus on environmental concern and a political desire of a certain level of diversification in the energy supply, ensures wind energy an important role in the future electricity market. For this challenge to be met in a cost-efficient way, a substantial part of new wind turbine installations is foreseen to be erected in big onshore or offshore...

  7. Large superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Jensen, Bogi Bech;

    2012-01-01

    To realize large (>10 MW) direct-driven off-shore wind turbines, a number of steps are needed to reduce weight and cost compared to on-shore technologies. One of the major challenges is to provide drive trains which can comply with the large torque as the turbine rotor diameter is scaled up and the...... thereby having a smaller size and weight [1, 2]. A 5 MW superconducting wind turbine generator forms the basics for the feasibility considerations, particularly for the YBCO and MgB2 superconductors entering the commercial market. Initial results indicate that a 5 MW generator with an active weight of 34...

  8. Wind turbine airfoil catalogue

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.; Soerensen, N.; Johansen, J.; Fuglsang, P.

    2001-08-01

    The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind turbine applications) are collected and compared with computational results from the 2D Navier-Stokes solver EllipSys2D, as well as results from the panel method code XFOIL. Secondly, we are interested in validating the code EllipSys2D and finding out for which air-foils it does not perform well compared to the experiments, as well as why, when it does so. The airfoils are classified according to the agreement between the numerical results and experimental data. A study correlating the available data and this classification is performed. It is found that transition modelling is to a large extent responsible for the poor quality of the computational results for most of the considered airfoils. The transition model mechanism that leads to these discrepancies is identified. Some advices are given for elaborating future airfoil design processes that would involve the numerical code EllipSys2D in particular, and transition modelling in general. (au)

  9. Active control: Wind turbine model

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This hasbeen done with extensive use of measurements as the basis for selection of model complexity and model....... The models are all formulated as linear differential equations. The models are validated throughcomparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch...

  10. LPV Control for the Full Region Operation of a Wind Turbine Integrated with Synchronous Generator

    OpenAIRE

    2015-01-01

    Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV) controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence) code linear...

  11. Extreme Response for Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    The characteristic load on wind turbines during operation are among others dependent on the mean wind speed, the turbulence intensity and type and settings of the control system. The characteristic load during operation is normally estimated by statistical extrapolation of a limited number of...... simulated 10min time series of the response according to the wind turbine standard IEC 61400-1. However, this method assumes that the individual 10min time series and the extracted peaks from the time series are independent. In the present paper is this assumption investigated based on field measurements...

  12. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter to ....... Further, reliability modeling of load sharing systems is considered and a theoretical model is proposed based on sequential order statistics and structural systems reliability methods. Procedures for reliability estimation are detailed and presented in a collection of research papers....

  13. Ultimate loading of wind turbines

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Ronold, K.; Ejsing Jørgensen, Hans;

    1999-01-01

    An extreme loading study has been conducted comprising a general wind climate analysis as well as a wind turbine reliability study. In the wind climate analysis, the distribution of the (horizontal) turbulence standard deviation, conditioned on the meanwind speed, has been approximated by fitting a...... design turbulence intensity for off-shore application is proposed which, in the IEC code framework, is applicable for extreme as well as for fatigue loaddetermination. In order to establish a rational method to analyse wind turbine components with respect to failure in ultimate loading, and in addition...... three parameter Weibull distribution to the measured on-shore and off-shore data for wind speed variations. Specific recommendations on off-shore design turbulence intensities are lacking in the presentIEC-code. Based on the present analysis of the off-shore wind climate on two shallow water sites, a...

  14. Control system on a wind turbine

    OpenAIRE

    Varpe, Steffen Andreas

    2008-01-01

    The aim for this project is to prepare a wind turbine controller and a wind turbine computer model suitable for controller development. The wind turbine is a Vestas V27, and the wind turbine drive train is modified by ChapDrive with a specified hydraulic transmission. Both the pitch and the rotor speed can be regulated for the modified wind turbine. The model is primarily based on a set of given wind turbine rotor characteristics, transmission specifications and transmission test data. The co...

  15. Smart Wind Turbine: Analysis and Autonomous Flap

    OpenAIRE

    Bernhammer, L. O.

    2015-01-01

    Wind turbines convert kinetic energy of the wind into electrical energy. Unfortunately, this process is everything but constant, as the wind source shows large fluctuations with high and low frequencies. This turbulence, together with the wind shear and yawed inflow, excites the turbine structure, thereby driving the loads and the design of turbines in general and blades in particular. In response to this, several control mechanisms have been applied to wind turbines since the generation of s...

  16. Airfoil characteristics for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.; Fuglsang, P.; Soerensen, N.N.; Aagaard Madsen, H. [Risoe National Lab., Roskilde (Denmark); Wen Zhong Shen; Noerkaer Soerensen, J. [Technical Univ. of Denmark, Lyngby (Denmark)

    1999-03-01

    Airfoil characteristics for use in the Blade Element Momentum (BEM) method calculating the forces on Horizontal Axis Wind Turbines (HAWT) are derived by use of systematic methods. The investigation and derivation of the airfoil characteristics are based on four different methods: 1) Inverse momentum theory, 2) Actuator disc theory, 3) Numerical optimisation and 4) Quasi-3D CFD computations. The two former methods are based on 3D CFD computations and wind tunnel measurements on a 41-m full-scale rotor with LM 19.1 blades. The derived airfoil characteristics show that the lift coefficient in stall at the tip is low and that it is high at the root compared to 2D airfoil characteristics. The use of these characteristics in aeroelastic calculations shows a good agreement in power and flap moments with measurements. Furthermore, a fatigue analysis shows a reduction in the loads of up to 15 % compared to a commonly used set of airfoil characteristics. The numerical optimisation is based on both the 3D CFD computations and measurements on a 41-m rotor with LM 19.1 and LM 19.0 blades, respectively. The method requires power and loads from a turbine and is promising since a set of lift and drag curves is derived that can be used to calculate mean values of power and loads. The lift in stall at the tip is low and at the root it is high compared to 2D airfoil characteristics. In particular the power curves were well calculated by use of the optimised airfoil characteristics. In the quasi-3D CFD computations, the airfoil characteristics are derived directly. This Navier-Stokes model takes into account rotational and 3D effects. The model enables the study of the rotational effect of a rotor blade at computing costs similar to what is typical for 2D airfoil calculations. The depicted results show that the model is capable of determining the correct qualitative behaviour for airfoils subject to rotation. The method shows that lift is high at the root compared to 2D airfoil

  17. Fault Behavior of Wind Turbines

    OpenAIRE

    Sulla, Francesco

    2012-01-01

    Synchronous generators have always been the dominant generation type in the grid. This fact affected both planning and operation of power systems. With the fast increase of wind power share in the grid in the last decade, the situation is changing. In some countries wind power represents already a consistent amount of the total generation. Wind turbines can be classified as non-synchronous generation and they behave differently than synchronous generation under many circumstances. Fault behav...

  18. Flow Characteristics Study of Wind Turbine Blade with Vortex Generators

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2016-01-01

    Full Text Available The blade root flow control is of particular importance to the aerodynamic characteristic of large wind turbines. The paper studies the feasibility of improving blade pneumatic power by applying vortex generators (VGs to large variable propeller shaft horizontal axis wind turbines, with 2 MW variable propeller shaft horizontal axis wind turbine blades as research object. In the paper, three cases of VGs installation are designed; they are scattered in different chordwise position at the blade root, and then they are calculated, respectively, with CFD method. The results show that VGs installed in the separation line upstream, with the separation line of the blade root as a benchmark, show a better effect. Pneumatic power of blades increases by 0.6% by installing VGs. Although the effect on large wind turbines is not obvious, there is a space for optimization.

  19. Wind turbines and human health

    Directory of Open Access Journals (Sweden)

    Loren eKnopper

    2014-06-01

    Full Text Available The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation (electromagnetic fields (EMF, shadow flicker, audible noise, low frequency noise, infrasound. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low frequency noise and infrasound, EMF and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low frequency noise and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance especially at sound pressure levels >40 dB(A. Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health.

  20. Wind energy. From small wind turbines to offshore wind farms

    International Nuclear Information System (INIS)

    This bibliographical sheet presents a book in which the authors present and discuss the present and future developments, challenges and problematic of wind energy. They notably focus on offshore wind farms, their technical solutions and current French projects, with their potentials, economic, administrative and environmental aspects, their sizing issue, and so on. They also explain in detail the potential of wind energy and its conversion, present the different subsystems of a wind turbine and their operation, and describe how to build up a wind farm project. They also address the issues related to small wind turbines